1
|
Pillai M, Jha SK. Conformational Enigma of TDP-43 Misfolding in Neurodegenerative Disorders. ACS OMEGA 2024; 9:40286-40297. [PMID: 39372031 PMCID: PMC11447851 DOI: 10.1021/acsomega.4c04119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/25/2024] [Accepted: 09/05/2024] [Indexed: 10/08/2024]
Abstract
Misfolding and aggregation of the protein remain some of the most common phenomena observed in neurodegeneration. While there exist multiple neurodegenerative disorders characterized by accumulation of distinct proteins, what remains particularly interesting is the ability of these proteins to undergo a conformational change to form aggregates. TDP-43 is one such nucleic acid binding protein whose misfolding is associated with many neurogenerative diseases including amyotrophic lateral sclerosis (ALS) and fronto-temporal lobar degeneration (FTLD). TDP-43 protein assumes several different conformations and oligomeric states under the diseased condition. In this review, we explore the intrinsic relationship between the conformational variability of TDP-43 protein, with a particular focus on the RRM domains, and its propensity to undergo aggregation. We further emphasize the probable mechanism behind the formation of these conformations and suggest a potential diagnostic and therapeutic strategy in the context of these conformational states of the protein.
Collapse
Affiliation(s)
- Meenakshi Pillai
- Physical
and Materials Chemistry Division, CSIR-National
Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Santosh Kumar Jha
- Physical
and Materials Chemistry Division, CSIR-National
Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
2
|
Lin Y, Zheng J, Mai Z, Lin P, Lu Y, Cui L, Zhao X. Unveiling the veil of RNA binding protein phase separation in cancer biology and therapy. Cancer Lett 2024; 601:217160. [PMID: 39111384 DOI: 10.1016/j.canlet.2024.217160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/27/2024] [Accepted: 08/02/2024] [Indexed: 08/13/2024]
Abstract
RNA-binding protein (RBP) phase separation in oncology reveals a complex interplay crucial for understanding tumor biology and developing novel therapeutic strategies. Aberrant phase separation of RBPs significantly influences gene regulation, signal transduction, and metabolic reprogramming, contributing to tumorigenesis and drug resistance. Our review highlights the integral roles of RBP phase separation in stress granule dynamics, mRNA stabilization, and the modulation of transcriptional and translational processes. Furthermore, interactions between RBPs and non-coding RNAs add a layer of complexity, providing new insights into their collaborative roles in cancer progression. The intricate relationship between RBPs and phase separation poses significant challenges but also opens up novel opportunities for targeted therapeutic interventions. Advancing our understanding of the molecular mechanisms and regulatory networks governing RBP phase separation could lead to breakthroughs in cancer treatment strategies.
Collapse
Affiliation(s)
- Yunfan Lin
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Jiarong Zheng
- Department of Dentistry, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Zizhao Mai
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Pei Lin
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Ye Lu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Li Cui
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China; School of Dentistry, University of California, Los Angeles, Los Angeles, 90095, CA, USA.
| | - Xinyuan Zhao
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China.
| |
Collapse
|
3
|
Bertini L, Libera V, Catalini S, Schirò G, Orecchini A, Campanella R, Arciuolo V, Pagano B, Petrillo C, De Michele C, Comez L, Paciaroni A. Hindered intermolecular stacking of anti-parallel telomeric G-quadruplexes. J Chem Phys 2024; 161:105101. [PMID: 39248241 DOI: 10.1063/5.0225371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 08/21/2024] [Indexed: 09/10/2024] Open
Abstract
Telomeric G-quadruplexes (G4s) are non-canonical DNA structures composed of TTAGGG repeats. They are extensively studied both as biomolecules key for genome stability and as promising building blocks and functional elements in synthetic biology and nanotechnology. This is why it is extremely important to understand how the interaction between G4s is affected by their topology. We used small-angle x-ray scattering to investigate the end-to-end stacking of antiparallel telomeric G-quadruplexes formed by the sequence AG3(T2AG3)3. To represent the experimental data, we developed a highly efficient coarse-grained fitting tool, which successfully described the samples as an equilibrium mixture of monomeric and dimeric G4 species. Our findings indicate that the antiparallel topology prevents the formation of long multimeric structures under self-crowding conditions, unlike the hybrid/parallel structures formed by the same DNA sequence. This result supports the idea that the stacking of monomeric G-quadruplexes is strongly affected by the presence of diagonal loops.
Collapse
Affiliation(s)
- Luca Bertini
- Department of Physics and Geology, University of Perugia, via Alessandro Pascoli, 06123 Perugia, Italy
| | - Valeria Libera
- Department of Physics and Geology, University of Perugia, via Alessandro Pascoli, 06123 Perugia, Italy
| | - Sara Catalini
- Department of Physics and Geology, University of Perugia, via Alessandro Pascoli, 06123 Perugia, Italy
| | - Giorgio Schirò
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, F-38044 Grenoble, France
| | - Andrea Orecchini
- Department of Physics and Geology, University of Perugia, via Alessandro Pascoli, 06123 Perugia, Italy
| | - Renzo Campanella
- Department of Physics and Geology, University of Perugia, via Alessandro Pascoli, 06123 Perugia, Italy
| | - Valentina Arciuolo
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy
| | - Bruno Pagano
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy
| | - Caterina Petrillo
- Department of Physics and Geology, University of Perugia, via Alessandro Pascoli, 06123 Perugia, Italy
| | | | - Lucia Comez
- CNR-IOM c/o Department of Physics and Geology, University of Perugia, 06123 Perugia, Italy
| | - Alessandro Paciaroni
- Department of Physics and Geology, University of Perugia, via Alessandro Pascoli, 06123 Perugia, Italy
| |
Collapse
|
4
|
Giudice J, Jiang H. Splicing regulation through biomolecular condensates and membraneless organelles. Nat Rev Mol Cell Biol 2024; 25:683-700. [PMID: 38773325 DOI: 10.1038/s41580-024-00739-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2024] [Indexed: 05/23/2024]
Abstract
Biomolecular condensates, sometimes also known as membraneless organelles (MLOs), can form through weak multivalent intermolecular interactions of proteins and nucleic acids, a process often associated with liquid-liquid phase separation. Biomolecular condensates are emerging as sites and regulatory platforms of vital cellular functions, including transcription and RNA processing. In the first part of this Review, we comprehensively discuss how alternative splicing regulates the formation and properties of condensates, and conversely the roles of biomolecular condensates in splicing regulation. In the second part, we focus on the spatial connection between splicing regulation and nuclear MLOs such as transcriptional condensates, splicing condensates and nuclear speckles. We then discuss key studies showing how splicing regulation through biomolecular condensates is implicated in human pathologies such as neurodegenerative diseases, different types of cancer, developmental disorders and cardiomyopathies, and conclude with a discussion of outstanding questions pertaining to the roles of condensates and MLOs in splicing regulation and how to experimentally study them.
Collapse
Affiliation(s)
- Jimena Giudice
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- McAllister Heart Institute, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Hao Jiang
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, USA.
| |
Collapse
|
5
|
Lancaster CL, Yalamanchili PS, Goldy JN, Leung SW, Corbett AH, Moberg KH. The RNA-binding protein Nab2 regulates levels of the RhoGEF Trio to govern axon and dendrite morphology. Mol Biol Cell 2024; 35:ar109. [PMID: 38985523 PMCID: PMC11321036 DOI: 10.1091/mbc.e24-04-0150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/17/2024] [Accepted: 07/02/2024] [Indexed: 07/12/2024] Open
Abstract
The Drosophila RNA-binding protein (RBP) Nab2 acts in neurons to regulate neurodevelopment and is orthologous to the human intellectual disability-linked RBP, ZC3H14. Nab2 governs axon projection in mushroom body neurons and limits dendritic arborization of class IV sensory neurons in part by regulating splicing events in ∼150 mRNAs. Analysis of the Sex-lethal (Sxl) mRNA revealed that Nab2 promotes an exon-skipping event and regulates m6A methylation on Sxl pre-mRNA by the Mettl3 methyltransferase. Mettl3 heterozygosity broadly rescues Nab2null phenotypes implying that Nab2 acts through similar mechanisms on other RNAs, including unidentified targets involved in neurodevelopment. Here, we show that Nab2 and Mettl3 regulate the removal of a 5'UTR (untranslated region) intron in the trio pre-mRNA. Trio utilizes two GEF domains to balance Rac and RhoGTPase activity. Intriguingly, an isoform of Trio containing only the RhoGEF domain, GEF2, is depleted in Nab2null nervous tissue. Expression of Trio-GEF2 rescues projection defects in Nab2null axons and dendrites, while the GEF1 Rac1-regulatory domain exacerbates these defects, suggesting Nab2-mediated regulation Trio-GEF activities. Collectively, these data indicate that Nab2-regulated processing of trio is critical for balancing Trio-GEF1 and -GEF2 activity and show that Nab2, Mettl3, and Trio function in a common pathway that shapes axon and dendrite morphology.
Collapse
Affiliation(s)
- Carly L. Lancaster
- Department of Biology, Emory College of Arts and Sciences, Atlanta, GA 30322
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322
- Graduate Program in Biochemistry, Cell and Developmental Biology, Emory University, Atlanta, GA 30322
| | - Pranav S. Yalamanchili
- Department of Biology, Emory College of Arts and Sciences, Atlanta, GA 30322
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322
| | - Jordan N. Goldy
- Department of Biology, Emory College of Arts and Sciences, Atlanta, GA 30322
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322
- Graduate Program in Biochemistry, Cell and Developmental Biology, Emory University, Atlanta, GA 30322
| | - Sara W. Leung
- Department of Biology, Emory College of Arts and Sciences, Atlanta, GA 30322
| | - Anita H. Corbett
- Department of Biology, Emory College of Arts and Sciences, Atlanta, GA 30322
| | - Kenneth H. Moberg
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322
| |
Collapse
|
6
|
Zhan CL, Zhou D, Sun MH, Jiang WJ, Lee SH, Li XH, Lu QY, Kim JD, Lee GH, Sim JM, Chung HJ, Cho ES, Sa SJ, Cui XS. In Vivo-Matured Oocyte Resists Post-Ovulatory Aging through the Hub Genes DDX18 and DNAJC7 in Pigs. Antioxidants (Basel) 2024; 13:867. [PMID: 39061935 PMCID: PMC11274268 DOI: 10.3390/antiox13070867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Assisted reproduction technology (ART) procedures are often impacted by post-ovulatory aging (POA), which can lead to reduced fertilization rates and impaired embryo development. This study used RNA sequencing analysis and experimental validation to study the similarities and differences between in vivo- and vitro-matured porcine oocytes before and after POA. Differentially expressed genes (DEGs) between fresh in vivo-matured oocyte (F_vivo) and aged in vivo-matured oocyte (A_vivo) and DEGs between fresh in vitro-matured oocyte (F_vitro) and aged in vitro-matured oocyte (A_vitro) were intersected to explore the co-effects of POA. It was found that "organelles", especially "mitochondria", were significantly enriched Gene Ontology (GO) terms. The expression of genes related to the "electron transport chain" and "cell redox homeostasis" pathways related to mitochondrial function significantly showed low expression patterns in both A_vivo and A_vitro groups. Weighted correlation network analysis was carried out to explore gene expression modules specific to A_vivo. Trait-module association analysis showed that the red modules were most associated with in vivo aging. There are 959 genes in the red module, mainly enriched in "RNA binding", "mRNA metabolic process", etc., as well as in GO terms, and "spliceosome" and "nucleotide excision repair" pathways. DNAJC7, IK, and DDX18 were at the hub of the gene regulatory network. Subsequently, the functions of DDX18 and DNAJC7 were verified by knocking down their expression at the germinal vesicle (GV) and Metaphase II (MII) stages, respectively. Knockdown at the GV stage caused cell cycle disorders and increase the rate of abnormal spindle. Knockdown at the MII stage resulted in the inefficiency of the antioxidant melatonin, increasing the level of intracellular oxidative stress, and in mitochondrial dysfunction. In summary, POA affects the organelle function of oocytes. A_vivo oocytes have some unique gene expression patterns. These genes may be potential anti-aging targets. This study provides a better understanding of the detailed mechanism of POA and potential strategies for improving the success rates of assisted reproductive technologies in pigs and other mammalian species.
Collapse
Affiliation(s)
- Cheng-Lin Zhan
- Department of Animal Science, Chungbuk National University, Cheongju 28644, Republic of Korea; (C.-L.Z.); (D.Z.); (M.-H.S.); (W.-J.J.); (S.-H.L.); (X.-H.L.); (Q.-Y.L.); (J.-D.K.); (G.-H.L.); (J.-M.S.)
| | - Dongjie Zhou
- Department of Animal Science, Chungbuk National University, Cheongju 28644, Republic of Korea; (C.-L.Z.); (D.Z.); (M.-H.S.); (W.-J.J.); (S.-H.L.); (X.-H.L.); (Q.-Y.L.); (J.-D.K.); (G.-H.L.); (J.-M.S.)
| | - Ming-Hong Sun
- Department of Animal Science, Chungbuk National University, Cheongju 28644, Republic of Korea; (C.-L.Z.); (D.Z.); (M.-H.S.); (W.-J.J.); (S.-H.L.); (X.-H.L.); (Q.-Y.L.); (J.-D.K.); (G.-H.L.); (J.-M.S.)
| | - Wen-Jie Jiang
- Department of Animal Science, Chungbuk National University, Cheongju 28644, Republic of Korea; (C.-L.Z.); (D.Z.); (M.-H.S.); (W.-J.J.); (S.-H.L.); (X.-H.L.); (Q.-Y.L.); (J.-D.K.); (G.-H.L.); (J.-M.S.)
| | - Song-Hee Lee
- Department of Animal Science, Chungbuk National University, Cheongju 28644, Republic of Korea; (C.-L.Z.); (D.Z.); (M.-H.S.); (W.-J.J.); (S.-H.L.); (X.-H.L.); (Q.-Y.L.); (J.-D.K.); (G.-H.L.); (J.-M.S.)
| | - Xiao-Han Li
- Department of Animal Science, Chungbuk National University, Cheongju 28644, Republic of Korea; (C.-L.Z.); (D.Z.); (M.-H.S.); (W.-J.J.); (S.-H.L.); (X.-H.L.); (Q.-Y.L.); (J.-D.K.); (G.-H.L.); (J.-M.S.)
| | - Qin-Yue Lu
- Department of Animal Science, Chungbuk National University, Cheongju 28644, Republic of Korea; (C.-L.Z.); (D.Z.); (M.-H.S.); (W.-J.J.); (S.-H.L.); (X.-H.L.); (Q.-Y.L.); (J.-D.K.); (G.-H.L.); (J.-M.S.)
| | - Ji-Dam Kim
- Department of Animal Science, Chungbuk National University, Cheongju 28644, Republic of Korea; (C.-L.Z.); (D.Z.); (M.-H.S.); (W.-J.J.); (S.-H.L.); (X.-H.L.); (Q.-Y.L.); (J.-D.K.); (G.-H.L.); (J.-M.S.)
