1
|
Yufa M, Dongmei C, Wei L, Shuangxing L, Li S, Xingchao G. Peripheral serum iTRAQ-based proteomic characteristics of carbon tetrachloride-induced acute liver injury in Macaca fascicularis. Toxicol Rep 2024; 13:101689. [PMID: 39184831 PMCID: PMC11342196 DOI: 10.1016/j.toxrep.2024.101689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/25/2024] [Accepted: 07/06/2024] [Indexed: 08/27/2024] Open
Abstract
Carbon tetrachloride (CCl4) is a potent chemical compound that can induce liver cells necrosis. The purpose of this study was to evaluate the hepatic toxicity of CCl4 exposure in Macaca fascicularis to explore the liver toxicity mechanism using a proteomic approach. One animal (no.F6) was intoxicated by oral gavage with 15 % CCl4 solution (10 mL/kg, dissolved in edible peanut oil), and was sacrificed at 48 h after CCl4 administration. Another blank control animal (no.F4) was sacrificed at the same time. The liver cells of the blank control animal showed normal hepatocyte morphology. However, the hepatocytes at 48 h time point after CCl4 administration showed necrosis and vacuolation histopathologically. The animal No.F7∼F12 and no.M7∼M12 were administrated by gavage with 15 % CCl4 solution (10 mL/kg, dissolved in edible peanut oil). Blood samples were collected before gavage administration, and served as the 0 h blank control samples. Then, blood samples were collected at 2 h, 48 h, 72 h and 168 h after CCl4 exposure, and served as the test samples. Routine biochemistry and immunical parameters were performed using biochemistry analyzer for all serum. Then the serum from male and female animals at 0 h, 2 h, 48 h, and 72 h was mixed, respectively. The peripheral serum proteins at 0 h, 2 h, 48 h, and 72 h were extracted, then the proteins were enzymatically hydrolyzed and the peptides were isotopic labeled by isobaric tags for relative and absolute quantification (iTRAQ). Finally, the UniProt Protein Sequence Library of Macaca fascicularis was queried to identify and compare the differential proteins between different time points. The results showed that, as traditional biomarkers of liver injury, alanine aminotransferases (ALT) and aspartate aminotransferases (AST) showed a typical time-effect curve. Compared with 0 h, there were totally 55, 323, and 158 differential proteins (P value <0.05, Ratio fold >1.5, FDR<0.05) at 2 h, 48 h and 72 h, respectively. GO enrichment analysis of differentially expressed proteins only at 48 h involved 3 cellular components (P adjust value <0.05), and differential proteins at other time points had no significant enrichment. Furthermore, KEGG enrichment analysis showed that the toxicity effect of CCl4 at different time points after administration was mediated through 22 pathways such as biosynthesis of antibiotics, carbon metabolism, biosynthesis of amino acids, peroxisome, cysteine and methionine metabolism, arginine biosynthesis, and complement and coagulation cascades (P adjust value <0.05). Among them, the counts of signaling pathway involved biosynthesis of antibiotics, carbon metabolism and biosynthesis of amino acids were more than 10 and the three pathways may play a greater role in toxicity progress after administration of CCl4. PPI network analysis showed that there were 3, 52, and 13 nodes in the interaction of differential proteins at 2 h, 48 h, and 72 h, respectively. In conclusion, many differential proteins in peripheral blood were detected after CCl4 administration, and the GO and KEGG enrichment analysis showed the toxicological mechanisms of CCl4-induced liver injury and potential protection reaction mechanism for CCl4 detoxication may be related with multi biological processes, signaling pathway and targets.
