1
|
Qian L, Zhu Y, Deng C, Liang Z, Chen J, Chen Y, Wang X, Liu Y, Tian Y, Yang Y. Peroxisome proliferator-activated receptor gamma coactivator-1 (PGC-1) family in physiological and pathophysiological process and diseases. Signal Transduct Target Ther 2024; 9:50. [PMID: 38424050 PMCID: PMC10904817 DOI: 10.1038/s41392-024-01756-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/13/2024] [Accepted: 01/23/2024] [Indexed: 03/02/2024] Open
Abstract
Peroxisome proliferator-activated receptor gamma coactivator-1 (PGC-1) family (PGC-1s), consisting of three members encompassing PGC-1α, PGC-1β, and PGC-1-related coactivator (PRC), was discovered more than a quarter-century ago. PGC-1s are essential coordinators of many vital cellular events, including mitochondrial functions, oxidative stress, endoplasmic reticulum homeostasis, and inflammation. Accumulating evidence has shown that PGC-1s are implicated in many diseases, such as cancers, cardiac diseases and cardiovascular diseases, neurological disorders, kidney diseases, motor system diseases, and metabolic disorders. Examining the upstream modulators and co-activated partners of PGC-1s and identifying critical biological events modulated by downstream effectors of PGC-1s contribute to the presentation of the elaborate network of PGC-1s. Furthermore, discussing the correlation between PGC-1s and diseases as well as summarizing the therapy targeting PGC-1s helps make individualized and precise intervention methods. In this review, we summarize basic knowledge regarding the PGC-1s family as well as the molecular regulatory network, discuss the physio-pathological roles of PGC-1s in human diseases, review the application of PGC-1s, including the diagnostic and prognostic value of PGC-1s and several therapies in pre-clinical studies, and suggest several directions for future investigations. This review presents the immense potential of targeting PGC-1s in the treatment of diseases and hopefully facilitates the promotion of PGC-1s as new therapeutic targets.
Collapse
Affiliation(s)
- Lu Qian
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Northwest University, Xi'an, 710021, China
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
| | - Yanli Zhu
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Northwest University, Xi'an, 710021, China
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
| | - Chao Deng
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
| | - Zhenxing Liang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe East, Zhengzhou, 450052, China
| | - Junmin Chen
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Northwest University, Xi'an, 710021, China
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
| | - Ying Chen
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
| | - Xue Wang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
| | - Yanqing Liu
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Northwest University, Xi'an, 710021, China
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
| | - Ye Tian
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Northwest University, Xi'an, 710021, China
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
| | - Yang Yang
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Northwest University, Xi'an, 710021, China.
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, 710069, China.
| |
Collapse
|
2
|
Liu K, Li W, Xiao Y, Lei M, Zhang M, Min J. Molecular mechanism of specific DNA sequence recognition by NRF1. Nucleic Acids Res 2024; 52:953-966. [PMID: 38055835 PMCID: PMC10810270 DOI: 10.1093/nar/gkad1162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/09/2023] [Accepted: 11/17/2023] [Indexed: 12/08/2023] Open
Abstract
Nuclear respiratory factor 1 (NRF1) regulates the expression of genes that are vital for mitochondrial biogenesis, respiration, and various other cellular processes. While NRF1 has been reported to bind specifically to GC-rich promoters as a homodimer, the precise molecular mechanism governing its recognition of target gene promoters has remained elusive. To unravel the recognition mechanism, we have determined the crystal structure of the NRF1 homodimer bound to an ATGCGCATGCGCAT dsDNA. In this complex, NRF1 utilizes a flexible linker to connect its dimerization domain (DD) and DNA binding domain (DBD). This configuration allows one NRF1 monomer to adopt a U-turn conformation, facilitating the homodimer to specifically bind to the two TGCGC motifs in the GCGCATGCGC consensus sequence from opposite directions. Strikingly, while the NRF1 DBD alone could also bind to the half-site (TGCGC) DNA of the consensus sequence, the cooperativity between DD and DBD is essential for the binding of the intact GCGCATGCGC sequence and the transcriptional activity of NRF1. Taken together, our results elucidate the molecular mechanism by which NRF1 recognizes specific DNA sequences in the promoters to regulate gene expression.
Collapse
Affiliation(s)
- Ke Liu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, PR China
| | - Weifang Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, PR China
| | - Yuqing Xiao
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, PR China
| | - Ming Lei
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, PR China
| | - Ming Zhang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, PR China
| | - Jinrong Min
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, PR China
| |
Collapse
|
3
|
Liu L, Li Y, Chen G, Chen Q. Crosstalk between mitochondrial biogenesis and mitophagy to maintain mitochondrial homeostasis. J Biomed Sci 2023; 30:86. [PMID: 37821940 PMCID: PMC10568841 DOI: 10.1186/s12929-023-00975-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 09/13/2023] [Indexed: 10/13/2023] Open
Abstract
Mitochondrial mass and quality are tightly regulated by two essential and opposing mechanisms, mitochondrial biogenesis (mitobiogenesis) and mitophagy, in response to cellular energy needs and other cellular and environmental cues. Great strides have been made to uncover key regulators of these complex processes. Emerging evidence has shown that there exists a tight coordination between mitophagy and mitobiogenesis, and their defects may cause many human diseases. In this review, we will first summarize the recent advances made in the discovery of molecular regulations of mitobiogenesis and mitophagy and then focus on the mechanism and signaling pathways involved in the simultaneous regulation of mitobiogenesis and mitophagy in the response of tissue or cultured cells to energy needs, stress, or pathophysiological conditions. Further studies of the crosstalk of these two opposing processes at the molecular level will provide a better understanding of how the cell maintains optimal cellular fitness and function under physiological and pathophysiological conditions, which holds promise for fighting aging and aging-related diseases.
Collapse
Affiliation(s)
- Lei Liu
- Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.
- Institute for Stem Cell and Regenerative Medicine, Beijing, China.
| | - Yanjun Li
- Center of Cell Response, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Guo Chen
- Center of Cell Response, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Quan Chen
- Center of Cell Response, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China.
| |
Collapse
|
4
|
Yuan Y, Tian Y, Jiang H, Cai LY, Song J, Peng R, Zhang XM. Mechanism of PGC-1α-mediated mitochondrial biogenesis in cerebral ischemia-reperfusion injury. Front Mol Neurosci 2023; 16:1224964. [PMID: 37492523 PMCID: PMC10363604 DOI: 10.3389/fnmol.2023.1224964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 06/21/2023] [Indexed: 07/27/2023] Open
Abstract
Cerebral ischemia-reperfusion injury (CIRI) is a series of cascade reactions that occur after blood flow recanalization in the ischemic zone in patients with cerebral infarction, causing an imbalance in intracellular homeostasis through multiple pathologies such as increased oxygen free radicals, inflammatory response, calcium overload, and impaired energy metabolism, leading to mitochondrial dysfunction and ultimately apoptosis. Rescue of reversibly damaged neurons in the ischemic hemispheric zone is the key to saving brain infarction and reducing neurological deficits. Complex and active neurological functions are highly dependent on an adequate energy supply from mitochondria. Mitochondrial biogenesis (MB), a process that generates new functional mitochondria and restores normal mitochondrial function by replacing damaged mitochondria, is a major mechanism for maintaining intra-mitochondrial homeostasis and is involved in mitochondrial quality control to ameliorate mitochondrial dysfunction and thus protects against CIRI. The main regulator of MB is peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α), which improves mitochondrial function to protect against CIRI by activating its downstream nuclear respiratory factor 1 (NRF1) and mitochondrial transcription factor A (TFAM) to promote mitochondrial genome replication and transcription. This paper provides a theoretical reference for the treatment of neurological impairment caused by CIRI by discussing the mechanisms of mitochondrial biogenesis during cerebral ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Ying Yuan
- School of Acupuncture-Moxibustion and Orthopedics, Hubei University of Chinese Medicine, Wuhan, China
| | - Yuan Tian
- School of Acupuncture-Moxibustion and Orthopedics, Hubei University of Chinese Medicine, Wuhan, China
| | - Hui Jiang
- School of Acupuncture-Moxibustion and Orthopedics, Hubei University of Chinese Medicine, Wuhan, China
| | - Luo-yang Cai
- School of Acupuncture-Moxibustion and Orthopedics, Hubei University of Chinese Medicine, Wuhan, China
| | - Jie Song
- School of Acupuncture-Moxibustion and Orthopedics, Hubei University of Chinese Medicine, Wuhan, China
| | - Rui Peng
- School of Acupuncture-Moxibustion and Orthopedics, Hubei University of Chinese Medicine, Wuhan, China
- Sub-Health Institute Hubei University of Chinese Medicine, Wuhan, China
| | - Xiao-ming Zhang
- School of Acupuncture-Moxibustion and Orthopedics, Hubei University of Chinese Medicine, Wuhan, China
- Sub-Health Institute Hubei University of Chinese Medicine, Wuhan, China
- Hubei Provincial Collaborative Innovation Center for Preventive Treatment of Disease by Acupuncture, Wuhan, China
| |
Collapse
|
5
|
Ding Q, Liu X, Qi Y, Yao X, Tsang SY. TRPA1 promotes the maturation of embryonic stem cell-derived cardiomyocytes by regulating mitochondrial biogenesis and dynamics. Stem Cell Res Ther 2023; 14:158. [PMID: 37287081 DOI: 10.1186/s13287-023-03388-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 05/25/2023] [Indexed: 06/09/2023] Open
Abstract
BACKGROUND Cardiomyocytes derived from pluripotent stem cells (PSC-CMs) have been widely accepted as a promising cell source for cardiac drug screening and heart regeneration therapies. However, unlike adult cardiomyocytes, the underdeveloped structure, the immature electrophysiological properties and metabolic phenotype of PSC-CMs limit their application. This project aimed to study the role of the transient receptor potential ankyrin 1 (TRPA1) channel in regulating the maturation of embryonic stem cell-derived cardiomyocytes (ESC-CMs). METHODS The activity and expression of TRPA1 in ESC-CMs were modulated by pharmacological or molecular approaches. Knockdown or overexpression of genes was done by infection of cells with adenoviral vectors carrying the gene of interest as a gene delivery tool. Immunostaining followed by confocal microscopy was used to reveal cellular structure such as sarcomere. Staining of mitochondria was performed by MitoTracker staining followed by confocal microscopy. Calcium imaging was performed by fluo-4 staining followed by confocal microscopy. Electrophysiological measurement was performed by whole-cell patch clamping. Gene expression was measured at mRNA level by qPCR and at protein level by Western blot. Oxygen consumption rates were measured by a Seahorse Analyzer. RESULTS TRPA1 was found to positively regulate the maturation of CMs. TRPA1 knockdown caused nascent cell structure, impaired Ca2+ handling and electrophysiological properties, and reduced metabolic capacity in ESC-CMs. The immaturity of ESC-CMs induced by TRPA1 knockdown was accompanied by reduced mitochondrial biogenesis and fusion. Mechanistically, we found that peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α), the key transcriptional coactivator related to mitochondrial biogenesis and metabolism, was downregulated by TRPA1 knockdown. Interestingly, overexpression of PGC-1α ameliorated the halted maturation induced by TRPA1 knockdown. Notably, phosphorylated p38 MAPK was upregulated, while MAPK phosphatase-1 (MKP-1), a calcium-sensitive MAPK inhibitor, was downregulated in TRPA1 knockdown cells, suggesting that TRPA1 may regulate the maturation of ESC-CMs through MKP-1-p38 MAPK-PGC-1α pathway. CONCLUSIONS Taken together, our study reveals the novel function of TRPA1 in promoting the maturation of CMs. As multiple stimuli have been known to activate TRPA1, and TRPA1-specific activators are also available, this study provides a novel and straightforward strategy for improving the maturation of PSC-CMs by activating TRPA1. Since a major limitation for the successful application of PSC-CMs for research and medicine lies in their immature phenotypes, the present study takes a big step closer to the practical use of PSC-CMs.
Collapse
Affiliation(s)
- Qianqian Ding
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Xianji Liu
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Yanxiang Qi
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Xiaoqiang Yao
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Suk Ying Tsang
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
- Key Laboratory for Regenerative Medicine, Ministry of Education, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
| |
Collapse
|
6
|
Cellular signals integrate cell cycle and metabolic control in cancer. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 135:397-423. [PMID: 37061338 DOI: 10.1016/bs.apcsb.2023.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Growth factors are the small peptides that can promote growth, differentiation, and survival of most living cells. However, aberrant activation of receptor tyrosine kinases by GFs can generate oncogenic signals, resulting in oncogenic transformation. Accumulating evidence support a link between GF/RTK signaling through the major signaling pathways, Ras/Erk and PI3K/Akt, and cell cycle progression. In response to GF signaling, the quiescent cells in the G0 stage can re-enter the cell cycle and become the proliferative stage. While in the proliferative stage, tumor cells undergo profound changes in their metabolism to support biomass production and bioenergetic requirements. Accumulating data show that the cell cycle regulators, specifically cyclin D, cyclin B, Cdk2, Cdk4, and Cdk6, and anaphase-promoting complex/cyclosome (APC/C-Cdh1) play critical roles in modulating various metabolic pathways. These cell cycle regulators can regulate metabolic enzyme activities through post-translational mechanisms or the transcriptional factors that control the expression of the metabolic genes. This fine-tune control allows only the relevant metabolic pathways to be active in a particular phase of the cell cycle, thereby providing suitable amounts of biosynthetic precursors available during the proliferative stage. The imbalance of metabolites in each cell cycle phase can induce cell cycle arrest followed by p53-induced apoptosis.