| | - Gyu-Hyun Lee
- Department of Animal Science, Chungbuk National University, Cheongju 28644, Republic of Korea; (C.-L.Z.); (D.Z.); (M.-H.S.); (W.-J.J.); (S.-H.L.); (X.-H.L.); (Q.-Y.L.); (J.-D.K.); (G.-H.L.); (J.-M.S.)
| | - Jae-Min Sim
- Department of Animal Science, Chungbuk National University, Cheongju 28644, Republic of Korea; (C.-L.Z.); (D.Z.); (M.-H.S.); (W.-J.J.); (S.-H.L.); (X.-H.L.); (Q.-Y.L.); (J.-D.K.); (G.-H.L.); (J.-M.S.)
| | - Hak-Jae Chung
- The Center for Reproductive Control, TNT Research Co., Ltd., Jiphyeonjungang 3-gil 13, Sejong-si 30141, Republic of Korea;
| | - Eun-Seok Cho
- Swine Science Division, National Institute of Animal Science, RDA, Cheonan-si 31000, Republic of Korea;
| | - Soo-Jin Sa
- Planning and Coordination Division, National Institute of Animal Science, Iseo-myeon, Wanju-gun 55365, Republic of Korea;
| | - Xiang-Shun Cui
- Department of Animal Science, Chungbuk National University, Cheongju 28644, Republic of Korea; (C.-L.Z.); (D.Z.); (M.-H.S.); (W.-J.J.); (S.-H.L.); (X.-H.L.); (Q.-Y.L.); (J.-D.K.); (G.-H.L.); (J.-M.S.)
| |
Collapse
|
7
|
Rosenblum SL, Soueid DM, Giambasu G, Vander Roest S, Pasternak A, DiMauro EF, Simov V, Garner AL. Live cell screening to identify RNA-binding small molecule inhibitors of the pre-let-7-Lin28 RNA-protein interaction. RSC Med Chem 2024; 15:1539-1546. [PMID: 38784453 PMCID: PMC11110735 DOI: 10.1039/d4md00123k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 03/16/2024] [Indexed: 05/25/2024] Open
Abstract
Dysregulation of the networking of RNA-binding proteins (RBPs) and RNAs drives many human diseases, including cancers, and the targeting of RNA-protein interactions (RPIs) has emerged as an exciting area of RNA-targeted drug discovery. Accordingly, methods that enable the discovery of cell-active small molecule modulators of RPIs are needed to propel this emerging field forward. Herein, we describe the application of live-cell assay technology, RNA interaction with protein-mediated complementation assay (RiPCA), for high-throughput screening to identify small molecule inhibitors of the pre-let-7d-Lin28A RPI. Utilizing a combination of RNA-biased small molecules and virtual screening hits, we discovered an RNA-binding small molecule that can disrupt the pre-let-7-Lin28 interaction demonstrating the potential of RiPCA for advancing RPI-targeted drug discovery.
Collapse
Affiliation(s)
- Sydney L Rosenblum
- Program in Chemical Biology, University of Michigan 210 Washtenaw Avenue Ann Arbor MI 48109 USA
| | - Dalia M Soueid
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan 1600 Huron Parkway, NCRC B520 Ann Arbor MI 48109 USA
| | - George Giambasu
- Computational Chemistry, Merck & Co., Inc. Boston MA 02115 USA
| | - Steve Vander Roest
- Center for Chemical Genomics, Life Sciences Institute, University of Michigan 210 Washtenaw Avenue Ann Arbor MI 48109 USA
| | | | - Erin F DiMauro
- Discovery Chemistry, Merck & Co., Inc. Boston MA 02115 USA
| | - Vladimir Simov
- Discovery Chemistry, Merck & Co., Inc. Boston MA 02115 USA
| | - Amanda L Garner
- Program in Chemical Biology, University of Michigan 210 Washtenaw Avenue Ann Arbor MI 48109 USA
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan 1600 Huron Parkway, NCRC B520 Ann Arbor MI 48109 USA
| |
Collapse
|
8
|
Zacco E, Broglia L, Kurihara M, Monti M, Gustincich S, Pastore A, Plath K, Nagakawa S, Cerase A, Sanchez de Groot N, Tartaglia GG. RNA: The Unsuspected Conductor in the Orchestra of Macromolecular Crowding. Chem Rev 2024; 124:4734-4777. [PMID: 38579177 PMCID: PMC11046439 DOI: 10.1021/acs.chemrev.3c00575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 01/12/2024] [Accepted: 01/18/2024] [Indexed: 04/07/2024]
Abstract
This comprehensive Review delves into the chemical principles governing RNA-mediated crowding events, commonly referred to as granules or biological condensates. We explore the pivotal role played by RNA sequence, structure, and chemical modifications in these processes, uncovering their correlation with crowding phenomena under physiological conditions. Additionally, we investigate instances where crowding deviates from its intended function, leading to pathological consequences. By deepening our understanding of the delicate balance that governs molecular crowding driven by RNA and its implications for cellular homeostasis, we aim to shed light on this intriguing area of research. Our exploration extends to the methodologies employed to decipher the composition and structural intricacies of RNA granules, offering a comprehensive overview of the techniques used to characterize them, including relevant computational approaches. Through two detailed examples highlighting the significance of noncoding RNAs, NEAT1 and XIST, in the formation of phase-separated assemblies and their influence on the cellular landscape, we emphasize their crucial role in cellular organization and function. By elucidating the chemical underpinnings of RNA-mediated molecular crowding, investigating the role of modifications, structures, and composition of RNA granules, and exploring both physiological and aberrant phase separation phenomena, this Review provides a multifaceted understanding of the intriguing world of RNA-mediated biological condensates.
Collapse
Affiliation(s)
- Elsa Zacco
- RNA
Systems Biology Lab, Center for Human Technologies, Istituto Italiano di Tecnologia, Via Enrico Melen, 83, 16152 Genova, Italy
| | - Laura Broglia
- RNA
Systems Biology Lab, Center for Human Technologies, Istituto Italiano di Tecnologia, Via Enrico Melen, 83, 16152 Genova, Italy
| | - Misuzu Kurihara
- RNA
Biology Laboratory, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Michele Monti
- RNA
Systems Biology Lab, Center for Human Technologies, Istituto Italiano di Tecnologia, Via Enrico Melen, 83, 16152 Genova, Italy
| | - Stefano Gustincich
- Central
RNA Lab, Center for Human Technologies, Istituto Italiano di Tecnologia, Via Enrico Melen, 83, 16152 Genova, Italy
| | - Annalisa Pastore
- UK
Dementia Research Institute at the Maurice Wohl Institute of King’s
College London, London SE5 9RT, U.K.
| | - Kathrin Plath
- Department
of Biological Chemistry, David Geffen School
of Medicine at the University of California Los Angeles, Los Angeles, California 90095, United States
| | - Shinichi Nagakawa
- RNA
Biology Laboratory, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Andrea Cerase
- Blizard
Institute,
Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 4NS, U.K.
- Unit
of Cell and developmental Biology, Department of Biology, Università di Pisa, 56123 Pisa, Italy
| | - Natalia Sanchez de Groot
- Unitat
de Bioquímica, Departament de Bioquímica i Biologia
Molecular, Universitat Autònoma de
Barcelona, 08193 Barcelona, Spain
| | - Gian Gaetano Tartaglia
- RNA
Systems Biology Lab, Center for Human Technologies, Istituto Italiano di Tecnologia, Via Enrico Melen, 83, 16152 Genova, Italy
- Catalan
Institution for Research and Advanced Studies, ICREA, Passeig Lluís Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
9
|
Wang Q, Chen F, He Y, Gao Y, Wang J, Chu S, Xie P, Zhong J, Shan H, Bai J, Hou P. Polypyrimidine tract-binding protein 3/insulin-like growth factor 2 mRNA-binding proteins 3/high-mobility group A1 axis promotes renal cancer growth and metastasis. iScience 2024; 27:109158. [PMID: 38405614 PMCID: PMC10884747 DOI: 10.1016/j.isci.2024.109158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/05/2024] [Accepted: 02/05/2024] [Indexed: 02/27/2024] Open
Abstract
Polypyrimidine tract-binding protein 3 (PTBP3) plays an important role in the post-transcriptional regulation of gene expression, including mRNA splicing, translation, and stability. Increasing evidence has shown that PTBP3 promotes cancer progression in several tumor types. However, the molecular mechanisms of PTBP3 in renal cell carcinoma (RCC) remain unknown. Here, tissue microarrays (TMAs) suggested that PTBP3 expression was increased in human RCC and that high PTBP3 expression was correlated with poor five-year overall survival and disease-free survival. We also showed that PTBP3 binds with HMGA1 mRNA in the 3'UTR region and let-7 miRNAs. PTBP3 interacted with IGF2BP3, and the PTBP3/IGF2BP3 axis prevented let-7 mediated HMGA1 mRNA silencing. PTBP3 promotes renal cancer cell growth and metastasis in vitro and in vivo. Taken together, our findings indicate PTBP3 serves as a regulator of HMGA1 and suggest its potential as a therapeutic agent for RCC.
Collapse
Affiliation(s)
- Qianqing Wang
- Department of Gynecology Oncology, Xinxiang Central Hospital, The Fourth Clinical College of Xinxiang Medical University, Xinxiang, Henan 453000, China
| | - Fang Chen
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Yu He
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Yue Gao
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Jiawen Wang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Sufang Chu
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Pei Xie
- Department of Gynecology Oncology, Xinxiang Central Hospital, The Fourth Clinical College of Xinxiang Medical University, Xinxiang, Henan 453000, China
| | - Jiateng Zhong
- Department of Gynecology Oncology, Xinxiang Central Hospital, The Fourth Clinical College of Xinxiang Medical University, Xinxiang, Henan 453000, China
| | - Haixia Shan
- Department of Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, Jiangsu 221002, China
| | - Jin Bai
- Department of Gynecology Oncology, Xinxiang Central Hospital, The Fourth Clinical College of Xinxiang Medical University, Xinxiang, Henan 453000, China
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China
| | - Pingfu Hou
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China
| |
Collapse
|
10
|
Sato K, Takayama KI, Inoue S. Stress granule-mediated RNA regulatory mechanism in Alzheimer's disease. Geriatr Gerontol Int 2024; 24 Suppl 1:7-14. [PMID: 37726158 DOI: 10.1111/ggi.14663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/20/2023] [Accepted: 08/27/2023] [Indexed: 09/21/2023]
Abstract
Living organisms experience a range of stresses. To cope effectively with these stresses, eukaryotic cells have evolved a sophisticated mechanism involving the formation of stress granules (SGs), which play a crucial role in protecting various types of RNA species under stress, such as mRNAs and long non-coding RNAs (lncRNAs). SGs are non-membranous cytoplasmic ribonucleoprotein (RNP) granules, and the RNAs they contain are translationally stalled. Importantly, SGs have been thought to contribute to the pathophysiology of neurodegenerative diseases, including Alzheimer's disease (AD). SGs also contain multiple RNA-binding proteins (RBPs), several of which have been implicated in AD progression. SGs are transient structures that dissipate after stress relief. However, the chronic stresses associated with aging lead to the persistent formation of SGs and subsequently to solid-like pathological SGs, which could impair cellular RNA metabolism and also act as a nidus for the aberrant aggregation of AD-associated proteins. In this paper, we provide a comprehensive summary of the physical basis of SG-enriched RNAs and SG-resident RBPs. We then review the characteristics of AD-associated gene transcripts and their similarity to the SG-enriched RNAs. Furthermore, we summarize and discuss the functional implications of SGs in neuronal RNA metabolism and the aberrant aggregation of AD-associated proteins mediated by SG-resident RBPs in the context of AD pathogenesis. Geriatr Gerontol Int 2024; 24: 7-14.
Collapse
Affiliation(s)
- Kaoru Sato
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
- Integrated Research Initiative for Living Well with Dementia, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Ken-Ichi Takayama
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Satoshi Inoue
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| |
Collapse
|
11
|
Kumar M, Tyagi N, Faruq M. The molecular mechanisms of spinocerebellar ataxias for DNA repeat expansion in disease. Emerg Top Life Sci 2023; 7:289-312. [PMID: 37668011 DOI: 10.1042/etls20230013] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 08/01/2023] [Accepted: 08/16/2023] [Indexed: 09/06/2023]
Abstract
Spinocerebellar ataxias (SCAs) are a heterogenous group of neurodegenerative disorders which commonly inherited in an autosomal dominant manner. They cause muscle incoordination due to degeneration of the cerebellum and other parts of nervous system. Out of all the characterized (>50) SCAs, 14 SCAs are caused due to microsatellite repeat expansion mutations. Repeat expansions can result in toxic protein gain-of-function, protein loss-of-function, and/or RNA gain-of-function effects. The location and the nature of mutation modulate the underlying disease pathophysiology resulting in varying disease manifestations. Potential toxic effects of these mutations likely affect key major cellular processes such as transcriptional regulation, mitochondrial functioning, ion channel dysfunction and synaptic transmission. Involvement of several common pathways suggests interlinked function of genes implicated in the disease pathogenesis. A better understanding of the shared and distinct molecular pathogenic mechanisms in these diseases is required to develop targeted therapeutic tools and interventions for disease management. The prime focus of this review is to elaborate on how expanded 'CAG' repeats contribute to the common modes of neurotoxicity and their possible therapeutic targets in management of such devastating disorders.
Collapse
Affiliation(s)
- Manish Kumar
- CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi 110007, India
| | - Nishu Tyagi
- CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi 110007, India
| | - Mohammed Faruq
- CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi 110007, India
| |
Collapse
|
12
|
Li A, Bouhss A, Clément MJ, Bauvais C, Taylor JP, Bollot G, Pastré D. Using the structural diversity of RNA: protein interfaces to selectively target RNA with small molecules in cells: methods and perspectives. Front Mol Biosci 2023; 10:1298441. [PMID: 38033386 PMCID: PMC10687564 DOI: 10.3389/fmolb.2023.1298441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 10/24/2023] [Indexed: 12/02/2023] Open
Abstract
In recent years, RNA has gained traction both as a therapeutic molecule and as a therapeutic target in several human pathologies. In this review, we consider the approach of targeting RNA using small molecules for both research and therapeutic purposes. Given the primary challenge presented by the low structural diversity of RNA, we discuss the potential for targeting RNA: protein interactions to enhance the structural and sequence specificity of drug candidates. We review available tools and inherent challenges in this approach, ranging from adapted bioinformatics tools to in vitro and cellular high-throughput screening and functional analysis. We further consider two critical steps in targeting RNA/protein interactions: first, the integration of in silico and structural analyses to improve the efficacy of molecules by identifying scaffolds with high affinity, and second, increasing the likelihood of identifying on-target compounds in cells through a combination of high-throughput approaches and functional assays. We anticipate that the development of a new class of molecules targeting RNA: protein interactions to prevent physio-pathological mechanisms could significantly expand the arsenal of effective therapeutic compounds.
