1
|
Chen XS, Chen F, He SJ, Chen YY, Chi BT, Huang WY, Wei Y, Zhao CY, Song C, He RQ, Chen G, Kong JL, Lu HP. Elevated expression of ANAPC1 in lung squamous cell carcinoma: clinical implications and mechanisms. Future Sci OA 2025; 11:2482487. [PMID: 40139913 PMCID: PMC11951694 DOI: 10.1080/20565623.2025.2482487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 03/05/2025] [Indexed: 03/29/2025] Open
Abstract
AIM To investigate the comprehensive expression levels and possible molecular mechanisms of Anaphase Promoting Complex Subunit 1 (ANAPC1) in lung squamous cell carcinoma (LUSC). METHODS Data from 2,031 samples were combined to evaluate ANAPC1 mRNA levels, and 118 samples were collected for immunohistochemical (IHC) analysis. High-expression co-expressed genes (HECEGs) associated with ANAPC1 were analyzed for signaling pathways. Clinical significance, immune computations, and Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) validation of ANAPC1's role in LUSC were assessed. Molecular docking evaluated binding affinity with potential therapeutics. RESULTS ANAPC1 mRNA was significantly upregulated in LUSC (SMD = 1.97, 95% CI [1.26-2.67]). Protein-level analysis confirmed this upregulation (p < 0.001). Most HECEGs associated with ANAPC1 were enriched in cell cycle pathways. Higher ANAPC1 expression correlated with poorer survival in LUSC patients (HR = 1.11, 95% CI: 1-1.49). ANAPC1 expression was higher in males and N1-stage vs. females and N0-stage; lower in grade I vs. II/III. Overexpression reduces immune cell infiltration and immunotherapy effectiveness, while knockdown inhibits cell proliferation. Drug sensitivity and docking analyses identified tenovin-1, carboxyatractyloside, and phycocyanobilin as potential antitumor agents targeting ANAPC1. CONCLUSION The elevated expression of ANAPC1 might play a role in LUSC advancement and progression through its participation in cell growth-related pathways.
Collapse
Affiliation(s)
- Xiao-Song Chen
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Feng Chen
- Department of Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Shu-Jia He
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China
| | - Yi-Yang Chen
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Bang-Teng Chi
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Wan-Ying Huang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Yue Wei
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Chun-Yan Zhao
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Chang Song
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Rong-Quan He
- Department of Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Gang Chen
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Jin-Liang Kong
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Hui-Ping Lu
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
2
|
Chen S, Gao F, Zhao L, Liao D, Ge Y, Tan B. Application and development of biosensing strategies for the analysis of the activity of the tumour-associated enzyme FEN1. Talanta 2025; 286:127527. [PMID: 39765083 DOI: 10.1016/j.talanta.2025.127527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 12/25/2024] [Accepted: 01/02/2025] [Indexed: 03/03/2025]
Abstract
As a core genetic biomolecule in ecosystems, the metabolic processes of DNA, particularly DNA replication and damage repair, are regulated by Flap endonuclease 1 (FEN1). Abnormal expression and dysfunction of FEN1 may lead to genomic instability, which can induce a variety of chromosome-associated disorders, including tumours. FEN1 has emerged as a prominent tumour marker. It is crucial to precisely assess FEN1 activity and identify its associated inhibitors for both experimental research and clinical applications. However, traditional detection methods are laborious and time-consuming. Despite the increasing number of studies on biosensing strategies for detecting low-abundance FEN1 owing to the continuous innovation of new technologies and materials, they have not been systematically organised and evaluated in the public domain. Herein, we review research progress in biosensing strategies based on FEN1 detection, which are classified into nanotechnology-mediated strategies, amplification strategies, and their combinations. In addition, we summarise the existing challenges of the new methods and present a perspective on the future direction of the FEN1 analysis.
Collapse
Affiliation(s)
- Siyi Chen
- Department of Transfusion Medicine, West China Hospital of Sichuan University, Sichuan, 610041, PR China
| | - Feiran Gao
- Department of Transfusion Medicine, West China Hospital of Sichuan University, Sichuan, 610041, PR China
| | - Lin Zhao
- Department of Transfusion Medicine, West China Hospital of Sichuan University, Sichuan, 610041, PR China
| | - Deyu Liao
- Department of Transfusion Medicine, West China Hospital of Sichuan University, Sichuan, 610041, PR China
| | - Yueshan Ge
- Department of Transfusion Medicine, West China Hospital of Sichuan University, Sichuan, 610041, PR China
| | - Bin Tan
- Department of Transfusion Medicine, West China Hospital of Sichuan University, Sichuan, 610041, PR China.
| |
Collapse
|
3
|
Pathare ADS, Džigurski J, Pujol-Gualdo N, Rukins V, Peters M, Mägi R, Salumets A, Saare M, Laisk T. A large-scale genome-wide association study on female genital tract polyps highlights role of DNA repair, cell proliferation, and cell growth. Hum Reprod 2025; 40:750-763. [PMID: 39986329 DOI: 10.1093/humrep/deaf025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 01/05/2025] [Indexed: 02/24/2025] Open
Abstract
STUDY QUESTION Can a large-scale genome-wide association study (GWAS) meta-analysis identify genomic risk loci and likely involved genes for female genital tract (FGT) polyps, provide insights into the biological mechanism underlying their development, and inform of potential overlap with other traits, including endometrial cancer? SUMMARY ANSWER GWAS meta-analysis of FGT polyps highlights potentially shared mechanisms between polyp development and cancerous processes. WHAT IS KNOWN ALREADY Small-scale candidate gene studies have focused on biological processes such as oestrogen stimulation and inflammation to clarify the biology behind FGT polyps. However, the exact mechanism for the development of polyps is still elusive. At the same time, a genome-wide approach, which has become the gold standard in complex disease genetics, has never been used to uncover the genetics of the FGT polyps. STUDY DESIGN, SIZE, DURATION We performed a GWAS meta-analysis including a total of 36 984 women with FGT polyps (International Classification of Diseases (ICD-10) diagnosis code N84) and 420 993 female controls (without N84 code) of European ancestry from the FinnGen study (11 092 cases and 94 394 controls), Estonian Biobank (EstBB, 14 008 cases and 112 799 controls), and the Pan-UKBB study (11 884 cases and 213 800 controls). PARTICIPANTS/MATERIALS, SETTING, METHODS GWAS meta-analysis and functional annotation of GWAS signals were performed to identify genetic risk loci and prioritize genes in associated loci. To explore associations with other traits, we performed a look-up of associated variants across multiple traits and health conditions, genetic correlation analysis, and phenome-wide association study (PheWAS) with ICD-10 diagnosis codes. MAIN RESULTS AND THE ROLE OF CHANCE Our GWAS meta-analysis revealed 16 significant (P < 5 × 10-8) genomic risk loci. Based on exonic variants in GWAS signals, we prioritized EEFSEC, ODF3, PRIM1, PLCE1, LRRC34/MYNN, EXO1, and CHEK2 which are involved in DNA repair, cell proliferation, and cell growth. Several of the identified genomic loci have previously been linked to endometrial cancer and/or uterine fibroids, highlighting the potentially shared mechanisms underlying tissue overgrowth and cancerous processes. Genetic correlation analysis revealed a positive correlation with body mass index and reproductive traits, that can be classified as symptoms or risk factors of endometrial polyps (EPs), whereas a negative correlation was observed between FGT polyps and both menopause (genetic correlation estimate (rg) = -0.29, SE = 0.08, P = 8.8×10-4) and sex hormone-binding globulin (SHBG) (rg = -0.22, SE = 0.04, P = 2.4×10-8). On the phenotypic level, the strongest associations were observed with endometriosis, uterine fibroids, and excessive, frequent, and irregular menstruation. LARGE SCALE DATA The complete GWAS summary statistics will be made available after publication through the GWAS Catalog (https://www.ebi.ac.uk/gwas/). LIMITATIONS, REASONS FOR CAUTION In this study, we focused broadly on FGT polyps and did not differentiate between the polyp subtypes. Considering the prevalence of FGT polyp subtypes, we assumed that most women included in the study had EPs. Further research on the expression profile of FGT polyps could complement the GWAS study to substantiate the functional importance of the identified variants. WIDER IMPLICATIONS OF THE FINDINGS The study findings have the potential to significantly enhance our understanding of the genetic mechanisms involved, paving the way for future functional follow-up, which in turn could improve the diagnosis, risk assessment, and targeted treatment options, since surgery is the only line of treatment available for diagnosed polyps. STUDY FUNDING/COMPETING INTEREST(S) This study was funded by European Union through the European Regional Development Fund Project No. 2014-2020.4.01.15-0012 GENTRANSMED. Computations were performed in the High-Performance Computing Center of the University of Tartu. The study was also supported by the Estonian Research Council (grant no. PRG1076 and MOBJD1056) and Horizon 2020 innovation grant (ERIN, grant no. EU952516). All the authors declared no conflict of interest.
Collapse
Affiliation(s)
- Amruta D S Pathare
- Celvia CC, Tartu, Estonia
- Department of Obstetrics and Gynecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Jelisaveta Džigurski
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Natàlia Pujol-Gualdo
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Valentina Rukins
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Maire Peters
- Celvia CC, Tartu, Estonia
- Department of Obstetrics and Gynecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Reedik Mägi
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Andres Salumets
- Celvia CC, Tartu, Estonia
- Department of Obstetrics and Gynecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institute and Karolinska University Hospital, Stockholm, Sweden
| | - Merli Saare
- Celvia CC, Tartu, Estonia
- Department of Obstetrics and Gynecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Triin Laisk
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| |
Collapse
|
4
|
Luo L, Yuan F, Palovcak A, Li F, Yuan Q, Calkins D, Manalo Z, Li Y, Wang D, Zhou M, Zhou C, Li M, Tan YD, Bai F, Ban Y, Mason C, Roberts E, Bilbao D, Liu ZJ, Briegel K, Welford SM, Pei XH, Daunert S, Liu W, Zhang Y. Oncogenic properties of wild-type DNA repair gene FANCA in breast cancer. Cell Rep 2025; 44:115480. [PMID: 40146775 DOI: 10.1016/j.celrep.2025.115480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 01/10/2025] [Accepted: 03/07/2025] [Indexed: 03/29/2025] Open
Abstract
FANCA is one of the 23 genes whose deficiencies lead to defective DNA interstrand crosslink repair and cancer-prone Fanconi anemia disease. Beyond its functions in DNA repair and tumor suppression, we report that high FANCA expression is strongly associated with breast cancer development. Overexpression of WT-FANCA significantly promotes breast cancer cell proliferation and tumor growth both in vitro and in vivo, while FANCA deficiency severely compromises the proliferation of breast cancer cells, but not non-tumorigenic breast epithelial cells. Heterozygous knockout of FANCA in breast cancer mouse models is sufficient to cause significant reduction of breast tumor growth in vivo. Furthermore, we have shown that high FANCA expression in breast cancer correlates with promoter hypomethylation in a TET-dependent manner, and TET inhibition recapitulates the proliferation defects caused by FANCA deficiency. Our study identifies the oncogenic properties of WT-FANCA and shows that FANCA is a promising target for breast cancer intervention.
Collapse
Affiliation(s)
- Liang Luo
- Department of Biochemistry & Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Fenghua Yuan
- Department of Biochemistry & Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Anna Palovcak
- Department of Biochemistry & Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Fang Li
- Department of Biochemistry & Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Qingqi Yuan
- Department of Biochemistry & Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Daniel Calkins
- Department of Biochemistry & Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Zoe Manalo
- Department of Biochemistry & Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Yan Li
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Dazhi Wang
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Mike Zhou
- Department of Biochemistry & Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Catherine Zhou
- Department of Biochemistry & Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Matthew Li
- Department of Biochemistry & Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Yuan-De Tan
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Feng Bai
- International Cancer Center, Shenzhen University Medical School, Shenzhen 518060, China
| | - Yuguang Ban
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Christian Mason
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Evan Roberts
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Daniel Bilbao
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Department of Pathology & Laboratory Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Zhao-Jun Liu
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Department of Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Karoline Briegel
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Department of Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Scott M Welford
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Xin-Hai Pei
- International Cancer Center, Shenzhen University Medical School, Shenzhen 518060, China
| | - Sylvia Daunert
- Department of Biochemistry & Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Wenjun Liu
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310003, China.
| | - Yanbin Zhang
- Department of Biochemistry & Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| |
Collapse
|
5
|
Liu K, Hu S, Wufuer R, Zhang Q, Qiu L, Zhang Z, Wang M, Zhang Y. Deficiency of DDI2 suppresses liver cancer progression by worsening cell survival conditions. Free Radic Biol Med 2025; 232:200-213. [PMID: 40049338 DOI: 10.1016/j.freeradbiomed.2025.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 02/25/2025] [Accepted: 03/03/2025] [Indexed: 03/15/2025]
Abstract
The levels of reactive oxygen species (ROS) and the extent of ensuing DNA damage significantly influence cancer initiation and progression. Of crucial importance, the aspartate protease DDI2 has been proposed to play a pivotal role in monitoring intracellular ROS levels (to trigger oxidative eustress or distress), as well as in the oxidative DNA damage repair, through redox homeostasis-determining factor Nrf1 (encoded by NFE2L1). However, the specific role of DDI2 in the multi-step process resulting in the development and progression of liver cancer remains elusive to date. In the present study, we employed the CRISPR/Cas9 gene editing system to create two nuanced lines of DDI2 knockout (i.e., DDI2-/- and DDI2insG/-) from liver cancer cells. Subsequent experiments indicate that the knockout of DDI2 leads to increased ROS levels in hepatoma cells by downregulating two major antioxidant transcription factors Nrf1 and Nrf2 (encoded by NFE2L2), exacerbating endogenous DNA damages caused by ROS and not-yet-identified factors, thereby inhibiting cell proliferation and promoting apoptosis, and ultimately hindering in vivo malignant growth of xenograft tumor cells. Conversely, the restoration of DDI2 expression reverses the accumulation of ROS and associated DNA damage caused by DDI2 knockout, eliminating the subsequent inhibitory effects of DDI2 deficiency on both in vitro and in vivo growth of liver cancer cells. Collectively, these findings demonstrate that DDI2 deficiency impedes liver tumor growth by disrupting its survival environment, suggesting that DDI2 may serve as a novel therapeutic target for anti-cancer strategies aimed at modulating ROS or DNA damage processes.
Collapse
Affiliation(s)
- Keli Liu
- The Laboratory of Cell Biochemistry and Topogenetic Regulation, College of Bioengineering, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing, 400044, China
| | - Shaofan Hu
- The Laboratory of Cell Biochemistry and Topogenetic Regulation, College of Bioengineering, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing, 400044, China; Jinfeng Laboratory, No. 313 Jinyue Road, Chongqing High-tech District, 401329, China; Department of Pathophysiology, College of High Altitude Military Medicine, Third Military Medical University (Army Medical University), No. 30 Gaotanyan Street, Shapingba, Chongqing, 400038, China
| | - Reziyamu Wufuer
- The Laboratory of Cell Biochemistry and Topogenetic Regulation, College of Bioengineering, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing, 400044, China; School of Parmaceutical Sciences and Institute of Materia Medica, Xinjiang University, Xinjiang, 830017, China
| | - Qun Zhang
- The Laboratory of Cell Biochemistry and Topogenetic Regulation, College of Bioengineering, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing, 400044, China
| | - Lu Qiu
- The Laboratory of Cell Biochemistry and Topogenetic Regulation, College of Bioengineering, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing, 400044, China; Department of Pathology, The First Affiliated Hospital of Zhengzhou University, No. 1 East Jianshe Road, Erqi District, Zhengzhou, 450052, Henan, China
| | - Zhengwen Zhang
- Laboratory of Neuroscience, Institute of Cognitive Neuroscience and School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, England, United Kingdom
| | - Meng Wang
- The Laboratory of Cell Biochemistry and Topogenetic Regulation, College of Bioengineering, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing, 400044, China; Jinfeng Laboratory, No. 313 Jinyue Road, Chongqing High-tech District, 401329, China; Department of Pathophysiology, College of High Altitude Military Medicine, Third Military Medical University (Army Medical University), No. 30 Gaotanyan Street, Shapingba, Chongqing, 400038, China.
| | - Yiguo Zhang
- The Laboratory of Cell Biochemistry and Topogenetic Regulation, College of Bioengineering, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing, 400044, China; School of Life and Health Sciences, Fuyao University of Science and Technology, No. 104 Wisdom Avenue, Nanyu Town, Minhou County High-Tech District, Fuzhou, 350109, Fujian, China.
| |
Collapse
|
6
|
Wang Y, Lu X, Lin H, Zeng Y, He J, Tan J, Li M. Identification of Fanconi anemia pathway genes as novel prognostic biomarkers and therapeutic targets for breast cancer. Transl Cancer Res 2025; 14:843-864. [PMID: 40104721 PMCID: PMC11912030 DOI: 10.21037/tcr-24-772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 12/26/2024] [Indexed: 03/20/2025]
Abstract
Background Globally, breast cancer is one of the most common cancers with poor prognosis. The Fanconi anemia (FA) pathway genes maintain genome stability and play important roles in human diseases, including cancer. However, the prognostic values and biological roles of FA pathway genes in breast cancer have not been clarified. This study aims to investigate the potential of FA pathway genes as prognostic biomarkers and therapeutic targets in breast cancer. Methods In this study, the Oncomine Cancer Microarray (ONCOMINE), University of ALabama at Birmingham Cancer (UALCAN), Kaplan-Meier plotter, cBio Cancer Genomics Portal (cBioPortal), Gene Expression Profiling Interactive Analysis (GEPIA), Gene Multi-Association Network Integration Algorithm (GeneMANIA), the Database for Annotation, Visualization and Integrated Discovery (DAVID) and Tumor Immune Estimation Resource (TIMER) databases were used to investigate the transcriptional and survival data of FA pathway genes in patients with breast cancer. Results Most of the FA pathway genes were found to be significantly upregulated in breast cancer tissues when compared to normal tissues. Additionally, the elevated expression levels of FA pathway genes were significantly associated with poor survival outcomes in breast cancer patients. Through functional enrichment analysis, the FA pathway genes were positively associated with cell cycle and nucleoplasm and negatively correlated with signal recognition particle-dependent co-translational protein targeting to membrane and ribosome. Furthermore, the expression levels of FA pathway genes exhibited a significant positive association with immune infiltration. Conclusions The FA pathway genes are potential prognostic biomarkers for breast cancer and may offer effective as well as new strategies for cancer management.
