1
|
Puranik N, Jung H, Song M. SPROUTY2, a Negative Feedback Regulator of Receptor Tyrosine Kinase Signaling, Associated with Neurodevelopmental Disorders: Current Knowledge and Future Perspectives. Int J Mol Sci 2024; 25:11043. [PMID: 39456824 PMCID: PMC11507918 DOI: 10.3390/ijms252011043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/04/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
Growth-factor-induced cell signaling plays a crucial role in development; however, negative regulation of this signaling pathway is important for sustaining homeostasis and preventing diseases. SPROUTY2 (SPRY2) is a potent negative regulator of receptor tyrosine kinase (RTK) signaling that binds to GRB2 during RTK activation and inhibits the GRB2-SOS complex, which inhibits RAS activation and attenuates the downstream RAS/ERK signaling cascade. SPRY was formerly discovered in Drosophila but was later discovered in higher eukaryotes and was found to be connected to many developmental abnormalities. In several experimental scenarios, increased SPRY2 protein levels have been observed to be involved in both peripheral and central nervous system neuronal regeneration and degeneration. SPRY2 is a desirable pharmaceutical target for improving intracellular signaling activity, particularly in the RAS/ERK pathway, in targeted cells because of its increased expression under pathological conditions. However, the role of SPRY2 in brain-derived neurotrophic factor (BDNF) signaling, a major signaling pathway involved in nervous system development, has not been well studied yet. Recent research using a variety of small-animal models suggests that SPRY2 has substantial therapeutic promise for treating a range of neurological conditions. This is explained by its function as an intracellular ERK signaling pathway inhibitor, which is connected to a variety of neuronal activities. By modifying this route, SPRY2 may open the door to novel therapeutic approaches for these difficult-to-treat illnesses. This review integrates an in-depth analysis of the structure of SPRY2, the role of its major interactive partners in RTK signaling cascades, and their possible mechanisms of action. Furthermore, this review highlights the possible role of SPRY2 in neurodevelopmental disorders, as well as its future therapeutic implications.
Collapse
Affiliation(s)
| | | | - Minseok Song
- Department of Life Sciences, Yeungnam University, Gyeongsan 38541, Republic of Korea; (N.P.); (H.J.)
| |
Collapse
|
2
|
Roman KM, Dinasarapu AR, Cherian S, Fan X, Donsante Y, Aravind N, Chan CS, Jinnah H, Hess EJ. Striatal cell-type-specific molecular signatures reveal therapeutic targets in a model of dystonia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.07.617010. [PMID: 39415987 PMCID: PMC11482807 DOI: 10.1101/2024.10.07.617010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Striatal dysfunction is implicated in many forms of dystonia, including idiopathic, inherited and iatrogenic dystonias. The striatum is comprised largely of GABAergic spiny projection neurons (SPNs) that are defined by their long-range efferents. Direct SPNs (dSPNs) project to the internal globus pallidus/substantia nigra reticulata whereas indirect pathway SPNs (iSPNs) project to the external pallidum; the concerted activity of both SPN subtypes modulates movement. Convergent results from genetic, imaging and physiological studies in patients suggest that abnormalities of both dSPNs and iSPNs contribute to the expression of dystonia, but the molecular adaptations underlying these abnormalities are not known. Here we provide a comprehensive analysis of SPN cell-type-specific molecular signatures in a model of DOPA-responsive dystonia (DRD mice), which is caused by gene defects that reduce dopamine neurotransmission, resulting in dystonia that is specifically associated with striatal dysfunction. Individually profiling the translatome of dSPNs and iSPNs using translating ribosome affinity purification with RNA-seq revealed hundreds of differentially translating mRNAs in each SPN subtype in DRD mice, yet there was little overlap between the dysregulated genes in dSPNs and iSPNs. Despite the paucity of shared adaptations, a disruption in glutamatergic signaling was predicted for both dSPNs and iSPNs. Indeed, we found that both AMPA and NMDA receptor-mediated currents were enhanced in dSPNs but diminished in iSPNs in DRD mice. The pattern of mRNA dysregulation was specific to dystonia as the adaptations in DRD mice were distinct from those in parkinsonian mice where the dopamine deficit occurs in adults, suggesting that the phenotypic outcome is dependent on both the timing of the dopaminergic deficit and the SPN-specific adaptions. We leveraged the unique molecular signatures of dSPNs and iSPNs in DRD mice to identify biochemical mechanisms that may be targets for therapeutics, including LRRK2 inhibition. Administration of the LRRK2 inhibitor MLi-2 ameliorated the dystonia in DRD mice suggesting a novel target for therapeutics and demonstrating that the delineation of cell-type-specific molecular signatures provides a powerful approach to revealing both CNS dysfunction and therapeutic targets in dystonia.
Collapse
Affiliation(s)
- Kaitlyn M. Roman
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta, GA, USA
| | | | - Suraj Cherian
- Department of Neuroscience, Northwestern University, Chicago, Illinois, USA
| | - Xueliang Fan
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta, GA, USA
| | - Yuping Donsante
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta, GA, USA
| | - Nivetha Aravind
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta, GA, USA
| | - C. Savio Chan
- Department of Neuroscience, Northwestern University, Chicago, Illinois, USA
| | - H.A. Jinnah
- Department of Neurology, Emory University, Atlanta, Georgia, USA
- Department of Human Genetics, Emory University, Atlanta, Georgia, USA
- Department of Pediatrics, Emory University, Atlanta, Georgia, USA
| | - Ellen J. Hess
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta, GA, USA
- Department of Neurology, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
3
|
Chen Z, Wang C, Li M, Cai S, Liu X. SPRED3 regulates the NF-κB signaling pathway in thyroid cancer and promotes the proliferation. Sci Rep 2024; 14:20506. [PMID: 39227612 PMCID: PMC11372091 DOI: 10.1038/s41598-024-61075-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 04/30/2024] [Indexed: 09/05/2024] Open
Abstract
SPRED3 (Sprouty-related EVH1 domain containing 3) mutants are depicted in various cancers, however, nothing is known about its biofunction in thyroid cancer (THCA). Bioinformatic analyses were conducted to ascertain the level of SPRED3 expression in THCA tissues and its importance in the prognosis of THCA patients. Flag-SPRED3 plasmid and SPRED3-knockout vector were developed to overexpress or deplete the SPRED3 expression in THCA cells. The function of SPRED3 on THCA cell proliferation was examined using the colony formation assay and CCK8 assay. The effect of SPRED3 expression on the transcriptional activity of NF-κB was also examined using luciferase reporter assays. High SPRED3 expression was associated with unfavorable clinical outcomes, advanced tumor characteristics, and traditional molecular markers of papillary thyroid cancer in THCA patients. Genetic analysis revealed differences in mutation rates in key genes between SPRED3-high and SPRED3-low THCA cases. It is also revealed that SPRED3 influenced the immune microenvironment, with increased stromal and immune scores and altered immune cell infiltration. Functionally, SPRED3 overexpression enhanced THCA cell viability and colony formation, while its depletion reduced cell growth and proliferation. In vivo experiments in mice confirmed the inhibitory effect of SPRED3 depletion on tumor growth. Mechanically, we found that SPRED3 activated the NF-κB signaling. For the first time, we found that SPRED3 promotes THCA cell proliferation via the NF-κB signaling pathway. This finding may provide insight into SPRED3's prognostic potential in thyroid cancer and provide the rationale for SPRED3-targeted druggable interventions.
Collapse
Affiliation(s)
- Zhiping Chen
- Department of Thyroid Surgery, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, 362000, Fujian, China
| | - Congren Wang
- Department of Thyroid Surgery, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, 362000, Fujian, China
| | - Mingzhu Li
- Department of Thyroid Surgery, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, 362000, Fujian, China
| | - Shaoyang Cai
- Department of Thyroid Surgery, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, 362000, Fujian, China
| | - Xiaoyu Liu
- Department of Thyroid Surgery, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, 362000, Fujian, China.
| |
Collapse
|
4
|
Piercey O, Tie J, Hollande F, Wong HL, Mariadason J, Desai J. BRAF V600E-Mutant Metastatic Colorectal Cancer: Current Evidence, Future Directions, and Research Priorities. Clin Colorectal Cancer 2024; 23:215-229. [PMID: 38816264 DOI: 10.1016/j.clcc.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 04/24/2024] [Indexed: 06/01/2024]
Abstract
BRAFV600E-mutant metastatic colorectal cancer represents a distinct molecular phenotype known for its aggressive biological behavior, resistance to standard therapies, and poor survival rates. Improved understanding of the biology of the BRAF oncogene has led to the development of targeted therapies that have paved the way for a paradigm shift in managing this disease. However, despite significant recent advancements, responses to targeted therapies are short-lived, and several challenges remain. In this review, we discuss how progress in treating BRAFV600E-mutant metastatic colorectal cancer has been made through a better understanding of its unique biological and clinical features. We provide an overview of the evidence to support current treatment approaches and discuss critical areas of need and future research strategies that hold the potential to refine clinical practice further. We also discuss some challenging aspects of managing this disease, particularly the complexity of acquired resistance mechanisms that develop under the selective pressure of targeted therapies and rational strategies being investigated to overcome them.
