1
|
Lopes J, Rodrigues CM, Godinho-Santos A, Coelho JMP, Cabaço LC, Barral DC, Faísca P, Catarino J, Nunes D, Fortunato E, Martins R, Rodrigues CMP, Gaspar MM, Reis CP. Combination of gold nanoparticles with near-infrared light as an alternative approach for melanoma management. Int J Pharm 2025; 668:124952. [PMID: 39547473 DOI: 10.1016/j.ijpharm.2024.124952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/05/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024]
Abstract
Melanoma is the most aggressive type of skin cancer and recently approved drugs are often associated with resistance and significant adverse effects. Therefore, the design of more effective and safe options remains imperative. Photothermal therapy (PTT) using gold nanoparticles (AuNPs) presents a promising and innovative approach. In this work, the efficacy of combining a previously optimized formulation of AuNPs coated with a mixture of hyaluronic and oleic acids (HAOA-AuNPs) with near-infrared (NIR) laser irradiation in melanoma cell lines was explored. Coated and uncoated AuNPs formulations were characterized in physicochemical, morphological and elemental terms. Next, the cellular uptake efficiency as well as antiproliferative activity of the combination of each formulation with laser irradiation was evaluated. Subsequently, HAOA-AuNPs were selected to assess the underlying mechanism of combined therapy by cell cycle and Annexin V/PI assays. An in vivo syngeneic murine melanoma model was also conducted. In vitro studies demonstrated that 24 h after incubation and in the absence of laser, HAOA-AuNPs did not exhibit cytotoxic effects on the melanoma cell lines tested, similar to the laser alone. On the contrary, the combination therapy resulted in a large reduction in cell viability. Furthermore, it has been shown to promote S-phase cell cycle arrest and increase in the percentage of late apoptotic cells. Finally, the in vivo proof-of-concept showed that the intratumoral administration of HAOA-AuNPs followed by three laser irradiations impaired tumor progression. Collectively, AuNP-based PTT holds significant potential to improve treatment efficacy and safety, offering a versatile and potent tool against cancer.
Collapse
Affiliation(s)
- Joana Lopes
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, Lisboa 1649-003, Portugal
| | - Carla M Rodrigues
- REQUIMTE - LAQV, Chemistry Department, NOVA School of Science and Technology, NOVA University Lisbon, Campus da Caparica Caparica 2829-516, Portugal
| | - Ana Godinho-Santos
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, Lisboa 1649-003, Portugal
| | - João M P Coelho
- Instituto de Biofísica e Engenharia Biomédica (IBEB), Faculdade de Ciências, Universidade de Lisboa, Campo Grande 1749-016, Lisboa, Portugal
| | - Luís C Cabaço
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, Lisboa 1169-056, Portugal
| | - Duarte C Barral
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, Lisboa 1169-056, Portugal
| | - Pedro Faísca
- CECAV- Centro de Ciência Animal e Veterinária- Faculdade de Medicina, Veterinária de Lisboa- Universidade Lusófona-Centro Universitário de Lisboa, Portugal
| | - José Catarino
- Faculty of Veterinary Medicine, Universidade Lusófona-Centro Universitário de Lisboa, Portugal; School of Animal Health, Protection and Welfare, Lusophone Polytechnic Institute, Lisbon, Portugal
| | - Daniela Nunes
- Department of Materials Science, NOVA School of Science and Technology, Campus de Caparica, i3N/CENIMAT, Caparica 2829-516, Portugal
| | - Elvira Fortunato
- Department of Materials Science, NOVA School of Science and Technology, Campus de Caparica, i3N/CENIMAT, Caparica 2829-516, Portugal
| | - Rodrigo Martins
- Department of Materials Science, NOVA School of Science and Technology, Campus de Caparica, i3N/CENIMAT, Caparica 2829-516, Portugal
| | - Cecília M P Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, Lisboa 1649-003, Portugal
| | - Maria Manuela Gaspar
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, Lisboa 1649-003, Portugal; Instituto de Biofísica e Engenharia Biomédica (IBEB), Faculdade de Ciências, Universidade de Lisboa, Campo Grande 1749-016, Lisboa, Portugal.
| | - Catarina Pinto Reis
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, Lisboa 1649-003, Portugal; Instituto de Biofísica e Engenharia Biomédica (IBEB), Faculdade de Ciências, Universidade de Lisboa, Campo Grande 1749-016, Lisboa, Portugal.
| |
Collapse
|
2
|
Ghaneialvar H, Jahani S, Hashemi E, Khalilzad MA, Falahi S, Rashidi MA, Majidpoor J, Najafi S. Combining anti-checkpoint immunotherapies and cancer vaccines as a novel strategy in oncological therapy: A review. Hum Immunol 2024; 86:111209. [PMID: 39662393 DOI: 10.1016/j.humimm.2024.111209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 11/17/2024] [Accepted: 11/26/2024] [Indexed: 12/13/2024]
Abstract
The field of cancer immunotherapy has experienced remarkable advancements in the treatment of human cancers over recent decades. Therapeutic cancer vaccines have been employed to elicit antitumor immune responses through the generation of specific reactions against tumor-associated antigens. Although preclinical studies have demonstrated hopeful results and at least one product is approved for clinical use, the overall efficacy of cancer vaccines remains restricted. The co-administration of anti-checkpoint antibodies alongside cancer vaccines is proposed as a potential strategy to enhance the clinical efficacy of immunotherapies. Among the various anti-checkpoint agents, monoclonal antibodies targeting CD127, OX40, and CD40 have been further investigated in combined administration with cancer vaccines, demonstrating a synergistic impact on disease outcomes in both animal models and human subjects. This combinational approach has been shown to suppress tumor regression, improve survival rates, and promote the efficacy of cancer vaccines via multiple mechanisms, including the augmentation of generation, activation, and expansion of CD8+ T cells, as well as the production of tumor-inhibitory cytokines. Importantly, the impact of the concurrent administration of anti-checkpoint agents and cancer vaccines surpass those observed with the sole vaccine, indicating that this strategy may offer significant advantages for clinical application in cancer patients. In this review, we aim to provide a comprehensive overview of the significance and therapeutic potential of the combined administration of checkpoint agonist/antagonist antibodies and cancer vaccines for human tumors.
Collapse
Affiliation(s)
- Hori Ghaneialvar
- Biotechnology and Medicinal Plants Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Saleheh Jahani
- Department of Pathology, School of Medicine, University of California, San Diego, USA
| | - Elham Hashemi
- Department of Anatomical Sciences, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Shahab Falahi
- Zoonotic Diseases Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Mohammad Amin Rashidi
- Department of Occupational Health and Safety, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jamal Majidpoor
- Department of Anatomy, Faculty of Medicine, Infectious Disease Research Center, Gonabad University of Medical Sciences, Gonabad, Iran.
| | - Sajad Najafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Seuthe K, Picard FSR, Winkels H, Pfister R. Cancer Development and Progression in Patients with Heart Failure. Curr Heart Fail Rep 2024; 21:515-529. [PMID: 39340596 PMCID: PMC11511767 DOI: 10.1007/s11897-024-00680-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/21/2024] [Indexed: 09/30/2024]
Abstract
PURPOSE OF REVIEW The co-occurrence of heart failure (HF) and cancer represents a complex and multifaceted medical challenge. Patients with prevalent cardiovascular disease (CVD), particularly HF, exhibit an increased risk of cancer development, raising questions about the intricate interplay between these two prevalent conditions. This review aims to explore the evolving landscape of cancer development in patients with HF, shedding light on potential mechanisms, risk factors, and clinical implications. RECENT FINDINGS Epidemiological data suggests higher cancer incidences and higher cancer mortality in HF patients, which are potentially more common in patients with HF with preserved ejection fraction due to related comorbidities. Moreover, recent preclinical data identified novel pathways and mediators including the protein SerpinA3 as potential drivers of cancer progression in HF patients, suggesting HF as an individual risk factor for cancer development. The review emphasizes preliminary evidence supporting cancer development in patients with HF, which offers several important clinical interventions such as cancer screening in HF patients, prevention addressing both HF and cancer, and molecular targets to treat cancer. However, there is need for more detailed understanding of molecular and cellular cross-talk between cancer and HF which can be derived from prospective assessments of cancer-related outcomes in CV trials and preclinical research of molecular mechanisms.
Collapse
Affiliation(s)
- Katharina Seuthe
- Department of Cardiology, Clinic III for Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Kerpener Strasse 62, 50937, Cologne, Germany.
| | - Felix Simon Ruben Picard
- Department of Cardiology, Clinic III for Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Kerpener Strasse 62, 50937, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Holger Winkels
- Department of Cardiology, Clinic III for Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Kerpener Strasse 62, 50937, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Roman Pfister
- Department of Cardiology, Clinic III for Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Kerpener Strasse 62, 50937, Cologne, Germany
| |
Collapse
|
4
|
Shelash SI, Shabeeb IA, Ahmad I, Saleem HM, Bansal P, Kumar A, Deorari M, Kareem AH, Al-Ani AM, Abosaoda MK. lncRNAs'p potential roles in the pathogenesis of cancer via interacting with signaling pathways; special focus on lncRNA-mediated signaling dysregulation in lung cancer. Med Oncol 2024; 41:310. [PMID: 39516331 DOI: 10.1007/s12032-024-02536-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 10/07/2024] [Indexed: 11/16/2024]
Abstract
Lung cancer ranks among the most lethal types of cancer globally, with a high occurrence and fatality rate. The spread of cancer to other parts of the body, known as metastasis, is the primary cause of treatment failure and death in lung cancer cases. Current approaches for treating advanced lung cancer typically involve a combination of chemotherapy and targeted therapy. However, the majority of patients ultimately develop resistance to these treatments, leading to a worsened prognosis. In recent years, cancer biology research has predominantly focused on the role of protein-encoding genes in cancer development. Long non-coding RNAs (lncRNAs) are transcripts over 200 nucleotides in length that do not encode proteins but are crucial RNA molecules involved in numerous biological functions. While many functions of lncRNAs remain unknown, some have been linked to human diseases, including cancer. Studies have demonstrated that lncRNAs interact with other large molecules in the cell, such as proteins, DNA, and RNA, influencing various critical aspects of cancer. LncRNAs play a significant role in regulating gene expression and have a crucial function in the transcriptional regulation of cancer cells. They mediate various biological and clinical processes such as invasion, metastasis, apoptosis, and cell proliferation. Dysregulation of lncRNAs has been found to impact the process of carcinogenesis through advanced technologies like RNA sequencing and microarrays. Collectively, these long non-coding RNAs hold promise as potential biomarkers and therapeutic targets for human cancers. In this segment, we provide a comprehensive summary of the literature on the characteristics and formation of lncRNAs, along with an overview of their current known roles in lung cancer.
Collapse
Affiliation(s)
- Sulieman Ibrahim Shelash
- Electronic Marketing and Social Media, Economic and Administrative Sciences Zarqa University, Zarqa, Jordan
- Research Follower, INTI International University, Negeri Sembilan, 71800, Nilai, Malaysia
| | | | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Hiba Muwafaq Saleem
- Department of Biology, College of Science, University Of Anbar, Ramadi, Iraq.
| | - Pooja Bansal
- Department of Biotechnology and Genetics, Jain (Deemed-to-Be) University, Bengaluru, 560069, Karnataka, India
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan, 303012, India
| | - Abhinav Kumar
- Department of Nuclear and Renewable Energy, Ural Federal University Named After the First President of Russia Boris Yeltsin, Ekaterinburg, 620002, Russia
- Department of Technical Sciences, Western Caspian University, Baku, Azerbaijan
- Department of Mechanical Engineering, Karpagam Academy of Higher Education, Coimbatore, 641021, India
| | - Mahamedha Deorari
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | | | | | - Munther Kadhim Abosaoda
- College of Pharmacy, The Islamic University, Najaf, Iraq
- College of Pharmacy, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- College of Pharmacy, The Islamic University of Babylon, Al Diwaniyah, Iraq
| |
Collapse
|
5
|
Zemer A, Samaei S, Yoel U, Biderman A, Pincu Y. Ketogenic diet in clinical populations-a narrative review. Front Med (Lausanne) 2024; 11:1432717. [PMID: 39534224 PMCID: PMC11554467 DOI: 10.3389/fmed.2024.1432717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024] Open
Abstract
Ketogenic diet (KD) is a high-fat, low-carbohydrate (CHO) diet, designed to induce a metabolic state of ketosis in which the body metabolizes primarily lipids for energy production. Various forms of KD are being promoted as promising treatments for numerous health conditions from chronic headaches to weight-loss and even different forms of cancer and are becoming increasingly more popular. KD appears to be an efficacious approach for weight-loss, and maintenance, improved glycemia, cognitive function and cancer prognosis. However, there is a controversy regarding the safety of KD, and the potential health risks that might be associated with long-term exposure to KD. There is a gap between the acceptance and utilization of KD in individuals with health conditions and the criticism and negative attitudes toward KD by some clinicians. Many individuals choose to follow KD and are encouraged by the positive results they experience. Although the medical establishment does not endorse KD as a first line of treatment, clinicians need to be informed about KD, and offer support and medical supervision for patients who self-select to follow KD. This can ensure that within the boundaries of KD, patients will make good and healthy dietary choices and prevent clinical disengagement in extreme cases. To that end, there is an urgent need for good quality research to address the issues of long-term safety of KD in different clinical populations and for standardization of KD both in research and in the clinic.
Collapse
Affiliation(s)
- Alon Zemer
- Department of Pharmacology and Clinical Biochemistry, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Shabnam Samaei
- Department of Health and Exercise Science, University of Oklahoma, Norman, OK, United States
| | - Uri Yoel
- Endocrinology Unit, Soroka University Medical Center, Beer Sheva, Israel
| | - Aya Biderman
- Department of Family Medicine, Goldman Medical School, Ben-Gurion University of the Negev and Clalit Health Services, Beer Sheva, Israel
| | - Yair Pincu
- Department of Pharmacology and Clinical Biochemistry, Ben-Gurion University of the Negev, Beer Sheva, Israel
- Department of Health and Exercise Science, University of Oklahoma, Norman, OK, United States
- Harold Hamm Diabetes Center, Oklahoma City, OK, United States
| |
Collapse
|
6
|
Higham J, Scannapieco FA. Epidemiological associations between periodontitis and cancer. Periodontol 2000 2024; 96:74-82. [PMID: 39302022 DOI: 10.1111/prd.12599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 07/15/2024] [Accepted: 07/22/2024] [Indexed: 09/22/2024]
Abstract
There is a postulated association of periodontitis with a number of human cancers. This narrative review provides current epidemiological evidence on the association between periodontitis and cancer. A PubMed search with the relevant keywords (periodontal disease, periodontitis, cancer, and malignancy) was completed to identify relevent articles. We present a narrative review on the association between periodontal disease and a range of cancers, including oral cancer, stomach and esophageal cancer, colorectal cancer, lung cancer, pancreatic cancer, prostate cancer, hematological malignancies, liver cancer, breast cancer, and ovarian cancer. While there is a considerable body of epidemiological evidence that supports the association between periodontal disease and cancer, this is largely from cohort and case-control studies and the association may therefore be circumstantial as little evidence exists in the form of treatment trials that would validate the role of periodontal disease in the process of cancer initiation and development.
