1
|
Sharma NK, Singh P, Saha B, Bhardwaj A, Iquebal MA, Pal Y, Nayan V, Jaiswal S, Giri SK, Legha RA, Bhattacharya TK, Kumar D, Rai A. Genome wide landscaping of copy number variations for horse inter-breed variability. Anim Biotechnol 2025; 36:2446251. [PMID: 39791493 DOI: 10.1080/10495398.2024.2446251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 12/18/2024] [Indexed: 01/12/2025]
Abstract
Copy number variations (CNVs) have become widely acknowledged as a significant source of genomic variability and phenotypic variance. To understand the genetic variants in horses, CNVs from six Indian horse breeds, namely, Manipuri, Zanskari, Bhutia, Spiti, Kathiawari and Marwari were discovered using Axiom™ Equine Genotyping Array. These breeds differed in agro-climatic adaptation with distinct phenotypic characters. A total of 2668 autosomal CNVs and 381 CNV regions (CNVRs) were identified with PennCNV tool. DeepCNV was employed to re-validate to get 883 autosomal CNVs, of which 9.06% were singleton type. A total of 180 CNVRs were identified after DeepCNV filtering with the estimated length of 3.12 Kb-4.90 Mb. The functional analysis showed the majority of the CNVRs genes enriched for sensory perception and olfactory receptor activity. An Equine CNVs database, EqCNVdb (http://backlin.cabgrid.res.in/eqcnvdb/) was developed which catalogues detailed information on the horse CNVs, CNVRs and gene content within CNVRs. Also, three random CNVRs were validated with real-time polymerase chain reaction. These findings will aid in the understanding the horse genome and serve as a preliminary foundation for future CNV association research with commercially significant equine traits. The identification of CNVs and CNVRs would lead to better insights into genetic basis of important traits.
Collapse
Affiliation(s)
- Nitesh Kumar Sharma
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
- The Graduate School, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Prashant Singh
- ICAR-National Research Centre on Equines, Hisar, Haryana, India
| | - Bibek Saha
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | | | - Mir Asif Iquebal
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Yash Pal
- ICAR-National Research Centre on Equines, Hisar, Haryana, India
| | - Varij Nayan
- ICAR-Central Institute for Research on Buffaloes, Hisar, Haryana, India
| | - Sarika Jaiswal
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Shiv Kumar Giri
- Department of Biotechnology, Maharaja Agrasen University, Baddi (Solan), Himachal Pradesh, India
| | | | | | - Dinesh Kumar
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Anil Rai
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| |
Collapse
|
2
|
Kafi Z, Masoudi AA, Torshizi RV, Ehsani A. Copy number variations affecting growth curve parameters in a crossbred chicken population. Gene 2024; 927:148710. [PMID: 38901536 DOI: 10.1016/j.gene.2024.148710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 06/01/2024] [Accepted: 06/17/2024] [Indexed: 06/22/2024]
Abstract
Copy number variations (CNVs) are key structural variations in the genome and may contribute to phenotypic differences. In this study, we used a F2 chicken population created from reciprocal crossing between fast-growing Arian broiler line and Urmia native chickens. The chickens were genotyped by 60 K SNP BeadChip, and PennCNV algorithm was used to detect genome-wide CNVs. The growth curve parameters of W0, k, L, Wf, Wi, ti and average GR were used as phenotypic data. The association between CNV and growth curve parameters was carried out using the CNVRanger R/Bioconductor package. Five CNV regions (CNVRs) were chosen for the validation experiment using qPCR. Gene enrichment analysis was done using WebGestalt. The STRING database was used to search for significant pathways. The results identified 966 CNVs and 600 CNVRs including 468 gains, 67 losses, and 65 both events on autosomal chromosomes. Validation of the CNVRs obtained from the qPCR assay were 79 % consistent with the prediction by PennCNV. A total of 43 significant CNVs were obtained for the seven growth curve parameters. The 416 genes annotated for significant CNVs. Six genes out of 416 genes were most related to growth curve parameters. These genes were LCP2, Dock2, CD80, CYFIP1, NIPA1 and NIPA2. Some of these genes in their biological process were associated with the growth, reproduction and development of cells or organs that ultimately lead to the growth of the body. The results of the study could pave the way for better understanding the molecular process of CNVs and growth curve parameters in birds.
Collapse
Affiliation(s)
- Zeinab Kafi
- Department of Animal Science, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran.
| | - Ali Akbar Masoudi
- Department of Animal Science, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran.
| | - Rasoul Vaez Torshizi
- Department of Animal Science, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran.
| | - Alireza Ehsani
- Department of Animal Science, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
3
|
Nguyen AK, Blacksmith MS, Kidd JM. Duplications and Retrogenes Are Numerous and Widespread in Modern Canine Genomic Assemblies. Genome Biol Evol 2024; 16:evae142. [PMID: 38946312 PMCID: PMC11259980 DOI: 10.1093/gbe/evae142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 05/08/2024] [Accepted: 06/24/2024] [Indexed: 07/02/2024] Open
Abstract
Recent years have seen a dramatic increase in the number of canine genome assemblies available. Duplications are an important source of evolutionary novelty and are also prone to misassembly. We explored the duplication content of nine canine genome assemblies using both genome self-alignment and read-depth approaches. We find that 8.58% of the genome is duplicated in the canFam4 assembly, derived from the German Shepherd Dog Mischka, including 90.15% of unplaced contigs. Highlighting the continued difficulty in properly assembling duplications, less than half of read-depth and assembly alignment duplications overlap, but the mCanLor1.2 Greenland wolf assembly shows greater concordance. Further study shows the presence of multiple segments that have alignments to four or more duplicate copies. These high-recurrence duplications correspond to gene retrocopies. We identified 3,892 candidate retrocopies from 1,316 parental genes in the canFam4 assembly and find that ∼8.82% of duplicated base pairs involve a retrocopy, confirming this mechanism as a major driver of gene duplication in canines. Similar patterns are found across eight other recent canine genome assemblies, with metrics supporting a greater quality of the PacBio HiFi mCanLor1.2 assembly. Comparison between the wolf and other canine assemblies found that 92% of retrocopy insertions are shared between assemblies. By calculating the number of generations since genome divergence, we estimate that new retrocopy insertions appear, on average, in 1 out of 3,514 births. Our analyses illustrate the impact of retrogene formation on canine genomes and highlight the variable representation of duplicated sequences among recently completed canine assemblies.
Collapse
Affiliation(s)
- Anthony K Nguyen
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Matthew S Blacksmith
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Jeffrey M Kidd
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
4
|
Soto DC, Uribe-Salazar JM, Shew CJ, Sekar A, McGinty S, Dennis MY. Genomic structural variation: A complex but important driver of human evolution. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2023; 181 Suppl 76:118-144. [PMID: 36794631 PMCID: PMC10329998 DOI: 10.1002/ajpa.24713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 01/21/2023] [Accepted: 02/05/2023] [Indexed: 02/17/2023]
Abstract
Structural variants (SVs)-including duplications, deletions, and inversions of DNA-can have significant genomic and functional impacts but are technically difficult to identify and assay compared with single-nucleotide variants. With the aid of new genomic technologies, it has become clear that SVs account for significant differences across and within species. This phenomenon is particularly well-documented for humans and other primates due to the wealth of sequence data available. In great apes, SVs affect a larger number of nucleotides than single-nucleotide variants, with many identified SVs exhibiting population and species specificity. In this review, we highlight the importance of SVs in human evolution by (1) how they have shaped great ape genomes resulting in sensitized regions associated with traits and diseases, (2) their impact on gene functions and regulation, which subsequently has played a role in natural selection, and (3) the role of gene duplications in human brain evolution. We further discuss how to incorporate SVs in research, including the strengths and limitations of various genomic approaches. Finally, we propose future considerations in integrating existing data and biospecimens with the ever-expanding SV compendium propelled by biotechnology advancements.
Collapse
Affiliation(s)
- Daniela C. Soto
- Genome Center, MIND Institute, and Department of Biochemistry & Molecular Medicine, University of California, Davis, CA, USA
- Integrative Genetics and Genomics Graduate Group, University of California, Davis, CA, USA
| | - José M. Uribe-Salazar
- Genome Center, MIND Institute, and Department of Biochemistry & Molecular Medicine, University of California, Davis, CA, USA
- Integrative Genetics and Genomics Graduate Group, University of California, Davis, CA, USA
| | - Colin J. Shew
- Genome Center, MIND Institute, and Department of Biochemistry & Molecular Medicine, University of California, Davis, CA, USA
- Integrative Genetics and Genomics Graduate Group, University of California, Davis, CA, USA
| | - Aarthi Sekar
- Genome Center, MIND Institute, and Department of Biochemistry & Molecular Medicine, University of California, Davis, CA, USA
- Integrative Genetics and Genomics Graduate Group, University of California, Davis, CA, USA
| | - Sean McGinty
- Genome Center, MIND Institute, and Department of Biochemistry & Molecular Medicine, University of California, Davis, CA, USA
- Integrative Genetics and Genomics Graduate Group, University of California, Davis, CA, USA
| | - Megan Y. Dennis
- Genome Center, MIND Institute, and Department of Biochemistry & Molecular Medicine, University of California, Davis, CA, USA
- Integrative Genetics and Genomics Graduate Group, University of California, Davis, CA, USA
| |
Collapse
|
5
|
Kołomański M, Szyda J, Frąszczak M, Mielczarek M. DNA sequence features underlying large-scale duplications and deletions in human. J Appl Genet 2022; 63:527-533. [PMID: 35590085 PMCID: PMC9365719 DOI: 10.1007/s13353-022-00704-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/22/2022] [Accepted: 05/05/2022] [Indexed: 11/25/2022]
Abstract
Copy number variants (CNVs) may cover up to 12% of the whole genome and have substantial impact on phenotypes. We used 5867 duplications and 33,181 deletions available from the 1000 Genomes Project to characterise genomic regions vulnerable to CNV formation and to identify sequence features characteristic for those regions. The GC content for deletions was lower and for duplications was higher than for randomly selected regions. In regions flanking deletions and downstream of duplications, content was higher than in the random sequences, but upstream of duplication content was lower. In duplications and downstream of deletion regions, the percentage of low-complexity sequences was not different from the randomised data. In deletions and upstream of CNVs, it was higher, while for downstream of duplications, it was lower as compared to random sequences. The majority of CNVs intersected with genic regions — mainly with introns. GC content may be associated with CNV formation and CNVs, especially duplications are initiated in low-complexity regions. Moreover, CNVs located or overlapped with introns indicate their role in shaping intron variability. Genic CNV regions were enriched in many essential biological processes such as cell adhesion, synaptic transmission, transport, cytoskeleton organization, immune response and metabolic mechanisms, which indicates that these large-scaled variants play important biological roles.
Collapse
Affiliation(s)
- Mateusz Kołomański
- Biostatistics Group, Department of Genetics, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | - Joanna Szyda
- Biostatistics Group, Department of Genetics, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | - Magdalena Frąszczak
- Biostatistics Group, Department of Genetics, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | - Magda Mielczarek
- Biostatistics Group, Department of Genetics, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland.
| |
Collapse
|
6
|
Jang J, Kim K, Lee YH, Kim H. Population differentiated copy number variation of Bos taurus, Bos indicus and their African hybrids. BMC Genomics 2021; 22:531. [PMID: 34253178 PMCID: PMC8276479 DOI: 10.1186/s12864-021-07808-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 06/10/2021] [Indexed: 01/10/2023] Open
Abstract
Background CNV comprises a large proportion in cattle genome and is associated with various traits. However, there were few population-scale comparison studies on cattle CNV. Results Here, autosome-wide CNVs were called by read depth of NGS alignment result and copy number variation regions (CNVRs) defined from 102 Eurasian taurine (EAT) of 14 breeds, 28 Asian indicine (ASI) of 6 breeds, 22 African taurine (AFT) of 2 breeds, and 184 African humped cattle (AFH) of 17 breeds. The copy number of every CNVRs were compared between populations and CNVRs with population differentiated copy numbers were sorted out using the pairwise statistics VST and Kruskal-Wallis test. Three hundred sixty-two of CNVRs were significantly differentiated in both statistics and 313 genes were located on the population differentiated CNVRs. Conclusion For some of these genes, the averages of copy numbers were also different between populations and these may be candidate genes under selection. These include olfactory receptors, pathogen-resistance, parasite-resistance, heat tolerance and productivity related genes. Furthermore, breed- and individual-level comparison was performed using the presence or copy number of the autosomal CNVRs. Our findings were based on identification of CNVs from short Illumina reads of 336 individuals and 39 breeds, which to our knowledge is the largest dataset for this type of analysis and revealed important CNVs that may play a role in cattle adaption to various environments. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07808-7.
Collapse
Affiliation(s)
- Jisung Jang
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, Republic of Korea
| | - Kwondo Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Young Ho Lee
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, Republic of Korea
| | - Heebal Kim
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, Republic of Korea. .,Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea. .,eGnome, Inc, Seoul, South Korea.
| |
Collapse
|
7
|
Wang C, Wallerman O, Arendt ML, Sundström E, Karlsson Å, Nordin J, Mäkeläinen S, Pielberg GR, Hanson J, Ohlsson Å, Saellström S, Rönnberg H, Ljungvall I, Häggström J, Bergström TF, Hedhammar Å, Meadows JRS, Lindblad-Toh K. A novel canine reference genome resolves genomic architecture and uncovers transcript complexity. Commun Biol 2021; 4:185. [PMID: 33568770 PMCID: PMC7875987 DOI: 10.1038/s42003-021-01698-x] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 12/17/2020] [Indexed: 12/13/2022] Open
Abstract
We present GSD_1.0, a high-quality domestic dog reference genome with chromosome length scaffolds and contiguity increased 55-fold over CanFam3.1. Annotation with generated and existing long and short read RNA-seq, miRNA-seq and ATAC-seq, revealed that 32.1% of lifted over CanFam3.1 gaps harboured previously hidden functional elements, including promoters, genes and miRNAs in GSD_1.0. A catalogue of canine "dark" regions was made to facilitate mapping rescue. Alignment in these regions is difficult, but we demonstrate that they harbour trait-associated variation. Key genomic regions were completed, including the Dog Leucocyte Antigen (DLA), T Cell Receptor (TCR) and 366 COSMIC cancer genes. 10x linked-read sequencing of 27 dogs (19 breeds) uncovered 22.1 million SNPs, indels and larger structural variants. Subsequent intersection with protein coding genes showed that 1.4% of these could directly influence gene products, and so provide a source of normal or aberrant phenotypic modifications.