Collapse
|
7
|
Asong-Fontem N, Panisello-Rosello A, Beghdadi N, Lopez A, Rosello-Catafau J, Adam R. Pre-Ischemic Hypothermic Oxygenated Perfusion Alleviates Protective Molecular Markers of Ischemia-Reperfusion Injury in Rat Liver. Transplant Proc 2022; 54:1954-1969. [PMID: 35961798 DOI: 10.1016/j.transproceed.2022.05.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 04/26/2022] [Accepted: 05/22/2022] [Indexed: 11/16/2022]
Abstract
To expand the pool of organs, hypothermic oxygenated perfusion (HOPE), one of the most promising perfusion protocols, is currently performed after cold storage (CS) at transplant centers (HOPE-END). We investigated a new timing for HOPE, hypothesizing that performing HOPE before CS (HOPE-PRE) could boost mitochondrial protection allowing the graft to better cope with the accumulation of oxidative stress during CS. We analyzed liver injuries at 3 different levels. Histologic analysis demonstrated that, compared to classical CS (CTRL), the HOPE-PRE group showed significantly less ischemic necrosis compared to CTRL vs HOPE-END. From a biochemical standpoint, transaminases were lower after 2 hours of reperfusion in the CTRL vs HOPE-PRE group, which marked decreased liver injury. qPCR analysis on 37 genes involved in ischemia-reperfusion injury revealed protection in HOPE-PRE and HOPE-END compared to CTRL mediated through similar pathways. However, the CTRL vs HOPE-PRE group demonstrated an increased transcriptional level for protective genes compared to the CTRL vs HOPE-END group. This study provides insights on novel biomarkers that could be used in the clinic to better characterize graft quality improving transplantation outcomes.
Collapse
Affiliation(s)
- Njikem Asong-Fontem
- Université Paris-Saclay, Faculté de Médecine, Unité Chronothérapie, Cancers et Transplantation, Kremlin-Bicêtre, France.
| | - Arnau Panisello-Rosello
- Experimental Hepatic Ischemia-Reperfusion Unit, Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Catalonia, Spain
| | - Nassiba Beghdadi
- Université Paris-Saclay, Faculté de Médecine, Unité Chronothérapie, Cancers et Transplantation, Kremlin-Bicêtre, France; Center Hépato-Biliaire, APHP Hôpital Universitaire Paul Brousse, Villejuif, France
| | - Alexandre Lopez
- Université Paris-Saclay, Faculté de Médecine, Unité Chronothérapie, Cancers et Transplantation, Kremlin-Bicêtre, France
| | - Joan Rosello-Catafau
- Experimental Hepatic Ischemia-Reperfusion Unit, Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Catalonia, Spain
| | - René Adam
- Université Paris-Saclay, Faculté de Médecine, Unité Chronothérapie, Cancers et Transplantation, Kremlin-Bicêtre, France; Center Hépato-Biliaire, APHP Hôpital Universitaire Paul Brousse, Villejuif, France
| |
Collapse
|
8
|
Liu X, Chen Y, Zhao L, Tian Q, deAvila JM, Zhu MJ, Du M. Dietary succinate supplementation to maternal mice improves fetal brown adipose tissue development and thermogenesis of female offspring. J Nutr Biochem 2022; 100:108908. [PMID: 34801687 PMCID: PMC8761167 DOI: 10.1016/j.jnutbio.2021.108908] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 09/29/2021] [Accepted: 10/08/2021] [Indexed: 02/03/2023]
Abstract
Succinic acid widely exists in foods and is used as a food additive. Succinate not only serves as an energy substrate, but also induces protein succinylation. Histone succinylation activates gene transcription. The brown adipose tissue (BAT) is critical for prevention of obesity and metabolic dysfunction, and the fetal stage is pivotal for BAT development. Up to now, the role of maternal succinate supplementation on fetal BAT development and offspring BAT function remains unexamined. To test, female C57BL/6J mice (2-month-old) were separated into 2 groups, received with or without 0.5% succinic acid in drinking water during gestation and lactation. After weaning, female offspring were challenged with high fat diet (HFD) for 12 weeks. Newborn, female weanling, and HFD female offspring mice were analyzed. For neonatal and weaning mice, the BAT weight relative to the whole body weight was significantly increased in the succinate group. The expression of PGC-1α, a key transcription co-activator promoting mitochondrial biogenesis, was elevated in BAT of female neonatal and offspring born to succinate-fed dams. Consistently, maternal succinate supplementation enhanced thermogenesis and the expression of thermogenic genes in offspring BAT. Additionally, maternal succinate supplementation protected female offspring against HFD-induced obesity. Furthermore, in C3H10T1/2 cells, succinate supplementation promoted PGC-1α expression and brown adipogenesis. Mechanistically, succinate supplementation increased permissive histone succinylation and H3K4me3 modification in the Ppargc1a promoter, which correlated with the higher expression of Ppargc1a. In conclusion, maternal succinate supplementation during pregnancy and lactation enhanced fetal BAT development and offspring BAT thermogenesis, which prevented HFD-induced obesity and metabolism dysfunction in offspring.
Collapse
Affiliation(s)
- Xiangdong Liu
- Department of Animal Sciences, Washington State University, Pullman, WA 99164, USA
| | - Yanting Chen
- Department of Animal Sciences, Washington State University, Pullman, WA 99164, USA
| | - Liang Zhao
- Department of Animal Sciences, Washington State University, Pullman, WA 99164, USA
| | - Qiyu Tian
- Department of Animal Sciences, Washington State University, Pullman, WA 99164, USA
| | | | - Mei-Jun Zhu
- School of Food Science, Washington State University, Pullman, WA 99164, USA
| | - Min Du
- Department of Animal Sciences, Washington State University, Pullman, WA 99164, USA;,Corresponding author at: Dr. Du Min. Department of Animal Sciences, Washington State University, Pullman, WA 99164, USA. Tel.: 1-307-760-8860,
| |
Collapse
|
9
|
Ding Q, Qi Y, Tsang SY. Mitochondrial Biogenesis, Mitochondrial Dynamics, and Mitophagy in the Maturation of Cardiomyocytes. Cells 2021; 10:cells10092463. [PMID: 34572112 PMCID: PMC8466139 DOI: 10.3390/cells10092463] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/09/2021] [Accepted: 09/15/2021] [Indexed: 01/01/2023] Open
Abstract
Pluripotent stem cells (PSCs) can undergo unlimited self-renewal and can differentiate into all the cell types present in our body, including cardiomyocytes. Therefore, PSCs can be an excellent source of cardiomyocytes for future regenerative medicine and medical research studies. However, cardiomyocytes obtained from PSC differentiation culture are regarded as immature structurally, electrophysiologically, metabolically, and functionally. Mitochondria are organelles responsible for various cellular functions such as energy metabolism, different catabolic and anabolic processes, calcium fluxes, and various signaling pathways. Cells can respond to cellular needs to increase the mitochondrial mass by mitochondrial biogenesis. On the other hand, cells can also degrade mitochondria through mitophagy. Mitochondria are also dynamic organelles that undergo continuous fusion and fission events. In this review, we aim to summarize previous findings on the changes of mitochondrial biogenesis, mitophagy, and mitochondrial dynamics during the maturation of cardiomyocytes. In addition, we intend to summarize whether changes in these processes would affect the maturation of cardiomyocytes. Lastly, we aim to discuss unanswered questions in the field and to provide insights for the possible strategies of enhancing the maturation of PSC-derived cardiomyocytes.
Collapse
Affiliation(s)
- Qianqian Ding
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China;
| | - Yanxiang Qi
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China;
| | - Suk-Ying Tsang
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China;
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China;
- Key Laboratory for Regenerative Medicine, Ministry of Education, The Chinese University of Hong Kong, Hong Kong, China
- The Institute for Tissue Engineering and Regenerative Medicine (iTERM), The Chinese University of Hong Kong, Hong Kong, China
- Correspondence: ; Tel.: +852-39431020
| |
Collapse
|
10
|
Kobayashi M, Deguchi Y, Nozaki Y, Higami Y. Contribution of PGC-1α to Obesity- and Caloric Restriction-Related Physiological Changes in White Adipose Tissue. Int J Mol Sci 2021; 22:ijms22116025. [PMID: 34199596 PMCID: PMC8199692 DOI: 10.3390/ijms22116025] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/28/2021] [Accepted: 05/31/2021] [Indexed: 12/16/2022] Open
Abstract
Peroxisome proliferator-activated receptor γ coactivator-1 α (PGC-1α) regulates mitochondrial DNA replication and mitochondrial gene expression by interacting with several transcription factors. White adipose tissue (WAT) mainly comprises adipocytes that store triglycerides as an energy resource and secrete adipokines. The characteristics of WAT vary in response to systemic and chronic metabolic alterations, including obesity or caloric restriction. Despite a small amount of mitochondria in white adipocytes, accumulated evidence suggests that mitochondria are strongly related to adipocyte-specific functions, such as adipogenesis and lipogenesis, as well as oxidative metabolism for energy supply. Therefore, PGC-1α is expected to play an important role in WAT. In this review, we provide an overview of the involvement of mitochondria and PGC-1α with obesity- and caloric restriction-related physiological changes in adipocytes and WAT.
Collapse
Affiliation(s)
- Masaki Kobayashi
- Laboratory of Molecular Pathology and Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda 278-8510, Japan; (Y.D.); (Y.N.)
- Correspondence: (M.K.); (Y.H.); Tel.: +81-4-7121-3676 (M.K. & Y.H.)
| | - Yusuke Deguchi
- Laboratory of Molecular Pathology and Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda 278-8510, Japan; (Y.D.); (Y.N.)
| | - Yuka Nozaki
- Laboratory of Molecular Pathology and Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda 278-8510, Japan; (Y.D.); (Y.N.)
| | - Yoshikazu Higami
- Laboratory of Molecular Pathology and Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda 278-8510, Japan; (Y.D.); (Y.N.)
- Research Institute for Biomedical Sciences, Tokyo University of Science, 2669 Yamazaki, Noda 278-8510, Japan
- Correspondence: (M.K.); (Y.H.); Tel.: +81-4-7121-3676 (M.K. & Y.H.)
| |
Collapse
|
11
|
Dysregulation of PGC-1α-Dependent Transcriptional Programs in Neurological and Developmental Disorders: Therapeutic Challenges and Opportunities. Cells 2021. [DOI: 10.3390/cells10020352
expr 820281011 + 880698691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Substantial evidence indicates that mitochondrial impairment contributes to neuronal dysfunction and vulnerability in disease states, leading investigators to propose that the enhancement of mitochondrial function should be considered a strategy for neuroprotection. However, multiple attempts to improve mitochondrial function have failed to impact disease progression, suggesting that the biology underlying the normal regulation of mitochondrial pathways in neurons, and its dysfunction in disease, is more complex than initially thought. Here, we present the proteins and associated pathways involved in the transcriptional regulation of nuclear-encoded genes for mitochondrial function, with a focus on the transcriptional coactivator peroxisome proliferator-activated receptor gamma coactivator-1alpha (PGC-1α). We highlight PGC-1α’s roles in neuronal and non-neuronal cell types and discuss evidence for the dysregulation of PGC-1α-dependent pathways in Huntington’s Disease, Parkinson’s Disease, and developmental disorders, emphasizing the relationship between disease-specific cellular vulnerability and cell-type-specific patterns of PGC-1α expression. Finally, we discuss the challenges inherent to therapeutic targeting of PGC-1α-related transcriptional programs, considering the roles for neuron-enriched transcriptional coactivators in co-regulating mitochondrial and synaptic genes. This information will provide novel insights into the unique aspects of transcriptional regulation of mitochondrial function in neurons and the opportunities for therapeutic targeting of transcriptional pathways for neuroprotection.