Collapse
Affiliation(s)
- Aixiao Li
- Synsight, Genopole Entreprises, Evry, France
| | - Ahmed Bouhss
- Université Paris-Saclay, INSERM U1204, Université d’Évry, Structure-Activité des Biomolécules Normales et Pathologiques (SABNP), Evry, France
| | - Marie-Jeanne Clément
- Université Paris-Saclay, INSERM U1204, Université d’Évry, Structure-Activité des Biomolécules Normales et Pathologiques (SABNP), Evry, France
| | | | - J. Paul Taylor
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | | | - David Pastré
- Université Paris-Saclay, INSERM U1204, Université d’Évry, Structure-Activité des Biomolécules Normales et Pathologiques (SABNP), Evry, France
| |
Collapse
|
13
|
Kour S, Fortuna T, Anderson EN, Mawrie D, Bilstein J, Sivasubramanian R, Ward C, Roy R, Rajasundaram D, Sterneckert J, Pandey UB. Drosha-dependent microRNAs modulate FUS-mediated neurodegeneration in vivo. Nucleic Acids Res 2023; 51:11258-11276. [PMID: 37791873 PMCID: PMC10639082 DOI: 10.1093/nar/gkad774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 08/03/2023] [Accepted: 09/12/2023] [Indexed: 10/05/2023] Open
Abstract
Mutations in the Fused in Sarcoma (FUS) gene cause the familial and progressive form of amyotrophic lateral sclerosis (ALS). FUS is a nuclear RNA-binding protein involved in RNA processing and the biogenesis of a specific set of microRNAs. Here we report that Drosha and two previously uncharacterized Drosha-dependent miRNAs are strong modulators of FUS expression and prevent the cytoplasmic segregation of insoluble mutant FUS in vivo. We demonstrate that depletion of Drosha mitigates FUS-mediated degeneration, survival and motor defects in Drosophila. Mutant FUS strongly interacts with Drosha and causes its cytoplasmic mis-localization into the insoluble FUS inclusions. Reduction in Drosha levels increases the solubility of mutant FUS. Interestingly, we found two Drosha dependent microRNAs, miR-378i and miR-6832-5p, which differentially regulate the expression, solubility and cytoplasmic aggregation of mutant FUS in iPSC neurons and mammalian cells. More importantly, we report different modes of action of these miRNAs against mutant FUS. Whereas miR-378i may regulate mutant FUS inclusions by preventing G3BP-mediated stress granule formation, miR-6832-5p may affect FUS expression via other proteins or pathways. Overall, our research reveals a possible association between ALS-linked FUS mutations and the Drosha-dependent miRNA regulatory circuit, as well as a useful perspective on potential ALS treatment via microRNAs.
Collapse
Affiliation(s)
- Sukhleen Kour
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA 15224, USA
| | - Tyler Fortuna
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA 15224, USA
| | - Eric N Anderson
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA 15224, USA
| | - Darilang Mawrie
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA 15224, USA
| | - Jessica Bilstein
- Center for Regenerative Therapies TU Dresden (CRTD), Technische Universität (TU) Dresden, Dresden, 01307, Germany
| | - Ramakrishnan Sivasubramanian
- Center for Regenerative Therapies TU Dresden (CRTD), Technische Universität (TU) Dresden, Dresden, 01307, Germany
| | - Caroline Ward
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA 15224, USA
| | - Rishit Roy
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA 15224, USA
| | - Dhivyaa Rajasundaram
- Department of Pediatrics, Division of Health Informatics, Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Jared Sterneckert
- Center for Regenerative Therapies TU Dresden (CRTD), Technische Universität (TU) Dresden, Dresden, 01307, Germany
- Medical Faculty Carl Gustav Carus of TU Dresden, Dresden, 01307, Germany
| | - Udai Bhan Pandey
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA 15224, USA
- Children's Neuroscience Institute, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA 15224, USA
| |
Collapse
|
14
|
Acharya V, Fan KH, Snitz BE, Ganguli M, DeKosky ST, Lopez OL, Feingold E, Kamboh MI. Meta-analysis of age-related cognitive decline reveals a novel locus for the attention domain and implicates a COVID-19-related gene for global cognitive function. Alzheimers Dement 2023; 19:5010-5022. [PMID: 37089073 PMCID: PMC10590825 DOI: 10.1002/alz.13064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 03/01/2023] [Accepted: 03/08/2023] [Indexed: 04/25/2023]
Abstract
INTRODUCTION Cognitive abilities have substantial heritability throughout life, as shown by twin- and population-based studies. However, there is limited understanding of the genetic factors related to cognitive decline in aging across neurocognitive domains. METHODS We conducted a meta-analysis on 3045 individuals aged ≥65, derived from three population-based cohorts, to identify genetic variants associated with the decline of five neurocognitive domains (attention, memory, executive function, language, visuospatial function) and global cognitive decline. We also conducted gene-based and functional bioinformatics analyses. RESULTS Apolipoprotein E (APOE)4 was significantly associated with decline of memory (p = 5.58E-09) and global cognitive function (p = 1.84E-08). We identified a novel association with attention decline on chromosome 9, rs6559700 (p = 2.69E-08), near RASEF. Gene-based analysis also identified a novel gene, TMPRSS11D, involved in the activation of SARS-CoV-2, to be associated with the decline in global cognitive function (p = 4.28E-07). DISCUSSION Domain-specific genetic studies can aid in the identification of novel genes and pathways associated with decline across neurocognitive domains. HIGHLIGHTS rs6559700 was associated with decline of attention. APOE4 was associated with decline of memory and global cognitive decline. TMPRSS11D, a gene involved in the activation of SARS-CoV-2, was implicated in global cognitive decline. Cognitive domain abilities had both unique and shared molecular pathways across the domains.
Collapse
Affiliation(s)
- Vibha Acharya
- Department of Human Genetics, University of Pittsburgh School of Public Health, Pittsburgh, PA 15261, USA
| | - Kang-Hsien Fan
- Department of Human Genetics, University of Pittsburgh School of Public Health, Pittsburgh, PA 15261, USA
| | - Beth E. Snitz
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Mary Ganguli
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Steven T. DeKosky
- McKnight Brain Institute and Department of Neurology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Oscar L. Lopez
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Eleanor Feingold
- Department of Human Genetics, University of Pittsburgh School of Public Health, Pittsburgh, PA 15261, USA
| | - M. Ilyas Kamboh
- Department of Human Genetics, University of Pittsburgh School of Public Health, Pittsburgh, PA 15261, USA
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| |
Collapse
|
15
|
Dorrity TJ, Shin H, Wiegand KA, Aruda J, Closser M, Jung E, Gertie JA, Leone A, Polfer R, Culbertson B, Yu L, Wu C, Ito T, Huang Y, Steckelberg AL, Wichterle H, Chung H. Long 3'UTRs predispose neurons to inflammation by promoting immunostimulatory double-stranded RNA formation. Sci Immunol 2023; 8:eadg2979. [PMID: 37862432 PMCID: PMC11056275 DOI: 10.1126/sciimmunol.adg2979] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 08/18/2023] [Indexed: 10/22/2023]
Abstract
Loss of RNA homeostasis underlies numerous neurodegenerative and neuroinflammatory diseases. However, the molecular mechanisms that trigger neuroinflammation are poorly understood. Viral double-stranded RNA (dsRNA) triggers innate immune responses when sensed by host pattern recognition receptors (PRRs) present in all cell types. Here, we report that human neurons intrinsically carry exceptionally high levels of immunostimulatory dsRNAs and identify long 3'UTRs as giving rise to neuronal dsRNA structures. We found that the neuron-enriched ELAVL family of genes (ELAVL2, ELAVL3, and ELAVL4) can increase (i) 3'UTR length, (ii) dsRNA load, and (iii) activation of dsRNA-sensing PRRs such as MDA5, PKR, and TLR3. In wild-type neurons, neuronal dsRNAs signaled through PRRs to induce tonic production of the antiviral type I interferon. Depleting ELAVL2 in WT neurons led to global shortening of 3'UTR length, reduced immunostimulatory dsRNA levels, and rendered WT neurons susceptible to herpes simplex virus and Zika virus infection. Neurons deficient in ADAR1, a dsRNA-editing enzyme mutated in the neuroinflammatory disorder Aicardi-Goutières syndrome, exhibited intolerably high levels of dsRNA that triggered PRR-mediated toxic inflammation and neuronal death. Depleting ELAVL2 in ADAR1 knockout neurons led to prolonged neuron survival by reducing immunostimulatory dsRNA levels. In summary, neurons are specialized cells where PRRs constantly sense "self" dsRNAs to preemptively induce protective antiviral immunity, but maintaining RNA homeostasis is paramount to prevent pathological neuroinflammation.
Collapse
Affiliation(s)
- Tyler J. Dorrity
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Heegwon Shin
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Kenenni A. Wiegand
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Justin Aruda
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Michael Closser
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
- Department of Neuroscience and Neurology, Columbia University Irving Medical Center, New York, NY, USA
- Center for Motor Neuron Biology and Disease, Columbia University Irving Medical Center, New York, NY, USA
| | - Emily Jung
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Jake A. Gertie
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
- Integrated Program in Cellular, Molecular, and Biomedical Studies, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Medical Scientist Training Program, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Amanda Leone
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Rachel Polfer
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Bruce Culbertson
- Integrated Program in Cellular, Molecular, and Biomedical Studies, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Medical Scientist Training Program, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Lisa Yu
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Christine Wu
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Takamasa Ito
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Yuefeng Huang
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Anna-Lena Steckelberg
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Hynek Wichterle
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
- Department of Neuroscience and Neurology, Columbia University Irving Medical Center, New York, NY, USA
- Center for Motor Neuron Biology and Disease, Columbia University Irving Medical Center, New York, NY, USA
| | - Hachung Chung
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
| |
Collapse
|
16
|
Tirpe A, Streianu C, Tirpe SM, Kocijancic A, Pirlog R, Pirlog B, Busuioc C, Pop OL, Berindan-Neagoe I. The Glioblastoma CircularRNAome. Int J Mol Sci 2023; 24:14545. [PMID: 37833993 PMCID: PMC10572686 DOI: 10.3390/ijms241914545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023] Open
Abstract
Glioblastoma remains one of the most aggressive cancers of the brain, warranting new methods for early diagnosis and more efficient treatment options. Circular RNAs (circRNAs) are rather new entities with increased stability compared to their linear counterparts that interact with proteins and act as microRNA sponges, among other functions. Herein, we provide a critical overview of the recently described glioblastoma-related circRNAs in the literature, focusing on their roles on glioblastoma cancer cell proliferation, survival, migration, invasion and metastasis, metabolic reprogramming, and therapeutic resistance. The main roles of circRNAs in regulating cancer processes are due to their regulatory roles in essential oncogenic pathways, including MAPK, PI3K/AKT/mTOR, and Wnt, which are influenced by various circRNAs. The present work pictures the wide implication of circRNAs in glioblastoma, thus highlighting their potential as future biomarkers and therapeutic targets/agents.
Collapse
Affiliation(s)
- Alexandru Tirpe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania; (A.T.); (R.P.)
- The Oncology Institute “Prof. Dr. Ion Chiricuta”, 400015 Cluj-Napoca, Romania;
| | - Cristian Streianu
- The Oncology Institute “Prof. Dr. Ion Chiricuta”, 400015 Cluj-Napoca, Romania;
| | - Stefana Maria Tirpe
- Department of Neurology, Ortenau-Klinikum Lahr, Klostenstrasse 19, 7933 Lahr, Germany;
| | - Anja Kocijancic
- Department of Microbiology, Oslo University Hospital, N-0424 Oslo, Norway;
| | - Radu Pirlog
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania; (A.T.); (R.P.)
| | - Bianca Pirlog
- Department of Neurology, County Emergency Hospital, 400012 Cluj-Napoca, Romania;
| | - Constantin Busuioc
- Department of Pathology, National Institute of Infectious Disease, 021105 Bucharest, Romania;
- Department of Pathology, Onco Team Diagnostic, 010719 Bucharest, Romania
| | - Ovidiu-Laurean Pop
- Department of Morphological Sciences, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania;
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania; (A.T.); (R.P.)
| |
Collapse
|
17
|
Puri D, Sharma S, Samaddar S, Ravivarma S, Banerjee S, Ghosh-Roy A. Muscleblind-1 interacts with tubulin mRNAs to regulate the microtubule cytoskeleton in C. elegans mechanosensory neurons. PLoS Genet 2023; 19:e1010885. [PMID: 37603562 PMCID: PMC10470942 DOI: 10.1371/journal.pgen.1010885] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 08/31/2023] [Accepted: 07/26/2023] [Indexed: 08/23/2023] Open
Abstract
Regulation of the microtubule cytoskeleton is crucial for the development and maintenance of neuronal architecture, and recent studies have highlighted the significance of regulated RNA processing in the establishment and maintenance of neural circuits. In a genetic screen conducted using mechanosensory neurons of C. elegans, we identified a mutation in muscleblind-1/mbl-1 as a suppressor of loss of kinesin-13 family microtubule destabilizing factor klp-7. Muscleblind-1(MBL-1) is an RNA-binding protein that regulates the splicing, localization, and stability of RNA. Our findings demonstrate that mbl-1 is required cell-autonomously for axon growth and proper synapse positioning in the posterior lateral microtubule (PLM) neuron. Loss of mbl-1 leads to increased microtubule dynamics and mixed orientation of microtubules in the anterior neurite of PLM. These defects are also accompanied by abnormal axonal transport of the synaptic protein RAB-3 and reduction of gentle touch sensation in mbl-1 mutant. Our data also revealed that mbl-1 is genetically epistatic to mec-7 (β tubulin) and mec-12 (α tubulin) in regulating axon growth. Furthermore, mbl-1 is epistatic to sad-1, an ortholog of BRSK/Brain specific-serine/threonine kinase and a known regulator of synaptic machinery, for synapse formation at the correct location of the PLM neurite. Notably, the immunoprecipitation of MBL-1 resulted in the co-purification of mec-7, mec-12, and sad-1 mRNAs, suggesting a direct interaction between MBL-1 and these transcripts. Additionally, mbl-1 mutants exhibited reduced levels and stability of mec-7 and mec-12 transcripts. Our study establishes a previously unknown link between RNA-binding proteins and cytoskeletal machinery, highlighting their crucial roles in the development and maintenance of the nervous system.