Collapse
Affiliation(s)
- Chao Wang
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.
| | - Ola Wallerman
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Maja-Louise Arendt
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- Department of Veterinary Clinical Sciences, University of Copenhagen, Frederiksberg D, Denmark
| | - Elisabeth Sundström
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Åsa Karlsson
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Jessika Nordin
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Suvi Mäkeläinen
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Gerli Rosengren Pielberg
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Jeanette Hanson
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Åsa Ohlsson
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Sara Saellström
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Henrik Rönnberg
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Ingrid Ljungvall
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Jens Häggström
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Tomas F Bergström
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Åke Hedhammar
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Jennifer R S Meadows
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Kerstin Lindblad-Toh
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
8
|
Binversie EE, Baker LA, Engelman CD, Hao Z, Moran JJ, Piazza AM, Sample SJ, Muir P. Analysis of copy number variation in dogs implicates genomic structural variation in the development of anterior cruciate ligament rupture. PLoS One 2020; 15:e0244075. [PMID: 33382735 PMCID: PMC7774950 DOI: 10.1371/journal.pone.0244075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 12/02/2020] [Indexed: 11/19/2022] Open
Abstract
Anterior cruciate ligament (ACL) rupture is an important condition of the human knee. Second ruptures are common and societal costs are substantial. Canine cranial cruciate ligament (CCL) rupture closely models the human disease. CCL rupture is common in the Labrador Retriever (5.79% prevalence), ~100-fold more prevalent than in humans. Labrador Retriever CCL rupture is a polygenic complex disease, based on genome-wide association study (GWAS) of single nucleotide polymorphism (SNP) markers. Dissection of genetic variation in complex traits can be enhanced by studying structural variation, including copy number variants (CNVs). Dogs are an ideal model for CNV research because of reduced genetic variability within breeds and extensive phenotypic diversity across breeds. We studied the genetic etiology of CCL rupture by association analysis of CNV regions (CNVRs) using 110 case and 164 control Labrador Retrievers. CNVs were called from SNPs using three different programs (PennCNV, CNVPartition, and QuantiSNP). After quality control, CNV calls were combined to create CNVRs using ParseCNV and an association analysis was performed. We found no strong effect CNVRs but found 46 small effect (max(T) permutation P<0.05) CCL rupture associated CNVRs in 22 autosomes; 25 were deletions and 21 were duplications. Of the 46 CCL rupture associated CNVRs, we identified 39 unique regions. Thirty four were identified by a single calling algorithm, 3 were identified by two calling algorithms, and 2 were identified by all three algorithms. For 42 of the associated CNVRs, frequency in the population was <10% while 4 occurred at a frequency in the population ranging from 10–25%. Average CNVR length was 198,872bp and CNVRs covered 0.11 to 0.15% of the genome. All CNVRs were associated with case status. CNVRs did not overlap previous canine CCL rupture risk loci identified by GWAS. Associated CNVRs contained 152 annotated genes; 12 CNVRs did not have genes mapped to CanFam3.1. Using pathway analysis, a cluster of 19 homeobox domain transcript regulator genes was associated with CCL rupture (P = 6.6E-13). This gene cluster influences cranial-caudal body pattern formation during embryonic limb development. Clustered genes were found in 3 CNVRs on chromosome 14 (HoxA), 28 (NKX6-2), and 36 (HoxD). When analysis was limited to deletion CNVRs, the association was strengthened (P = 8.7E-16). This study suggests a component of the polygenic risk of CCL rupture in Labrador Retrievers is associated with small effect CNVs and may include aspects of stifle morphology regulated by homeobox domain transcript regulator genes.
Collapse
Affiliation(s)
- Emily E. Binversie
- Comparative Orthopaedic and Genetics Research Laboratory, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Lauren A. Baker
- Comparative Orthopaedic and Genetics Research Laboratory, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Corinne D. Engelman
- Department of Population Health Sciences, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Zhengling Hao
- Comparative Orthopaedic and Genetics Research Laboratory, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - John J. Moran
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Alexander M. Piazza
- Comparative Orthopaedic and Genetics Research Laboratory, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Susannah J. Sample
- Comparative Orthopaedic and Genetics Research Laboratory, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Peter Muir
- Comparative Orthopaedic and Genetics Research Laboratory, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
9
|
Li J, Fan Z, Shen F, Pendleton AL, Song Y, Xing J, Yue B, Kidd JM, Li J. Genomic Copy Number Variation Study of Nine Macaca Species Provides New Insights into Their Genetic Divergence, Adaptation, and Biomedical Application. Genome Biol Evol 2020; 12:2211-2230. [PMID: 32970804 PMCID: PMC7846157 DOI: 10.1093/gbe/evaa200] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2020] [Indexed: 02/06/2023] Open
Abstract
Copy number variation (CNV) can promote phenotypic diversification and adaptive evolution. However, the genomic architecture of CNVs among Macaca species remains scarcely reported, and the roles of CNVs in adaptation and evolution of macaques have not been well addressed. Here, we identified and characterized 1,479 genome-wide hetero-specific CNVs across nine Macaca species with bioinformatic methods, along with 26 CNV-dense regions and dozens of lineage-specific CNVs. The genes intersecting CNVs were overrepresented in nutritional metabolism, xenobiotics/drug metabolism, and immune-related pathways. Population-level transcriptome data showed that nearly 46% of CNV genes were differentially expressed across populations and also mainly consisted of metabolic and immune-related genes, which implied the role of CNVs in environmental adaptation of Macaca. Several CNVs overlapping drug metabolism genes were verified with genomic quantitative polymerase chain reaction, suggesting that these macaques may have different drug metabolism features. The CNV-dense regions, including 15 first reported here, represent unstable genomic segments in macaques where biological innovation may evolve. Twelve gains and 40 losses specific to the Barbary macaque contain genes with essential roles in energy homeostasis and immunity defense, inferring the genetic basis of its unique distribution in North Africa. Our study not only elucidated the genetic diversity across Macaca species from the perspective of structural variation but also provided suggestive evidence for the role of CNVs in adaptation and genome evolution. Additionally, our findings provide new insights into the application of diverse macaques to drug study.
Collapse
Affiliation(s)
- Jing Li
- Key Laboratory of Bio-Resources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Zhenxin Fan
- Key Laboratory of Bio-Resources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Feichen Shen
- Department of Human Genetics, Medical School, University of Michigan
| | | | - Yang Song
- Key Laboratory of Bio-Resources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Jinchuan Xing
- Department of Genetics and the Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway
| | - Bisong Yue
- Key Laboratory of Bio-Resources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Jeffrey M Kidd
- Department of Human Genetics, Medical School, University of Michigan
| | - Jing Li
- Key Laboratory of Bio-Resources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
10
|
Amiri Ghanatsaman Z, Wang GD, Asadollahpour Nanaei H, Asadi Fozi M, Peng MS, Esmailizadeh A, Zhang YP. Whole genome resequencing of the Iranian native dogs and wolves to unravel variome during dog domestication. BMC Genomics 2020; 21:207. [PMID: 32131720 PMCID: PMC7057629 DOI: 10.1186/s12864-020-6619-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Accepted: 02/25/2020] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Advances in genome technology have simplified a new comprehension of the genetic and historical processes crucial to rapid phenotypic evolution under domestication. To get new insight into the genetic basis of the dog domestication process, we conducted whole-genome sequence analysis of three wolves and three dogs from Iran which covers the eastern part of the Fertile Crescent located in Southwest Asia where the independent domestication of most of the plants and animals has been documented and also high haplotype sharing between wolves and dog breeds has been reported. RESULTS Higher diversity was found within the wolf genome compared with the dog genome. A total number of 12.45 million SNPs were detected in all individuals (10.45 and 7.82 million SNPs were identified for all the studied wolves and dogs, respectively) and a total number of 3.49 million small Indels were detected in all individuals (3.11 and 2.24 million small Indels were identified for all the studied wolves and dogs, respectively). A total of 10,571 copy number variation regions (CNVRs) were detected across the 6 individual genomes, covering 154.65 Mb, or 6.41%, of the reference genome (canFam3.1). Further analysis showed that the distribution of deleterious variants in the dog genome is higher than the wolf genome. Also, genomic annotation results from intron and intergenic regions showed that the proportion of variations in the wolf genome is higher than that in the dog genome, while the proportion of the coding sequences and 3'-UTR in the dog genome is higher than that in the wolf genome. The genes related to the olfactory and immune systems were enriched in the set of the structural variants (SVs) identified in this work. CONCLUSIONS Our results showed more deleterious mutations and coding sequence variants in the domestic dog genome than those in wolf genome. By providing the first Iranian dog and wolf variome map, our findings contribute to understanding the genetic architecture of the dog domestication.
Collapse
Affiliation(s)
- Zeinab Amiri Ghanatsaman
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, PB 76169-133, Kerman, Iran
- Yong Researchers Society, Shahid Bahonar University of Kerman, PB 76169-133, Kerman, Iran
| | - Guo-Dong Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, No. 32 Jiaochang Donglu, Kunming, 650223, Yunnan, China
| | - Hojjat Asadollahpour Nanaei
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, PB 76169-133, Kerman, Iran
- Yong Researchers Society, Shahid Bahonar University of Kerman, PB 76169-133, Kerman, Iran
| | - Masood Asadi Fozi
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, PB 76169-133, Kerman, Iran
| | - Min-Sheng Peng
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, No. 32 Jiaochang Donglu, Kunming, 650223, Yunnan, China
| | - Ali Esmailizadeh
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, PB 76169-133, Kerman, Iran.
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, No. 32 Jiaochang Donglu, Kunming, 650223, Yunnan, China.
| | - Ya-Ping Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, No. 32 Jiaochang Donglu, Kunming, 650223, Yunnan, China.
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650091, China.
| |
Collapse
|
11
|
Weich K, Affolter V, York D, Rebhun R, Grahn R, Kallenberg A, Bannasch D. Pigment Intensity in Dogs is Associated with a Copy Number Variant Upstream of KITLG. Genes (Basel) 2020; 11:genes11010075. [PMID: 31936656 PMCID: PMC7017362 DOI: 10.3390/genes11010075] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/06/2020] [Accepted: 01/08/2020] [Indexed: 01/14/2023] Open
Abstract
Dogs exhibit a wide variety of coat color types, and many genes have been identified that control pigment production, appearance, and distribution. Some breeds, such as the Nova Scotia Duck Tolling Retriever (NSDTR), exhibit variation in pheomelanin pigment intensity that is not explained by known genetic variants. A genome-wide association study comparing light red to dark red in the NSDTR identified a significantly associated region on canine chromosome 15 (CFA 15:23 Mb–38 Mb). Coverage analysis of whole genome sequence data from eight dogs identified a 6 kb copy number variant (CNV) 152 kb upstream of KITLG. Genotyping with digital droplet PCR (ddPCR) confirmed a significant association between an increased copy number with the dark-red coat color in NSDTR (p = 6.1 × 10−7). The copy number of the CNV was also significantly associated with coat color variation in both eumelanin and pheomelanin-based Poodles (p = 1.5 × 10−8, 4.0 × 10−9) and across other breeds. Moreover, the copy number correlated with pigment intensity along the hair shaft in both pheomelanin and eumelanin coats. KITLG plays an important role in melanogenesis, and variants upstream of KITLG have been associated with coat color variation in mice as well as hair color in humans consistent with its role in the domestic dog.
Collapse
Affiliation(s)
- Kalie Weich
- Department of Population Health and Reproduction, University of California-Davis, Davis, CA 95616, USA;
| | - Verena Affolter
- Department of Pathology, Microbiology, and Immunology, University of California-Davis, Davis, CA 95616, USA;
| | - Daniel York
- Department of Surgical and Radiological Sciences, University of California-Davis, Davis, CA 95616, USA; (D.Y.); (R.R.)
| | - Robert Rebhun
- Department of Surgical and Radiological Sciences, University of California-Davis, Davis, CA 95616, USA; (D.Y.); (R.R.)
| | - Robert Grahn
- Veterinary Genetics Laboratory, University of California-Davis, Davis, CA 95616, USA; (R.G.); (A.K.)
| | - Angelica Kallenberg
- Veterinary Genetics Laboratory, University of California-Davis, Davis, CA 95616, USA; (R.G.); (A.K.)
| | - Danika Bannasch
- Department of Population Health and Reproduction, University of California-Davis, Davis, CA 95616, USA;
- Correspondence: ; Tel.: +1-530-754-8728
| |
Collapse
|
12
|
Di Gerlando R, Mastrangelo S, Sardina MT, Ragatzu M, Spaterna A, Portolano B, Biscarini F, Ciampolini R. A Genome-Wide Detection of Copy Number Variations Using SNP Genotyping Arrays in Braque Français Type Pyrénées Dogs. Animals (Basel) 2019; 9:E77. [PMID: 30832273 PMCID: PMC6466271 DOI: 10.3390/ani9030077] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 02/21/2019] [Accepted: 02/28/2019] [Indexed: 01/07/2023] Open
Abstract
Copy number variants (CNVs) are an important source of genetic variation complementary to single nucleotide polymorphisms (SNPs). Only few studies have been conducted in dogs on CNVs derived from high-density SNP array data, and many canine breeds still remain uncharacterized, e.g., the Braque Français, type Pyrénées breed (BRA). Therefore, in an effort to more comprehensively investigate the canine genome for CNVs, we used a high-density SNP array (170 K) to discover CNVs in BRA. The CNV regions (CNVRs) were identified through the merging of two different CNVRs datasets, obtained separately from SNP data using the PennCNV and SVS software. A total of 45 stringent CNVRs, ranging from 3.5 kb to 458,716 kb in length were detected in 26 dog samples. Results overlapped moderately in comparison with previous studies on CNVs in dogs, leading to the identification of 16 novel CNVRs. A total of 159 genes were annotated in the CNVRs detected with stringent quality criteria in particular high classification stringency and false discovery rate correction. The gene ontology enrichment analysis provided information on biological processes and cellular components related to muscle structure development and muscle cell differentiation. Considering that BRA is a breed used for speed in hunting and retrieval, for the ability to find feathered game, and for pointing, we can hypothesize that selection for such hunting behavior could have driven, at least in part, the presence of these genes into the CNVRs.