Collapse
Affiliation(s)
- Oliver Piercey
- Peter MacCallum Cancer Centre, Melbourne, Australia; Centre for Cancer Research, The University of Melbourne, Melbourne, Australia; Department of Clinical Pathology, The University of Melbourne, Australia.
| | - Jeanne Tie
- Peter MacCallum Cancer Centre, Melbourne, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Australia; Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Frederic Hollande
- Centre for Cancer Research, The University of Melbourne, Melbourne, Australia; Department of Clinical Pathology, The University of Melbourne, Australia
| | - Hui-Li Wong
- Peter MacCallum Cancer Centre, Melbourne, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Australia; Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - John Mariadason
- Olivia Newton John Cancer Wellness and Research Centre, Heidelberg, Australia; School of Medicine, La Trobe University, Melbourne, Australia
| | - Jayesh Desai
- Peter MacCallum Cancer Centre, Melbourne, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Australia
| |
Collapse
|
5
|
Mastromoro G, Santoro C, Motta M, Sorrentino U, Daniele P, Peduto C, Petrizzelli F, Tripodi M, Pinna V, Zanobio M, Rotundo G, Bellacchio E, Lepri F, Farina A, D'Asdia MC, Piceci-Sparascio F, Biagini T, Petracca A, Castori M, Melis D, Accadia M, Traficante G, Tarani L, Fontana P, Sirchia F, Paparella R, Currò A, Benedicenti F, Scala I, Dentici ML, Leoni C, Trevisan V, Cecconi A, Giustini S, Pizzuti A, Salviati L, Novelli A, Zampino G, Zenker M, Genuardi M, Digilio MC, Papi L, Perrotta S, Nigro V, Castellanos E, Mazza T, Trevisson E, Tartaglia M, Piluso G, De Luca A. Heterozygosity for loss-of-function variants in LZTR1 is associated with isolated multiple café-au-lait macules. Genet Med 2024; 26:101241. [PMID: 39140257 DOI: 10.1016/j.gim.2024.101241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 08/07/2024] [Accepted: 08/07/2024] [Indexed: 08/15/2024] Open
Abstract
PURPOSE Pathogenic LZTR1 variants cause schwannomatosis and dominant/recessive Noonan syndrome (NS). We aim to establish an association between heterozygous loss-of-function LZTR1 alleles and isolated multiple café-au-lait macules (CaLMs). METHODS A total of 849 unrelated participants with multiple CaLMs, lacking pathogenic/likely pathogenic NF1 and SPRED1 variants, underwent RASopathy gene panel sequencing. Data on 125 individuals with heterozygous LZTR1 variants were collected for characterizing their clinical features and the associated molecular spectrum. In vitro functional assessment was performed on a representative panel of missense variants and small in-frame deletions. RESULTS Analysis revealed heterozygous LZTR1 variants in 6.0% (51/849) of participants, exceeding the general population prevalence. LZTR1-related CaLMs varied in number, displayed sharp or irregular borders, and were generally isolated but occasionally associated with features recurring in RASopathies. In 2 families, CaLMs and schwannomas co-occurred. The molecular spectrum mainly consisted of truncating variants, indicating loss-of-function. These variants substantially overlapped with those occurring in schwannomatosis and recessive NS. Functional characterization showed accelerated protein degradation or mislocalization, and failure to downregulate mitogen-activated protein kinase signaling. CONCLUSION Our findings expand the phenotypic variability associated with LZTR1 variants, which, in addition to conferring susceptibility to schwannomatosis and causing dominant and recessive NS, occur in individuals with isolated multiple CaLMs.
Collapse
Affiliation(s)
- Gioia Mastromoro
- Medical Genetics Division, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy; Department of Experimental Medicine, Policlinico Umberto I Hospital, Sapienza University of Rome, Rome, Italy
| | - Claudia Santoro
- Department of Women's and Children's Health and General and Specialized Surgery, University of Campania "Luigi Vanvitelli" Naples, Italy; Clinic of Child and Adolescent Neuropsychiatry, Department of Physical and Mental Health, and Preventive Medicine, University of Campania "Luigi Vanvitelli," Naples, Italy
| | - Marialetizia Motta
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Ugo Sorrentino
- Clinical Genetics Unit, Department of Women's and Children's Health, University of Padova, Padua, Italy
| | - Paola Daniele
- Medical Genetics Division, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Cristina Peduto
- Department of Precision Medicine, University of Campania "Luigi Vanvitell," Naples, Italy; Department of Medical Genetics, AP-HP, Hôpital Universitaire Necker-Enfants Malades, Paris, France
| | - Francesco Petrizzelli
- Laboratory of Bioinformatics, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Martina Tripodi
- Medical Genetics Division, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Valentina Pinna
- Medical Genetics Division, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy; Cytogenetics and Molecolar Genetics, Unit, Laboratory of Medical Genetics, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Mariateresa Zanobio
- Department of Precision Medicine, University of Campania "Luigi Vanvitell," Naples, Italy
| | - Giovannina Rotundo
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Emanuele Bellacchio
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Francesca Lepri
- Cytogenetics and Molecolar Genetics, Unit, Laboratory of Medical Genetics, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Antonella Farina
- Department of Precision Medicine, University of Campania "Luigi Vanvitell," Naples, Italy
| | - Maria Cecilia D'Asdia
- Medical Genetics Division, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | | | - Tommaso Biagini
- Laboratory of Bioinformatics, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Antonio Petracca
- Medical Genetics Division, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Marco Castori
- Medical Genetics Division, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Daniela Melis
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Fisciano, Italy
| | - Maria Accadia
- Medical Genetics Service, Hospital "Cardinale G. Panico," Tricase, Italy
| | | | - Luigi Tarani
- Department of Pediatrics, Medical Faculty, Sapienza University of Rome, Rome, Italy
| | - Paolo Fontana
- Medical Genetics Unit - P.O. Gaetano Rummo-A.O.R.N. San Pio, Benevento, Italy
| | - Fabio Sirchia
- Department of Molecular Medicine, University of Pavia, Pavia, Italy; Medical Genetics Unit, IRCCS San Matteo Foundation, Pavia, Italy
| | - Roberto Paparella
- Department of Pediatrics, Medical Faculty, Sapienza University of Rome, Rome, Italy
| | - Aurora Currò
- Genetic Counseling Service, Department of Pediatrics, Regional Hospital of Bolzano, Bolzano, Italy
| | - Francesco Benedicenti
- Genetic Counseling Service, Department of Pediatrics, Regional Hospital of Bolzano, Bolzano, Italy
| | - Iris Scala
- Department of Maternal and Child Health, Section of Pediatrics, Federico II University, Naples, Italy
| | | | - Chiara Leoni
- Center for Rare Diseases and Birth Defects, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
| | - Valentina Trevisan
- Center for Rare Diseases and Birth Defects, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
| | - Antonella Cecconi
- Ambulatorio Integrato di Genetica Medica, USL Toscana Centro, Florence, Italy
| | - Sandra Giustini
- Unit of Dermatology, Department of Internal Medicine and Medical Specialties, "La Sapienza" University of Rome, Rome, Italy
| | - Antonio Pizzuti
- Department of Experimental Medicine, Policlinico Umberto I Hospital, Sapienza University of Rome, Rome, Italy
| | - Leonardo Salviati
- Clinical Genetics Unit, Department of Women's and Children's Health, University of Padova, Padua, Italy
| | - Antonio Novelli
- Cytogenetics and Molecolar Genetics, Unit, Laboratory of Medical Genetics, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Giuseppe Zampino
- Center for Rare Diseases and Birth Defects, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
| | - Martin Zenker
- Institute of Human Genetics, University Hospital Magdeburg, Magdeburg, Germany
| | - Maurizio Genuardi
- Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy; Medical Genetics Unit, Department of Laboratory and Infectious Science, Fondazione Policlinico A. Gemelli IRCCS, Rome, Italy
| | | | - Laura Papi
- Department of Experimental and Clinical, Medical Genetics Unit, Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Silverio Perrotta
- Department of Women's and Children's Health and General and Specialized Surgery, University of Campania "Luigi Vanvitelli" Naples, Italy
| | - Vincenzo Nigro
- Department of Precision Medicine, University of Campania "Luigi Vanvitell," Naples, Italy; Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Elisabeth Castellanos
- Clinical Genomics Research Group, Germans Trias i Pujol Research Institute (IGTP), Can Ruti Campus, Badalona, Barcelona, Spain; Clinical Genomics Unit, Clinical Genetics Service, Northern Metropolitan Clinical Laboratory, Germans Trias i Pujol University Hospital (HGTP), Can Ruti Campus, Badalona, Barcelona, Spain
| | - Tommaso Mazza
- Laboratory of Bioinformatics, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Eva Trevisson
- Clinical Genetics Unit, Department of Women's and Children's Health, University of Padova, Padua, Italy; Institute of Pediatric Research IRP, Fondazione Città della Speranza, Padua, Italy
| | - Marco Tartaglia
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy.
| | - Giulio Piluso
- Department of Precision Medicine, University of Campania "Luigi Vanvitell," Naples, Italy
| | - Alessandro De Luca
- Medical Genetics Division, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy.
| |
Collapse
|
6
|
Zhao Y, Liu Z, Deng K, Qu H, Zhang Q, Zhou P, Yang M, Yang X, Wang H, Li R, Xia J. Identification of TAP1 as a T-cell related therapeutic target in gastric cancer by mediating oxalipliatin-related synergistic enhancement of immunotherapy. Int Immunopharmacol 2024; 132:111998. [PMID: 38593510 DOI: 10.1016/j.intimp.2024.111998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/30/2023] [Accepted: 03/31/2024] [Indexed: 04/11/2024]
Abstract
BACKGROUND Given the intricate molecular complexities and heterogeneity inherent in T-cell immunotherapy of gastric cancer (GC), elucidative T-cell-related biomarkers were imperative needed for facilitating the prediction of GC patient prognosis and identify potential synergistic therapeutic targets. METHODS We conducted COX regression analysis in TISIDB, TCGA-STAD, and GEO databases to identify 19 GC T-cell-mediated sensitivity tumor killing (TTK) genes (key GCTTKs). Based on key GCTTKs, we constructed two TTK patterns and analyzed their metabolic pathways, mutation features, clinical data distribution, immune cell infiltration, and prognosis. LASSO regression was performed to develop a T-cell-mediated GC Prognosis (TGCP) model. We validated the TGCP model in GC patients. TAP1 was further selected for investigation of its biological functions and molecular mechanisms. We assessed the potential of TAP1 as a promising therapeutic target for GC using Patient-derived organoids (PDOs)-derived xenografts (PDOXs) models of GC. RESULTS The TTK patterns display notable disparities. The TGCP model showcases its proficiency in predicting immune response efficacy, effectively distinguishes immunotherapy difference GC patients. Our findings find further confirmation in PDOX models, affirming TAP1 can enhance immunotherapy facilitated by PDL1 inhibitors. Furthermore, Oxaliplatin, by promoting TAP1 expression, augments PDL1 expression, thereby enhancing the efficacy of immunotherapy. CONCLUSIONS We constructed a TGCP model, which demonstrates satisfactory predictive accuracy. Out of 9 prognostic genes, TAP1 was validated as a synergistic target for Oxaliplatin and PDL1 inhibitors, offering a genetic-level explanation for the synergy observed in GC treatment involving Oxaliplatin in combination with PDL1 inhibitors.