Collapse
|
12
|
Dysregulation of PGC-1α-Dependent Transcriptional Programs in Neurological and Developmental Disorders: Therapeutic Challenges and Opportunities. Cells 2021; 10:cells10020352. [PMID: 33572179 PMCID: PMC7915819 DOI: 10.3390/cells10020352] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/03/2021] [Accepted: 02/03/2021] [Indexed: 02/08/2023] Open
Abstract
Substantial evidence indicates that mitochondrial impairment contributes to neuronal dysfunction and vulnerability in disease states, leading investigators to propose that the enhancement of mitochondrial function should be considered a strategy for neuroprotection. However, multiple attempts to improve mitochondrial function have failed to impact disease progression, suggesting that the biology underlying the normal regulation of mitochondrial pathways in neurons, and its dysfunction in disease, is more complex than initially thought. Here, we present the proteins and associated pathways involved in the transcriptional regulation of nuclear-encoded genes for mitochondrial function, with a focus on the transcriptional coactivator peroxisome proliferator-activated receptor gamma coactivator-1alpha (PGC-1α). We highlight PGC-1α's roles in neuronal and non-neuronal cell types and discuss evidence for the dysregulation of PGC-1α-dependent pathways in Huntington's Disease, Parkinson's Disease, and developmental disorders, emphasizing the relationship between disease-specific cellular vulnerability and cell-type-specific patterns of PGC-1α expression. Finally, we discuss the challenges inherent to therapeutic targeting of PGC-1α-related transcriptional programs, considering the roles for neuron-enriched transcriptional coactivators in co-regulating mitochondrial and synaptic genes. This information will provide novel insights into the unique aspects of transcriptional regulation of mitochondrial function in neurons and the opportunities for therapeutic targeting of transcriptional pathways for neuroprotection.
Collapse
|
13
|
Yvert T, Miyamoto-Mikami E, Tobina T, Shiose K, Kakigi R, Tsuzuki T, Takaragawa M, Ichinoseki-Sekine N, Pérez M, Kobayashi H, Tanaka H, Naito H, Fuku N. PPARGC1A rs8192678 and NRF1 rs6949152 Polymorphisms Are Associated with Muscle Fiber Composition in Women. Genes (Basel) 2020; 11:genes11091012. [PMID: 32867330 PMCID: PMC7563119 DOI: 10.3390/genes11091012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/20/2020] [Accepted: 08/25/2020] [Indexed: 02/07/2023] Open
Abstract
PPARGC1A rs8192678 G/A (Gly482Ser) and NRF1 rs6949152 A/G polymorphisms have been associated with endurance athlete status, endurance performance phenotypes, and certain health-related markers of different pathologies such as metabolic syndrome, diabetes, and dyslipidemia. We hypothesized that they could be considered interesting candidates for explaining inter-individual variations in muscle fiber composition in humans. We aimed to examine possible associations of these polymorphisms with myosin heavy-chain (MHC) isoforms as markers of muscle fiber compositions in vastus lateralis muscle in a population of 214 healthy Japanese subjects, aged between 19 and 79 years. No significant associations were found in men for any measured variables. In contrast, in women, the PPARGC1A rs8192678 A/A genotype was significantly associated with a higher proportion of MHC-I (p = 0.042) and with a lower proportion of MHC-IIx (p = 0.033), and the NRF1 rs6949152 AA genotype was significantly associated with a higher proportion of MHC-I (p = 0.008) and with a lower proportion of MHC IIx (p = 0.035). In women, the genotype scores of the modes presenting the most significant results for PPARGC1A rs8192678 G/A (Gly482Ser) and NRF1 rs6949152 A/G polymorphisms were significantly associated with MHC-I (p = 0.0007) and MHC IIx (p = 0.0016). That is, women with combined PPARGC1A A/A and NRF1 A/A genotypes presented the highest proportion of MHC-I and the lowest proportion of MHC-IIx, in contrast to women with combined PPARGC1A GG+GA and NRF1 AG+GG genotypes, who presented the lowest proportion of MHC-I and the highest proportion of MHC-IIx. Our results suggest possible associations between these polymorphisms (both individually and in combination) and the inter-individual variability observed in muscle fiber composition in women, but not in men.
Collapse
Affiliation(s)
- Thomas Yvert
- Graduate School of Health and Sports Science, Juntendo University, Chiba 270-1695, Japan; (T.Y.); (E.M.-M.); (M.T.); (N.I.-S.); (H.N.)
- Faculty of Sport Sciences, Universidad Europea de Madrid, 28670 Madrid, Spain;
| | - Eri Miyamoto-Mikami
- Graduate School of Health and Sports Science, Juntendo University, Chiba 270-1695, Japan; (T.Y.); (E.M.-M.); (M.T.); (N.I.-S.); (H.N.)
| | - Takuro Tobina
- Faculty of Nursing and Nutrition, University of Nagasaki, Nagasaki 851-2195, Japan;
| | - Keisuke Shiose
- Faculty of Education, University of Miyazaki, Miyazaki 889-2192, Japan;
| | - Ryo Kakigi
- Faculty of Management & Information Science, Josai International University, Chiba 283-8555, Japan;
| | | | - Mizuki Takaragawa
- Graduate School of Health and Sports Science, Juntendo University, Chiba 270-1695, Japan; (T.Y.); (E.M.-M.); (M.T.); (N.I.-S.); (H.N.)
| | - Noriko Ichinoseki-Sekine
- Graduate School of Health and Sports Science, Juntendo University, Chiba 270-1695, Japan; (T.Y.); (E.M.-M.); (M.T.); (N.I.-S.); (H.N.)
- Faculty of Liberal Arts, The Open University of Japan, Chiba 261-8586, Japan
| | - Margarita Pérez
- Faculty of Sport Sciences, Universidad Europea de Madrid, 28670 Madrid, Spain;
| | - Hiroyuki Kobayashi
- Department of General Medicine, Mito Medical Center, Tsukuba University Hospital, Ibaraki 310-0015, Japan;
| | - Hiroaki Tanaka
- Faculty of Sports and Health Science, Fukuoka University, Fukuoka 814-0180, Japan
| | - Hisashi Naito
- Graduate School of Health and Sports Science, Juntendo University, Chiba 270-1695, Japan; (T.Y.); (E.M.-M.); (M.T.); (N.I.-S.); (H.N.)
| | - Noriyuki Fuku
- Graduate School of Health and Sports Science, Juntendo University, Chiba 270-1695, Japan; (T.Y.); (E.M.-M.); (M.T.); (N.I.-S.); (H.N.)
- Correspondence: ; Tel.: +81-476-98-1001 (ext. 9203)
| |
Collapse
|
14
|
Curcumin, a Multifaceted Hormetic Agent, Mediates an Intricate Crosstalk between Mitochondrial Turnover, Autophagy, and Apoptosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:3656419. [PMID: 32765806 PMCID: PMC7387956 DOI: 10.1155/2020/3656419] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 03/01/2020] [Accepted: 05/25/2020] [Indexed: 02/06/2023]
Abstract
Curcumin has extensive therapeutic potential because of its antioxidant, anti-inflammatory, and antiproliferative properties. Multiple preclinical studies in vitro and in vivo have proven curcumin to be effective against various cancers. These potent effects are driven by curcumin's ability to induce G2/M cell cycle arrest, induce autophagy, activate apoptosis, disrupt molecular signaling, inhibit invasion and metastasis, and increase the efficacy of current chemotherapeutics. Here, we focus on the hormetic behavior of curcumin. Frequently, low doses of natural chemical products activate an adaptive stress response, whereas high doses activate acute responses like autophagy and cell death. This phenomenon is often referred to as hormesis. Curcumin causes cell death and primarily initiates an autophagic step (mitophagy). At higher doses, cells undergo mitochondrial destabilization due to calcium release from the endoplasmic reticulum, and die. Herein, we address the complex crosstalk that involves mitochondrial biogenesis, mitochondrial destabilization accompanied by mitophagy, and cell death.
Collapse
|
15
|
Kitamura K, Erlangga JS, Tsukamoto S, Sakamoto Y, Mabashi-Asazuma H, Iida K. Daidzein promotes the expression of oxidative phosphorylation- and fatty acid oxidation-related genes via an estrogen-related receptor α pathway to decrease lipid accumulation in muscle cells. J Nutr Biochem 2020; 77:108315. [PMID: 31923756 DOI: 10.1016/j.jnutbio.2019.108315] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 11/10/2019] [Accepted: 11/27/2019] [Indexed: 12/14/2022]
Abstract
Estrogen-related receptor (ERR)α regulates genes involved in fatty acid oxidation (FAO) and oxidative phosphorylation (OXPHOS) in muscle. The soy isoflavone daidzein was reported to be a putative ERRα activator, but little is known about its effects on gene expression and FA metabolism. This study aimed to clarify whether daidzein affects FAO- and OXPHOS-related genes thereby modulating intracellular FA metabolism in muscle cells. For this purpose, we used the C2C12 murine muscle cell line. ERRα-expressing C2C12 myotubes were treated with 50 μM daidzein, and gene expression was examined. The expression of FAO genes such as pyruvate dehydrogenase kinase 4 (Pdk4) and acyl-coenzyme A dehydrogenase (Acadm) and that of OXPHOS genes such as ATP synthase F1 subunit beta (Atp5b) and cytochrome c (Cycs) was significantly increased by daidzein, and these effects were partially blocked by an ERRα inhibitor. Using a reporter assay, we showed that daidzein enhanced the promoter activity of these genes and that ERRα responsive elements in the promoter region were necessary for the action of daidzein. Finally, daidzein significantly decreased lipid accumulation in C2C12 myotubes associated with increased oxygen consumption. In conclusion, daidzein decreases lipid deposition in muscle cells by regulating the expression of genes related to FAO and OXPHOS via an ERRα-associated pathway at least in part. These results suggest that daidzein would be a beneficial tool to protect against various diseases caused by muscle lipotoxicity.
Collapse
Affiliation(s)
- Kanano Kitamura
- Department of Nutrition and Food Science, Graduate School of Humanities and Sciences, Ochanomizu University, 2-1-1 Otsuka, Bunkyo, Tokyo 112-8610, Japan
| | - Jane Surya Erlangga
- Department of Nutrition and Food Science, Graduate School of Humanities and Sciences, Ochanomizu University, 2-1-1 Otsuka, Bunkyo, Tokyo 112-8610, Japan
| | - Sakuka Tsukamoto
- Department of Nutrition and Food Science, Graduate School of Humanities and Sciences, Ochanomizu University, 2-1-1 Otsuka, Bunkyo, Tokyo 112-8610, Japan
| | - Yuri Sakamoto
- Laboratory of Nutritional Physiology, Tokyo Kasei University, 1-18-1 Kaga, Itabashi-ku, Tokyo, 173-8602, Japan
| | - Hideaki Mabashi-Asazuma
- Department of Nutrition and Food Science, Graduate School of Humanities and Sciences, Ochanomizu University, 2-1-1 Otsuka, Bunkyo, Tokyo 112-8610, Japan; The Institute for Human Life Innovation, Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Tokyo 112-8610, Japan
| | - Kaoruko Iida
- Department of Nutrition and Food Science, Graduate School of Humanities and Sciences, Ochanomizu University, 2-1-1 Otsuka, Bunkyo, Tokyo 112-8610, Japan; The Institute for Human Life Innovation, Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Tokyo 112-8610, Japan.
| |
Collapse
|
16
|
Zhao L, Hu C, Zhang P, Jiang H, Chen J. Mesenchymal stem cell therapy targeting mitochondrial dysfunction in acute kidney injury. J Transl Med 2019; 17:142. [PMID: 31046805 PMCID: PMC6498508 DOI: 10.1186/s12967-019-1893-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Accepted: 04/25/2019] [Indexed: 12/13/2022] Open
Abstract
Mitochondria take part in a network of cellular processes that regulate cell homeostasis. Defects in mitochondrial function are key pathophysiological changes during acute kidney injury (AKI). Mesenchymal stem cells (MSCs) have shown promising regenerative effects in experimental AKI models, but the specific mechanism is still unclear. Some studies have demonstrated that MSCs are able to target mitochondrial dysfunction during AKI. In this review, we summarize these articles, providing an integral and updated view of MSC therapy targeting mitochondrial dysfunction during AKI, which is aimed at promoting the therapeutic effect of MSCs in AKI patients.