Collapse
Affiliation(s)
- Dharmendra Puri
- National Brain Research Centre, Manesar, Gurgaon, Haryana, India
| | - Sunanda Sharma
- National Brain Research Centre, Manesar, Gurgaon, Haryana, India
| | - Sarbani Samaddar
- National Brain Research Centre, Manesar, Gurgaon, Haryana, India
| | - Sruthy Ravivarma
- National Brain Research Centre, Manesar, Gurgaon, Haryana, India
| | - Sourav Banerjee
- National Brain Research Centre, Manesar, Gurgaon, Haryana, India
| | | |
Collapse
|
18
|
Mullari M, Fossat N, Skotte NH, Asenjo-Martinez A, Humphreys DT, Bukh J, Kirkeby A, Scheel TKH, Nielsen ML. Characterising the RNA-binding protein atlas of the mammalian brain uncovers RBM5 misregulation in mouse models of Huntington's disease. Nat Commun 2023; 14:4348. [PMID: 37468457 DOI: 10.1038/s41467-023-39936-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/30/2023] [Indexed: 07/21/2023] Open
Abstract
RNA-binding proteins (RBPs) are key players regulating RNA processing and are associated with disorders ranging from cancer to neurodegeneration. Here, we present a proteomics workflow for large-scale identification of RBPs and their RNA-binding regions in the mammalian brain identifying 526 RBPs. Analysing brain tissue from males of the Huntington's disease (HD) R6/2 mouse model uncovered differential RNA-binding of the alternative splicing regulator RBM5. Combining several omics workflows, we show that RBM5 binds differentially to transcripts enriched in pathways of neurodegeneration in R6/2 brain tissue. We further find these transcripts to undergo changes in splicing and demonstrate that RBM5 directly regulates these changes in human neurons derived from embryonic stem cells. Finally, we reveal that RBM5 interacts differently with several known huntingtin interactors and components of huntingtin aggregates. Collectively, we demonstrate the applicability of our method for capturing RNA interactor dynamics in the contexts of tissue and disease.
Collapse
Affiliation(s)
- Meeli Mullari
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Nicolas Fossat
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- CO-HEP, Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
| | - Niels H Skotte
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Andrea Asenjo-Martinez
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW) and Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| | - David T Humphreys
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, 2010, Australia
| | - Jens Bukh
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- CO-HEP, Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
| | - Agnete Kirkeby
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW) and Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
- Wallenberg Center for Molecular Medicine (WCMM) and Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Troels K H Scheel
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- CO-HEP, Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
| | - Michael L Nielsen
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
19
|
Jalloh B, Lancaster CL, Rounds JC, Brown BE, Leung SW, Banerjee A, Morton DJ, Bienkowski RS, Fasken MB, Kremsky IJ, Tegowski M, Meyer K, Corbett A, Moberg K. The Drosophila Nab2 RNA binding protein inhibits m 6A methylation and male-specific splicing of Sex lethal transcript in female neuronal tissue. eLife 2023; 12:e64904. [PMID: 37458420 PMCID: PMC10351920 DOI: 10.7554/elife.64904] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 06/23/2023] [Indexed: 07/20/2023] Open
Abstract
The Drosophila polyadenosine RNA binding protein Nab2, which is orthologous to a human protein lost in a form of inherited intellectual disability, controls adult locomotion, axon projection, dendritic arborization, and memory through a largely undefined set of target RNAs. Here, we show a specific role for Nab2 in regulating splicing of ~150 exons/introns in the head transcriptome and focus on retention of a male-specific exon in the sex determination factor Sex-lethal (Sxl) that is enriched in female neurons. Previous studies have revealed that this splicing event is regulated in females by N6-methyladenosine (m6A) modification by the Mettl3 complex. At a molecular level, Nab2 associates with Sxl pre-mRNA in neurons and limits Sxl m6A methylation at specific sites. In parallel, reducing expression of the Mettl3, Mettl3 complex components, or the m6A reader Ythdc1 rescues mutant phenotypes in Nab2 flies. Overall, these data identify Nab2 as an inhibitor of m6A methylation and imply significant overlap between Nab2 and Mettl3 regulated RNAs in neuronal tissue.
Collapse
Affiliation(s)
- Binta Jalloh
- Department of Biology, Emory UniversityAtlantaUnited States
- Department of Cell Biology Emory University School of MedicineAtlantaUnited States
- Graduate Program in Genetics and Molecular Biology, Emory UniversityAtlantaUnited States
| | - Carly L Lancaster
- Department of Biology, Emory UniversityAtlantaUnited States
- Department of Cell Biology Emory University School of MedicineAtlantaUnited States
- Graduate Program in Biochemistry, Cell and Developmental Biology, Emory UniversityAtlantaUnited States
| | - J Christopher Rounds
- Department of Biology, Emory UniversityAtlantaUnited States
- Department of Cell Biology Emory University School of MedicineAtlantaUnited States
- Graduate Program in Genetics and Molecular Biology, Emory UniversityAtlantaUnited States
| | - Brianna E Brown
- Department of Biology, Emory UniversityAtlantaUnited States
- Department of Cell Biology Emory University School of MedicineAtlantaUnited States
| | - Sara W Leung
- Department of Biology, Emory UniversityAtlantaUnited States
| | - Ayan Banerjee
- Department of Biology, Emory UniversityAtlantaUnited States
| | - Derrick J Morton
- Department of Biology, Emory UniversityAtlantaUnited States
- Emory Institutional Research and Academic Career Development Award (IRACDA), Fellowships in Research and Science Teaching (FIRST) Postdoctoral FellowshipAtlantaUnited States
| | - Rick S Bienkowski
- Department of Biology, Emory UniversityAtlantaUnited States
- Department of Cell Biology Emory University School of MedicineAtlantaUnited States
- Graduate Program in Genetics and Molecular Biology, Emory UniversityAtlantaUnited States
| | - Milo B Fasken
- Department of Biology, Emory UniversityAtlantaUnited States
| | | | - Matthew Tegowski
- Department of Biochemistry, Duke University School of MedicineDurhamUnited States
| | - Kate Meyer
- Department of Biochemistry, Duke University School of MedicineDurhamUnited States
- Department of Neurobiology, Duke University School of MedicineDurhamUnited States
| | - Anita Corbett
- Department of Biology, Emory UniversityAtlantaUnited States
| | - Ken Moberg
- Department of Cell Biology Emory University School of MedicineAtlantaUnited States
| |
Collapse
|
20
|
Varesi A, Campagnoli LIM, Barbieri A, Rossi L, Ricevuti G, Esposito C, Chirumbolo S, Marchesi N, Pascale A. RNA binding proteins in senescence: A potential common linker for age-related diseases? Ageing Res Rev 2023; 88:101958. [PMID: 37211318 DOI: 10.1016/j.arr.2023.101958] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/09/2023] [Accepted: 05/18/2023] [Indexed: 05/23/2023]
Abstract
Aging represents the major risk factor for the onset and/or progression of various disorders including neurodegenerative diseases, metabolic disorders, and bone-related defects. As the average age of the population is predicted to exponentially increase in the coming years, understanding the molecular mechanisms underlying the development of aging-related diseases and the discovery of new therapeutic approaches remain pivotal. Well-reported hallmarks of aging are cellular senescence, genome instability, autophagy impairment, mitochondria dysfunction, dysbiosis, telomere attrition, metabolic dysregulation, epigenetic alterations, low-grade chronic inflammation, stem cell exhaustion, altered cell-to-cell communication and impaired proteostasis. With few exceptions, however, many of the molecular players implicated within these processes as well as their role in disease development remain largely unknown. RNA binding proteins (RBPs) are known to regulate gene expression by dictating at post-transcriptional level the fate of nascent transcripts. Their activity ranges from directing primary mRNA maturation and trafficking to modulation of transcript stability and/or translation. Accumulating evidence has shown that RBPs are emerging as key regulators of aging and aging-related diseases, with the potential to become new diagnostic and therapeutic tools to prevent or delay aging processes. In this review, we summarize the role of RBPs in promoting cellular senescence and we highlight their dysregulation in the pathogenesis and progression of the main aging-related diseases, with the aim of encouraging further investigations that will help to better disclose this novel and captivating molecular scenario.
Collapse
Affiliation(s)
- Angelica Varesi
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy.
| | | | - Annalisa Barbieri
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, Pavia, Italy
| | - Lorenzo Rossi
- Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland
| | | | - Ciro Esposito
- Department of Internal Medicine and Therapeutics, University of Pavia, Italy; Nephrology and dialysis unit, ICS S. Maugeri SPA SB Hospital, Pavia, Italy; High School in Geriatrics, University of Pavia, Italy
| | | | - Nicoletta Marchesi
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, Pavia, Italy
| | - Alessia Pascale
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, Pavia, Italy.
| |
Collapse
|
21
|
Takayama KI, Matsuoka S, Adachi S, Honma T, Yoshida M, Doi T, Shin-ya K, Yoshida M, Osada H, Inoue S. Identification of small-molecule inhibitors against the interaction of RNA-binding protein PSF and its target RNA for cancer treatment. PNAS NEXUS 2023; 2:pgad203. [PMID: 37388923 PMCID: PMC10304769 DOI: 10.1093/pnasnexus/pgad203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 06/12/2023] [Indexed: 07/01/2023]
Abstract
Diverse cellular activities are modulated through a variety of RNAs, including long noncoding RNAs (lncRNAs), by binding to certain proteins. The inhibition of oncogenic proteins or RNAs is expected to suppress cancer cell proliferation. We have previously demonstrated that PSF interaction with its target RNAs, such as androgen-induced lncRNA CTBP1-AS, is critical for hormone therapy resistance in prostate and breast cancers. However, the action of protein-RNA interactions remains almost undruggable to date. High-throughput screening (HTS) has facilitated the discovery of drugs for protein-protein interactions. In the present study, we developed an in vitro alpha assay using Flag peptide-conjugated lncRNA, CTBP1-AS, and PSF. We then constructed an effective HTS screening system to explore small compounds that inhibit PSF-RNA interactions. Thirty-six compounds were identified and dose-dependently inhibited PSF-RNA interaction in vitro. Moreover, chemical optimization of these lead compounds and evaluation of cancer cell proliferation revealed two promising compounds, N-3 and C-65. These compounds induced apoptosis and inhibited cell growth in prostate and breast cancer cells. By inhibiting PSF-RNA interaction, N-3 and C-65 up-regulated signals that are repressed by PSF, such as the cell cycle signals by p53 and p27. Furthermore, using a mouse xenograft model for hormone therapy-resistant prostate cancer, we revealed that N-3 and C-65 can significantly suppress tumor growth and downstream target gene expression, such as the androgen receptor (AR). Thus, our findings highlight a therapeutic strategy through the development of inhibitors for RNA-binding events in advanced cancers.
Collapse
Affiliation(s)
- Ken-ichi Takayama
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute for Geriatrics and Gerontology, itabashi-ku, Tokyo 173-0015, Japan
| | - Seiji Matsuoka
- Seed Compounds Exploratory Unit for Drug Discovery Platform, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Shungo Adachi
- National Institute of Advanced Industrial Science and Technology (AIST), Koto-ku, Tokyo 135-0064, Japan
| | - Teruki Honma
- Drug Discovery Computational Chemistry Platform Unit, RIKEN Center for Biosystems Dynamics Research, Yokohama, Kanagawa 230-0045, Japan
| | - Masahito Yoshida
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan
| | - Takayuki Doi
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan
| | - Kazuo Shin-ya
- National Institute of Advanced Industrial Science and Technology (AIST), Koto-ku, Tokyo 135-0064, Japan
| | - Minoru Yoshida
- Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Hiroyuki Osada
- Drug Discovery Chemical Bank Unit, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | | |
Collapse
|
22
|
Zeng Y, Du W, Huang Z, Wu S, Ou X, Zhang J, Peng C, Sun X, Tang H. Hsa_circ_0060467 promotes breast cancer liver metastasis by complexing with eIF4A3 and sponging miR-1205. Cell Death Discov 2023; 9:153. [PMID: 37160894 PMCID: PMC10169853 DOI: 10.1038/s41420-023-01448-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 04/19/2023] [Accepted: 04/24/2023] [Indexed: 05/11/2023] Open
Abstract
Breast cancer (BC) is the most common cancer and the top cause of female mortality worldwide. The prognosis for patients with breast cancer liver metastasis (BCLM) remains poor. Emerging studies suggest that circular RNAs (circRNAs) are associated with the progression of BC. Exploration of circRNAs presents a promising avenue for identifying metastasis-targeting agents and improving the prognosis of patients with BCLM. Microarray and bioinformatic analyses were used to analyze differentially expressed circRNAs between three pairs of BCLM and primary BC. The roles of hsa_circ_0060467 (circMYBL2) and its target gene E2F1 in BC cells were explored by multiple functional experiments. And xenograft mouse models and hepatic metastases of BC hemi-spleen models were used to illustrate the function of circMYBL2 in vivo. The intrinsic molecular mechanism involving circMYBL2 was confirmed by bioinformatics analyses, RIP assays, CHIRP assays, luciferase reporter assays, and rescue experiments. CircMYBL2 was overexpressed in BCLM tissues and BC cells. Functionally, circMYBL2 can facilitate the proliferation and liver metastasis of BC. Mechanistically, circMYBL2 upregulated the transcription factor E2F1 by sponging miR-1205 and complexing with eukaryotic translation initiation factor 4A3 (eIF4A3) and then facilitated the epithelial-mesenchymal transition (EMT) process in BC cells. Our findings showed that circMYBL2 promoted the tumorigenesis and aggressiveness of BC through the circMYBL2/miR-1205/E2F1 and circMYBL2/eIF4A3/E2F1 axes, which may provide a novel targeted therapy for patients with BCLM.
Collapse
Affiliation(s)
- Yan Zeng
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
- The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Wei Du
- Department of Pathology, the First People's Hospital of Changde City, Changde, Hunan, China
| | - Zhongying Huang
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Song Wu
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Xueqi Ou
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Jinhui Zhang
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.
| | - Xiaoqing Sun
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China.
| | - Hailin Tang
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China.
| |
Collapse
|
23
|
Yamoah A, Tripathi P, Guo H, Scheve L, Walter P, Johnen S, Müller F, Weis J, Goswami A. Early Alterations of RNA Binding Protein (RBP) Homeostasis and ER Stress-Mediated Autophagy Contributes to Progressive Retinal Degeneration in the rd10 Mouse Model of Retinitis Pigmentosa (RP). Cells 2023; 12:cells12071094. [PMID: 37048167 PMCID: PMC10092976 DOI: 10.3390/cells12071094] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 04/14/2023] Open
Abstract
The retinal degeneration 10 (rd10) mouse model is widely used to study retinitis pigmentosa (RP) pathomechanisms. It offers a rather unique opportunity to study trans-neuronal degeneration because the cell populations in question are separated anatomically and the mutated Pde6b gene is selectively expressed in rod photoreceptors. We hypothesized that RNA binding protein (RBP) aggregation and abnormal autophagy might serve as early pathogenic events, damaging non-photoreceptor retinal cell types that are not primarily targeted by the Pde6b gene defect. We used a combination of immunohistochemistry (DAB, immunofluorescence), electron microscopy (EM), subcellular fractionation, and Western blot analysis on the retinal preparations obtained from both rd10 and wild-type mice. We found early, robust increases in levels of the protective endoplasmic reticulum (ER) calcium (Ca2+) buffering chaperone Sigma receptor 1 (SigR1) together with other ER-Ca2+ buffering proteins in both photoreceptors and non-photoreceptor neuronal cells before any noticeable photoreceptor degeneration. In line with this, we found markedly altered expression of the autophagy proteins p62 and LC3, together with abnormal ER widening and large autophagic vacuoles as detected by EM. Interestingly, these changes were accompanied by early, prominent cytoplasmic and nuclear aggregation of the key RBPs including pTDP-43 and FET family RBPs and stress granule formation. We conclude that progressive neurodegeneration in the rd10 mouse retina is associated with early disturbances of proteostasis and autophagy, along with abnormal cytoplasmic RBP aggregation.