Collapse
Affiliation(s)
- Yunyong Wang
- Department of Graduate School, Guangxi University of Chinese Medicine, Nanning, China
| | - Xiaohang Lu
- Department of Graduate School, Guangxi University of Chinese Medicine, Nanning, China
| | - Hongsheng Lin
- Department of Laboratory Medicine, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, China
| | - Yangling Zeng
- Department of Graduate School, Guangxi University of Chinese Medicine, Nanning, China
| | - Jiaqian He
- Department of Graduate School, Guangxi University of Chinese Medicine, Nanning, China
| | - Jinna Tan
- Department of Graduate School, Guangxi University of Chinese Medicine, Nanning, China
| | - Mingfen Li
- Department of Laboratory Medicine, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, China
| |
Collapse
|
7
|
Bi W, Sun X, Yi Q, Jiang X, He H, Jiang L, Fan Z, Huang H, Wen W, Jiang X. PRMT5 attenuates regorafenib-induced DNA damage in hepatocellular carcinoma cells through symmetric dimethylation of RPL14. J Gastrointest Oncol 2025; 16:191-208. [PMID: 40115921 PMCID: PMC11921274 DOI: 10.21037/jgo-24-737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 01/06/2025] [Indexed: 03/23/2025] Open
Abstract
Background Regorafenib has been approved for second-line treatment of hepatocellular carcinoma (HCC) following sorafenib failure, but resistance to targeted therapy remains a major challenge. Enhancing the therapeutic sensitivity of HCC cells to regorafenib is crucial for improving treatment outcomes. This study aims to elucidate the role of PRMT5 in HCC and its impact on regorafenib sensitivity. Specifically, it focuses on the regulatory relationship between PRMT5 and RPL14, investigating their influence on DNA damage repair and drug resistance mechanisms in HCC. Methods A stable PRMT5-overexpressing HCC cell line was constructed via lentiviral infection. Immunoprecipitation was employed to examine whether PRMT5 catalyzes the symmetric dimethylation of RPL14 at arginine residues. Western blot (WB) was used to assess changes in DNA damage markers (γ-H2AX) and DNA repair markers (RAD51) after RPL14 knockdown. Huh7 cells with PRMT5 overexpression, RPL14 knockdown, and combined PRMT5 overexpression and RPL14 knockdown were treated with regorafenib. DNA damage repair-related factors were analyzed using WB and immunofluorescence. Results Mass spectrometry and immunoprecipitation confirmed the interaction between PRMT5 and RPL14, with PRMT5 catalyzing symmetric dimethylation of RPL14. RPL14 knockdown inhibited HCC cell proliferation, increased sensitivity to regorafenib, and disrupted DNA damage repair, while overexpression had the opposite effect. Regorafenib-treated PRMT5-overexpressing cells showed reduced γ-H2AX expression and improved survival, whereas RPL14 knockdown enhanced γ-H2AX levels and decreased survival. Notably, simultaneous PRMT5 overexpression and RPL14 knockdown significantly elevated γ-H2AX expression compared to PRMT5 overexpression alone, leading to reduced cell viability. These results suggest that PRMT5 modulates DNA damage repair through RPL14, influencing the sensitivity of HCC cells to regorafenib. Conclusions PRMT5-mediated symmetric dimethylation of RPL14 stabilizes the protein, promoting DNA damage repair and contributing to regorafenib resistance in HCC. RPL14 plays a key role in PRMT5-driven enhancement of DNA damage repair and reduced drug sensitivity, identifying RPL14 as a potential therapeutic target to overcome regorafenib resistance in HCC.
Collapse
Affiliation(s)
- Wendi Bi
- Department of Laboratory Diagnosis, Third Affiliated Hospital of Naval Medical University (Second Military Medical University), Shanghai, China
- Department I of Biliary Tract, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Xiaojuan Sun
- Department of Laboratory Diagnosis, Third Affiliated Hospital of Naval Medical University (Second Military Medical University), Shanghai, China
| | - Qiuyun Yi
- Department of Laboratory Diagnosis, Third Affiliated Hospital of Naval Medical University (Second Military Medical University), Shanghai, China
- National Center for Liver Cancer, Third Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Xinyu Jiang
- Department I of Biliary Tract, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, China
| | - Huisi He
- National Center for Liver Cancer, Third Affiliated Hospital of Naval Medical University, Shanghai, China
- Department of Oncology, Third Affiliated Hospital of Naval Medical University (Second Military Medical University), Shanghai, China
| | - Lixuan Jiang
- Department of Laboratory Diagnosis, Third Affiliated Hospital of Naval Medical University (Second Military Medical University), Shanghai, China
- National Center for Liver Cancer, Third Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Zhecai Fan
- Department of Laboratory Diagnosis, Third Affiliated Hospital of Naval Medical University (Second Military Medical University), Shanghai, China
- National Center for Liver Cancer, Third Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Hailing Huang
- Department of Laboratory Diagnosis, Third Affiliated Hospital of Naval Medical University (Second Military Medical University), Shanghai, China
- National Center for Liver Cancer, Third Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Wen Wen
- Department of Laboratory Diagnosis, Third Affiliated Hospital of Naval Medical University (Second Military Medical University), Shanghai, China
- National Center for Liver Cancer, Third Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Xiaoqing Jiang
- Department I of Biliary Tract, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
8
|
Nadin SB, Cuello-Carrión FD, Cayado-Gutiérrez N, Fanelli MA. Overview of Wnt/β-Catenin Pathway and DNA Damage/Repair in Cancer. BIOLOGY 2025; 14:185. [PMID: 40001953 PMCID: PMC11851563 DOI: 10.3390/biology14020185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/28/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025]
Abstract
The Wnt/β-catenin pathway takes part in important cellular processes in tumor cells, such as gene expression, adhesion, and survival. The canonical pathway is activated in several tumors, and β-catenin is its major effector. The union of Wnt to the co-receptor complex causes the inhibition of GSK3β activity, thus preventing the phosphorylation and degradation of β-catenin, which accumulates in the cytoplasm, to subsequently be transported to the nucleus to associate with transcription factors. The relationship between Wnt/β-catenin and DNA damage/repair mechanisms has been a focus for the last few years. Studying the Wnt/β-catenin network interactions with DNA damage/repair proteins has become a successful research field. This review provides an overview of the participation of Wnt/β-catenin in DNA damage/repair mechanisms and their future implications as targets for cancer therapy.
Collapse
Affiliation(s)
- Silvina B. Nadin
- Laboratorio de Biología Tumoral, Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Universidad Nacional de Cuyo, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro Científico Tecnológico (CCT), Mendoza 5500, Argentina
| | - F. Darío Cuello-Carrión
- Laboratorio de Oncología, IMBECU, CONICET, CCT, Mendoza 5500, Argentina; (F.D.C.-C.); (N.C.-G.); (M.A.F.)
| | - Niubys Cayado-Gutiérrez
- Laboratorio de Oncología, IMBECU, CONICET, CCT, Mendoza 5500, Argentina; (F.D.C.-C.); (N.C.-G.); (M.A.F.)
- Cátedra de Bioquímica e Inmunidad, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza 5500, Argentina
| | - Mariel A. Fanelli
- Laboratorio de Oncología, IMBECU, CONICET, CCT, Mendoza 5500, Argentina; (F.D.C.-C.); (N.C.-G.); (M.A.F.)
| |
Collapse
|
9
|
Zhang J, Mengli Y, Zhang T, Song X, Ying S, Shen Z, Yu C. Deficiency in Epithelium RAD50 Aggravates UC via IL-6-Mediated JAK1/2-STAT3 Signaling and Promotes Development of Colitis-Associated Cancer in Mice. J Crohns Colitis 2025; 19:jjae134. [PMID: 39207300 DOI: 10.1093/ecco-jcc/jjae134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/17/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Ulcerative colitis (UC) is one of the most important risk factors for developing colitis-associated cancer (CAC). Persistent DNA damage increases CAC risk and has been observed in patients with UC. We aimed to identify the regulatory role of RAD50, a DNA double-strand breaks (DSBs) sensor, in UC progression to CAC. METHODS DSBs and RAD50 expression in inflammatory bowel disease (IBD) and CAC cell and mouse models were assessed. Mice with intestinal epithelial RAD50 deletion (RAD50IEC-KO) were used to examine the role of RAD50 in colitis and CAC. RESULTS Along with the increased γ-H2AX expression in colitis and CAC models, RAD50 expression was reduced in human IBD and CAC as well as in mouse models. Furthermore, RAD50IEC-KO sensitizes mice to dextran sulfate sodium (DSS)-induced acute and chronic experimental colitis. RNA-seq analyses revealed that RAD50IEC-KO activated the cytokine-cytokine receptor response, which was amplified through the Janus kinase-signal transducer and activator of transcription (JAK-STAT) pathway. RAD50 directly interacts with STAT3 and subsequently inhibits its phosphorylation, which may disrupt the IL-6-JAK1/2-STAT3-IL-6 feed-forward loop. Pharmacological STAT3 inhibition relieves colitis in RAD50IEC-KO mice. Severe DSBs, increased cell proliferation, and extended inflammatory response were identified in RAD50-deficient cells, which promoted azoxymethane (AOM)-DSS-induced colon tumor development in RAD50IEC-KO mice. CONCLUSIONS RAD50 exerts anti-IL-6-related inflammatory effects in colitis and suppresses CAC. Increasing RAD50 level in colon tissues may be promising for treating patients with UC and CAC.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yu Mengli
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Tiantian Zhang
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xin Song
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Songmin Ying
- Department of Pharmacology and Key Laboratory of Respiratory Disease of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Zhe Shen
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chaohui Yu
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
10
|
Kumari N, Kaur E, Raghavan SC, Sengupta S. Regulation of pathway choice in DNA repair after double-strand breaks. Curr Opin Pharmacol 2025; 80:102496. [PMID: 39724838 DOI: 10.1016/j.coph.2024.102496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 12/02/2024] [Accepted: 12/03/2024] [Indexed: 12/28/2024]
Abstract
DNA damage signaling is a highly coordinated cellular process which is required for the removal of DNA lesions. Amongst the different types of DNA damage, double-strand breaks (DSBs) are the most harmful type of lesion that attenuates cellular proliferation. DSBs are repaired by two major pathways-homologous recombination (HR), and non-homologous end-joining (NHEJ) and in some cases by microhomology-mediated end-joining (MMEJ). Preference of the pathway depends on multiple parameters including site of the DNA damage, the cell cycle phase and topology of the DNA lesion. Deregulated repair response contributes to genomic instability resulting in a plethora of diseases including cancer. This review discusses the different molecular players of HR, NHEJ, and MMEJ pathways that control the switch among the different DSB repair pathways. We also highlight the various functions of chromatin modifications in modulating repair response and how deregulated DNA damage repair response may promote oncogenic transformation.
Collapse
Affiliation(s)
- Nitu Kumari
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Ekjot Kaur
- Biotechnology Research and Innovation Council - National Institute of Immunology (BRIC-NII), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Sathees C Raghavan
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India.
| | - Sagar Sengupta
- Biotechnology Research and Innovation Council - National Institute of Immunology (BRIC-NII), Aruna Asaf Ali Marg, New Delhi 110067, India; Biotechnology Research and Innovation Council - National Institute of Biomedical Genomics (BRIC-NIBMG), Kalyani 741251, India.
| |
Collapse
|
11
|
Chaudhary JK, Danga AK, Kumari A, Bhardwaj A, Rath PC. Role of chemokines in aging and age-related diseases. Mech Ageing Dev 2025; 223:112009. [PMID: 39631472 DOI: 10.1016/j.mad.2024.112009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 11/21/2024] [Accepted: 11/25/2024] [Indexed: 12/07/2024]
Abstract
Chemokines (chemotactic cytokines) play essential roles in developmental process, immune cell trafficking, inflammation, immunity, angiogenesis, cellular homeostasis, aging, neurodegeneration, and tumorigenesis. Chemokines also modulate response to immunotherapy, and consequently influence the therapeutic outcome. The mechanisms underlying these processes are accomplished by interaction of chemokines with their cognate cell surface G protein-coupled receptors (GPCRs) and subsequent cellular signaling pathways. Chemokines play crucial role in influencing aging process and age-related diseases across various tissues and organs, primarily through inflammatory responses (inflammaging), recruitment of macrophages, and orchestrated trafficking of other immune cells. Chemokines are categorized in four distinct groups based on the position and number of the N-terminal cysteine residues; namely, the CC, CXC, CX3C, and (X)C. They mediate inflammatory responses, and thereby considerably impact aging process across multiple organ-systems. Therefore, understanding the underlying mechanisms mediated by chemokines may be of crucial importance in delaying and/or modulating the aging process and preventing age-related diseases. In this review, we highlight recent progress accomplished towards understanding the role of chemokines and their cellular signaling pathways involved in aging and age-relaed diseases of various organs. Moreover, we explore potential therapeutic strategies involving anti-chemokines and chemokine receptor antagonists aimed at reducing aging and mitigating age-related diseases. One of the modern methods in this direction involves use of chemokine receptor antagonists and anti-chemokines, which suppress the pro-inflammatory response, thereby helping in resolution of inflammation. Considering the wide-spectrum of functional involvements of chemokines in aging and associated diseases, several clinical trials are being conducted to develop therapeutic approaches using anti-chemokine and chemokine receptor antagonists to improve life span and promote healthy aging.
Collapse
Affiliation(s)
- Jitendra Kumar Chaudhary
- Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India; Department of Zoology, Shivaji College, University of Delhi, New Delhi 110027, India.
| | - Ajay Kumar Danga
- Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| | - Anita Kumari
- Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| | - Akshay Bhardwaj
- Regional Centre for Biotechnology, 3rd Milestone, Faridabad-Gurugram Expressway, Faridabad Road, Faridabad, Haryana 121001, India.
| | - Pramod C Rath
- Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
12
|
Zhou H, Chen Y, Jiang N, Ren Y, Zhuang J, Ren Y, Shen L, Li C. Epoxymicheliolide Reduces Radiation-Induced Senescence and Extracellular Matrix Formation by Disrupting NF-κB and TGF-β/SMAD Pathways in Lung Cancer. Phytother Res 2025; 39:51-63. [PMID: 39506320 DOI: 10.1002/ptr.8352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/02/2024] [Accepted: 09/14/2024] [Indexed: 11/08/2024]
Abstract
Lung cancer is a major cause of cancer-related mortality, and radiotherapy is often limited by tumor resistance and side effects. This study explores whether epoxymicheliolide (ECL), a compound from feverfew, can enhance radiotherapy efficacy in lung cancer. We tested ECL on A549 and PC-9 lung cancer cell lines to evaluate its effect on x-ray irradiation. We measured apoptosis, NF-κB pathway inhibition, TGF-β secretion reduction, and epithelial-mesenchymal transition suppression. In vivo, C57BL/6 mice with lung tumors received ECL and radiotherapy. ECL enhanced the antiproliferative effects of x-ray irradiation, induced apoptosis in senescent cells, inhibited the NF-κB pathway, reduced TGF-β levels, and suppressed epithelial-mesenchymal transition. ECL also inhibited tumor growth and improved survival in mice. ECL is a promising adjunct to radiotherapy for lung cancer, improving treatment outcomes by targeting multiple tumor progression mechanisms. It offers potential for enhanced management of lung cancer.
Collapse
Affiliation(s)
- Heng Zhou
- School of Public Health, Yangzhou University, Yangzhou, China
- Department of Radio-Chemotherapy, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Yong Chen
- Department of Radio-Chemotherapy, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
- Medical College, Yangzhou University, Yangzhou, China
| | - Ningzu Jiang
- School of Public Health, Yangzhou University, Yangzhou, China
- The First Hospital of Lanzhou University, Lanzhou University, Lanzhou, China
| | - Yanxian Ren
- School of Public Health, Yangzhou University, Yangzhou, China
- The First Hospital of Lanzhou University, Lanzhou University, Lanzhou, China
| | - Jiayuan Zhuang
- School of Public Health, Yangzhou University, Yangzhou, China
- Clinical College of Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Yue Ren
- Department of Radio-Chemotherapy, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
- Medical College, Yangzhou University, Yangzhou, China
| | - Lin Shen
- Department of Radio-Chemotherapy, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
- Medical College, Yangzhou University, Yangzhou, China
| | - Chenghao Li
- Department of Radio-Chemotherapy, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
- Medical College, Yangzhou University, Yangzhou, China
| |
Collapse
|
13
|
Ballisat L, De Sio C, Beck L, Chambers AL, Dillingham MS, Guatelli S, Sakata D, Shi Y, Duan J, Velthuis J, Rosenfeld A. Simulation of cell cycle effects on DNA strand break induction due to α-particles. Phys Med 2025; 129:104871. [PMID: 39667143 DOI: 10.1016/j.ejmp.2024.104871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/04/2024] [Accepted: 11/30/2024] [Indexed: 12/14/2024] Open
Abstract
PURPOSE Understanding cell cycle variations in radiosensitivity is important for α-particle therapies. Differences are due to both repair response mechanisms and the quantity of initial radiation-induced DNA strand breaks. Genome compaction within the nucleus has been shown to impact the yield of strand breaks. Compaction changes during the cell cycle are therefore likely to contribute to radiosensitivity differences. Simulation allows the strand break yield to be calculated independently of repair mechanisms which would be challenging experimentally. METHODS Using Geant4 the impact of genome compaction changes on strand break induction due to α-particles was simulated. Genome compaction is considered to be described by three metrics: global base pair density, chromatin fibre packing fraction and chromosome condensation. Nuclei in the G1, S, G2 and M phases from two cancer cell lines and one normal cell line are simulated. Repair mechanisms are not considered to study only the impact of genome compaction changes. RESULTS The three compaction metrics have differing effects on the strand break yield. For all cell lines the strand break yield is greatest in G2 cells and least in G1 cells. More strand breaks are induced in the two cancer cell lines than in the normal cell line. CONCLUSIONS Compaction of the genome affects the initial yield of strand breaks. Some radiosensitivity differences between cell lines can be attributed to genome compaction changes between the phases of the cell cycle. This study provides a basis for further analysis of how repair deficiencies impact radiation-induced lethality in normal and malignant cells.