Collapse
Affiliation(s)
- Lingfei Zhao
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.,Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, Zhejiang, People's Republic of China.,Institute of Nephrology, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Chenxia Hu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Ping Zhang
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.,Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, Zhejiang, People's Republic of China.,Institute of Nephrology, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Hua Jiang
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.,Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, Zhejiang, People's Republic of China.,Institute of Nephrology, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Jianghua Chen
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China. .,Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, Zhejiang, People's Republic of China. .,Institute of Nephrology, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.
| |
Collapse
|
17
|
Kobayashi M, Fujii N, Narita T, Higami Y. SREBP-1c-Dependent Metabolic Remodeling of White Adipose Tissue by Caloric Restriction. Int J Mol Sci 2018; 19:ijms19113335. [PMID: 30373107 PMCID: PMC6275055 DOI: 10.3390/ijms19113335] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/21/2018] [Accepted: 10/21/2018] [Indexed: 12/21/2022] Open
Abstract
Caloric restriction (CR) delays the onset of many age-related pathophysiological changes and extends lifespan. White adipose tissue (WAT) is not only a major tissue for energy storage, but also an endocrine tissue that secretes various adipokines. Recent reports have demonstrated that alterations in the characteristics of WAT can impact whole-body metabolism and lifespan. Hence, we hypothesized that functional alterations in WAT may play important roles in the beneficial effects of CR. Previously, using microarray analysis of WAT from CR rats, we found that CR enhances fatty acid (FA) biosynthesis, and identified sterol regulatory element-binding protein 1c (SREBP-1c), a master regulator of FA synthesis, as a mediator of CR. These findings were validated by showing that CR failed to upregulate factors involved in FA biosynthesis and to extend longevity in SREBP-1c knockout mice. Furthermore, we revealed that SREBP-1c is implicated in CR-associated mitochondrial activation through the upregulation of peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α), a master regulator of mitochondrial biogenesis. Notably, these CR-associated phenotypes were observed only in WAT. We conclude that CR induces SREBP-1c-dependent metabolic remodeling, including the enhancement of FA biosynthesis and mitochondrial activation, via PGC-1α in WAT, resulting in beneficial effects.
Collapse
Affiliation(s)
- Masaki Kobayashi
- Laboratory of Molecular Pathology and Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan.
- Translational Research Center, Research Institute of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan.
| | - Namiki Fujii
- Laboratory of Molecular Pathology and Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan.
| | - Takumi Narita
- Epidemiology and Prevention Division, Research Center for Cancer Prevention and Screening, National Cancer Center, Tsukiji, Chuo-ku, Tokyo 104-0045, Japan.
| | - Yoshikazu Higami
- Laboratory of Molecular Pathology and Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan.
- Translational Research Center, Research Institute of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan.
| |
Collapse
|
18
|
PGC-1α sparks the fire of neuroprotection against neurodegenerative disorders. Ageing Res Rev 2018; 44:8-21. [PMID: 29580918 DOI: 10.1016/j.arr.2018.03.004] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 03/12/2018] [Accepted: 03/20/2018] [Indexed: 12/30/2022]
Abstract
Recently, growing evidence has demonstrated that peroxisome proliferator activated receptor γ (PPARγ) coactivator-1α (PGC-1α) is a superior transcriptional regulator that acts via controlling the expression of anti-oxidant enzymes and uncoupling proteins and inducing mitochondrial biogenesis, which plays a beneficial part in the central nervous system (CNS). Given the significance of PGC-1α, we summarize the current literature on the molecular mechanisms and roles of PGC-1α in the CNS. Thus, in this review, we first briefly introduce the basic characteristics regarding PGC-1α. We then depict some of its important cerebral functions and discuss upstream modulators, partners, and downstream effectors of the PGC-1α signaling pathway. Finally, we highlight recent progress in research on the involvement of PGC-1α in certain major neurodegenerative disorders (NDDs), including Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis. Collectively, the data presented here may be useful for supporting the future potential of PGC-1α as a therapeutic target.
Collapse
|
19
|
Seuter S, Neme A, Carlberg C. ETS transcription factor family member GABPA contributes to vitamin D receptor target gene regulation. J Steroid Biochem Mol Biol 2018; 177:46-52. [PMID: 28870774 DOI: 10.1016/j.jsbmb.2017.08.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 08/05/2017] [Accepted: 08/08/2017] [Indexed: 01/31/2023]
Abstract
Binding motifs of the ETS-domain transcription factor GABPA are found with high significance below the summits of the vitamin D receptor (VDR) cistrome. VDR is the nuclear receptor for the biologically most active vitamin D metabolite 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3). In this study, we determined the GABPA cistrome in THP-1 human monocytes and found that it is comprised of 3822 genomic loci, some 20% of which were modulated by 1,25(OH)2D3. The GABPA cistrome showed a high overlap rate with accessible chromatin and the pioneer transcription factor PU.1. Interestingly, 23 and 12% of persistent and transient VDR binding sites, respectively, co-localized with GABPA, which is clearly higher than the rate of secondary VDR loci (4%). Some 40% of GABPA binding sites were found at transcription start sites, nearly 100 of which are of 1,25(OH)2D3 target genes. On 593 genomic loci VDR and GABPA co-localized with PU.1, while only 175 VDR sites bound GABPA in the absence of PU.1. In total, VDR sites with GABPA co-localization may control some 450 vitamin D target genes. Those genes that are co-controlled by PU.1 preferentially participate in cellular and immune signaling processes, while the remaining genes are involved in cellular metabolism pathways. In conclusion, GABPA may contribute to differential VDR target gene regulation.
Collapse
Affiliation(s)
- Sabine Seuter
- School of Medicine, Institute of Biomedicine, University of Eastern Finland, FI-70211, Kuopio, Finland
| | - Antonio Neme
- School of Medicine, Institute of Biomedicine, University of Eastern Finland, FI-70211, Kuopio, Finland
| | - Carsten Carlberg
- School of Medicine, Institute of Biomedicine, University of Eastern Finland, FI-70211, Kuopio, Finland.
| |
Collapse
|
20
|
Prieto-Ruiz JA, Alis R, García-Benlloch S, Sáez-Atiénzar S, Ventura I, Hernández-Andreu JM, Hernández-Yago J, Blesa JR. Expression of the human TIMM23 and TIMM23B genes is regulated by the GABP transcription factor. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2018; 1861:80-94. [PMID: 29413900 DOI: 10.1016/j.bbagrm.2018.01.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 01/10/2018] [Accepted: 01/10/2018] [Indexed: 12/26/2022]
Abstract
The TIM23 protein is a key component of the mitochondrial import machinery in yeast and mammals. TIM23 is the channel-forming subunit of the translocase of the inner mitochondrial membrane (TIM23) complex, which mediates preprotein translocation across the mitochondrial inner membrane. In this paper, we aimed to characterize the promoter region of the highly similar human TIM23 orthologs: TIMM23 and TIMM23B. Bioinformatic analysis revealed putative sites for the GA-binding protein (GABP) and the recombination signal binding protein for immunoglobulin kappa J (RBPJ) transcription factors in both promoters. Luciferase reporter assays, electrophoretic mobility shift assays, and chromatin immunoprecipitation experiments showed three functional sites for GABP and one functional site for RBPJ in both promoters. Moreover, silencing of GABPA, the gene encoding the DNA-binding subunit of the GABP transcription factor, resulted in reduced expression of TIMM23 and TIMM23B. Our results show an essential role of GABP in activating TIMM23 expression. More broadly, they suggest that physiological signals involved in activating mitochondrial biogenesis and oxidative function also enhance the transcription but not the protein level of TIMM23, which is essential for maintaining mitochondrial function and homeostasis.
Collapse
Affiliation(s)
- Jesús A Prieto-Ruiz
- Facultad de Medicina, Universidad Católica de Valencia San Vicente Mártir, c/ Quevedo 2, 46001, Valencia, Spain; Instituto Universitario de Investigación Dr. Viña Giner, Universidad Católica de Valencia San Vicente Mártir, c/ Quevedo 2, 46001, Valencia, Spain.
| | - Rafael Alis
- Facultad de Medicina, Universidad Católica de Valencia San Vicente Mártir, c/ Quevedo 2, 46001, Valencia, Spain; Instituto Universitario de Investigación Dr. Viña Giner, Universidad Católica de Valencia San Vicente Mártir, c/ Quevedo 2, 46001, Valencia, Spain.
| | - Sandra García-Benlloch
- Facultad de Medicina, Universidad Católica de Valencia San Vicente Mártir, c/ Quevedo 2, 46001, Valencia, Spain; Instituto Universitario de Investigación Dr. Viña Giner, Universidad Católica de Valencia San Vicente Mártir, c/ Quevedo 2, 46001, Valencia, Spain.
| | - Sara Sáez-Atiénzar
- Facultad de Medicina, Universidad Católica de Valencia San Vicente Mártir, c/ Quevedo 2, 46001, Valencia, Spain; Instituto Universitario de Investigación Dr. Viña Giner, Universidad Católica de Valencia San Vicente Mártir, c/ Quevedo 2, 46001, Valencia, Spain.
| | - Ignacio Ventura
- Facultad de Medicina, Universidad Católica de Valencia San Vicente Mártir, c/ Quevedo 2, 46001, Valencia, Spain; Instituto Universitario de Investigación Dr. Viña Giner, Universidad Católica de Valencia San Vicente Mártir, c/ Quevedo 2, 46001, Valencia, Spain.
| | - José M Hernández-Andreu
- Facultad de Medicina, Universidad Católica de Valencia San Vicente Mártir, c/ Quevedo 2, 46001, Valencia, Spain; Instituto Universitario de Investigación Dr. Viña Giner, Universidad Católica de Valencia San Vicente Mártir, c/ Quevedo 2, 46001, Valencia, Spain.
| | - José Hernández-Yago
- Instituto Universitario de Investigación Dr. Viña Giner, Universidad Católica de Valencia San Vicente Mártir, c/ Quevedo 2, 46001, Valencia, Spain; Facultad de Veterinaria y Ciencias Experimentales, Universidad Católica de Valencia San Vicente Mártir, c/ Guillem de Castro 94, 46001, Valencia, Spain.
| | - José R Blesa
- Facultad de Medicina, Universidad Católica de Valencia San Vicente Mártir, c/ Quevedo 2, 46001, Valencia, Spain; Instituto Universitario de Investigación Dr. Viña Giner, Universidad Católica de Valencia San Vicente Mártir, c/ Quevedo 2, 46001, Valencia, Spain.
| |
Collapse
|
21
|
Islam H, Edgett BA, Gurd BJ. Coordination of mitochondrial biogenesis by PGC-1α in human skeletal muscle: A re-evaluation. Metabolism 2018; 79:42-51. [PMID: 29126696 DOI: 10.1016/j.metabol.2017.11.001] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 10/13/2017] [Accepted: 11/01/2017] [Indexed: 02/07/2023]
Abstract
The transcriptional co-activator peroxisome proliferator-activated receptor gamma co-activator-1 alpha (PGC-1α) is proposed to coordinate skeletal muscle mitochondrial biogenesis through the integrated induction of nuclear- and mitochondrial-encoded gene transcription. This paradigm is based largely on experiments demonstrating PGC-1α's ability to co-activate various nuclear transcription factors that increase the expression of mitochondrial genes, as well as PGC-1α's direct interaction with mitochondrial transcription factor A within mitochondria to increase the transcription of mitochondrial DNA. While this paradigm is supported by evidence from cellular and transgenic animal models, as well as acute exercise studies involving animals, the up-regulation of nuclear- and mitochondrial-encoded genes in response to exercise does not appear to occur in a coordinated fashion in human skeletal muscle. This review re-evaluates our current understanding of this phenomenon by highlighting evidence from recent studies examining the exercise-induced expression of nuclear- and mitochondrial-encoded genes targeted by PGC-1α. We also highlight several possible theories that may explain the apparent inability of PGC-1α to coordinately up-regulate the expression of genes required for mitochondrial biogenesis in human skeletal muscle, and provide directions for future work exploring mitochondrial biogenic gene expression following exercise.
Collapse
Affiliation(s)
- Hashim Islam
- School of Kinesiology and Health Studies, Queen's University, Kingston K7L 3N6, Ontario, Canada.
| | - Brittany A Edgett
- School of Kinesiology and Health Studies, Queen's University, Kingston K7L 3N6, Ontario, Canada; Human Health and Nutritional Sciences, University of Guelph, Guelph N1G 2W1, Ontario, Canada.
| | - Brendon J Gurd
- School of Kinesiology and Health Studies, Queen's University, Kingston K7L 3N6, Ontario, Canada.
| |
Collapse
|
22
|
de Oliveira MR. Carnosic Acid as a Promising Agent in Protecting Mitochondria of Brain Cells. Mol Neurobiol 2018; 55:6687-6699. [DOI: 10.1007/s12035-017-0842-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 12/14/2017] [Indexed: 12/21/2022]
|
23
|
Intra- and Intercellular Quality Control Mechanisms of Mitochondria. Cells 2017; 7:cells7010001. [PMID: 29278362 PMCID: PMC5789274 DOI: 10.3390/cells7010001] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 12/22/2017] [Accepted: 12/23/2017] [Indexed: 12/29/2022] Open
Abstract
Mitochondria function to generate ATP and also play important roles in cellular homeostasis, signaling, apoptosis, autophagy, and metabolism. The loss of mitochondrial function results in cell death and various types of diseases. Therefore, quality control of mitochondria via intra- and intercellular pathways is crucial. Intracellular quality control consists of biogenesis, fusion and fission, and degradation of mitochondria in the cell, whereas intercellular quality control involves tunneling nanotubes and extracellular vesicles. In this review, we outline the current knowledge on the intra- and intercellular quality control mechanisms of mitochondria.