Collapse
Affiliation(s)
- Yupeng Zhao
- Department of General Surgery, The Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, Wuxi, PR China; Department of General Surgery, Jiangnan University Medical Center, Wuxi, PR China
| | - Ziyuan Liu
- Department of General Surgery, The Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, Wuxi, PR China; Department of General Surgery, Jiangnan University Medical Center, Wuxi, PR China
| | - Kaiyuan Deng
- Department of General Surgery, The Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, Wuxi, PR China; Department of General Surgery, Jiangnan University Medical Center, Wuxi, PR China
| | - Huiheng Qu
- Department of General Surgery, The Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, Wuxi, PR China; Department of General Surgery, Jiangnan University Medical Center, Wuxi, PR China
| | - Qing Zhang
- Affiliated WuXi Clinical College of Nantong University, Wuxi, PR China
| | - Peng Zhou
- Department of General Surgery, The Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, Wuxi, PR China; Department of General Surgery, Jiangnan University Medical Center, Wuxi, PR China
| | - Mengqi Yang
- Department of General Surgery, The Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, Wuxi, PR China
| | - Xiao Yang
- Department of General Surgery, Jiangnan University Medical Center, Wuxi, PR China
| | - Hao Wang
- Department of General Surgery, The Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, Wuxi, PR China; Department of General Surgery, Jiangnan University Medical Center, Wuxi, PR China
| | - Ranran Li
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.
| | - Jiazeng Xia
- Department of General Surgery, The Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, Wuxi, PR China; Department of General Surgery, Jiangnan University Medical Center, Wuxi, PR China; Affiliated WuXi Clinical College of Nantong University, Wuxi, PR China.
| |
Collapse
|
7
|
Rodríguez-Martín M, Báez-Flores J, Ribes V, Isidoro-García M, Lacal J, Prieto-Matos P. Non-Mammalian Models for Understanding Neurological Defects in RASopathies. Biomedicines 2024; 12:841. [PMID: 38672195 PMCID: PMC11048513 DOI: 10.3390/biomedicines12040841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/27/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
RASopathies, a group of neurodevelopmental congenital disorders stemming from mutations in the RAS/MAPK pathway, present a unique opportunity to delve into the intricacies of complex neurological disorders. Afflicting approximately one in a thousand newborns, RASopathies manifest as abnormalities across multiple organ systems, with a pronounced impact on the central and peripheral nervous system. In the pursuit of understanding RASopathies' neurobiology and establishing phenotype-genotype relationships, in vivo non-mammalian models have emerged as indispensable tools. Species such as Danio rerio, Drosophila melanogaster, Caenorhabditis elegans, Xenopus species and Gallus gallus embryos have proven to be invaluable in shedding light on the intricate pathways implicated in RASopathies. Despite some inherent weaknesses, these genetic models offer distinct advantages over traditional rodent models, providing a holistic perspective on complex genetics, multi-organ involvement, and the interplay among various pathway components, offering insights into the pathophysiological aspects of mutations-driven symptoms. This review underscores the value of investigating the genetic basis of RASopathies for unraveling the underlying mechanisms contributing to broader neurological complexities. It also emphasizes the pivotal role of non-mammalian models in serving as a crucial preliminary step for the development of innovative therapeutic strategies.
Collapse
Affiliation(s)
- Mario Rodríguez-Martín
- Laboratory of Functional Genetics of Rare Diseases, Department of Microbiology and Genetics, University of Salamanca, 37007 Salamanca, Spain; (M.R.-M.); (J.B.-F.)
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain; (M.I.-G.); (P.P.-M.)
| | - Juan Báez-Flores
- Laboratory of Functional Genetics of Rare Diseases, Department of Microbiology and Genetics, University of Salamanca, 37007 Salamanca, Spain; (M.R.-M.); (J.B.-F.)
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain; (M.I.-G.); (P.P.-M.)
| | - Vanessa Ribes
- Institut Jacques Monod, Université Paris Cité, CNRS, F-75013 Paris, France;
| | - María Isidoro-García
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain; (M.I.-G.); (P.P.-M.)
- Clinical Biochemistry Department, Hospital Universitario de Salamanca, 37007 Salamanca, Spain
- Clinical Rare Diseases Reference Unit DiERCyL, 37007 Castilla y León, Spain
- Department of Medicine, University of Salamanca, 37007 Salamanca, Spain
| | - Jesus Lacal
- Laboratory of Functional Genetics of Rare Diseases, Department of Microbiology and Genetics, University of Salamanca, 37007 Salamanca, Spain; (M.R.-M.); (J.B.-F.)
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain; (M.I.-G.); (P.P.-M.)
| | - Pablo Prieto-Matos
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain; (M.I.-G.); (P.P.-M.)
- Clinical Rare Diseases Reference Unit DiERCyL, 37007 Castilla y León, Spain
- Department of Pediatrics, Hospital Universitario de Salamanca, 37007 Salamanca, Spain
- Department of Biomedical and Diagnostics Science, University of Salamanca, 37007 Salamanca, Spain
| |
Collapse
|
8
|
Zhang X, Meng X, Wang P, Luan C, Wang H. Bioinformatics analysis for the identification of Sprouty-related EVH1 domain-containing protein 3 expression and its clinical significance in thyroid carcinoma. Sci Rep 2024; 14:4549. [PMID: 38402263 PMCID: PMC10894204 DOI: 10.1038/s41598-024-55187-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/21/2024] [Indexed: 02/26/2024] Open
Abstract
The poorly differentiated thyroid carcinoma (THCA) subtype is associated with an aggressive disease course, a less favorable overall prognosis, and an increased risk of distant organ metastasis. In this study, our objective was to explore the potential utility of the Sprouty-related EVH1 domain-containing protein 3 (SPRED3) as a biomarker for early diagnosis and prognosis in THCA patients. The differentially expressed prognostic-related genes associated with THCA were identified by querying The Cancer Genome Atlas (TCGA) database. The difference in the expression of the SPRED3 gene between thyroid carcinoma (THCA) tissues and normal tissues was analyzed using data from The Cancer Genome Atlas (TCGA) and further validated through immunohistochemistry. Univariate and multivariate Cox regression models were used, along with clinical information from THCA patients, to analyze the prognostic value of the SPRED3 gene in THCA patients. Functional enrichment analysis was subsequently performed to elucidate the molecular mechanisms underlying the regulatory effects of the SPRED3 gene on thyroid carcinoma. Additionally, we calculated the percentage of infiltrating immune cells in THCA patients and evaluated their correlation with SPRED3 gene expression. Compared with those in noncancerous thyroid tissue, the gene and protein expression levels of SPRED3 were found to be elevated in thyroid carcinoma tissues. Furthermore, the expression of SPRED3 in thyroid carcinoma exhibited significant correlations with tumor location, histological grade, pathological stage, and tumor node metastasis classification (TNM) stage. Univariate and multivariate Cox proportional hazards (Cox) regression analyses demonstrated that SPRED3 could serve as an independent prognostic factor for predicting the overall survival of THCA patients. The results of functional enrichment analysis suggested the potential involvement of SPRED3 in the regulation of extracellular matrix organization, epidermal development, signaling receptor activator activity, skin development, receptor ligand activity, glycosaminoglycan binding, neuroactive ligand‒receptor interaction, the IL-17 signaling pathway, and the PI3K-Akt signaling pathway. Additionally, there were significant correlations between the expression level of the SPRED3 gene and the infiltration of various immune cells (eosinophils, central memory T cells, neutrophils, macrophages, and NK cells) within the thyroid tumor microenvironment. SPRED3 can be used as a prognostic biomarker in patients with THCA could potentially be therapeutic target for THCA.
Collapse
Affiliation(s)
- Xiaowei Zhang
- Department of Orthopedics, Zibo Central Hospital, No 54, Gong Qing Tuan Xi Road, Zibo, 255036, People's Republic of China
| | - Xiangwei Meng
- Department of Drug Clinical Trials, Zibo Central Hospital, Zibo, People's Republic of China
| | - Pengyun Wang
- Department of Orthopedics, Zibo Central Hospital, No 54, Gong Qing Tuan Xi Road, Zibo, 255036, People's Republic of China
| | - Chong Luan
- Department of Orthopedics, Zibo Central Hospital, No 54, Gong Qing Tuan Xi Road, Zibo, 255036, People's Republic of China.
| | - Haiming Wang
- Department of thyroid and breast surgery, Zibo Municipal Hospital, Zibo, 255400, People's Republic of China.
| |
Collapse
|
9
|
Onore ME, Caiazza M, Farina A, Scarano G, Budillon A, Borrelli RN, Limongelli G, Nigro V, Piluso G. A Novel Homozygous Loss-of-Function Variant in SPRED2 Causes Autosomal Recessive Noonan-like Syndrome. Genes (Basel) 2023; 15:32. [PMID: 38254922 PMCID: PMC10815364 DOI: 10.3390/genes15010032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/24/2024] Open
Abstract
Noonan syndrome is an autosomal dominant developmental disorder characterized by peculiar facial dysmorphisms, short stature, congenital heart defects, and hypertrophic cardiomyopathy. In 2001, PTPN11 was identified as the first Noonan syndrome gene and is responsible for the majority of Noonan syndrome cases. Over the years, several other genes involved in Noonan syndrome (KRAS, SOS1, RAF1, MAP2K1, BRAF, NRAS, RIT1, and LZTR1) have been identified, acting at different levels of the RAS-mitogen-activated protein kinase pathway. Recently, SPRED2 was recognized as a novel Noonan syndrome gene with autosomal recessive inheritance, and only four families have been described to date. Here, we report the first Italian case, a one-year-old child with left ventricular hypertrophy, moderate pulmonary valve stenosis, and atrial septal defect, with a clinical suspicion of RASopathy supported by the presence of typical Noonan-like facial features and short stature. Exome sequencing identified a novel homozygous loss-of-function variant in the exon 3 of SPRED2 (NM_181784.3:c.325del; p.Arg109Glufs*7), likely causing nonsense-mediated decay. Our results and the presented clinical data may help us to further understand and dissect the genetic heterogeneity of Noonan syndrome.
Collapse
Affiliation(s)
- Maria Elena Onore
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.E.O.); (A.F.); (A.B.); (R.N.B.); (V.N.)
| | - Martina Caiazza
- Inherited and Rare Cardiovascular Diseases Unit, Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Monaldi Hospital, 80131 Naples, Italy; (M.C.); (G.S.); (G.L.)
| | - Antonella Farina
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.E.O.); (A.F.); (A.B.); (R.N.B.); (V.N.)
| | - Gioacchino Scarano
- Inherited and Rare Cardiovascular Diseases Unit, Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Monaldi Hospital, 80131 Naples, Italy; (M.C.); (G.S.); (G.L.)