Collapse
Affiliation(s)
| | - Chiara De Sio
- School of Physics, University of Bristol, Bristol, UK
| | - Lana Beck
- School of Physics, University of Bristol, Bristol, UK
| | - Anna L Chambers
- DNA-Protein Interactions Unit, School of Biochemistry, University of Bristol, Bristol, UK
| | - Mark S Dillingham
- DNA-Protein Interactions Unit, School of Biochemistry, University of Bristol, Bristol, UK
| | - Susanna Guatelli
- Centre for Medical Radiation Physics (CMRP), University of Wollongong, NSW, Australia
| | - Dousatsu Sakata
- School of Physics, University of Bristol, Bristol, UK; Centre for Medical Radiation Physics (CMRP), University of Wollongong, NSW, Australia; Division of Health Sciences, Osaka University, Osaka 565-0871, Japan
| | - Yuyao Shi
- School of Physics, University of Bristol, Bristol, UK
| | - Jinyan Duan
- School of Physics, University of Bristol, Bristol, UK
| | - Jaap Velthuis
- School of Physics, University of Bristol, Bristol, UK
| | - Anatoly Rosenfeld
- Centre for Medical Radiation Physics (CMRP), University of Wollongong, NSW, Australia
| |
Collapse
|
14
|
Kato TA, Maeda J, Watanabe H, Kawamura S, Wilson PF. Simultaneous inhibition of ATM, ATR, and DNA-PK causes synergistic lethality. Biochem Biophys Res Commun 2024; 738:150517. [PMID: 39146620 DOI: 10.1016/j.bbrc.2024.150517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 08/06/2024] [Indexed: 08/17/2024]
Abstract
Here we report that simultaneous inhibition of the three primary DNA damage recognition PI3 kinase-like kinases (PIKKs) -ATM, ATR, and DNA-PK- induces severe combinatorial synthetic lethality in mammalian cells. Utilizing Chinese hamster cell lines CHO and V79 and their respective PIKK mutants, we evaluated effects of inhibiting these three kinases on cell viability, DNA damage response, and chromosomal integrity. Our results demonstrate that while single or dual kinase inhibition increased cytotoxicity, inhibition of all three PIKKs results in significantly higher synergistic lethality, chromosomal aberrations, and DNA double-strand break (DSB) induction as calculated by their synergy scores. These findings suggest that the overlapping redundancy of ATM, ATR, and DNA-PK functions is critical for cell survival, and their combined inhibition greatly disrupts DNA damage signaling and repair processes, leading to cell death. This study provides insights into the potential of multi-targeted DDR kinase inhibition as an effective anticancer strategy, necessitating further research to elucidate underlying mechanisms and therapeutic applications.
Collapse
Affiliation(s)
- Takamitsu A Kato
- Department of Environmental & Radiological Health Sciences, Colorado State University, Fort Collins, CO, 80523, USA.
| | - Junko Maeda
- Department of Environmental & Radiological Health Sciences, Colorado State University, Fort Collins, CO, 80523, USA
| | - Hiroya Watanabe
- Department of Environmental & Radiological Health Sciences, Colorado State University, Fort Collins, CO, 80523, USA; Faculty of Fukuoka Medical Technology, Teikyo University, Fukuoka, 836-0037, Japan
| | - Shinji Kawamura
- Faculty of Fukuoka Medical Technology, Teikyo University, Fukuoka, 836-0037, Japan
| | - Paul F Wilson
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| |
Collapse
|
15
|
Kacemi R, Campos MG. Bee Pollen as a Source of Biopharmaceuticals for Neurodegeneration and Cancer Research: A Scoping Review and Translational Prospects. Molecules 2024; 29:5893. [PMID: 39769981 PMCID: PMC11677910 DOI: 10.3390/molecules29245893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/18/2024] [Accepted: 11/20/2024] [Indexed: 01/03/2025] Open
Abstract
Bee Pollen (BP) has many advantageous properties relying on its multitargeting potential, a new tendency in managing many challenging illnesses. In cancer and neurodegeneration, the multiple effects of BP could be of unequaled importance and need further investigation. Although still limited, available data interestingly spotlights some floral sources with promising activities in line with this investigation. Adopting scoping review methodology, we have identified many crucial bioactivities that are widely recognized to individual BP compounds but remain completely untapped in this valuable bee cocktail. A wide range of these compounds have been recently found to be endowed with great potential in modulating pivotal processes in neurodegeneration and cancer pathophysiology. In addition, some ubiquitous BP compounds have only been recently isolated, while the number of studied BPs remains extremely limited compared to the endless pool of plant species worldwide. We have also elucidated that clinical profits from these promising perspectives are still impeded by challenging hurdles such as limited bioavailability of the studied phytocompounds, diversity and lack of phytochemical standardization of BP, and the difficulty of selective targeting in some pathophysiological mechanisms. We finally present interesting insights to guide future research and pave the way for urgently needed and simplified clinical investigations.
Collapse
Affiliation(s)
- Rachid Kacemi
- Observatory of Drug-Herb Interactions, Faculty of Pharmacy, Heath Sciences Campus, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal;
| | - Maria G. Campos
- Observatory of Drug-Herb Interactions, Faculty of Pharmacy, Heath Sciences Campus, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal;
- Coimbra Chemistry Centre (CQC, FCT Unit 313) (FCTUC), University of Coimbra, Rua Larga, 3004-531 Coimbra, Portugal
| |
Collapse
|
16
|
Chailapakul P, Maeda J, Kato TA. ATM dysfunction in Chinese hamster XRCC8 mutants. Biochem Biophys Res Commun 2024; 736:150491. [PMID: 39142236 DOI: 10.1016/j.bbrc.2024.150491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/16/2024]
Abstract
XRCC8 is a member of the X-ray cross-complementing (XRCC) family, whose responsible gene has not been identified. Previous studies suggested ATM and other genes were potential candidates for XRCC8, but this was not confirmed. In this study, we characterized three V79-derived XRCC8 mutant cells: V-C4, V-E5, and V-G8. Western blot analysis showed reduced expression of the ATM protein in three XRCC8 mutants, and radiation-induced phosphorylated ATM foci were not detected by fluorescence immunocytochemistry. Both ATM knockout cells and XRCC8 mutants exhibited hypersensitivity to camptothecin. Through a cell fusion-based complementation test, we found that XRCC8 mutants were complemented by ATM-proficient cells, but not by ATM knockout cells, in terms of camptothecin sensitivity. Comprehensive sequencing of the ATM genome in XRCC8 mutants revealed unique mutations in each mutant. These results suggest that XRCC8 mutants carry ATM mutations, and their ATM is not properly functional, despite protein expression being detected. This is similar to missense mutations in some Ataxia Telangiectasia patients.
Collapse
Affiliation(s)
- Piyawan Chailapakul
- Department of Environmental & Radiological Health Sciences, Colorado State University, Fort Collins, CO, 80523, USA
| | - Junko Maeda
- Department of Environmental & Radiological Health Sciences, Colorado State University, Fort Collins, CO, 80523, USA
| | - Takamitsu A Kato
- Department of Environmental & Radiological Health Sciences, Colorado State University, Fort Collins, CO, 80523, USA.
| |
Collapse
|
17
|
An M, Chen C, Xiang J, Li Y, Qiu P, Tang Y, Liu X, Gu Y, Qin N, He Y, Zhu M, Jiang Y, Dai J, Jin G, Ma H, Wang C, Hu Z, Shen H. Systematic identification of pathogenic variants of non-small cell lung cancer in the promoters of DNA-damage repair genes. EBioMedicine 2024; 110:105480. [PMID: 39631147 DOI: 10.1016/j.ebiom.2024.105480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 11/11/2024] [Accepted: 11/14/2024] [Indexed: 12/07/2024] Open
Abstract
BACKGROUND Deficiency in DNA-damage repair (DDR) genes, often due to disruptive coding variants, is linked to higher cancer risk. Our previous study has revealed the association between rare loss-of-function variants in DDR genes and the risk of lung cancer. However, it is still challenging to study the predisposing role of rare regulatory variants of these genes. METHODS Based on whole-genome sequencing data from 2984 patients with non-small cell lung cancer (NSCLC) and 3020 controls, we performed massively parallel reporter assays on 1818 rare variants located in the promoters of DDR genes. Pathway- or gene-level burden analyses were performed using Firth's logistic regression or generalized linear model. FINDINGS We identified 750 rare functional regulatory variants (frVars) that showed allelic differences in transcriptional activity within the promoter regions of DDR genes. Interestingly, the burden of frVars was significantly elevated in cases (odds ratio [OR] = 1.17, p = 0.026), whereas the burden of variants prioritized solely based on bioinformatics annotation was comparable between cases and controls (OR = 1.04, p = 0.549). Among the frVars, 297 were down-regulated transcriptional activity (dr-frVars) and 453 were up-regulated transcriptional activity (ur-frVars); especially, dr-frVars (OR = 1.30, p = 0.008) rather than ur-frVars (OR = 1.06, p = 0.495) were significantly associated with risk of NSCLC. Individuals with NSCLC carried more dr-frVars from Fanconi anemia, homologous recombination, and nucleotide excision repair pathways. In addition, we identified seven genes (i.e., BRCA2, GTF2H1, DDB2, BLM, ALKBH2, APEX1, and RAD51B) with promoter dr-frVars that were associated with lung cancer susceptibility. INTERPRETATION Our findings indicate that functional promoter variants in DDR genes, in addition to protein-truncating variants, can be pathogenic and contribute to lung cancer susceptibility. FUNDING National Natural Science Foundation of China, Youth Foundation of Jiangsu Province, Research Unit of Prospective Cohort of Cardiovascular Diseases and Cancer of Chinese Academy of Medical Sciences, and Natural Science Foundation of Jiangsu Province.
Collapse
Affiliation(s)
- Mingxing An
- Department of Epidemiology, School of Public Health, Southeast University, Nanjing, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Congcong Chen
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China; The Second People's Hospital of Changzhou, The Third Affiliated Hospital of Nanjing Medical University, Changzhou Medical Center, Nanjing Medical University, Changzhou 213003, China
| | - Jun Xiang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Yang Li
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Pinyu Qiu
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China; State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Yiru Tang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China; State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Xinyue Liu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Yayun Gu
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China; State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Na Qin
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Yuanlin He
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China; State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Meng Zhu
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Yue Jiang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Juncheng Dai
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Guangfu Jin
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Hongxia Ma
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China; Research Units of Cohort Study on Cardiovascular Diseases and Cancers, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Cheng Wang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China; The Second People's Hospital of Changzhou, The Third Affiliated Hospital of Nanjing Medical University, Changzhou Medical Center, Nanjing Medical University, Changzhou 213003, China.
| | - Zhibin Hu
- Department of Epidemiology, School of Public Health, Southeast University, Nanjing, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China.
| | - Hongbing Shen
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China; Research Units of Cohort Study on Cardiovascular Diseases and Cancers, Chinese Academy of Medical Sciences, Beijing 100730, China.
| |
Collapse
|
18
|
Ma W, Tang W, Kwok JS, Tong AH, Lo CW, Chu AT, Chung BH. A review on trends in development and translation of omics signatures in cancer. Comput Struct Biotechnol J 2024; 23:954-971. [PMID: 38385061 PMCID: PMC10879706 DOI: 10.1016/j.csbj.2024.01.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/31/2024] [Accepted: 01/31/2024] [Indexed: 02/23/2024] Open
Abstract
The field of cancer genomics and transcriptomics has evolved from targeted profiling to swift sequencing of individual tumor genome and transcriptome. The steady growth in genome, epigenome, and transcriptome datasets on a genome-wide scale has significantly increased our capability in capturing signatures that represent both the intrinsic and extrinsic biological features of tumors. These biological differences can help in precise molecular subtyping of cancer, predicting tumor progression, metastatic potential, and resistance to therapeutic agents. In this review, we summarized the current development of genomic, methylomic, transcriptomic, proteomic and metabolic signatures in the field of cancer research and highlighted their potentials in clinical applications to improve diagnosis, prognosis, and treatment decision in cancer patients.
Collapse
Affiliation(s)
- Wei Ma
- Hong Kong Genome Institute, Hong Kong, China
| | - Wenshu Tang
- Hong Kong Genome Institute, Hong Kong, China
| | | | | | | | | | - Brian H.Y. Chung
- Hong Kong Genome Institute, Hong Kong, China
- Department of Pediatrics and Adolescent Medicine, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Hong Kong Genome Project
- Hong Kong Genome Institute, Hong Kong, China
- Department of Pediatrics and Adolescent Medicine, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
19
|
Liu X, Xie S, Jiang X, Song S, Wang L, Li S, Lu D. LUC7L2 accelerates the growth of liver cancer cells by enhancing DNA damage repair via RRAS. Cells Dev 2024; 180:203976. [PMID: 39571735 DOI: 10.1016/j.cdev.2024.203976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 11/03/2024] [Accepted: 11/14/2024] [Indexed: 11/24/2024]
Abstract
BACKGROUND & OBJECTIVES LUC7L2 may be involved in the recognition of non-consensus splice donor sites in association with the U1 snRNP spliceosomal subunit. However, their detailed features and regulatory mechanisms of LUC7L2 in the development of human liver cancer have not been well characterized. RESULTS Herein, our results demonstrate that LUC7L2 promotes the proliferation of liver cancer cells in vitro and xenograft transplantation in vivo. The proliferation ability was significantly increased in the rLV-LUC7L2 group compared to rLV group (24th hour: P = 0.00043; 48th hour: P = 0.000017). The cellular colony formation ability was significantly increased in the rLV-LUC7L2 group compared to rLV group (25.18±6.94 % vs 67.63±9.57 %, P = 0.00009). The weight of transplanted tumors was significantly increased in the rLV-LUC7L2 group compared to rLV group (0.387±0.074 vs 0.958± 0.103 g, P = 0.00004). Moreover, LUC7L2 effects on epigenetic regulation based on H3K4me3 in human liver cancer cells. e,g, RRAS. Furthermore, LUC7L2 affects transcriptome and proteome in liver cancer. In particular, LUC7L2 enhances the modification ability of H3K4me3and RNAPolII on the promoter region of RRAS and then enhances the expression of RRAS in liver cancer. Strikingly, LUC7L2 increases the increases the DNA damage repair ability dependent on RRAS. Although the DNA damage repair ability was significantly increased in the rLV-LUC7L2 group compared to rLV group(1.868±0.181 vs 0.17±0.034, P = 0.0000022), it was not significantly changed in rLV-LUC7L2+rLV-shRNA RRAS group compared with rLV group(1.868±0.181 vs 1.798±0.313, P = 0.317). Importantly, LUC7L2 enhances the carcinogenic function dependent on RRAS. In particular, RRAS increased the DNA damage repair ability by enhancing the formation of DNA damage repair dependent on tri-methylation of histone H3 lysine 36 (H3K36me3). CONCLUSIONS It is implied that LUC7L2's role in liver cancer proliferation is largely dependent on RRAS. The first discovery provides a basis for the prevention and treatment of human liver cancer.
Collapse
Affiliation(s)
- Xinlei Liu
- Shanghai Putuo People's Hospital, School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Sijie Xie
- Shanghai Putuo People's Hospital, School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Xiaoxue Jiang
- Shanghai Putuo People's Hospital, School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Shuting Song
- Shanghai Putuo People's Hospital, School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Liyan Wang
- Shanghai Putuo People's Hospital, School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Shujie Li
- Shanghai Putuo People's Hospital, School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Dongdong Lu
- Shanghai Putuo People's Hospital, School of Life Science and Technology, Tongji University, Shanghai 200092, China.
| |
Collapse
|
20
|
Moiani D, Tainer JA. A goldilocks computational protocol for inhibitor discovery targeting DNA damage responses including replication-repair functions. Front Mol Biosci 2024; 11:1442267. [PMID: 39669672 PMCID: PMC11635304 DOI: 10.3389/fmolb.2024.1442267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 10/28/2024] [Indexed: 12/14/2024] Open
Abstract
While many researchers can design knockdown and knockout methodologies to remove a gene product, this is mainly untrue for new chemical inhibitor designs that empower multifunctional DNA Damage Response (DDR) networks. Here, we present a robust Goldilocks (GL) computational discovery protocol to efficiently innovate inhibitor tools and preclinical drug candidates for cellular and structural biologists without requiring extensive virtual screen (VS) and chemical synthesis expertise. By computationally targeting DDR replication and repair proteins, we exemplify the identification of DDR target sites and compounds to probe cancer biology. Our GL pipeline integrates experimental and predicted structures to efficiently discover leads, allowing early-structure and early-testing (ESET) experiments by many laboratories. By employing an efficient VS protocol to examine protein-protein interfaces (PPIs) and allosteric interactions, we identify ligand binding sites beyond active sites, leveraging in silico advances for molecular docking and modeling to screen PPIs and multiple targets. A diverse 3,174 compound ESET library combines Diamond Light Source DSI-poised, Protein Data Bank fragments, and FDA-approved drugs to span relevant chemotypes and facilitate downstream hit evaluation efficiency for academic laboratories. Two VS per library and multiple ranked ligand binding poses enable target testing for several DDR targets. This GL library and protocol can thus strategically probe multiple DDR network targets and identify readily available compounds for early structural and activity testing to overcome bottlenecks that can limit timely breakthrough drug discoveries. By testing accessible compounds to dissect multi-functional DDRs and suggesting inhibitor mechanisms from initial docking, the GL approach may enable more groups to help accelerate discovery, suggest new sites and compounds for challenging targets including emerging biothreats and advance cancer biology for future precision medicine clinical trials.