Collapse
Affiliation(s)
- Jon Higham
- Department of Oral Medicine, Birmingham Dental Hospital and School of Dentistry, Birmingham, UK
| | - Frank A Scannapieco
- Department of Oral Biology, School of Dental Medicine University at Buffalo, Buffalo, New York, USA
| |
Collapse
|
7
|
Datta M, Via LE, Dartois V, Xu L, Barry CE, Jain RK. Leveraging insights from cancer to improve tuberculosis therapy. Trends Mol Med 2024:S1471-4914(24)00205-3. [PMID: 39142973 DOI: 10.1016/j.molmed.2024.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/21/2024] [Accepted: 07/24/2024] [Indexed: 08/16/2024]
Abstract
Exploring and exploiting the microenvironmental similarities between pulmonary tuberculosis (TB) granulomas and malignant tumors has revealed new strategies for more efficacious host-directed therapies (HDTs). This opinion article discusses a paradigm shift in TB therapeutic development, drawing on critical insights from oncology. We summarize recent efforts to characterize and overcome key shared features between tumors and granulomas, including excessive fibrosis, abnormal angiogenesis, hypoxia and necrosis, and immunosuppression. We provide specific examples of cancer therapy application to TB to overcome these microenvironmental abnormalities, including matrix-targeting therapies, antiangiogenic agents, and immune-stimulatory drugs. Finally, we propose a new framework for combining HDTs with anti-TB agents to maximize therapeutic delivery and efficacy while reducing treatment dosages, duration, and harmful side effects to benefit TB patients.
Collapse
Affiliation(s)
- Meenal Datta
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Laura E Via
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Véronique Dartois
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA; Hackensack Meridian School of Medicine, Hackensack Meridian Health, Nutley, NJ 07110, USA
| | - Lei Xu
- Edwin L. Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Clifton E Barry
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA.
| | - Rakesh K Jain
- Edwin L. Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
8
|
Zhang C, Zheng J, Liu J, Li Y, Xing G, Zhang S, Chen H, Wang J, Shao Z, Li Y, Jiang Z, Pan Y, Liu X, Xu P, Wu W. Pan-cancer analyses reveal the molecular and clinical characteristics of TET family members and suggests that TET3 maybe a potential therapeutic target. Front Pharmacol 2024; 15:1418456. [PMID: 39104395 PMCID: PMC11298443 DOI: 10.3389/fphar.2024.1418456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 05/28/2024] [Indexed: 08/07/2024] Open
Abstract
The Ten-Eleven Translocation (TET) family genes are implicated in a wide array of biological functions across various human cancers. Nonetheless, there is a scarcity of studies that comprehensively analyze the correlation between TET family members and the molecular phenotypes and clinical characteristics of different cancers. Leveraging updated public databases and employing several bioinformatics analysis methods, we assessed the expression levels, somatic variations, methylation levels, and prognostic values of TET family genes. Additionally, we explored the association between the expression of TET family genes and pathway activity, tumor microenvironment (TME), stemness score, immune subtype, clinical staging, and drug sensitivity in pan-cancer. Molecular biology and cytology experiments were conducted to validate the potential role of TET3 in tumor progression. Each TET family gene displayed distinct expression patterns across at least ten detected tumors. The frequency of Single Nucleotide Variant (SNV) in TET genes was found to be 91.24%, primarily comprising missense mutation types, with the main types of copy number variant (CNV) being heterozygous amplifications and deletions. TET1 gene exhibited high methylation levels, whereas TET2 and TET3 genes displayed hypomethylation in most cancers, which correlated closely with patient prognosis. Pathway activity analysis revealed the involvement of TET family genes in multiple signaling pathways, including cell cycle, apoptosis, DNA damage response, hormone AR, PI3K/AKT, and RTK. Furthermore, the expression levels of TET family genes were shown to impact the clinical staging of tumor patients, modulate the sensitivity of chemotherapy drugs, and thereby influence patient prognosis by participating in the regulation of the tumor microenvironment, cellular stemness potential, and immune subtype. Notably, TET3 was identified to promote cancer progression across various tumors, and its silencing was found to inhibit tumor malignancy and enhance chemotherapy sensitivity. These findings shed light on the role of TET family genes in cancer progression and offer insights for further research on TET3 as a potential therapeutic target for pan-cancer.
Collapse
Affiliation(s)
- Chunyan Zhang
- Department of General Surgery, Tianjin Fifth Central Hospital, Tianjin, China
- Tianjin Key Laboratory of Epigenetics for Organ Development of Premature Infants, Tianjin Fifth Central Hospital, Tianjin, China
- High Altitude Characteristic Medical Research Institute, Huangnan Tibetan Autonomous Prefecture People’s Hospital, Huangnan Prefecture, Qinghai, China
| | - Jie Zheng
- Department of Pathology, Tianjin Fifth Central Hospital, Tianjin, China
| | - Jin Liu
- North China University of Science and Technology, Tangshan, Hebei, China
| | - Yanxia Li
- Tianjin Key Laboratory of Epigenetics for Organ Development of Premature Infants, Tianjin Fifth Central Hospital, Tianjin, China
- High Altitude Characteristic Medical Research Institute, Huangnan Tibetan Autonomous Prefecture People’s Hospital, Huangnan Prefecture, Qinghai, China
| | - Guoqiang Xing
- Department of General Surgery, Tianjin Fifth Central Hospital, Tianjin, China
| | - Shupeng Zhang
- Department of General Surgery, Tianjin Fifth Central Hospital, Tianjin, China
| | - Hekai Chen
- Department of General Surgery, Tianjin Fifth Central Hospital, Tianjin, China
| | - Jian Wang
- Department of General Surgery, Tianjin Fifth Central Hospital, Tianjin, China
| | - Zhijiang Shao
- Department of General Surgery, Tianjin Fifth Central Hospital, Tianjin, China
- High Altitude Characteristic Medical Research Institute, Huangnan Tibetan Autonomous Prefecture People’s Hospital, Huangnan Prefecture, Qinghai, China
| | - Yongyuan Li
- Department of General Surgery, Tianjin Fifth Central Hospital, Tianjin, China
- High Altitude Characteristic Medical Research Institute, Huangnan Tibetan Autonomous Prefecture People’s Hospital, Huangnan Prefecture, Qinghai, China
| | - Zhongmin Jiang
- Department of Pathology, Tianjin Fifth Central Hospital, Tianjin, China
| | - Yingzi Pan
- Department of Ophthalmology, Peking University First Hospital, Beijing, China
| | - Xiaozhi Liu
- Tianjin Key Laboratory of Epigenetics for Organ Development of Premature Infants, Tianjin Fifth Central Hospital, Tianjin, China
- High Altitude Characteristic Medical Research Institute, Huangnan Tibetan Autonomous Prefecture People’s Hospital, Huangnan Prefecture, Qinghai, China
| | - Ping Xu
- High Altitude Characteristic Medical Research Institute, Huangnan Tibetan Autonomous Prefecture People’s Hospital, Huangnan Prefecture, Qinghai, China
- Department of Pharmacy, Tianjin Fifth Central Hospital, Tianjin, China
| | - Wenhan Wu
- Department of General Surgery, Tianjin Fifth Central Hospital, Tianjin, China
- Tianjin Key Laboratory of Epigenetics for Organ Development of Premature Infants, Tianjin Fifth Central Hospital, Tianjin, China
- High Altitude Characteristic Medical Research Institute, Huangnan Tibetan Autonomous Prefecture People’s Hospital, Huangnan Prefecture, Qinghai, China
- Department of General Surgery, Peking University First Hospital, Beijing, China
| |
Collapse
|
9
|
Ludgate ME, Masetti G, Soares P. The relationship between the gut microbiota and thyroid disorders. Nat Rev Endocrinol 2024:10.1038/s41574-024-01003-w. [PMID: 38906998 DOI: 10.1038/s41574-024-01003-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/21/2024] [Indexed: 06/23/2024]
Abstract
Disorders of the thyroid gland are common, more prevalent in women than in men, and range from inflammatory to neoplastic lesions. Autoimmune thyroid diseases (AITD) affect 2-5% of the population, while thyroid cancer is the most frequent endocrine malignancy. Treatment for AITD is still restricted to management rather than prevention or cure. Progress has been made in identifying genetic variants that predispose to AITD and thyroid cancer, but the increasing prevalence of all thyroid disorders indicates that factors other than genes are involved. The gut microbiota, which begins to develop before birth, is highly sensitive to diet and the environment, providing a potential mechanism for non-communicable diseases to become communicable. Its functions extend beyond maintenance of gut integrity: the gut microbiota regulates the immune system, contributes to thyroid hormone metabolism and can generate or catabolize carcinogens, all of which are relevant to AITD and thyroid cancer. Observational and interventional studies in animal models support a role for the gut microbiota in AITD, which has been confirmed in some reports from human cohorts, although considerable geographic variation is apparent. Reports of a role for the microbiota in thyroid cancer are more limited, but evidence supports a relationship between gut dysbiosis and thyroid cancer.
Collapse
Affiliation(s)
| | | | - Paula Soares
- Faculty of Medicine of the University of Porto (FMUP), Porto, Portugal
- Instituto de Investigação e Inovação em Saúde da Universidade do Porto (I3S), Porto, Portugal
| |
Collapse
|
10
|
Bagnyukova T, Egleston BL, Pavlov VA, Serebriiskii IG, Golemis EA, Borghaei H. Synergy of EGFR and AURKA Inhibitors in KRAS-mutated Non-small Cell Lung Cancers. CANCER RESEARCH COMMUNICATIONS 2024; 4:1227-1239. [PMID: 38639476 PMCID: PMC11078142 DOI: 10.1158/2767-9764.crc-23-0482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/29/2024] [Accepted: 04/16/2024] [Indexed: 04/20/2024]
Abstract
The most common oncogenic driver mutations for non-small cell lung cancer (NSCLC) activate EGFR or KRAS. Clinical trials exploring treatments for EGFR- or KRAS-mutated (EGFRmut or KRASmut) cancers have focused on small-molecule inhibitors targeting the driver mutations. Typically, these inhibitors perform more effectively based on combination with either chemotherapies, or other targeted therapies. For EGFRmut NSCLC, a combination of inhibitors of EGFR and Aurora-A kinase (AURKA), an oncogene commonly overexpressed in solid tumors, has shown promising activity in clinical trials. Interestingly, a number of recent studies have indicated that EGFR activity supports overall viability of tumors lacking EGFR mutations, and AURKA expression is abundant in KRASmut cell lines. In this study, we have evaluated dual inhibition of EGFR and AURKA in KRASmut NSCLC models. These data demonstrate synergy between the EGFR inhibitor erlotinib and the AURKA inhibitor alisertib in reducing cell viability and clonogenic capacity in vitro, associated with reduced activity of EGFR pathway effectors, accumulation of enhanced aneuploid cell populations, and elevated cell death. Importantly, the erlotinib-alisertib combination also synergistically reduces xenograft growth in vivo. Analysis of signaling pathways demonstrated that the combination of erlotinib and alisertib was more effective than single-agent treatments at reducing activity of EGFR and pathway effectors following either brief or extended administration of the drugs. In sum, this study indicates value of inhibiting EGFR in KRASmut NSCLC, and suggests the specific value of dual inhibition of AURKA and EGFR in these tumors. SIGNIFICANCE The introduction of specific KRAS G12C inhibitors to the clinical practice in lung cancer has opened up opportunities that did not exist before. However, G12C alterations are only a subtype of all KRAS mutations observed. Given the high expression of AURKA in KRASmut NSCLC, our study could point to a potential therapeutic option for this subgroup of patients.
Collapse
Affiliation(s)
- Tetyana Bagnyukova
- Program in Cell Signaling and Metastasis, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Brian L. Egleston
- Program in Cell Signaling and Metastasis, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Valerii A. Pavlov
- Program in Cell Signaling and Metastasis, Fox Chase Cancer Center, Philadelphia, Pennsylvania
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russian Federation
| | - Ilya G. Serebriiskii
- Program in Cell Signaling and Metastasis, Fox Chase Cancer Center, Philadelphia, Pennsylvania
- Kazan Federal University, Kazan, Russian Federation
| | - Erica A. Golemis
- Program in Cell Signaling and Metastasis, Fox Chase Cancer Center, Philadelphia, Pennsylvania
- Department of Cancer and Cellular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Hossein Borghaei
- Program in Cell Signaling and Metastasis, Fox Chase Cancer Center, Philadelphia, Pennsylvania
- Division of Thoracic Medical Oncology, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| |
Collapse
|
11
|
Ricker K, Cheng V, Hsieh CJ, Tsai FC, Osborne G, Li K, Yilmazer-Musa M, Sandy MS, Cogliano VJ, Schmitz R, Sun M. Application of the Key Characteristics of Carcinogens to Bisphenol A. Int J Toxicol 2024; 43:253-290. [PMID: 38204208 DOI: 10.1177/10915818231225161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
The ten key characteristics (KCs) of carcinogens are based on characteristics of known human carcinogens and encompass many types of endpoints. We propose that an objective review of the large amount of cancer mechanistic evidence for the chemical bisphenol A (BPA) can be achieved through use of these KCs. A search on metabolic and mechanistic data relevant to the carcinogenicity of BPA was conducted and web-based software tools were used to screen and organize the results. We applied the KCs to systematically identify, organize, and summarize mechanistic information for BPA, and to bring relevant carcinogenic mechanisms into focus. For some KCs with very large data sets, we utilized reviews focused on specific endpoints. Over 3000 studies for BPA from various data streams (exposed humans, animals, in vitro and cell-free systems) were identified. Mechanistic data relevant to each of the ten KCs were identified, with receptor-mediated effects, epigenetic alterations, oxidative stress, and cell proliferation being especially data rich. Reactive and bioactive metabolites are also associated with a number of KCs. This review demonstrates how the KCs can be applied to evaluate mechanistic data, especially for data-rich chemicals. While individual entities may have different approaches for the incorporation of mechanistic data in cancer hazard identification, the KCs provide a practical framework for conducting an objective examination of the available mechanistic data without a priori assumptions on mode of action. This analysis of the mechanistic data available for BPA suggests multiple and inter-connected mechanisms through which this chemical can act.