Collapse
Affiliation(s)
- Miao Yufa
- National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, Beijing Key Laboratory for Safety Evaluation of Drugs, Beijing 100176, China
| | - Chen Dongmei
- Beijing Red Cross Blood Center, Beijing 100088, China
| | - Li Wei
- National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, Beijing Key Laboratory for Safety Evaluation of Drugs, Beijing 100176, China
| | - Li Shuangxing
- National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, Beijing Key Laboratory for Safety Evaluation of Drugs, Beijing 100176, China
| | - Sun Li
- National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, Beijing Key Laboratory for Safety Evaluation of Drugs, Beijing 100176, China
| | - Geng Xingchao
- National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, Beijing Key Laboratory for Safety Evaluation of Drugs, Beijing 100176, China
| |
Collapse
|
2
|
Zhao J, Zhou X, Qiu Y, Jia R. Characterization of the gut butyrate-producing bacteria and lipid metabolism in African green monkey as a natural host of simian immunodeficiency virus infection. AIDS 2024; 38:1617-1626. [PMID: 38819818 DOI: 10.1097/qad.0000000000003944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
OBJECTIVE Natural hosts of simian immunodeficiency virus (SIV), such as the African green monkey (AGM), possess the ability to avoid acquired immune deficiency syndrome (AIDS) despite lifelong infection. The underlying mechanisms are not completely understood. This study aimed to characterize the gut microbiome and metabolite profiles of different nonhuman primates (NHPs) to provide potential insight into AIDS resistance. DESIGN AND METHODS Fresh feces from Cynomolgus macaques (CMs), and Rhesus macaques (RMs), SIV- AGMs (AGM_N), and SIV+ AGMs (AGM_P) were collected and used for metagenomic sequencing and metabonomic analysis. RESULTS Compared with CMs and RMs, significant decreases in the abundances of Streptococcus , Alistipes , Treponema , Bacteroides , and Methanobrevibacter ( P < 0.01), and significant increases in the abundances of Clostridium , Eubacterium , Blautia , Roseburia , Faecalibacterium , and Dialister ( P < 0.01) were detected in AGM_N. Compared with AGM_N, a trend toward increased abundances of Streptococcus and Roseburia were found in AGM_P. The levels of metabolites involved in lipid metabolism and butanoate metabolism significantly differed among AGM_P, AGM_N and CM ( P < 0.05). CONCLUSIONS Our data, for the first time, demonstrated distinguishing features in the abundances of butyrate-producing bacteria and lipid metabolism capacities between different NHP hosts of SIV infection. These findings may correlate with the different characteristics observed among these hosts in the maintenance of intestinal epithelial barrier integrity, regulation of inflammation, and provide insights into AIDS resistance in AGMs.
Collapse
Affiliation(s)
- Jingjing Zhao
- Department of Infectious Disease and Clinical Microbiology, Beijing Chaoyang Hospital, Capital Medical University
| | - Xiaojun Zhou
- Department of biosafety, China Biotechnology Co. Ltd, Beijing, China
| | - Yefeng Qiu
- Laboratory Animal Center of the Academy of Military Medical Sciences
| | - Rui Jia
- Department of biosafety, China Biotechnology Co. Ltd, Beijing, China
| |
Collapse
|
3
|
Greenberg EF, Voorbach MJ, Smith A, Reuter DR, Zhuang Y, Wang JQ, Wooten DW, Asque E, Hu M, Hoft C, Duggan R, Townsend M, Orsi K, Dalecki K, Amberg W, Duggan L, Knight H, Spina JS, He Y, Marsh K, Zhao V, Ybarra S, Mollon J, Fang Y, Vasanthakumar A, Westmoreland S, Droescher M, Finnema SJ, Florian H. Navitoclax safety, tolerability, and effect on biomarkers of senescence and neurodegeneration in aged nonhuman primates. Heliyon 2024; 10:e36483. [PMID: 39253182 PMCID: PMC11382177 DOI: 10.1016/j.heliyon.2024.e36483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/01/2024] [Accepted: 08/16/2024] [Indexed: 09/11/2024] Open
Abstract