Collapse
Affiliation(s)
- Rosalia Di Gerlando
- Dipartimento Scienze Agrarie, Alimentari e Forestali, University of Palermo, 90128 Palermo, Italy.
| | - Salvatore Mastrangelo
- Dipartimento Scienze Agrarie, Alimentari e Forestali, University of Palermo, 90128 Palermo, Italy.
| | - Maria Teresa Sardina
- Dipartimento Scienze Agrarie, Alimentari e Forestali, University of Palermo, 90128 Palermo, Italy.
| | - Marco Ragatzu
- Club Italiano Braque Français Type Pyrénées, 58011 Capalbio, Italy.
| | - Andrea Spaterna
- Scuola di Scienze Mediche Veterinarie, University of Camerino, 62024 Matelica, Italy.
- Centro interuniversitario di ricerca e di consulenza sulla genetica e la clinica del cane, 62024, Matelica, MC, Italy.
| | - Baldassare Portolano
- Dipartimento Scienze Agrarie, Alimentari e Forestali, University of Palermo, 90128 Palermo, Italy.
| | - Filippo Biscarini
- Consiglio Nazionale delle Ricerche-Istituto di Biologia e Biotecnologia Agraria, 20133 Milano, Italy.
| | - Roberta Ciampolini
- Centro interuniversitario di ricerca e di consulenza sulla genetica e la clinica del cane, 62024, Matelica, MC, Italy.
- Dipartimento di Scienze Veterinarie, University of Pisa, 56100 Pisa, Italy.
| |
Collapse
|
13
|
Liu S, Kang X, Catacchio CR, Liu M, Fang L, Schroeder SG, Li W, Rosen BD, Iamartino D, Iannuzzi L, Sonstegard TS, Van Tassell CP, Ventura M, Low WY, Williams JL, Bickhart DM, Liu GE. Computational detection and experimental validation of segmental duplications and associated copy number variations in water buffalo ( Bubalus bubalis ). Funct Integr Genomics 2019; 19:409-419. [PMID: 30734132 DOI: 10.1007/s10142-019-00657-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 12/13/2018] [Accepted: 01/09/2019] [Indexed: 01/25/2023]
Abstract
Duplicated sequences are an important source of gene evolution and structural variation within mammalian genomes. Using a read depth approach based on next-generation sequencing, we performed a genome-wide analysis of segmental duplications (SDs) and associated copy number variations (CNVs) in the water buffalo (Bubalus bubalis). By aligning short reads of Olimpia (the reference water buffalo) to the UMD3.1 cattle genome, we identified 1,038 segmental duplications comprising 44.6 Mb (equivalent to ~1.73% of the cattle genome) of the autosomal and X chromosomal sequence in the buffalo genome. We experimentally validated 70.3% (71/101) of these duplications using fluorescent in situ hybridization. We also detected a total of 1,344 CNV regions across 14 additional water buffaloes, amounting to 59.8 Mb of variable sequence or the equivalent of 2.2% of the cattle genome. The CNV regions overlap 1,245 genes that are significantly enriched for specific biological functions including immune response, oxygen transport, sensory system and signal transduction. Additionally, we performed array Comparative Genomic Hybridization (aCGH) experiments using the 14 water buffaloes as test samples and Olimpia as the reference. Using a linear regression model, a high Pearson correlation (r = 0.781) was observed between the log2 ratios between copy number estimates and the log2 ratios of aCGH probes. We further designed Quantitative PCR assays to confirm CNV regions within or near annotated genes and found 74.2% agreement with our CNV predictions. These results confirm sub-chromosome-scale structural rearrangements present in the cattle and water buffalo. The information on genome variation that will be of value for evolutionary and phenotypic studies, and may be useful for selective breeding of both species.
Collapse
Affiliation(s)
- Shuli Liu
- USDA-ARS, Animal Genomics and Improvement Laboratory, Beltsville, Maryland, 20705, USA
- College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Xiaolong Kang
- USDA-ARS, Animal Genomics and Improvement Laboratory, Beltsville, Maryland, 20705, USA
- College of Agriculture, Ningxia University, Yinchuan, 750021, China
| | | | - Mei Liu
- USDA-ARS, Animal Genomics and Improvement Laboratory, Beltsville, Maryland, 20705, USA
- College of Animal Science and Technology, Shaanxi Key Laboratory of Agricultural Molecular Biology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Lingzhao Fang
- USDA-ARS, Animal Genomics and Improvement Laboratory, Beltsville, Maryland, 20705, USA
- Department of Animal and Avian Sciences, University of Maryland, College Park, Maryland, 20742, USA
| | - Steven G Schroeder
- USDA-ARS, Animal Genomics and Improvement Laboratory, Beltsville, Maryland, 20705, USA
| | - Wenli Li
- The Cell Wall Utilization and Biology Laboratory, US Dairy Forage Research Center, USDA, ARS, Madison, WI 53706, USA
| | - Benjamin D Rosen
- USDA-ARS, Animal Genomics and Improvement Laboratory, Beltsville, Maryland, 20705, USA
| | - Daniela Iamartino
- AIA-LGS, Associazione Italiana Allevatori - Laboratorio Genetica e Servizi, Via Bergamo 292, 26100 (CR), Cremona, Italy
- Parco Tecnologico Padano, Via Einstein, Polo Universitario, 26900, Lodi, Italy
| | - Leopoldo Iannuzzi
- Laboratory of Animal Cytogenetics and Gene Mapping, Nationa Research Council (CNR), ISPAAM, Via Argine 1085, 80147, Naples, Italy
| | | | - Curtis P Van Tassell
- USDA-ARS, Animal Genomics and Improvement Laboratory, Beltsville, Maryland, 20705, USA
| | - Mario Ventura
- Department of Biology, University of Bari, 70126, Bari, Italy
| | - Wai Yee Low
- Davies Research Centre, School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, SA, 5371, Australia
| | - John L Williams
- Davies Research Centre, School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, SA, 5371, Australia
| | - Derek M Bickhart
- The Cell Wall Utilization and Biology Laboratory, US Dairy Forage Research Center, USDA, ARS, Madison, WI 53706, USA.
| | - George E Liu
- USDA-ARS, Animal Genomics and Improvement Laboratory, Beltsville, Maryland, 20705, USA.
| |
Collapse
|
14
|
Wang C, Chen H, Wang X, Wu Z, Liu W, Guo Y, Ren J, Ding N. Identification of copy number variations using high density whole-genome SNP markers in Chinese Dongxiang spotted pigs. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2019; 32:1809-1815. [PMID: 30744341 PMCID: PMC6819687 DOI: 10.5713/ajas.18.0696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 01/08/2019] [Indexed: 01/13/2023]
Abstract
Objective Copy number variations (CNVs) are a major source of genetic diversity complementary to single nucleotide polymorphism (SNP) in animals. The aim of the study was to perform a comprehensive genomic analysis of CNVs based on high density whole-genome SNP markers in Chinese Dongxiang spotted pigs. Methods We used customized Affymetrix Axiom Pig1.4M array plates containing 1.4 million SNPs and the PennCNV algorithm to identify porcine CNVs on autosomes in Chinese Dongxiang spotted pigs. Then, the next generation sequence data was used to confirm the detected CNVs. Next, functional analysis was performed for gene contents in copy number variation regions (CNVRs). In addition, we compared the identified CNVRs with those reported ones and quantitative trait loci (QTL) in the pig QTL database. Results We identified 871 putative CNVs belonging to 2,221 CNVRs on 17 autosomes. We further discarded CNVRs that were detected only in one individual, leaving us 166 CNVRs in total. The 166 CNVRs ranged from 2.89 kb to 617.53 kb with a mean value of 93.65 kb and a genome coverage of 15.55 Mb, corresponding to 0.58% of the pig genome. A total of 119 (71.69%) of the identified CNVRs were confirmed by next generation sequence data. Moreover, functional annotation showed that these CNVRs are involved in a variety of molecular functions. More than half (56.63%) of the CNVRs (n = 94) have been reported in previous studies, while 72 CNVRs are reported for the first time. In addition, 162 (97.59%) CNVRs were found to overlap with 2,765 previously reported QTLs affecting 378 phenotypic traits. Conclusion The findings improve the catalog of pig CNVs and provide insights and novel molecular markers for further genetic analyses of Chinese indigenous pigs.
Collapse
Affiliation(s)
- Chengbin Wang
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Hao Chen
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xiaopeng Wang
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Zhongping Wu
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Weiwei Liu
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yuanmei Guo
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Jun Ren
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Nengshui Ding
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang 330045, China
| |
Collapse
|
15
|
Nguyen N, Vo A, Sun H, Huang H. Heavy-Tailed Noise Suppression and Derivative Wavelet Scalogram for Detecting DNA Copy Number Aberrations. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2018; 15:1625-1635. [PMID: 28692986 DOI: 10.1109/tcbb.2017.2723884] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Most existing array comparative genomic hybridization (array CGH) data processing methods and evaluation models assumed that the probability density function (pdf) of noise in array CGH data is a Gaussian distribution. However, in practice, such noise distribution is peaky and heavy-tailed. Therefore, a Gaussian pdf is not adequate to approximate the noise in array CGH data and hence introduces wrong detections of chromosomal aberrations and leads misunderstanding on disease pathogenesis. A more accurate and sufficient model of noise in array CGH data is necessary and beneficial to the detection of DNA copy number variations. We analyze the real array CGH data from different platforms and show that the distribution of noise in array CGH data is fitted very well by generalized Gaussian distribution (GGD). Based on our new noise model, we propose a novel array CGH processing method combining the advantages of both the smoothing and segmentation approaches. The new method uses generalized Gaussian bivariate shrinkage function and one-directional derivative wavelet scalogram in generalized Gaussian noise. In the smoothing step, with the new generalized Gaussian noise model, we derive the heavy-tailed noise suppression algorithm in stationary wavelet domain. In the segmentation step, the 1D Gaussian derivative wavelet scalogram is employed to detect break points. Both real and simulated array CGH data with different noises (such as Gaussian noise, GGD noise, and real noise) are used in our experiments. We demonstrate that our new method outperforms other state-of-the-art methods, in terms of both root mean squared errors and receiver operating characteristic curves.
Collapse
|
16
|
Pendleton AL, Shen F, Taravella AM, Emery S, Veeramah KR, Boyko AR, Kidd JM. Comparison of village dog and wolf genomes highlights the role of the neural crest in dog domestication. BMC Biol 2018; 16:64. [PMID: 29950181 PMCID: PMC6022502 DOI: 10.1186/s12915-018-0535-2] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 05/23/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Domesticated from gray wolves between 10 and 40 kya in Eurasia, dogs display a vast array of phenotypes that differ from their ancestors, yet mirror other domesticated animal species, a phenomenon known as the domestication syndrome. Here, we use signatures persisting in dog genomes to identify genes and pathways possibly altered by the selective pressures of domestication. RESULTS Whole-genome SNP analyses of 43 globally distributed village dogs and 10 wolves differentiated signatures resulting from domestication rather than breed formation. We identified 246 candidate domestication regions containing 10.8 Mb of genome sequence and 429 genes. The regions share haplotypes with ancient dogs, suggesting that the detected signals are not the result of recent selection. Gene enrichments highlight numerous genes linked to neural crest and central nervous system development as well as neurological function. Read depth analysis suggests that copy number variation played a minor role in dog domestication. CONCLUSIONS Our results identify genes that act early in embryogenesis and can confer phenotypes distinguishing domesticated dogs from wolves, such as tameness, smaller jaws, floppy ears, and diminished craniofacial development as the targets of selection during domestication. These differences reflect the phenotypes of the domestication syndrome, which can be explained by alterations in the migration or activity of neural crest cells during development. We propose that initial selection during early dog domestication was for behavior, a trait influenced by genes which act in the neural crest, which secondarily gave rise to the phenotypes of modern dogs.
Collapse
Affiliation(s)
- Amanda L Pendleton
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Feichen Shen
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Angela M Taravella
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Sarah Emery
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Krishna R Veeramah
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Adam R Boyko
- Department of Biomedical Sciences, Cornell University, Ithaca, New York, 14853, USA
| | - Jeffrey M Kidd
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, 48109, USA.