Collapse
Affiliation(s)
- Karin Ricker
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, CA, USA
| | - Vanessa Cheng
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, CA, USA
| | - Chingyi Jennifer Hsieh
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Sacramento, CA, USA
| | - Feng C Tsai
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, CA, USA
| | - Gwendolyn Osborne
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, CA, USA
| | - Kate Li
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, CA, USA
| | - Meltem Yilmazer-Musa
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, CA, USA
| | - Martha S Sandy
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, CA, USA
| | - Vincent J Cogliano
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, CA, USA
| | - Rose Schmitz
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, CA, USA
| | - Meng Sun
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Sacramento, CA, USA
| |
Collapse
|
12
|
Xiao HN, Zhao ZY, Li JP, Li AY. Comprehensive pan-cancer analysis: essential role of ABCB family genes in cancer. Transl Cancer Res 2024; 13:1642-1664. [PMID: 38737683 PMCID: PMC11082675 DOI: 10.21037/tcr-23-2050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 03/12/2024] [Indexed: 05/14/2024]
Abstract
Background The adenosine triphosphate-binding-cassette (ABC) transporter orchestrates the transmembrane transport of diverse substrates with the aid of ATP as an energy source. ABC transporter constitutes a widespread superfamily of transporters prominently present on the cellular membrane of organisms. Advancements in understanding have unveiled additional roles beyond mere intracellular or extracellular transport functions for the ABC protein family, encompassing involvement in DNA repair, protein translation, and gene expression regulation. Yet its role in tumors is still unknown. Methods This study drew support from multiple databases, including Gene Expression Omnibus (GEO), European Genome-phenome Archive (EGA), The Cancer Genome Atlas (TCGA), and employed multidimensional bioinformatics analyses, incorporating online databases and the R-project. Through a comprehensive analysis, we seek to discern transcriptional-level disparities among genes and their consequential impacts on prognosis, tumor microenvironment (TME), stemness score, immune subtypes, clinical characteristics, and drug sensitivity across human cancers. Results ABC transporter subfamily B (ABCB) family genes exhibited heightened expression across diverse tumors, demonstrating a significant correlation with overall prognosis in pan-cancer contexts. Notably, gene expression levels manifested substantial associations with TME, stemness score, immune subtypes, clinical characteristics, and drug sensitivity in specific cancers, including kidney renal papillary cell carcinoma (KIRP), liver hepatocellular carcinoma (LIHC), and pancreatic adenocarcinoma (PAAD). Within this subset, transporter associated with antigen processing 1 (TAP1), TAP2, and ABCB6 emerged as noteworthy oncogenes. Conclusions The outcomes of this study contribute to a comprehensive understanding of the implications of ABCB family genes in tumor progression, offering insights into potential therapeutic targets for cancer. Notably, the identification of ABCB6 as a significant oncogene suggests promising avenues for targeted therapies in KIRP, LIHC, and PAAD.
Collapse
Affiliation(s)
- Hui-Ni Xiao
- Department of Gastroenterology, the Second Affiliated Hospital, University of South China, Hengyang, China
| | - Zi-Yue Zhao
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China
- Orthopedic Biomedical Materials Engineering Laboratory of Hunan Province, Changsha, China
| | - Jin-Ping Li
- Department of Orthopedics, Changsha Central Hospital, the Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
| | - Ao-Yu Li
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China
- Orthopedic Biomedical Materials Engineering Laboratory of Hunan Province, Changsha, China
| |
Collapse
|
13
|
Rai T, Kaushik N, Malviya R, Sharma PK. A review on marine source as anticancer agents. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2024; 26:415-451. [PMID: 37675579 DOI: 10.1080/10286020.2023.2249825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 08/15/2023] [Indexed: 09/08/2023]
Abstract
This review investigates the potential of natural compounds obtained from marine sources for the treatment of cancer. The oceans are believed to contain physiologically active compounds, such as alkaloids, nucleosides, macrolides, and polyketides, which have shown promising effects in slowing human tumor cells both in vivo and in vitro. Various marine species, including algae, mollusks, actinomycetes, fungi, sponges, and soft corals, have been studied for their bioactive metabolites with diverse chemical structures. The review explores the therapeutic potential of various marine-derived substances and discusses their possible applications in cancer treatment.
Collapse
Affiliation(s)
- Tamanna Rai
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Gautam Budh Nagar, Greater Noida, Uttar Pradesh 201306, India
| | - Niranjan Kaushik
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Gautam Budh Nagar, Greater Noida, Uttar Pradesh 201306, India
| | - Rishabha Malviya
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Gautam Budh Nagar, Greater Noida, Uttar Pradesh 201306, India
| | - Pramod Kumar Sharma
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Gautam Budh Nagar, Greater Noida, Uttar Pradesh 201306, India
| |
Collapse
|
14
|
Imran S, Rao MS, Shah MH, Gaur A, Guernaoui AE, Roy S, Roy S, Bharadwaj HR, Awuah WA. Evolving perspectives in reverse cardio-oncology: A review of current status, pathophysiological insights, and future directives. Curr Probl Cardiol 2024; 49:102389. [PMID: 38184129 DOI: 10.1016/j.cpcardiol.2024.102389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 01/08/2024]
Abstract
Cardiovascular disease (CVD) and cancer are leading causes of mortality worldwide, traditionally linked through adverse effects of cancer therapies on cardiovascular health. However, reverse cardio-oncology, a burgeoning field, shifts this perspective to examine how cardiovascular diseases influence the onset and progression of cancer. This novel approach has revealed a higher likelihood of cancer development in patients with pre-existing cardiovascular conditions, attributed to shared risk factors such as obesity, a sedentary lifestyle, and smoking. Underlying mechanisms like chronic inflammation and clonal hematopoiesis further illuminate the connections between cardiovascular ailments and cancer. This comprehensive narrative review, spanning a broad spectrum of studies, outlines the syndromic classification of cardio-oncology, the intersection of cardiovascular risk factors and oncogenesis, and the bidirectional dynamics between CVD and cancer. Additionally, the review also discusses the pathophysiological mechanisms underpinning this interconnection, examining the roles of cardiokines, genetic factors, and the effects of cardiovascular therapies and biomarkers in cancer diagnostics. Lastly, it aims to underline future directives, emphasising the need for integrated healthcare strategies, interdisciplinary research, and comprehensive treatment protocols.
Collapse
Affiliation(s)
- Shahzeb Imran
- School of Medicine, Dentistry & Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - Medha Sridhar Rao
- School of Medicine, Dentistry & Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - Muhammad Hamza Shah
- School of Medicine, Dentistry & Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom; Centre for Anatomy, Deanery of Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Aditya Gaur
- School of Medicine, University of Central Lancashire, Preston, United Kingdom
| | - Abderrahmane El Guernaoui
- School of Medicine, Dentistry & Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - Subham Roy
- Hull York Medical School, University of York, York, United Kingdom
| | - Sakshi Roy
- School of Medicine, Dentistry & Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom
| | | | | |
Collapse
|
15
|
Delyukina OV, Savko SA, Rylina EV, Bilous EA, Korobeynikova TV, Skalny AV. The role of heavy metal exposure on the microbiome in the etiology of gastrointestinal disorders: a scoping review. EKOLOGIYA CHELOVEKA (HUMAN ECOLOGY) 2023; 30:735-748. [DOI: 10.17816/humeco430324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
In recent years, epidemiological studies have increasingly recognized the significance of heavy metals as an important pathogenetic factor in many gastrointestinal diseases, particularly those associated with in gut microbiota functions. The toxicity of heavy metals towards essential intestinal microflora goes beyond causing dysbiotic disorders; it can also exacerbate intestinal infections, alter metabolic processes, and influence the development of antibiotic resistance. Since the negative effects of heavy metals are environmental in nature, there is a need to systematize the etiological role between the effects of heavy metals on the microbiome and possible nosological conditions for a more accurate approach to treatment and further research. Given the environmental origins of the abovementioned effects, there is a need to systematize the impact of heavy metals on the microbiome and their role in disease development to improve approaches to treatment and further research.
We aimed to analyze the latest scientific evidence on the associations between heavy metals exposure and the intestinal microbiome and its role in the development of gastrointestinal disorders. For this scoping review we used PubMed and eLIBRARY.ru databases. We searched for keywords: «gut microbiota», «intestinal infections» (disorders), «antibiotic resistance» «heavy metals» in both Russian and English. Based on the research reviewed in this study, we can infer that heavy metals act as exogenous toxicants contributing to the development of dysbiotic, metabolic and trophic disorders of the gastrointestinal tract. They also influence the progression of infections and the development of antibiotic resistance in bacteria. Further studies should focus on exploring the toxicity of heavy metals in relation to specific populations of intestinal flora and associations with metal and antibiotic resistance. It is important to consider the therapeutic potential of microbiome modulation in the management of gastrointestinal diseases.
Collapse
Affiliation(s)
| | | | - Elena V. Rylina
- Peoples’ Friendship University of Russia named after Patrice Lumumba
| | | | - Tatiana V. Korobeynikova
- I.M. Sechenov First Moscow State Medical University
- Peoples’ Friendship University of Russia named after Patrice Lumumba
| | | |
Collapse
|
16
|
Mishra MK, Gupta S, Shivangi, Sharma M, Sehgal S. The repertoire of mutational signatures in tobacco- and non-tobacco-induced oral cancer. Clin Transl Oncol 2023; 25:3332-3344. [PMID: 37058208 DOI: 10.1007/s12094-023-03192-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 04/04/2023] [Indexed: 04/15/2023]
Abstract
The use of tobacco products is one of the established contributors toward the development and spread of oral cancer. Additionally, recent research has indicated oral microbiome, infections with Human papilloma virus (HPV), Epstein-Barr virus (EBV), Candida as significant contributing factors to this disease along with lifestyle habits. Deregulation of cellular pathways envisaging metabolism, transcription, translation, and epigenetics caused by these risk factors either individually or in unison is manifold, resulting in the increased risk of oral cancer. Globally, this cancer continues to exist as one of the major causes of cancer-related mortalities; the numbers in the developing South Asian countries clearly indicate yearly escalation. This review encompasses the variety of genetic modifications, including adduct formation, mutation (duplication, deletion, and translocation), and epigenetic changes evident in oral squamous cell carcinoma (OSCC). In addition, it highlights the interference caused by tobacco products in Wnt signaling, PI3K/Akt/mTOR, JAK-STAT, and other important pathways. The information provided also ensures a comprehensive and critical revisit to non-tobacco-induced OSCC. Extensive literature survey and analysis has been conducted to generate the chromosome maps specifically highlighting OSCC-related mutations with the potential to act as spectacles for the early diagnosis and targeted treatment of this disease cancer.
Collapse
Affiliation(s)
- Manish Kumar Mishra
- Centre for Molecular Biology, Central University of Jammu, Jammu, J&K, India
| | - Sachin Gupta
- Department of ENT and Head and Neck Surgery, ASCOMS, Jammu, J&K, India
| | - Shivangi
- Centre for Molecular Biology, Central University of Jammu, Jammu, J&K, India
| | - Manshi Sharma
- Centre for Molecular Biology, Central University of Jammu, Jammu, J&K, India
| | - Shelly Sehgal
- Centre for Molecular Biology, Central University of Jammu, Jammu, J&K, India.
| |
Collapse
|
17
|
Serebriiskii IG, Pavlov VA, Andrianov GV, Litwin S, Basickes S, Newberg JY, Frampton GM, Meyer JE, Golemis EA. Source, co-occurrence, and prognostic value of PTEN mutations or loss in colorectal cancer. NPJ Genom Med 2023; 8:40. [PMID: 38001126 PMCID: PMC10674024 DOI: 10.1038/s41525-023-00384-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Somatic PTEN mutations are common and have driver function in some cancer types. However, in colorectal cancers (CRCs), somatic PTEN-inactivating mutations occur at a low frequency (~8-9%), and whether these mutations are actively selected and promote tumor aggressiveness has been controversial. Analysis of genomic data from ~53,000 CRCs indicates that hotspot mutation patterns in PTEN partially reflect DNA-dependent selection pressures, but also suggests a strong selection pressure based on protein function. In microsatellite stable (MSS) tumors, PTEN alterations co-occur with mutations activating BRAF or PI3K, or with TP53 deletions, but not in CRC with microsatellite instability (MSI). Unexpectedly, PTEN deletions are associated with poor survival in MSS CRC, whereas PTEN mutations are associated with improved survival in MSI CRC. These and other data suggest use of PTEN as a prognostic marker is valid in CRC, but such use must consider driver mutation landscape, tumor subtype, and category of PTEN alteration.
Collapse
Affiliation(s)
- Ilya G Serebriiskii
- Program in Cell Signaling and Microenvironment, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA.
- Kazan Federal University, 420000, Kazan, Russian Federation.
| | - Valerii A Pavlov
- Program in Cell Signaling and Microenvironment, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
- Moscow Institute of Physics and Technology, 141701, Dolgoprudny, Moscow Region, Russian Federation
| | - Grigorii V Andrianov
- Program in Cell Signaling and Microenvironment, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - Samuel Litwin
- Program in Cell Signaling and Microenvironment, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
- Biostatistics and Bioinformatics Facility, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - Stanley Basickes
- Greenfield Manufacturing, 9800 Bustleton Ave, Philadelphia, PA, 19115, USA
| | - Justin Y Newberg
- Foundation Medicine, Inc., 150 Second St., Cambridge, MA, 02141, USA
| | | | - Joshua E Meyer
- Program in Cell Signaling and Microenvironment, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
- Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - Erica A Golemis
- Program in Cell Signaling and Microenvironment, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA.
- Department of Cancer and Cellular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA.
| |
Collapse
|
18
|
Shakya R, Byun MR, Joo SH, Chun KS, Choi JS. Domperidone Exerts Antitumor Activity in Triple-Negative Breast Cancer Cells by Modulating Reactive Oxygen Species and JAK/STAT3 Signaling. Biomol Ther (Seoul) 2023; 31:692-699. [PMID: 37899746 PMCID: PMC10616512 DOI: 10.4062/biomolther.2023.173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/08/2023] [Accepted: 10/10/2023] [Indexed: 10/31/2023] Open
Abstract
The lack of molecular targets hampers the treatment of triple-negative breast cancer (TNBC). In this study, we determined the cytotoxicity of domperidone, a dopamine D2 receptor (DRD2) antagonist in human TNBC BT-549 and CAL-51 cells. Domperidone inhibited cell growth in a dose- and time-dependent manner. The annexin V/propidium iodide staining showed that domperidone induced apoptosis. The domperidone-induced apoptosis was accompanied by the generation of mitochondrial superoxide and the down-regulation of cyclins and CDKs. The apoptotic effect of domperidone on TNBC cells was prevented by pre-treatment with Mito-TEMPO, a mitochondria-specific antioxidant. The prevention of apoptosis with Mito-TEMPO even at concentrations as low as 100 nM, implies that the generation of mitochondrial ROS mediated the domperidone-induced apoptosis. Immunoblot analysis showed that domperidone-induced apoptosis occurred through the down-regulation of the phosphorylation of JAK2 and STAT3. Moreover, domperidone downregulated the levels of D2-like dopamine receptors including DRD2, regardless of their mRNA levels. Our results support further development of DRD2 antagonists as potential therapeutic strategy treating TNBC.
Collapse
Affiliation(s)
- Rajina Shakya
- College of Pharmacy, Daegu Catholic University, Gyeongsan 38430, Republic of Korea
| | - Mi Ran Byun
- College of Pharmacy, Daegu Catholic University, Gyeongsan 38430, Republic of Korea
| | - Sang Hoon Joo
- College of Pharmacy, Daegu Catholic University, Gyeongsan 38430, Republic of Korea
| | - Kyung-Soo Chun
- College of Pharmacy, Keimyung University, Daegu 42601, Republic of Korea
| | - Joon-Seok Choi
- College of Pharmacy, Daegu Catholic University, Gyeongsan 38430, Republic of Korea
| |
Collapse
|
19
|
Li Q, Zhang F, Wang Z, Feng Y, Han Y. Advances in the Preparation, Stability, Metabolism, and Physiological Roles of Anthocyanins: A Review. Foods 2023; 12:3969. [PMID: 37959087 PMCID: PMC10647620 DOI: 10.3390/foods12213969] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/17/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Anthocyanins are natural flavonoid polyphenolic compounds widely found in fruits and vegetables. They exhibit antioxidant properties and prophylactic effects in the immune and cardiovascular systems, confer protection against cancer, and contribute to the prevention of cardiovascular diseases. Thus, their incorporation into functional foods, pharmaceuticals, supplements, and cosmetic formulations aims at promoting human well-being. This review comprehensively outlined the structural attributes of anthocyanins, expanding upon diverse methodologies employed for their extraction and production. Additionally, the stability, metabolic pathways, and manifold physiological functions of anthocyanins were discussed. However, their constrained fat solubility, susceptibility to instability, and restricted bioavailability collectively curtail their applicability and therapeutic efficacy. Consequently, a multidimensional approach was imperative, necessitating the exploration of innovative pathways to surmount these limitations, thereby amplifying the utilitarian significance of anthocyanins and furnishing pivotal support for their continual advancement and broader application.