Collapse
|
24
|
Luo CT, Osmanbeyoglu HU, Do MH, Bivona MR, Toure A, Kang D, Xie Y, Leslie CS, Li MO. Ets transcription factor GABP controls T cell homeostasis and immunity. Nat Commun 2017; 8:1062. [PMID: 29051483 PMCID: PMC5648787 DOI: 10.1038/s41467-017-01020-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 08/11/2017] [Indexed: 01/08/2023] Open
Abstract
Peripheral T cells are maintained in the absence of vigorous stimuli, and respond to antigenic stimulation by initiating cell cycle progression and functional differentiation. Here we show that depletion of the Ets family transcription factor GA-binding protein (GABP) in T cells impairs T-cell homeostasis. In addition, GABP is critically required for antigen-stimulated T-cell responses in vitro and in vivo. Transcriptome and genome-wide GABP-binding site analyses identify GABP direct targets encoding proteins involved in cellular redox balance and DNA replication, including the Mcm replicative helicases. These findings show that GABP has a nonredundant role in the control of T-cell homeostasis and immunity.
Collapse
Affiliation(s)
- Chong T Luo
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Hatice U Osmanbeyoglu
- Computational Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Mytrang H Do
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Michael R Bivona
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Ahmed Toure
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Davina Kang
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Yuchen Xie
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Christina S Leslie
- Computational Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Ming O Li
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
| |
Collapse
|
25
|
Tain LS, Sehlke R, Jain C, Chokkalingam M, Nagaraj N, Essers P, Rassner M, Grönke S, Froelich J, Dieterich C, Mann M, Alic N, Beyer A, Partridge L. A proteomic atlas of insulin signalling reveals tissue-specific mechanisms of longevity assurance. Mol Syst Biol 2017; 13:939. [PMID: 28916541 PMCID: PMC5615923 DOI: 10.15252/msb.20177663] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 08/15/2017] [Accepted: 08/16/2017] [Indexed: 12/20/2022] Open
Abstract
Lowered activity of the insulin/IGF signalling (IIS) network can ameliorate the effects of ageing in laboratory animals and, possibly, humans. Although transcriptome remodelling in long-lived IIS mutants has been extensively documented, the causal mechanisms contributing to extended lifespan, particularly in specific tissues, remain unclear. We have characterized the proteomes of four key insulin-sensitive tissues in a long-lived Drosophila IIS mutant and control, and detected 44% of the predicted proteome (6,085 proteins). Expression of ribosome-associated proteins in the fat body was reduced in the mutant, with a corresponding, tissue-specific reduction in translation. Expression of mitochondrial electron transport chain proteins in fat body was increased, leading to increased respiration, which was necessary for IIS-mediated lifespan extension, and alone sufficient to mediate it. Proteasomal subunits showed altered expression in IIS mutant gut, and gut-specific over-expression of the RPN6 proteasomal subunit, was sufficient to increase proteasomal activity and extend lifespan, whilst inhibition of proteasome activity abolished IIS-mediated longevity. Our study thus uncovered strikingly tissue-specific responses of cellular processes to lowered IIS acting in concert to ameliorate ageing.
Collapse
Affiliation(s)
- Luke S Tain
- Max-Planck Institute for Biology of Ageing, Cologne, Germany
| | - Robert Sehlke
- Max-Planck Institute for Biology of Ageing, Cologne, Germany
- CECAD Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases, Cologne, Germany
| | - Chirag Jain
- Max-Planck Institute for Biology of Ageing, Cologne, Germany
| | - Manopriya Chokkalingam
- CECAD Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases, Cologne, Germany
| | - Nagarjuna Nagaraj
- Department of Proteomics and Signal Transduction, Max-Planck-Institute of Biochemistry, Martinsried, Germany
| | - Paul Essers
- Max-Planck Institute for Biology of Ageing, Cologne, Germany
| | - Mark Rassner
- Max-Planck Institute for Biology of Ageing, Cologne, Germany
| | | | - Jenny Froelich
- Max-Planck Institute for Biology of Ageing, Cologne, Germany
| | - Christoph Dieterich
- Section of Bioinformatics and Systems Cardiology, Department of Internal Medicine III and Klaus Tschira Institute for Integrative Computational Cardiology, University of Heidelberg, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner site Heidelberg/Mannheim, Heidelberg, Germany
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max-Planck-Institute of Biochemistry, Martinsried, Germany
| | - Nazif Alic
- Institute of Healthy Ageing, and GEE, UCL, London, UK
| | - Andreas Beyer
- CECAD Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Linda Partridge
- Max-Planck Institute for Biology of Ageing, Cologne, Germany
- Institute of Healthy Ageing, and GEE, UCL, London, UK
| |
Collapse
|
26
|
Di Meo S, Iossa S, Venditti P. Improvement of obesity-linked skeletal muscle insulin resistance by strength and endurance training. J Endocrinol 2017; 234:R159-R181. [PMID: 28778962 DOI: 10.1530/joe-17-0186] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 06/26/2017] [Indexed: 12/30/2022]
Abstract
Obesity-linked insulin resistance is mainly due to fatty acid overload in non-adipose tissues, particularly skeletal muscle and liver, where it results in high production of reactive oxygen species and mitochondrial dysfunction. Accumulating evidence indicates that resistance and endurance training alone and in combination can counteract the harmful effects of obesity increasing insulin sensitivity, thus preventing diabetes. This review focuses the mechanisms underlying the exercise role in opposing skeletal muscle insulin resistance-linked metabolic dysfunction. It is apparent that exercise acts through two mechanisms: (1) it stimulates glucose transport by activating an insulin-independent pathway and (2) it protects against mitochondrial dysfunction-induced insulin resistance by increasing muscle antioxidant defenses and mitochondrial biogenesis. However, antioxidant supplementation combined with endurance training increases glucose transport in insulin-resistant skeletal muscle in an additive fashion only when antioxidants that are able to increase the expression of antioxidant enzymes and/or the activity of components of the insulin signaling pathway are used.
Collapse
Affiliation(s)
- Sergio Di Meo
- Dipartimento di BiologiaUniversità di Napoli 'Federico II', Napoli, Italy
| | - Susanna Iossa
- Dipartimento di BiologiaUniversità di Napoli 'Federico II', Napoli, Italy
| | - Paola Venditti
- Dipartimento di BiologiaUniversità di Napoli 'Federico II', Napoli, Italy
| |
Collapse
|
27
|
Monomeric cocoa catechins enhance β-cell function by increasing mitochondrial respiration. J Nutr Biochem 2017; 49:30-41. [PMID: 28863367 DOI: 10.1016/j.jnutbio.2017.07.015] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Revised: 07/05/2017] [Accepted: 07/24/2017] [Indexed: 01/08/2023]
Abstract
A hallmark of type 2 diabetes (T2D) is β-cell dysfunction and the eventual loss of functional β-cell mass. Therefore, mechanisms that improve or preserve β-cell function could be used to improve the quality of life of individuals with T2D. Studies have shown that monomeric, oligomeric and polymeric cocoa flavanols have different effects on obesity, insulin resistance and glucose tolerance. We hypothesized that these cocoa flavanols may have beneficial effects on β-cell function. INS-1 832/13-derived β-cells and primary rat islets cultured with a monomeric catechin-rich cocoa flavanol fraction demonstrated enhanced glucose-stimulated insulin secretion, while cells cultured with total cocoa extract and with oligomeric or polymeric procyanidin-rich fraction demonstrated no improvement. The increased glucose-stimulated insulin secretion in the presence of the monomeric catechin-rich fraction corresponded with enhanced mitochondrial respiration, suggesting improvements in β-cell fuel utilization. Mitochondrial complex III, IV and V components are up-regulated after culture with the monomer-rich fraction, corresponding with increased cellular ATP production. The monomer-rich fraction improved cellular redox state and increased glutathione concentration, which corresponds with nuclear factor, erythroid 2 like 2 (Nrf2) nuclear localization and expression of Nrf2 target genes including nuclear respiratory factor 1 (Nrf1) and GA binding protein transcription factor alpha subunit (GABPA), essential genes for increasing mitochondrial function. We propose a model by which monomeric cocoa catechins improve the cellular redox state, resulting in Nrf2 nuclear migration and up-regulation of genes critical for mitochondrial respiration, glucose-stimulated insulin secretion and ultimately improved β-cell function. These results suggest a mechanism by which monomeric cocoa catechins exert their effects as an effective complementary strategy to benefit T2D patients.
Collapse
|
28
|
Mulder H. Transcribing β-cell mitochondria in health and disease. Mol Metab 2017; 6:1040-1051. [PMID: 28951827 PMCID: PMC5605719 DOI: 10.1016/j.molmet.2017.05.014] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 05/13/2017] [Accepted: 05/22/2017] [Indexed: 12/17/2022] Open
Abstract
Background The recent genome-wide association studies (GWAS) of Type 2 Diabetes (T2D) have identified the pancreatic β-cell as the culprit in the pathogenesis of the disease. Mitochondrial metabolism plays a crucial role in the processes controlling release of insulin and β-cell mass. This notion implies that mechanisms controlling mitochondrial function have the potential to play a decisive pathogenetic role in T2D. Scope of the review This article reviews studies demonstrating that there is indeed mitochondrial dysfunction in islets in T2D, and that GWAS have identified a variant in the gene encoding transcription factor B1 mitochondrial (TFB1M), predisposing to T2D due to mitochondrial dysfunction and impaired insulin secretion. Mechanistic studies of the nature of this pathogenetic link, as well as of other mitochondrial transcription factors, are described. Major conclusions Based on this, it is argued that transcription and translation in mitochondria are critical processes determining mitochondrial function in β-cells in health and disease.
Collapse
Key Words
- AMPK, AMP-dependent protein kinase
- ATGL, adipocyte triglyceride lipase
- COX, Cytochrome c oxidase
- CYTB, Cytochrome b
- ERR-α, Estrogen-related receptor-α
- Expression quantitative trait locus (eQTL)
- GDH, Glutamate dehydrogenase
- GSIS, Glucose-stimulated insulin secretion
- GWAS, Genome-wide association study
- Genome-wide association study (GWAS)
- HSL, Hormone-sensitive lipase
- ICDc, Cytosolic isocitrate dehydrogenase
- Insulin secretion
- Islets
- KATP, ATP-dependent K+-channel
- MTERF, Mitochondrial transcription termination factor
- Mitochondria
- ND, NADH dehydrogenase
- NRF, Nuclear respiratory factor
- NSUN4, NOP2/Sun RNA methyltransferase family member 4
- OXPHOS, Oxidative phosphorylation
- PC, Pyruvate carboxylase
- PDH, pyruvate dehydrogenase
- PGC, Peroxisome proliferator-activated receptor-γ co-activator
- POLRMT, Mitochondrial RNA polymerase
- POLγ, DNA polymerase-γ
- PPARγ, Peroxisome proliferator-activated receptor-γ
- PRC, PGC1-related coactivator
- SENP1, Sentrin/SUMO-specific protease-1
- SNP, Single Nucleotide Polymorphism
- SUR1, Sulphonylurea receptor-1
- T2D, Type 2 Diabetes
- TCA, Tricarboxylic acid
- TEFM, Mitochondrial transcription elongation factor
- TFAM, Transcription factor A mitochondrial
- TFB1M, Transcription factor B1 mitochondrial
- TFB2M, Transcription factor B2 mitochondrial
- eQTL, Expression quantitative trait locus
- β-Cell
Collapse
Affiliation(s)
- Hindrik Mulder
- Unit of Molecular Metabolism, Lund University Diabetes Centre, Malmö, Sweden
| |
Collapse
|
29
|
Skeletal Muscle Nucleo-Mitochondrial Crosstalk in Obesity and Type 2 Diabetes. Int J Mol Sci 2017; 18:ijms18040831. [PMID: 28420087 PMCID: PMC5412415 DOI: 10.3390/ijms18040831] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 04/01/2017] [Accepted: 04/08/2017] [Indexed: 12/15/2022] Open
Abstract
Skeletal muscle mitochondrial dysfunction, evidenced by incomplete beta oxidation and accumulation of fatty acid intermediates in the form of long and medium chain acylcarnitines, may contribute to ectopic lipid deposition and insulin resistance during high fat diet (HFD)-induced obesity. The present review discusses the roles of anterograde and retrograde communication in nucleo-mitochondrial crosstalk that determines skeletal muscle mitochondrial adaptations, specifically alterations in mitochondrial number and function in relation to obesity and insulin resistance. Special emphasis is placed on the effects of high fat diet (HFD) feeding on expression of nuclear-encoded mitochondrial genes (NEMGs) nuclear receptor factor 1 (NRF-1) and 2 (NRF-2) and peroxisome proliferator receptor gamma coactivator 1 alpha (PGC-1α) in the onset and progression of insulin resistance during obesity and how HFD-induced alterations in NEMG expression affect skeletal muscle mitochondrial adaptations in relation to beta oxidation of fatty acids. Finally, the potential ability of acylcarnitines or fatty acid intermediates resulting from mitochondrial beta oxidation to act as retrograde signals in nucleo-mitochondrial crosstalk is reviewed and discussed.