Collapse
Affiliation(s)
- Davide Moiani
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Moiani Research Inc., Missouri City, TX, United States
| | - John A. Tainer
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| |
Collapse
|
21
|
Smith CIE, Burger JA, Zain R. Estimating the Number of Polygenic Diseases Among Six Mutually Exclusive Entities of Non-Tumors and Cancer. Int J Mol Sci 2024; 25:11968. [PMID: 39596040 PMCID: PMC11593959 DOI: 10.3390/ijms252211968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/04/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
In the era of precision medicine with increasing amounts of sequenced cancer and non-cancer genomes of different ancestries, we here enumerate the resulting polygenic disease entities. Based on the cell number status, we first identified six fundamental types of polygenic illnesses, five of which are non-cancerous. Like complex, non-tumor disorders, neoplasms normally carry alterations in multiple genes, including in 'Drivers' and 'Passengers'. However, tumors also lack certain genetic alterations/epigenetic changes, recently named 'Goners', which are toxic for the neoplasm and potentially constitute therapeutic targets. Drivers are considered essential for malignant transformation, whereas environmental influences vary considerably among both types of polygenic diseases. For each form, hyper-rare disorders, defined as affecting <1/108 individuals, likely represent the largest number of disease entities. Loss of redundant tumor-suppressor genes exemplifies such a profoundly rare mutational event. For non-tumor, polygenic diseases, pathway-centered taxonomies seem preferable. This classification is not readily feasible in cancer, but the inclusion of Drivers and possibly also of epigenetic changes to the existing nomenclature might serve as initial steps in this direction. Based on the detailed genetic alterations, the number of polygenic diseases is essentially countless, but different forms of nosologies may be used to restrict the number.
Collapse
Affiliation(s)
- C. I. Edvard Smith
- Department of Laboratory Medicine, Karolinska Institutet, ANA Futura, Alfred Nobels Allé 8 Floor 8, SE-141 52 Huddinge, Sweden;
- Karolinska ATMP Center, Karolinska Institutet, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
- Department of Infectious Diseases, Karolinska University Hospital, SE-141 86 Huddinge, Sweden
| | - Jan A. Burger
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Rula Zain
- Department of Laboratory Medicine, Karolinska Institutet, ANA Futura, Alfred Nobels Allé 8 Floor 8, SE-141 52 Huddinge, Sweden;
- Karolinska ATMP Center, Karolinska Institutet, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
- Centre for Rare Diseases, Department of Clinical Genetics, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| |
Collapse
|
22
|
Jacob M, Reddy RP, Garcia RI, Reddy AP, Khemka S, Roghani AK, Pattoor V, Sehar U, Reddy PH. Harnessing Artificial Intelligence for the Detection and Management of Colorectal Cancer Treatment. Cancer Prev Res (Phila) 2024; 17:499-515. [PMID: 39077801 PMCID: PMC11534518 DOI: 10.1158/1940-6207.capr-24-0178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/26/2024] [Accepted: 07/26/2024] [Indexed: 07/31/2024]
Abstract
Currently, eight million people in the United States suffer from cancer and it is a major global health concern. Early detection and interventions are urgently needed for all cancers, including colorectal cancer. Colorectal cancer is the third most common type of cancer worldwide. Based on the diagnostic efforts to general awareness and lifestyle choices, it is understandable why colorectal cancer is so prevalent today. There is a notable lack of awareness concerning the impact of this cancer and its connection to lifestyle elements, as well as people sometimes mistaking symptoms for a different gastrointestinal condition. Artificial intelligence (AI) may assist in the early detection of all cancers, including colorectal cancer. The usage of AI has exponentially grown in healthcare through extensive research, and since clinical implementation, it has succeeded in improving patient lifestyles, modernizing diagnostic processes, and innovating current treatment strategies. Numerous challenges arise for patients with colorectal cancer and oncologists alike during treatment. For initial screening phases, conventional methods often result in misdiagnosis. Moreover, after detection, determining the course of which colorectal cancer can sometimes contribute to treatment delays. This article touches on recent advancements in AI and its clinical application while shedding light on why this disease is so common today.
Collapse
Affiliation(s)
- Michael Jacob
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas
| | - Ruhananhad P Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas
- Lubbock High School, Lubbock, Texas
| | - Ricardo I Garcia
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Aananya P Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas
- Lubbock High School, Lubbock, Texas
| | - Sachi Khemka
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Aryan Kia Roghani
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas
- Frenship High School, Lubbock, Texas
| | - Vasanthkumar Pattoor
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas
- University of South Florida, Tampa, Florida
| | - Ujala Sehar
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas
- Nutritional Sciences Department, College of Human Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas
- Public Health Department of Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, Texas
- Department of Speech, Language and Hearing Services, School Health Professions, Texas Tech University Health Sciences Center, Lubbock, Texas
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, Texas
| |
Collapse
|
23
|
Chida K, Oshi M, Roy AM, Sato T, Takabe MP, Yan L, Endo I, Hakamada K, Takabe K. Enhanced cancer cell proliferation and aggressive phenotype counterbalance in breast cancer with high BRCA1 gene expression. Breast Cancer Res Treat 2024; 208:321-331. [PMID: 38972017 PMCID: PMC11842165 DOI: 10.1007/s10549-024-07421-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 06/27/2024] [Indexed: 07/08/2024]
Abstract
PURPOSE While comprehensive research exists on the mutation of the DNA repair gene BRCA1, limited information is available regarding the clinical significance of BRCA1 gene expression. Given that cancer cell proliferation is aggrevated by DNA repair, we hypothesized that high BRCA1 gene expression breast cancer (BC) might be linked with aggressive tumor biology and poor clinical outcomes. METHODS The cohorts: The Cancer Genome Atlas (TCGA, n = 1069), METABRIC (n = 1903), and SCAN-B (n = 3273) were utilzed to obtain data of 6245 BC patients. RESULTS BC patients without BRCA1 mutation exhibited higher BRCA1 expression, which was associated with DNA repair functionality. However, no such correlation was observed with BRCA2 expression. The association of high BRCA1 expression with cancer cell proliferation was evidenced by significant enrichment of cell proliferation-related gene sets, higher histological grade, and proliferation score. Furthermore, increased levels of homologous recombination deficiency, intratumoral heterogeneity, and altered fractions were associated with high BRCA1 expression. Moreover, BC with high BRCA1 expression exhibited reduced infiltration of dendritic cells and CD8 T-cells, while showing increased infiltration of Th1 cells. Surprisingly, BRCA1 expression was not associated with the survival of BC irrespective of the subtypes. Conversely, BC with low BRCA1 expression enriched cancer aggravating pathway gene sets, such as Cancer Stem Cell-related signaling (NOTCH and HEDGEHOG), Angiogenesis, Epithelial-Mesenchymal Transition, Inflammatory Response, and TGF-beta signaling. CONCLUSION Despite being linked to heightened proliferation of cancer cells and unassertive phenotype, BRCA1 expression did not show any association with survival in BC.
Collapse
Affiliation(s)
- Kohei Chida
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Elm & Carlton Streets, Buffalo, NY, 14263, USA
- Department of Gastroenterological Surgery, Hirosaki University Graduate School of Medicine, Hirosaki, 036-8562, Japan
| | - Masanori Oshi
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Elm & Carlton Streets, Buffalo, NY, 14263, USA
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, 236-0004, Japan
| | - Arya Mariam Roy
- Department of Hematology and Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Takumi Sato
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Elm & Carlton Streets, Buffalo, NY, 14263, USA
- Department of Medical Science, The University of Tokyo, Tokyo, 113-8654, Japan
| | - Maya Penelope Takabe
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Elm & Carlton Streets, Buffalo, NY, 14263, USA
| | - Li Yan
- Department of Biostatistics & Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Itaru Endo
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, 236-0004, Japan
| | - Kenichi Hakamada
- Department of Gastroenterological Surgery, Hirosaki University Graduate School of Medicine, Hirosaki, 036-8562, Japan
| | - Kazuaki Takabe
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Elm & Carlton Streets, Buffalo, NY, 14263, USA.
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, 236-0004, Japan.
- Department of Surgery, School of Medicine and Biomedical Sciences, University at Buffalo Jacobs, The State University of New York, Buffalo, NY, 14263, USA.
- Department of Breast Surgery and Oncology, Tokyo Medical University, Tokyo, 160-8402, Japan.
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata, 951-8510, Japan.
- Department of Breast Surgery, Fukushima Medical University School of Medicine, Fukushima, 960-1295, Japan.
- Department of Breast Surgery, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA.
| |
Collapse
|
24
|
Yang F, Zhou H, Luo P, Jia L, Hou M, Huang J, Gao L, Zhang Q, Guan Y, Bao H, Zhang B, Liu L, Zou C, Yang Q, Wang J, Dai L. Celastrol induces DNA damage and cell death in BCR-ABL T315I-mutant CML by targeting YY1 and HMCES. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 134:155937. [PMID: 39255723 DOI: 10.1016/j.phymed.2024.155937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/05/2024] [Accepted: 08/03/2024] [Indexed: 09/12/2024]
Abstract
BACKGROUND Chronic myeloid leukemia (CML) is driven primarily by the constitutively active BCR-ABL fusion oncoprotein. Although the development of tyrosine kinase inhibitors has markedly improved the prognosis of CML patients, it remains a significant challenge to overcome drug-resistant mutations, such as the T315I mutation of BCR-ABL, and achieve treatment-free remission in the clinic. PURPOSE The identification of new intervention targets beyond BCR-ABL could provide new perspectives for future research and therapeutic intervention. A network pharmacology analysis was conducted to identify the most promising natural product with anti-CML activity. Celastrol was selected for further analysis to gain insights into its mechanism of action (MoA), with the aim of identifying potential new intervention targets for BCR-ABL T315I-mutant CML. METHODS Transcriptomic and proteomic analyses were conducted to systematically investigate the molecular MoA of celastrol in K562T315I cells. To identify the target proteins of celastrol, mass spectrometry-coupled cellular thermal shift assay (MS-CETSA) was carried out, followed by validations with genetic knockdown and overexpression, cell proliferation assay, comet assay, Western blotting, celastrol probe-based in situ labeling and pull-down assay, molecular docking, and biolayer interferometry. RESULTS Our multi-omics analyses revealed that celastrol primarily induces DNA damage accumulation and the unfolded protein response in K562T315I cells. Among the twelve most potential celastrol targets, experimental evidence demonstrated that the direct interaction of celastrol with YY1 and HMCES increases the levels of DNA damage, leading to cell death. CONCLUSION This study represents the first investigation utilizing a proteome-wide label-free target deconvolution approach, MS-CETSA, to identify the protein targets of celastrol. This study also develops a new systems pharmacology strategy. The findings provide new insights into the multifaceted mechanisms of celastrol and, more importantly, highlight the potential of targeting proteins in DNA damage and repair pathways, particularly YY1 and HMCES, to combat drug-resistant CML.
Collapse
Affiliation(s)
- Fan Yang
- Department of General Surgery, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatric, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China; School of Medicine, Southern University of Science and Technology, Shenzhen 518020, China
| | - Hongchao Zhou
- Department of General Surgery, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatric, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China
| | - Piao Luo
- School of Traditional Chinese Medicine and School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Lin Jia
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China
| | - Mengyun Hou
- Department of General Surgery, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatric, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China
| | - Jingnan Huang
- Department of General Surgery, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatric, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China; School of Medicine, Southern University of Science and Technology, Shenzhen 518020, China
| | - Lin Gao
- Department of General Surgery, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatric, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China
| | - Qian Zhang
- School of Traditional Chinese Medicine and School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yudong Guan
- Department of General Surgery, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatric, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China; School of Medicine, Southern University of Science and Technology, Shenzhen 518020, China
| | - Honglei Bao
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China
| | - Baotong Zhang
- School of Medicine, Southern University of Science and Technology, Shenzhen 518020, China
| | - Liping Liu
- Department of General Surgery, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatric, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China
| | - Chang Zou
- Department of General Surgery, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatric, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China
| | - Qinhe Yang
- Department of General Surgery, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatric, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China; School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China.
| | - Jigang Wang
- Department of General Surgery, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatric, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Lingyun Dai
- Department of General Surgery, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatric, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China; School of Medicine, Southern University of Science and Technology, Shenzhen 518020, China; Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, 138673, Singapore.
| |
Collapse
|
25
|
Li J, Cheng X, Huang D, Cui R. The regulatory role of mitotic catastrophe in hepatocellular carcinoma drug resistance mechanisms and its therapeutic potential. Biomed Pharmacother 2024; 180:117598. [PMID: 39461015 DOI: 10.1016/j.biopha.2024.117598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/16/2024] [Accepted: 10/21/2024] [Indexed: 10/29/2024] Open
Abstract
This review focuses on the role and underlying mechanisms of mitotic catastrophe (MC) in the regulation of drug resistance in hepatocellular carcinoma (HCC). HCC is one of the leading causes of cancer-related mortality worldwide, posing significant treatment challenges due to its high recurrence rates and drug resistance. Research suggests that MC, as a mechanism of cell death, plays a crucial role in enhancing the efficacy of HCC treatment by disrupting the replication and division mechanisms of tumor cells. The present review summarizes the molecular mechanisms of MC and its role in HCC drug resistance and explores the potential of combining MC with existing cancer therapies to improve treatment outcomes. Future research should focus on the in-depth elucidation of the molecular mechanisms of MC and its application in HCC therapy, providing new insights for the development of more effective treatments.
Collapse
Affiliation(s)
- Jianwang Li
- Department of Oncology, Xiangya School of Medicine Affiliated Haikou Hospital/Haikou People's Hospital, No.43, Renmin Avenue, Haikou, Hainan 570208, PR China.
| | - Xiaozhen Cheng
- Department of Oncology, Xiangya School of Medicine Affiliated Haikou Hospital/Haikou People's Hospital, No.43, Renmin Avenue, Haikou, Hainan 570208, PR China
| | - Denggao Huang
- Department of Central Laboratory, Xiangya School of Medicine Affiliated Haikou Hospital, No.43, Renmin Avenue, Haikou, Hainan 570208, PR China
| | - Ronghua Cui
- Department of Oncology, Xiangya School of Medicine Affiliated Haikou Hospital/Haikou People's Hospital, No.43, Renmin Avenue, Haikou, Hainan 570208, PR China
| |
Collapse
|
26
|
Joo YK, Ramirez C, Kabeche L. A TRilogy of ATR's Non-Canonical Roles Throughout the Cell Cycle and Its Relation to Cancer. Cancers (Basel) 2024; 16:3536. [PMID: 39456630 PMCID: PMC11506335 DOI: 10.3390/cancers16203536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/12/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
Ataxia Telangiectasia and Rad3-related protein (ATR) is an apical kinase of the DNA Damage Response (DDR) pathway responsible for detecting and resolving damaged DNA. Because cancer cells depend heavily on the DNA damage checkpoint for their unchecked proliferation and propagation, ATR has gained enormous popularity as a cancer therapy target in recent decades. Yet, ATR inhibitors have not been the silver bullets as anticipated, with clinical trials demonstrating toxicity and mixed efficacy. To investigate whether the toxicity and mixed efficacy of ATR inhibitors arise from their off-target effects related to ATR's multiple roles within and outside the DDR pathway, we have analyzed recently published studies on ATR's non-canonical roles. Recent studies have elucidated that ATR plays a wide role throughout the cell cycle that is separate from its function in the DDR. This includes maintaining nuclear membrane integrity, detecting mechanical forces, and promoting faithful chromosome segregation during mitosis. In this review, we summarize the canonical, DDR-related roles of ATR and also focus on the non-canonical, multifaceted roles of ATR throughout the cell cycle and their clinical relevance. Through this summary, we also address the need for re-assessing clinical strategies targeting ATR as a cancer therapy based on these newly discovered roles for ATR.