Alzheimer's disease (AD) is the most common global dementia and is universally fatal. Most late-stage AD disease-modifying therapies are intravenous and target amyloid beta (Aβ), with only modest effects on disease progression: there remains a high unmet need for convenient, safe, and effective therapeutics. Senescent cells (SC) and the senescence-associated secretory phenotype (SASP) drive AD pathology and increase with AD severity. Preclinical senolytic studies have shown improvements in neuroinflammation, tau, Aβ, and CNS damage; most were conducted in transgenic rodent models with uncertain human translational relevance. In this study, aged cynomolgus monkeys had significant elevation of biomarkers of senescence, SASP, and neurological damage. Intermittent treatment with the senolytic navitoclax induced modest reversible thrombocytopenia; no serious drug-related toxicity was noted. Navitoclax reduced several senescence and SASP biomarkers, with CSF concentrations sufficient for senolysis. Finally, navitoclax reduced TSPO-PET frontal cortex binding and showed trends of improvement in CSF biomarkers of neuroinflammation, neuronal damage, and synaptic dysfunction. Overall, navitoclax administration was safe and well tolerated in aged monkeys, inducing trends of biomarker changes relevant to human neurodegenerative disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Min Hu
- AbbVie Inc., North Chicago, IL, United States
| | - Carolin Hoft
- AbbVie Deutschland GmbH & Co. KG, Neuroscience Research, Knollstrasse, 67061, Ludwigshafen, Germany
| | - Ryan Duggan
- AbbVie Inc., North Chicago, IL, United States
| | - Matthew Townsend
- AbbVie, Cambridge Research Center, 200 Sidney Street, Cambridge, MA, 02139, United States
| | - Karin Orsi
- AbbVie Bioresearch Center, 100 Research Drive, Worcester, MA, 01605, United States
| | | | - Willi Amberg
- AbbVie Deutschland GmbH & Co. KG, Neuroscience Research, Knollstrasse, 67061, Ludwigshafen, Germany
| | - Lori Duggan
- AbbVie Bioresearch Center, 100 Research Drive, Worcester, MA, 01605, United States
| | - Heather Knight
- AbbVie Bioresearch Center, 100 Research Drive, Worcester, MA, 01605, United States
| | - Joseph S Spina
- AbbVie Bioresearch Center, 100 Research Drive, Worcester, MA, 01605, United States
| | - Yupeng He
- AbbVie Inc., North Chicago, IL, United States
| | | | - Vivian Zhao
- AbbVie Bay Area, 1000 Gateway Boulevard, South San Francisco, CA, 94080, United States
| | - Suzanne Ybarra
- AbbVie Bay Area, 1000 Gateway Boulevard, South San Francisco, CA, 94080, United States
| | - Jennifer Mollon
- AbbVie Deutschland GmbH & Co. KG, Statistical Sciences and Analytics, Knollstrasse, 67061, Ludwigshafen, Germany
| | - Yuni Fang
- AbbVie Bay Area, 1000 Gateway Boulevard, South San Francisco, CA, 94080, United States
| | | | - Susan Westmoreland
- AbbVie Bioresearch Center, 100 Research Drive, Worcester, MA, 01605, United States
| | - Mathias Droescher
- AbbVie Deutschland GmbH & Co. KG, Neuroscience Research, Knollstrasse, 67061, Ludwigshafen, Germany
| | | | | |
Collapse
|
4
|
Burla GKR, Shrestha D, Bowen M, Horvath JD, Martin BA. Evaluating the effect of injection protocols on intrathecal solute dispersion in non-human primates: an in vitro study using a cynomolgus cerebrospinal fluid system. Fluids Barriers CNS 2024; 21:61. [PMID: 39061067 PMCID: PMC11282645 DOI: 10.1186/s12987-024-00556-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 06/16/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND Achieving effective drug delivery to the central nervous system (CNS) remains a challenge for treating neurological disorders. Intrathecal (IT) delivery, which involves direct injection into the cerebrospinal fluid (CSF), presents a promising strategy. Large animal studies are important to assess the safety and efficacy of most drugs and treatments and translate the data to humans. An understanding of the influence of IT injection parameters on solute distribution within the CNS is essential to optimize preclinical research, which would potentially help design human clinical studies. METHODS A three-dimensional (3D) in vitro model of a cynomolgus monkey, based on MRI data, was developed to evaluate the impact of lumbar injection parameters on intrathecal solute dispersion. The parameters evaluated were (a) injection location, (b) bolus volume, (c) flush volume, (d) bolus rate, and (e) flush rate. To simulate the CSF flow within the subarachnoid space (SAS), an idealized CSF flow waveform with both cardiac and respiratory-induced components was input into the model. A solution of fluorescein drug surrogate tracer was administered in the lumbar region of the 3D in vitro model filled with deionized water. After injection of the tracer, the CSF system wide-solute