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
17
|
Pierce MD, Dzama K, Muchadeyi FC. Genetic Diversity of Seven Cattle Breeds Inferred Using Copy Number Variations. Front Genet 2018; 9:163. [PMID: 29868114 PMCID: PMC5962699 DOI: 10.3389/fgene.2018.00163] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 04/23/2018] [Indexed: 11/25/2022] Open
Abstract
Copy number variations (CNVs) comprise deletions, duplications, and insertions found within the genome larger than 50 bp in size. CNVs are thought to be primary role-players in breed formation and adaptation. South Africa boasts a diverse ecology with harsh environmental conditions and a broad spectrum of parasites and diseases that pose challenges to livestock production. This has led to the development of composite cattle breeds which combine the hardiness of Sanga breeds and the production potential of the Taurine breeds. The prevalence of CNVs within these respective breeds of cattle and the prevalence of CNV regions (CNVRs) in their diversity, adaptation and production is however not understood. This study therefore aimed to ascertain the prevalence, diversity, and correlations of CNVRs within cattle breeds used in South Africa. Illumina Bovine SNP50 data and PennCNV were utilized to identify CNVRs within the genome of 287 animals from seven cattle breeds representing Sanga, Taurine, Composite, and cross breeds. Three hundred and fifty six CNVRs of between 36 kb to 4.1 Mb in size were identified. The null hypothesis that one CNVR loci is independent of another was tested using the GENEPOP software. One hunded and two and seven of the CNVRs in the Taurine and Sanga/Composite cattle breeds demonstrated a significant (p ≤ 0.05) association. PANTHER overrepresentation analyses of correlated CNVRs demonstrated significant enrichment of a number of biological processes, molecular functions, cellular components, and protein classes. CNVR genetic variation between and within breed group was measured using phiPT which allows intra-individual variation to be suppressed and hence proved suitable for measuring binary CNVR presence/absence data. Estimate PhiPT within and between breed variance was 2.722 and 0.518 respectively. Pairwise population PhiPT values corresponded with breed type, with Taurine Holstein and Angus breeds demonstrating no between breed CNVR variation. Phylogenetic trees were drawn. CNVRs primarily clustered animals of the same breed type together. This study successfully identified, characterized, and analyzed 356 CNVRs within seven cattle breeds. CNVR correlations were evident, with many more correlations being present among the exotic Taurine breeds. CNVR genetic diversity of Sanga, Taurine and Composite breeds was ascertained with breed types exposed to similar selection pressures demonstrating analogous incidences of CNVRs.
Collapse
Affiliation(s)
- Magretha D Pierce
- Animal Production, Agricultural Research Council, Pretoria, South Africa
| | - Kennedy Dzama
- Department of Animal Sciences, University of Stellenbosch, Stellenbosch, South Africa
| | - Farai C Muchadeyi
- Biotechnology Platform, Agricultural Research Council, Pretoria, South Africa
| |
Collapse
|
18
|
Serres-Armero A, Povolotskaya IS, Quilez J, Ramirez O, Santpere G, Kuderna LFK, Hernandez-Rodriguez J, Fernandez-Callejo M, Gomez-Sanchez D, Freedman AH, Fan Z, Novembre J, Navarro A, Boyko A, Wayne R, Vilà C, Lorente-Galdos B, Marques-Bonet T. Similar genomic proportions of copy number variation within gray wolves and modern dog breeds inferred from whole genome sequencing. BMC Genomics 2017; 18:977. [PMID: 29258433 PMCID: PMC5735816 DOI: 10.1186/s12864-017-4318-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 11/17/2017] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Whole genome re-sequencing data from dogs and wolves are now commonly used to study how natural and artificial selection have shaped the patterns of genetic diversity. Single nucleotide polymorphisms, microsatellites and variants in mitochondrial DNA have been interrogated for links to specific phenotypes or signals of domestication. However, copy number variation (CNV), despite its increasingly recognized importance as a contributor to phenotypic diversity, has not been extensively explored in canids. RESULTS Here, we develop a new accurate probabilistic framework to create fine-scale genomic maps of segmental duplications (SDs), compare patterns of CNV across groups and investigate their role in the evolution of the domestic dog by using information from 34 canine genomes. Our analyses show that duplicated regions are enriched in genes and hence likely possess functional importance. We identify 86 loci with large CNV differences between dogs and wolves, enriched in genes responsible for sensory perception, immune response, metabolic processes, etc. In striking contrast to the observed loss of nucleotide diversity in domestic dogs following the population bottlenecks that occurred during domestication and breed creation, we find a similar proportion of CNV loci in dogs and wolves, suggesting that other dynamics are acting to particularly select for CNVs with potentially functional impacts. CONCLUSIONS This work is the first comparison of genome wide CNV patterns in domestic and wild canids using whole-genome sequencing data and our findings contribute to study the impact of novel kinds of genetic changes on the evolution of the domestic dog.
Collapse
Affiliation(s)
- Aitor Serres-Armero
- IBE, Institut de Biologia Evolutiva (Universitat Pompeu Fabra/CSIC), Ciencies Experimentals i de la Salut, 08003, Barcelona, Spain
| | - Inna S Povolotskaya
- IBE, Institut de Biologia Evolutiva (Universitat Pompeu Fabra/CSIC), Ciencies Experimentals i de la Salut, 08003, Barcelona, Spain
| | - Javier Quilez
- IBE, Institut de Biologia Evolutiva (Universitat Pompeu Fabra/CSIC), Ciencies Experimentals i de la Salut, 08003, Barcelona, Spain.,CNAG-CRG, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Oscar Ramirez
- IBE, Institut de Biologia Evolutiva (Universitat Pompeu Fabra/CSIC), Ciencies Experimentals i de la Salut, 08003, Barcelona, Spain.,Vetgenomics, 08193, Barcelona, Spain
| | - Gabriel Santpere
- IBE, Institut de Biologia Evolutiva (Universitat Pompeu Fabra/CSIC), Ciencies Experimentals i de la Salut, 08003, Barcelona, Spain.,Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Lukas F K Kuderna
- IBE, Institut de Biologia Evolutiva (Universitat Pompeu Fabra/CSIC), Ciencies Experimentals i de la Salut, 08003, Barcelona, Spain
| | - Jessica Hernandez-Rodriguez
- IBE, Institut de Biologia Evolutiva (Universitat Pompeu Fabra/CSIC), Ciencies Experimentals i de la Salut, 08003, Barcelona, Spain
| | - Marcos Fernandez-Callejo
- CNAG-CRG, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Daniel Gomez-Sanchez
- IBE, Institut de Biologia Evolutiva (Universitat Pompeu Fabra/CSIC), Ciencies Experimentals i de la Salut, 08003, Barcelona, Spain
| | - Adam H Freedman
- UCLA, Department of Ecology and Evolutionary Biology, Los Angeles, CA, 90095, USA
| | - Zhenxin Fan
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, 610064, People's Republic of China
| | - John Novembre
- UCLA, Department of Ecology and Evolutionary Biology, Los Angeles, CA, 90095, USA
| | - Arcadi Navarro
- IBE, Institut de Biologia Evolutiva (Universitat Pompeu Fabra/CSIC), Ciencies Experimentals i de la Salut, 08003, Barcelona, Spain.,CNAG-CRG, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.,Institucio Catalana de Recerca i Estudis Avançats (ICREA), 08010, Barcelona, Catalonia, Spain
| | - Adam Boyko
- Cornell University, Department of Biological Statistics and Computational Biology, New York, NY, 14853, USA
| | - Robert Wayne
- UCLA, Department of Ecology and Evolutionary Biology, Los Angeles, CA, 90095, USA
| | - Carles Vilà
- Estación Biológica de Doñana EBD-CSIC, Department of Integrative Ecology, 41092, Sevilla, Spain
| | - Belen Lorente-Galdos
- IBE, Institut de Biologia Evolutiva (Universitat Pompeu Fabra/CSIC), Ciencies Experimentals i de la Salut, 08003, Barcelona, Spain. .,Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA.
| | - Tomas Marques-Bonet
- IBE, Institut de Biologia Evolutiva (Universitat Pompeu Fabra/CSIC), Ciencies Experimentals i de la Salut, 08003, Barcelona, Spain. .,CNAG-CRG, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain. .,Institucio Catalana de Recerca i Estudis Avançats (ICREA), 08010, Barcelona, Catalonia, Spain.
| |
Collapse
|
19
|
Yang L, Xu L, Zhu B, Niu H, Zhang W, Miao J, Shi X, Zhang M, Chen Y, Zhang L, Gao X, Gao H, Li L, Liu GE, Li J. Genome-wide analysis reveals differential selection involved with copy number variation in diverse Chinese Cattle. Sci Rep 2017; 7:14299. [PMID: 29085051 PMCID: PMC5662686 DOI: 10.1038/s41598-017-14768-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 10/12/2017] [Indexed: 12/20/2022] Open
Abstract
Copy number variations (CNVs) are defined as deletions, insertions, and duplications between two individuals of a species. To investigate the diversity and population-genetic properties of CNVs and their diverse selection patterns, we performed a genome-wide CNV analysis using high density SNP array in Chinese native cattle. In this study, we detected a total of 13,225 CNV events and 3,356 CNV regions (CNVRs), overlapping with 1,522 annotated genes. Among them, approximately 71.43 Mb of novel CNVRs were detected in the Chinese cattle population for the first time, representing the unique genomic resources in cattle. A new V i statistic was proposed to estimate the region-specific divergence in CNVR for each group based on unbiased estimates of pairwise V ST . We obtained 12 and 62 candidate CNVRs at the top 1% and top 5% of genome-wide V i value thresholds for each of four groups (North, Northwest, Southwest and South). Moreover, we identified many lineage-differentiated CNV genes across four groups, which were associated with several important molecular functions and biological processes, including metabolic process, response to stimulus, immune system, and others. Our findings provide some insights into understanding lineage-differentiated CNVs under divergent selection in the Chinese native cattle.
Collapse
Affiliation(s)
- Liu Yang
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.,Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Lingyang Xu
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Bo Zhu
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Hong Niu
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Wengang Zhang
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Jian Miao
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.,College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Xinping Shi
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.,College of Animal Science and Technology, Agricultural University of Hebei, Baoding, Hebei, 071001, China
| | - Ming Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Yan Chen
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Lupei Zhang
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xue Gao
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Huijiang Gao
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Li Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - George E Liu
- Animal Genomics and Improvement Laboratory, Agricultural Research Service, USDA, Beltsville, Maryland, 20705, USA
| | - Junya Li
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
20
|
Sohrabi SS, Mohammadabadi M, Wu DD, Esmailizadeh A. Detection of breed-specific copy number variations in domestic chicken genome. Genome 2017; 61:7-14. [PMID: 28961404 DOI: 10.1139/gen-2017-0016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Copy number variations (CNVs) are important large-scale variants. They are widespread in the genome and may contribute to phenotypic variation. Detection and characterization of CNVs can provide new insights into the genetic basis of important traits. Here, we perform whole-genome short read sequence analysis to identify CNVs in two indigenous and commercial chicken breeds to evaluate the impact of the identified CNVs on breed-specific traits. After filtration, a total of 12 955 CNVs spanning (on average) about 9.42% of the chicken genome were found that made up 5467 CNV regions (CNVRs). Chicken quantitative trait loci (QTL) datasets and Ensembl gene annotations were used as resources for the estimation of potential phenotypic effects of our CNVRs on breed-specific traits. In total, 34% of our detected CNVRs were also detected in earlier CNV studies. These CNVRs partly overlap several previously reported QTL and gene ontology terms associated with some important traits, including shank length QTL in Creeper-specific CNVRs and body weight and egg production characteristics, as well as muscle and body organ growth, in the Arian commercial breed. Our findings provide new insights into the genomic structure of the chicken genome for an improved understanding of the potential roles of CNVRs in differentiating between breeds or lines.
Collapse
Affiliation(s)
- Saeed S Sohrabi
- a Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, PB 76169-133, Kerman, Iran.,b Young Researchers Society, Shahid Bahonar University of Kerman, PB 76169-133, Kerman, Iran
| | - Mohammadreza Mohammadabadi
- a Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, PB 76169-133, Kerman, Iran
| | - Dong-Dong Wu
- c State Key Laboratory of Genetic Resources and Evolution & Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.,d Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China
| | - Ali Esmailizadeh
- a Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, PB 76169-133, Kerman, Iran.,c State Key Laboratory of Genetic Resources and Evolution & Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| |
Collapse
|
21
|
Segmental duplications: evolution and impact among the current Lepidoptera genomes. BMC Evol Biol 2017; 17:161. [PMID: 28683762 PMCID: PMC5499213 DOI: 10.1186/s12862-017-1007-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 06/23/2017] [Indexed: 11/10/2022] Open
Abstract
Background Structural variation among genomes is now viewed to be as important as single nucleoid polymorphisms in influencing the phenotype and evolution of a species. Segmental duplication (SD) is defined as segments of DNA with homologous sequence. Results Here, we performed a systematic analysis of segmental duplications (SDs) among five lepidopteran reference genomes (Plutella xylostella, Danaus plexippus, Bombyx mori, Manduca sexta and Heliconius melpomene) to understand their potential impact on the evolution of these species. We find that the SDs content differed substantially among species, ranging from 1.2% of the genome in B. mori to 15.2% in H. melpomene. Most SDs formed very high identity (similarity higher than 90%) blocks but had very few large blocks. Comparative analysis showed that most of the SDs arose after the divergence of each linage and we found that P. xylostella and H. melpomene showed more duplications than other species, suggesting they might be able to tolerate extensive levels of variation in their genomes. Conserved ancestral and species specific SD events were assessed, revealing multiple examples of the gain, loss or maintenance of SDs over time. SDs content analysis showed that most of the genes embedded in SDs regions belonged to species-specific SDs (“Unique” SDs). Functional analysis of these genes suggested their potential roles in the lineage-specific evolution. SDs and flanking regions often contained transposable elements (TEs) and this association suggested some involvement in SDs formation. Further studies on comparison of gene expression level between SDs and non-SDs showed that the expression level of genes embedded in SDs was significantly lower, suggesting that structure changes in the genomes are involved in gene expression differences in species. Conclusions The results showed that most of the SDs were “unique SDs”, which originated after species formation. Functional analysis suggested that SDs might play different roles in different species. Our results provide a valuable resource beyond the genetic mutation to explore the genome structure for future Lepidoptera research. Electronic supplementary material The online version of this article (doi:10.1186/s12862-017-1007-y) contains supplementary material, which is available to authorized users.