Collapse
Affiliation(s)
- Yoon Ki Joo
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
- Yale Cancer Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Carlos Ramirez
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
- Yale Cancer Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Lilian Kabeche
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
- Yale Cancer Biology Institute, Yale University, West Haven, CT 06516, USA
| |
Collapse
|
27
|
Ma Y, Zhang W, Zhao Z, Lv J, Chen J, Yan X, Lin X, Zhang J, Wang B, Gao S, Xiao J, Yang G. Current views on mechanisms of the FLASH effect in cancer radiotherapy. Natl Sci Rev 2024; 11:nwae350. [PMID: 39479528 PMCID: PMC11523052 DOI: 10.1093/nsr/nwae350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 09/26/2024] [Accepted: 09/26/2024] [Indexed: 11/02/2024] Open
Abstract
FLASH radiotherapy (FLASH-RT) is a new modality of radiotherapy that delivers doses with ultra-high dose rates. The FLASH effect was defined as the ability of FLASH-RT to suppress tumor growth while sparing normal tissues. Although the FLASH effect has been proven to be valid in various models by different modalities of irradiation and clinical trials of FLASH-RT have achieved promising initial success, the exact underlying mechanism is still unclear. This article summarizes mainstream hypotheses of the FLASH effect at physicochemical and biological levels, including oxygen depletion and free radical reactions, nuclear and mitochondria damage, as well as immune response. These hypotheses contribute reasonable explanations to the FLASH effect and are interconnected according to the chronological order of the organism's response to ionizing radiation. By collating the existing consensus, evidence and hypotheses, this article provides a comprehensive overview of potential mechanisms of the FLASH effect and practical guidance for future investigation in the field of FLASH-RT.
Collapse
Affiliation(s)
- Yuqi Ma
- State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, China
| | - Wenkang Zhang
- State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, China
| | - Ziming Zhao
- State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, China
| | - Jianfeng Lv
- State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, China
| | - Junyi Chen
- State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, China
| | - Xueqin Yan
- State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, China
| | - XiaoJi Lin
- Oncology Discipline Group, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325003, China
| | - Junlong Zhang
- Beijing National Laboratory of Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Bingwu Wang
- Beijing National Laboratory of Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Song Gao
- Beijing National Laboratory of Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Jie Xiao
- KIRI Precision Particle Therapy Flash Technologies Research Center, Guangzhou 510700, China
| | - Gen Yang
- State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, China
| |
Collapse
|
28
|
Wu J, Zhou Z, Huang Y, Deng X, Zheng S, He S, Huang G, Hu B, Shi M, Liao W, Huang N. Radiofrequency ablation: mechanisms and clinical applications. MedComm (Beijing) 2024; 5:e746. [PMID: 39359691 PMCID: PMC11445673 DOI: 10.1002/mco2.746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 08/31/2024] [Accepted: 09/02/2024] [Indexed: 10/04/2024] Open
Abstract
Radiofrequency ablation (RFA), a form of thermal ablation, employs localized heat to induce protein denaturation in tissue cells, resulting in cell death. It has emerged as a viable treatment option for patients who are ineligible for surgery in various diseases, particularly liver cancer and other tumor-related conditions. In addition to directly eliminating tumor cells, RFA also induces alterations in the infiltrating cells within the tumor microenvironment (TME), which can significantly impact treatment outcomes. Moreover, incomplete RFA (iRFA) may lead to tumor recurrence and metastasis. The current challenge is to enhance the efficacy of RFA by elucidating its underlying mechanisms. This review discusses the clinical applications of RFA in treating various diseases and the mechanisms that contribute to the survival and invasion of tumor cells following iRFA, including the roles of heat shock proteins, hypoxia, and autophagy. Additionally, we analyze the changes occurring in infiltrating cells within the TME after iRFA. Finally, we provide a comprehensive summary of clinical trials involving RFA in conjunction with other treatment modalities in the field of cancer therapy, aiming to offer novel insights and references for improving the effectiveness of RFA.
Collapse
Affiliation(s)
- Jianhua Wu
- Department of Oncology, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Zhiyuan Zhou
- Department of Oncology, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Yuanwen Huang
- Department of Oncology, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Xinyue Deng
- Department of Oncology, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Siting Zheng
- Department of Oncology, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Shangwen He
- Department of Respiratory and Critical Care MedicineChronic Airways Diseases Laboratory, Nanfang Hospital, Southern Medical UniversityGuangzhouGuangdongChina
| | - Genjie Huang
- Department of Oncology, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Binghui Hu
- Department of Oncology, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Min Shi
- Department of Oncology, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Wangjun Liao
- Department of Oncology, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Na Huang
- Department of Oncology, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| |
Collapse
|
29
|
Yin Z, Tao J, Liu Y, Chen H, Hu K, Wang Y, Xiong M. In Silico Analysis Uncovers FOXA1 as a Potential Biomarker for Predicting Neoadjuvant Chemotherapy Response in Fine-Needle Aspiration Biopsies. J Cancer 2024; 15:6052-6072. [PMID: 39440050 PMCID: PMC11493000 DOI: 10.7150/jca.101901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 09/17/2024] [Indexed: 10/25/2024] Open
Abstract
Background: The preoperative identification of neoadjuvant chemotherapy (NAC) treatment responsiveness in breast cancer (BC) patients is advantageous for tailoring treatment regimens. There is a relative scarcity in the current research exploring NAC treatment responsive biomarkers using bulk sequencing data obtained from fine-needle aspiration (FNA). Materials and Methods: Limma was employed for the selection of differentially expressed genes. Additionally, WGCNA, machine learning, and Genetic Perturbation Similarity Analysis (GPSA) were utilized to identify key genes associated with NAC treatment response. ConsensusClusterPlus was employed for unsupervised clustering. Rt-qPCR and WB were conducted to assess gene expression and protein levels in clinical tissues and cell lines. The Seahorse XF96 Extracellular Flux Analyzer was utilized to evaluate Extracellular Acidification Rate (ECAR) and Oxygen Consumption Rate (OCR). The "pRRophetic" package was used for drug sensitivity prediction, while CB-Dock2 was applied for molecular docking and optimal pose presentation. Spatial transcriptomic analysis was based on the CROST database. Results: Eleven biomarkers were identified associated with NAC treatment response in BC patients, with FOXA1 identified as a pivotal hub gene among them. The expression levels of FOXA1 showed a significant positive correlation with genomic stability and a marked negative correlation with the homologous recombination deficiency (HRD) score. Downregulation of the FOXA1 gene resulted in reduced glycolysis in MCF-7 cells.Additionally, FOXA1 were found to serve as a biomarker for both NAC and PARP inhibitor treatment sensitivity in BC patients. Spatial transcriptomic analysis indicates significantly elevated infiltration of T follicular helper (T-FH) cells and mast cells surrounding tumors exhibiting high FOXA1 expression. Conclusion: In summary, our study involved the analysis of diverse sequencing datasets derived from various FNA samples to identify biomarkers sensitive to NAC, thereby offering novel insights into resources for future personalized clinical treatment strategies.
Collapse
Affiliation(s)
- Zhenglang Yin
- Department of General surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- Department of General surgery, The Third Affiliated Hospital of Anhui Medical University, Hefei, 230061, China
| | - Jianfei Tao
- Department of General surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- Department of General surgery, The People's Hospital of Feidong County, Hefei, 231699, China
- Department of Thoracic Surgery, The People's Hospital of Feidong County, Hefei, 231699, China
| | - Yanyan Liu
- Department of General surgery, The Third Affiliated Hospital of Anhui Medical University, Hefei, 230061, China
| | - Haohao Chen
- Department of General surgery, The Third Affiliated Hospital of Anhui Medical University, Hefei, 230061, China
| | - Kongwang Hu
- Department of General surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Yao Wang
- Digestive Endoscopy Department, Jiangsu Province Hospital, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, China
| | - Maoming Xiong
- Department of General surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| |
Collapse
|
30
|
Zhang X, Zhu T, Li X, Zhao H, Lin S, Huang J, Yang B, Guo X. DNA damage-induced proteasome phosphorylation controls substrate recognition and facilitates DNA repair. Proc Natl Acad Sci U S A 2024; 121:e2321204121. [PMID: 39172782 PMCID: PMC11363268 DOI: 10.1073/pnas.2321204121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 07/18/2024] [Indexed: 08/24/2024] Open
Abstract
Upon DNA damage, numerous proteins are targeted for ubiquitin-dependent proteasomal degradation, which is an integral part of the DNA repair program. Although details of the ubiquitination processes have been intensively studied, little is known about whether and how the 26S proteasome is regulated in the DNA damage response (DDR). Here, we show that human Rpn10/PSMD4, one of the three ubiquitin receptors of the 26S proteasome, is rapidly phosphorylated in response to different types of DNA damage. The phosphorylation occurs at Rpn10-Ser266 within a conserved SQ motif recognized by ATM/ATR/DNA-PK. Blockade of S266 phosphorylation attenuates homologous recombination-mediated DNA repair and sensitizes cells to genotoxic insults. In vitro and in cellulo experiments indicate that phosphorylation of S266, located in the flexible linker between the two ubiquitin-interacting motifs (UIMs) of Rpn10, alters the configuration of UIMs, and actually reduces ubiquitin chain (substrate) binding. As a result, essential DDR proteins such as BRCA1 are spared from premature degradation and allowed sufficient time to engage in DNA repair, a scenario supported by proximity labeling and quantitative proteomic studies. These findings reveal an inherent self-limiting mechanism of the proteasome that, by controlling substrate recognition through Rpn10 phosphorylation, fine-tunes protein degradation for optimal responses under stress.
Collapse
Affiliation(s)
- Xiaomei Zhang
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang310058, China
| | - Tianyi Zhu
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang310058, China
| | - Xuemei Li
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang310058, China
| | - Hongxia Zhao
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang310058, China
| | - Shixian Lin
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang310058, China
| | - Jun Huang
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang310058, China
| | - Bing Yang
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang310058, China
| | - Xing Guo
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang310058, China
| |
Collapse
|
31
|
Liang J, Zhou X, Yuan L, Chen T, Wan Y, Jiang Y, Meng H, Xu M, Zhang L, Cheng W. Olaparib combined with CDK12-IN-3 to promote genomic instability and cell death in ovarian cancer. Int J Biol Sci 2024; 20:4513-4531. [PMID: 39247812 PMCID: PMC11380446 DOI: 10.7150/ijbs.94568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 08/06/2024] [Indexed: 09/10/2024] Open
Abstract
Large-scale phase III clinical trials of Olaparib have revealed benefits for ovarian cancer patients with BRCA gene mutations or homologous recombination deficiency (HRD). However, fewer than 50% of ovarian cancer patients have both BRCA mutations and HRD. Therefore, improving the effect of Olaparib in HR-proficient patients is of great clinical value. Here, a combination strategy comprising Olaparib and CDK12-IN-3 effectively inhibited the growth of HR-proficient ovarian cancer in cell line, patient-derived organoid (PDO), and mouse xenograft models. Furthermore, the combination strategy induced severe DNA double-strand break (DSB) formation, increased NHEJ activity in the G2 phase, and reduced HR activity in cancer cells. Mechanistically, the combination treatment impaired Ku80 poly(ADP-ribosyl)ation (PARylation) and phosphorylation, resulting in PARP1-Ku80 complex dissociation. After dissociation, Ku80 occupancy at DSBs and the resulting Ku80-primed NHEJ activity were increased. Owing to Ku80-mediated DNA end protection, MRE11 and Rad51 foci formation was inhibited after the combination treatment, suggesting that this treatment suppressed HR activity. Intriguingly, the combination strategy expedited cGAS nuclear relocalization, further suppressing HR and, conversely, increasing genomic instability. Moreover, the inhibitory effect on cell survival persisted after drug withdrawal. These findings provide a rationale for the clinical application of CDK12-IN-3 in combination with Olaparib.
Collapse
Affiliation(s)
- Jianqiang Liang
- Department of Gynecology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Xuan Zhou
- Department of Gynecology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Lin Yuan
- Department of Gynecology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Tian Chen
- Department of Gynecology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Yicong Wan
- Department of Gynecology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Yi Jiang
- Department of Gynecology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Huangyang Meng
- Department of Gynecology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Mengting Xu
- Department of Gynecology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Lin Zhang
- Department of Gynecology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Wenjun Cheng
- Department of Gynecology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China
| |
Collapse
|
32
|
Jo SY, Lee JD, Won J, Park J, Kweon T, Jo S, Sohn J, Kim SI, Kim S, Park HS. Reversion of pathogenic BRCA1 L1780P mutation confers resistance to PARP and ATM inhibitor in breast cancer. iScience 2024; 27:110469. [PMID: 39156639 PMCID: PMC11326956 DOI: 10.1016/j.isci.2024.110469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/12/2024] [Accepted: 07/03/2024] [Indexed: 08/20/2024] Open
Abstract
This study investigates the molecular characteristics and therapeutic implications of the BRCA1 L1780P mutation, a rare variant prevalent among Korean hereditary breast cancer patients. Using patient-derived xenograft (PDX) models and cell lines (PDX-derived cell line) from carriers, sequencing analyses revealed loss of heterozygosity (LOH) at the BRCA1 locus, with one patient losing the wild-type allele and the other mutated allele. This reversion mutation may cf. resistance to homologous recombination deficiency (HRD)-targeting drugs such as PARP inhibitors (PARPi) and ATM inhibitors (ATMi). Although HRDetect and CHORD analyses confirmed a strong association between the L1780P mutation and HRD, effective initially, drug resistance developed in cases with reversion mutations. These findings underscore the complexity of using HRD prediction in personalized treatment strategies for breast cancer patients with BRCA1/2 mutations, as resistance may arise in reversion cases despite high HRD scores.
Collapse
Affiliation(s)
- Se-Young Jo
- Department of Biomedical Systems Informatics, Yonsei University College of Medicine, Seoul, Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Jeong Dong Lee
- Avison Biomedical Research Center, Yonsei University College of Medicine, Seoul, Korea
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Jeongsoo Won
- Department of Biomedical Systems Informatics, Yonsei University College of Medicine, Seoul, Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Jiho Park
- Department of Biomedical Systems Informatics, Yonsei University College of Medicine, Seoul, Korea
| | - Taeyong Kweon
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
- Department of Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Seongyeon Jo
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
- Department of Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Joohyuk Sohn
- Division of Medical Oncology, Department of Internal Medicine Yonsei University College of Medicine, Seoul, Korea
| | - Seung-Il Kim
- Department of Surgery, Yonsei University College of Medicine, Seoul, Korea
| | - Sangwoo Kim
- Department of Biomedical Systems Informatics, Yonsei University College of Medicine, Seoul, Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
- Postech Biotech Center, Pohang University of Science and Technology (POSTECH), Pohang, Korea
| | - Hyung Seok Park
- Department of Surgery, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
33
|
Sun Y, Patterson-Fortin J, Han S, Li Z, Nowicka Z, Hirohashi Y, Kilgas S, Yi JK, Spektor A, Fendler W, Konstantinopoulos PA, Chowdhury D. 53BP1 loss elicits cGAS-STING-dependent antitumor immunity in ovarian and pancreatic cancer. Nat Commun 2024; 15:6676. [PMID: 39107288 PMCID: PMC11303708 DOI: 10.1038/s41467-024-50999-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 07/29/2024] [Indexed: 08/10/2024] Open
Abstract
53BP1 nucleates the anti-end resection machinery at DNA double-strand breaks, thereby countering BRCA1 activity. Loss of 53BP1 leads to DNA end processing and homologous recombination in BRCA1-deficient cells. Consequently, BRCA1-mutant tumors, typically sensitive to PARP inhibitors (PARPi), become resistant in the absence of 53BP1. Here, we demonstrate that the 'leaky' DNA end resection in the absence of 53BP1 results in increased micronuclei and cytoplasmic double-stranded DNA, leading to activation of the cGAS-STING pathway and pro-inflammatory signaling. This enhances CD8+ T cell infiltration, activates macrophages and natural killer cells, and impedes tumor growth. Loss of 53BP1 correlates with a response to immune checkpoint blockade (ICB) and improved overall survival. Immunohistochemical assessment of 53BP1 in two malignancies, high grade serous ovarian cancer and pancreatic ductal adenocarcinoma, which are refractory to ICBs, reveals that lower 53BP1 levels correlate with an increased adaptive and innate immune response. Finally, BRCA1-deficient tumors that develop resistance to PARPi due to the loss of 53BP1 are susceptible to ICB. Therefore, we conclude that 53BP1 is critical for tumor immunogenicity and underpins the response to ICB. Our results support including 53BP1 expression as an exploratory biomarker in ICB trials for malignancies typically refractory to immunotherapy.
Collapse
MESH Headings
- Tumor Suppressor p53-Binding Protein 1/metabolism
- Tumor Suppressor p53-Binding Protein 1/genetics
- Female
- Nucleotidyltransferases/metabolism
- Nucleotidyltransferases/genetics
- Membrane Proteins/metabolism
- Membrane Proteins/genetics
- Humans
- Animals
- Ovarian Neoplasms/immunology
- Ovarian Neoplasms/genetics
- Ovarian Neoplasms/pathology
- Ovarian Neoplasms/metabolism
- Pancreatic Neoplasms/immunology
- Pancreatic Neoplasms/genetics
- Pancreatic Neoplasms/pathology
- Pancreatic Neoplasms/metabolism
- Mice
- Cell Line, Tumor
- DNA Breaks, Double-Stranded
- BRCA1 Protein/metabolism
- BRCA1 Protein/genetics
- Signal Transduction
- CD8-Positive T-Lymphocytes/immunology
- Immune Checkpoint Inhibitors/therapeutic use
- Immune Checkpoint Inhibitors/pharmacology
- Poly(ADP-ribose) Polymerase Inhibitors/pharmacology
- Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use
- Mice, Inbred C57BL
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Mice, Knockout
- Carcinoma, Pancreatic Ductal/immunology
- Carcinoma, Pancreatic Ductal/genetics
- Carcinoma, Pancreatic Ductal/pathology
- Immunity, Innate
Collapse
Affiliation(s)
- Yajie Sun
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Jeffrey Patterson-Fortin
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Sen Han
- Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Zhe Li
- Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Zuzanna Nowicka
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, Lodz, Poland
| | - Yuna Hirohashi
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Susan Kilgas
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Jae Kyo Yi
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Alexander Spektor
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Wojciech Fendler
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, Lodz, Poland
- Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | | | - Dipanjan Chowdhury
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
- Broad Institute of Harvard and MIT, Cambridge, MA, USA.
- Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
34
|
Liu X, Wang J, Su D, Wang Q, Li M, Zuo Z, Han Q, Li X, Zhen F, Fan M, Chen T. Development and validation of a glioma prognostic model based on telomere-related genes and immune infiltration analysis. Transl Cancer Res 2024; 13:3182-3199. [PMID: 39145097 PMCID: PMC11319981 DOI: 10.21037/tcr-23-2294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 06/04/2024] [Indexed: 08/16/2024]
Abstract
Background Gliomas are the most prevalent primary brain tumors, and patients typically exhibit poor prognoses. Increasing evidence suggests that telomere maintenance mechanisms play a crucial role in glioma development. However, the prognostic value of telomere-related genes in glioma remains uncertain. This study aimed to construct a prognostic model of telomere-related genes and further elucidate the potential association between the two. Methods We acquired RNA-seq data for low-grade glioma (LGG) and glioblastoma (GBM), along with corresponding clinical information from The Cancer Genome Atlas (TCGA) database, and normal brain tissue data from the Genotype-Tissue Expression (GTEX) database for differential analysis. Telomere-related genes were obtained from TelNet. Initially, we conducted a differential analysis on TCGA and GTEX data to identify differentially expressed telomere-related genes, followed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses on these genes. Subsequently, univariate Cox analysis and log-rank tests were employed to obtain prognosis-related genes. Least absolute shrinkage and selection operator (LASSO) regression analysis and multivariate Cox regression analysis were sequentially utilized to construct prognostic models. The model's robustness was demonstrated using receiver operating characteristic (ROC) curve analysis, and multivariate Cox regression of risk scores for clinical characteristics and prognostic models were calculated to assess independent prognostic factors. The aforementioned results were validated using the Chinese Glioma Genome Atlas (CGGA) dataset. Finally, the CIBERSORT algorithm analyzed differences in immune cell infiltration levels between high- and low-risk groups, and candidate genes were validated in the Human Protein Atlas (HPA) database. Results Differential analysis yielded 496 differentially expressed telomere-related genes. GO and KEGG pathway analyses indicated that these genes were primarily involved in telomere-related biological processes and pathways. Subsequently, a prognostic model comprising ten telomere-related genes was constructed through univariate Cox regression analysis, log-rank test, LASSO regression analysis, and multivariate Cox regression analysis. Patients were stratified into high-risk and low-risk groups based on risk scores. Kaplan-Meier (K-M) survival analysis revealed worse outcomes in the high-risk group compared to the low-risk group, and establishing that this prognostic model was a significant independent prognostic factor for glioma patients. Lastly, immune infiltration analysis was conducted, uncovering notable differences in the proportion of multiple immune cell infiltrations between high- and low-risk groups, and eight candidate genes were verified in the HPA database. Conclusions This study successfully constructed a prognostic model of telomere-related genes, which can more accurately predict glioma patient prognosis, offer potential targets and a theoretical basis for glioma treatment, and serve as a reference for immunotherapy through immune infiltration analysis.
Collapse
Affiliation(s)
- Xiaozhuo Liu
- Department of Neurosurgery, Affiliated Hospital of North China University of Science and Technology, Tangshan, China
| | - Jingjing Wang
- Department of Imaging, Affiliated Hospital of North China University of Science and Technology, Tangshan, China
| | - Dongpo Su
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Qing Wang
- Department of Neurosurgery, Affiliated Hospital of North China University of Science and Technology, Tangshan, China
| | - Mei Li
- Department of Neurosurgery, Affiliated Hospital of North China University of Science and Technology, Tangshan, China
| | - Zhengyao Zuo
- Department of Neurosurgery, Affiliated Hospital of North China University of Science and Technology, Tangshan, China
| | - Qian Han
- Department of Neurosurgery, Affiliated Hospital of North China University of Science and Technology, Tangshan, China
| | - Xin Li
- Department of Neurosurgery, Affiliated Hospital of North China University of Science and Technology, Tangshan, China
| | - Fameng Zhen
- Department of Neurosurgery, Affiliated Hospital of North China University of Science and Technology, Tangshan, China
| | - Mingming Fan
- Department of Neurosurgery, Affiliated Hospital of North China University of Science and Technology, Tangshan, China
| | - Tong Chen
- Department of Neurosurgery, Affiliated Hospital of North China University of Science and Technology, Tangshan, China
| |
Collapse
|
35
|
Shah OS, Nasrazadani A, Foldi J, Atkinson JM, Kleer CG, McAuliffe PF, Johnston TJ, Stallaert W, da Silva EM, Selenica P, Dopeso H, Pareja F, Mandelker D, Weigelt B, Reis-Filho JS, Bhargava R, Lucas PC, Lee AV, Oesterreich S. Spatial molecular profiling of mixed invasive ductal and lobular breast cancers reveals heterogeneity in intrinsic molecular subtypes, oncogenic signatures, and mutations. Proc Natl Acad Sci U S A 2024; 121:e2322068121. [PMID: 39042692 PMCID: PMC11295029 DOI: 10.1073/pnas.2322068121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 06/13/2024] [Indexed: 07/25/2024] Open
Abstract
Mixed invasive ductal and lobular carcinoma (MDLC) is a rare histologic subtype of breast cancer displaying both E-cadherin positive ductal and E-cadherin negative lobular morphologies within the same tumor, posing challenges with regard to anticipated clinical management. It remains unclear whether these distinct morphologies also have distinct biology and risk of recurrence. Our spatially resolved transcriptomic, genomic, and single-cell profiling revealed clinically significant differences between ductal and lobular tumor regions including distinct intrinsic subtype heterogeneity - e.g., MDLC with triple-negative breast cancer (TNBC) or basal ductal and estrogen receptor positive (ER+) luminal lobular regions, distinct enrichment of cell cycle arrest/senescence and oncogenic (ER and MYC) signatures, genetic and epigenetic CDH1 inactivation in lobular but not ductal regions, and single-cell ductal and lobular subpopulations with unique oncogenic signatures further highlighting intraregional heterogeneity. Altogether, we demonstrated that the intratumoral morphological/histological heterogeneity within MDLC is underpinned by intrinsic subtype and oncogenic heterogeneity which may result in prognostic uncertainty and therapeutic dilemma.
Collapse
MESH Headings
- Humans
- Female
- Carcinoma, Lobular/genetics
- Carcinoma, Lobular/pathology
- Carcinoma, Lobular/metabolism
- Carcinoma, Ductal, Breast/genetics
- Carcinoma, Ductal, Breast/pathology
- Carcinoma, Ductal, Breast/metabolism
- Mutation
- Breast Neoplasms/genetics
- Breast Neoplasms/pathology
- Breast Neoplasms/metabolism
- Breast Neoplasms/classification
- Cadherins/genetics
- Cadherins/metabolism
- Gene Expression Regulation, Neoplastic
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Triple Negative Breast Neoplasms/genetics
- Triple Negative Breast Neoplasms/pathology
- Triple Negative Breast Neoplasms/metabolism
- Transcriptome
- Gene Expression Profiling/methods
Collapse
Affiliation(s)
- Osama Shiraz Shah
- Womens Cancer Research Center at University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center and Magee Women’s Research Institute, Pittsburgh, PA15213
- Integrative Systems Biology Program, University of Pittsburgh School of Medicine, PittsburghPA15260
| | - Azadeh Nasrazadani
- Womens Cancer Research Center at University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center and Magee Women’s Research Institute, Pittsburgh, PA15213
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA15213
| | - Julia Foldi
- Division of Hematology-Oncology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA15260
| | - Jennifer M. Atkinson
- Womens Cancer Research Center at University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center and Magee Women’s Research Institute, Pittsburgh, PA15213
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA15260
| | - Celina G. Kleer
- Department of Pathology and Rogel Cancer Center, University of Michigan, Ann Arbor, MI48109
| | - Priscilla F. McAuliffe
- Womens Cancer Research Center at University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center and Magee Women’s Research Institute, Pittsburgh, PA15213
- Division of Surgical Oncology, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA15232
| | - Tyler J. Johnston
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA15213
| | - Wayne Stallaert
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA15213
| | - Edaise M. da Silva
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY10065
| | - Pier Selenica
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY10065
| | - Higinio Dopeso
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY10065
| | - Fresia Pareja
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY10065
| | - Diana Mandelker
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY10065
| | - Britta Weigelt
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY10065
| | - Jorge S. Reis-Filho
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY10065
| | - Rohit Bhargava
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA15213
| | - Peter C. Lucas
- Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine and Science, Rochester, MN55902
| | - Adrian V. Lee
- Womens Cancer Research Center at University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center and Magee Women’s Research Institute, Pittsburgh, PA15213
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA15260
| | - Steffi Oesterreich
- Womens Cancer Research Center at University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center and Magee Women’s Research Institute, Pittsburgh, PA15213
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA15260
| |
Collapse
|
36
|
Zohourian N, Coll E, Dever M, Sheahan A, Burns-Lane P, Brown JAL. Evaluating the Cellular Roles of the Lysine Acetyltransferase Tip60 in Cancer: A Multi-Action Molecular Target for Precision Oncology. Cancers (Basel) 2024; 16:2677. [PMID: 39123405 PMCID: PMC11312108 DOI: 10.3390/cancers16152677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/04/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
Precision (individualized) medicine relies on the molecular profiling of tumors' dysregulated characteristics (genomic, epigenetic, transcriptomic) to identify the reliance on key pathways (including genome stability and epigenetic gene regulation) for viability or growth, and then utilises targeted therapeutics to disrupt these survival-dependent pathways. Non-mutational epigenetic changes alter cells' transcriptional profile and are a key feature found in many tumors. In contrast to genetic mutations, epigenetic changes are reversable, and restoring a normal epigenetic profile can inhibit tumor growth and progression. Lysine acetyltransferases (KATs or HATs) protect genome stability and integrity, and Tip60 is an essential acetyltransferase due to its roles as an epigenetic and transcriptional regulator, and as master regulator of the DNA double-strand break response. Tip60 is commonly downregulated and mislocalized in many cancers, and the roles that mislocalized Tip60 plays in cancer are not well understood. Here we categorize and discuss Tip60-regulated genes, evaluate Tip60-interacting proteins based on cellular localization, and explore the therapeutic potential of Tip60-targeting compounds as epigenetic inhibitors. Understanding the multiple roles Tip60 plays in tumorigenesis will improve our understanding of tumor progression and will inform therapeutic options, including informing potential combinatorial regimes with current chemotherapeutics, leading to improvements in patient outcomes.
Collapse
Affiliation(s)
- Nazanin Zohourian
- Department of Biological Science, University of Limerick, V94 T9PX Limerick, Ireland; (N.Z.)
| | - Erin Coll
- Department of Biological Science, University of Limerick, V94 T9PX Limerick, Ireland; (N.Z.)
| | - Muiread Dever
- Department of Biological Science, University of Limerick, V94 T9PX Limerick, Ireland; (N.Z.)
| | - Anna Sheahan
- Department of Biological Science, University of Limerick, V94 T9PX Limerick, Ireland; (N.Z.)
| | - Petra Burns-Lane
- Department of Biological Science, University of Limerick, V94 T9PX Limerick, Ireland; (N.Z.)
| | - James A. L. Brown
- Department of Biological Science, University of Limerick, V94 T9PX Limerick, Ireland; (N.Z.)
- Limerick Digital Cancer Research Centre (LDCRC), Health Research Institute (HRI), University of Limerick, V94 T9PX Limerick, Ireland
| |
Collapse
|
37
|
Majumder B, Nataraj NB, Maitreyi L, Datta S. Mismatch repair-proficient tumor footprints in the sands of immune desert: mechanistic constraints and precision platforms. Front Immunol 2024; 15:1414376. [PMID: 39100682 PMCID: PMC11294168 DOI: 10.3389/fimmu.2024.1414376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 06/17/2024] [Indexed: 08/06/2024] Open
Abstract
Mismatch repair proficient (MMRp) tumors of colorectal origin are one of the prevalent yet unpredictable clinical challenges. Despite earnest efforts, optimal treatment modalities have yet to emerge for this class. The poor prognosis and limited actionability of MMRp are ascribed to a low neoantigen burden and a desert-like microenvironment. This review focuses on the critical roadblocks orchestrated by an immune evasive mechanistic milieu in the context of MMRp. The low density of effector immune cells, their weak spatiotemporal underpinnings, and the high-handedness of the IL-17-TGF-β signaling are intertwined and present formidable challenges for the existing therapies. Microbiome niche decorated by Fusobacterium nucleatum alters the metabolic program to maintain an immunosuppressive state. We also highlight the evolving strategies to repolarize and reinvigorate this microenvironment. Reconstruction of anti-tumor chemokine signaling, rational drug combinations eliciting T cell activation, and reprograming the maladapted microbiome are exciting developments in this direction. Alternative vulnerability of other DNA damage repair pathways is gaining momentum. Integration of liquid biopsy and ex vivo functional platforms provide precision oncology insights. We illustrated the perspectives and changing landscape of MMRp-CRC. The emerging opportunities discussed in this review can turn the tide in favor of fighting the treatment dilemma for this elusive cancer.
Collapse
|
38
|
Mo C, You W, Rao Y, Lin Z, Wang S, He T, Shen H, Li X, Zhang R, Li B. Epigenetic regulation of DNA repair gene program by Hippo/YAP1-TET1 axis mediates sorafenib resistance in HCC. Cell Mol Life Sci 2024; 81:284. [PMID: 38967794 PMCID: PMC11335208 DOI: 10.1007/s00018-024-05296-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/19/2024] [Accepted: 05/26/2024] [Indexed: 07/06/2024]
Abstract
Hepatocellular carcinoma (HCC) is a malignancy that occurs worldwide and is generally associated with poor prognosis. The development of resistance to targeted therapies such as sorafenib is a major challenge in clinical cancer treatment. In the present study, Ten-eleven translocation protein 1 (TET1) was found to be highly expressed in sorafenib-resistant HCC cells and knockdown of TET1 can substantially improve the therapeutic effect of sorafenib on HCC, indicating the potential important roles of TET1 in sorafenib resistance in HCC. Mechanistic studies determined that TET1 and Yes-associated protein 1 (YAP1) synergistically regulate the promoter methylation and gene expression of DNA repair-related genes in sorafenib-resistant HCC cells. RNA sequencing indicated the activation of DNA damage repair signaling was extensively suppressed by the TET1 inhibitor Bobcat339. We also identified TET1 as a direct transcriptional target of YAP1 by promoter analysis and chromatin-immunoprecipitation assays in sorafenib-resistant HCC cells. Furthermore, we showed that Bobcat339 can overcome sorafenib resistance and synergized with sorafenib to induce tumor eradication in HCC cells and mouse models. Finally, immunostaining showed a positive correlation between TET1 and YAP1 in clinical samples. Our findings have identified a previously unrecognized molecular pathway underlying HCC sorafenib resistance, thus revealing a promising strategy for cancer therapy.
Collapse
MESH Headings
- Animals
- Humans
- Mice
- Adaptor Proteins, Signal Transducing/metabolism
- Adaptor Proteins, Signal Transducing/genetics
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Cell Line, Tumor
- DNA Methylation/drug effects
- DNA Repair/drug effects
- DNA Repair/genetics
- Drug Resistance, Neoplasm/genetics
- Epigenesis, Genetic/drug effects
- Gene Expression Regulation, Neoplastic/drug effects
- Hippo Signaling Pathway
- Liver Neoplasms/genetics
- Liver Neoplasms/drug therapy
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- Mice, Inbred BALB C
- Mice, Nude
- Mixed Function Oxygenases/genetics
- Mixed Function Oxygenases/metabolism
- Proto-Oncogene Proteins/metabolism
- Proto-Oncogene Proteins/genetics
- Signal Transduction/drug effects
- Sorafenib/pharmacology
- Sorafenib/therapeutic use
- Transcription Factors/metabolism
- Transcription Factors/genetics
- Xenograft Model Antitumor Assays
- YAP-Signaling Proteins/metabolism
Collapse
Affiliation(s)
- Chunli Mo
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, 361100, Fujian, China
- The First Affiliated Hospital , of Xiamen University, Xiamen, 361100, Fujian, China
| | - Weixin You
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, 361100, Fujian, China
| | - Yipeng Rao
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, 361100, Fujian, China
| | - Zhenping Lin
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, 361100, Fujian, China
| | - Shuai Wang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, 361100, Fujian, China
- The First Affiliated Hospital , of Xiamen University, Xiamen, 361100, Fujian, China
| | - Ting He
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, 361100, Fujian, China
| | - Huanming Shen
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, 361100, Fujian, China
| | - Xun Li
- Department of Laboratory Medicine The First Affiliated Hospital, School of Medicine, Xiamen University, Xiamen, 361003, Fujian, China.
- Center for Precision Medicine, The First Affiliated Hospital of Xiamen University, Xiamen, China.
| | - Rui Zhang
- Xiamen Cell Therapy Research Center, The First Affiliated Hospital, School of Medicine, Xiamen University, Xiamen, 361003, Fujian, China.
| | - Boan Li
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, 361100, Fujian, China.
| |
Collapse
|
39
|
Németh E, Szüts D. The mutagenic consequences of defective DNA repair. DNA Repair (Amst) 2024; 139:103694. [PMID: 38788323 DOI: 10.1016/j.dnarep.2024.103694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/10/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024]
Abstract
Multiple separate repair mechanisms safeguard the genome against various types of DNA damage, and their failure can increase the rate of spontaneous mutagenesis. The malfunction of distinct repair mechanisms leads to genomic instability through different mutagenic processes. For example, defective mismatch repair causes high base substitution rates and microsatellite instability, whereas homologous recombination deficiency is characteristically associated with deletions and chromosome instability. This review presents a comprehensive collection of all mutagenic phenotypes associated with the loss of each DNA repair mechanism, drawing on data from a variety of model organisms and mutagenesis assays, and placing greatest emphasis on systematic analyses of human cancer datasets. We describe the latest theories on the mechanism of each mutagenic process, often explained by reliance on an alternative repair pathway or the error-prone replication of unrepaired, damaged DNA. Aided by the concept of mutational signatures, the genomic phenotypes can be used in cancer diagnosis to identify defective DNA repair pathways.