Collapse
Affiliation(s)
- Qi Li
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Fengzhen Zhang
- School of Public Health, Wuhan University, Wuhan 430071, China
| | - Zhenzhen Wang
- School of Public Health, Wuhan University, Wuhan 430071, China
| | - Yaoze Feng
- Key Laboratory of Aquaculture Facilities Engineering, Ministry of Agriculture and Rural Affairs, College of Engineering, Huazhong Agricultural University, Wuhan 430070, China;
| | - Yahong Han
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| |
Collapse
|
20
|
Peng Y, Liu F, Wang P, Qiao Y, Si C, Wang X, Gong J, Zhou H, Song F, Song F. Association between diabetes at different diagnostic ages and risk of cancer incidence and mortality: a cohort study. Front Endocrinol (Lausanne) 2023; 14:1277935. [PMID: 37900125 PMCID: PMC10600378 DOI: 10.3389/fendo.2023.1277935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 09/21/2023] [Indexed: 10/31/2023] Open
Abstract
Background Different ages for diagnosis of diabetes have diverse effects on risks of cardiovascular disease, dementia, and mortality, but there is little evidence of cancer. This study investigated the relationship between diabetes at different diagnostic ages and risks of cancer incidence and mortality in people aged 37-73 years. Methods Participants with diabetes in the UK Biobank prospective cohort were divided into four groups: ≤40, 41-50, 51-60, and >60 years according to age at diagnosis. A total of 26,318 diabetics and 105,272 controls (1:4 randomly selected for each diabetic matched by the same baseline age) were included. We calculated the incidence density, standardized incidence, and mortality rates of cancer. Cox proportional hazard model was used to examine the associations of diabetes at different diagnostic ages with cancer incidence and mortality, followed by subgroup analyses. Results Compared to corresponding controls, standardized incidence and mortality rates of overall and digestive system cancers were higher in diabetes diagnosed at age 41-50, 51-60, and >60 years, especially at 51-60 years. Individuals diagnosed with diabetes at different ages were at higher risk to develop site-specific cancers, with a prominently increased risk of liver cancer since the diagnosis age of >40 years. Significantly, participants with diabetes diagnosed at 51-60 years were correlated with various site-specific cancer risks [hazard ratio (HR) for incidence: 1.088-2.416, HR for mortality: 1.276-3.269]. Moreover, for mortality of digestive system cancers, we observed an interaction effect between smoking and diabetes diagnosed at 51-60 years. Conclusion Our findings highlighted that the age at diagnosis of diabetes, especially 51-60 years, was critical risks of cancer incidence and mortality and may represent a potential preventative window for cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Fengju Song
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology, Key Laboratory of Prevention and Control of Major Diseases in the Population, Ministry of Education, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Fangfang Song
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology, Key Laboratory of Prevention and Control of Major Diseases in the Population, Ministry of Education, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| |
Collapse
|
21
|
Maurer GS, Clayton ZS. Anthracycline chemotherapy, vascular dysfunction and cognitive impairment: burgeoning topics and future directions. Future Cardiol 2023; 19:547-566. [PMID: 36354315 PMCID: PMC10599408 DOI: 10.2217/fca-2022-0086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/17/2022] [Indexed: 11/12/2022] Open
Abstract
Anthracyclines, chemotherapeutic agents used to treat common forms of cancer, increase cardiovascular (CV) complications, thereby necessitating research regarding interventions to improve the health of cancer survivors. Vascular dysfunction, which is induced by anthracycline chemotherapy, is an established antecedent to overt CV diseases. Potential treatment options for ameliorating vascular dysfunction have largely been understudied. Furthermore, patients treated with anthracyclines have impaired cognitive function and vascular dysfunction is an independent risk factor for the development of mild cognitive impairment. Here, we will focus on: anthracycline chemotherapy associated CV diseases risk; how targeting mechanisms underlying vascular dysfunction may be a means to improve both CV and cognitive health; and research gaps and potential future directions for the field of cardio-oncology.
Collapse
Affiliation(s)
- Grace S Maurer
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Zachary S Clayton
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA
| |
Collapse
|
22
|
Maia MDS, Mendonça-Junior FJB, Rodrigues GCS, da Silva AS, de Oliveira NIP, da Silva PR, Felipe CFB, Gurgel APAD, Nayarisseri A, Scotti MT, Scotti L. Virtual Screening of Different Subclasses of Lignans with Anticancer Potential and Based on Genetic Profile. Molecules 2023; 28:6011. [PMID: 37630263 PMCID: PMC10459202 DOI: 10.3390/molecules28166011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/26/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
Cancer is a multifactorial disease that continues to increase. Lignans are known to be important anticancer agents. However, due to the structural diversity of lignans, it is difficult to associate anticancer activity with a particular subclass. Therefore, the present study sought to evaluate the association of lignan subclasses with antitumor activity, considering the genetic profile of the variants of the selected targets. To do so, predictive models were built against the targets tyrosine-protein kinase ABL (ABL), epidermal growth factor receptor erbB1 (EGFR), histone deacetylase (HDAC), serine/threonine-protein kinase mTOR (mTOR) and poly [ADP-ribose] polymerase-1 (PARP1). Then, single nucleotide polymorphisms were mapped, target mutations were designed, and molecular docking was performed with the lignans with the best predicted biological activity. The results showed more anticancer activity in the dibenzocyclooctadiene, furofuran and aryltetralin subclasses. The lignans with the best predictive values of biological activity showed varying binding energy results in the presence of certain genetic variants.
Collapse
Affiliation(s)
- Mayara dos Santos Maia
- Department of Molecular Biology, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil;
| | - Francisco Jaime Bezerra Mendonça-Junior
- Laboratory of Synthesis and Drug Delivery, State Universtiy of Paraiba, João Pessoa 58071-160, PB, Brazil
- Postgraduate Program in Natural Synthetic and Bioactive Products (PgPNSB), Federal University of Paraíba, João Pessoa 58033-455, PB, Brazil; (P.R.d.S.); (C.F.B.F.); (M.T.S.); (L.S.)
| | | | - Adriano Soares da Silva
- Program in Ecology and Environmental Monitoring, Federal University of Paraíba, João Pessoa 58059-900, PB, Brazil; (A.S.d.S.); (N.I.P.d.O.)
| | - Niara Isis Pereira de Oliveira
- Program in Ecology and Environmental Monitoring, Federal University of Paraíba, João Pessoa 58059-900, PB, Brazil; (A.S.d.S.); (N.I.P.d.O.)
| | - Pablo Rayff da Silva
- Postgraduate Program in Natural Synthetic and Bioactive Products (PgPNSB), Federal University of Paraíba, João Pessoa 58033-455, PB, Brazil; (P.R.d.S.); (C.F.B.F.); (M.T.S.); (L.S.)
| | - Cícero Francisco Bezerra Felipe
- Postgraduate Program in Natural Synthetic and Bioactive Products (PgPNSB), Federal University of Paraíba, João Pessoa 58033-455, PB, Brazil; (P.R.d.S.); (C.F.B.F.); (M.T.S.); (L.S.)
| | | | - Anuraj Nayarisseri
- In Silico Research Laboratory, Eminent Bioscience, Indore 452010, Madhya Pradesh, India;
| | - Marcus Tullius Scotti
- Postgraduate Program in Natural Synthetic and Bioactive Products (PgPNSB), Federal University of Paraíba, João Pessoa 58033-455, PB, Brazil; (P.R.d.S.); (C.F.B.F.); (M.T.S.); (L.S.)
- Laboratory of Cheminformatics, Health Sciences Center, Federal University of Paraíba, João Pessoa 58033-455, PB, Brazil
| | - Luciana Scotti
- Postgraduate Program in Natural Synthetic and Bioactive Products (PgPNSB), Federal University of Paraíba, João Pessoa 58033-455, PB, Brazil; (P.R.d.S.); (C.F.B.F.); (M.T.S.); (L.S.)
- Laboratory of Cheminformatics, Health Sciences Center, Federal University of Paraíba, João Pessoa 58033-455, PB, Brazil
| |
Collapse
|
23
|
Kiss A, Hariri Akbari F, Marchev A, Papp V, Mirmazloum I. The Cytotoxic Properties of Extreme Fungi's Bioactive Components-An Updated Metabolic and Omics Overview. Life (Basel) 2023; 13:1623. [PMID: 37629481 PMCID: PMC10455657 DOI: 10.3390/life13081623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 08/27/2023] Open
Abstract
Fungi are the most diverse living organisms on planet Earth, where their ubiquitous presence in various ecosystems offers vast potential for the research and discovery of new, naturally occurring medicinal products. Concerning human health, cancer remains one of the leading causes of mortality. While extensive research is being conducted on treatments and their efficacy in various stages of cancer, finding cytotoxic drugs that target tumor cells with no/less toxicity toward normal tissue is a significant challenge. In addition, traditional cancer treatments continue to suffer from chemical resistance. Fortunately, the cytotoxic properties of several natural products derived from various microorganisms, including fungi, are now well-established. The current review aims to extract and consolidate the findings of various scientific studies that identified fungi-derived bioactive metabolites with antitumor (anticancer) properties. The antitumor secondary metabolites identified from extremophilic and extremotolerant fungi are grouped according to their biological activity and type. It became evident that the significance of these compounds, with their medicinal properties and their potential application in cancer treatment, is tremendous. Furthermore, the utilization of omics tools, analysis, and genome mining technology to identify the novel metabolites for targeted treatments is discussed. Through this review, we tried to accentuate the invaluable importance of fungi grown in extreme environments and the necessity of innovative research in discovering naturally occurring bioactive compounds for the development of novel cancer treatments.
Collapse
Affiliation(s)
- Attila Kiss
- Agro-Food Science Techtransfer and Innovation Centre, Faculty for Agro, Food and Environmental Science, Debrecen University, 4032 Debrecen, Hungary;
| | - Farhad Hariri Akbari
- Department of Biology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia;
| | - Andrey Marchev
- Laboratory of Metabolomics, Department of Biotechnology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 4000 Plovdiv, Bulgaria
| | - Viktor Papp
- Department of Botany, Hungarian University of Agriculture and Life Sciences, 1118 Budapest, Hungary;
| | - Iman Mirmazloum
- Department of Plant Physiology and Plant Ecology, Institute of Agronomy, Hungarian University of Agriculture and Life Sciences, 1118 Budapest, Hungary
| |
Collapse
|
24
|
Lilly AC, Astsaturov I, Golemis EA. Intrapancreatic fat, pancreatitis, and pancreatic cancer. Cell Mol Life Sci 2023; 80:206. [PMID: 37452870 PMCID: PMC10349727 DOI: 10.1007/s00018-023-04855-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/29/2023] [Accepted: 07/03/2023] [Indexed: 07/18/2023]
Abstract
Pancreatic cancer is typically detected at an advanced stage, and is refractory to most forms of treatment, contributing to poor survival outcomes. The incidence of pancreatic cancer is gradually increasing, linked to an aging population and increasing rates of obesity and pancreatitis, which are risk factors for this cancer. Sources of risk include adipokine signaling from fat cells throughout the body, elevated levels of intrapancreatic intrapancreatic adipocytes (IPAs), inflammatory signals arising from pancreas-infiltrating immune cells and a fibrotic environment induced by recurring cycles of pancreatic obstruction and acinar cell lysis. Once cancers become established, reorganization of pancreatic tissue typically excludes IPAs from the tumor microenvironment, which instead consists of cancer cells embedded in a specialized microenvironment derived from cancer-associated fibroblasts (CAFs). While cancer cell interactions with CAFs and immune cells have been the topic of much investigation, mechanistic studies of the source and function of IPAs in the pre-cancerous niche are much less developed. Intriguingly, an extensive review of studies addressing the accumulation and activity of IPAs in the pancreas reveals that unexpectedly diverse group of factors cause replacement of acinar tissue with IPAs, particularly in the mouse models that are essential tools for research into pancreatic cancer. Genes implicated in regulation of IPA accumulation include KRAS, MYC, TGF-β, periostin, HNF1, and regulators of ductal ciliation and ER stress, among others. These findings emphasize the importance of studying pancreas-damaging factors in the pre-cancerous environment, and have significant implications for the interpretation of data from mouse models for pancreatic cancer.
Collapse
Affiliation(s)
- Anna C Lilly
- Program in Cancer Signaling and Microenvironment, Fox Chase Cancer Center, 333 Cottman Ave., Philadelphia, PA, 19111, USA
- Molecular & Cell Biology & Genetics (MCBG) Program, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| | - Igor Astsaturov
- Program in Cancer Signaling and Microenvironment, Fox Chase Cancer Center, 333 Cottman Ave., Philadelphia, PA, 19111, USA
- The Marvin & Concetta Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - Erica A Golemis
- Program in Cancer Signaling and Microenvironment, Fox Chase Cancer Center, 333 Cottman Ave., Philadelphia, PA, 19111, USA.
- Department of Cancer and Cellular Biology, Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA.
| |
Collapse
|
25
|
Högberg J, Järnberg J. Approaches for the setting of occupational exposure limits (OELs) for carcinogens. Crit Rev Toxicol 2023:1-37. [PMID: 37366107 DOI: 10.1080/10408444.2023.2218887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/12/2023] [Accepted: 05/22/2023] [Indexed: 06/28/2023]
Abstract
This article addresses issues of importance for occupational exposure limits (OELs) and chemical carcinogens with a focus on non-threshold carcinogens. It comprises scientific as well as regulatory issues. It is an overview, not a comprehensive review. A central topic is mechanistic research and insights, and its implications for cancer risk assessment. Alongside scientific advancements, the approaches of hazard identification and qualitative and quantitative risk assessment have developed over the years. The key steps in a quantitative risk assessment are outlined, with special attention given to the dose-response assessment and the derivation of an OEL using risk calculations or default assessment factors. The work procedures of several bodies performing cancer hazard identifications and quantitative risk assessments, as well as regulatory procedures to derive OELs for non-threshold carcinogens, are presented. Non-threshold carcinogens for which the European Union (EU) introduced binding OELs in 2017-2019 serve as illustrations together with some currently used strategies in the EU and elsewhere. Available knowledge supports the derivation of health-based OELs (Hb-OELs) for non-threshold carcinogens, and the use of a risk-based approach with low-dose linear extrapolation (linear non-threshold, LNT) as the default for non-threshold carcinogens. However, there is a need to develop methods that allow recent years' advances in cancer research to be used for improving risk estimates. It is recommended that defined risk levels (terminology and numerical values) are harmonised, and that both collective and individual risks are considered and clearly communicated. Socioeconomic aspects should be dealt with transparently and separated from the scientific health risk assessment.