Collapse
|
30
|
Abstract
SIGNIFICANCE In the last years, metabolic reprogramming, fluctuations in bioenergetic fuels, and modulation of oxidative stress became new key hallmarks of tumor development. In cancer, elevated glucose uptake and high glycolytic rate, as a source of adenosine triphosphate, constitute a growth advantage for tumors. This represents the universally known Warburg effect, which gave rise to one major clinical application for detecting cancer cells using glucose analogs: the positron emission tomography scan imaging. Recent Advances: Glucose utilization and carbon sources in tumors are much more heterogeneous than initially thought. Indeed, new studies emerged and revealed a dual capacity of tumor cells for glycolytic and oxidative phosphorylation (OXPHOS) metabolism. OXPHOS metabolism, which relies predominantly on mitochondrial respiration, exhibits fine-tuned regulation of respiratory chain complexes and enhanced antioxidant response or detoxification capacity. CRITICAL ISSUES OXPHOS-dependent cancer cells use alternative oxidizable substrates, such as glutamine and fatty acids. The diversity of carbon substrates fueling neoplastic cells is indicative of metabolic heterogeneity, even within tumors sharing the same clinical diagnosis. Metabolic switch supports cancer cell stemness and their bioenergy-consuming functions, such as proliferation, survival, migration, and invasion. Moreover, reactive oxygen species-induced mitochondrial metabolism and nutrient availability are important for interaction with tumor microenvironment components. Carcinoma-associated fibroblasts and immune cells participate in the metabolic interplay with neoplastic cells. They collectively adapt in a dynamic manner to the metabolic needs of cancer cells, thus participating in tumorigenesis and resistance to treatments. FUTURE DIRECTIONS Characterizing the reciprocal metabolic interplay between stromal, immune, and neoplastic cells will provide a better understanding of treatment resistance. Antioxid. Redox Signal. 26, 462-485.
Collapse
Affiliation(s)
- Géraldine Gentric
- 1 Stress and Cancer Laboratory, Équipe Labelisée LNCC, Institut Curie , Paris, France .,2 Inserm , U830, Paris, France
| | - Virginie Mieulet
- 1 Stress and Cancer Laboratory, Équipe Labelisée LNCC, Institut Curie , Paris, France .,2 Inserm , U830, Paris, France
| | - Fatima Mechta-Grigoriou
- 1 Stress and Cancer Laboratory, Équipe Labelisée LNCC, Institut Curie , Paris, France .,2 Inserm , U830, Paris, France
| |
Collapse
|
31
|
Sex dependent alterations in mitochondrial electron transport chain proteins following neonatal rat cerebral hypoxic-ischemia. J Bioenerg Biomembr 2016; 48:591-598. [PMID: 27683241 DOI: 10.1007/s10863-016-9678-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 09/09/2016] [Indexed: 12/20/2022]
Abstract
Males are more susceptible to brain mitochondrial bioenergetic dysfunction following neonatal cerebral hypoxic-ischemia (HI) than females. Mitochondrial biogenesis has been implicated in the cellular response to HI injury, but sex differences in biogenesis following HI have not been described. We tested the hypothesis that mitochondrial biogenesis or the expression of mitochondrial electron transport chain (ETC) proteins are differentially stimulated in the brains of 8 day old male and female rats one day following HI, and promoted by treatment with acetyl-L-carnitine (ALCAR). There were no sex differences in mitochondrial mass, as reflected by the ratio of mitochondrial to nuclear DNA (mtDNA/nDNA) and citrate synthase enzyme activity present one day following HI or sham surgery. There was an increase in mtDNA/nDNA, however, in the hypoxic and ischemic (ipsilateral) hemisphere after HI in both male and female brains at one day post-injury, which was suppressed by ALCAR. Citrate synthase activity was increased in the ipsilateral hemisphere of ALCAR treated male and female brain. Most importantly, the levels of representative mitochondrial proteins present in ETC complexes I, II and IV increased substantially one day following HI in female, but not male brain. This sex difference is consistent with the increase in the mitochondrial biogenesis-associated transcription factor NRF-2/GABPα following HI in females, in contrast to the decrease observed with males. In conclusion, the female sex-selective increase in ETC proteins following HI may at least partially explain the relative female resilience to mitochondrial respiratory impairment and neuronal death that occur after HI.
Collapse
|
32
|
Bremer K, Kocha K, Snider T, Moyes C. Sensing and responding to energetic stress: The role of the AMPK-PGC1α-NRF1 axis in control of mitochondrial biogenesis in fish. Comp Biochem Physiol B Biochem Mol Biol 2016; 199:4-12. [DOI: 10.1016/j.cbpb.2015.09.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 09/10/2015] [Accepted: 09/13/2015] [Indexed: 12/14/2022]
|
33
|
Curcumin, mitochondrial biogenesis, and mitophagy: Exploring recent data and indicating future needs. Biotechnol Adv 2016; 34:813-826. [DOI: 10.1016/j.biotechadv.2016.04.004] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 04/11/2016] [Accepted: 04/28/2016] [Indexed: 11/23/2022]
|
34
|
de Oliveira MR, Nabavi SF, Manayi A, Daglia M, Hajheydari Z, Nabavi SM. Resveratrol and the mitochondria: From triggering the intrinsic apoptotic pathway to inducing mitochondrial biogenesis, a mechanistic view. Biochim Biophys Acta Gen Subj 2016; 1860:727-45. [PMID: 26802309 DOI: 10.1016/j.bbagen.2016.01.017] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 12/19/2015] [Accepted: 01/06/2016] [Indexed: 12/12/2022]
Abstract
BACKGROUND Mitochondria, the power plants of the cell, are known as a cross-road of different cellular signaling pathways. These cytoplasmic double-membraned organelles play a pivotal role in energy metabolism and regulate calcium flux in the cells. It is well known that mitochondrial dysfunction is associated with different diseases such as neurodegeneration and cancer. A growing body of literature has shown that polyphenolic compounds exert direct effects on mitochondrial ultra-structure and function. Resveratrol is known as one of the most common bioactive constituents of red wine, which improves mitochondrial functions under in vitro and in vivo conditions. SCOPE OF REVIEW This paper aims to review the molecular pathways underlying the beneficial effects of resveratrol on mitochondrial structure and functions. In addition, we discuss the chemistry and main sources of resveratrol. MAJOR CONCLUSIONS Resveratrol represents the promising effects on mitochondria in different experimental models. However, there are several reports on the detrimental effects elicited by resveratrol on mitochondria. GENERAL SIGNIFICANCE An understanding of the chemistry and source of resveratrol, its bioavailability and the promising effects on mitochondria brings a new hope to therapy of mitochondrial dysfunction-related diseases.
Collapse
Affiliation(s)
- Marcos Roberto de Oliveira
- Department of Chemistry, ICET, Federal University of Mato Grosso (UFMT), Av. Fernando Corrêa da Costa, 2367, CEP 78060-900 Cuiabá, MT, Brazil.
| | - Seyed Fazel Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Azadeh Manayi
- Medicinal Plants Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Maria Daglia
- Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia, Italy
| | - Zohreh Hajheydari
- Department of Dermatology, Boo Ali Sina (Avicenna) Hospital, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
35
|
Picca A, Lezza AMS. Regulation of mitochondrial biogenesis through TFAM-mitochondrial DNA interactions: Useful insights from aging and calorie restriction studies. Mitochondrion 2015; 25:67-75. [PMID: 26437364 DOI: 10.1016/j.mito.2015.10.001] [Citation(s) in RCA: 194] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 09/24/2015] [Accepted: 10/01/2015] [Indexed: 11/24/2022]
Abstract
Mitochondrial biogenesis is regulated to adapt mitochondrial population to cell energy demands. Mitochondrial transcription factor A (TFAM) performs several functions for mtDNA and interactions between TFAM and mtDNA participate to regulation of mitochondrial biogenesis. Such interactions are modulated through different mechanisms: regulation of TFAM expression and turnover, modulation of TFAM binding activity to mtDNA through post-translational modifications and differential affinity of TFAM, occurrence of TFAM sliding on mtDNA filaments and of cooperative binding among TFAM molecules, modulation of protein-protein interactions. The tissue-specific regulation of mitochondrial biogenesis in aging and calorie restriction (CR) highlights the relevance of modulation of TFAM-mtDNA interactions.
Collapse
Affiliation(s)
- Anna Picca
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Via Orabona, 4, 70125, Bari, Italy
| | - Angela Maria Serena Lezza
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Via Orabona, 4, 70125, Bari, Italy.
| |
Collapse
|
36
|
Satterstrom FK, Swindell WR, Laurent G, Vyas S, Bulyk ML, Haigis MC. Nuclear respiratory factor 2 induces SIRT3 expression. Aging Cell 2015; 14:818-25. [PMID: 26109058 PMCID: PMC4568969 DOI: 10.1111/acel.12360] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2015] [Indexed: 01/08/2023] Open
Abstract
The mitochondrial deacetylase SIRT3 regulates several important metabolic processes. SIRT3 is transcriptionally upregulated in multiple tissues during nutrient stresses such as dietary restriction and fasting, but the molecular mechanism of this induction is unclear. We conducted a bioinformatic study to identify transcription factor(s) involved in SIRT3 induction. Our analysis identified an enrichment of binding sites for nuclear respiratory factor 2 (NRF-2), a transcription factor known to play a role in the expression of mitochondrial genes, in the DNA sequences of SIRT3 and genes with closely correlated expression patterns. In vitro, knockdown or overexpression of NRF-2 modulated SIRT3 levels, and the NRF-2α subunit directly bound to the SIRT3 promoter. Our results suggest that NRF-2 is a regulator of SIRT3 expression and may shed light on how SIRT3 is upregulated during nutrient stress.
Collapse
Affiliation(s)
- F. Kyle Satterstrom
- Harvard School of Engineering and Applied Sciences Cambridge MA 02138USA
- Department of Cell Biology Harvard Medical School Boston MA 02115 USA
| | - William R. Swindell
- Division of Genetics Department of Medicine Brigham and Women's Hospital and Harvard Medical School Boston MA 02115USA
| | - Gaëlle Laurent
- Department of Cell Biology Harvard Medical School Boston MA 02115 USA
| | - Sejal Vyas
- Department of Cell Biology Harvard Medical School Boston MA 02115 USA
| | - Martha L. Bulyk
- Division of Genetics Department of Medicine Brigham and Women's Hospital and Harvard Medical School Boston MA 02115USA
- Department of Pathology Brigham and Women's Hospital and Harvard Medical School Boston MA 02115USA
| | - Marcia C. Haigis
- Department of Cell Biology Harvard Medical School Boston MA 02115 USA
| |
Collapse
|
37
|
Ishimoto Y, Inagi R. Mitochondria: a therapeutic target in acute kidney injury. Nephrol Dial Transplant 2015; 31:1062-9. [DOI: 10.1093/ndt/gfv317] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Accepted: 08/05/2015] [Indexed: 01/05/2023] Open
|
38
|
Zamora M, Pardo R, Villena JA. Pharmacological induction of mitochondrial biogenesis as a therapeutic strategy for the treatment of type 2 diabetes. Biochem Pharmacol 2015. [PMID: 26212547 DOI: 10.1016/j.bcp.2015.06.032] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Defects in mitochondrial oxidative function have been associated with the onset of type 2 diabetes. Although the causal relationship between mitochondrial dysfunction and diabetes has not been fully established, numerous studies indicate that improved glucose homeostasis achieved via lifestyle interventions, such as exercise or calorie restriction, is tightly associated with increased mitochondrial biogenesis and oxidative function. Therefore, it is conceivable that potentiating mitochondrial biogenesis by pharmacological means could constitute an efficacious therapeutic strategy that would particularly benefit those diabetic patients who cannot adhere to comprehensive programs based on changes in lifestyle or that require a relatively rapid improvement in their diabetic status. In this review, we discuss several pharmacological targets and drugs that modulate mitochondrial biogenesis as well as their potential use as treatments for insulin resistance and diabetes.