Collapse
Affiliation(s)
- Alfred Yamoah
- Institute of Neuropathology, University Hospital RWTH Aachen, 52074 Aachen, Germany
- EURON-European Graduate School of Neuroscience, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Priyanka Tripathi
- Institute of Neuropathology, University Hospital RWTH Aachen, 52074 Aachen, Germany
- EURON-European Graduate School of Neuroscience, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Haihong Guo
- Institute of Neuropathology, University Hospital RWTH Aachen, 52074 Aachen, Germany
| | - Leonie Scheve
- Institute of Neuropathology, University Hospital RWTH Aachen, 52074 Aachen, Germany
| | - Peter Walter
- Department of Ophthalmology, University Hospital RWTH Aachen, 52074 Aachen, Germany
| | - Sandra Johnen
- Department of Ophthalmology, University Hospital RWTH Aachen, 52074 Aachen, Germany
| | - Frank Müller
- Institute of Biological Information Processing, Molecular and Cellular Physiology, IBI-1, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Joachim Weis
- Institute of Neuropathology, University Hospital RWTH Aachen, 52074 Aachen, Germany
| | - Anand Goswami
- Institute of Neuropathology, University Hospital RWTH Aachen, 52074 Aachen, Germany
- Department of Neurology, Center for Motor Neuron Biology and Disease, Columbia University, New York, NY 10032, USA
- Department of Neurology, Eleanor and Lou Gehrig ALS Center, Columbia University, New York, NY 10032, USA
| |
Collapse
|
24
|
Steinmetz B, Smok I, Bikaki M, Leitner A. Protein-RNA interactions: from mass spectrometry to drug discovery. Essays Biochem 2023; 67:175-186. [PMID: 36866608 PMCID: PMC10070478 DOI: 10.1042/ebc20220177] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 01/25/2023] [Accepted: 01/26/2023] [Indexed: 03/04/2023]
Abstract
Proteins and RNAs are fundamental parts of biological systems, and their interactions affect many essential cellular processes. Therefore, it is crucial to understand at a molecular and at a systems level how proteins and RNAs form complexes and mutually affect their functions. In the present mini-review, we will first provide an overview of different mass spectrometry (MS)-based methods to study the RNA-binding proteome (RBPome), most of which are based on photochemical cross-linking. As we will show, some of these methods are also able to provide higher-resolution information about binding sites, which are important for the structural characterisation of protein-RNA interactions. In addition, classical structural biology techniques such as nuclear magnetic resonance (NMR) spectroscopy and biophysical methods such as electron paramagnetic resonance (EPR) spectroscopy and fluorescence-based methods contribute to a detailed understanding of the interactions between these two classes of biomolecules. We will discuss the relevance of such interactions in the context of the formation of membrane-less organelles (MLOs) by liquid-liquid phase separation (LLPS) processes and their emerging importance as targets for drug discovery.
Collapse
Affiliation(s)
- Benjamin Steinmetz
- Department of Biology, Institute of Molecular Systems Biology, ETH Zürich, 8093 Zurich, Switzerland
- RNA Biology PhD Program, University of Zurich and ETH Zürich, Zurich, Switzerland
| | - Izabela Smok
- Department of Biology, Institute of Molecular Systems Biology, ETH Zürich, 8093 Zurich, Switzerland
- RNA Biology PhD Program, University of Zurich and ETH Zürich, Zurich, Switzerland
| | - Maria Bikaki
- Department of Biology, Institute of Molecular Systems Biology, ETH Zürich, 8093 Zurich, Switzerland
| | - Alexander Leitner
- Department of Biology, Institute of Molecular Systems Biology, ETH Zürich, 8093 Zurich, Switzerland
| |
Collapse
|
25
|
Li Y, Huang X, Tang J. Inhibiting the growth of ovarian cancer cells in vitro and in vivo by a small molecular inhibitor targeting La-RNA interactions. Eur J Pharmacol 2023; 940:175471. [PMID: 36549502 DOI: 10.1016/j.ejphar.2022.175471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
OBJECTIVE To identify small molecules blocking La-RNA interactions by using structural dynamics, molecular biology, and in vivo efficacy experiments. METHODS A docking virtual assay on the Chemdiv database was used to screen La binders, and their affinity were measured by surface plasmon resonance (SPR). A novel fluorescence polarization (FP) assay referring to the binding of La protein and 3'UUUOH was established to identify the inhibitors. Their activity on ovarian cancer cell proliferation, apoptosis and cell cycle were evaluated using Cell Counting Kit 8 (CCK8) and flow cytometry assay, respectively. Their in vivo efficacy against ovarian cancer growth were evaluated in a cell line-derived xenograft (CDX) model of A2780 cells. RESULTS From a total of 20 compounds with high potential binding activity with La protein, two small molecule compounds 4424-1120 and 8017-5932 with relatively stronger inhibition ability on La-RNA interactions were identified. These two compounds shared the same active centers with hydroxyimidazole and hydroxybenzene to interact with La protein through residues ARG57, GLN20 and GLN136. The in vitro assays showed that 4424-1120 and 8017-5932 effectively cause G0/G1 cell cycle arrest, inhibit cell proliferation, reduce cell invasion and promote apoptosis in ovarian cancer cells. In a CDX model on BALB/C Nude mice, we found that the growth rate of the tumor was inhibited by 4424-1120. CONCLUSION Our results demonstrated compound 4424-1120 shows good antitumor activity and safety in vitro and in vivo, and it provides a new idea for the discovery of antitumor lead compounds from small drug-like molecules.
Collapse
Affiliation(s)
- Yueyan Li
- Department of Pharmacy, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, People's Republic of China
| | - Xuan Huang
- Department of Pharmacy, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, People's Republic of China
| | - Jing Tang
- Department of Pharmacy, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, People's Republic of China.
| |
Collapse
|
26
|
Agarwal A, Bahadur RP. Modular architecture and functional annotation of human RNA-binding proteins containing RNA recognition motif. Biochimie 2023; 209:116-130. [PMID: 36716848 DOI: 10.1016/j.biochi.2023.01.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 01/09/2023] [Accepted: 01/23/2023] [Indexed: 01/28/2023]
Abstract
RNA-binding proteins (RBPs) are structurally and functionally diverse macromolecules with significant involvement in several post-transcriptional gene regulatory processes and human diseases. RNA recognition motif (RRM) is one of the most abundant RNA-binding domains in human RBPs. The unique modular architecture of each RBP containing RRM is crucial for its diverse target recognition and function. Genome-wide study of these structurally conserved and functionally diverse domains can enhance our understanding of their functional implications. In this study, modular architecture of RRM containing RBPs in human proteome is identified and systematically analysed. We observe that 30% of human RBPs with RNA-binding function contain RRM in single or multiple repeats or with other domains with maximum of six repeats. Zinc-fingers are the most frequently co-occurring domain partner of RRMs. Human RRM containing RBPs mostly belong to RNA metabolism class of proteins and are significantly enriched in two functional pathways including spliceosome and mRNA surveillance. Various human diseases are associated with 18% of the RRM containing RBPs. Single RRM containing RBPs are highly enriched in disorder regions. Gene ontology (GO) molecular functions including poly(A), poly(U) and miRNA binding are highly depleted in RBPs with single RRM, indicating the significance of modular nature of RRMs in specific function. The current study reports all the possible domain architectures of RRM containing human RBPs and their functional enrichment. The idea of domain architecture, and how they confer specificity and new functionalities to RBPs, can help in re-designing of modular RRM containing RBPs with re-engineered function.
Collapse
Affiliation(s)
- Ankita Agarwal
- School of Bio Science, Indian Institute of Technology Kharagpur, Kharagpur 721302, India; Computational Structural Biology Laboratory, Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Ranjit Prasad Bahadur
- Computational Structural Biology Laboratory, Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.
| |
Collapse
|
27
|
Nokkeaw A, Thamjamrassri P, Tangkijvanich P, Ariyachet C. Regulatory Functions and Mechanisms of Circular RNAs in Hepatic Stellate Cell Activation and Liver Fibrosis. Cells 2023; 12:cells12030378. [PMID: 36766720 PMCID: PMC9913196 DOI: 10.3390/cells12030378] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 01/22/2023] Open
Abstract
Chronic liver injury induces the activation of hepatic stellate cells (HSCs) into myofibroblasts, which produce excessive amounts of extracellular matrix (ECM), resulting in tissue fibrosis. If the injury persists, these fibrous scars could be permanent and disrupt liver architecture and function. Currently, effective anti-fibrotic therapies are lacking; hence, understanding molecular mechanisms that control HSC activation could hold a key to the development of new treatments. Recently, emerging studies have revealed roles of circular RNAs (circRNAs), a class of non-coding RNAs that was initially assumed to be the result of splicing errors, as new regulators in HSC activation. These circRNAs can modulate the activity of microRNAs (miRNAs) and their interacting protein partners involved in regulating fibrogenic signaling cascades. In this review, we will summarize the current knowledge of this class of non-coding RNAs for their molecular function in HSC activation and liver fibrosis progression.
Collapse
Affiliation(s)
- Archittapon Nokkeaw
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence in Hepatitis and Liver Cancer, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Medical Biochemistry Program, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Pannathon Thamjamrassri
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence in Hepatitis and Liver Cancer, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Medical Biochemistry Program, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Pisit Tangkijvanich
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence in Hepatitis and Liver Cancer, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Correspondence: (P.T.); (C.A.)
| | - Chaiyaboot Ariyachet
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence in Hepatitis and Liver Cancer, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Correspondence: (P.T.); (C.A.)
| |
Collapse
|
28
|
Repeat-associated non-AUG translation induces cytoplasmic aggregation of CAG repeat-containing RNAs. Proc Natl Acad Sci U S A 2023; 120:e2215071120. [PMID: 36623192 PMCID: PMC9934169 DOI: 10.1073/pnas.2215071120] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
CAG trinucleotide repeat expansions cause several neurodegenerative diseases, including Huntington's disease and spinocerebellar ataxia. RNAs with expanded CAG repeats contribute to disease in two unusual ways. First, these repeat-containing RNAs may agglomerate in the nucleus as foci that sequester several RNA-binding proteins. Second, these RNAs may undergo aberrant repeat-associated non-AUG (RAN) translation in multiple frames and produce aggregation-prone proteins. The relationship between RAN translation and RNA foci, and their relative contributions to cellular dysfunction, are unclear. Here, we show that CAG repeat-containing RNAs that undergo RAN translation first accumulate at nuclear foci and, over time, are exported to the cytoplasm. In the cytoplasm, these RNAs are initially dispersed but, upon RAN translation, aggregate with the RAN translation products. These RNA-RAN protein agglomerates sequester various RNA-binding proteins and are associated with the disruption of nucleocytoplasmic transport and cell death. In contrast, RNA accumulation at nuclear foci alone does not produce discernable defects in nucleocytoplasmic transport or cell viability. Inhibition of RAN translation prevents cytoplasmic RNA aggregation and alleviates cell toxicity. Our findings demonstrate that RAN translation-induced RNA-protein aggregation correlates with the key pathological hallmarks observed in disease and suggest that cytoplasmic RNA aggregation may be an underappreciated phenomenon in CAG trinucleotide repeat expansion disorders.
Collapse
|
29
|
Lester E, Van Alstyne M, McCann KL, Reddy S, Cheng LY, Kuo J, Pratt J, Parker R. Cytosolic condensates rich in polyserine define subcellular sites of tau aggregation. Proc Natl Acad Sci U S A 2023; 120:e2217759120. [PMID: 36626563 PMCID: PMC9934293 DOI: 10.1073/pnas.2217759120] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/06/2022] [Indexed: 01/11/2023] Open
Abstract
Tau aggregates are a hallmark of multiple neurodegenerative diseases and can contain RNAs and RNA-binding proteins, including serine/arginine repetitive matrix protein 2 (SRRM2) and pinin (PNN). However, how these nuclear proteins mislocalize and their influence on the prion-like propagation of tau aggregates is unknown. We demonstrate that polyserine repeats in SRRM2 and PNN are necessary and sufficient for recruitment to tau aggregates. Moreover, we show tau aggregates preferentially grow in association with endogenous cytoplasmic assemblies-mitotic interchromatin granules and cytoplasmic speckles (CSs)-which contain SRRM2 and PNN. Polyserine overexpression in cells nucleates assemblies that are sites of tau aggregate growth. Further, modulating the levels of polyserine-containing proteins results in a corresponding change in tau aggregation. These findings define a specific protein motif, and cellular condensates, that promote tau aggregate propagation. As CSs form in induced pluripotent stem cell (iPSC) derived neurons under inflammatory or hyperosmolar stress, they may affect tau aggregate propagation in neurodegenerative disease.
Collapse
Affiliation(s)
- Evan Lester
- Medical Scientist Training Program, University of Colorado Anschutz Medical Campus, Aurora, CO80045
- Department of Biochemistry, University of Colorado, Boulder, CO80303
| | - Meaghan Van Alstyne
- Department of Biochemistry, University of Colorado, Boulder, CO80303
- HHMI, University of Colorado, Boulder, CO80303
| | - Kathleen L. McCann
- Department of Biochemistry, University of Colorado, Boulder, CO80303
- HHMI, University of Colorado, Boulder, CO80303
| | - Spoorthy Reddy
- Department of Biochemistry, University of Colorado, Boulder, CO80303
| | - Li Yi Cheng
- Department of Biochemistry, University of Colorado, Boulder, CO80303
| | - Jeff Kuo
- Department of Biochemistry, University of Colorado, Boulder, CO80303
| | - James Pratt
- Department of Biochemistry, University of Colorado, Boulder, CO80303
| | - Roy Parker
- Department of Biochemistry, University of Colorado, Boulder, CO80303
- HHMI, University of Colorado, Boulder, CO80303
| |
Collapse
|
30
|
Nishanth MJ, Jha S. Genome-wide landscape of RNA-binding protein (RBP) networks as potential molecular regulators of psychiatric co-morbidities: a computational analysis. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2023. [DOI: 10.1186/s43042-022-00382-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Abstract
Background
Psychiatric disorders are a major burden on global health. These illnesses manifest as co-morbid conditions, further complicating the treatment. There is a limited understanding of the molecular and regulatory basis of psychiatric co-morbidities. The existing research in this regard has largely focused on epigenetic modulators, non-coding RNAs, and transcription factors. RNA-binding proteins (RBPs) functioning as multi-protein complexes are now known to be predominant controllers of multiple gene regulatory processes. However, their involvement in gene expression dysregulation in psychiatric co-morbidities is yet to be understood.