Collapse
Affiliation(s)
- Johan Högberg
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | | |
Collapse
|
26
|
Zipinotti Dos Santos D, de Souza JC, Pimenta TM, da Silva Martins B, Junior RSR, Butzene SMS, Tessarolo NG, Cilas PML, Silva IV, Rangel LBA. The impact of lipid metabolism on breast cancer: a review about its role in tumorigenesis and immune escape. Cell Commun Signal 2023; 21:161. [PMID: 37370164 PMCID: PMC10304265 DOI: 10.1186/s12964-023-01178-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND Breast cancer (BC) is the second most frequent type of cancer in the world and most common among women, configuring a major challenge to global health. BC is a complex and heterogeneous disease that can be subdivided into distinct tumor types based on the expression of molecular markers predicting patient outcomes and response to therapy. A growing number of studies have tried to expand the known markers by investigating the association of altered lipid metabolism with BC immune escape, progression, and metastasis. In this review, we describe the metabolic peculiarities of each BC subtype, understanding how this influences its aggressiveness and identifying whether these intrinsic vulnerabilities of each subtype can play a role in therapeutic management and may affect immune system cells in the tumor microenvironment. CONCLUSION The evidence suggests so far that when changes occur in lipid pathways, it can affect the availability of structural lipids for membrane synthesis, lipid synthesis, and degradation that contribute to energy homeostasis and cell signaling functions. These findings will guide the next steps on the path to understanding the mechanisms underlying how lipids alterations are related to disparities in chemotherapeutic response and immune escape in BC. Video Abstract.
Collapse
Affiliation(s)
- Diandra Zipinotti Dos Santos
- Biotechnology Program/RENORBIO, Health Sciences Center, Federal University of Espírito Santo, Vitoria (Espírito Santo), Brazil.
| | - Josiany Carlos de Souza
- Biotechnology Program/RENORBIO, Health Sciences Center, Federal University of Espírito Santo, Vitoria (Espírito Santo), Brazil
| | - Tatiana Massariol Pimenta
- Department of Pharmaceutical Sciences, Federal University of Espirito Santo, Marechal Campos Avenue, MaruípeEspírito Santo, Vitória, 1468, Brazil
| | - Bárbara da Silva Martins
- Department of Pharmaceutical Sciences, Federal University of Espirito Santo, Marechal Campos Avenue, MaruípeEspírito Santo, Vitória, 1468, Brazil
| | - Roberto Silva Ribeiro Junior
- Department of Pharmaceutical Sciences, Federal University of Espirito Santo, Marechal Campos Avenue, MaruípeEspírito Santo, Vitória, 1468, Brazil
| | - Solenny Maria Silva Butzene
- Department of Pharmaceutical Sciences, Federal University of Espirito Santo, Marechal Campos Avenue, MaruípeEspírito Santo, Vitória, 1468, Brazil
| | - Nayara Gusmão Tessarolo
- Viral Vector Laboratory, Center for Translational Investigation in Oncology, Cancer Institute of São Paulo/LIM24, University of São Paulo School of Medicine, São Paulo, (São Paulo), Brazil
| | | | - Ian Victor Silva
- Department of Morphology, Health Sciences Center, Federal University of Espirito Santo, Vitoria, Espirito Santo, Brazil
| | - Leticia B A Rangel
- Biotechnology Program/RENORBIO, Health Sciences Center, Federal University of Espírito Santo, Vitoria (Espírito Santo), Brazil.
- Department of Pharmaceutical Sciences, Federal University of Espirito Santo, Marechal Campos Avenue, MaruípeEspírito Santo, Vitória, 1468, Brazil.
- Biochemistry Program, Health Sciences Center, Federal University of Espirito Santo, Vitoria, Brazil.
| |
Collapse
|
27
|
Ahmed F, Samantasinghar A, Manzoor Soomro A, Kim S, Hyun Choi K. A systematic review of computational approaches to understand cancer biology for informed drug repurposing. J Biomed Inform 2023; 142:104373. [PMID: 37120047 DOI: 10.1016/j.jbi.2023.104373] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/25/2023] [Accepted: 04/23/2023] [Indexed: 05/01/2023]
Abstract
Cancer is the second leading cause of death globally, trailing only heart disease. In the United States alone, 1.9 million new cancer cases and 609,360 deaths were recorded for 2022. Unfortunately, the success rate for new cancer drug development remains less than 10%, making the disease particularly challenging. This low success rate is largely attributed to the complex and poorly understood nature of cancer etiology. Therefore, it is critical to find alternative approaches to understanding cancer biology and developing effective treatments. One such approach is drug repurposing, which offers a shorter drug development timeline and lower costs while increasing the likelihood of success. In this review, we provide a comprehensive analysis of computational approaches for understanding cancer biology, including systems biology, multi-omics, and pathway analysis. Additionally, we examine the use of these methods for drug repurposing in cancer, including the databases and tools that are used for cancer research. Finally, we present case studies of drug repurposing, discussing their limitations and offering recommendations for future research in this area.
Collapse
Affiliation(s)
- Faheem Ahmed
- Department of Mechatronics Engineering, Jeju National University, Republic of Korea
| | | | | | - Sejong Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea; Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea.
| | - Kyung Hyun Choi
- Department of Mechatronics Engineering, Jeju National University, Republic of Korea.
| |
Collapse
|
28
|
Li G, Zhang L, Liu M. Evolving field of cardio-oncology. CANCER PATHOGENESIS AND THERAPY 2023; 1:141-145. [PMID: 38328403 PMCID: PMC10846296 DOI: 10.1016/j.cpt.2023.02.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 02/01/2023] [Accepted: 02/07/2023] [Indexed: 02/09/2024]
Abstract
Therapy development for cancer and cardiovascular disease (CVD) to prolong lifespan makes the relationship between these two conditions more complex. Drug interactions in cardiology and oncology are associated with metabolism and drug transportation. Advances in biomarkers and imaging provide novel methods for detecting cardiotoxicity, including cardiac injury and inflammation. The new concept of CVD-related cancer risk is leading to a new direction of progression termed "reverse cardio-oncology."
Collapse
Affiliation(s)
- Guo Li
- Department of Psycho-Cardiology, Beijing Anzhen Hospital, Beijing 100029, China
| | - Lijun Zhang
- Department of Psycho-Cardiology, Beijing Anzhen Hospital, Beijing 100029, China
| | - Meiyan Liu
- Department of Psycho-Cardiology, Beijing Anzhen Hospital, Beijing 100029, China
| |
Collapse
|
29
|
Troeschel AN, Byrd DA, Judd S, Flanders WD, Bostick RM. Associations of dietary and lifestyle inflammation scores with mortality due to CVD, cancer, and all causes among Black and White American men and women. Br J Nutr 2023; 129:523-534. [PMID: 35535479 PMCID: PMC9646926 DOI: 10.1017/s0007114522001349] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
One potential mechanism by which diet and lifestyle may affect chronic disease risk and subsequent mortality is through chronic systemic inflammation. In this study, we investigated whether the inflammatory potentials of diet and lifestyle, separately and combined, were associated with all-cause, all-CVD and all-cancer mortality risk. We analysed data on 18 484 (of whom 4103 died during follow-up) Black and White men and women aged ≥45 years from the prospective REasons for Geographic and Racial Differences in Stroke study. Using baseline (2003-2007) Block 98 FFQ and lifestyle questionnaire data, we constructed the previously validated inflammation biomarker panel-weighted, 19-component dietary inflammation score (DIS) and 4-component lifestyle inflammation score (LIS) to reflect the overall inflammatory potential of diet and lifestyle. From multivariable Cox proportional hazards models, the hazards ratios (HR) and their 95 % CI for the DIS-all-cause mortality and LIS-all-cause mortality risk associations were 1·32 (95 % CI (1·18, 1·47); Pfor trend < 0·01) and 1·25 (95 % CI (1·12, 1·38); Pfor trend < 0·01), respectively, among those in the highest relative to the lowest quintiles. The findings were similar by sex and race and for all-cancer mortality, but weaker for all-CVD mortality. The joint HR for all-cause mortality among those in the highest relative to the lowest quintiles of both the DIS and LIS was 1·91 (95 % CI 1·57, 2·33) (Pfor interaction < 0·01). Diet and lifestyle, via their contributions to systemic inflammation, separately, but perhaps especially jointly, may be associated with higher mortality risk among men and women.
Collapse
Affiliation(s)
- Alyssa N. Troeschel
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Doratha A. Byrd
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Suzanne Judd
- Department of Biostatistics, School of Public Health, University of Alabama at Birmingham, AL, USA
| | - W. Dana Flanders
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Roberd M. Bostick
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| |
Collapse
|
30
|
Yusuf K, Sampath V, Umar S. Bacterial Infections and Cancer: Exploring This Association And Its Implications for Cancer Patients. Int J Mol Sci 2023; 24:3110. [PMID: 36834525 PMCID: PMC9958598 DOI: 10.3390/ijms24043110] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/08/2023] Open
Abstract
Bacterial infections are common in the etiology of human diseases owing to the ubiquity of bacteria. Such infections promote the development of periodontal disease, bacterial pneumonia, typhoid, acute gastroenteritis, and diarrhea in susceptible hosts. These diseases may be resolved using antibiotics/antimicrobial therapy in some hosts. However, other hosts may be unable to eliminate the bacteria, allowing them to persist for long durations and significantly increasing the carrier's risk of developing cancer over time. Indeed, infectious pathogens are modifiable cancer risk factors, and through this comprehensive review, we highlight the complex relationship between bacterial infections and the development of several cancer types. For this review, searches were performed on the PubMed, Embase, and Web of Science databases encompassing the entirety of 2022. Based on our investigation, we found several critical associations, of which some are causative: Porphyromonas gingivalis and Fusobacterium nucleatum are associated with periodontal disease, Salmonella spp., Clostridium perfringens, Escherichia coli, Campylobacter spp., and Shigella are associated with gastroenteritis. Helicobacter pylori infection is implicated in the etiology of gastric cancer, and persistent Chlamydia infections present a risk factor for the development of cervical carcinoma, especially in patients with the human papillomavirus (HPV) coinfection. Salmonella typhi infections are linked with gallbladder cancer, and Chlamydia pneumoniae infection is implicated in lung cancer, etc. This knowledge helps identify the adaptation strategies used by bacteria to evade antibiotic/antimicrobial therapy. The article also sheds light on the role of antibiotics in cancer treatment, the consequences of their use, and strategies for limiting antibiotic resistance. Finally, the dual role of bacteria in cancer development as well as in cancer therapy is briefly discussed, as this is an area that may help to facilitate the development of novel microbe-based therapeutics as a means of securing improved outcomes.
Collapse
Affiliation(s)
- Kafayat Yusuf
- Department of Surgery, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Venkatesh Sampath
- Department of Pediatrics and Gastroenterology, Children’s Mercy Hospital, Kansas City, KS 66160, USA
| | - Shahid Umar
- Department of Surgery, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
31
|
Rahim NS, Wu YS, Sim MS, Velaga A, Bonam SR, Gopinath SCB, Subramaniyan V, Choy KW, Teow SY, Fareez IM, Samudi C, Sekaran SD, Sekar M, Guad RM. Three Members of Transmembrane-4-Superfamily, TM4SF1, TM4SF4, and TM4SF5, as Emerging Anticancer Molecular Targets against Cancer Phenotypes and Chemoresistance. Pharmaceuticals (Basel) 2023; 16:ph16010110. [PMID: 36678607 PMCID: PMC9867095 DOI: 10.3390/ph16010110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/15/2022] [Accepted: 01/03/2023] [Indexed: 01/13/2023] Open
Abstract
There are six members of the transmembrane 4 superfamily (TM4SF) that have similar topology and sequence homology. Physiologically, they regulate tissue differentiation, signal transduction pathways, cellular activation, proliferation, motility, adhesion, and angiogenesis. Accumulating evidence has demonstrated, among six TM4SF members, the regulatory roles of transmembrane 4 L6 domain family members, particularly TM4SF1, TM4SF4, and TM4SF5, in cancer angiogenesis, progression, and chemoresistance. Hence, targeting derailed TM4SF for cancer therapy has become an emerging research area. As compared to others, this review aimed to present a focused insight and update on the biological roles of TM4SF1, TM4SF4, and TM4SF5 in the progression, metastasis, and chemoresistance of various cancers. Additionally, the mechanistic pathways, diagnostic and prognostic values, and the potential and efficacy of current anti-TM4SF antibody treatment were also deciphered. It also recommended the exploration of other interactive molecules to be implicated in cancer progression and chemoresistance, as well as potential therapeutic agents targeting TM4SF as future perspectives. Generally, these three TM4SF members interact with different integrins and receptors to significantly induce intracellular signaling and regulate the proliferation, migration, and invasion of cancer cells. Intriguingly, gene silencing or anti-TM4SF antibody could reverse their regulatory roles deciphered in different preclinical models. They also have prognostic and diagnostic value as their high expression was detected in clinical tissues and cells of various cancers. Hence, TM4SF1, TM4SF4, and TM4SF5 are promising therapeutic targets for different cancer types preclinically and deserve further investigation.