Collapse
Affiliation(s)
- Eszter Németh
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
| | - Dávid Szüts
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary.
| |
Collapse
|
40
|
Hu YM, Liu XC, Hu L, Dong ZW, Yao HY, Wang YJ, Zhao WJ, Xiang YK, Liu Y, Wang HB, Yin QK. Inhibition of the ATR-DNAPKcs-RB axis drives G1/S-phase transition and sensitizes triple-negative breast cancer (TNBC) to DNA holliday junctions. Biochem Pharmacol 2024; 225:116310. [PMID: 38788960 DOI: 10.1016/j.bcp.2024.116310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/03/2024] [Accepted: 05/21/2024] [Indexed: 05/26/2024]
Abstract
Targeting the DNA damage response (DDR) is a promising strategy in oncotherapy, as most tumor cells are sensitive to excess damage due to their repair defects. Ataxia telangiectasia mutated and RAD3-related protein (ATR) is a damage response signal transduction sensor, and its therapeutic potential in tumor cells needs to be precisely investigated. Herein, we identified a new axis that could be targeted by ATR inhibitors to decrease the DNA-dependent protein kinase catalytic subunit (DNAPKcs), downregulate the expression of the retinoblastoma (RB), and drive G1/S-phase transition. Four-way DNA Holliday junctions (FJs) assembled in this process could trigger S-phase arrest and induce lethal chromosome damage in RB-positive triple-negative breast cancer (TNBC) cells. Furthermore, these unrepaired junctions also exerted toxic effects to RB-deficient TNBC cells when the homologous recombination repair (HRR) was inhibited. This study proposes a precise strategy for treating TNBC by targeting the DDR and extends our understanding of ATR and HJ in tumor treatment.
Collapse
Affiliation(s)
- Yue-Miao Hu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Basic Science Research Center Base (Pharmaceutical Science), Yantai University, Yantai 264005, China
| | - Xue-Cun Liu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Basic Science Research Center Base (Pharmaceutical Science), Yantai University, Yantai 264005, China
| | - Lei Hu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Basic Science Research Center Base (Pharmaceutical Science), Yantai University, Yantai 264005, China
| | - Zhi-Wen Dong
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Basic Science Research Center Base (Pharmaceutical Science), Yantai University, Yantai 264005, China; Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, China
| | - Hong-Ying Yao
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Basic Science Research Center Base (Pharmaceutical Science), Yantai University, Yantai 264005, China
| | - Ying-Jie Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Basic Science Research Center Base (Pharmaceutical Science), Yantai University, Yantai 264005, China
| | - Wen-Jing Zhao
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Basic Science Research Center Base (Pharmaceutical Science), Yantai University, Yantai 264005, China
| | - Yu-Ke Xiang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yi Liu
- School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Hong-Bo Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Basic Science Research Center Base (Pharmaceutical Science), Yantai University, Yantai 264005, China.
| | - Qi-Kun Yin
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Basic Science Research Center Base (Pharmaceutical Science), Yantai University, Yantai 264005, China.
| |
Collapse
|
41
|
Rawal CC, Loubiere V, Butova NL, Gracia J, Parreno V, Merigliano C, Martinez AM, Cavalli G, Chiolo I. Sustained inactivation of the Polycomb PRC1 complex induces DNA repair defects and genomic instability in epigenetic tumors. Histochem Cell Biol 2024; 162:133-147. [PMID: 38888809 PMCID: PMC11227471 DOI: 10.1007/s00418-024-02302-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2024] [Indexed: 06/20/2024]
Abstract
Cancer initiation and progression are typically associated with the accumulation of driver mutations and genomic instability. However, recent studies demonstrated that cancer can also be driven purely by epigenetic alterations, without driver mutations. Specifically, a 24-h transient downregulation of polyhomeotic (ph-KD), a core component of the Polycomb complex PRC1, is sufficient to induce epigenetically initiated cancers (EICs) in Drosophila, which are proficient in DNA repair and characterized by a stable genome. Whether genomic instability eventually occurs when PRC1 downregulation is performed for extended periods of time remains unclear. Here, we show that prolonged depletion of PH, which mimics cancer initiating events, results in broad dysregulation of DNA replication and repair genes, along with the accumulation of DNA breaks, defective repair, and widespread genomic instability in the cancer tissue. A broad misregulation of H2AK118 ubiquitylation and to a lesser extent of H3K27 trimethylation also occurs and might contribute to these phenotypes. Together, this study supports a model where DNA repair and replication defects accumulate during the tumorigenic transformation epigenetically induced by PRC1 loss, resulting in genomic instability and cancer progression.
Collapse
Affiliation(s)
- Chetan C Rawal
- Department of Molecular and Computational Biology, University of Southern California, 1050 Childs Way, Los Angeles, CA, 90089, USA
| | - Vincent Loubiere
- Institute of Human Genetics, CNRS, University of Montpellier, Montpellier, France
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
| | - Nadejda L Butova
- Department of Molecular and Computational Biology, University of Southern California, 1050 Childs Way, Los Angeles, CA, 90089, USA
| | - Juliette Gracia
- Institute of Human Genetics, CNRS, University of Montpellier, Montpellier, France
| | - Victoria Parreno
- Institute of Human Genetics, CNRS, University of Montpellier, Montpellier, France
| | - Chiara Merigliano
- Department of Molecular and Computational Biology, University of Southern California, 1050 Childs Way, Los Angeles, CA, 90089, USA
| | - Anne-Marie Martinez
- Institute of Human Genetics, CNRS, University of Montpellier, Montpellier, France.
| | - Giacomo Cavalli
- Institute of Human Genetics, CNRS, University of Montpellier, Montpellier, France.
| | - Irene Chiolo
- Department of Molecular and Computational Biology, University of Southern California, 1050 Childs Way, Los Angeles, CA, 90089, USA.
| |
Collapse
|
42
|
Patel V, Casimiro S, Abreu C, Barroso T, de Sousa RT, Torres S, Ribeiro LA, Nogueira-Costa G, Pais HL, Pinto C, Costa L, Costa L. DNA damage targeted therapy for advanced breast cancer. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2024; 5:678-698. [PMID: 38966174 PMCID: PMC11220312 DOI: 10.37349/etat.2024.00241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 01/04/2024] [Indexed: 07/06/2024] Open
Abstract
Breast cancer (BC) is the most prevalent malignancy affecting women worldwide, including Portugal. While the majority of BC cases are sporadic, hereditary forms account for 5-10% of cases. The most common inherited mutations associated with BC are germline mutations in the BReast CAncer (BRCA) 1/2 gene (gBRCA1/2). They are found in approximately 5-6% of BC patients and are inherited in an autosomal dominant manner, primarily affecting younger women. Pathogenic variants within BRCA1/2 genes elevate the risk of both breast and ovarian cancers and give rise to distinct clinical phenotypes. BRCA proteins play a key role in maintaining genome integrity by facilitating the repair of double-strand breaks through the homologous recombination (HR) pathway. Therefore, any mutation that impairs the function of BRCA proteins can result in the accumulation of DNA damage, genomic instability, and potentially contribute to cancer development and progression. Testing for gBRCA1/2 status is relevant for treatment planning, as it can provide insights into the likely response to therapy involving platinum-based chemotherapy and poly[adenosine diphosphate (ADP)-ribose] polymerase inhibitors (PARPi). The aim of this review was to investigate the impact of HR deficiency in BC, focusing on BRCA mutations and their impact on the modulation of responses to platinum and PARPi therapy, and to share the experience of Unidade Local de Saúde Santa Maria in the management of metastatic BC patients with DNA damage targeted therapy, including those with the Portuguese c.156_157insAlu BRCA2 founder mutation.
Collapse
Affiliation(s)
- Vanessa Patel
- Oncology Division, Unidade Local de Saúde Santa Maria, 1649-028 Lisboa, Portugal
| | - Sandra Casimiro
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina de Lisboa, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Catarina Abreu
- Oncology Division, Unidade Local de Saúde Santa Maria, 1649-028 Lisboa, Portugal
| | - Tiago Barroso
- Oncology Division, Unidade Local de Saúde Santa Maria, 1649-028 Lisboa, Portugal
| | | | - Sofia Torres
- Oncology Division, Unidade Local de Saúde Santa Maria, 1649-028 Lisboa, Portugal
| | - Leonor Abreu Ribeiro
- Oncology Division, Unidade Local de Saúde Santa Maria, 1649-028 Lisboa, Portugal
| | | | - Helena Luna Pais
- Oncology Division, Unidade Local de Saúde Santa Maria, 1649-028 Lisboa, Portugal
| | - Conceição Pinto
- Oncology Division, Unidade Local de Saúde Santa Maria, 1649-028 Lisboa, Portugal
| | - Leila Costa
- Pharmacy Department, Unidade Local de Saúde Santa Maria, 1649-028 Lisboa, Portugal
| | - Luís Costa
- Oncology Division, Unidade Local de Saúde Santa Maria, 1649-028 Lisboa, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina de Lisboa, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| |
Collapse
|
43
|
Shah OS, Nasrazadani A, Foldi J, Atkinson JM, Kleer CG, McAuliffe PF, Johnston TJ, Stallaert W, da Silva EM, Selenica P, Dopeso H, Pareja F, Mandelker D, Weigelt B, Reis-Filho JS, Bhargava R, Lucas PC, Lee AV, Oesterreich S. Spatial molecular profiling of mixed invasive ductal-lobular breast cancers reveals heterogeneity in intrinsic molecular subtypes, oncogenic signatures, and mutations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.09.557013. [PMID: 38915645 PMCID: PMC11195088 DOI: 10.1101/2023.09.09.557013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Mixed invasive ductal and lobular carcinoma (MDLC) is a rare histologic subtype of breast cancer displaying both E-cadherin positive ductal and E-cadherin negative lobular morphologies within the same tumor, posing challenges with regard to anticipated clinical management. It remains unclear whether these distinct morphologies also have distinct biology and risk of recurrence. Our spatially-resolved transcriptomic, genomic, and single-cell profiling revealed clinically significant differences between ductal and lobular tumor regions including distinct intrinsic subtype heterogeneity (e.g., MDLC with TNBC/basal ductal and ER+/luminal lobular regions), distinct enrichment of senescence/dormancy and oncogenic (ER and MYC) signatures, genetic and epigenetic CDH1 inactivation in lobular, but not ductal regions, and single-cell ductal and lobular sub-populations with unique oncogenic signatures further highlighting intra-regional heterogeneity. Altogether, we demonstrated that the intra-tumoral morphological/histological heterogeneity within MDLC is underpinned by intrinsic subtype and oncogenic heterogeneity which may result in prognostic uncertainty and therapeutic dilemma. Significance MDLC displays both ductal and lobular tumor regions. Our multi-omic profiling approach revealed that these morphologically distinct tumor regions harbor distinct intrinsic subtypes and oncogenic features that may cause prognostic uncertainty and therapeutic dilemma. Thus histopathological/molecular profiling of individual tumor regions may guide clinical decision making and benefit patients with MDLC, particularly in the advanced setting where there is increased reliance on next generation sequencing.
Collapse
|
44
|
Gauss C, Stone LD, Ghafouri M, Quan D, Johnson J, Fribley AM, Amm HM. Overcoming Resistance to Standard-of-Care Therapies for Head and Neck Squamous Cell Carcinomas. Cells 2024; 13:1018. [PMID: 38920648 PMCID: PMC11201455 DOI: 10.3390/cells13121018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 06/05/2024] [Indexed: 06/27/2024] Open
Abstract
Although there have been some advances during in recent decades, the treatment of head and neck squamous cell carcinoma (HNSCC) remains challenging. Resistance is a major issue for various treatments that are used, including both the conventional standards of care (radiotherapy and platinum-based chemotherapy) and the newer EGFR and checkpoint inhibitors. In fact, all the non-surgical treatments currently used for HNSCC are associated with intrinsic and/or acquired resistance. Herein, we explore the cellular mechanisms of resistance reported in HNSCC, including those related to epigenetic factors, DNA repair defects, and several signaling pathways. This article discusses these mechanisms and possible approaches that can be used to target different pathways to sensitize HNSCC to the existing treatments, obtain better responses to new agents, and ultimately improve the patient outcomes.
Collapse
Affiliation(s)
- Chester Gauss
- Carman and Ann Adams Department of Pediatrics, School of Medicine, Wayne State University, Detroit, MI 48202, USA; (C.G.); (M.G.)
| | - Logan D. Stone
- Oral & Maxillofacial Surgery, School of Dentistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Mehrnoosh Ghafouri
- Carman and Ann Adams Department of Pediatrics, School of Medicine, Wayne State University, Detroit, MI 48202, USA; (C.G.); (M.G.)
| | - Daniel Quan
- Department of Otolaryngology Head and Neck Surgery, School of Medicine, Wayne State University, Detroit, MI 48202, USA; (D.Q.)
| | - Jared Johnson
- Department of Otolaryngology Head and Neck Surgery, School of Medicine, Wayne State University, Detroit, MI 48202, USA; (D.Q.)
| | - Andrew M. Fribley
- Carman and Ann Adams Department of Pediatrics, School of Medicine, Wayne State University, Detroit, MI 48202, USA; (C.G.); (M.G.)
- Department of Otolaryngology Head and Neck Surgery, School of Medicine, Wayne State University, Detroit, MI 48202, USA; (D.Q.)
- Molecular Therapeutics Program, Karmanos Cancer Institute, Wayne State University, Detroit, MI 48202, USA
| | - Hope M. Amm
- Oral & Maxillofacial Surgery, School of Dentistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| |
Collapse
|
45
|
Saxena S, Nabel CS, Seay TW, Patel PS, Kawale AS, Crosby CR, Tigro H, Oh E, Vander Heiden MG, Hata AN, Suo Z, Zou L. Unprocessed genomic uracil as a source of DNA replication stress in cancer cells. Mol Cell 2024; 84:2036-2052.e7. [PMID: 38688279 PMCID: PMC11162326 DOI: 10.1016/j.molcel.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 03/26/2024] [Accepted: 04/05/2024] [Indexed: 05/02/2024]
Abstract
Alterations of bases in DNA constitute a major source of genomic instability. It is believed that base alterations trigger base excision repair (BER), generating DNA repair intermediates interfering with DNA replication. Here, we show that genomic uracil, a common type of base alteration, induces DNA replication stress (RS) without being processed by BER. In the absence of uracil DNA glycosylase (UNG), genomic uracil accumulates to high levels, DNA replication forks slow down, and PrimPol-mediated repriming is enhanced, generating single-stranded gaps in nascent DNA. ATR inhibition in UNG-deficient cells blocks the repair of uracil-induced gaps, increasing replication fork collapse and cell death. Notably, a subset of cancer cells upregulates UNG2 to suppress genomic uracil and limit RS, and these cancer cells are hypersensitive to co-treatment with ATR inhibitors and drugs increasing genomic uracil. These results reveal unprocessed genomic uracil as an unexpected source of RS and a targetable vulnerability of cancer cells.
Collapse
Affiliation(s)
- Sneha Saxena
- Mass General Cancer Center, Harvard Medical School, Charlestown, MA, USA
| | - Christopher S Nabel
- Mass General Cancer Center, Harvard Medical School, Charlestown, MA, USA; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Turner W Seay
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL, USA
| | - Parasvi S Patel
- Mass General Cancer Center, Harvard Medical School, Charlestown, MA, USA
| | - Ajinkya S Kawale
- Mass General Cancer Center, Harvard Medical School, Charlestown, MA, USA
| | - Caroline R Crosby
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Helene Tigro
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL, USA
| | - Eugene Oh
- Mass General Cancer Center, Harvard Medical School, Charlestown, MA, USA
| | - Matthew G Vander Heiden
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA, USA
| | - Aaron N Hata
- Mass General Cancer Center, Harvard Medical School, Charlestown, MA, USA; Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Zucai Suo
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL, USA
| | - Lee Zou
- Mass General Cancer Center, Harvard Medical School, Charlestown, MA, USA; Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
46
|
Wei L, He P, Tan Z, Lin C, Wei Z. Comprehensively analysis of IL33 in hepatocellular carcinoma prognosis, immune microenvironment and biological role. J Cell Mol Med 2024; 28:e18468. [PMID: 38923705 PMCID: PMC11196832 DOI: 10.1111/jcmm.18468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 04/22/2024] [Accepted: 05/22/2024] [Indexed: 06/28/2024] Open
Abstract
IL33 plays an important role in cancer. However, the role of liver cancer remains unclear. Open-accessed data was obtained from the Cancer Genome Atlas, Xena, and TISCH databases. Different algorithms and R packages are used to perform various analyses. Here, in our comprehensive study on IL33 in HCC, we observed its differential expression across cancers, implicating its role in cancer development. The single-cell analysis highlighted its primary expression in endothelial cells, unveiling correlations within the HCC microenvironment. Also, the expression level of IL33 was correlated with patients survival, emphasizing its potential prognostic value. Biological enrichment analyses revealed associations with stem cell division, angiogenesis, and inflammatory response. IL33's impact on the immune microenvironment showcased correlations with diverse immune cells. Genomic features and drug sensitivity analyses provided insights into IL33's broader implications. In a pan-cancer context, IL33 emerged as a potential tumour-inhibitor, influencing immune-related molecules. This study significantly advances our understanding of IL33 in cancer biology. IL33 exhibited differential expression across cancers, particularly in endothelial cells within the HCC microenvironment. IL33 is correlated with the survival of HCC patients, indicating potential prognostic value and highlighting its broader implications in cancer biology.