- Medical Genetics Unit, AORN “San Pio”, Hospital “G. Rummo”, 82100 Benevento, Italy
| | - Alberto Budillon
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.E.O.); (A.F.); (A.B.); (R.N.B.); (V.N.)
| | - Rossella Nicoletta Borrelli
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.E.O.); (A.F.); (A.B.); (R.N.B.); (V.N.)
| | - Giuseppe Limongelli
- Inherited and Rare Cardiovascular Diseases Unit, Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Monaldi Hospital, 80131 Naples, Italy; (M.C.); (G.S.); (G.L.)
- Institute of Cardiovascular Science, University College London and St. Bartholomew’s Hospital, London E1 4NS, UK
| | - Vincenzo Nigro
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.E.O.); (A.F.); (A.B.); (R.N.B.); (V.N.)
- Telethon Institute of Genetics and Medicine (TIGEM), 80078 Pozzuoli, Italy
| | - Giulio Piluso
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.E.O.); (A.F.); (A.B.); (R.N.B.); (V.N.)
| |
Collapse
|
10
|
Thomas NJ, Luck C, Shlimon N, Ponce RK, Kosibaty Z, Okimoto RA. Mapping chromatin state and transcriptional response in CIC-DUX4 undifferentiated round cell sarcoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.11.561932. [PMID: 37873100 PMCID: PMC10592754 DOI: 10.1101/2023.10.11.561932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
CIC-DUX4 is a rare and understudied transcription factor fusion oncoprotein. CIC-DUX4 co-opts native gene targets to drive a lethal form of human sarcoma. The molecular underpinnings that lead to oncogenic reprograming and CIC-DUX4 sarcomagenesis remain largely undefined. Through an integrative ChIP and RNA-Seq analysis using patient-derived CIC-DUX4 cells, we define CIC-DUX4 mediated chromatin states and function. We show that CIC-DUX4 primarily localizes to proximal and distal cis-regulatory elements where it associates with active histone marks. Our findings nominate key signaling pathways and molecular targets that enable CIC-DUX4 to mediate tumor cell survival. Collectively, our data demonstrate how the CIC-DUX4 fusion oncoprotein impacts chromatin state and transcriptional responses to drive an oncogenic program in undifferentiated sarcoma. Significance CIC-DUX4 sarcoma is a rare and lethal sarcoma that affects children, adolescent young adults, and adults. CIC-DUX4 sarcoma is associated with rapid metastatic dissemination and relative insensitivity to chemotherapy. There are no current standard-of-care therapies for CIC-DUX4 sarcoma leading to universally poor outcomes for patients. Through a deep mechanistic understanding of how the CIC-DUX4 fusion oncoprotein reprograms chromatin state and function, we aim to improve outcomes for CIC-DUX4 patients.
Collapse
|
11
|
Zhao P, Wang Y, Yu X, Nan Y, Liu S, Li B, Cui Z, Liu Z. Long noncoding RNA LOC646029 functions as a ceRNA to suppress ovarian cancer progression through the miR-627-3p/SPRED1 axis. Front Med 2023; 17:924-938. [PMID: 37434064 DOI: 10.1007/s11684-023-1004-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 04/27/2023] [Indexed: 07/13/2023]
Abstract
Long noncoding RNAs (lncRNAs) play a crucial regulatory role in the development and progression of multiple cancers. However, the potential mechanism by which lncRNAs affect the recurrence and metastasis of ovarian cancer remains unclear. In the current study, the lncRNA LOC646029 was markedly downregulated in metastatic ovarian tumors compared with primary tumors. Gain- and loss-of-function assays demonstrated that LOC646029 inhibits the proliferation, invasiveness, and metastasis of ovarian cancer cells in vivo and in vitro. Moreover, the downregulation of LOC646029 in metastatic ovarian tumors was strongly correlated with poor prognosis. Mechanistically, LOC646029 served as a miR-627-3p sponge to promote the expression of Sprouty-related EVH1 domain-containing protein 1, which is necessary for suppressing tumor metastasis and inhibiting KRAS signaling. Collectively, our results demonstrated that LOC646029 is involved in the progression and metastasis of ovarian cancer, which may be a potential prognostic biomarker.
Collapse
Affiliation(s)
- Pengfei Zhao
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yating Wang
- Department of Gynecological Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xiao Yu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yabing Nan
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Shi Liu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Bin Li
- Department of Gynecological Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Zhumei Cui
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China.
| | - Zhihua Liu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
12
|
Rhodes SD, McCormick F, Cagan RL, Bakker A, Staedtke V, Ly I, Steensma MR, Lee SY, Romo CG, Blakeley JO, Sarin KY. RAS Signaling Gone Awry in the Skin: The Complex Role of RAS in Cutaneous Neurofibroma Pathogenesis, Emerging Biological Insights. J Invest Dermatol 2023; 143:1358-1368. [PMID: 37245145 PMCID: PMC10409534 DOI: 10.1016/j.jid.2023.01.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 01/13/2023] [Accepted: 01/20/2023] [Indexed: 05/29/2023]
Abstract
Cutaneous neurofibromas (cNFs) are the most common tumor in people with the rasopathy neurofibromatosis type 1. They number in hundreds or even thousands throughout the body, and currently, there are no effective interventions to prevent or treat these skin tumors. To facilitate the identification of novel and effective therapies, essential studies including a more refined understanding of cNF biology and the role of RAS signaling and downstream effector pathways responsible for cNF initiation, growth, and maintenance are needed. This review highlights the current state of knowledge of RAS signaling in cNF pathogenesis and therapeutic development for cNF treatment.
Collapse
Affiliation(s)
- Steven D Rhodes
- Division of Hematology-Oncology, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA; Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, USA; Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA; Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Frank McCormick
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California, USA; Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Ross L Cagan
- School of Cancer Sciences, University of Glasgow, Glasgow, Scotland
| | | | - Verena Staedtke
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ina Ly
- Stephen E. and Catherine Pappas Center for Neuro-Oncology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Matthew R Steensma
- Center for Cancer and Cell Biology, Van Andel Research Institute, Grand Rapids, Michigan, USA; Helen DeVos Children's Hospital, Spectrum Health System, Grand Rapids, Michigan, USA; College of Human Medicine, Michigan State University, Grand Rapids, Michigan, USA
| | - Sang Y Lee
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Carlos G Romo
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jaishri O Blakeley
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kavita Y Sarin
- Department of Dermatology, Stanford University School of Medicine, Stanford, California, USA.
| |
Collapse
|
13
|
Tooze RS, Calpena E, Twigg SRF, D'Arco F, Wakeling EL, Wilkie AOM. Craniosynostosis, inner ear, and renal anomalies in a child with complete loss of SPRY1 (sprouty homolog 1) function. J Med Genet 2023; 60:712-716. [PMID: 36543535 PMCID: PMC10359576 DOI: 10.1136/jmg-2022-108946] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/11/2022] [Indexed: 12/24/2022]
Abstract
INTRODUCTION SPRY1 encodes protein sprouty homolog 1 (Spry-1), a negative regulator of receptor tyrosine kinase signalling. Null mutant mice display kidney/urinary tract abnormalities and altered size of the skull; complete loss-of-function of Spry-1 in humans has not been reported. METHODS Analysis of whole-genome sequencing data from individuals with craniosynostosis enrolled in the 100,000 Genomes Project identified a likely pathogenic variant within SPRY1. Reverse-transcriptase PCR and western blot analysis were used to investigate the effect of the variant on SPRY1 mRNA and protein, in lymphoblastoid cell lines from the patient and both parents. RESULTS A nonsense variant in SPRY1, encoding p.(Leu27*), was confirmed to be heterozygous in the unaffected parents and homozygous in the child. The child's phenotype, which included sagittal craniosynostosis, subcutaneous cystic lesions overlying the lambdoid sutures, hearing loss associated with bilateral cochlear and vestibular dysplasia and a unilateral renal cyst, overlapped the features reported in Spry1-/- null mice. Functional studies supported escape from nonsense-mediated decay, but western blot analysis demonstrated complete absence of full-length protein in the affected child and a marked reduction in both parents. CONCLUSION This is the first report of complete loss of Spry-1 function in humans, associated with abnormalities of the cranial sutures, inner ear, and kidneys.
Collapse
Affiliation(s)
- Rebecca S Tooze
- Clinical Genetics Group, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Eduardo Calpena
- Clinical Genetics Group, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Stephen R F Twigg
- Clinical Genetics Group, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Felice D'Arco
- Department of Radiology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Emma L Wakeling
- North East Thames Regional Genetics Service, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Andrew O M Wilkie
- Clinical Genetics Group, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
14
|
Lopez J, Bonsor DA, Sale MJ, Urisman A, Mehalko JL, Cabanski-Dunning M, Castel P, Simanshu DK, McCormick F. The Ribosomal S6 Kinase 2 (RSK2)-SPRED2 complex regulates phosphorylation of RSK substrates and MAPK signaling. J Biol Chem 2023:104789. [PMID: 37149146 DOI: 10.1016/j.jbc.2023.104789] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/08/2023] Open
Abstract
Sprouty-related EVH-1 domain-containing (SPRED) proteins are a family of proteins that negatively regulate the RAS-MAPK pathway, which is involved in the regulation of the mitogenic response and cell proliferation. However, the mechanism by which these proteins affect RAS-MAPK signaling has not been fully elucidated. Patients with mutations in SPRED give rise to unique disease phenotypes, thus we hypothesized that distinct interactions across SPRED proteins may account for alternative nodes of regulation. To characterize the SPRED interactome and evaluate how members of the SPRED family function through unique binding partners, here we performed affinity purification mass spectrometry. We identified 90-kDa ribosomal S6 kinase 2 (RSK2) as a specific interactor of SPRED2, but not SPRED1 or SPRED3. We identified that the N-terminal kinase domain of RSK2 mediates interaction between amino acids 123-201 of SPRED2. Using X-ray crystallography, we determined the structure of the SPRED2-RSK2 complex and identified the SPRED2 motif, F145A, as critical for interaction. Additionally, we found that formation of this interaction is regulated by MAPK signaling events. We also find that that this interaction between SPRED2 and RSK2 has functional consequences, whereby knockdown of SPRED2 resulted in increased phosphorylation of RSK substrates, YB1 and CREB. Furthermore, SPRED2 knockdown hindered phospho-RSK membrane and nuclear subcellular localization. Lastly, we report that disruption of the SPRED2-RSK complex has effects on RAS-MAPK signaling dynamics. Overall, our analysis reveals that members of the SPRED family have unique protein binding partners and describes the molecular and functional determinants of SPRED2-RSK2 complex dynamics.