dispersion was imaged using high-resolution cameras every thirty seconds for a duration of three hours. To ensure repeatability each injection protocol was repeated three times. For each protocol, the average spatial-temporal distribution over three hours post-injection, the area under the curve (AUC), and the percent injected dose (%ID) to extra-axial CSF (eaCSF) at three hours were determined. RESULTS The changes to the lumbar injection parameters led to variations in solute distribution along the neuro-axis. Specifically, injection location showed the most impact, enhancing the delivery to the eaCSF up to + 10.5%ID (p = 0.0282) at three hours post-injection. Adding a post-injection flush of 1.5 ml at 1 ml/min increased the solute delivery to the eaCSF by + 6.5%ID (p = 0.0218), while the larger bolus volume resulted in a + 2.3%ID (p = 0.1910) increase. The bolus and flush rates analyzed had minimal, statistically non-significant effects. CONCLUSION These results predict the effects of lumbar injection parameters on solute distribution in the intrathecal space in NHPs. Specifically, the choice of injection location, flush, and bolus volume significantly improved solute delivery to eaCSF. The in vitro NHP CSF model and results offer a system to help predict and optimize IT delivery protocols for pre-clinical NHP studies.
Collapse
Affiliation(s)
- Goutham Kumar Reddy Burla
- Department of Chemical and Biological Engineering, University of Idaho, 875 Perimeter Dr. MC1122, Moscow, ID, 83844, USA
| | - Dev Shrestha
- Department of Chemical and Biological Engineering, University of Idaho, 875 Perimeter Dr. MC1122, Moscow, ID, 83844, USA
| | - Mayumi Bowen
- Genentech, Inc., a member of the Roche Group, South San Francisco, CA, USA
| | - Joshua D Horvath
- Genentech, Inc., a member of the Roche Group, South San Francisco, CA, USA
| | - Bryn A Martin
- Department of Chemical and Biological Engineering, University of Idaho, 875 Perimeter Dr. MC1122, Moscow, ID, 83844, USA.
- Alcyone Therapeutics Inc., Lowell, MA, USA.
- Flux Neuroscience, LLC., Troy, ID, USA.
| |
Collapse
|
5
|
Zhang S, Xu N, Fu L, Yang X, Li Y, Yang Z, Feng Y, Ma K, Jiang X, Han J, Hu R, Zhang L, de Gennaro L, Ryabov F, Meng D, He Y, Wu D, Yang C, Paparella A, Mao Y, Bian X, Lu Y, Antonacci F, Ventura M, Shepelev VA, Miga KH, Alexandrov IA, Logsdon GA, Phillippy AM, Su B, Zhang G, Eichler EE, Lu Q, Shi Y, Sun Q, Mao Y. Comparative genomics of macaques and integrated insights into genetic variation and population history. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.07.588379. [PMID: 38645259 PMCID: PMC11030432 DOI: 10.1101/2024.04.07.588379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
The crab-eating macaques ( Macaca fascicularis ) and rhesus macaques ( M. mulatta ) are widely studied nonhuman primates in biomedical and evolutionary research. Despite their significance, the current understanding of the complex genomic structure in macaques and the differences between species requires substantial improvement. Here, we present a complete genome assembly of a crab-eating macaque and 20 haplotype-resolved macaque assemblies to investigate the complex regions and major genomic differences between species. Segmental duplication in macaques is ∼42% lower, while centromeres are ∼3.7 times longer than those in humans. The characterization of ∼2 Mbp fixed genetic variants and ∼240 Mbp complex loci highlights potential associations with metabolic differences between the two macaque species (e.g., CYP2C76 and EHBP1L1 ). Additionally, hundreds of alternative splicing differences show post-transcriptional regulation divergence between these two species (e.g., PNPO ). We also characterize 91 large-scale genomic differences between macaques and humans at a single-base-pair resolution and highlight their impact on gene regulation in primate evolution (e.g., FOLH1 and PIEZO2 ). Finally, population genetics recapitulates macaque speciation and selective sweeps, highlighting potential genetic basis of reproduction and tail phenotype differences (e.g., STAB1 , SEMA3F , and HOXD13 ). In summary, the integrated analysis of genetic variation and population genetics in macaques greatly enhances our comprehension of lineage-specific phenotypes, adaptation, and primate evolution, thereby improving their biomedical applications in human diseases.