Collapse
Affiliation(s)
- Lifang Wei
- Health Management CenterThe Affiliated Hospital of Youjiang Medical University for NationalitiesGuangxiChina
| | - Ping He
- School of Laboratory MedicineYoujiang Medical University for NationalitiesGuangxiChina
| | - Zhongqiu Tan
- Department of OncologyThe Affiliated Hospital of Youjiang Medical University for NationalitiesBaiseGuangxiChina
| | - Cheng Lin
- Department of OncologyThe Affiliated Hospital of Youjiang Medical University for NationalitiesBaiseGuangxiChina
| | - Zhongheng Wei
- Department of OncologyThe Affiliated Hospital of Youjiang Medical University for NationalitiesBaiseGuangxiChina
- Guangxi Clinical Medical Research Center for Hepatobiliary DiseasesThe Affiliated Hospital of Youjiang Medical University for NationalitiesBaiseChina
| |
Collapse
|
47
|
Tie S, Tong T, Zhan G, Li X, Ouyang D, Cao J. Network pharmacology prediction and experiment validation of anti-liver cancer activity of Curcumae Rhizoma and Hedyotis diffusa Willd. Ann Med Surg (Lond) 2024; 86:3337-3348. [PMID: 38846818 PMCID: PMC11152801 DOI: 10.1097/ms9.0000000000002074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/08/2024] [Indexed: 06/09/2024] Open
Abstract
Objective This study aims to elucidate anti-liver cancer components and potential mechanisms of Curcumae Rhizoma and Hedyotis diffusa Willd (CR-HDW). Methods Effective components and targets of CR-HDW were identified from the Traditional Chinese Medicine Systems Pharmacology (TCMSP) database. Liver cancer-related genes were collected from GeneCards, Gene-Disease Association (DisGeNET), and National Center for Biotechnology Information (NCBI). Protein-protein interaction networks, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment were conducted to analyze the identified genes. Molecular docking was used to simulate binding of the active components and their target proteins. Cell activity assay, western blot, and senescence-associated β-galactosidase (SA-β-gal) experiments were conducted to validate core targets identified from molecular docking. Results Ten active compounds of CR-HDW were identified including quercetin, 3-epioleanic acid and hederagenin. The primary core proteins comprised Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), Protein Kinase B(AKT1), etc. The pathways for Phosphoinositide 3-kinase (PI3K)/ AKT, cellular senescence, Fork head boxO (FOXO) were revealed as important for anti-cancer activity of CR-HDW. Molecular docking demonstrated strong binding between liver cancer target proteins and major active components of CR-HDW. In-vitro experiments confirmed that hederagenin and 3-epioleolic acid inhibited HuH-7 cell growth, reduced expression of PI3K, AKT, and mechanistic target of rapamycin (mTOR) proteins. Hederagenin also induced HuH-7 senescence. Conclusions In summary, The authors' results suggest that the CR-HDW component (Hederagenin, 3-epoxy-olanolic acid) can inhibit the proliferation of HuH-7 cells by decreasing PI3K, AKT, and mTOR. Hederagenin also induced HuH-7 senescence.
Collapse
Affiliation(s)
- Songyan Tie
- Hunan University of Chinese Medicine
- Hunan Provincial Key Laboratory of Diagnostics in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Tianhao Tong
- Hunan University of Chinese Medicine
- Hunan Provincial Key Laboratory of Diagnostics in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Gangxiang Zhan
- Hunan University of Chinese Medicine
- Hunan Provincial Key Laboratory of Diagnostics in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Xin Li
- Hunan University of Chinese Medicine
- Hunan Provincial Key Laboratory of Diagnostics in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Dan Ouyang
- Hunan University of Chinese Medicine
- Hunan Provincial Key Laboratory of Diagnostics in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Jianzhong Cao
- Hunan University of Chinese Medicine
- Hunan Provincial Key Laboratory of Diagnostics in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
48
|
Hill BR, Ozgencil M, Buckley-Benbow L, Skingsley SLP, Tomlinson D, Eizmendi CO, Agnarelli A, Bellelli R. Loss of POLE3-POLE4 unleashes replicative gap accumulation upon treatment with PARP inhibitors. Cell Rep 2024; 43:114205. [PMID: 38753485 DOI: 10.1016/j.celrep.2024.114205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 04/06/2024] [Accepted: 04/23/2024] [Indexed: 05/18/2024] Open
Abstract
The advent of PARP inhibitors (PARPis) has profoundly changed the treatment landscape of BRCA1/BRCA2-mutated cancers. Despite this, the development of resistance to these compounds has become a major challenge. Hence, a detailed understanding of the mechanisms underlying PARPi sensitivity is crucially needed. Here, we show that loss of the POLE3-POLE4 subunits of DNA polymerase epsilon (Polε) strongly sensitizes cancer cells to PARPis in a Polε level-independent manner. Loss of POLE3-POLE4 is not associated with defective RAD51 foci formation, excluding a major defect in homologous recombination. On the contrary, treatment with PARPis triggers replicative gap accumulation in POLE3-POLE4 knockout (KO) cells in a PRIMPOL-dependent manner. In addition to this, the loss of POLE3-POLE4 further sensitizes BRCA1-silenced cells to PARPis. Importantly, the knockdown of 53BP1 does not rescue PARPi sensitivity in POLE3-POLE4 KO cells, bypassing a common PARPi resistance mechanism and outlining a potential strategy to sensitize cancer cells to PARPis.
Collapse
Affiliation(s)
- Bethany Rebekah Hill
- Centre for Cancer Cell & Molecular Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, EC1M 6BQ London, UK
| | - Meryem Ozgencil
- Centre for Cancer Cell & Molecular Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, EC1M 6BQ London, UK
| | - Lauryn Buckley-Benbow
- Centre for Cancer Cell & Molecular Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, EC1M 6BQ London, UK
| | - Sophie Louise Pamela Skingsley
- Centre for Cancer Cell & Molecular Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, EC1M 6BQ London, UK
| | - Danielle Tomlinson
- Centre for Cancer Cell & Molecular Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, EC1M 6BQ London, UK
| | - Carmen Ortueta Eizmendi
- Centre for Cancer Cell & Molecular Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, EC1M 6BQ London, UK
| | - Alessandro Agnarelli
- Centre for Cancer Cell & Molecular Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, EC1M 6BQ London, UK
| | - Roberto Bellelli
- Centre for Cancer Cell & Molecular Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, EC1M 6BQ London, UK.
| |
Collapse
|
49
|
Ho V, Chung L, Wilkinson K, Ma Y, Rutland T, Lea V, Lim SH, Abubakar A, Ng W, Lee M, Roberts TL, Becker TM, Mackenzie S, Chua W, Lee CS. Microsatellite Instability Testing and Prognostic Implications in Colorectal Cancer. Cancers (Basel) 2024; 16:2005. [PMID: 38893125 PMCID: PMC11171323 DOI: 10.3390/cancers16112005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/16/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
Given the crucial predictive implications of microsatellite instability (MSI) in colorectal cancer (CRC), MSI screening is commonly performed in those with and at risk for CRC. Here, we compared results from immunohistochemistry (IHC) and the droplet digital PCR (ddPCR) MSI assay on formalin-fixed paraffin-embedded tumor samples from 48 patients who underwent surgery for colon and rectal cancer by calculating Cohen's kappa measurement (k), revealing high agreement between the methods (k = 0.915). We performed Kaplan-Meier survival analyses and univariate and multivariate Cox regression to assess the prognostic significance of ddPCR-based MSI and to identify clinicopathological features associated with CRC outcome. Patients with MSI-high had better overall survival (OS; p = 0.038) and disease-free survival (DFS; p = 0.049) than those with microsatellite stability (MSS). When stratified by primary tumor location, right-sided CRC patients with MSI-high showed improved DFS, relative to those with MSS (p < 0.001), but left-sided CRC patients did not. In multivariate analyses, MSI-high was associated with improved OS (hazard ratio (HR) = 0.221, 95% confidence interval (CI): 0.026-0.870, p = 0.042), whereas the loss of DNA mismatch repair protein MutL homolog 1 (MLH1) expression was associated with worse OS (HR = 0.133, 95% CI: 0.001-1.152, p = 0.049). Our results suggest ddPCR is a promising tool for MSI detection. Given the opposing effects of MSI-high and MLH1 loss on OS, both ddPCR and IHC may be complementary for the prognostic assessment of CRC.
Collapse
Affiliation(s)
- Vincent Ho
- School of Medicine, Western Sydney University, Penrith, NSW 2751, Australia (Y.M.); (T.R.); (V.L.); (A.A.); (T.L.R.); (T.M.B.); (S.M.); (W.C.); (C.S.L.)
- Ingham Institute for Applied Medical Research, Liverpool, NSW 2170, Australia; (K.W.); (S.H.L.)
| | - Liping Chung
- School of Medicine, Western Sydney University, Penrith, NSW 2751, Australia (Y.M.); (T.R.); (V.L.); (A.A.); (T.L.R.); (T.M.B.); (S.M.); (W.C.); (C.S.L.)
- Ingham Institute for Applied Medical Research, Liverpool, NSW 2170, Australia; (K.W.); (S.H.L.)
| | - Kate Wilkinson
- Ingham Institute for Applied Medical Research, Liverpool, NSW 2170, Australia; (K.W.); (S.H.L.)
- Department of Anatomical Pathology, Liverpool Hospital, Liverpool, NSW 2170, Australia
| | - Yafeng Ma
- School of Medicine, Western Sydney University, Penrith, NSW 2751, Australia (Y.M.); (T.R.); (V.L.); (A.A.); (T.L.R.); (T.M.B.); (S.M.); (W.C.); (C.S.L.)
- Ingham Institute for Applied Medical Research, Liverpool, NSW 2170, Australia; (K.W.); (S.H.L.)
- South Western Sydney Clinical School, University of New South Wales, Liverpool Hospital, Liverpool, NSW 2170, Australia
| | - Tristan Rutland
- School of Medicine, Western Sydney University, Penrith, NSW 2751, Australia (Y.M.); (T.R.); (V.L.); (A.A.); (T.L.R.); (T.M.B.); (S.M.); (W.C.); (C.S.L.)
- Department of Anatomical Pathology, Liverpool Hospital, Liverpool, NSW 2170, Australia
| | - Vivienne Lea
- School of Medicine, Western Sydney University, Penrith, NSW 2751, Australia (Y.M.); (T.R.); (V.L.); (A.A.); (T.L.R.); (T.M.B.); (S.M.); (W.C.); (C.S.L.)
- Department of Anatomical Pathology, Liverpool Hospital, Liverpool, NSW 2170, Australia
| | - Stephanie H. Lim
- Ingham Institute for Applied Medical Research, Liverpool, NSW 2170, Australia; (K.W.); (S.H.L.)
- Macarthur Cancer Therapy Centre, Campbelltown Hospital, Campbelltown, NSW 2560, Australia
- Department of Medical Oncology, Liverpool Hospital, Liverpool, NSW 2170, Australia;
| | - Askar Abubakar
- School of Medicine, Western Sydney University, Penrith, NSW 2751, Australia (Y.M.); (T.R.); (V.L.); (A.A.); (T.L.R.); (T.M.B.); (S.M.); (W.C.); (C.S.L.)
- Ingham Institute for Applied Medical Research, Liverpool, NSW 2170, Australia; (K.W.); (S.H.L.)
| | - Weng Ng
- Department of Medical Oncology, Liverpool Hospital, Liverpool, NSW 2170, Australia;
| | - Mark Lee
- Department of Radiation Oncology, Liverpool Hospital, Liverpool, NSW 2170, Australia;
| | - Tara L. Roberts
- School of Medicine, Western Sydney University, Penrith, NSW 2751, Australia (Y.M.); (T.R.); (V.L.); (A.A.); (T.L.R.); (T.M.B.); (S.M.); (W.C.); (C.S.L.)
- Ingham Institute for Applied Medical Research, Liverpool, NSW 2170, Australia; (K.W.); (S.H.L.)
- South Western Sydney Clinical School, University of New South Wales, Liverpool Hospital, Liverpool, NSW 2170, Australia
| | - Therese M. Becker
- School of Medicine, Western Sydney University, Penrith, NSW 2751, Australia (Y.M.); (T.R.); (V.L.); (A.A.); (T.L.R.); (T.M.B.); (S.M.); (W.C.); (C.S.L.)
- Ingham Institute for Applied Medical Research, Liverpool, NSW 2170, Australia; (K.W.); (S.H.L.)
- South Western Sydney Clinical School, University of New South Wales, Liverpool Hospital, Liverpool, NSW 2170, Australia
| | - Scott Mackenzie
- School of Medicine, Western Sydney University, Penrith, NSW 2751, Australia (Y.M.); (T.R.); (V.L.); (A.A.); (T.L.R.); (T.M.B.); (S.M.); (W.C.); (C.S.L.)
- Department of Colorectal Surgery, Liverpool Hospital, Liverpool, NSW 2170, Australia
| | - Wei Chua
- School of Medicine, Western Sydney University, Penrith, NSW 2751, Australia (Y.M.); (T.R.); (V.L.); (A.A.); (T.L.R.); (T.M.B.); (S.M.); (W.C.); (C.S.L.)
- Department of Medical Oncology, Liverpool Hospital, Liverpool, NSW 2170, Australia;
- Discipline of Medical Oncology, School of Medicine, Western Sydney University, Liverpool, NSW 2170, Australia
| | - Cheok Soon Lee
- School of Medicine, Western Sydney University, Penrith, NSW 2751, Australia (Y.M.); (T.R.); (V.L.); (A.A.); (T.L.R.); (T.M.B.); (S.M.); (W.C.); (C.S.L.)
- Ingham Institute for Applied Medical Research, Liverpool, NSW 2170, Australia; (K.W.); (S.H.L.)
- Department of Anatomical Pathology, Liverpool Hospital, Liverpool, NSW 2170, Australia
- Discipline of Pathology, School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
| |
Collapse
|
50
|
Lin Z, Wang Q, Zheng Z, Zhang B, Zhou S, Zheng D, Chen Z, Zheng S, Zhu S, Zhang X, Lan E, Zhang Y, Lin X, Zhuang Q, Qian H, Hu X, Zhuang Y, Jin Z, Jiang S, Ma Y. Identification and validation of a platelet-related signature for predicting survival and drug sensitivity in multiple myeloma. Front Pharmacol 2024; 15:1377370. [PMID: 38818376 PMCID: PMC11137312 DOI: 10.3389/fphar.2024.1377370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 04/29/2024] [Indexed: 06/01/2024] Open
Abstract
Background: Significant progress has been achieved in the management of multiple myeloma (MM) by implementing high-dose therapy and stem cell transplantation. Moreover, the prognosis of patients has been enhanced due to the introduction of novel immunomodulatory drugs and the emergence of new targeted therapies. However, predicting the survival rates of patients with multiple myeloma is still tricky. According to recent researches, platelets have a significant impact in affecting the biological activity of tumors and are essential parts of the tumor microenvironment. Nonetheless, it is still unclear how platelet-related genes (PRGs) connect to the prognosis of multiple myeloma. Methods: We analyzed the expression of platelet-related genes and their prognostic value in multiple myeloma patients in this study. We also created a nomogram combining clinical metrics. Furthermore, we investigated disparities in the biological characteristics, immunological microenvironment, and reaction to immunotherapy, along with analyzing the drug susceptibility within diverse risk groups. Results: By using the platelet-related risk model, we were able to predict patients' prognosis more accurately. Subjects in the high-risk cohort exhibited inferior survival outcomes, both in the training and validation datasets, as compared to those in the low-risk cohort (p < 0.05). Moreover, there were differences in the immunological microenvironments, biological processes, clinical features, and chemotherapeutic drug sensitivity between the groups at high and low risk. Using multivariable Cox regression analyses, platelet-related risk score was shown to be an independent prognostic influence in MM (p < 0.001, hazard ratio (HR) = 2.001%, 95% confidence interval (CI): 1.467-2.730). Furthermore, the capacity to predict survival was further improved when a combined nomogram was utilized. In training cohort, this outperformed the predictive value of International staging system (ISS) alone from a 5-years area under curve (AUC) = 0.668 (95% CI: 0.611-0.725) to an AUC = 0.721 (95% CI: 0.665-0.778). Conclusion: Our study revealed the potential benefits of PRGs in terms of survival prognosis of MM patients. Furthermore, we verified its potential as a drug target for MM patients. These findings open up novel possibilities for prognostic evaluation and treatment choices for MM.
Collapse
Affiliation(s)
- Zhili Lin
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Quanqiang Wang
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ziwei Zheng
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Bingxin Zhang
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shujuan Zhou
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Dong Zheng
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zixing Chen
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Sisi Zheng
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shuxia Zhu
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xinyi Zhang
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Enqing Lan
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yu Zhang
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xuanru Lin
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qiang Zhuang
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Honglan Qian
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xudong Hu
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yan Zhuang
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhouxiang Jin
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Songfu Jiang
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yongyong Ma
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Intelligent Treatment and Life Support for Critical Diseases of Zhejiang Province, Wenzhou, China
- Zhejiang Engineering Research Center for Hospital Emergency and Process Digitization, Wenzhou, China
| |
Collapse
|