Collapse
Affiliation(s)
- Nur Syafiqah Rahim
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Department of Biology, Faculty of Applied Sciences, Universiti Teknologi MARA, Perlis Branch, Arau Campus, Arau 02600, Malaysia
- Collaborative Drug Discovery Research (CDDR) Group, Faculty of Pharmacy, Universiti Teknologi MARA (UiTM), Selangor Branch, Puncak Alam Campus, Bandar Puncak Alam 42300, Malaysia
| | - Yuan Seng Wu
- Centre for Virus and Vaccine Research, School of Medical and Life Sciences, Sunway University, Petaling Jaya 47500, Malaysia
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Petaling Jaya 47500, Malaysia
- Correspondence: (Y.S.W.); (R.M.G.)
| | - Maw Shin Sim
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Appalaraju Velaga
- Department of Medicinal Chemistry, Faculty of Pharmacy, MAHSA University, Jenjarom 42610, Malaysia
| | - Srinivasa Reddy Bonam
- Department of Microbiology and Immunology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA
| | - Subash C. B. Gopinath
- Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Arau 02600, Malaysia
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), Kangar 01000, Malaysia
- Micro System Technology, Centre of Excellence (CoE), Universiti Malaysia Perlis (UniMAP), Pauh Campus, Arau 02600, Malaysia
| | - Vetriselvan Subramaniyan
- Department of Pharmacology, School of Medicine, Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jenjarom 42610, Malaysia
| | - Ker Woon Choy
- Department of Anatomy, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh 47000, Malaysia
| | - Sin-Yeang Teow
- Department of Biology, College of Science and Technology, Wenzhou-Kean University, 88 Daxue Road, Quhai, Wenzhou 325060, China
| | - Ismail M. Fareez
- Collaborative Drug Discovery Research (CDDR) Group, Faculty of Pharmacy, Universiti Teknologi MARA (UiTM), Selangor Branch, Puncak Alam Campus, Bandar Puncak Alam 42300, Malaysia
- School of Biology, Faculty of Applied Sciences, Universiti Teknologi MARA, Selangor Branch, Shah Alam Campus, 40450 Shah Alam, Malaysia
| | - Chandramathi Samudi
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Shamala Devi Sekaran
- Faculty of Medical and Health Sciences, UCSI University, Kuala Lumpur 56000, Malaysia
| | - Mahendran Sekar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, Universiti Kuala Lumpur, Ipoh 30450, Malaysia
| | - Rhanye Mac Guad
- Department of Biomedical Science and Therapeutics, Faculty of Medicine and Health Science, Universiti Malaysia Sabah, Kota Kinabalu 88400, Malaysia
- Correspondence: (Y.S.W.); (R.M.G.)
| |
Collapse
|
32
|
Hopkins N. An Editor scientists dream of. Genes Dev 2023; 37:30-31. [PMID: 37061990 PMCID: PMC10046425 DOI: 10.1101/gad.350500.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2023]
Affiliation(s)
- Nancy Hopkins
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
33
|
Elleithi YA, El-Gayar AM, Amin MN. Simvastatin Induces Apoptosis And Suppresses Hepatocellular Carcinoma Induced In Rats. Appl Biochem Biotechnol 2023; 195:1656-1674. [PMID: 36367620 PMCID: PMC9928804 DOI: 10.1007/s12010-022-04203-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2022] [Indexed: 11/13/2022]
Abstract
Hepatocellular carcinoma (HCC) is a frequent primary aggressive cancer, a crucial cause of cancer-related mortality globally. Simvastatin is a well-known safe cholesterol-lowering medication that has been recently shown to suppress cancer progression. Apoptosis is a well-organized and controlled cellular process that happens both physiologically and pathologically leading to executing cell death. Apoptosis is frequently downregulated in cancer cells. In the present study, we aimed to test the effect of simvastatin on HCC progression. HCC was induced in experimental rats by means of diethylnitrose amine (DEN) and thioacetamide (TAA) injections. Gross examination and liver index along with biochemical analysis of hepatic function were evaluated. Serum alpha-feto protein (AFP) concentration was measured by ELISA. Histopathological examination was used for assessing necroinflammatory scores and fibrosis degree. Apoptosis was assessed using immunohistochemistry (IHC) and quantitative PCR (qPCR). Simvastatin was found to induce apoptosis successfully in HCC and improve liver fibrosis, overall hepatic function, and necroinflammatory score. Simvastatin, therefore, may be a potential adjunctive therapeutic option in clinical settings of treating HCC.
Collapse
Affiliation(s)
- Yomna A. Elleithi
- Biochemistry Department, Faculty of Pharmacy, Mansoura University, Mansoura, 3551 Egypt
| | - Amal M. El-Gayar
- Biochemistry Department, Faculty of Pharmacy, Mansoura University, Mansoura, 3551 Egypt
| | - Mohamed N. Amin
- Biochemistry Department, Faculty of Pharmacy, Mansoura University, Mansoura, 3551 Egypt ,Biochemistry Department, Faculty of Pharmacy, King Salman International University, Ras Sedr, South Sinai Egypt
| |
Collapse
|
34
|
Abstract
Among the factors that have been strongly implicated in regulating cancerous transformation, the primary monocilium (cilium) has gained increasing attention. The cilium is a small organelle extending from the plasma membrane, which provides a localized hub for concentration of transmembrane receptors. These receptors transmit signals from soluble factors (including Sonic hedgehog (SHH), platelet-derived growth factor (PDGF-AA), WNT, TGFβ, NOTCH, and others) that regulate cell growth, as well as mechanosensory cues provided by flow or extracellular matrix. Ciliation is regulated by cell cycle, with most cells that are in G0 (quiescent) or early G1 ciliation and cilia typically absent in G2/M cells. Notably, while most cells organized in solid tissues are ciliated, cancerous transformation induces significant changes in ciliation. Most cancer cells lose cilia; medulloblastomas and basal cell carcinomas, dependent on an active SHH pathway, rely on ciliary maintenance. Changes in cancer cell ciliation are driven by core oncogenic pathways (EGFR, KRAS, AURKA, PI3K), and importantly ciliation status regulates functionality of those pathways. Ciliation is both influenced by targeted cancer therapies and linked to therapeutic resistance; recent studies suggest ciliation may also influence cancer cell metabolism and stem cell identity. We review recent studies defining the relationship between cilia and cancer.
Collapse
|
35
|
Musyuni P, Bai J, Sheikh A, Vasanthan KS, Jain GK, Abourehab MA, Lather V, Aggarwal G, Kesharwani P, Pandita D. Precision Medicine: Ray of Hope in Overcoming Cancer Multidrug Resistance. Drug Resist Updat 2022; 65:100889. [DOI: 10.1016/j.drup.2022.100889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/26/2022] [Accepted: 11/01/2022] [Indexed: 11/11/2022]
|
36
|
Lazarus E, Bays HE. Cancer and Obesity: An Obesity Medicine Association (OMA) Clinical Practice Statement (CPS) 2022. OBESITY PILLARS 2022; 3:100026. [PMID: 37990728 PMCID: PMC10661911 DOI: 10.1016/j.obpill.2022.100026] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 06/28/2022] [Indexed: 11/23/2023]
Abstract
Background This Obesity Medicine Association (OMA) Clinical Practice Statement (CPS) provides an overview of cancer and increased body fat. Methods The scientific information for this CPS is based upon published scientific citations, clinical perspectives of OMA authors, and peer review by the Obesity Medicine Association leadership. Results Topics include the increased risk of cancers among patients with obesity, cancer risk factor population-attributable fractions, genetic and epigenetic links between obesity and cancer, adiposopathic and mechanistic processes accounting for increased cancer risk among patients with obesity, the role of oxidative stress, and obesity-related cancers based upon Mendelian randomization and observational studies. Other topics include nutritional and physical activity principles for patients with obesity who either have cancer or are at risk for cancer, and preventive care as it relates to cancer and obesity. Conclusions Obesity is the second most common preventable cause of cancer and may be the most common preventable cause of cancer among nonsmokers. This Obesity Medicine Association (OMA) Clinical Practice Statement (CPS) on cancer is one of a series of OMA CPSs designed to assist clinicians in the care of patients with the disease of obesity. Patients with obesity are at greater risk of developing certain types of cancers, and treatment of obesity may influence the risk, onset, progression, and recurrence of cancer in patients with obesity.
Collapse
Affiliation(s)
- Ethan Lazarus
- Diplomate American Board of Obesity Medicine, Diplomate American Board of Family Medicine, President Obesity Medicine Association (2021- 2022); Delegate American Medical Association, Clinical Nutrition Center 5995 Greenwood Plaza Blvd, Ste 150, Greenwood Village, CO 80111
| | - Harold Edward Bays
- Diplomate of American Board of Obesity Medicine, Medical Director/President Louisville Metabolic and Atherosclerosis Research Center, Clinical Associate Professor/University of Louisville Medical School, 3288 Illinois Avenue, Louisville, KY, 40213, USA
| |
Collapse
|
37
|
Liu J, Li W, Wu L. Pan-cancer analysis suggests histocompatibility minor 13 is an unfavorable prognostic biomarker promoting cell proliferation, migration, and invasion in hepatocellular carcinoma. Front Pharmacol 2022; 13:950156. [PMID: 36046831 PMCID: PMC9421072 DOI: 10.3389/fphar.2022.950156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 07/21/2022] [Indexed: 02/05/2023] Open
Abstract
Histocompatibility Minor 13 (HM13) encoding the signal peptide peptidase plays an important role in maintaining protein homeostasis but its role in tumors remains unclear. In this study, 33 tumor RNA-seq datasets were extracted from The Cancer Genome Atlas (TCGA) database, and the pan-cancer expression profile of HM13 was evaluated in combination with The Genotype-Tissue Expression (GTEx) datasets. The prognostic significance of abnormal HM13 pan-cancer expression was evaluated by univariate Cox regression and Kaplan-Meier analyses. Co-expression analysis was performed to examine the correlation between abnormal pan-cancer expression of HM13 and immune cell infiltration, immune checkpoint, molecules related to RNA modification, tumor mutational burden (TMB), microsatellite instability (MSI), and other related molecules. CellMiner database was used to evaluate the relationship between the expression of HM13 and drug sensitivity. The results showed overexpression of HM13 in almost all tumors except kidney chromophobe (KICH). Abnormally high expression of HM13 in adrenocortical carcinoma (ACC), kidney renal papillary cell carcinoma (KIRP), uveal melanoma (UVM), liver hepatocellular carcinoma (LIHC), brain lower grade glioma (LGG), head and neck squamous cell carcinoma (HNSC), and kidney renal clear cell carcinoma (KIRC) was associated with poor prognosis. Expression of HM13 correlated strongly with pan-cancer immune checkpoint gene expression and immune cell infiltration. Drug sensitivity analysis indicated that the expression of HM13 was an excellent predictor of drug sensitivity. We verified that both mRNA and protein levels of HM13 were abnormally upregulated in HCC tissues, and were independent risk factors for poor prognosis. Furthermore, interference with HM13 expression in Huh-7 and HCCLM3 cells significantly inhibited proliferation, migration, and invasion. Therefore, our findings demonstrate that HM13 is a potential pan-cancer prognostic marker, thus providing a new dimension for understanding tumor development.
Collapse
Affiliation(s)
- Jun Liu
- Department of Clinical Laboratory, Yue Bei People’s Hospital, Shantou University Medical College, Shaoguan, Guangdong, China
- Medical Research Center, Yue Bei People’s Hospital, Shantou University Medical College, Shaoguan, Guangdong, China
| | - Wenli Li
- Reproductive Medicine Center, Yue Bei People’s Hospital, Shantou University Medical College, Shaoguan, Guangdong, China
| | - Liangyin Wu
- Department of Clinical Laboratory, Yue Bei People’s Hospital, Shantou University Medical College, Shaoguan, Guangdong, China
| |
Collapse
|
38
|
Oluyori AP, Harini T, Sangu KG, Krishna EV, Jadav SS, Misra S, Rode HB. Synthesis and evaluation of novel almazole D analogs as anticancer agents. Arch Pharm (Weinheim) 2022; 355:e2200102. [PMID: 35914818 DOI: 10.1002/ardp.202200102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 07/09/2022] [Accepted: 07/13/2022] [Indexed: 11/08/2022]
Abstract
Novel almazole D-amide conjugates, esters, and N-alkylated analogs were synthesized and investigated for their anticancer activity against seven cancer cell lines. Among the series, compounds 5g and 5m showed significant anticancer activities against multiple cell lines with moderate selectivity indices. Compound 5g had IC50 values of 5.86 ± 0.31, 9.94 ± 0.06, 12.74 ± 0.12, and 9.40 ± 0.03 μM against the B16-F10, DU145, HeLa, and LC-540 cell lines, respectively, while compound 5m showed IC50 values of 6.35 ± 0.09, 9.17 ± 0.11, 9.00 ± 0.011, 19.65 ± 0.63, 8.13 ± 0.04, and 11.56 ± 0.01 μM against B16-F10, DU145, HeLa, HepG2, LC-540, and SK-BR-3 cells, respectively. Compared to almazole D, which only showed significant activity against B16-F10 cells (IC50 = 9.05 ± 0.008 μM), the synthesized analogs showed improved anticancer activity against multiple cell lines. The kinase inhibition assay coupled with the docking studies revealed that epidermal growth factor receptor (EGFR) kinase inhibition via interaction with amino acid residue T790 on the EGFR is one of the possible mechanisms by which 5g exerts its anticancer potential. The ADMET prediction and drug-likeness of the analogs project the synthesized analogs as promising agents, which can be further developed for application in cancer therapy.
Collapse
Affiliation(s)
- Abimbola P Oluyori
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad, India.,Department of Physical Sciences, Landmark University, Omu Aran, Kwara State, Nigeria.,Landmark University Sustainable Development Goal 3, Good Health and Well-Being, Nigeria, Omu Aran, Kwara
| | - Tirunagari Harini
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad, India.,Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, India
| | - Komal G Sangu
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad, India.,Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, India
| | - Eruva Vamshi Krishna
- Department of Applied Biology, Microbiology, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad, India
| | - Surender S Jadav
- Department of Applied Biology, Microbiology, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad, India
| | - Sunil Misra
- Department of Applied Biology, Microbiology, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad, India
| | - Haridas B Rode
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad, India.,Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, India
| |
Collapse
|
39
|
Alalawi M, Bakr AS, Reda R, Sadak KT, Nagy M. Late-onset toxicities of monoclonal antibodies in cancer patients. Immunotherapy 2022; 14:1067-1083. [PMID: 35892252 DOI: 10.2217/imt-2022-0042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cancer therapy duration is variable and may take years, adding a new challenge of maintaining the best life quality for cancer survivors. In cancer patients, late-onset toxicities have been reported with monoclonal antibodies and may involve several body organs or systems. They are defined as an autoimmune illnesses that can happen months to years after treatment discontinuation. Late-onset toxicities have become a focus of clinical care and related research. After cancer therapy is completed, the patient should receive longitudinal follow-up to detect these late effects as early as possible. The current review summarizes the recently reported late-onset toxicities of four classes of monoclonal antibodies (anti-CD52, anti-CTLA-4, anti-PD-1 and anti-CD20) with guidance for the diagnostic tools, appropriate management and treatment.
Collapse
Affiliation(s)
- Mai Alalawi
- Department of Pharmaceutical Services, Children's Cancer Hospital Egypt, Cairo, 57357, 4260102, Egypt.,Department of Pharmaceutical Sciences, Fakeeh College for Medical Sciences, Jeddah, 23323, Saudi Arabia
| | - Abrar Saeed Bakr
- Department of Pharmaceutical Services, Children's Cancer Hospital Egypt, Cairo, 57357, 4260102, Egypt.,Department of Clinical Pharmacy, Alexandria Vascular Center, Alexandria, 5431118, Egypt
| | - Rowaida Reda
- Department of Pharmaceutical Services, Children's Cancer Hospital Egypt, Cairo, 57357, 4260102, Egypt.,Department of Clinical Pharmacy, Woman Health Hospital, Assiut University, Assiut, 2074020, Egypt
| | - Karim Thomas Sadak
- University of Minnesota Masonic Cancer Center, Minneapolis, MN 55455, USA.,University of Minnesota Masonic Children's Hospital, Minneapolis, MN 55455, USA
| | - Mohamad Nagy
- Department of Pharmaceutical Services, Children's Cancer Hospital Egypt, Cairo, 57357, 4260102, Egypt.,Personalized Medication Management Unit, Children's Cancer Hospital Egypt, Cairo, 57357, 4260102, Egypt
| |
Collapse
|
40
|
Alhamadh MS, Alanazi RB, Algarni ST, Alhuntushi AAR, Alshehri MQ, Chachar YS, Alkaiyat M, Sabatin F. A Descriptive Study of the Types and Survival Patterns of Saudi Patients with Multiple Primary Solid Malignancies: A 30-Year Tertiary Care Center Experience. Curr Oncol 2022; 29:4941-4955. [PMID: 35877253 PMCID: PMC9315520 DOI: 10.3390/curroncol29070393] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/30/2022] [Accepted: 07/07/2022] [Indexed: 11/16/2022] Open
Abstract
Background and Objective: Cancer survival has improved significantly, which reflects the achievements in screening, diagnosis, and treatment. As a consequence, multiple primary malignancies are diagnosed more frequently, with an incidence ranging from 0.52–11.7%. The types of malignancy that coexist and survival patterns vary notably in different countries and geographical areas. Due to the limited literature in Saudi Arabia, a baseline of prevalent malignancy combinations and their survival patterns would support early detection and disease management. Method: This was a retrospective descriptive study conducted from 1993–2022 at King Abdulaziz Medical City, Department of Medical Oncology, Riyadh, Saudi Arabia. Patients with at least two biopsy-proven solid malignancies were included. Patients with hematological malignancies, missing data, or an uncertain or indecisive pathology report were excluded. Result: In total, 321 patients were analyzed. More than half (57.3%) of the patients were female. A third (33%) of the cases were synchronous, and 67% were metachronous. The most frequent site of the first primary malignancy was breast cancer, followed by colorectal, skin, and thyroid cancers. The most frequent site of the second primary malignancy was colorectal cancer, followed by thyroid, breast, and liver cancers. Only 4% of the cases had a third primary malignancy, with colorectal and appendiceal cancers being the most frequent. The most frequently observed histopathology in the synchronous and metachronous malignancies was adenocarcinoma. Breast–colorectal, breast–thyroid, and kidney–colorectal were the most frequently observed malignancy combinations. Conclusion: The current study offers a baseline of multiple primary malignancies in Saudi Arabia and provides supporting evidence that the pattern of multiple primary malignancies varies among different countries and ethnicities. The possibility of developing another primary malignancy should be considered when treating and monitoring cancer patients.