Collapse
|
6
|
Oka Y, Abe-Sato K, Tabuse H, Yasukawa Y, Yahara T, Nishimoto T, Kamitani M, Fukunaga T, Ochiai N, Kumasaka-Abe T, Hitaka K, Gunji E, Ohara H, Takeda T, Kojima N, Asami T. Discovery of TP0628103: A Highly Potent and Selective MMP-7 Inhibitor with Reduced OATP-Mediated Clearance Designed by Shifting Isoelectric Points. J Med Chem 2024; 67:1406-1420. [PMID: 38214909 DOI: 10.1021/acs.jmedchem.3c01967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Matrix metalloproteinase-7 (MMP-7) has been shown to play an important role in pathophysiological processes such as cancer and fibrosis. We previously discovered selective MMP-7 inhibitors by molecular hybridization and structure-based drug design. However, the systemic clearance (CLtot) of the biologically active lead compound was very high. Because our studies revealed that hepatic uptake by organic anion transporting polypeptide (OATP) was responsible for the high CLtot, we found a novel approach to reducing their uptake based on isoelectric point (IP) values as an indicator for substrate recognition by OATP1B1/1B3. Our "IP shift strategy" to adjust the IP values culminated in the discovery of TP0628103 (18), which is characterized by reduced in vitro OATP-mediated hepatic uptake and in vivo CLtot. Our in vitro-in vivo extrapolation of OATP-mediated clearance and the "IP shift strategy" provide crucial insights for a new medicinal chemistry approach to reducing the systemic clearance of OATP1B1/1B3 substrates.
Collapse
Affiliation(s)
- Yusuke Oka
- Chemistry Laboratories, Taisho Pharmaceutical Co., Ltd., 1-403, Yoshino-Cho, Kita-Ku, Saitama 331-9530, Japan
| | - Kumi Abe-Sato
- Chemistry Laboratories, Taisho Pharmaceutical Co., Ltd., 1-403, Yoshino-Cho, Kita-Ku, Saitama 331-9530, Japan
| | - Hideaki Tabuse
- Chemistry Laboratories, Taisho Pharmaceutical Co., Ltd., 1-403, Yoshino-Cho, Kita-Ku, Saitama 331-9530, Japan
| | - Yoshifumi Yasukawa
- Chemistry Laboratories, Taisho Pharmaceutical Co., Ltd., 1-403, Yoshino-Cho, Kita-Ku, Saitama 331-9530, Japan
| | - Tohru Yahara
- Drug Metabolism and Pharmacokinetics Laboratories, Taisho Pharmaceutical Co., Ltd., 1-403, Yoshino-Cho, Kita-Ku, Saitama 331-9530, Japan
| | - Tomohiro Nishimoto
- Drug Metabolism and Pharmacokinetics Laboratories, Taisho Pharmaceutical Co., Ltd., 1-403, Yoshino-Cho, Kita-Ku, Saitama 331-9530, Japan
| | - Masafumi Kamitani
- Discovery Technologies Laboratories, Taisho Pharmaceutical Co., Ltd., 1-403, Yoshino-Cho, Kita-Ku, Saitama 331-9530, Japan
| | - Takuya Fukunaga
- Discovery Technologies Laboratories, Taisho Pharmaceutical Co., Ltd., 1-403, Yoshino-Cho, Kita-Ku, Saitama 331-9530, Japan
| | - Nagahiro Ochiai
- Discovery Technologies Laboratories, Taisho Pharmaceutical Co., Ltd., 1-403, Yoshino-Cho, Kita-Ku, Saitama 331-9530, Japan
| | - Tomoko Kumasaka-Abe
- Discovery Technologies Laboratories, Taisho Pharmaceutical Co., Ltd., 1-403, Yoshino-Cho, Kita-Ku, Saitama 331-9530, Japan
| | - Kosuke Hitaka
- Pharmacology Laboratories, Taisho Pharmaceutical Co., Ltd., 1-403, Yoshino-Cho, Kita-Ku, Saitama 331-9530, Japan
| | - Emi Gunji