Collapse
Affiliation(s)
- Jocelyne Lopez
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, 1450 3rd Street, San Francisco, CA 94158, USA
| | - Daniel A Bonsor
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Matthew J Sale
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, 1450 3rd Street, San Francisco, CA 94158, USA
| | - Anatoly Urisman
- Department of Pathology, University of California, San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Jennifer L Mehalko
- Protein Expression Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc. PO Box B, Frederick, MD 21702, United States
| | - Miranda Cabanski-Dunning
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, 1450 3rd Street, San Francisco, CA 94158, USA
| | - Pau Castel
- Department of Biochemistry and Molecular Pharmacology, New York University, 450 E 29(th) Street, New York, NY 10016, USA
| | - Dhirendra K Simanshu
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Frank McCormick
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, 1450 3rd Street, San Francisco, CA 94158, USA.
| |
Collapse
|
15
|
Liu Y, Fan X, Jiang C, Xu S. SPOCK2 and SPRED1 function downstream of EZH2 to impede the malignant progression of lung adenocarcinoma in vitro and in vivo. Hum Cell 2023; 36:812-821. [PMID: 36629984 PMCID: PMC9832413 DOI: 10.1007/s13577-023-00855-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 01/06/2023] [Indexed: 01/12/2023]
Abstract
Enhancer of zeste homolog 2 (EZH2) is an important epigenetic regulator, and is associated with the malignant progression of lung cancer. However, the mechanisms of EZH2 on lung adenocarcinoma (LUAD) remain unclear. The relationship between EZH2 and SPOCK2 or SPRED1 was confirmed by dual-luciferase reporter assay. The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases were analyzed to examine the expression of SPOCK2 and SPRED1 and their prognostic values of LUAD. The effects of SPOCK2 and SPRED1 on the biological characters of LUAD cells were identified on functional assays in vitro and in vivo. Our results showed that EZH2 suppressed the expression and transcriptional activity of SPOCK2 and SPRED1, and these effects were reversed by the EZH2 inhibitor, Tazemetostat. SPOCK2 and SPRED1 were expressed at low levels in LUAD patients, and a high expression level of SPOCK2 or SPRED1 predicted better survival. Moreover, overexpression of SPOCK2 or SPRED1 could inhibit tumoral proliferation, migration ratio, and invasion activity in vitro as well as retard tumor growth in vivo. However, EZH2 elevation could rescue these impacts and accelerate LUAD progression. Our findings reveal that SPOCK2 and SPRED1 are epigenetically suppressed by EZH2 and may act as novel regulators to inhibit the proliferation, migration, and invasion of LUAD cells.
Collapse
Affiliation(s)
- Yang Liu
- Department of Thoracic Surgery, The First Hospital of China Medical University, No. 155, Nanjing North Street, Shenyang, Liaoning, China
| | - Xiaoxi Fan
- Department of Thoracic Surgery, The First Hospital of China Medical University, No. 155, Nanjing North Street, Shenyang, Liaoning, China
| | - Changrui Jiang
- Department of Thoracic Surgery, The First Hospital of China Medical University, No. 155, Nanjing North Street, Shenyang, Liaoning, China
| | - Shun Xu
- Department of Thoracic Surgery, The First Hospital of China Medical University, No. 155, Nanjing North Street, Shenyang, Liaoning, China.
| |
Collapse
|
16
|
Tartaglia M, Aoki Y, Gelb BD. The molecular genetics of RASopathies: An update on novel disease genes and new disorders. AMERICAN JOURNAL OF MEDICAL GENETICS. PART C, SEMINARS IN MEDICAL GENETICS 2022; 190:425-439. [PMID: 36394128 PMCID: PMC10100036 DOI: 10.1002/ajmg.c.32012] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/31/2022] [Accepted: 11/05/2022] [Indexed: 11/18/2022]
Abstract
Enhanced signaling through RAS and the mitogen-associated protein kinase (MAPK) cascade underlies the RASopathies, a family of clinically related disorders affecting development and growth. In RASopathies, increased RAS-MAPK signaling can result from the upregulated activity of various RAS GTPases, enhanced function of proteins positively controlling RAS function or favoring the efficient transmission of RAS signaling to downstream transducers, functional upregulation of RAS effectors belonging to the MAPK cascade, or inefficient signaling switch-off operated by feedback mechanisms acting at different levels. The massive effort in RASopathy gene discovery performed in the last 20 years has identified more than 20 genes implicated in these disorders. It has also facilitated the characterization of several molecular activating mechanisms that had remained unappreciated due to their minor impact in oncogenesis. Here, we provide an overview on the discoveries collected during the last 5 years that have delivered unexpected insights (e.g., Noonan syndrome as a recessive disease) and allowed to profile new RASopathies, novel disease genes and new molecular circuits contributing to the control of RAS-MAPK signaling.
Collapse
Affiliation(s)
- Marco Tartaglia
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Yoko Aoki
- Department of Medical Genetics, Tohoku University School of Medicine, Sendai, Japan
| | - Bruce D Gelb
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Department of Pediatrics and Genetics, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Department of Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
17
|
Chłopek M, Lasota J, Thompson LDR, Szczepaniak M, Kuźniacka A, Hińcza K, Kubicka K, Kaczorowski M, Newford M, Liu Y, Agaimy A, Biernat W, Durzyńska M, Dziuba I, Hartmann A, Inaguma S, Iżycka-Świeszewska E, Kato H, Kopczyński J, Michal M, Michal M, Pęksa R, Prochorec-Sobieszek M, Starzyńska A, Takahashi S, Wasąg B, Kowalik A, Miettinen M. Alterations in key signaling pathways in sinonasal tract melanoma. A molecular genetics and immunohistochemical study of 90 cases and comprehensive review of the literature. Mod Pathol 2022; 35:1609-1617. [PMID: 35978013 DOI: 10.1038/s41379-022-01122-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/01/2022] [Accepted: 06/01/2022] [Indexed: 11/09/2022]
Abstract
Sinonasal mucosal melanoma is a rare tumor arising within the nasal cavity, paranasal sinuses, or nasopharynx (sinonasal tract). This study evaluated 90 cases diagnosed in 29 males and 61 females with median age 68 years. Most tumors involved the nasal cavity and had an epithelioid morphology. Spectrum of research techniques used in this analysis includes targeted-DNA and -RNA next-generation sequencing, Sanger sequencing, fluorescence in situ hybridization and immunohistochemistry. Sinonasal melanomas were commonly driven by RAS (38/90, 42%), especially NRAS (n = 36) mutations and rarely (4/90, 4%) displayed BRAF pathogenic variants. BRAF/RAS mutants were more frequent among paranasal sinuses (10/14, 71%) than nasal (26/64, 41%) tumors. BRAF/RAS-wild type tumors occasionally harbored alterations of the key components and regulators of Ras-MAPK signaling pathway: NF1 mutations (1/17, 6%) or NF1 locus deletions (1/25, 4%), SPRED1 (3/25, 12%), PIK3CA (3/50, 6%), PTEN (4/50, 8%) and mTOR (1/50, 2%) mutations. These mutations often occurred in a mutually exclusive manner. In several tumors some of which were NRAS mutants, TP53 was deleted (6/48, 13%) and/or mutated (5/90, 6%). Variable nuclear accumulation of TP53, mirrored by elevated nuclear MDM2 expression was seen in >50% of cases. Furthermore, sinonasal melanomas (n = 7) including RAS/BRAF-wild type tumors (n = 5) harbored alterations of the key components and regulators of canonical WNT-pathway: APC (4/90, 4%), CTNNB1 (3/90, 3%) and AMER1 (1/90, 1%). Both, TERT promoter mutations (5/53, 9%) and fusions (2/40, 5%) were identified. The latter occurred in BRAF/RAS-wild type tumors. No oncogenic fusion gene transcripts previously reported in cutaneous melanomas were detected. Eight tumors including 7 BRAF/RAS-wild type cases expressed ADCK4::NUMBL cis-fusion transcripts. In summary, this study documented mutational activation of NRAS and other key components and regulators of Ras-MAPK signaling pathway such as SPRED1 in a majority of sinonasal melanomas.
Collapse
Affiliation(s)
- Małgorzata Chłopek
- Laboratory of Pathology, National Cancer Institute, Bethesda, MD, USA.,Molecular Diagnostics, Holycross Cancer Center, Kielce, Poland
| | - Jerzy Lasota
- Laboratory of Pathology, National Cancer Institute, Bethesda, MD, USA.