Collapse
|
22
|
Feng X, Jiang J, Padhi A, Ning C, Fu J, Wang A, Mrode R, Liu JF. Characterization of genome-wide segmental duplications reveals a common genomic feature of association with immunity among domestic animals. BMC Genomics 2017; 18:293. [PMID: 28403820 PMCID: PMC5389087 DOI: 10.1186/s12864-017-3690-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 04/06/2017] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Segmental duplications (SDs) commonly exist in plant and animal genomes, playing crucial roles in genomic rearrangement, gene innovation and the formation of copy number variants. However, they have received little attention in most livestock species. RESULTS Aiming at characterizing SDs across the genomes of diverse livestock species, we mapped genome-wide SDs of horse, rabbit, goat, sheep and chicken, and also enhanced the existing SD maps of cattle and pig genomes based on the most updated genome assemblies. We adopted two different detection strategies, whole genome analysis comparison and whole genome shotgun sequence detection, to pursue more convincing findings. Accordingly we identified SDs for each species with the length of from 21.7 Mb to 164.1 Mb, and 807 to 4,560 genes were harboured within the SD regions across different species. More interestingly, many of these SD-related genes were involved in the process of immunity and response to external stimuli. We also found the existence of 59 common genes within SD regions in all studied species except goat. These common genes mainly consisted of both UDP glucuronosyltransferase and Interferon alpha families, implying the connection between SDs and the evolution of these gene families. CONCLUSIONS Our findings provide insights into livestock genome evolution and offer rich genomic sources for livestock genomic research.
Collapse
Affiliation(s)
- Xiaotian Feng
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Jicai Jiang
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Abinash Padhi
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, 20740, USA
| | - Chao Ning
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Jinluan Fu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Aiguo Wang
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Raphael Mrode
- International Livestock Research Institute, Nairobi, Box 30709-00100, Kenya
| | - Jian-Feng Liu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
23
|
Gao Y, Jiang J, Yang S, Hou Y, Liu GE, Zhang S, Zhang Q, Sun D. CNV discovery for milk composition traits in dairy cattle using whole genome resequencing. BMC Genomics 2017; 18:265. [PMID: 28356085 PMCID: PMC5371188 DOI: 10.1186/s12864-017-3636-3] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 03/17/2017] [Indexed: 01/08/2023] Open
Abstract
Background Copy number variations (CNVs) are important and widely distributed in the genome. CNV detection opens a new avenue for exploring genes associated with complex traits in humans, animals and plants. Herein, we present a genome-wide assessment of CNVs that are potentially associated with milk composition traits in dairy cattle. Results In this study, CNVs were detected based on whole genome re-sequencing data of eight Holstein bulls from four half- and/or full-sib families, with extremely high and low estimated breeding values (EBVs) of milk protein percentage and fat percentage. The range of coverage depth per individual was 8.2–11.9×. Using CNVnator, we identified a total of 14,821 CNVs, including 5025 duplications and 9796 deletions. Among them, 487 differential CNV regions (CNVRs) comprising ~8.23 Mb of the cattle genome were observed between the high and low groups. Annotation of these differential CNVRs were performed based on the cattle genome reference assembly (UMD3.1) and totally 235 functional genes were found within the CNVRs. By Gene Ontology and KEGG pathway analyses, we found that genes were significantly enriched for specific biological functions related to protein and lipid metabolism, insulin/IGF pathway-protein kinase B signaling cascade, prolactin signaling pathway and AMPK signaling pathways. These genes included INS, IGF2, FOXO3, TH, SCD5, GALNT18, GALNT16, ART3, SNCA and WNT7A, implying their potential association with milk protein and fat traits. In addition, 95 CNVRs were overlapped with 75 known QTLs that are associated with milk protein and fat traits of dairy cattle (Cattle QTLdb). Conclusions In conclusion, based on NGS of 8 Holstein bulls with extremely high and low EBVs for milk PP and FP, we identified a total of 14,821 CNVs, 487 differential CNVRs between groups, and 10 genes, which were suggested as promising candidate genes for milk protein and fat traits. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3636-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yahui Gao
- Key Laboratory of Animal Genetics and Breeding of Ministry of Agriculture, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Jianping Jiang
- Key Laboratory of Animal Genetics and Breeding of Ministry of Agriculture, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Shaohua Yang
- Key Laboratory of Animal Genetics and Breeding of Ministry of Agriculture, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yali Hou
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
| | - George E Liu
- Animal Genomics and Improvement Laboratory, BARC, USDA-ARS, Beltsville, Md, 20705, USA
| | - Shengli Zhang
- Key Laboratory of Animal Genetics and Breeding of Ministry of Agriculture, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Qin Zhang
- Key Laboratory of Animal Genetics and Breeding of Ministry of Agriculture, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Dongxiao Sun
- Key Laboratory of Animal Genetics and Breeding of Ministry of Agriculture, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
24
|
Lim JH, Koh S, Thomas R, Breen M, Olby NJ. Evaluation of gene expression and DNA copy number profiles of adipose tissue-derived stromal cells and consecutive neurosphere-like cells generated from dogs with naturally occurring spinal cord injury. Am J Vet Res 2017; 78:371-380. [DOI: 10.2460/ajvr.78.3.371] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
25
|
Abstract
Genome size in mammals and birds shows remarkably little interspecific variation compared with other taxa. However, genome sequencing has revealed that many mammal and bird lineages have experienced differential rates of transposable element (TE) accumulation, which would be predicted to cause substantial variation in genome size between species. Thus, we hypothesize that there has been covariation between the amount of DNA gained by transposition and lost by deletion during mammal and avian evolution, resulting in genome size equilibrium. To test this model, we develop computational methods to quantify the amount of DNA gained by TE expansion and lost by deletion over the last 100 My in the lineages of 10 species of eutherian mammals and 24 species of birds. The results reveal extensive variation in the amount of DNA gained via lineage-specific transposition, but that DNA loss counteracted this expansion to various extents across lineages. Our analysis of the rate and size spectrum of deletion events implies that DNA removal in both mammals and birds has proceeded mostly through large segmental deletions (>10 kb). These findings support a unified "accordion" model of genome size evolution in eukaryotes whereby DNA loss counteracting TE expansion is a major determinant of genome size. Furthermore, we propose that extensive DNA loss, and not necessarily a dearth of TE activity, has been the primary force maintaining the greater genomic compaction of flying birds and bats relative to their flightless relatives.
Collapse
|
26
|
Dosage sensitivity is a major determinant of human copy number variant pathogenicity. Nat Commun 2017; 8:14366. [PMID: 28176757 PMCID: PMC5309798 DOI: 10.1038/ncomms14366] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 12/20/2016] [Indexed: 01/22/2023] Open
Abstract
Human copy number variants (CNVs) account for genome variation an order of magnitude larger than single-nucleotide polymorphisms. Although much of this variation has no phenotypic consequences, some variants have been associated with disease, in particular neurodevelopmental disorders. Pathogenic CNVs are typically very large and contain multiple genes, and understanding the cause of the pathogenicity remains a major challenge. Here we show that pathogenic CNVs are significantly enriched for genes involved in development and genes that have greater evolutionary copy number conservation across mammals, indicative of functional constraints. Conversely, genes found in benign CNV regions have more variable copy number. These evolutionary constraints are characteristic of genes in pathogenic CNVs and can only be explained by dosage sensitivity of those genes. These results implicate dosage sensitivity of individual genes as a common cause of CNV pathogenicity. These evolutionary metrics suggest a path to identifying disease genes in pathogenic CNVs. Copy number variants (CNVs) cause significant genomic variation in humans and may be benign or may cause disease. Here, the authors show that pathogenic CNVs are evolutionarily constrained compared with benign, pointing to dosage sensitivity as a potential cause of disease.
Collapse
|
27
|
Nowacka-Woszuk J, Szczerbal I, Pausch H, Hundi S, Hytönen MK, Grzemski A, Flisikowski K, Lohi H, Switonski M, Szydlowski M. Deep sequencing of a candidate region harboring theSOX9gene for the canine XX disorder of sex development. Anim Genet 2017; 48:330-337. [DOI: 10.1111/age.12538] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2016] [Indexed: 01/09/2023]
Affiliation(s)
- J. Nowacka-Woszuk
- Department of Genetics and Animal Breeding; Poznan University of Life Sciences; Wolynska 33 60-637 Poznan Poland
| | - I. Szczerbal
- Department of Genetics and Animal Breeding; Poznan University of Life Sciences; Wolynska 33 60-637 Poznan Poland
| | - H. Pausch
- Chair of Animal Breeding; Technische Universitat Munchen; Liesel-Beckmann-Straße 1; D-85354 Freising-Weihenstephan Germany
| | - S. Hundi
- Department of Veterinary Biosciences; University of Helsinki; Helsinki 00014 Finland
| | - M. K. Hytönen
- Department of Veterinary Biosciences; University of Helsinki; Helsinki 00014 Finland
| | - A. Grzemski
- Department of Genetics and Animal Breeding; Poznan University of Life Sciences; Wolynska 33 60-637 Poznan Poland
| | - K. Flisikowski
- Chair of Livestock Biotechnology; Technische Universitat Munchen; Liesel-Beckmann-Straße 1; D-85354 Freising-Weihenstephan Germany
| | - H. Lohi
- Department of Veterinary Biosciences; University of Helsinki; Helsinki 00014 Finland
| | - M. Switonski
- Department of Genetics and Animal Breeding; Poznan University of Life Sciences; Wolynska 33 60-637 Poznan Poland
| | - M. Szydlowski
- Department of Genetics and Animal Breeding; Poznan University of Life Sciences; Wolynska 33 60-637 Poznan Poland
| |
Collapse
|
28
|
Sasaki S, Ibi T, Akiyama T, Fukushima M, Sugimoto Y. Loss of maternal ANNEXIN A10 via a 34-kb deleted-type copy number variation is associated with embryonic mortality in Japanese Black cattle. BMC Genomics 2016; 17:968. [PMID: 27881083 PMCID: PMC5122153 DOI: 10.1186/s12864-016-3312-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Accepted: 11/17/2016] [Indexed: 12/21/2022] Open
Abstract
Background Conception is a fundamental trait for successful cattle reproduction. However, conception rates in Japanese Black cattle have been gradually declining over the last two decades. Although conception failures are mainly caused by embryonic mortality, the role of maternal genetic factors in the process remains unknown. Copy number variation (CNV), defined as large-scale genomic structural variants, contributes to several genetic disorders. To identify CNV associated with embryonic mortality in Japanese Black cattle, we evaluated embryonic mortality as a categorical trait with a threshold model and conducted a genome-wide CNV association study for embryonic mortality using 791 animals. Results We identified a deleted-type CNV ranging from 378,127 to 412,061 bp on bovine chromosome 8, which was associated with embryonic mortality at 30–60 days after artificial insemination (AI). The CNV harbors exon 2 to 6 of ANNEXIN A10 (ANXA10). Analysis of sequence traces from the CNV identified that 63 bp reads bridging the breakpoint were present on both sides of the CNV, indicating that the CNV was generated by non-allelic homologous recombination using the 63 bp homologous sequences. Western blot analysis showed that the CNV results in a null allele of ANXA10. This association was replicated using a sample population size of 2552 animals. To elucidate the function of ANXA10 in vivo, we generated Anxa10 null mice using the CRISPR/Cas9 system. Crossbreeding experiments showed that litter size from crosses of both Anxa10-/- and Anxa10+/- females had fewer pups than did Anxa10+/+ females, and embryos of Anxa10-/- females died between implantation stages E4.5 and E12.5. These results indicate that loss of maternal Anxa10 causes embryonic mortality. Conclusions This study identified a deleted-type CNV encompassing ANXA10 in cows that was associated with embryonic mortality at 30–60 days after AI. Using a mouse model, we confirmed that litter sizes were smaller in crosses of both Anxa10-/- and Anxa10+/- females relative to those of wild females. These results indicate that ANXA10 is a maternal factor that is critical for embryo development. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3312-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shinji Sasaki
- Shirakawa Institute of Animal Genetics, Japan Livestock Technology Association, Odakura, Nishigo, Fukushima, 961-8061, Japan.
| | - Takayuki Ibi
- Graduate School of Environmental and Life Science, Okayama University, Tsushima-naka, Okayama, 700-8530, Japan
| | - Takayuki Akiyama
- Northern Center of Agricultural Technology, General Technological Center of Hyogo Prefecture for Agriculture, Forest and Fishery, Asago, Hyogo, Japan
| | - Moriyuki Fukushima
- Northern Center of Agricultural Technology, General Technological Center of Hyogo Prefecture for Agriculture, Forest and Fishery, Asago, Hyogo, Japan
| | - Yoshikazu Sugimoto
- Shirakawa Institute of Animal Genetics, Japan Livestock Technology Association, Odakura, Nishigo, Fukushima, 961-8061, Japan
| |
Collapse
|
29
|
Abstract
Meiotic recombination in mammals has been shown to largely cluster into hotspots, which are targeted by the chromatin modifier PRDM9. The canid family, including wolves and dogs, has undergone a series of disrupting mutations in this gene, rendering PRDM9 inactive. Given the importance of PRDM9, it is of great interest to learn how its absence in the dog genome affects patterns of recombination placement. We have used genotypes from domestic dog pedigrees to generate sex-specific genetic maps of recombination in this species. On a broad scale, we find that placement of recombination events in dogs is consistent with that in mice and apes, in that the majority of recombination occurs toward the telomeres in males, while female crossing over is more frequent and evenly spread along chromosomes. It has been previously suggested that dog recombination is more uniform in distribution than that of humans; however, we found that recombination in dogs is less uniform than in humans. We examined the distribution of recombination within the genome, and found that recombination is elevated immediately upstream of the transcription start site and around CpG islands, in agreement with previous studies, but that this effect is stronger in male dogs. We also found evidence for positive crossover interference influencing the spacing between recombination events in dogs, as has been observed in other species including humans and mice. Overall our data suggests that dogs have similar broad scale properties of recombination to humans, while fine scale recombination is similar to other species lacking PRDM9.