- Pharmacology Laboratories, Taisho Pharmaceutical Co., Ltd., 1-403, Yoshino-Cho, Kita-Ku, Saitama 331-9530, Japan
| | - Hiroki Ohara
- Pharmacology Laboratories, Taisho Pharmaceutical Co., Ltd., 1-403, Yoshino-Cho, Kita-Ku, Saitama 331-9530, Japan
| | - Takuya Takeda
- Pharmacology Laboratories, Taisho Pharmaceutical Co., Ltd., 1-403, Yoshino-Cho, Kita-Ku, Saitama 331-9530, Japan
| | - Naoki Kojima
- Pharmacology Laboratories, Taisho Pharmaceutical Co., Ltd., 1-403, Yoshino-Cho, Kita-Ku, Saitama 331-9530, Japan
| | - Taiji Asami
- Chemistry Laboratories, Taisho Pharmaceutical Co., Ltd., 1-403, Yoshino-Cho, Kita-Ku, Saitama 331-9530, Japan
| |
Collapse
|
7
|
Park EG, Lee YJ, Huh JW, Park SJ, Imai H, Kim WR, Lee DH, Kim JM, Shin HJ, Kim HS. Identification of microRNAs Derived from Transposable Elements in the Macaca mulatta (Rhesus Monkey) Genome. Genes (Basel) 2023; 14:1984. [PMID: 38002927 PMCID: PMC10671384 DOI: 10.3390/genes14111984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/26/2023] Open
Abstract
Transposable elements (TEs) are mobile DNA entities that can move within the host genome. Over long periods of evolutionary time, TEs are typically silenced via the accumulation of mutations in the genome, ultimately resulting in their immobilization. However, they still play an important role in the host genome by acting as regulatory elements. They influence host transcription in various ways, one of which as the origin of the generation of microRNAs (miRNAs), which are so-called miRNAs derived from TEs (MDTEs). miRNAs are small non-coding RNAs that are involved in many biological processes by regulating gene expression at the post-transcriptional level. Here, we identified MDTEs in the Macaca mulatta (rhesus monkey) genome, which is phylogenetically close species to humans, based on the genome coordinates of miRNAs and TEs. The expression of 5 out of 17 MDTEs that were exclusively registered in M. mulatta from the miRBase database (v22) was examined via quantitative polymerase chain reaction (qPCR). Moreover, Gene Ontology analysis was performed to examine the functional implications of the putative target genes of the five MDTEs.
Collapse
Affiliation(s)
- Eun Gyung Park
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Republic of Korea; (E.G.P.); (Y.J.L.); (W.R.K.); (D.H.L.); (J.-m.K.)
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea
| | - Yun Ju Lee
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Republic of Korea; (E.G.P.); (Y.J.L.); (W.R.K.); (D.H.L.); (J.-m.K.)
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea
| | - Jae-Won Huh
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea; (J.-W.H.); (S.-J.P.)
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Sang-Je Park
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea; (J.-W.H.); (S.-J.P.)
| | - Hiroo Imai
- Molecular Biology Section, Center for the Evolutionary Origins of Human Behavior, Kyoto University, Inuyama, Aichi 484-8506, Japan;
| | - Woo Ryung Kim
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Republic of Korea; (E.G.P.); (Y.J.L.); (W.R.K.); (D.H.L.); (J.-m.K.)