Collapse
Affiliation(s)
- Mònica Zamora
- Cell Biology Group, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, CIBER on Neurodegenerative Diseases (CIBERNED), Barcelona, Spain
| | - Rosario Pardo
- Laboratory of Metabolism and Obesity, Vall d'Hebron-Institut de Recerca, Universitat Autònoma de Barcelona, CIBER on Diabetes and Associated Metabolic Diseases (CIBERDEM), Barcelona, Spain
| | - Josep A Villena
- Laboratory of Metabolism and Obesity, Vall d'Hebron-Institut de Recerca, Universitat Autònoma de Barcelona, CIBER on Diabetes and Associated Metabolic Diseases (CIBERDEM), Barcelona, Spain.
| |
Collapse
|
39
|
Yoshino M, Naka A, Sakamoto Y, Shibasaki A, Toh M, Tsukamoto S, Kondo K, Iida K. Dietary isoflavone daidzein promotes Tfam expression that increases mitochondrial biogenesis in C2C12 muscle cells. J Nutr Biochem 2015; 26:1193-9. [PMID: 26166229 DOI: 10.1016/j.jnutbio.2015.05.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2014] [Revised: 03/04/2015] [Accepted: 05/15/2015] [Indexed: 12/16/2022]
Abstract
Mitochondrial dysfunction in muscles leads to a wide range of metabolic and age-related disorders. Recently, it has been reported that a natural polyphenol, resveratrol, affects mitochondrial biogenesis. This study aimed to identify other natural polyphenolic compounds that regulate mitochondrial biogenesis in muscles. For this purpose, we used the C2C12 murine muscle cell line. Screening involved a reporter assay based on the promoter of mitochondrial transcription factor A (Tfam). We found that several polyphenols exhibited the ability to increase Tfam promoter activity and that the soy isoflavone daidzein was a most potent candidate that regulated mitochondrial biogenesis. When C2C12 myotubes were treated with 25-50 μM daidzein for 24h, there were significant increases in the expression of Tfam and mitochondrial genes such as COX1 and Cytb as well as the mitochondrial content. Using several mutant Tfam promoter fragments, we found that the transcription factor, nuclear respiratory factor (NRF) and its coactivator, PGC1α, were necessary for the effect of daidzein on Tfam expression. Finally, silencing of sirtuin-1 (SIRT1) by shRNA resulted in inhibition of the daidzein effects on mitochondrial gene expression. In conclusion, daidzein regulates mitochondrial biogenesis in muscle cells by regulating transcriptional networks through a SIRT1-associated pathway. These results suggest that daidzein would be beneficial to protect against a wide range of diseases caused by muscle mitochondrial dysfunction.
Collapse
Affiliation(s)
- Makiko Yoshino
- Department of Nutrition and Food Science, Graduate School of Humanities and Sciences, Ochanomizu University, 2-1-1 Otsuka, Bunkyo, Tokyo 112-8610, Japan
| | - Ayano Naka
- Institute of Environmental Science for Human Life, Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Tokyo 112-8610, Japan
| | - Yuri Sakamoto
- Department of Nutrition and Food Science, Graduate School of Humanities and Sciences, Ochanomizu University, 2-1-1 Otsuka, Bunkyo, Tokyo 112-8610, Japan
| | - Ayako Shibasaki
- Department of Nutrition and Food Science, Graduate School of Humanities and Sciences, Ochanomizu University, 2-1-1 Otsuka, Bunkyo, Tokyo 112-8610, Japan
| | - Mariko Toh
- Department of Nutrition and Food Science, Graduate School of Humanities and Sciences, Ochanomizu University, 2-1-1 Otsuka, Bunkyo, Tokyo 112-8610, Japan
| | - Sakuka Tsukamoto
- Department of Nutrition and Food Science, Graduate School of Humanities and Sciences, Ochanomizu University, 2-1-1 Otsuka, Bunkyo, Tokyo 112-8610, Japan
| | - Kazuo Kondo
- Institute of Environmental Science for Human Life, Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Tokyo 112-8610, Japan
| | - Kaoruko Iida
- Department of Nutrition and Food Science, Graduate School of Humanities and Sciences, Ochanomizu University, 2-1-1 Otsuka, Bunkyo, Tokyo 112-8610, Japan.
| |
Collapse
|
40
|
Bahat A, Perlberg S, Melamed-Book N, Isaac S, Eden A, Lauria I, Langer T, Orly J. Transcriptional activation of LON Gene by a new form of mitochondrial stress: A role for the nuclear respiratory factor 2 in StAR overload response (SOR). Mol Cell Endocrinol 2015; 408:62-72. [PMID: 25724481 DOI: 10.1016/j.mce.2015.02.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Revised: 02/19/2015] [Accepted: 02/19/2015] [Indexed: 01/19/2023]
Abstract
High output of steroid hormone synthesis in steroidogenic cells of the adrenal cortex and the gonads requires the expression of the steroidogenic acute regulatory protein (StAR) that facilitates cholesterol mobilization to the mitochondrial inner membrane where the CYP11A1/P450scc enzyme complex converts the sterol to the first steroid. Earlier studies have shown that StAR is active while pausing on the cytosolic face of the outer mitochondrial membrane while subsequent import of the protein into the matrix terminates the cholesterol mobilization activity. Consequently, during repeated activity cycles, high level of post-active StAR accumulates in the mitochondrial matrix. To prevent functional damage due to such protein overload effect, StAR is degraded by a sequence of three to four ATP-dependent proteases of the mitochondria protein quality control system, including LON and the m-AAA membranous proteases AFG3L2 and SPG7/paraplegin. Furthermore, StAR expression in both peri-ovulatory ovarian cells, or under ectopic expression in cell line models, results in up to 3-fold enrichment of the mitochondrial proteases and their transcripts. We named this novel form of mitochondrial stress as StAR overload response (SOR). To better understand the SOR mechanism at the transcriptional level we analyzed first the unexplored properties of the proximal promoter of the LON gene. Our findings suggest that the human nuclear respiratory factor 2 (NRF-2), also known as GA binding protein (GABP), is responsible for 88% of the proximal promoter activity, including the observed increase of transcription in the presence of StAR. Further studies are expected to reveal if common transcriptional determinants coordinate the SOR induced transcription of all the genes encoding the SOR proteases.
Collapse
Affiliation(s)
- Assaf Bahat
- Department of Biological Chemistry at the Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Shira Perlberg
- Department of Biological Chemistry at the Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Naomi Melamed-Book
- Bio-Imaging Unit at the Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Sara Isaac
- Department of Cell & Developmental Biology at the Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Amir Eden
- Department of Cell & Developmental Biology at the Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Ines Lauria
- CECAD Research Center, Institute for Genetics, University of Cologne, 50931 Cologne, Germany
| | - Thomas Langer
- CECAD Research Center, Institute for Genetics, University of Cologne, 50931 Cologne, Germany
| | - Joseph Orly
- Department of Biological Chemistry at the Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| |
Collapse
|
41
|
Ryu D, Jo YS, Lo Sasso G, Stein S, Zhang H, Perino A, Lee JU, Zeviani M, Romand R, Hottiger MO, Schoonjans K, Auwerx J. A SIRT7-dependent acetylation switch of GABPβ1 controls mitochondrial function. Cell Metab 2014; 20:856-869. [PMID: 25200183 DOI: 10.1016/j.cmet.2014.08.001] [Citation(s) in RCA: 187] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 06/30/2014] [Accepted: 07/29/2014] [Indexed: 01/01/2023]
Abstract
Mitochondrial activity is controlled by proteins encoded by both nuclear and mitochondrial DNA. Here, we identify Sirt7 as a crucial regulator of mitochondrial homeostasis. Sirt7 deficiency in mice induces multisystemic mitochondrial dysfunction, which is reflected by increased blood lactate levels, reduced exercise performance, cardiac dysfunction, hepatic microvesicular steatosis, and age-related hearing loss. This link between SIRT7 and mitochondrial function is translatable in humans, where SIRT7 overexpression rescues the mitochondrial functional defect in fibroblasts with a mutation in NDUFSI. These wide-ranging effects of SIRT7 on mitochondrial homeostasis are the consequence of the deacetylation of distinct lysine residues located in the hetero- and homodimerization domains of GABPβ1, a master regulator of nuclear-encoded mitochondrial genes. SIRT7-mediated deacetylation of GABPβ1 facilitates complex formation with GABPα and the transcriptional activation of the GABPα/GABPβ heterotetramer. Altogether, these data suggest that SIRT7 is a dynamic nuclear regulator of mitochondrial function through its impact on GABPβ1 function.
Collapse
Affiliation(s)
- Dongryeol Ryu
- Laboratory of Integrative and Systems Physiology, School of Life Sciences, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Young Suk Jo
- Laboratory of Integrative and Systems Physiology, School of Life Sciences, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland; Division of Endocrinology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea
| | - Giuseppe Lo Sasso
- Laboratory of Integrative and Systems Physiology, School of Life Sciences, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Sokrates Stein
- Metabolic Signaling, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Hongbo Zhang
- Laboratory of Integrative and Systems Physiology, School of Life Sciences, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Alessia Perino
- Metabolic Signaling, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Jung Uee Lee
- Department of Pathology, Daejeon St. Mary's Hospital, College of Medicine, the Catholic University of Korea, Seoul 137-701, Republic of Korea
| | - Massimo Zeviani
- Unit of Molecular Neurogenetics, the Carlo Besta Institute of Neurology IRCCS, 20133 Milan, Italy; MRC Mitochondrial Biology Unit, Cambridge CB2 0XY, UK
| | - Raymond Romand
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, BP 10142, 67404 Illkirch Cedex, France
| | - Michael O Hottiger
- Institute of Veterinary Biochemistry and Molecular Biology, University of Zurich, 8057 Zurich, Switzerland
| | - Kristina Schoonjans
- Metabolic Signaling, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Johan Auwerx
- Laboratory of Integrative and Systems Physiology, School of Life Sciences, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland.
| |
Collapse
|
42
|
Demarest TG, McCarthy MM. Sex differences in mitochondrial (dys)function: Implications for neuroprotection. J Bioenerg Biomembr 2014; 47:173-88. [PMID: 25293493 DOI: 10.1007/s10863-014-9583-7] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 09/14/2014] [Indexed: 12/12/2022]
Abstract
Decades of research have revealed numerous differences in brain structure size, connectivity and metabolism between males and females. Sex differences in neurobehavioral and cognitive function after various forms of central nervous system (CNS) injury are observed in clinical practice and animal research studies. Sources of sex differences include early life exposure to gonadal hormones, chromosome compliment and adult hormonal modulation. It is becoming increasingly apparent that mitochondrial metabolism and cell death signaling are also sexually dimorphic. Mitochondrial metabolic dysfunction is a common feature of CNS injury. Evidence suggests males predominantly utilize proteins while females predominantly use lipids as a fuel source within mitochondria and that these differences may significantly affect cellular survival following injury. These fundamental biochemical differences have a profound impact on energy production and many cellular processes in health and disease. This review will focus on the accumulated evidence revealing sex differences in mitochondrial function and cellular signaling pathways in the context of CNS injury mechanisms and the potential implications for neuroprotective therapy development.
Collapse
Affiliation(s)
- Tyler G Demarest
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, USA,
| | | |
Collapse
|
43
|
Zhu W, Swaminathan G, Plowey ED. GA binding protein augments autophagy via transcriptional activation of BECN1-PIK3C3 complex genes. Autophagy 2014; 10:1622-36. [PMID: 25046113 DOI: 10.4161/auto.29454] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Macroautophagy is a vesicular catabolic trafficking pathway that is thought to protect cells from diverse stressors and to promote longevity. Recent studies have revealed that transcription factors play important roles in the regulation of autophagy. In this study, we have identified GA binding protein (GABP) as a transcriptional regulator of the combinatorial expression of BECN1-PIK3C3 complex genes involved in autophagosome initiation. We performed bioinformatics analyses that demonstrated highly conserved putative GABP sites in genes that encode BECN1/Beclin 1, several BECN1 interacting proteins, and downstream autophagy proteins including the ATG12-ATG5-ATG16L1 complex. We demonstrate that GABP binds to the promoter regions of BECN1-PIK3C3 complex genes and activates their transcriptional activities. Knockdown of GABP reduced BECN1-PIK3C3 complex transcripts, BECN1-PIK3C3 complex protein levels and autophagy in cultured cells. Conversely, overexpression of GABP increased autophagy. Nutrient starvation increased GABP-dependent transcriptional activity of BECN1-PIK3C3 complex gene promoters and increased the recruitment of GABP to the BECN1 promoter. Our data reveal a novel function of GABP in the regulation of autophagy via transcriptional activation of the BECN1-PIK3C3 complex.
Collapse
Affiliation(s)
- Wan Zhu
- Department of Pathology; Stanford University School of Medicine; Stanford, CA USA
| | - Gayathri Swaminathan
- Department of Pathology; Stanford University School of Medicine; Stanford, CA USA
| | - Edward D Plowey
- Department of Pathology; Stanford University School of Medicine; Stanford, CA USA
| |
Collapse
|
44
|
GABP transcription factor (nuclear respiratory factor 2) is required for mitochondrial biogenesis. Mol Cell Biol 2014; 34:3194-201. [PMID: 24958105 DOI: 10.1128/mcb.00492-12] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mitochondria are membrane-bound cytoplasmic organelles that serve as the major source of ATP production in eukaryotic cells. GABP (also known as nuclear respiratory factor 2) is a nuclear E26 transformation-specific transcription factor (ETS) that binds and activates mitochondrial genes that are required for electron transport and oxidative phosphorylation. We conditionally deleted Gabpa, the DNA-binding component of this transcription factor complex, from mouse embryonic fibroblasts (MEFs) to examine the role of Gabp in mitochondrial biogenesis, function, and gene expression. Gabpα loss modestly reduced mitochondrial mass, ATP production, oxygen consumption, and mitochondrial protein synthesis but did not alter mitochondrial morphology, membrane potential, apoptosis, or the expression of several genes that were previously reported to be GABP targets. However, the expression of Tfb1m, a methyltransferase that modifies ribosomal rRNA and is required for mitochondrial protein translation, was markedly reduced in Gabpα-null MEFs. We conclude that Gabp regulates Tfb1m expression and plays an essential, nonredundant role in mitochondrial biogenesis.