Results
Ten RBPs (QKI, ELAVL2, EIF2S1, SRSF3, IGF2BP2, EIF4B, SNRNP70, FMR1, DAZAP1, and MBNL1) were identified to be associated with psychiatric disorders such as schizophrenia, major depression, and bipolar disorders. Analysis of transcriptomic changes in response to individual depletion of these RBPs showed the potential influence of a large number of RBPs driving differential gene expression, suggesting functional cross-talk giving rise to multi-protein networks. Subsequent transcriptome analysis of post-mortem human brain samples from diseased and control individuals also suggested the involvement of ~ 100 RBPs influencing gene expression changes. These RBPs were found to regulate various processes including transcript splicing, mRNA transport, localization, stability, and translation. They were also found to form an extensive interactive network. Further, hnRNP, SRSF, and PCBP family RBPs, Matrin3, U2AF2, KHDRBS1, PTBP1, and also PABPN1 were found to be the hub proteins of the RBP network.
Conclusions
Extensive RBP networks involving a few hub proteins could result in transcriptome-wide dysregulation of post-transcriptional modifications, potentially driving multiple psychiatric disorders. Understanding the functional involvement of RBP networks in psychiatric disorders would provide insights into the molecular basis of psychiatric co-morbidities.
Collapse
|
31
|
Singh AK. Hsrω and Other lncRNAs in Neuronal Functions and Disorders in Drosophila. LIFE (BASEL, SWITZERLAND) 2022; 13:life13010017. [PMID: 36675966 PMCID: PMC9865238 DOI: 10.3390/life13010017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/27/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022]
Abstract
Long noncoding RNAs (lncRNAs) have a crucial role in epigenetic, transcriptional and posttranscriptional regulation of gene expression. Many of these regulatory lncRNAs, such as MALAT1, NEAT1, HOTAIR, etc., are associated with different neurodegenerative diseases in humans. The lncRNAs produced by the hsrω gene are known to modulate neurotoxicity in polyQ and amyotrophic lateral sclerosis disease models of Drosophila. Elevated expression of hsrω lncRNAs exaggerates, while their genetic depletion through hsrω-RNAi or in an hsrω-null mutant background suppresses, the disease pathogenicity. This review discusses the possible mechanistic details and implications of the functions of hsrω lncRNAs in the modulation of neurodegenerative diseases.
Collapse
Affiliation(s)
- Anand Kumar Singh
- Interdisciplinary School of Life Sciences, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| |
Collapse
|
32
|
CircRNAs in Tumor Radioresistance. Biomolecules 2022; 12:biom12111586. [DOI: 10.3390/biom12111586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 12/09/2022] Open
Abstract
Circular RNAs (circRNAs) are endogenous, non-coding RNAs, which are derived from host genes that are present in several species and can be involved in the progression of various diseases. circRNAs’ leading role is to act as RNA sponges. In recent years, the other roles of circRNAs have been discovered, such as regulating transcription and translation, regulating host genes, and even being translated into proteins. As some tumor cells are no longer radiosensitive, tumor radioresistance has since become a challenge in treating tumors. In recent years, circRNAs are differentially expressed in tumor cells and can be used as biological markers of tumors. In addition, circRNAs can regulate the radiosensitivity of tumors. Here, we list the mechanisms of circRNAs in glioma, nasopharyngeal carcinoma, and non-small cell lung cancer; further, these studies also provide new ideas for the purposes of eliminating radioresistance in tumors.
Collapse
|
33
|
Snoderly-Foster LJ, Olivas WM. Regulation of Parkinson's disease-associated genes by Pumilio proteins and microRNAs in SH-SY5Y neuronal cells. PLoS One 2022; 17:e0275235. [PMID: 36174040 PMCID: PMC9522289 DOI: 10.1371/journal.pone.0275235] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 09/12/2022] [Indexed: 11/18/2022] Open
Abstract
Parkinson's disease is the second most common age-related, neurodegenerative disease. A small collection of genes has been linked to Parkinson's disease including LRRK2, SAT1, and SNCA, the latter of which encodes the protein alpha-synuclein that aggregates in Lewy bodies as a hallmark of the disease. Overexpression of even wild-type versions of these genes can lead to pathogenesis, yet the regulatory mechanisms that control protein production of the genes are not fully understood. Pumilio proteins belong to the highly conserved PUF family of eukaryotic RNA-binding proteins that post-transcriptionally regulate gene expression through binding conserved motifs in the 3' untranslated region (UTR) of mRNA targets known as PUF Recognition Elements (PREs). The 3'UTRs of LRRK2, SNCA and SAT1 each contain multiple putative PREs. Knockdown (KD) of the two human Pumilio homologs (Pumilio 1 and Pumilio 2) in a neurodegenerative model cell line, SH-SY5Y, resulted in increased SNCA and LRRK2 mRNA, as well as alpha-synuclein levels, suggesting these genes are normally repressed by the Pumilio proteins. Some studies have indicated a relationship between Pumilio and microRNA activities on the same target, especially when their binding sites are close together. LRRK2, SNCA, and SAT1 each contain several putative microRNA-binding sites within the 3'UTR, some of which reside near PREs. Small RNA-seq and microRNA qPCR assays were performed in both wild type and Pumilio KD SH-SY5Y cells to analyze global and differential microRNA expression. One thousand four hundred and four microRNAs were detected across wild type and Pumilio KD cells. Twenty-one microRNAs were differentially expressed between treatments, six of which were previously established to be altered in Parkinson's disease patient samples or research models. Expression of ten miRs predicted to target LRRK2 and SNCA was verified by RT-qPCR. Collectively, our results demonstrate that Pumilios and microRNAs play a multi-faceted role in regulating Parkinson's disease-associated genes.
Collapse
Affiliation(s)
- Lisa J. Snoderly-Foster
- Department of Biology, University of Missouri-St. Louis, St. Louis, Missouri, United States of America
| | - Wendy M. Olivas
- Department of Biology, University of Missouri-St. Louis, St. Louis, Missouri, United States of America
| |
Collapse
|
34
|
Cappelli S, Spalloni A, Feiguin F, Visani G, Šušnjar U, Brown AL, De Bardi M, Borsellino G, Secrier M, Phatnani H, Romano M, Fratta P, Longone P, Buratti E. NOS1AP is a novel molecular target and critical factor in TDP-43 pathology. Brain Commun 2022; 4:fcac242. [PMID: 36267332 PMCID: PMC9576154 DOI: 10.1093/braincomms/fcac242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 07/05/2022] [Accepted: 09/22/2022] [Indexed: 11/13/2022] Open
Abstract
Many lines of evidence have highlighted the role played by heterogeneous nuclear ribonucleoproteins in amyotrophic lateral sclerosis. In this study, we have aimed to identify transcripts co-regulated by TAR DNA-binding protein 43 kDa and highly conserved heterogeneous nuclear ribonucleoproteins which have been previously shown to regulate TAR DNA-binding protein 43 kDa toxicity (deleted in azoospermia-associated protein 1, heterogeneous nuclear ribonucleoprotein -Q, -D, -K and -U). Using the transcriptome analyses, we have uncovered that Nitric Oxide Synthase 1 Adaptor Protein mRNA is a direct TAR DNA-binding protein 43 kDa target, and in flies, its modulation alone can rescue TAR DNA-binding protein 43 kDa pathology. In primary mouse cortical neurons, we show that TAR DNA-binding protein 43 kDa mediated downregulation of Nitric Oxide Synthase 1 Adaptor Protein expression strongly affects the NMDA-receptor signalling pathway. In human patients, the downregulation of Nitric Oxide Synthase 1 Adaptor Protein mRNA strongly correlates with TAR DNA-binding protein 43 kDa proteinopathy as measured by cryptic Stathmin-2 and Unc-13 homolog A cryptic exon inclusion. Overall, our results demonstrate that Nitric Oxide Synthase 1 Adaptor Protein may represent a novel disease-relevant gene, potentially suitable for the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Sara Cappelli
- International Centre for Genetic Engineering and Biotechnology (ICGEB), AREA Science Park, Padriciano 99, 34149 Trieste, Italy
| | - Alida Spalloni
- Molecular Neurobiology, Experimental Neuroscience, IRCCS Fondazione Santa Lucia, Via del Fosso di Fiorano 64, 00143 Rome, Italy
| | - Fabian Feiguin
- Department of Life and Environmental Sciences, University of Cagliari, 09042 Monserrato, Cagliari, Italy
| | - Giulia Visani
- International Centre for Genetic Engineering and Biotechnology (ICGEB), AREA Science Park, Padriciano 99, 34149 Trieste, Italy
| | - Urša Šušnjar
- International Centre for Genetic Engineering and Biotechnology (ICGEB), AREA Science Park, Padriciano 99, 34149 Trieste, Italy
| | - Anna-Leigh Brown
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Marco De Bardi
- Neuroimmunology Unit, Experimental Neuroscience, IRCCS Fondazione Santa Lucia, Via Ardeatina 306-354, 00179 Rome, Italy
| | - Giovanna Borsellino
- Neuroimmunology Unit, Experimental Neuroscience, IRCCS Fondazione Santa Lucia, Via Ardeatina 306-354, 00179 Rome, Italy
| | - Maria Secrier
- UCL Genetics Institute, Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK
| | - Hemali Phatnani
- Center for Genomics of Neurodegenerative Disease, New York Genome Center, New York, NY 10013, USA
| | - Maurizio Romano
- Department of Life Sciences, University of Trieste, Via Licio Giorgieri 5, 34127 Trieste, Italy
| | - Pietro Fratta
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- UCL Genetics Institute, Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK
| | - Patrizia Longone
- Molecular Neurobiology, Experimental Neuroscience, IRCCS Fondazione Santa Lucia, Via del Fosso di Fiorano 64, 00143 Rome, Italy
| | - Emanuele Buratti
- International Centre for Genetic Engineering and Biotechnology (ICGEB), AREA Science Park, Padriciano 99, 34149 Trieste, Italy
| |
Collapse
|
35
|
Chan JNM, Sánchez-Vidaña DI, Anoopkumar-Dukie S, Li Y, Benson Wui-Man L. RNA-binding protein signaling in adult neurogenesis. Front Cell Dev Biol 2022; 10:982549. [PMID: 36187492 PMCID: PMC9523427 DOI: 10.3389/fcell.2022.982549] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/01/2022] [Indexed: 11/13/2022] Open
Abstract
The process of neurogenesis in the brain, including cell proliferation, differentiation, survival, and maturation, results in the formation of new functional neurons. During embryonic development, neurogenesis is crucial to produce neurons to establish the nervous system, but the process persists in certain brain regions during adulthood. In adult neurogenesis, the production of new neurons in the hippocampus is accomplished via the division of neural stem cells. Neurogenesis is regulated by multiple factors, including gene expression at a temporal scale and post-transcriptional modifications. RNA-binding Proteins (RBPs) are known as proteins that bind to either double- or single-stranded RNA in cells and form ribonucleoprotein complexes. The involvement of RBPs in neurogenesis is crucial for modulating gene expression changes and posttranscriptional processes. Since neurogenesis affects learning and memory, RBPs are closely associated with cognitive functions and emotions. However, the pathways of each RBP in adult neurogenesis remain elusive and not clear. In this review, we specifically summarize the involvement of several RBPs in adult neurogenesis, including CPEB3, FXR2, FMRP, HuR, HuD, Lin28, Msi1, Sam68, Stau1, Smaug2, and SOX2. To understand the role of these RBPs in neurogenesis, including cell proliferation, differentiation, survival, and maturation as well as posttranscriptional gene expression, we discussed the protein family, structure, expression, functional domain, and region of action. Therefore, this narrative review aims to provide a comprehensive overview of the RBPs, their function, and their role in the process of adult neurogenesis as well as to identify possible research directions on RBPs and neurogenesis.
Collapse
Affiliation(s)
- Jackie Ngai-Man Chan
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
| | - Dalinda Isabel Sánchez-Vidaña
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
- Mental Health Research Centre, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
| | | | - Yue Li
- State Key Laboratory of Component-Based Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lau Benson Wui-Man
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
- Mental Health Research Centre, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
- *Correspondence: Lau Benson Wui-Man,
| |
Collapse
|
36
|
Kapral TH, Farnhammer F, Zhao W, Lu ZJ, Zagrovic B. Widespread autogenous mRNA-protein interactions detected by CLIP-seq. Nucleic Acids Res 2022; 50:9984-9999. [PMID: 36107779 PMCID: PMC9508846 DOI: 10.1093/nar/gkac756] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 07/12/2022] [Accepted: 08/24/2022] [Indexed: 02/02/2023] Open
Abstract
Autogenous interactions between mRNAs and the proteins they encode are implicated in cellular feedback-loop regulation, but their extent and mechanistic foundation are unclear. It was recently hypothesized that such interactions may be common, reflecting the role of intrinsic nucleobase-amino acid affinities in shaping the genetic code's structure. Here we analyze a comprehensive set of CLIP-seq experiments involving multiple protocols and report on widespread autogenous interactions across different organisms. Specifically, 230 of 341 (67%) studied RNA-binding proteins (RBPs) interact with their own mRNAs, with a heavy enrichment among high-confidence hits and a preference for coding sequence binding. We account for different confounding variables, including physical (overexpression and proximity during translation), methodological (difference in CLIP protocols, peak callers and cell types) and statistical (treatment of null backgrounds). In particular, we demonstrate a high statistical significance of autogenous interactions by sampling null distributions of fixed-margin interaction matrices. Furthermore, we study the dependence of autogenous binding on the presence of RNA-binding motifs and structured domains in RBPs. Finally, we show that intrinsic nucleobase-amino acid affinities favor co-aligned binding between mRNA coding regions and the proteins they encode. Our results suggest a central role for autogenous interactions in RBP regulation and support the possibility of a fundamental connection between coding and binding.