Collapse
Affiliation(s)
- Moustafa S. Alhamadh
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences (KSAU-HS), Ministry of the National Guard—Health Affairs, Riyadh 14611, Saudi Arabia; (R.B.A.); (S.T.A.); (A.A.R.A.); (M.Q.A.)
- King Abdullah International Medical Research Center, Ministry of the National Guard—Health Affairs, Riyadh 11481, Saudi Arabia; (Y.S.C.); (M.A.); (F.S.)
- Correspondence: ; Tel.: +96-656-333-4984
| | - Rakan B. Alanazi
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences (KSAU-HS), Ministry of the National Guard—Health Affairs, Riyadh 14611, Saudi Arabia; (R.B.A.); (S.T.A.); (A.A.R.A.); (M.Q.A.)
- King Abdullah International Medical Research Center, Ministry of the National Guard—Health Affairs, Riyadh 11481, Saudi Arabia; (Y.S.C.); (M.A.); (F.S.)
| | - Sultan T. Algarni
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences (KSAU-HS), Ministry of the National Guard—Health Affairs, Riyadh 14611, Saudi Arabia; (R.B.A.); (S.T.A.); (A.A.R.A.); (M.Q.A.)
- King Abdullah International Medical Research Center, Ministry of the National Guard—Health Affairs, Riyadh 11481, Saudi Arabia; (Y.S.C.); (M.A.); (F.S.)
| | - Ahmed Abdullah R. Alhuntushi
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences (KSAU-HS), Ministry of the National Guard—Health Affairs, Riyadh 14611, Saudi Arabia; (R.B.A.); (S.T.A.); (A.A.R.A.); (M.Q.A.)
- King Abdullah International Medical Research Center, Ministry of the National Guard—Health Affairs, Riyadh 11481, Saudi Arabia; (Y.S.C.); (M.A.); (F.S.)
| | - Mohammed Qasim Alshehri
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences (KSAU-HS), Ministry of the National Guard—Health Affairs, Riyadh 14611, Saudi Arabia; (R.B.A.); (S.T.A.); (A.A.R.A.); (M.Q.A.)
- King Abdullah International Medical Research Center, Ministry of the National Guard—Health Affairs, Riyadh 11481, Saudi Arabia; (Y.S.C.); (M.A.); (F.S.)
| | - Yusra Sajid Chachar
- King Abdullah International Medical Research Center, Ministry of the National Guard—Health Affairs, Riyadh 11481, Saudi Arabia; (Y.S.C.); (M.A.); (F.S.)
- College of Sciences and Health Professions, King Saud Bin Abdulaziz University for Health Sciences (KSAU-HS), Ministry of the National Guard—Health Affairs, Riyadh 14611, Saudi Arabia
| | - Mohammad Alkaiyat
- King Abdullah International Medical Research Center, Ministry of the National Guard—Health Affairs, Riyadh 11481, Saudi Arabia; (Y.S.C.); (M.A.); (F.S.)
- Department of Medical Oncology, King Abdulaziz Medical City, Ministry of the National Guard—Health Affairs, Riyadh 12713, Saudi Arabia
| | - Fouad Sabatin
- King Abdullah International Medical Research Center, Ministry of the National Guard—Health Affairs, Riyadh 11481, Saudi Arabia; (Y.S.C.); (M.A.); (F.S.)
- Department of Medical Oncology, King Abdulaziz Medical City, Ministry of the National Guard—Health Affairs, Riyadh 12713, Saudi Arabia
| |
Collapse
|
41
|
Giusto E, Žárská L, Beirne DF, Rossi A, Bassi G, Ruffini A, Montesi M, Montagner D, Ranc V, Panseri S. Graphene Oxide Nanoplatforms to Enhance Cisplatin-Based Drug Delivery in Anticancer Therapy. NANOMATERIALS 2022; 12:nano12142372. [PMID: 35889596 PMCID: PMC9321599 DOI: 10.3390/nano12142372] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/08/2022] [Accepted: 07/09/2022] [Indexed: 11/21/2022]
Abstract
Chemotherapeutics such as platinum-based drugs are commonly used to treat several cancer types, but unfortunately, their use is limited by several side effects, such as high degradation of the drug before entering the cells, off-target organ toxicity and development of drug resistance. An interesting strategy to overcome such limitations is the development of nanocarriers that could enhance cellular accumulation in target cells in addition to decreasing associated drug toxicity in normal cells. Here, we aim to prepare and characterize a graphene-oxide-based 2D nanoplatform functionalised using highly branched, eight-arm polyethylene-glycol, which, owing to its high number of available functional groups, offers considerable loading capacity over its linear modalities and represents a highly potent nanodelivery platform as a versatile system in cancer therapy. The obtained results show that the GO@PEG carrier allows for the use of lower amounts of Pt drug compared to a Pt-free complex while achieving similar effects. The nanoplatform accomplishes very good cellular proliferation inhibition in osteosarcoma, which is strictly related to increased cellular uptake. This enhanced cellular internalization is also observed in glioblastoma, although it is less pronounced due to differences in metabolism compared to osteosarcoma. The proposed GO@PEG nanoplatform is also promising for the inhibition of migration, especially in highly invasive breast carcinoma (i.e., MDA-MB-231 cell line), neutralizing the metastatic process. The GO@PEG nanoplatform thus represents an interesting tool in cancer treatment that can be specifically tailored to target different cancers.
Collapse
Affiliation(s)
- Elena Giusto
- Institute of Science and Technology for Ceramics–National Research Council (CNR), 48018 Faenza (RA), Italy; (E.G.); (A.R.); (G.B.); (A.R.); (M.M.)
| | - Ludmila Žárská
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University Olomouc, 78371 Olomouc, Czech Republic;
| | | | - Arianna Rossi
- Institute of Science and Technology for Ceramics–National Research Council (CNR), 48018 Faenza (RA), Italy; (E.G.); (A.R.); (G.B.); (A.R.); (M.M.)
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Studies of Messina, 98100 Messina (ME), Italy
| | - Giada Bassi
- Institute of Science and Technology for Ceramics–National Research Council (CNR), 48018 Faenza (RA), Italy; (E.G.); (A.R.); (G.B.); (A.R.); (M.M.)
- Department of Neuroscience, Imaging and Clinical Sciences, University of Studies G. d’Annunzio Chieti-Pescara, 66100 Chieti (CH), Italy
| | - Andrea Ruffini
- Institute of Science and Technology for Ceramics–National Research Council (CNR), 48018 Faenza (RA), Italy; (E.G.); (A.R.); (G.B.); (A.R.); (M.M.)
| | - Monica Montesi
- Institute of Science and Technology for Ceramics–National Research Council (CNR), 48018 Faenza (RA), Italy; (E.G.); (A.R.); (G.B.); (A.R.); (M.M.)
| | - Diego Montagner
- Department of Chemistry, Maynooth University, Maynooth, Ireland;
- Correspondence: (D.M.); (V.R.); (S.P.)
| | - Vaclav Ranc
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University Olomouc, 78371 Olomouc, Czech Republic;
- Institute of Molecular and Translation Medicine, Faculty of Medicine and Dentistry, Palacký University in Olomouc, Hnevotinska 5, 77900 Olomouc, Czech Republic
- Correspondence: (D.M.); (V.R.); (S.P.)
| | - Silvia Panseri
- Institute of Science and Technology for Ceramics–National Research Council (CNR), 48018 Faenza (RA), Italy; (E.G.); (A.R.); (G.B.); (A.R.); (M.M.)
- Correspondence: (D.M.); (V.R.); (S.P.)
| |
Collapse
|
42
|
Ramalingam V, Narendra Kumar N, Harshavardhan M, Sampath Kumar HM, Tiwari AK, Suresh Babu K, Mudiam MKR. Chemical profiling of marine seaweed Halimeda gracilis using UPLC-ESI-Q-TOF-MSE and evaluation of anticancer activity targeting PI3K/AKT and intrinsic apoptosis signaling pathway. Food Res Int 2022; 157:111394. [DOI: 10.1016/j.foodres.2022.111394] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 12/24/2022]
|
43
|
Velmurugan P, Mohanavel V, Shrestha A, Sivakumar S, Oyouni AAA, Al-Amer OM, Alzahrani OR, Alasseiri MI, Hamadi A, Alalawy AI. Developing a Multimodal Model for Detecting Higher-Grade Prostate Cancer Using Biomarkers and Risk Factors. BIOMED RESEARCH INTERNATIONAL 2022; 2022:9223400. [PMID: 35722463 PMCID: PMC9205705 DOI: 10.1155/2022/9223400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/02/2022] [Accepted: 05/13/2022] [Indexed: 11/25/2022]
Abstract
A technique to predict crucial clinical prostate cancer (PC) is desperately required to prevent diagnostic errors and overdiagnosis. To create a multimodal model that incorporates long-established messenger RNA (mRNA) indicators and conventional risk variables for identifying individuals with severe PC on prostatic biopsies. Urinary has gathered for mRNA analysis following a DRE and before a prostatic examination in two prospective multimodal investigations. A first group (n = 489) generated the multimodal risk score, which was then medically verified in a second group (n = 283). The reverse transcription qualitative polymerase chain reaction determined the mRNA phase. Logistic regression was applied to predict risk in patients and incorporate health risks. The area under the curve (AUC) was used to compare models, and clinical efficacy was assessed by using a DCA. The amounts of sixth homeobox clustering and first distal-less homeobox mRNA have been strongly predictive of high-grade PC detection. In the control subjects, the multimodal method achieved a total AUC of 0.90, with the most important aspects being the messenger riboneuclic acid features' PSA densities and previous cancer-negative tests as a nonsignificant design ability to contribute to PSA, aging, and background. An AUC of 0.86 was observed for one more model that added DRE as an extra risk component. Two methods were satisfactorily verified without any significant changes within the area under the curve in the validation group. DCA showed a massive net advantage and the highest decrease in inappropriate costs.
Collapse
Affiliation(s)
- Palanivel Velmurugan
- Centre for Materials Engineering and Regenerative Medicine, Bharath Institute of Higher Education and Research, Selaiyur, Chennai, Tamil Nadu, India
| | - Vinayagam Mohanavel
- Centre for Materials Engineering and Regenerative Medicine, Bharath Institute of Higher Education and Research, Chennai 600073, Tamil Nadu, India
- Department of Mechanical Engineering, Chandigarh University, Mohali 140413, Punjab, India
| | - Anupama Shrestha
- Department of Plant Protection, Himalayan College of Agricultural Sciences and Technology, Kalanki, Kathmandu, Nepal PO box 44600
- Research Institute of Agriculture and Applied Science, Tokha Kathmandu, Nepal 2356
| | - Subpiramaniyam Sivakumar
- Department of Bioenvironmental Energy, College of Natural Resources and Life Science, Pusan National University, Miryang-Si, Gyeongsangnam-do 50463, Republic of Korea
| | - Atif Abdulwahab A. Oyouni
- Department of Biology, Faculty of Sciences, University of Tabuk, Tabuk, Saudi Arabia
- Genome and Biotechnology Unit, Faculty of Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Osama M. Al-Amer
- Genome and Biotechnology Unit, Faculty of Sciences, University of Tabuk, Tabuk, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Othman R. Alzahrani
- Department of Biology, Faculty of Sciences, University of Tabuk, Tabuk, Saudi Arabia
- Genome and Biotechnology Unit, Faculty of Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Mohammed I. Alasseiri
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Abdullah Hamadi
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Adel Ibrahim Alalawy
- Genome and Biotechnology Unit, Faculty of Sciences, University of Tabuk, Tabuk, Saudi Arabia
- Department of Biochemistry, Faculty of Sciences, University of Tabuk, Tabuk, Saudi Arabia
| |
Collapse
|
44
|
Smc5/6 Complex Promotes Rad3 ATR Checkpoint Signaling at the Perturbed Replication Fork through Sumoylation of the RecQ Helicase Rqh1. Mol Cell Biol 2022; 42:e0004522. [PMID: 35612306 DOI: 10.1128/mcb.00045-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Smc5/6, like cohesin and condensin, is a structural maintenance of chromosomes complex crucial for genome stability. Unlike cohesin and condensin, Smc5/6 carries an essential Nse2 subunit with SUMO E3 ligase activity. While screening for new DNA replication checkpoint mutants in fission yeast, we have identified two previously uncharacterized mutants in Smc5/6. Characterization of the mutants and a series of previously reported Smc5/6 mutants uncovered that sumoylation of the RecQ helicase Rqh1 by Nse2 facilitates the checkpoint signaling at the replication fork. We found that mutations that eliminate the sumoylation sites or the helicase activity of Rqh1 compromised the checkpoint signaling similar to a nse2 mutant lacking the ligase activity. Surprisingly, introducing a sumoylation site mutation to a helicase-inactive rqh1 mutant promoted cell survival under stress. These findings, together with other genetic data, support a mechanism that sumoylation of Rqh1 by Smc5/6-Nse2 recruits Rqh1 or modulates its helicase activity at the fork to facilitate the checkpoint signaling. Since the Smc5/6 complex, Rqh1, and the replication checkpoint are conserved in eukaryotes, a similar checkpoint mechanism may be operating in human cells.