| | | | | | - Alina Kuźniacka
- Department of Biology and Genetics, Medical University of Gdańsk, Gdańsk, Poland
| | - Kinga Hińcza
- Molecular Diagnostics, Holycross Cancer Center, Kielce, Poland
| | - Kamila Kubicka
- Molecular Diagnostics, Holycross Cancer Center, Kielce, Poland
| | - Maciej Kaczorowski
- Laboratory of Pathology, National Cancer Institute, Bethesda, MD, USA.,Department of Clinical and Experimental Pathology, Wrocław Medical University, Wrocław, Poland
| | - Michael Newford
- Laboratory of Pathology, National Cancer Institute, Bethesda, MD, USA
| | - Yalan Liu
- Laboratory of Pathology, National Cancer Institute, Bethesda, MD, USA
| | - Abbas Agaimy
- Institute of Pathology, University Hospital of Erlangen, Erlangen, Germany
| | - Wojciech Biernat
- Department of Pathomorphology, Medical University of Gdańsk, Gdańsk, Poland
| | - Monika Durzyńska
- Department of Pathology, The Maria Skłodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Ireneusz Dziuba
- Faculty of Medicine, University of Technology, Katowice, Poland
| | - Arndt Hartmann
- Institute of Pathology, University Hospital of Erlangen, Erlangen, Germany
| | - Shingo Inaguma
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Mizuho-cho, Mizuho-ku, Nagoya, Japan
| | - Ewa Iżycka-Świeszewska
- Department of Pathology and Neuropathology, Medical University of Gdańsk, Gdańsk, Poland
| | - Hiroyuki Kato
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Mizuho-cho, Mizuho-ku, Nagoya, Japan
| | - Janusz Kopczyński
- Department of Surgical Pathology, Holycross Cancer Center, Kielce, Poland
| | - Michal Michal
- Sikl's Department of Pathology, University Hospital, Charles University in Prague, Medical Faculty in Plzeň, Plzeň, Czech Republic
| | - Michael Michal
- Sikl's Department of Pathology, University Hospital, Charles University in Prague, Medical Faculty in Plzeň, Plzeň, Czech Republic
| | - Rafał Pęksa
- Department of Pathomorphology, Medical University of Gdańsk, Gdańsk, Poland
| | - Monika Prochorec-Sobieszek
- Department of Pathology, The Maria Skłodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Anna Starzyńska
- Department of Oral Surgery, Medical University of Gdańsk, Gdańsk, Poland
| | - Satoru Takahashi
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Mizuho-cho, Mizuho-ku, Nagoya, Japan
| | - Bartosz Wasąg
- Department of Biology and Genetics, Medical University of Gdańsk, Gdańsk, Poland
| | - Artur Kowalik
- Molecular Diagnostics, Holycross Cancer Center, Kielce, Poland.,Division of Medical Biology, Institute of Biology Jan Kochanowski University, Kielce, Poland
| | - Markku Miettinen
- Laboratory of Pathology, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
18
|
Pudewell S, Lissy J, Nakhaeizadeh H, Mosaddeghzadeh N, Nakhaei-Rad S, Dvorsky R, Ahmadian MR. New mechanistic insights into the RAS-SIN1 interaction at the membrane. Front Cell Dev Biol 2022; 10:987754. [PMID: 36274845 PMCID: PMC9583166 DOI: 10.3389/fcell.2022.987754] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Stress-activated MAP kinase-interacting protein 1 (SIN1) is a central member of the mTORC2 complex that contains an N-terminal domain (NTD), a conserved region in the middle (CRIM), a RAS-binding domain (RBD), and a pleckstrin homology domain. Recent studies provided valuable structural and functional insights into the interactions of SIN1 and the RAS-binding domain of RAS proteins. However, the mechanism for a reciprocal interaction of the RBD-PH tandem with RAS proteins and the membrane as an upstream event to spatiotemporal mTORC2 regulation is not clear. The biochemical assays in this study led to the following results: 1) all classical RAS paralogs, including HRAS, KRAS4A, KRAS4B, and NRAS, can bind to SIN1-RBD in biophysical and SIN1 full length (FL) in cell biology experiments; 2) the SIN1-PH domain modulates interactions with various types of membrane phosphoinositides and constantly maintains a pool of SIN1 at the membrane; and 3) a KRAS4A-dependent decrease in membrane binding of the SIN1-RBD-PH tandem was observed, suggesting for the first time a mechanistic influence of KRAS4A on SIN1 membrane association. Our study strengthens the current mechanistic understanding of SIN1-RAS interaction and suggests membrane interaction as a key event in the control of mTORC2-dependent and mTORC2-independent SIN1 function.
Collapse
Affiliation(s)
- Silke Pudewell
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Jana Lissy
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Hossein Nakhaeizadeh
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Niloufar Mosaddeghzadeh
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Saeideh Nakhaei-Rad
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Stem Cell Biology and Regenerative Medicine Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Radovan Dvorsky
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Center for Interdisciplinary Biosciences, P. J. Šafárik University, Košice, Slovakia
| | - Mohammad R. Ahmadian
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- *Correspondence: Mohammad R. Ahmadian,
| |
Collapse
|
19
|
Li M, Wang Y, Fan J, Zhuang H, Liu Y, Ji D, Lu S. Mechanistic Insights into the Long-range Allosteric Regulation of KRAS Via Neurofibromatosis Type 1 (NF1) Scaffold Upon SPRED1 Loading. J Mol Biol 2022; 434:167730. [PMID: 35872068 DOI: 10.1016/j.jmb.2022.167730] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/22/2022] [Accepted: 07/08/2022] [Indexed: 01/17/2023]
Abstract
Allosteric regulation is the most direct and efficient way of regulating protein function, wherein proteins transmit the perturbations at one site to another distinct functional site. Deciphering the mechanism of allosteric regulation is of vital importance for the comprehension of both physiological and pathological events in vivo as well as the rational allosteric drug design. However, it remains challenging to elucidate dominant allosteric signal transduction pathways, especially for large and multi-component protein machineries where long-range allosteric regulation exits. One of the quintessential examples having long-range allosteric regulation is the ternary complex, SPRED1-RAS-neurofibromin type 1 (NF1, a RAS GTPase-activating protein), in which SPRED1 facilitates RAS-GTP hydrolysis by interacting with NF1 at a distal, allosteric site from the RAS binding site. To address the underlying mechanism, we performed extensive Gaussian accelerated molecular dynamics simulations and Markov state model analysis of KRAS-NF1 complex in the presence and absence of SPRED1. Our findings suggested that SPRED1 loading allosterically enhanced KRAS-NF1 binding, but hindered conformational transformation of the NF1 catalytic center for RAS hydrolysis. Moreover, we unveiled the possible allosteric pathways upon SPRED1 binding through difference contact network analysis. This study not only provided an in-depth mechanistic insight into the allosteric regulation of KRAS by SPRED1, but also shed light on the investigation of long-range allosteric regulation among complex macromolecular systems.
Collapse
Affiliation(s)
- Minyu Li
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China
| | - Yuanhao Wang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China
| | - Jigang Fan
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China
| | - Haiming Zhuang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China
| | - Yaqin Liu
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China
| | - Dong Ji
- Department of Anesthesiology, Changhai Hospital, Navy Medical University, Shanghai 200433, China.
| | - Shaoyong Lu
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China; Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China.
| |
Collapse
|
20
|
Shi L, Guo R, Chen Z, Jiao R, Zhang S, Xiong X. Analysis of immune related gene expression profiles and immune cell components in patients with Barrett esophagus. Sci Rep 2022; 12:9209. [PMID: 35654816 PMCID: PMC9163054 DOI: 10.1038/s41598-022-13200-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 05/23/2022] [Indexed: 12/02/2022] Open
Abstract
Barrett's esophagus (BE) is a well-known precancerous condition of esophageal adenocarcinoma. However, the immune cells and immune related genes involved in BE development and progression are not fully understood. Therefore, our study attempted to investigate the roles of immune cells and immune related genes in BE patients. The raw gene expression data were downloaded from the GEO database. The limma package in R was used to screen differentially expressed genes (DEGs). Then we performed the least absolute shrinkage and selection operator (LASSO) and random forest (RF) analyses to screen key genes. The proportion of infiltrated immune cells was evaluated using the CIBERSORT algorithm between BE and normal esophagus (NE) samples. The spearman index was used to show the correlations of immune genes and immune cells. Receiver operating characteristic (ROC) curves were used to assess the diagnostic value of key genes in BE. A total of 103 differentially expressed immune-related genes were identified between BE samples and normal samples. Then, 7 genes (CD1A, LTF, FABP4, PGC, TCF7L2, INSR,SEMA3C) were obtained after Lasso analysis and RF modeling. CIBERSORT analysis revealed that resting CD4 T memory cells and gamma delta T cells were present at significantly lower levels in BE samples. Moreover, plasma cell and regulatory T cells were present at significantly higher levels in BE samples than in NE samples. INSR had the highest AUC values in ROC analysis. We identified 7 immune related genes and 4 different immune cells in our study, that may play vital roles in the occurrence and development of BE. Our findings improve the understanding of the molecular mechanisms of BE.
Collapse
Affiliation(s)
- Lin Shi
- Department of Gastroenterology, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
| | - Renwei Guo
- Department of Gastroenterology, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
| | - Zhuo Chen
- Department of Gastroenterology, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
| | - Ruonan Jiao
- Department of Gastroenterology, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
| | - Shuangshuang Zhang
- Department of Gastroenterology, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
| | - Xuanxuan Xiong
- Department of Gastroenterology, Xuzhou Central Hospital, Xuzhou, Jiangsu, China.
| |
Collapse
|
21
|
miR-126-5p affects the chemosensitivity of colorectal cancer cells by regulating SPRED1, ERK1/2 pathway and apoptosis. Genes Dis 2022. [DOI: 10.1016/j.gendis.2022.05.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
22
|
Diehl JN, Hibshman PS, Ozkan-Dagliyan I, Goodwin CM, Howard SV, Cox AD, Der CJ. Targeting the ERK mitogen-activated protein kinase cascade for the treatment of KRAS-mutant pancreatic cancer. Adv Cancer Res 2022; 153:101-130. [PMID: 35101228 DOI: 10.1016/bs.acr.2021.07.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Mutational activation of the KRAS oncogene is found in ~95% of pancreatic ductal adenocarcinoma (PDAC), the major form of pancreatic cancer. With substantial experimental evidence that continued aberrant KRAS function is essential for the maintenance of PDAC tumorigenic growth, the National Cancer Institute has identified the development of effective anti-KRAS therapies as one of four major initiatives for pancreatic cancer research. The recent clinical success in the development of an anti-KRAS therapy targeting one specific KRAS mutant (G12C) supports the significant potential impact of anti-KRAS therapies. However, KRASG12C mutations comprise only 2% of KRAS mutations in PDAC. Thus, there remains a dire need for additional therapeutic approaches for targeting the majority of KRAS-mutant PDAC. Among the different directions currently being pursued for anti-KRAS drug development, one of the most promising involves inhibitors of the key KRAS effector pathway, the three-tiered RAF-MEK-ERK mitogen-activated protein kinase (MAPK) cascade. We address the promises and challenges of targeting ERK MAPK signaling as an anti-KRAS therapy for PDAC. In particular, we also summarize the key role of the MYC transcription factor and oncoprotein in supporting ERK-dependent growth of KRAS-mutant PDAC.