Collapse
Affiliation(s)
- Thomas H Kapral
- Departmet of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Vienna, A-1030, Austria,Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, A-1030, Austria
| | - Fiona Farnhammer
- Departmet of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Vienna, A-1030, Austria,Division of Metabolism, University Children's Hospital Zurich and Children's Research Center, University of Zurich, Zurich, 8032, Switzerland,Division of Oncology, University Children's Hospital Zurich and Children's Research Center, University of Zurich, Zurich, 8032, Switzerland
| | - Weihao Zhao
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Zhi J Lu
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Bojan Zagrovic
- To whom correspondence should be addressed. Tel: +43 1 4277 52271; Fax: +43 1 4277 9522;
| |
Collapse
|
37
|
Widagdo J, Udagedara S, Bhembre N, Tan JZA, Neureiter L, Huang J, Anggono V, Lee M. Familial ALS-associated SFPQ variants promote the formation of SFPQ cytoplasmic aggregates in primary neurons. Open Biol 2022; 12:220187. [PMID: 36168806 PMCID: PMC9516340 DOI: 10.1098/rsob.220187] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Splicing factor proline- and glutamine-rich (SFPQ) is a nuclear RNA-binding protein that is involved in a wide range of physiological processes including neuronal development and homeostasis. However, the mislocalization and cytoplasmic aggregation of SFPQ are associated with the pathophysiology of amyotrophic lateral sclerosis (ALS). We have previously reported that zinc mediates SFPQ polymerization and promotes the formation of cytoplasmic aggregates in neurons. Here we characterize two familial ALS (fALS)-associated SFPQ variants, which cause amino acid substitutions in the proximity of the SFPQ zinc-coordinating centre (N533H and L534I). Both mutants display increased zinc-binding affinities, which can be explained by the presence of a second zinc-binding site revealed by the 1.83 Å crystal structure of the human SFPQ L534I mutant. Overexpression of these fALS-associated mutants significantly increases the number of SFPQ cytoplasmic aggregates in primary neurons. Although they do not affect the density of dendritic spines, the presence of SFPQ cytoplasmic aggregates causes a marked reduction in the levels of the GluA1, but not the GluA2 subunit of AMPA-type glutamate receptors on the neuronal surface. Taken together, our data demonstrate that fALS-associated mutations enhance the propensity of SFPQ to bind zinc and form aggregates, leading to the dysregulation of AMPA receptor subunit composition, which may contribute to neuronal dysfunction in ALS.
Collapse
Affiliation(s)
- Jocelyn Widagdo
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Saumya Udagedara
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Nishita Bhembre
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Jing Zhi Anson Tan
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Lara Neureiter
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Jie Huang
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Victor Anggono
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Mihwa Lee
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| |
Collapse
|
38
|
Murakami K, Ono K. Interactions of amyloid coaggregates with biomolecules and its relevance to neurodegeneration. FASEB J 2022; 36:e22493. [PMID: 35971743 DOI: 10.1096/fj.202200235r] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/18/2022] [Accepted: 08/01/2022] [Indexed: 01/16/2023]
Abstract
The aggregation of amyloidogenic proteins is a pathological hallmark of various neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. In these diseases, oligomeric intermediates or toxic aggregates of amyloids cause neuronal damage and degeneration. Despite the substantial effort made over recent decades to implement therapeutic interventions, these neurodegenerative diseases are not yet understood at the molecular level. In many cases, multiple disease-causing amyloids overlap in a sole pathological feature or a sole disease-causing amyloid represents multiple pathological features. Various amyloid pathologies can coexist in the same brain with or without clinical presentation and may even occur in individuals without disease. From sparse data, speculation has arisen regarding the coaggregation of amyloids with disparate amyloid species and other biomolecules, which are the same characteristics that make diagnostics and drug development challenging. However, advances in research related to biomolecular condensates and structural analysis have been used to overcome some of these challenges. Considering the development of these resources and techniques, herein we review the cross-seeding of amyloidosis, for example, involving the amyloids amyloid β, tau, α-synuclein, and human islet amyloid polypeptide, and their cross-inhibition by transthyretin and BRICHOS. The interplay of nucleic acid-binding proteins, such as prions, TAR DNA-binding protein 43, fused in sarcoma/translated in liposarcoma, and fragile X mental retardation polyglycine, with nucleic acids in the pathology of neurodegeneration are also described, and we thereby highlight the potential clinical applications in central nervous system therapy.
Collapse
Affiliation(s)
- Kazuma Murakami
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Kenjiro Ono
- Department of Neurology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
39
|
Choi SH, Flamand MN, Liu B, Zhu H, Hu M, Wang M, Sewell J, Holley CL, Al-Hashimi HM, Meyer KD. RBM45 is an m 6A-binding protein that affects neuronal differentiation and the splicing of a subset of mRNAs. Cell Rep 2022; 40:111293. [PMID: 36044854 PMCID: PMC9472474 DOI: 10.1016/j.celrep.2022.111293] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 07/14/2022] [Accepted: 08/10/2022] [Indexed: 11/16/2022] Open
Abstract
N6-methyladenosine (m6A) is deposited co-transcriptionally on thousands of cellular mRNAs and plays important roles in mRNA processing and cellular function. m6A is particularly abundant within the brain and is critical for neurodevelopment. However, the mechanisms through which m6A contributes to brain development are incompletely understood. RBM45 acts as an m6A-binding protein that is highly expressed during neurodevelopment. We find that RBM45 binds to thousands of cellular RNAs, predominantly within intronic regions. Rbm45 depletion disrupts the constitutive splicing of a subset of target pre-mRNAs, leading to altered mRNA and protein levels through both m6A-dependent and m6A-independent mechanisms. Finally, we find that RBM45 is necessary for neuroblastoma cell differentiation and that its depletion impacts the expression of genes involved in several neurodevelopmental signaling pathways. Altogether, our findings show a role for RBM45 in controlling mRNA processing and neuronal differentiation, mediated in part by the recognition of methylated RNA. Choi et al. identify RBM45 as an m6A-binding protein enriched in the developing brain. RBM45 binds to thousands of cellular RNAs, primarily within introns, and regulates constitutive splicing of target transcripts. Loss of RBM45 causes altered expression of neurodevelopmental genes and defects in the proliferation and differentiation of neuroblastoma cells.
Collapse
Affiliation(s)
- Seung H Choi
- Department of Biochemistry, Duke University School of Medicine, Durham NC 27710, USA
| | - Mathieu N Flamand
- Department of Biochemistry, Duke University School of Medicine, Durham NC 27710, USA
| | - Bei Liu
- Department of Biochemistry, Duke University School of Medicine, Durham NC 27710, USA
| | - Huanyu Zhu
- Department of Biochemistry, Duke University School of Medicine, Durham NC 27710, USA
| | - Meghan Hu
- Trinity College of Arts and Sciences, Duke University, Durham, NC 27710, USA
| | - Melanie Wang
- Trinity College of Arts and Sciences, Duke University, Durham, NC 27710, USA
| | - Jonathon Sewell
- Department of Biochemistry, Duke University School of Medicine, Durham NC 27710, USA
| | - Christopher L Holley
- Department of Medicine (Cardiology Division), Duke University School of Medicine, Durham, NC 27710, USA; Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Hashim M Al-Hashimi
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Kate D Meyer
- Department of Biochemistry, Duke University School of Medicine, Durham NC 27710, USA; Department of Neurobiology, Duke University School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|
40
|
Mishra P, Sankar SHH, Gosavi N, Bharathavikru RS. RNA nucleoprotein complexes in biological systems. PROCEEDINGS OF THE INDIAN NATIONAL SCIENCE ACADEMY 2022. [DOI: 10.1007/s43538-022-00087-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
41
|
Identification of Novel Circular RNAs of the Human Protein Arginine Methyltransferase 1 (PRMT1) Gene, Expressed in Breast Cancer Cells. Genes (Basel) 2022; 13:genes13071133. [PMID: 35885916 PMCID: PMC9316507 DOI: 10.3390/genes13071133] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/16/2022] [Accepted: 06/21/2022] [Indexed: 02/08/2023] Open
Abstract
Circular RNAs (circRNAs) constitute a type of RNA formed through back-splicing. In breast cancer, circRNAs are implicated in tumor onset and progression. Although histone methylation by PRMT1 is largely involved in breast cancer development and metastasis, the effect of circular transcripts deriving from this gene has not been examined. In this study, total RNA was extracted from four breast cancer cell lines and reversely transcribed using random hexamer primers. Next, first- and second-round PCRs were performed using gene-specific divergent primers. Sanger sequencing followed for the determination of the sequence of each novel PRMT1 circRNA. Lastly, bioinformatics analysis was conducted to predict the functions of the novel circRNAs. In total, nine novel circRNAs were identified, comprising both complete and truncated exons of the PRMT1 gene. Interestingly, we demonstrated that the back-splice junctions consist of novel splice sites of the PRMT1 exons. Moreover, the circRNA expression pattern differed among these four breast cancer cell lines. All the novel circRNAs are predicted to act as miRNA and/or protein sponges, while five circRNAs also possess an open reading frame. In summary, we described the complete sequence of nine novel circRNAs of the PRMT1 gene, comprising distinct back-splice junctions and probably having different molecular properties.
Collapse
|
42
|
Yusufujiang A, Zeng S, Yang C, Jing S, Yang L, Li H. PCBP-1 Regulates the Transcription and Alternative Splicing of Inflammation and Ubiquitination-Related Genes in PC12 Cell. Front Aging Neurosci 2022; 14:884837. [PMID: 35795237 PMCID: PMC9251440 DOI: 10.3389/fnagi.2022.884837] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 05/25/2022] [Indexed: 11/21/2022] Open
Abstract
PCBP-1, a multifunctional RNA binding protein, is expressed in various human cell/tissue types and involved in post-transcriptional gene regulation. PCBP-1 has important roles in cellular Iron homeostasis, mitochondrial stability, and other cellular activities involved in the pathophysiological process of neurodegenerative diseases, such as amyotrophic lateral sclerosis (ALS) and Huntington's disease (HD). However, it remains enigmatic whether PCPB-1 is associated with the pathogenesis of PD. In this study, we cloned and constitutively overexpressed PCBP-1 in rat PC12 cells (PC12 cell is the common cell line studying neurodegenerative disease include PD). RNA-seq was performed to analyze PCBP-1-regulated differentially expressed genes (DEGs) and alternative splicing events (ASEs) between control and PCBP1-overexpressed cells. GO and KEGG pathway analyses were performed to identify functional DEGs and alternatively spliced genes. Consequently, we validated PCBP-1-regulated genes using RT-qPCR. Finally, we downloaded CLIP-seq data from GEO (GSE84700) to analyze the mechanisms of PCBP-1's regulation of gene expression and ASEs by revealing the binding profile of PCBP-1 on its target pre-mRNAs. Overexpression of PCBP-1 partially regulated the ASE and expression of genes enriched in neuroinflammation and protein ubiquitination, which were also associated with PD pathogenesis. Moreover, RT-qPCR assay verified the PCBP-1-modulated expression of neuroinflammatory genes, like LCN-2, and alternative splicing (AS) of ubiquitination-related gene WWP-2. Finally, CLIP-seq data analysis indicated that the first UC motif was the critical site for PCBP-1 binding to its targets. In this study, we provided evidence that PCBP-1 could regulate the expression of LCN-2 gene expression associated with neuroinflammation and AS of WWP-2 in relation to protein ubiquitination. These findings thus provided novel insights into the potential application of PCBP-1 as the disease pathophysiological or therapeutic target for neurodegenerative disease.
Collapse
Affiliation(s)
- Aishanjiang Yusufujiang
- Department of Neurology, People’s Hospital of Xinjiang Uygur Autonomous Region, Ürümqi, China
- Xinjiang Clinical Research Center for Stroke and Neurological Rare Disease, Ürümqi, China
| | - Shan Zeng
- Department of Neurology, People’s Hospital of Xinjiang Uygur Autonomous Region, Ürümqi, China
- Xinjiang Clinical Research Center for Stroke and Neurological Rare Disease, Ürümqi, China
| | - Chen Yang
- Department of Neurology, People’s Hospital of Xinjiang Uygur Autonomous Region, Ürümqi, China
- Xinjiang Clinical Research Center for Stroke and Neurological Rare Disease, Ürümqi, China
| | - Sha Jing
- Department of Neurology, People’s Hospital of Xinjiang Uygur Autonomous Region, Ürümqi, China
- Xinjiang Clinical Research Center for Stroke and Neurological Rare Disease, Ürümqi, China
| | - Lijuan Yang
- Department of Neurology, People’s Hospital of Xinjiang Uygur Autonomous Region, Ürümqi, China
- Xinjiang Clinical Research Center for Stroke and Neurological Rare Disease, Ürümqi, China
| | - Hongyan Li
- Department of Neurology, People’s Hospital of Xinjiang Uygur Autonomous Region, Ürümqi, China
- Xinjiang Clinical Research Center for Stroke and Neurological Rare Disease, Ürümqi, China
| |
Collapse
|
43
|
Nelson RS, Dammer EB, Santiago JV, Seyfried NT, Rangaraju S. Brain Cell Type-Specific Nuclear Proteomics Is Imperative to Resolve Neurodegenerative Disease Mechanisms. Front Neurosci 2022; 16:902146. [PMID: 35784845 PMCID: PMC9243337 DOI: 10.3389/fnins.2022.902146] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/30/2022] [Indexed: 01/19/2023] Open
Abstract
Neurodegenerative diseases (NDs) involve complex cellular mechanisms that are incompletely understood. Emerging findings have revealed that disruption of nuclear processes play key roles in ND pathogenesis. The nucleus is a nexus for gene regulation and cellular processes that together, may underlie pathomechanisms of NDs. Furthermore, many genetic risk factors for NDs encode proteins that are either present in the nucleus or are involved in nuclear processes (for example, RNA binding proteins, epigenetic regulators, or nuclear-cytoplasmic transport proteins). While recent advances in nuclear transcriptomics have been significant, studies of the nuclear proteome in brain have been relatively limited. We propose that a comprehensive analysis of nuclear proteomic alterations of various brain cell types in NDs may provide novel biological and therapeutic insights. This may be feasible because emerging technical advances allow isolation and investigation of intact nuclei from post-mortem frozen human brain tissue with cell type-specific and single-cell resolution. Accordingly, nuclei of various brain cell types harbor unique protein markers which can be used to isolate cell-type specific nuclei followed by down-stream proteomics by mass spectrometry. Here we review the literature providing a rationale for investigating proteomic changes occurring in nuclei in NDs and then highlight the potential for brain cell type-specific nuclear proteomics to enhance our understanding of distinct cellular mechanisms that drive ND pathogenesis.
Collapse
Affiliation(s)
- Ruth S. Nelson
- Department of Neurology, Emory University, Atlanta, GA, United States
| | - Eric B. Dammer
- Department of Biochemistry, Emory University, Atlanta, GA, United States
| | | | | | - Srikant Rangaraju
- Department of Neurology, Emory University, Atlanta, GA, United States,*Correspondence: Srikant Rangaraju
| |
Collapse
|
44
|
Bauer KE, Bargenda N, Schieweck R, Illig C, Segura I, Harner M, Kiebler MA. RNA supply drives physiological granule assembly in neurons. Nat Commun 2022; 13:2781. [PMID: 35589693 DOI: 10.1038/s41467-022-30067-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 04/11/2022] [Indexed: 11/09/2022] Open
Abstract
Membraneless cytoplasmic condensates of mRNAs and proteins, known as RNA granules, play pivotal roles in the regulation of mRNA fate. Their maintenance fine-tunes time and location of protein expression, affecting many cellular processes, which require complex protein distribution. Here, we report that RNA granules-monitored by DEAD-Box helicase 6 (DDX6)-disassemble during neuronal maturation both in cell culture and in vivo. This process requires neuronal function, as synaptic inhibition results in reversible granule assembly. Importantly, granule assembly is dependent on the RNA-binding protein Staufen2, known for its role in RNA localization. Altering the levels of free cytoplasmic mRNA reveals that RNA availability facilitates DDX6 granule formation. Specifically depleting RNA from DDX6 granules confirms RNA as an important driver of granule formation. Moreover, RNA is required for DDX6 granule assembly upon synaptic inhibition. Together, this data demonstrates how RNA supply favors RNA granule assembly, which not only impacts subcellular RNA localization but also translation-dependent synaptic plasticity, learning, and memory.