Collapse
|
45
|
Sharma NL, Massie CE, Butter F, Mann M, Bon H, Ramos-Montoya A, Menon S, Stark R, Lamb AD, Scott HE, Warren AY, Neal DE, Mills IG. The ETS family member GABPα modulates androgen receptor signalling and mediates an aggressive phenotype in prostate cancer. Nucleic Acids Res 2014; 42:6256-69. [PMID: 24753418 PMCID: PMC4041454 DOI: 10.1093/nar/gku281] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 03/21/2014] [Accepted: 03/26/2014] [Indexed: 12/31/2022] Open
Abstract
In prostate cancer (PC), the androgen receptor (AR) is a key transcription factor at all disease stages, including the advanced stage of castrate-resistant prostate cancer (CRPC). In the present study, we show that GABPα, an ETS factor that is up-regulated in PC, is an AR-interacting transcription factor. Expression of GABPα enables PC cell lines to acquire some of the molecular and cellular characteristics of CRPC tissues as well as more aggressive growth phenotypes. GABPα has a transcriptional role that dissects the overlapping cistromes of the two most common ETS gene fusions in PC: overlapping significantly with ETV1 but not with ERG target genes. GABPα bound predominantly to gene promoters, regulated the expression of one-third of AR target genes and modulated sensitivity to AR antagonists in hormone responsive and castrate resistant PC models. This study supports a critical role for GABPα in CRPC and reveals potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Naomi L Sharma
- Uro-oncology Research Group, CRUK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK Department of Urology, Addenbrooke's Hospital, Hills Road, Cambridge CB2 2QQ, UK
| | - Charlie E Massie
- Uro-oncology Research Group, CRUK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Falk Butter
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Am Klopferspitz 18, D-82152 Martinsried, Germany
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Am Klopferspitz 18, D-82152 Martinsried, Germany
| | - Helene Bon
- Uro-oncology Research Group, CRUK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Antonio Ramos-Montoya
- Uro-oncology Research Group, CRUK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Suraj Menon
- Department of Bioinformatics, Cambridge Research Institute, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Rory Stark
- Department of Bioinformatics, Cambridge Research Institute, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Alastair D Lamb
- Uro-oncology Research Group, CRUK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Helen E Scott
- Uro-oncology Research Group, CRUK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Anne Y Warren
- Department of Pathology, Addenbrooke's Hospital, Hills Road, Cambridge CB2 2QQ, UK
| | - David E Neal
- Uro-oncology Research Group, CRUK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK Department of Urology, Addenbrooke's Hospital, Hills Road, Cambridge CB2 2QQ, UK Department of Oncology, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge CB2 2QQ, UK
| | - Ian G Mills
- Uro-oncology Research Group, CRUK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK Prostate Cancer Research Group, Centre for Molecular Medicine (Norway), Nordic EMBL Partnership, University of Oslo and Oslo University Hospital, Gaustadalleen 21, Oslo N-0349, Norway Department of Cancer Prevention and Department of Urology, Oslo University Hospital, Oslo N-0349, Norway
| |
Collapse
|
46
|
Al-Hasan YM, Pinkas GA, Thompson LP. Prenatal Hypoxia Reduces Mitochondrial Protein Levels and Cytochrome c Oxidase Activity in Offspring Guinea Pig Hearts. Reprod Sci 2014; 21:883-891. [PMID: 24406790 DOI: 10.1177/1933719113518981] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Prenatal hypoxia (HPX) reduces mitochondrial cytochrome c oxidase (CCO and COX) activity in fetal guinea pig (GP) hearts. The aim of this study was to quantify the lasting effects of chronic prenatal HPX on cardiac mitochondrial enzyme activity and protein expression in offspring hearts. Pregnant GPs were exposed to either normoxia (NMX) or HPX (10.5%O2) during the last 14 days of pregnancy. Both NMX and HPX fetuses, delivered vaginally, were housed under NMX conditions until 90 days of age. Total RNA and mitochondrial fractions were isolated from hearts of anesthetized NMX and HPX offspring and showed decreased levels of CCO but not medium-chain acyl dehydrogenase activity, protein levels of nuclear- and mitochondrial-encoded COX4 and COX1, respectively, and messenger RNA expression of peroxisome proliferator-activated receptor gamma coactivator 1-alpha, COX5b, and 4.1 compared to NMX controls. Prenatal HPX may alter mitochondrial function in the offspring by disrupting protein expression associated with the respiratory chain.
Collapse
Affiliation(s)
- Yazan M Al-Hasan
- Department of Physiology (YMA), University of Maryland, Baltimore, MD, USA Department of Obstetrics, Gynecology and Reproductive Sciences (GAP, LPT), University of Maryland, Baltimore, MD, USA
| | - Gerard A Pinkas
- Department of Physiology (YMA), University of Maryland, Baltimore, MD, USA Department of Obstetrics, Gynecology and Reproductive Sciences (GAP, LPT), University of Maryland, Baltimore, MD, USA
| | - Loren P Thompson
- Department of Physiology (YMA), University of Maryland, Baltimore, MD, USA Department of Obstetrics, Gynecology and Reproductive Sciences (GAP, LPT), University of Maryland, Baltimore, MD, USA
| |
Collapse
|
47
|
Chitra L, Boopathy R. Altered mitochondrial biogenesis and its fusion gene expression is involved in the high-altitude adaptation of rat lung. Respir Physiol Neurobiol 2013; 192:74-84. [PMID: 24361501 DOI: 10.1016/j.resp.2013.12.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 12/09/2013] [Accepted: 12/10/2013] [Indexed: 11/25/2022]
Abstract
Intermittent hypobaric hypoxia-induced preconditioning (IHH-PC) of rat favored the adaption of lungs to severe HH conditions, possibly through stabilization of mitochondrial function. This is based on the data generated on regulatory coordination of nuclear DNA-encoded mitochondrial biogenesis; dynamics, and mitochondrial DNA (mtDNA)-encoded oxidative phosphorylation (mtOXPHOS) genes expression. At 16th day after start of IHH-PC (equivalent to 5000m, 6h/d, 2w of treatment), rats were exposed to severe HH stimulation at 9142m for 6h. The IHH-PC significantly counteracted the HH-induced effect of increased lung: water content; tissue damage; and oxidant injury. Further, IHH-PC significantly increased the mitochondrial number, mtDNA content and mtOXPHOS complex activity in the lung tissues. This observation is due to an increased expression of genes involved in mitochondrial biogenesis (PGC-1α, ERRα, NRF1, NRF2 and TFAM), fusion (Mfn1 and Mfn2) and mtOXPHOS. Thus, the regulatory pathway formed by PGC-1α/ERRα/Mfn2 axes is required for the mitochondrial adaptation provoked by IHH-PC regimen to counteract subsequent HH stress.
Collapse
Affiliation(s)
- Loganathan Chitra
- Molecular Biology and Biotechnology Division, DRDO - BU Center for Life Sciences, Bharathiar University, Coimbatore 641 046, Tamil Nadu, India
| | - Rathanam Boopathy
- Department of Biotechnology, Bharathiar University, Coimbatore 641 046, Tamil Nadu, India.
| |
Collapse
|
48
|
Holloszy JO. Regulation of mitochondrial biogenesis and GLUT4 expression by exercise. Compr Physiol 2013; 1:921-40. [PMID: 23737207 DOI: 10.1002/cphy.c100052] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Endurance exercise training can induce large increases mitochondria and the GLUT4 isoform of the glucose transporter in skeletal muscle. For a long time after the discovery in the 1960s that exercise results in an increase in muscle mitochondria, there was no progress in elucidation of the mechanisms involved. The reason for this lack of progress was that nothing was known regarding how expression of the genes-encoding mitochondrial proteins is coordinately regulated. This situation changed rapidly after discovery of transcription factors that control transcription of genes-encoding mitochondrial proteins and, most importantly, the discovery of peroxisome proliferator-gamma coactivator-1α (PGC-1α). This transcription coactivator binds to and activates transcription factors that regulate transcription of genes-encoding mitochondrial proteins. Thus, PGC-1α activates and coordinates mitochondrial biogenesis. It is now known that exercise rapidly activates and induces increased expression of PGC-1α. The exercise-generated signals that lead to PGC-1α activation and increased expression are the increases in cytosolic Ca(2+) and decreases in ATP and creatine phosphate (∼P). Ca(2+) mediates its effect by activating CAMKII, while the decrease in ∼P mediates its effect via activation of AMPK. Expression of the GLUT4 isoform of the glucose transporter is regulated in parallel with mitochondrial biogenesis via the same signaling pathways. This review describes what is known regarding the regulation of mitochondrial biogenesis and GLUT4 expression by exercise. A major component of this review deals with the physiological and metabolic consequences of the exercise-induced increase in mitochondria and GLUT4.
Collapse
Affiliation(s)
- John O Holloszy
- Division of Geriatrics and Nutritional Sciences, Washington University School of Medicine, St. Louis, Missouri, USA.
| |
Collapse
|
49
|
Wu H, Xiao Y, Zhang S, Ji S, Wei L, Fan F, Geng J, Tian J, Sun X, Qin F, Jin C, Lin J, Yin ZY, Zhang T, Luo L, Li Y, Song S, Lin SC, Deng X, Camargo F, Avruch J, Chen L, Zhou D. The Ets transcription factor GABP is a component of the hippo pathway essential for growth and antioxidant defense. Cell Rep 2013; 3:1663-77. [PMID: 23684612 DOI: 10.1016/j.celrep.2013.04.020] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2012] [Revised: 02/15/2013] [Accepted: 04/22/2013] [Indexed: 12/21/2022] Open
Abstract
The transcriptional coactivator Yes-associated protein (YAP) plays an important role in organ-size control and tumorigenesis. However, how Yap gene expression is regulated remains unknown. This study shows that the Ets family member GABP binds to the Yap promoter and activates YAP transcription. The depletion of GABP downregulates YAP, resulting in a G1/S cell-cycle block and increased cell death, both of which are substantially rescued by reconstituting YAP. GABP can be inactivated by oxidative mechanisms, and acetaminophen-induced glutathione depletion inhibits GABP transcriptional activity and depletes YAP. In contrast, activating YAP by deleting Mst1/Mst2 strongly protects against acetaminophen-induced liver injury. Similar to its effects on YAP, Hippo signaling inhibits GABP transcriptional activity through several mechanisms. In human liver cancers, enhanced YAP expression is correlated with increased nuclear expression of GABP. Therefore, we conclude that GABP is an activator of Yap gene expression and a potential therapeutic target for cancers driven by YAP.
Collapse
Affiliation(s)
- Hongtan Wu
- State Key Laboratory of Stress Cell Biology, School of Life Sciences, Xiamen University, Xiang'an District, Xiamen, Fujian 361102, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Gilkerson R, Bravo L, Garcia I, Gaytan N, Herrera A, Maldonado A, Quintanilla B. The mitochondrial nucleoid: integrating mitochondrial DNA into cellular homeostasis. Cold Spring Harb Perspect Biol 2013; 5:a011080. [PMID: 23637282 DOI: 10.1101/cshperspect.a011080] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The packaging of mitochondrial DNA (mtDNA) into DNA-protein assemblies called nucleoids provides an efficient segregating unit of mtDNA, coordinating mtDNA's involvement in cellular metabolism. From the early discovery of mtDNA as "extranuclear" genetic material, its organization into nucleoids and integration into both the mitochondrial organellar network and the cell at large via a variety of signal transduction pathways, mtDNA is a crucial component of the cell's homeostatic network. The mitochondrial nucleoid is composed of a set of DNA-binding core proteins involved in mtDNA maintenance and transcription, and a range of peripheral factors, which are components of signaling pathways controlling mitochondrial biogenesis, metabolism, apoptosis, and retrograde mitochondria-to-nucleus signaling. The molecular interactions of nucleoid components with the organellar network and cellular signaling pathways provide exciting clues to the dynamic integration of mtDNA into cellular metabolic homeostasis.
Collapse
Affiliation(s)
- Robert Gilkerson
- Department of Biology, University of Texas-Pan American, Edinburg, TX 78539-2999, USA.
| | | | | | | | | | | | | |
Collapse
|