Collapse
|
30
|
Zhang X, Wang K, Wang L, Yang Y, Ni Z, Xie X, Shao X, Han J, Wan D, Qiu Q. Genome-wide patterns of copy number variation in the Chinese yak genome. BMC Genomics 2016; 17:379. [PMID: 27206476 PMCID: PMC4875690 DOI: 10.1186/s12864-016-2702-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 05/06/2016] [Indexed: 12/02/2022] Open
Abstract
Background Copy number variation (CNV) represents an important source of genetic divergence that can produce drastic phenotypic differences and may therefore be subject to selection during domestication and environmental adaptation. To investigate the evolutionary dynamics of CNV in the yak genome, we used a read depth approach to detect CNV based on genome resequencing data from 14 wild and 65 domestic yaks and determined CNV regions related to domestication and adaptations to high-altitude. Results We identified 2,634 CNV regions (CNVRs) comprising a total of 153 megabases (5.7 % of the yak genome) and 3,879 overlapping annotated genes. Comparison between domestic and wild yak populations identified 121 potentially selected CNVRs, harboring genes related to neuronal development, reproduction, nutrition and energy metabolism. In addition, we found 85 CNVRs that are significantly different between domestic yak living in high- and low-altitude areas, including three genes related to hypoxia response and six related to immune defense. This analysis shows that genic CNVs may play an important role in phenotypic changes during yak domestication and adaptation to life at high-altitude. Conclusions We present the first refined CNV map for yak along with comprehensive genomic analysis of yak CNV. Our results provide new insights into the genetic basis of yak domestication and adaptation to living in a high-altitude environment, as well as a valuable genetic resource that will facilitate future CNV association studies of important traits in yak and other bovid species. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2702-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiao Zhang
- State Key Laboratory of Grassland Agroecosystem, College of Life Science, Lanzhou University, Lanzhou, 730000, China
| | - Kun Wang
- State Key Laboratory of Grassland Agroecosystem, College of Life Science, Lanzhou University, Lanzhou, 730000, China
| | - Lizhong Wang
- State Key Laboratory of Grassland Agroecosystem, College of Life Science, Lanzhou University, Lanzhou, 730000, China
| | - Yongzhi Yang
- State Key Laboratory of Grassland Agroecosystem, College of Life Science, Lanzhou University, Lanzhou, 730000, China
| | - Zhengqiang Ni
- State Key Laboratory of Grassland Agroecosystem, College of Life Science, Lanzhou University, Lanzhou, 730000, China
| | - Xiuyue Xie
- State Key Laboratory of Grassland Agroecosystem, College of Life Science, Lanzhou University, Lanzhou, 730000, China
| | - Xuemin Shao
- State Key Laboratory of Grassland Agroecosystem, College of Life Science, Lanzhou University, Lanzhou, 730000, China
| | - Jin Han
- State Key Laboratory of Grassland Agroecosystem, College of Life Science, Lanzhou University, Lanzhou, 730000, China
| | - Dongshi Wan
- State Key Laboratory of Grassland Agroecosystem, College of Life Science, Lanzhou University, Lanzhou, 730000, China.
| | - Qiang Qiu
- State Key Laboratory of Grassland Agroecosystem, College of Life Science, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
31
|
Olsson M, Kierczak M, Karlsson Å, Jabłońska J, Leegwater P, Koltookian M, Abadie J, De Citres CD, Thomas A, Hedhammar Å, Tintle L, Lindblad-Toh K, Meadows JRS. Absolute quantification reveals the stable transmission of a high copy number variant linked to autoinflammatory disease. BMC Genomics 2016; 17:299. [PMID: 27107962 PMCID: PMC4841964 DOI: 10.1186/s12864-016-2619-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 04/13/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Dissecting the role copy number variants (CNVs) play in disease pathogenesis is directly reliant on accurate methods for quantification. The Shar-Pei dog breed is predisposed to a complex autoinflammatory disease with numerous clinical manifestations. One such sign, recurrent fever, was previously shown to be significantly associated with a novel, but unstable CNV (CNV_16.1). Droplet digital PCR (ddPCR) offers a new mechanism for CNV detection via absolute quantification with the promise of added precision and reliability. The aim of this study was to evaluate ddPCR in relation to quantitative PCR (qPCR) and to assess the suitability of the favoured method as a genetic test for Shar-Pei Autoinflammatory Disease (SPAID). RESULTS One hundred and ninety-six individuals were assayed using both PCR methods at two CNV positions (CNV_14.3 and CNV_16.1). The digital method revealed a striking result. The CNVs did not follow a continuum of alleles as previously reported, rather the alleles were stable and pedigree analysis showed they adhered to Mendelian segregation. Subsequent analysis of ddPCR case/control data confirmed that both CNVs remained significantly associated with the subphenotype of fever, but also to the encompassing SPAID complex (p < 0.001). In addition, harbouring CNV_16.1 allele five (CNV_16.1|5) resulted in a four-fold increase in the odds for SPAID (p < 0.001). The inclusion of a genetic marker for CNV_16.1 in a genome-wide association test revealed that this variant explained 9.7 % of genetic variance and 25.8 % of the additive genetic heritability of this autoinflammatory disease. CONCLUSIONS This data shows the utility of the ddPCR method to resolve cryptic copy number inheritance patterns and so open avenues of genetic testing. In its current form, the ddPCR test presented here could be used in canine breeding to reduce the number of homozygote CNV_16.1|5 individuals and thereby to reduce the prevalence of disease in this breed.
Collapse
Affiliation(s)
- M Olsson
- Department of Medicine, Rheumatology Unit, Karolinska Institute, Stockholm, Sweden
| | - M Kierczak
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Å Karlsson
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - J Jabłońska
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - P Leegwater
- Department of Clinical Sciences of Companion Animals, Utrecht University, Utrecht, Netherlands
| | - M Koltookian
- Broad Institute of MIT and Harvard, Boston, MA, USA
| | - J Abadie
- LUNAM University, Oniris, AMaROC Unit, Nantes, F-44307, France
| | | | - A Thomas
- ANTAGENE Animal Genetics Laboratory, La Tour de Salvagny, Lyon, 69, France
| | - Å Hedhammar
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - L Tintle
- Wurtsboro Veterinary Clinic, Wurtsboro, New York, USA
| | - K Lindblad-Toh
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.,Broad Institute of MIT and Harvard, Boston, MA, USA
| | - J R S Meadows
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
32
|
Bickhart DM, Xu L, Hutchison JL, Cole JB, Null DJ, Schroeder SG, Song J, Garcia JF, Sonstegard TS, Van Tassell CP, Schnabel RD, Taylor JF, Lewin HA, Liu GE. Diversity and population-genetic properties of copy number variations and multicopy genes in cattle. DNA Res 2016; 23:253-62. [PMID: 27085184 PMCID: PMC4909312 DOI: 10.1093/dnares/dsw013] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 02/29/2016] [Indexed: 11/14/2022] Open
Abstract
The diversity and population genetics of copy number variation (CNV) in domesticated animals are not well understood. In this study, we analysed 75 genomes of major taurine and indicine cattle breeds (including Angus, Brahman, Gir, Holstein, Jersey, Limousin, Nelore, and Romagnola), sequenced to 11-fold coverage to identify 1,853 non-redundant CNV regions. Supported by high validation rates in array comparative genomic hybridization (CGH) and qPCR experiments, these CNV regions accounted for 3.1% (87.5 Mb) of the cattle reference genome, representing a significant increase over previous estimates of the area of the genome that is copy number variable (∼2%). Further population genetics and evolutionary genomics analyses based on these CNVs revealed the population structures of the cattle taurine and indicine breeds and uncovered potential diversely selected CNVs near important functional genes, including AOX1, ASZ1, GAT, GLYAT, and KRTAP9-1. Additionally, 121 CNV gene regions were found to be either breed specific or differentially variable across breeds, such as RICTOR in dairy breeds and PNPLA3 in beef breeds. In contrast, clusters of the PRP and PAG genes were found to be duplicated in all sequenced animals, suggesting that subfunctionalization, neofunctionalization, or overdominance play roles in diversifying those fertility-related genes. These CNV results provide a new glimpse into the diverse selection histories of cattle breeds and a basis for correlating structural variation with complex traits in the future.
Collapse
Affiliation(s)
- Derek M Bickhart
- USDA-ARS, Animal Genomics and Improvement Laboratory, Beltsville, MD 20705, USA
| | - Lingyang Xu
- USDA-ARS, Animal Genomics and Improvement Laboratory, Beltsville, MD 20705, USA Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA
| | - Jana L Hutchison
- USDA-ARS, Animal Genomics and Improvement Laboratory, Beltsville, MD 20705, USA
| | - John B Cole
- USDA-ARS, Animal Genomics and Improvement Laboratory, Beltsville, MD 20705, USA
| | - Daniel J Null
- USDA-ARS, Animal Genomics and Improvement Laboratory, Beltsville, MD 20705, USA
| | - Steven G Schroeder
- USDA-ARS, Animal Genomics and Improvement Laboratory, Beltsville, MD 20705, USA
| | - Jiuzhou Song
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA
| | | | - Tad S Sonstegard
- USDA-ARS, Animal Genomics and Improvement Laboratory, Beltsville, MD 20705, USA
| | | | - Robert D Schnabel
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA Informatics Institute, University of Missouri, Columbia, MO, USA
| | - Jeremy F Taylor
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Harris A Lewin
- Department of Evolution and Ecology, University of California, Davis, CA 95616, USA
| | - George E Liu
- USDA-ARS, Animal Genomics and Improvement Laboratory, Beltsville, MD 20705, USA
| |
Collapse
|
33
|
Reiter T, Jagoda E, Capellini TD. Dietary Variation and Evolution of Gene Copy Number among Dog Breeds. PLoS One 2016; 11:e0148899. [PMID: 26863414 PMCID: PMC4749313 DOI: 10.1371/journal.pone.0148899] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 01/24/2016] [Indexed: 01/11/2023] Open
Abstract
Prolonged human interactions and artificial selection have influenced the genotypic and phenotypic diversity among dog breeds. Because humans and dogs occupy diverse habitats, ecological contexts have likely contributed to breed-specific positive selection. Prior to the advent of modern dog-feeding practices, there was likely substantial variation in dietary landscapes among disparate dog breeds. As such, we investigated one type of genetic variant, copy number variation, in three metabolic genes: glucokinase regulatory protein (GCKR), phytanol-CoA 2-hydroxylase (PHYH), and pancreatic α-amylase 2B (AMY2B). These genes code for proteins that are responsible for metabolizing dietary products that originate from distinctly different food types: sugar, meat, and starch, respectively. After surveying copy number variation among dogs with diverse dietary histories, we found no correlation between diet and positive selection in either GCKR or PHYH. Although it has been previously demonstrated that dogs experienced a copy number increase in AMY2B relative to wolves during or after the dog domestication process, we demonstrate that positive selection continued to act on amylase copy number in dog breeds that consumed starch-rich diets in time periods after domestication. Furthermore, we found that introgression with wolves is not responsible for deterioration of positive selection on AMY2B among diverse dog breeds. Together, this supports the hypothesis that the amylase copy number expansion is found universally in dogs.
Collapse
Affiliation(s)
- Taylor Reiter
- Human Evolutionary Biology, Harvard University, 11 Divinity Avenue, Cambridge, MA, 02138, United States of America
| | - Evelyn Jagoda
- Human Evolutionary Biology, Harvard University, 11 Divinity Avenue, Cambridge, MA, 02138, United States of America
| | - Terence D. Capellini
- Human Evolutionary Biology, Harvard University, 11 Divinity Avenue, Cambridge, MA, 02138, United States of America
- * E-mail:
| |
Collapse
|
34
|
Zhou LS, Li J, Yang J, Liu CL, Xie XH, He YN, Liu XX, Xin WS, Zhang WC, Ren J, Ma JW, Huang LS. Genome-wide mapping of copy number variations in commercial hybrid pigs using a high-density SNP genotyping array. RUSS J GENET+ 2016. [DOI: 10.1134/s1022795415120145] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
35
|
Abstract
NK-lysin is an antimicrobial peptide and effector protein in the host innate immune system. It is coded by a single gene in humans and most other mammalian species. In this study, we provide evidence for the existence of four NK-lysin genes in a repetitive region on cattle chromosome 11. The NK2A, NK2B, and NK2C genes are tandemly arrayed as three copies in ∼30-35-kb segments, located 41.8 kb upstream of NK1. All four genes are functional, albeit with differential tissue expression. NK1, NK2A, and NK2B exhibited the highest expression in intestine Peyer's patch, whereas NK2C was expressed almost exclusively in lung. The four peptide products were synthesized ex vivo, and their antimicrobial effects against both Gram-positive and Gram-negative bacteria were confirmed with a bacteria-killing assay. Transmission electron microcopy indicated that bovine NK-lysins exhibited their antimicrobial activities by lytic action in the cell membranes. In summary, the single NK-lysin gene in other mammals has expanded to a four-member gene family by tandem duplications in cattle; all four genes are transcribed, and the synthetic peptides corresponding to the core regions are biologically active and likely contribute to innate immunity in ruminants.