Collapse
Affiliation(s)
- Karl E Bauer
- BioMedical Center, Dept. Cell Biology and Anatomy, Medical Faculty, Ludwig Maximilians University, Großhaderner Str. 9, 82152, Planegg-Martinsried, Germany
| | - Niklas Bargenda
- BioMedical Center, Dept. Cell Biology and Anatomy, Medical Faculty, Ludwig Maximilians University, Großhaderner Str. 9, 82152, Planegg-Martinsried, Germany
| | - Rico Schieweck
- BioMedical Center, Dept. Cell Biology and Anatomy, Medical Faculty, Ludwig Maximilians University, Großhaderner Str. 9, 82152, Planegg-Martinsried, Germany
| | - Christin Illig
- BioMedical Center, Dept. Cell Biology and Anatomy, Medical Faculty, Ludwig Maximilians University, Großhaderner Str. 9, 82152, Planegg-Martinsried, Germany
| | - Inmaculada Segura
- BioMedical Center, Dept. Cell Biology and Anatomy, Medical Faculty, Ludwig Maximilians University, Großhaderner Str. 9, 82152, Planegg-Martinsried, Germany.,Max Planck Institute for Biological Intelligence (in foundation), Am Klopferspitz 18, 82152, Martinsried, Germany
| | - Max Harner
- BioMedical Center, Dept. Cell Biology and Anatomy, Medical Faculty, Ludwig Maximilians University, Großhaderner Str. 9, 82152, Planegg-Martinsried, Germany
| | - Michael A Kiebler
- BioMedical Center, Dept. Cell Biology and Anatomy, Medical Faculty, Ludwig Maximilians University, Großhaderner Str. 9, 82152, Planegg-Martinsried, Germany.
| |
Collapse
|
45
|
Blue SM, Yee BA, Pratt GA, Mueller JR, Park SS, Shishkin AA, Starner AC, Van Nostrand EL, Yeo GW. Transcriptome-wide identification of RNA-binding protein binding sites using seCLIP-seq. Nat Protoc 2022; 17:1223-1265. [PMID: 35322209 PMCID: PMC11134598 DOI: 10.1038/s41596-022-00680-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 12/15/2021] [Indexed: 01/22/2023]
Abstract
Discovery of interaction sites between RNA-binding proteins (RBPs) and their RNA targets plays a critical role in enabling our understanding of how these RBPs control RNA processing and regulation. Cross-linking and immunoprecipitation (CLIP) provides a generalizable, transcriptome-wide method by which RBP/RNA complexes are purified and sequenced to identify sites of intermolecular contact. By simplifying technical challenges in prior CLIP methods and incorporating the generation of and quantitative comparison against size-matched input controls, the single-end enhanced CLIP (seCLIP) protocol allows for the profiling of these interactions with high resolution, efficiency and scalability. Here, we present a step-by-step guide to the seCLIP method, detailing critical steps and offering insights regarding troubleshooting and expected results while carrying out the ~4-d protocol. Furthermore, we describe a comprehensive bioinformatics pipeline that offers users the tools necessary to process two replicate datasets and identify reproducible and significant peaks for an RBP of interest in ~2 d.
Collapse
Affiliation(s)
- Steven M Blue
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Brian A Yee
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Gabriel A Pratt
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Jasmine R Mueller
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Samuel S Park
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Alexander A Shishkin
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
- Eclipse Bioinnovations, San Diego, CA, USA
| | - Anne C Starner
- Verna & Marrs McLean Department of Biochemistry & Molecular Biology and Therapeutic Innovation Center, Baylor College of Medicine, Houston, TX, USA
| | - Eric L Van Nostrand
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
- Verna & Marrs McLean Department of Biochemistry & Molecular Biology and Therapeutic Innovation Center, Baylor College of Medicine, Houston, TX, USA
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA.
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
46
|
Frasson I, Pirota V, Richter SN, Doria F. Multimeric G-quadruplexes: A review on their biological roles and targeting. Int J Biol Macromol 2022; 204:89-102. [PMID: 35124022 DOI: 10.1016/j.ijbiomac.2022.01.197] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/20/2022] [Accepted: 01/31/2022] [Indexed: 12/12/2022]
Abstract
In human cells, nucleic acids adopt several non-canonical structures that regulate key cellular processes. Among them, G-quadruplexes (G4s) are stable structures that form in guanine-rich regions in vitro and in cells. G4 folded/unfolded state shapes numerous cellular processes, including genome replication, transcription, and translation. Moreover, G4 folding is involved in genomic instability. G4s have been described to multimerize, forming high-order structures in both DNA and/or RNA strands. Multimeric G4s can be formed by adjacent intramolecular G4s joined by stacking interactions or connected by short loops. Multimeric G4s can also originate from the assembly of guanines embedded on independent DNA or RNA strands. Notably, crucial regions of the human genome, such as the 3'-terminal overhang of the telomeric DNA as well as the open reading frame of genes involved in the preservation of neuron viability in the human central and peripheral nervous system are prone to form multimeric G4s. The biological importance of such structures has been recently described, with multimeric G4s playing potentially protective or deleterious effects in the pathogenic cascade of various diseases. Here, we portray the multifaceted scenario of multimeric G4s, in terms of structural properties, biological roles, and targeting strategies.
Collapse
Affiliation(s)
- Ilaria Frasson
- Department of Molecular Medicine, University of Padova, via A. Gabelli 63, 35121 Padova, Italy
| | - Valentina Pirota
- Department of Chemistry, University of Pavia, v. le Taramelli 10, 27100 Pavia, Italy; G4-INTERACT, USERN, v. le Taramelli 10, 27100 Pavia, Italy
| | - Sara N Richter
- Department of Molecular Medicine, University of Padova, via A. Gabelli 63, 35121 Padova, Italy.
| | - Filippo Doria
- Department of Chemistry, University of Pavia, v. le Taramelli 10, 27100 Pavia, Italy.
| |
Collapse
|
47
|
Pacetti M, De Conti L, Marasco LE, Romano M, Rashid MM, Nubiè M, Baralle FE, Baralle M. Physiological tissue-specific and age-related reduction of mouse TDP-43 levels is regulated by epigenetic modifications. Dis Model Mech 2022; 15:274621. [PMID: 35243489 PMCID: PMC9066495 DOI: 10.1242/dmm.049032] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 02/04/2022] [Indexed: 12/26/2022] Open
Abstract
The cellular level of TDP-43 (also known as TARDBP) is tightly regulated; increases or decreases in TDP-43 have deleterious effects in cells. The predominant mechanism responsible for the regulation of the level of TDP-43 is an autoregulatory negative feedback loop. In this study, we identified an in vivo cause-effect relationship between Tardbp gene promoter methylation and specific histone modification and the TDP-43 level in tissues of mice at two different ages. Furthermore, epigenetic control was observed in mouse and human cultured cell lines. In amyotrophic lateral sclerosis, the formation of TDP-43-containing brain inclusions removes functional protein from the system. This phenomenon is continuous but compensated by newly synthesized protein. The balance between sequestration and new synthesis might become critical with ageing, if accompanied by an epigenetic modification-regulated decrease in newly synthesized TDP-43. Sequestration by aggregates would then decrease the amount of functional TDP-43 to a level lower than those needed by the cell and thereby trigger the onset of symptoms. Summary: Identification of a cause-effect relationship between epigenetic modifications that occur on the promoter and histones of mouse TARDBP and the level of TDP-43 both in tissues and in cell culture.
Collapse
Affiliation(s)
- Miriam Pacetti
- RNA Biology, International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano 99, 34149 Trieste, Italy
| | - Laura De Conti
- RNA Biology, International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano 99, 34149 Trieste, Italy
| | - Luciano E Marasco
- Universidad de Buenos Aires (UBA), Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular and CONICET-UBA, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CP1428 Buenos Aires, Argentina
| | - Maurizio Romano
- Department of Life Sciences, Via Valerio 28, University of Trieste, 34127 Trieste, Italy
| | - Mohammad M Rashid
- RNA Biology, International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano 99, 34149 Trieste, Italy
| | - Martina Nubiè
- RNA Biology, International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano 99, 34149 Trieste, Italy
| | - Francisco E Baralle
- Fondazione Italiana Fegato-Onlus, Bldg. Q, AREA Science Park, ss14, Km 163.5, Basovizza, 34149 Trieste, Italy
| | - Marco Baralle
- RNA Biology, International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano 99, 34149 Trieste, Italy
| |
Collapse
|
48
|
Shupik MA, Gutner UA, Ustyugov AA, Rezvykh AP, Funikov SY, Maloshitskaya OA, Sokolov SA, Lebedev AT, Alessenko AV. Changes in the Metabolism of Sphingomyelin and Ceramide in the Brain Structures and Spinal Cord of Transgenic Mice (FUS(1-359)) Modeling Amyotrophic Lateral Sclerosis. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1068162022010137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
49
|
Kamma E, Lasisi W, Libner C, Ng HS, Plemel JR. Central nervous system macrophages in progressive multiple sclerosis: relationship to neurodegeneration and therapeutics. J Neuroinflammation 2022; 19:45. [PMID: 35144628 PMCID: PMC8830034 DOI: 10.1186/s12974-022-02408-y] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 01/31/2022] [Indexed: 02/08/2023] Open
Abstract
There are over 15 disease-modifying drugs that have been approved over the last 20 years for the treatment of relapsing–remitting multiple sclerosis (MS), but there are limited treatment options available for progressive MS. The development of new drugs for the treatment of progressive MS remains challenging as the pathophysiology of progressive MS is poorly understood. The progressive phase of MS is dominated by neurodegeneration and a heightened innate immune response with trapped immune cells behind a closed blood–brain barrier in the central nervous system. Here we review microglia and border-associated macrophages, which include perivascular, meningeal, and choroid plexus macrophages, during the progressive phase of MS. These cells are vital and are largely the basis to define lesion types in MS. We will review the evidence that reactive microglia and macrophages upregulate pro-inflammatory genes and downregulate homeostatic genes, that may promote neurodegeneration in progressive MS. We will also review the factors that regulate microglia and macrophage function during progressive MS, as well as potential toxic functions of these cells. Disease-modifying drugs that solely target microglia and macrophage in progressive MS are lacking. The recent treatment successes for progressive MS include include B-cell depletion therapies and sphingosine-1-phosphate receptor modulators. We will describe several therapies being evaluated as a potential treatment option for progressive MS, such as immunomodulatory therapies that can target myeloid cells or as a potential neuroprotective agent.
Collapse
Affiliation(s)
- Emily Kamma
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Wendy Lasisi
- Recovery and Performance Laboratory, Faculty of Medicine, Memorial University of Newfoundland, Saint John's, NL, Canada
| | - Cole Libner
- Department of Health Sciences and the Office of the Saskatchewan Multiple Sclerosis Clinical Research Chair, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Huah Shin Ng
- Division of Neurology and the Djavad Mowafaghian Centre for Brain Health, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Jason R Plemel
- Division of Neurology, Department of Medicine, University of Alberta, Edmonton, AB, Canada. .,Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada. .,Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada. .,University of Alberta, 5-64 Heritage Medical Research Centre, Edmonton, AB, T6G2S2, Canada.
| |
Collapse
|
50
|
Benson BC, Shaw PJ, Azzouz M, Highley JR, Hautbergue GM. Proteinopathies as Hallmarks of Impaired Gene Expression, Proteostasis and Mitochondrial Function in Amyotrophic Lateral Sclerosis. Front Neurosci 2022; 15:783624. [PMID: 35002606 PMCID: PMC8733206 DOI: 10.3389/fnins.2021.783624] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 11/26/2021] [Indexed: 01/15/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal adult-onset neurodegenerative disease characterized by progressive degeneration of upper and lower motor neurons. As with the majority of neurodegenerative diseases, the pathological hallmarks of ALS involve proteinopathies which lead to the formation of various polyubiquitylated protein aggregates in neurons and glia. ALS is a highly heterogeneous disease, with both familial and sporadic forms arising from the convergence of multiple disease mechanisms, many of which remain elusive. There has been considerable research effort invested into exploring these disease mechanisms and in recent years dysregulation of RNA metabolism and mitochondrial function have emerged as of crucial importance to the onset and development of ALS proteinopathies. Widespread alterations of the RNA metabolism and post-translational processing of proteins lead to the disruption of multiple biological pathways. Abnormal mitochondrial structure, impaired ATP production, dysregulation of energy metabolism and calcium homeostasis as well as apoptosis have been implicated in the neurodegenerative process. Dysfunctional mitochondria further accumulate in ALS motor neurons and reflect a wider failure of cellular quality control systems, including mitophagy and other autophagic processes. Here, we review the evidence for RNA and mitochondrial dysfunction as some of the earliest critical pathophysiological events leading to the development of ALS proteinopathies, explore their relative pathological contributions and their points of convergence with other key disease mechanisms. This review will focus primarily on mutations in genes causing four major types of ALS (C9ORF72, SOD1, TARDBP/TDP-43, and FUS) and in protein homeostasis genes (SQSTM1, OPTN, VCP, and UBQLN2) as well as sporadic forms of the disease. Finally, we will look to the future of ALS research and how an improved understanding of central mechanisms underpinning proteinopathies might inform research directions and have implications for the development of novel therapeutic approaches.
Collapse
Affiliation(s)
- Bridget C Benson
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kingdom
| | - Pamela J Shaw
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kingdom.,Neuroscience Institute, University of Sheffield, Sheffield, United Kingdom
| | - Mimoun Azzouz
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kingdom.,Neuroscience Institute, University of Sheffield, Sheffield, United Kingdom.,Healthy Lifespan Institute (HELSI), University of Sheffield, Sheffield, United Kingdom
| | - J Robin Highley
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kingdom.,Neuroscience Institute, University of Sheffield, Sheffield, United Kingdom.,Healthy Lifespan Institute (HELSI), University of Sheffield, Sheffield, United Kingdom
| | - Guillaume M Hautbergue
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kingdom.,Neuroscience Institute, University of Sheffield, Sheffield, United Kingdom.,Healthy Lifespan Institute (HELSI), University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|