Collapse
Affiliation(s)
- J Nathaniel Diehl
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Priya S Hibshman
- Cell Biology and Physiology Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Irem Ozkan-Dagliyan
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Craig M Goodwin
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Sarah V Howard
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Adrienne D Cox
- Cell Biology and Physiology Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; Department of Radiation Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Channing J Der
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; Cell Biology and Physiology Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.
| |
Collapse
|
23
|
Qiao J, Liang C, Zhao D, Nguyen LXT, Chen F, Suo S, Hoang DH, Pellicano F, Rodriguez IR, Elhajmoussa Y, Ghoda L, Yoshimura A, Stein AS, Ali H, Koller P, Perrotti D, Copland M, Han A, Zhang BA, Marcucci G. Spred1 deficit promotes treatment resistance and transformation of chronic phase CML. Leukemia 2022; 36:492-506. [PMID: 34564700 PMCID: PMC9134843 DOI: 10.1038/s41375-021-01423-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 08/31/2021] [Accepted: 09/13/2021] [Indexed: 11/09/2022]
Abstract
Spred1 is highly expressed in normal hematopoietic stem cells (HSCs). Lack of Spred1 function has been associated with aberrant hematopoiesis and acute leukemias. In chronic myelogenous leukemia (CML), Spred1 is reduced in patients with accelerated phase (AP) or blast crisis (BC) CML, thereby suggesting that deficit of this protein may contribute to disease transformation. In fact, Spred1 knockout (KO) in SCLtTA/BCR-ABL CML mice either globally, or restricted to hematopoietic cells (i.e., HSCs) or to endothelial cells (ECs), led to transformation of chronic phase (CP) CML into AP/BC CML. Upon BCR-ABL induction, all three Spred1 KO CML models showed AP/BC features. However, compared with global Spred1 KO, the AP/BC phenotypes of HSC-Spred1 KO and EC-Spred1 KO CML models were attenuated, suggesting a concurrent contribution of Spred1 deficit in multiple compartments of the leukemic bone marrow niche to the CML transformation. Spred1 KO, regardless if occurred in HSCs or in ECs, increased miR-126 in LSKs (Lin-Sca-1+c-Kit+), a population enriched in leukemic stem cells (LSCs), resulting in expansion of LSCs, likely through hyperactivation of the MAPK/ERK pathway that augmented Bcl-2 expression and stability. This ultimately led to enhancement of Bcl-2-dependent oxidative phosphorylation that supported homeostasis, survival and activity of LSCs and drove AP/BC transformation.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Adaptor Proteins, Signal Transducing/physiology
- Animals
- Cell Transformation, Neoplastic/drug effects
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/pathology
- Drug Resistance, Neoplasm
- Gene Expression Regulation, Leukemic
- Hematopoietic Stem Cells/drug effects
- Hematopoietic Stem Cells/metabolism
- Hematopoietic Stem Cells/pathology
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Neoplastic Stem Cells/drug effects
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/pathology
- Protein Kinase Inhibitors/pharmacology
Collapse
Affiliation(s)
- Junjing Qiao
- Department of Pathology, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, P. R. China
- Department of Hematological Malignancies Translational Science, Gehr Family Center for Leukemia Research, City of Hope Medical Center and Beckman Research Institute, Duarte, CA, USA
- Phase I Clinical Research Center, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan, P. R. China
| | - Chen Liang
- Department of Hematological Malignancies Translational Science, Gehr Family Center for Leukemia Research, City of Hope Medical Center and Beckman Research Institute, Duarte, CA, USA
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, P. R. China
| | - Dandan Zhao
- Department of Hematological Malignancies Translational Science, Gehr Family Center for Leukemia Research, City of Hope Medical Center and Beckman Research Institute, Duarte, CA, USA
| | - Le Xuan Truong Nguyen
- Department of Hematological Malignancies Translational Science, Gehr Family Center for Leukemia Research, City of Hope Medical Center and Beckman Research Institute, Duarte, CA, USA
| | - Fang Chen
- Department of Hematological Malignancies Translational Science, Gehr Family Center for Leukemia Research, City of Hope Medical Center and Beckman Research Institute, Duarte, CA, USA
| | - Shanshan Suo
- Department of Hematological Malignancies Translational Science, Gehr Family Center for Leukemia Research, City of Hope Medical Center and Beckman Research Institute, Duarte, CA, USA
- Department of Hematology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, P. R. China
| | - Dinh Hoa Hoang
- Department of Hematological Malignancies Translational Science, Gehr Family Center for Leukemia Research, City of Hope Medical Center and Beckman Research Institute, Duarte, CA, USA
| | - Francesca Pellicano
- Paul O' Gorman Leukemia Research Centre, College of Medical, Veterinary and Life Sciences, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Ivan Rodriguez Rodriguez
- Department of Hematological Malignancies Translational Science, Gehr Family Center for Leukemia Research, City of Hope Medical Center and Beckman Research Institute, Duarte, CA, USA
| | - Yasmin Elhajmoussa
- Department of Hematological Malignancies Translational Science, Gehr Family Center for Leukemia Research, City of Hope Medical Center and Beckman Research Institute, Duarte, CA, USA
| | - Lucy Ghoda
- Department of Hematological Malignancies Translational Science, Gehr Family Center for Leukemia Research, City of Hope Medical Center and Beckman Research Institute, Duarte, CA, USA
| | - Akihiko Yoshimura
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Anthony S Stein
- Department of Hematological Malignancies Translational Science, Gehr Family Center for Leukemia Research, City of Hope Medical Center and Beckman Research Institute, Duarte, CA, USA
| | - Haris Ali
- Department of Hematological Malignancies Translational Science, Gehr Family Center for Leukemia Research, City of Hope Medical Center and Beckman Research Institute, Duarte, CA, USA
| | - Paul Koller
- Department of Hematological Malignancies Translational Science, Gehr Family Center for Leukemia Research, City of Hope Medical Center and Beckman Research Institute, Duarte, CA, USA
| | | | - Mhairi Copland
- Paul O' Gorman Leukemia Research Centre, College of Medical, Veterinary and Life Sciences, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Anjia Han
- Department of Pathology, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, P. R. China.
| | - Bin Amber Zhang
- Department of Hematological Malignancies Translational Science, Gehr Family Center for Leukemia Research, City of Hope Medical Center and Beckman Research Institute, Duarte, CA, USA.
| | - Guido Marcucci
- Department of Hematological Malignancies Translational Science, Gehr Family Center for Leukemia Research, City of Hope Medical Center and Beckman Research Institute, Duarte, CA, USA.
| |
Collapse
|
24
|
Kehrer-Sawatzki H, Cooper DN. Challenges in the diagnosis of neurofibromatosis type 1 (NF1) in young children facilitated by means of revised diagnostic criteria including genetic testing for pathogenic NF1 gene variants. Hum Genet 2021; 141:177-191. [PMID: 34928431 PMCID: PMC8807470 DOI: 10.1007/s00439-021-02410-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/03/2021] [Indexed: 12/21/2022]
Abstract
Neurofibromatosis type 1 (NF1) is the most frequent disorder associated with multiple café-au-lait macules (CALM) which may either be present at birth or appear during the first year of life. Other NF1-associated features such as skin-fold freckling and Lisch nodules occur later during childhood whereas dermal neurofibromas are rare in young children and usually only arise during early adulthood. The NIH clinical diagnostic criteria for NF1, established in 1988, include the most common NF1-associated features. Since many of these features are age-dependent, arriving at a definitive diagnosis of NF1 by employing these criteria may not be possible in infancy if CALM are the only clinical feature evident. Indeed, approximately 46% of patients who are diagnosed with NF1 later in life do not meet the NIH diagnostic criteria by the age of 1 year. Further, the 1988 diagnostic criteria for NF1 are not specific enough to distinguish NF1 from other related disorders such as Legius syndrome. In this review, we outline the challenges faced in diagnosing NF1 in young children, and evaluate the utility of the recently revised (2021) diagnostic criteria for NF1, which include the presence of pathogenic variants in the NF1 gene and choroidal anomalies, for achieving an early and accurate diagnosis.
Collapse
Affiliation(s)
- Hildegard Kehrer-Sawatzki
- Institute of Human Genetics, University Hospital Ulm, University of Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Germany.
| | - David N Cooper
- Institute of Medical Genetics, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK
| |
Collapse
|
25
|
Motta M, Fasano G, Gredy S, Brinkmann J, Bonnard AA, Simsek-Kiper PO, Gulec EY, Essaddam L, Utine GE, Guarnetti Prandi I, Venditti M, Pantaleoni F, Radio FC, Ciolfi A, Petrini S, Consoli F, Vignal C, Hepbasli D, Ullrich M, de Boer E, Vissers LELM, Gritli S, Rossi C, De Luca A, Ben Becher S, Gelb BD, Dallapiccola B, Lauri A, Chillemi G, Schuh K, Cavé H, Zenker M, Tartaglia M. SPRED2 loss-of-function causes a recessive Noonan syndrome-like phenotype. Am J Hum Genet 2021; 108:2112-2129. [PMID: 34626534 DOI: 10.1016/j.ajhg.2021.09.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 09/14/2021] [Indexed: 12/16/2022] Open
Abstract
Upregulated signal flow through RAS and the mitogen-associated protein kinase (MAPK) cascade is the unifying mechanistic theme of the RASopathies, a family of disorders affecting development and growth. Pathogenic variants in more than 20 genes have been causally linked to RASopathies, the majority having a dominant role in promoting enhanced signaling. Here, we report that SPRED2 loss of function is causally linked to a recessive phenotype evocative of Noonan syndrome. Homozygosity for three different variants-c.187C>T (p.Arg63∗), c.299T>C (p.Leu100Pro), and c.1142_1143delTT (p.Leu381Hisfs∗95)-were identified in four subjects from three families. All variants severely affected protein stability, causing accelerated degradation, and variably perturbed SPRED2 functional behavior. When overexpressed in cells, all variants were unable to negatively modulate EGF-promoted RAF1, MEK, and ERK phosphorylation, and time-course experiments in primary fibroblasts (p.Leu100Pro and p.Leu381Hisfs∗95) documented an increased and prolonged activation of the MAPK cascade in response to EGF stimulation. Morpholino-mediated knockdown of spred2a and spred2b in zebrafish induced defects in convergence and extension cell movements indicating upregulated RAS-MAPK signaling, which were rescued by expressing wild-type SPRED2 but not the SPRED2Leu381Hisfs∗95 protein. The clinical phenotype of the four affected individuals included developmental delay, intellectual disability, cardiac defects, short stature, skeletal anomalies, and a typical facial gestalt as major features, without the occurrence of the distinctive skin signs characterizing Legius syndrome. These features, in part, characterize the phenotype of Spred2-/- mice. Our findings identify the second recessive form of Noonan syndrome and document pleiotropic consequences of SPRED2 loss of function in development.