Collapse
|
45
|
Cannataro VL, Mandell JD, Townsend JP. Attribution of Cancer Origins to Endogenous, Exogenous, and Preventable Mutational Processes. Mol Biol Evol 2022; 39:msac084. [PMID: 35580068 PMCID: PMC9113445 DOI: 10.1093/molbev/msac084] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Mutational processes in tumors create distinctive patterns of mutations, composed of neutral "passenger" mutations and oncogenic drivers that have quantifiable effects on the proliferation and survival of cancer cell lineages. Increases in proliferation and survival are mediated by natural selection, which can be quantified by comparing the frequency at which we detect substitutions to the frequency at which we expect to detect substitutions assuming neutrality. Most of the variants detectable with whole-exome sequencing in tumors are neutral or nearly neutral in effect, and thus the processes generating the majority of mutations may not be the primary sources of the tumorigenic mutations. Across 24 cancer types, we identify the contributions of mutational processes to each oncogenic variant and quantify the degree to which each process contributes to tumorigenesis. We demonstrate that the origination of variants driving melanomas and lung cancers is predominantly attributable to the preventable, exogenous mutational processes associated with ultraviolet light and tobacco exposure, respectively, whereas the origination of selected variants in gliomas and prostate adenocarcinomas is largely attributable to endogenous processes associated with aging. Preventable mutations associated with pathogen exposure and apolipoprotein B mRNA-editing enzyme activity account for a large proportion of the cancer effect within head-and-neck, bladder, cervical, and breast cancers. These attributions complement epidemiological approaches-revealing the burden of cancer driven by single-nucleotide variants caused by either endogenous or exogenous, nonpreventable, or preventable processes, and crucially inform public health strategies.
Collapse
Affiliation(s)
| | - Jeffrey D. Mandell
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, USA
| | - Jeffrey P. Townsend
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, USA
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
| |
Collapse
|
46
|
Karasiewicz M, Chawłowska E, Lipiak A, Wiȩckowska B. How to Improve Cancer Prevention Knowledge? A Way to Identify Gaps and Tackle the Limited Availability of Health Education Services in Primary Health Care Using the European Code Against Cancer. Front Public Health 2022; 10:878703. [PMID: 35586014 PMCID: PMC9109786 DOI: 10.3389/fpubh.2022.878703] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/12/2022] [Indexed: 11/21/2022] Open
Abstract
Introduction The first line of action against cancer is primary and secondary prevention. Increased efforts are needed in countries where cancer mortality is high and the healthcare system is inefficient. Objectives: Our aim was to present a new solution to identify and fill gaps in health education services in accordance with the European Code Against Cancer (ECAC). Materials and Methods This study was carried out in a rural population of 122 beneficiaries of health education workshops financed by the Polish Cancer League. A self-developed questionnaire was used. PQStat v1.6.8. was also applied. Results Our respondents were mostly farmers (53.3%) and manual workers (16.4%). Most participants self-assessed their health knowledge as good (46.7%). While 42% of all respondents claimed to know the healthy eating pyramid, only 8.2% correctly recognised all of its principles and 23.8% realised the importance of limiting the consumption of red meat. The most commonly recognised cancer risk factor were genetics (72.1%), stimulants such as alcohol or tobacco (51.5%) and environmental pollution (45.1%). UV radiation was not commonly recognised as a risk factor by respondents despite high occupational exposure in this population. We found a high percentage of male smokers. As many as 64.8% of respondents had not been counselled on cancer prevention in their clinics. A family history of cancer (FHC) did not differentiate respondents' health knowledge, health behaviors, or frequency of receiving cancer prevention counselling. Health education and health promotion in the region were unsatisfactory. Conclusions Primary health care (PHC) should become more involved in promoting cancer prevention knowledge. One way could be to encourage health professionals to promote the ECAC. Cancer prevention should target especially persons with FHC and focus on modifiable cancer risk factors. At the workshops we were able to adjust the strength of each ECAC recommendation to best fit the target audience. By diagnosing and targeting specific communities, we can draw the attention of PHC staff and decision-makers to local health promotion needs, which is a good starting point for improving the situation. However, larger scale projects are needed to help design specific solutions to support primary healthcare in promoting ECAC.
Collapse
Affiliation(s)
- Monika Karasiewicz
- Laboratory of International Health, Department of Preventive Medicine, Poznan University of Medical Sciences, Poznań, Poland
- *Correspondence: Monika Karasiewicz
| | - Ewelina Chawłowska
- Laboratory of International Health, Department of Preventive Medicine, Poznan University of Medical Sciences, Poznań, Poland
| | - Agnieszka Lipiak
- Laboratory of International Health, Department of Preventive Medicine, Poznan University of Medical Sciences, Poznań, Poland
| | - Barbara Wiȩckowska
- Department of Computer Science and Statistics, Poznan University of Medical Sciences, Poznań, Poland
| |
Collapse
|
47
|
Deneka AY, Baca Y, Serebriiskii IG, Nicolas E, Parker MI, Nguyen TT, Xiu J, Korn WM, Demeure MJ, Wise-Draper T, Sukari A, Burtness B, Golemis EA. Association of TP53 and CDKN2A Mutation Profile with Tumor Mutation Burden in Head and Neck Cancer. Clin Cancer Res 2022; 28:1925-1937. [PMID: 35491653 PMCID: PMC9186806 DOI: 10.1158/1078-0432.ccr-21-4316] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 01/21/2022] [Accepted: 02/23/2022] [Indexed: 01/31/2023]
Abstract
PURPOSE Head and neck squamous cell carcinoma (HNSCC) is a frequently devastating cancer that affects more than a half million people annually worldwide. Although some cases arise from infection with human papillomavirus (HPV), HPV-negative HNSCC is more common, and associated with worse outcome. Advanced HPV-negative HNSCC may be treated with surgery, chemoradiation, targeted therapy, or immune checkpoint inhibition (ICI). There is considerable need for predictive biomarkers for these treatments. Defects in DNA repair capacity and loss of cell-cycle checkpoints sensitize tumors to cytotoxic therapies, and can contribute to phenotypes such as elevated tumor mutation burden (TMB), associated with response to ICI. Mutation of the tumor suppressors and checkpoint mediators TP53 and CDKN2A is common in HPV-negative HNSCC. EXPERIMENTAL DESIGN To gain insight into the relation of the interaction of TP53 and CDKN2A mutations with TMB in HNSCC, we have analyzed genomic data from 1,669 HPV-negative HNSCC tumors with multiple criteria proposed for assessing the damaging effect of TP53 mutations. RESULTS Data analysis established the TP53 and CDKN2A mutation profiles in specific anatomic subsites and suggested that specific categories of TP53 mutations are more likely to associate with CDKN2A mutation or high TMB based on tumor subsite. Intriguingly, the pattern of hotspot mutations in TP53 differed depending on the presence or absence of a cooccurring CDKN2A mutation. CONCLUSIONS These data emphasize the role of tumor subsite in evaluation of mutational profiles in HNSCC, and link defects in TP53 and CDKN2A to elevated TMB levels in some tumor subgroups.
Collapse
Affiliation(s)
- Alexander Y. Deneka
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA 19111
| | | | - Ilya G. Serebriiskii
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA 19111
- Kazan Federal University, 420000, Kazan, Russian Federation
| | - Emmanuelle Nicolas
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA 19111
| | - Mitchell I. Parker
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA 19111
- Drexel University College of Medicine, Philadelphia, PA 19102
| | - Theodore T. Nguyen
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA 19111
- Drexel University College of Medicine, Philadelphia, PA 19102
| | | | | | - Michael J. Demeure
- Precision Medicine Program, Hoag Family Cancer Institute, Newport Beach, CA
| | - Trisha Wise-Draper
- Department of Internal Medicine, Division of Hematology/Oncology, University of Cincinnati, Cincinnati, OH
| | - Ammar Sukari
- Department of Oncology, Karmanos Cancer Institute/Wayne State University, Detroit, Michigan, USA
| | - Barbara Burtness
- Section of Medical Oncology, Department of Internal Medicine, and Yale Cancer Center, Yale University School of Medicine, New Haven, CT 06520
| | - Erica A. Golemis
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA 19111
- Lewis Katz School of Medicine, Department of Cancer and Cellular Biology, Philadelphia, PA 19140
| |
Collapse
|
48
|
Hou K, Wu ZX, Chen XY, Wang JQ, Zhang D, Xiao C, Zhu D, Koya JB, Wei L, Li J, Chen ZS. Microbiota in health and diseases. Signal Transduct Target Ther 2022; 7:135. [PMID: 35461318 PMCID: PMC9034083 DOI: 10.1038/s41392-022-00974-4] [Citation(s) in RCA: 883] [Impact Index Per Article: 294.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 03/11/2022] [Accepted: 03/15/2022] [Indexed: 02/07/2023] Open
Abstract
The role of microbiota in health and diseases is being highlighted by numerous studies since its discovery. Depending on the localized regions, microbiota can be classified into gut, oral, respiratory, and skin microbiota. The microbial communities are in symbiosis with the host, contributing to homeostasis and regulating immune function. However, microbiota dysbiosis can lead to dysregulation of bodily functions and diseases including cardiovascular diseases (CVDs), cancers, respiratory diseases, etc. In this review, we discuss the current knowledge of how microbiota links to host health or pathogenesis. We first summarize the research of microbiota in healthy conditions, including the gut-brain axis, colonization resistance and immune modulation. Then, we highlight the pathogenesis of microbiota dysbiosis in disease development and progression, primarily associated with dysregulation of community composition, modulation of host immune response, and induction of chronic inflammation. Finally, we introduce the clinical approaches that utilize microbiota for disease treatment, such as microbiota modulation and fecal microbial transplantation.
Collapse
Affiliation(s)
- Kaijian Hou
- Department of Endocrine and Metabolic Diseases, Longhu Hospital, The First Affiliated Hospital of Medical College of Shantou University, Shantou, Guangdong, 515000, China
| | - Zhuo-Xun Wu
- Department of Pharmaceutical Sciences, Institute for Biotechnology, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Xuan-Yu Chen
- Department of Pharmaceutical Sciences, Institute for Biotechnology, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Jing-Quan Wang
- Department of Pharmaceutical Sciences, Institute for Biotechnology, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Dongya Zhang
- Microbiome Research Center, Moon (Guangzhou) Biotech Ltd, Guangzhou, 510535, China
| | - Chuanxing Xiao
- Department of Endocrine and Metabolic Diseases, Longhu Hospital, The First Affiliated Hospital of Medical College of Shantou University, Shantou, Guangdong, 515000, China
| | - Dan Zhu
- Department of Endocrine and Metabolic Diseases, Longhu Hospital, The First Affiliated Hospital of Medical College of Shantou University, Shantou, Guangdong, 515000, China
| | - Jagadish B Koya
- Department of Pharmaceutical Sciences, Institute for Biotechnology, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Liuya Wei
- School of Pharmacy, Weifang Medical University, Weifang, Shandong, 261053, China
| | - Jilin Li
- Department of Cardiovascular, The Second Affiliated Hospital of Medical College of Shantou University, Shantou, Guangdong, 515000, China
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, Institute for Biotechnology, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| |
Collapse
|
49
|
Mohi-ud-din R, Mir RH, Wani TU, Alsharif KF, Alam W, Albrakati A, Saso L, Khan H. The Regulation of Endoplasmic Reticulum Stress in Cancer: Special Focuses on Luteolin Patents. Molecules 2022; 27:molecules27082471. [PMID: 35458669 PMCID: PMC9031790 DOI: 10.3390/molecules27082471] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/17/2022] [Accepted: 03/21/2022] [Indexed: 12/24/2022] Open
Abstract
Cancer is a major health problem across the globe, and is expeditiously growing at a faster rate worldwide. The endoplasmic reticulum (ER) is a membranous cell organelle having inextricable links in cellular homeostasis. Altering ER homeostasis initiates various signaling events known as the unfolded protein response (UPR). The basic purpose of the UPR is to reinstate the homeostasis; however, a continuous UPR can stimulate pathways of cell death, such as apoptosis. As a result, there is great perturbation to target particular signaling pathways of ER stress. Flavonoids have gained significant interest as a potential anticancer agent because of their considerable role in causing cytotoxicity of the cancerous cells. Luteolin, a flavonoid isolated from natural products, is a promising phytochemical used in the treatment of cancer. The current study is designed to review the different endoplasmic reticulum stress pathways involved in the cancer, mechanistic insights of luteolin as an anticancer agent in modulating ER stress, and the available luteolin patent formulations were also highlighted. The patents were selected on the basis of pre-clinical and/or clinical trials, and established antitumor effects using patent databases of FPO IP and Espacenet. The patented formulation of luteolin studied so far has shown promising anticancer potential against different cancer cell lines. However, further research is still required to determine the molecular targets of such bioactive molecules so that they can be used as anticancer drugs.
Collapse
Affiliation(s)
- Roohi Mohi-ud-din
- Pharmacognosy & Phytochemistry Division, Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar 190006, India
- Correspondence: (R.M.-u.-d.); (H.K.)
| | - Reyaz Hassan Mir
- Pharmaceutical Chemistry Division, Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar 190006, India;
| | - Taha Umair Wani
- Pharmaceutics Division, Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar 190006, India;
| | - Khalaf F. Alsharif
- Department of Clinical Laboratory, College of Applied Medical Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Waqas Alam
- Department of Pharmacy, Abdul Wali Khan University, Mardan 23200, Pakistan;
| | - Ashraf Albrakati
- Department of Human Anatomy, College of Medicine, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Luciano Saso
- Department of Physiology and Pharmacology, Sapienza University, 00158 Rome, Italy;
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan 23200, Pakistan;
- Correspondence: (R.M.-u.-d.); (H.K.)
| |
Collapse
|
50
|
Antitumor Activity of Royal Jelly and Its Cellular Mechanisms against Ehrlich Solid Tumor in Mice. BIOMED RESEARCH INTERNATIONAL 2022; 2022:7233997. [PMID: 35528154 PMCID: PMC9071879 DOI: 10.1155/2022/7233997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 11/23/2021] [Accepted: 03/18/2022] [Indexed: 12/24/2022]
Abstract
Objective The present study was aimed at evaluating the antitumor effects of royal jelly (RJ) obtained from Apis mellifera compared with cyclophosphamide against the Ehrlich solid tumors (EST) in mice. Methods Tumor growth inhibition, body weight, the serum level of alpha-fetoprotein (AFP) and carcinoembryonic antigen tumor (CAE), liver and kidney enzymes, tumor lipid peroxidation (LPO), nitric oxide (NO), antioxidant enzymes (glutathione peroxidase (GPx), catalase enzyme (CAT), and superoxide dismutase enzyme activity (SOD)), tumor necrosis factor alpha level (TNF-α), and the apoptosis-regulatory genes expression were assessed in EST mice treated with RJ (200 and 400 mg/kg orally once a day for 2 weeks). Results The results showed that treatment of EST-suffering mice with RJ at the doses of 200 and 400 mg/kg causes significant reduction in tumor volume and inhibition rate, body weight, tumor markers (AFP and CEA), serum level of liver and kidney, LPO and NO, TNF-α level, as well as the expression level of Bcl-2 in comparison with the EST mice receiving the normal saline; whereas RJ at the doses of 200 and 400 mg/kg/day significantly increased (p < 0.05) the level of antioxidant enzymes of GPx, CAT, and SOD and the expression level of caspase-3 and Bax genes. Conclusion The findings revealed that oral administration of royal jelly especially at the doses of 200 and 400 mg/kg exhibited promising antitumor effects against EST in mice through induction of apoptosis as well as its antioxidant and anti-inflammatory effects, which suggest it as a novel anticancer agent against tumor; however, additional surveys especially in clinical setting are necessary to approve these findings.
Collapse
|