Collapse
|
36
|
Boocock J, Chagné D, Merriman TR, Black MA. The distribution and impact of common copy-number variation in the genome of the domesticated apple, Malus x domestica Borkh. BMC Genomics 2015; 16:848. [PMID: 26493398 PMCID: PMC4618995 DOI: 10.1186/s12864-015-2096-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 10/15/2015] [Indexed: 11/14/2022] Open
Abstract
Background Copy number variation (CNV) is a common feature of eukaryotic genomes, and a growing body of evidence suggests that genes affected by CNV are enriched in processes that are associated with environmental responses. Here we use next generation sequence (NGS) data to detect copy-number variable regions (CNVRs) within the Malus x domestica genome, as well as to examine their distribution and impact. Methods CNVRs were detected using NGS data derived from 30 accessions of M. x domestica analyzed using the read-depth method, as implemented in the CNVrd2 software. To improve the reliability of our results, we developed a quality control and analysis procedure that involved checking for organelle DNA, not repeat masking, and the determination of CNVR identity using a permutation testing procedure. Results Overall, we identified 876 CNVRs, which spanned 3.5 % of the apple genome. To verify that detected CNVRs were not artifacts, we analyzed the B- allele-frequencies (BAF) within a single nucleotide polymorphism (SNP) array dataset derived from a screening of 185 individual apple accessions and found the CNVRs were enriched for SNPs having aberrant BAFs (P < 1e-13, Fisher’s Exact test). Putative CNVRs overlapped 845 gene models and were enriched for resistance (R) gene models (P < 1e-22, Fisher’s exact test). Of note was a cluster of resistance gene models on chromosome 2 near a region containing multiple major gene loci conferring resistance to apple scab. Conclusion We present the first analysis and catalogue of CNVRs in the M. x domestica genome. The enrichment of the CNVRs with R gene models and their overlap with gene loci of agricultural significance draw attention to a form of unexplored genetic variation in apple. This research will underpin further investigation of the role that CNV plays within the apple genome. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2096-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- James Boocock
- Department of Biochemistry, University of Otago, Dunedin, New Zealand. .,The Virtual Institute of Statistical Genetics (VISG), Rotorua, New Zealand.
| | - David Chagné
- The Virtual Institute of Statistical Genetics (VISG), Rotorua, New Zealand.,The New Zealand Institute for Plant & Food Research Ltd, Palmerston North, New Zealand
| | - Tony R Merriman
- Department of Biochemistry, University of Otago, Dunedin, New Zealand.,The Virtual Institute of Statistical Genetics (VISG), Rotorua, New Zealand
| | - Michael A Black
- Department of Biochemistry, University of Otago, Dunedin, New Zealand. .,The Virtual Institute of Statistical Genetics (VISG), Rotorua, New Zealand.
| |
Collapse
|
37
|
Copy number variation in the region harboring SOX9 gene in dogs with testicular/ovotesticular disorder of sex development (78,XX; SRY-negative). Sci Rep 2015; 5:14696. [PMID: 26423656 PMCID: PMC4589768 DOI: 10.1038/srep14696] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 09/04/2015] [Indexed: 11/09/2022] Open
Abstract
Although the disorder of sex development in dogs with female karyotype (XX DSD) is quite common, its molecular basis is still unclear. Among mutations underlying XX DSD in mammals are duplication of a long sequence upstream of the SOX9 gene (RevSex) and duplication of the SOX9 gene (also observed in dogs). We performed a comparative analysis of 16 XX DSD and 30 control female dogs, using FISH and MLPA approaches. Our study was focused on a region harboring SOX9 and a region orthologous to the human RevSex (CanRevSex), which was located by in silico analysis downstream of SOX9. Two highly polymorphic copy number variable regions (CNVRs): CNVR1 upstream of SOX9 and CNVR2 encompassing CanRevSex were identified. Although none of the detected copy number variants were specific to either affected or control animals, we observed that the average number of copies in CNVR1 was higher in XX DSD. No copy variation of SOX9 was observed. Our extensive studies have excluded duplication of SOX9 as the common cause of XX DSD in analyzed samples. However, it remains possible that the causative mutation is hidden in highly polymorphic CNVR1.
Collapse
|
38
|
Rossi E, Radi O, De Lorenzi L, Iannuzzi A, Camerino G, Zuffardi O, Parma P. A Revised Genome Assembly of the Region 5′ to Canine SOX9 Includes the RevSex Orthologous Region. Sex Dev 2015; 9:155-61. [DOI: 10.1159/000435871] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2015] [Indexed: 11/19/2022] Open
|
39
|
Wang H, Wang C, Yang K, Liu J, Zhang Y, Wang Y, Xu X, Michal JJ, Jiang Z, Liu B. Genome Wide Distributions and Functional Characterization of Copy Number Variations between Chinese and Western Pigs. PLoS One 2015; 10:e0131522. [PMID: 26154170 PMCID: PMC4496047 DOI: 10.1371/journal.pone.0131522] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Accepted: 06/03/2015] [Indexed: 01/02/2023] Open
Abstract
Copy number variations (CNVs) refer to large insertions, deletions and duplications in the genomic structure ranging from one thousand to several million bases in size. Since the development of next generation sequencing technology, several methods have been well built for detection of copy number variations with high credibility and accuracy. Evidence has shown that CNV occurring in gene region could lead to phenotypic changes due to the alteration in gene structure and dosage. However, it still remains unexplored whether CNVs underlie the phenotypic differences between Chinese and Western domestic pigs. Based on the read-depth methods, we investigated copy number variations using 49 individuals derived from both Chinese and Western pig breeds. A total of 3,131 copy number variation regions (CNVRs) were identified with an average size of 13.4 Kb in all individuals during domestication, harboring 1,363 genes. Among them, 129 and 147 CNVRs were Chinese and Western pig specific, respectively. Gene functional enrichments revealed that these CNVRs contribute to strong disease resistance and high prolificacy in Chinese domestic pigs, but strong muscle tissue development in Western domestic pigs. This finding is strongly consistent with the morphologic characteristics of Chinese and Western pigs, indicating that these group-specific CNVRs might have been preserved by artificial selection for the favored phenotypes during independent domestication of Chinese and Western pigs. In this study, we built high-resolution CNV maps in several domestic pig breeds and discovered the group specific CNVs by comparing Chinese and Western pigs, which could provide new insight into genomic variations during pigs’ independent domestication, and facilitate further functional studies of CNV-associated genes.
Collapse
Affiliation(s)
- Hongyang Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, PR China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, PR China
| | - Chao Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, PR China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, PR China
| | - Kui Yang
- Modern Educational & Technology Centre of Huazhong Agricultural University, Wuhan, PR China
| | - Jing Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, PR China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, PR China
| | - Yu Zhang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, PR China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, PR China
| | - Yanan Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, PR China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, PR China
| | - Xuewen Xu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, PR China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, PR China
| | - Jennifer J. Michal
- Department of Animal Sciences, Washington State University, Pullman, WA, United States of America
| | - Zhihua Jiang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, PR China
- Department of Animal Sciences, Washington State University, Pullman, WA, United States of America
| | - Bang Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, PR China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, PR China
- * E-mail:
| |
Collapse
|
40
|
Genome-wide analysis of copy number variations in Chinese sheep using array comparative genomic hybridization. Small Rumin Res 2015. [DOI: 10.1016/j.smallrumres.2015.04.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
41
|
Radke DW, Lee C. Adaptive potential of genomic structural variation in human and mammalian evolution. Brief Funct Genomics 2015; 14:358-68. [PMID: 26003631 DOI: 10.1093/bfgp/elv019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Because phenotypic innovations must be genetically heritable for biological evolution to proceed, it is natural to consider new mutation events as well as standing genetic variation as sources for their birth. Previous research has identified a number of single-nucleotide polymorphisms that underlie a subset of adaptive traits in organisms. However, another well-known class of variation, genomic structural variation, could have even greater potential to produce adaptive phenotypes, due to the variety of possible types of alterations (deletions, insertions, duplications, among others) at different genomic positions and with variable lengths. It is from these dramatic genomic alterations, and selection on their phenotypic consequences, that adaptations leading to biological diversification could be derived. In this review, using studies in humans and other mammals, we highlight examples of how phenotypic variation from structural variants might become adaptive in populations and potentially enable biological diversification. Phenotypic change arising from structural variants will be described according to their immediate effect on organismal metabolic processes, immunological response and physical features. Study of population dynamics of segregating structural variation can therefore provide a window into understanding current and historical biological diversification.
Collapse
|
42
|
Omeir R, Thomas R, Teferedegne B, Williams C, Foseh G, Macauley J, Brinster L, Beren J, Peden K, Breen M, Lewis AM. A novel canine kidney cell line model for the evaluation of neoplastic development: karyotype evolution associated with spontaneous immortalization and tumorigenicity. Chromosome Res 2015; 23:663-80. [PMID: 25957863 PMCID: PMC4666904 DOI: 10.1007/s10577-015-9474-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 04/12/2015] [Accepted: 04/14/2015] [Indexed: 01/01/2023]
Abstract
The molecular mechanisms underlying spontaneous neoplastic transformation in cultured mammalian cells remain poorly understood, confounding recognition of parallels with the biology of naturally occurring cancer. The broad use of tumorigenic canine cell lines as research tools, coupled with the accumulation of cytogenomic data from naturally occurring canine cancers, makes the domestic dog an ideal system in which to investigate these relationships. We developed a canine kidney cell line, CKB1-3T7, which allows prospective examination of the onset of spontaneous immortalization and tumorigenicity. We documented the accumulation of cytogenomic aberrations in CKB1-3T7 over 24 months in continuous culture. The majority of aberrations emerged in parallel with key phenotypic changes in cell morphology, growth kinetics, and tumor incidence and latency. Focal deletion of CDKN2A/B emerged first, preceding the onset and progression of tumorigenic potential, and progressed to a homozygous deletion across the cell population during extended culture. Interestingly, CKB1-3T7 demonstrated a tumorigenic phenotype in vivo prior to exhibiting loss of contact inhibition in vitro. We also performed the first genome-wide characterization of the canine tumorigenic cell line MDCK, which also exhibited CDKN2A/B deletion. MDCK and CKB1-3T7 cells shared several additional aberrations that we have reported previously as being highly recurrent in spontaneous canine cancers, many of which, as with CDKN2A/B deletion, are evolutionarily conserved in their human counterparts. The conservation of these molecular events across multiple species, in vitro and in vivo, despite their contrasting karyotypic architecture, is a powerful indicator of a common mechanism underlying emerging neoplastic activity. Through integrated cytogenomic and phenotypic characterization of serial passages of CKB1-3T7 from initiation to development of a tumorigenic phenotype, we present a robust and readily accessible model (to be made available through the American Type Culture Collection) of spontaneous neoplastic transformation that overcomes many of the limitations of earlier studies.
Collapse
Affiliation(s)
- R Omeir
- Laboratory of DNA Viruses, Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, 10903 New Hampshire Ave, Silver Spring, MD, 20993, USA
| | - R Thomas
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Drive, Raleigh, NC, 27607, USA.,Center for Comparative Medicine and Translational Research, North Carolina State University, Raleigh, NC, 27607, USA
| | - B Teferedegne
- Laboratory of DNA Viruses, Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, 10903 New Hampshire Ave, Silver Spring, MD, 20993, USA
| | - C Williams
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Drive, Raleigh, NC, 27607, USA
| | - G Foseh
- Laboratory of DNA Viruses, Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, 10903 New Hampshire Ave, Silver Spring, MD, 20993, USA
| | - J Macauley
- Laboratory of DNA Viruses, Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, 10903 New Hampshire Ave, Silver Spring, MD, 20993, USA
| | - L Brinster
- Division of Veterinary Resources, National Institutes of Health, Bethesda, MD, 20892, USA
| | - J Beren
- Office of Counter-Terrorism and Emergency Coordination, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - K Peden
- Laboratory of DNA Viruses, Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, 10903 New Hampshire Ave, Silver Spring, MD, 20993, USA
| | - M Breen
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Drive, Raleigh, NC, 27607, USA. .,Center for Comparative Medicine and Translational Research, North Carolina State University, Raleigh, NC, 27607, USA. .,Cancer Genetics Program, University of North Carolina Lineberger Comprehensive Cancer Center, Chapel Hill, NC, 27599, USA. .,Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, 27607, USA.
| | - A M Lewis
- Laboratory of DNA Viruses, Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, 10903 New Hampshire Ave, Silver Spring, MD, 20993, USA.
| |
Collapse
|
43
|
Genome-wide characteristics of copy number variation in Polish Holstein and Polish Red cattle using SNP genotyping assay. Genetica 2015; 143:145-55. [DOI: 10.1007/s10709-015-9822-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 01/27/2015] [Indexed: 12/15/2022]
|
44
|
Yi G, Qu L, Liu J, Yan Y, Xu G, Yang N. Genome-wide patterns of copy number variation in the diversified chicken genomes using next-generation sequencing. BMC Genomics 2014; 15:962. [PMID: 25378104 PMCID: PMC4239369 DOI: 10.1186/1471-2164-15-962] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 10/13/2014] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Copy number variation (CNV) is important and widespread in the genome, and is a major cause of disease and phenotypic diversity. Herein, we performed a genome-wide CNV analysis in 12 diversified chicken genomes based on whole genome sequencing. RESULTS A total of 8,840 CNV regions (CNVRs) covering 98.2 Mb and representing 9.4% of the chicken genome were identified, ranging in size from 1.1 to 268.8 kb with an average of 11.1 kb. Sequencing-based predictions were confirmed at a high validation rate by two independent approaches, including array comparative genomic hybridization (aCGH) and quantitative PCR (qPCR). The Pearson's correlation coefficients between sequencing and aCGH results ranged from 0.435 to 0.755, and qPCR experiments revealed a positive validation rate of 91.71% and a false negative rate of 22.43%. In total, 2,214 (25.0%) predicted CNVRs span 2,216 (36.4%) RefSeq genes associated with specific biological functions. Besides two previously reported copy number variable genes EDN3 and PRLR, we also found some promising genes with potential in phenotypic variation. Two genes, FZD6 and LIMS1, related to disease susceptibility/resistance are covered by CNVRs. The highly duplicated SOCS2 may lead to higher bone mineral density. Entire or partial duplication of some genes like POPDC3 may have great economic importance in poultry breeding. CONCLUSIONS Our results based on extensive genetic diversity provide a more refined chicken CNV map and genome-wide gene copy number estimates, and warrant future CNV association studies for important traits in chickens.