Collapse
Affiliation(s)
- Marialetizia Motta
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Giulia Fasano
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Sina Gredy
- Institute of Physiology, University of Wuerzburg, 97070 Wuerzburg, Germany
| | - Julia Brinkmann
- Institute of Human Genetics, University Hospital Magdeburg, 39120 Magdeburg, Germany
| | - Adeline Alice Bonnard
- Assistance Publique des Hôpitaux de Paris (AP-HP), Hôpital Robert Debré, Département de Génétique, 75019 Paris, France; INSERM UMR 1131, Institut de Recherche Saint-Louis, Université de Paris, Paris, France
| | - Pelin Ozlem Simsek-Kiper
- Department of Pediatric Genetics, Hacettepe University Faculty of Medicine, Sihhiye, 06100 Ankara, Turkey
| | - Elif Yilmaz Gulec
- Department of Medical Genetics, Health Sciences University, Istanbul Kanuni Sultan Suleyman Training and Research Hospital, 34303 Istanbul, Turkey
| | - Leila Essaddam
- Department of Pediatrics-PUC, Béchir Hamza Children's Hospital, Faculty of Medicine, University of Tunis El Manar, Jebbari 1007, Tunis, Tunisia
| | - Gulen Eda Utine
- Department of Pediatric Genetics, Hacettepe University Faculty of Medicine, Sihhiye, 06100 Ankara, Turkey
| | - Ingrid Guarnetti Prandi
- Dipartimento per la Innovazione nei Sistemi Biologici, Agroalimentari e Forestali, Università Della Tuscia, 01100 Viterbo, Italy
| | - Martina Venditti
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Francesca Pantaleoni
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Francesca Clementina Radio
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Andrea Ciolfi
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Stefania Petrini
- Confocal Microscopy Core Facility, Ospedale Pediatrico Bambino Gesù, 00146 Rome, Italy
| | - Federica Consoli
- Medical Genetics Division, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy
| | - Cédric Vignal
- Assistance Publique des Hôpitaux de Paris (AP-HP), Hôpital Robert Debré, Département de Génétique, 75019 Paris, France
| | - Denis Hepbasli
- Institute of Physiology, University of Wuerzburg, 97070 Wuerzburg, Germany
| | - Melanie Ullrich
- Institute of Physiology, University of Wuerzburg, 97070 Wuerzburg, Germany
| | - Elke de Boer
- Department of Human Genetics, Radboudumc, 6525 GA Nijmegen, the Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6525 GA Nijmegen, the Netherlands
| | - Lisenka E L M Vissers
- Department of Human Genetics, Radboudumc, 6525 GA Nijmegen, the Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6525 GA Nijmegen, the Netherlands
| | - Sami Gritli
- Department of Immunology, Pasteur Institute of Tunis, 1002 Tunis-Belvédère, Tunisia
| | - Cesare Rossi
- Genetica Medica, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Alessandro De Luca
- Medical Genetics Division, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy
| | - Saayda Ben Becher
- Department of Pediatrics-PUC, Béchir Hamza Children's Hospital, Faculty of Medicine, University of Tunis El Manar, Jebbari 1007, Tunis, Tunisia
| | - Bruce D Gelb
- Mindich Child Health and Development Institute and Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Bruno Dallapiccola
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Antonella Lauri
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Giovanni Chillemi
- Dipartimento per la Innovazione nei Sistemi Biologici, Agroalimentari e Forestali, Università Della Tuscia, 01100 Viterbo, Italy; Istituto di Biomembrane, Bioenergetica e Biotecnologie Molecolari, Centro Nazionale Delle Ricerche, 70126 Bari, Italy
| | - Kai Schuh
- Institute of Physiology, University of Wuerzburg, 97070 Wuerzburg, Germany
| | - Hélène Cavé
- Assistance Publique des Hôpitaux de Paris (AP-HP), Hôpital Robert Debré, Département de Génétique, 75019 Paris, France; INSERM UMR 1131, Institut de Recherche Saint-Louis, Université de Paris, Paris, France
| | - Martin Zenker
- Institute of Human Genetics, University Hospital Magdeburg, 39120 Magdeburg, Germany
| | - Marco Tartaglia
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy.
| |
Collapse
|
26
|
Revidierte Diagnosekriterien für die Neurofibromatose Typ 1 (NF1) ermöglichen eine frühe präzise differenzialdiagnostische Abgrenzung zu anderen RASopathien und erleichtern die Diagnose. Monatsschr Kinderheilkd 2021. [DOI: 10.1007/s00112-021-01323-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Zusammenfassung
Hintergrund
Die Neurofibromatose Typ 1 (NF1) ist eines der häufigsten erblichen Tumorprädispositionssyndrome und zählt zu den RASopathien, einer Gruppe von Erkrankungen mit überlappender Symptomatik, die durch Störungen des RAS-vermittelten Signaltransduktionsweges entstehen. Die diagnostischen Kriterien für NF1 sind 1988 definiert worden. Neue klinische und genetische Erkenntnisse erforderten eine Revision dieser Kriterien. Besonders im frühen Kindesalter ermöglichen die NF1-Diagnosekriterien von 1988 häufig noch keine Diagnose der NF1 und keine differenzialdiagnostische Abgrenzung zu anderen RASopathien wie dem Legius-Syndrom.
Methoden
Es erfolgte eine selektive Literaturrecherche zu Genetik und Symptomatik der NF1. Die Autoren nahmen an einer Delphi-Methode zur Revision der NF1-Diagnosekriterien durch ein internationales Expertengremium teil. Es wurden hierbei auch erstmalig die Diagnosekriterien für das Legius-Syndrom sowie für Mosaikformen beider Erkrankungen erstellt.
Ergebnisse
Die NF1-Diagnosekriterien wurden überarbeitet; dabei wurden neue klinische Merkmale wie choroidale Anomalien aufgenommen, aber auch genetische Befunde wie der Nachweis pathogener NF1-Genvarianten.
Diskussion
Mit den revidierten NF1-Diagnosekriterien und den neu erstellten Diagnosekriterien für das Legius-Syndrom ist es nun möglich, auch bei Kindern die Diagnose einer NF1 mit hoher Sensitivität und Spezifität frühzeitig zu stellen. Diese Diagnosekriterien ermöglichen eine genaue differenzialdiagnostische Abgrenzung von anderen Erkrankungen mit phänotypischen Überlappungen zur NF1, was eine frühe Risikostratifizierung und somit eine zielgerichtete Behandlung und Betreuung der Patienten ermöglicht.
Collapse
|
27
|
Szybowska P, Kostas M, Wesche J, Haugsten EM, Wiedlocha A. Negative Regulation of FGFR (Fibroblast Growth Factor Receptor) Signaling. Cells 2021; 10:cells10061342. [PMID: 34071546 PMCID: PMC8226934 DOI: 10.3390/cells10061342] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/25/2021] [Accepted: 05/25/2021] [Indexed: 02/06/2023] Open
Abstract
FGFR (fibroblast growth factor receptor) signaling controls fundamental processes in embryonic, fetal and adult human life. The magnitude, duration, and location of FGFR signaling must be strictly controlled in order to induce the correct biological response. Uncontrolled receptor signaling has been shown to lead to a variety of diseases, such as skeletal disorders and cancer. Here we review the numerous cellular mechanisms that regulate and turn off FGFR signaling, once the receptor is activated. These mechanisms include endocytosis and endocytic sorting, phosphatase activity, negative regulatory proteins and negative feedback phosphorylation events. The mechanisms act together simultaneously or sequentially, controlling the same or different steps in FGFR signaling. Although more work is needed to fully understand the regulation of FGFR signaling, it is clear that the cells in our body have evolved an extensive repertoire of mechanisms that together keep FGFR signaling tightly controlled and prevent excess FGFR signaling.
Collapse
Affiliation(s)
- Patrycja Szybowska
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Montebello, 0379 Oslo, Norway; (P.S.); (M.K.); (J.W.)
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Montebello, 0379 Oslo, Norway
| | - Michal Kostas
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Montebello, 0379 Oslo, Norway; (P.S.); (M.K.); (J.W.)
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Montebello, 0379 Oslo, Norway
| | - Jørgen Wesche
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Montebello, 0379 Oslo, Norway; (P.S.); (M.K.); (J.W.)
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Montebello, 0379 Oslo, Norway
| | - Ellen Margrethe Haugsten
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Montebello, 0379 Oslo, Norway; (P.S.); (M.K.); (J.W.)
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Montebello, 0379 Oslo, Norway
- Correspondence: (E.M.H.); (A.W.); Tel.: +47-2278-1785 (E.M.H.); +47-2278-1930 (A.W.)
| | - Antoni Wiedlocha
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Montebello, 0379 Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Montebello, 0379 Oslo, Norway
- Military Institute of Hygiene and Epidemiology, 01-163 Warsaw, Poland
- Correspondence: (E.M.H.); (A.W.); Tel.: +47-2278-1785 (E.M.H.); +47-2278-1930 (A.W.)
| |
Collapse
|
28
|
YOSHIMURA A, AKI D, ITO M. SOCS, SPRED, and NR4a: Negative regulators of cytokine signaling and transcription in immune tolerance. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2021; 97:277-291. [PMID: 34121041 PMCID: PMC8403526 DOI: 10.2183/pjab.97.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Cytokines are important intercellular communication tools for immunity. Most cytokines utilize the JAK-STAT and Ras-ERK pathways to promote gene transcription and proliferation; however, this signaling is tightly regulated. The suppressor of cytokine signaling (SOCS) family and SPRED family are a representative negative regulators of the JAK-STAT pathway and the Ras-ERK pathway, respectively. The SOCS family regulates the differentiation and function of CD4+ T cells, CD8+ T cells, and regulatory T cells, and is involved in immune tolerance, anergy, and exhaustion. SPRED family proteins have been shown to inactivate Ras by recruiting the Ras-GTPase neurofibromatosis type 1 (NF1) protein. Human genetic analysis has shown that SOCS family members are strongly associated with autoimmune diseases, allergies, and tumorigenesis, and SPRED1 is involved in NF1-like syndromes and tumors. We also identified the NR4a family of nuclear receptors as a key transcription factor for immune tolerance that suppresses cytokine expression and induces various immuno-regulatory molecules including SOCS1.
Collapse
Affiliation(s)
- Akihiko YOSHIMURA
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
- Correspondence should be addressed: A. Yoshimura, Department of Microbiology and Immunology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan (e-mail: )
| | - Daisuke AKI
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Minako ITO
- Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| |
Collapse
|