Collapse
Affiliation(s)
| | | | | | | | | | - Ning Yang
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China.
| |
Collapse
|
45
|
Abstract
We constructed a 400K WG tiling oligoarray for the horse and applied it for the discovery of copy number variations (CNVs) in 38 normal horses of 16 diverse breeds, and the Przewalski horse. Probes on the array represented 18,763 autosomal and X-linked genes, and intergenic, sub-telomeric and chrY sequences. We identified 258 CNV regions (CNVRs) across all autosomes, chrX and chrUn, but not in chrY. CNVs comprised 1.3% of the horse genome with chr12 being most enriched. American Miniature horses had the highest and American Quarter Horses the lowest number of CNVs in relation to Thoroughbred reference. The Przewalski horse was similar to native ponies and draft breeds. The majority of CNVRs involved genes, while 20% were located in intergenic regions. Similar to previous studies in horses and other mammals, molecular functions of CNV-associated genes were predominantly in sensory perception, immunity and reproduction. The findings were integrated with previous studies to generate a composite genome-wide dataset of 1476 CNVRs. Of these, 301 CNVRs were shared between studies, while 1174 were novel and require further validation. Integrated data revealed that to date, 41 out of over 400 breeds of the domestic horse have been analyzed for CNVs, of which 11 new breeds were added in this study. Finally, the composite CNV dataset was applied in a pilot study for the discovery of CNVs in 6 horses with XY disorders of sexual development. A homozygous deletion involving AKR1C gene cluster in chr29 in two affected horses was considered possibly causative because of the known role of AKR1C genes in testicular androgen synthesis and sexual development. While the findings improve and integrate the knowledge of CNVs in horses, they also show that for effective discovery of variants of biomedical importance, more breeds and individuals need to be analyzed using comparable methodological approaches. Genomes of individuals in a species vary in many ways, one of which is DNA copy number variation (CNV). This includes deletions, duplications, and complex rearrangements typically larger than 50 base-pairs. CNVs are part of normal genetic variation contributing to phenotypic diversity but can also be pathogenic and associated with diseases and disorders. In order to distinguish between the two, detailed knowledge about CNVs in the species of interest is needed. Here we studied the genomes of 38 normal horses of 16 diverse breeds, and identified 258 CNV regions. We integrated our findings with previously published horse CNVs and generated a composite dataset of ∼1400 CNVRs. Despite this large number, our analysis shows that CNV research in horses needs further improvement because the current data are based on 10% of horse breeds and that most CNVRs are study-specific and require validation. Finally, we analyzed CNVs in horses with disorders of sexual development and found in two male pseudo-hermaphrodites a large deletion disrupting a group of genes involved in sex hormone metabolism and sexual differentiation. The findings underline the possible role of CNVs in complex disorders such as development and reproduction.
Collapse
|
46
|
Analysis of genome-wide copy number variations in Chinese indigenous and western pig breeds by 60 K SNP genotyping arrays. PLoS One 2014; 9:e106780. [PMID: 25198154 PMCID: PMC4157799 DOI: 10.1371/journal.pone.0106780] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 08/07/2014] [Indexed: 12/28/2022] Open
Abstract
Copy number variations (CNVs) represent a substantial source of structural variants in mammals and contribute to both normal phenotypic variability and disease susceptibility. Although low-resolution CNV maps are produced in many domestic animals, and several reports have been published about the CNVs of porcine genome, the differences between Chinese and western pigs still remain to be elucidated. In this study, we used Porcine SNP60 BeadChip and PennCNV algorithm to perform a genome-wide CNV detection in 302 individuals from six Chinese indigenous breeds (Tongcheng, Laiwu, Luchuan, Bama, Wuzhishan and Ningxiang pigs), three western breeds (Yorkshire, Landrace and Duroc) and one hybrid (Tongcheng×Duroc). A total of 348 CNV Regions (CNVRs) across genome were identified, covering 150.49 Mb of the pig genome or 6.14% of the autosomal genome sequence. In these CNVRs, 213 CNVRs were found to exist only in the six Chinese indigenous breeds, and 60 CNVRs only in the three western breeds. The characters of CNVs in four Chinese normal size breeds (Luchuan, Tongcheng and Laiwu pigs) and two minipig breeds (Bama and Wuzhishan pigs) were also analyzed in this study. Functional annotation suggested that these CNVRs possess a great variety of molecular function and may play important roles in phenotypic and production traits between Chinese and western breeds. Our results are important complementary to the CNV map in pig genome, which provide new information about the diversity of Chinese and western pig breeds, and facilitate further research on porcine genome CNVs.
Collapse
|
47
|
Jiang J, Wang J, Wang H, Zhang Y, Kang H, Feng X, Wang J, Yin Z, Bao W, Zhang Q, Liu JF. Global copy number analyses by next generation sequencing provide insight into pig genome variation. BMC Genomics 2014; 15:593. [PMID: 25023178 PMCID: PMC4111851 DOI: 10.1186/1471-2164-15-593] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 07/04/2014] [Indexed: 01/10/2023] Open
Abstract
Background Copy number variations (CNVs) confer significant effects on genetic innovation and phenotypic variation. Previous CNV studies in swine seldom focused on in-depth characterization of global CNVs. Results Using whole-genome assembly comparison (WGAC) and whole-genome shotgun sequence detection (WSSD) approaches by next generation sequencing (NGS), we probed formation signatures of both segmental duplications (SDs) and individualized CNVs in an integrated fashion, building the finest resolution CNV and SD maps of pigs so far. We obtained copy number estimates of all protein-coding genes with copy number variation carried by individuals, and further confirmed two genes with high copy numbers in Meishan pigs through an enlarged population. We determined genome-wide CNV hotspots, which were significantly enriched in SD regions, suggesting evolution of CNV hotspots may be affected by ancestral SDs. Through systematically enrichment analyses based on simulations and bioinformatics analyses, we revealed CNV-related genes undergo a different selective constraint from those CNV-unrelated regions, and CNVs may be associated with or affect pig health and production performance under recent selection. Conclusions Our studies lay out one way for characterization of CNVs in the pig genome, provide insight into the pig genome variation and prompt CNV mechanisms studies when using pigs as biomedical models for human diseases. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-593) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Jian-Feng Liu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
48
|
Rossi E, Radi O, De Lorenzi L, Vetro A, Groppetti D, Bigliardi E, Luvoni GC, Rota A, Camerino G, Zuffardi O, Parma P. Sox9 duplications are a relevant cause of Sry-negative XX sex reversal dogs. PLoS One 2014; 9:e101244. [PMID: 25010117 PMCID: PMC4091935 DOI: 10.1371/journal.pone.0101244] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 06/04/2014] [Indexed: 01/06/2023] Open
Abstract
Sexual development in mammals is based on a complicated and delicate network of genes and hormones that have to collaborate in a precise manner. The dark side of this pathway is represented by pathological conditions, wherein sexual development does not occur properly either in the XX and the XY background. Among them a conundrum is represented by the XX individuals with at least a partial testis differentiation even in absence of SRY. This particular condition is present in various mammals including the dog. Seven dogs characterized by XX karyotype, absence of SRY gene, and testicular tissue development were analysed by Array-CGH. In two cases the array-CGH analysis detected an interstitial heterozygous duplication of chromosome 9. The duplication contained the SOX9 coding region. In this work we provide for the first time a causative mutation for the XXSR condition in the dog. Moreover this report supports the idea that the dog represents a good animal model for the study of XXSR condition caused by abnormalities in the SOX9 locus.
Collapse
Affiliation(s)
- Elena Rossi
- Department of Molecular Medicine, Pavia University, Pavia, Italy
| | - Orietta Radi
- Department of Molecular Medicine, Pavia University, Pavia, Italy
| | - Lisa De Lorenzi
- Department of Agricultural and Environmental Sciences, Milan University, Milan, Italy
| | - Annalisa Vetro
- Biotechnology Research Laboratories, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Debora Groppetti
- Department of Veterinary Science and Public Health, Milan University, Milan, Italy
| | - Enrico Bigliardi
- Department of Veterinary Science, Parma University, Parma, Italy
| | - Gaia Cecilia Luvoni
- Department of Health, Animal Science and Food Safety, Milan University, Milan, Italy
| | - Ada Rota
- Department of Veterinary Science, Torino University, Torino, Italy
| | | | - Orsetta Zuffardi
- Department of Molecular Medicine, Pavia University, Pavia, Italy
| | - Pietro Parma
- Department of Agricultural and Environmental Sciences, Milan University, Milan, Italy
- * E-mail:
| |
Collapse
|
49
|
Ekenstedt KJ, Oberbauer AM. Inherited epilepsy in dogs. Top Companion Anim Med 2014; 28:51-8. [PMID: 24070682 DOI: 10.1053/j.tcam.2013.07.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Accepted: 07/01/2013] [Indexed: 12/15/2022]
Abstract
Epilepsy is the most common neurologic disease in dogs and many forms are considered to have a genetic basis. In contrast, some seizure disorders are also heritable, but are not technically defined as epilepsy. Investigation of true canine epilepsies has uncovered genetic associations in some cases, however, many remain unexplained. Gene mutations have been described for 2 forms of canine epilepsy: primary epilepsy (PE) and progressive myoclonic epilepsies. To date, 9 genes have been described to underlie progressive myoclonic epilepsies in several dog breeds. Investigations into genetic PE have been less successful, with only 1 causative gene described. Genetic testing as an aid to diagnosis, prognosis, and breeding decisions is available for these 10 forms. Additional studies utilizing genome-wide tools have identified PE loci of interest; however, specific genetic tests are not yet developed. Many studies of dog breeds with PE have failed to identify genes or loci of interest, suggesting that, similar to what is seen in many human genetic epilepsies, inheritance is likely complex, involving several or many genes, and reflective of environmental interactions. An individual dog's response to therapeutic intervention for epilepsy may also be genetically complex. Although the field of inherited epilepsy has faced challenges, particularly with PE, newer technologies contribute to further advances.
Collapse
Affiliation(s)
- Kari J Ekenstedt
- Department of Animal and Food Science, College of Agriculture, Food, and Environmental Sciences, University of Wisconsin - River Falls, River Falls, WI, USA.
| | | |
Collapse
|
50
|
Zhang H, Du ZQ, Dong JQ, Wang HX, Shi HY, Wang N, Wang SZ, Li H. Detection of genome-wide copy number variations in two chicken lines divergently selected for abdominal fat content. BMC Genomics 2014; 15:517. [PMID: 24962627 PMCID: PMC4092215 DOI: 10.1186/1471-2164-15-517] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 06/19/2014] [Indexed: 12/13/2022] Open
Abstract
Background The chicken (Gallus gallus) is an important model organism that bridges the evolutionary gap between mammals and other vertebrates. Copy number variations (CNVs) are a form of genomic structural variation widely distributed in the genome. CNV analysis has recently gained greater attention and momentum, as the identification of CNVs can contribute to a better understanding of traits important to both humans and other animals. To detect chicken CNVs, we genotyped 475 animals derived from two broiler chicken lines divergently selected for abdominal fat content using chicken 60 K SNP array, which is a high-throughput method widely used in chicken genomics studies. Results Using PennCNV algorithm, we detected 438 and 291 CNVs in the lean and fat lines, respectively, corresponding to 271 and 188 CNV regions (CNVRs), which were obtained by merging overlapping CNVs. Out of these CNVRs, 99% were confirmed also by the CNVPartition program. These CNVRs covered 40.26 and 30.60 Mb of the chicken genome in the lean and fat lines, respectively. Moreover, CNVRs included 176 loss, 68 gain and 27 both (i.e. loss and gain within the same region) events in the lean line, and 143 loss, 25 gain and 20 both events in the fat line. Ten CNVRs were chosen for the validation experiment using qPCR method, and all of them were confirmed in at least one qPCR assay. We found a total of 886 genes located within these CNVRs, and Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses showed they could play various roles in a number of biological processes. Integrating the results of CNVRs, known quantitative trait loci (QTL) and selective sweeps for abdominal fat content suggested that some genes (including SLC9A3, GNAL, SPOCK3, ANXA10, HELIOS, MYLK, CCDC14, SPAG9, SOX5, VSNL1, SMC6, GEN1, MSGN1 and ZPAX) may be important for abdominal fat deposition in the chicken. Conclusions Our study provided a genome-wide CNVR map of the chicken genome, thereby contributing to our understanding of genomic structural variations and their potential roles in abdominal fat content in the chicken. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-517) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Hui Li
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture, Harbin 150030, P,R China.
| |
Collapse
|