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea
| | - Du Hyeong Lee
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Republic of Korea; (E.G.P.); (Y.J.L.); (W.R.K.); (D.H.L.); (J.-m.K.)
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea
| | - Jung-min Kim
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Republic of Korea; (E.G.P.); (Y.J.L.); (W.R.K.); (D.H.L.); (J.-m.K.)
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea
| | - Hae Jin Shin
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Republic of Korea; (E.G.P.); (Y.J.L.); (W.R.K.); (D.H.L.); (J.-m.K.)
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea
| | - Heui-Soo Kim
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
8
|
Jaiswal S, Nyquist SK, Boyce S, Jivanjee T, Ibrahim S, Bromley JD, Gatter GJ, Gideon H, Patel K, Ganchua SK, Berger B, Fortune SM, Flynn JL, Shalek AK, Behar SM. Identification and characterization of the T cell receptor (TCR) repertoire of the cynomolgus macaque (Macaca Fascicularis). BMC Genomics 2022; 23:647. [PMID: 36096729 PMCID: PMC9465142 DOI: 10.1186/s12864-022-08867-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 09/01/2022] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Cynomolgus macaque (Macaca fascicularis) is an attractive animal model for the study of human disease and is extensively used in biomedical research. Cynomolgus macaques share behavioral, physiological, and genomic traits with humans and recapitulate human disease manifestations not observed in other animal species. To improve the use of the cynomolgus macaque model to investigate immune responses, we defined and characterized the T cell receptor (TCR) repertoire. RESULT We identified and analyzed the alpha (TRA), beta (TRB), gamma (TRG), and delta (TRD) TCR loci of the cynomolgus macaque. The expressed repertoire was determined using 22 unique lung samples from Mycobacterium tuberculosis infected cynomolgus macaques by single cell RNA sequencing. Expressed TCR alpha (TRAV) and beta (TRBV) variable region genes were enriched and identified using gene specific primers, which allowed their functional status to be determined. Analysis of the primers used for cynomolgus macaque TCR variable region gene enrichment showed they could also be used to amplify rhesus macaque (M. mulatta) variable region genes. CONCLUSION The genomic organization of the cynomolgus macaque has great similarity with the rhesus macaque and they shared > 90% sequence similarity with the human TCR repertoire. The identification of the TCR repertoire facilitates analysis of T cell immunity in cynomolgus macaques.
Collapse
Affiliation(s)
- Swati Jaiswal
- Department of Microbiology and Physiological Systems, Universityof Massachusetts Chan Medical School, Worcester, MA USA
| | - Sarah K. Nyquist
- grid.116068.80000 0001 2341 2786Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA USA ,grid.461656.60000 0004 0489 3491Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA USA ,grid.66859.340000 0004 0546 1623Broad Institute of MIT and Harvard, Cambridge, MA USA ,grid.116068.80000 0001 2341 2786Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA USA ,grid.116068.80000 0001 2341 2786Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA USA ,grid.116068.80000 0001 2341 2786Program in Computational and Systems Biology, Massachusetts Institute of Technology, Cambridge, MA USA
| | - Shayla Boyce
- Department of Microbiology and Physiological Systems, Universityof Massachusetts Chan Medical School, Worcester, MA USA
| | - Tasneem Jivanjee
- grid.116068.80000 0001 2341 2786Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA USA ,grid.461656.60000 0004 0489 3491Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA USA ,grid.66859.340000 0004 0546 1623Broad Institute of MIT and Harvard, Cambridge, MA USA
| | - Samira Ibrahim
- grid.116068.80000 0001 2341 2786Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA USA ,grid.461656.60000 0004 0489 3491Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA USA ,grid.66859.340000 0004 0546 1623Broad Institute of MIT and Harvard, Cambridge, MA USA
| | - Joshua D. Bromley
- grid.116068.80000 0001 2341 2786Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA USA ,grid.461656.60000 0004 0489 3491Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA USA ,grid.66859.340000 0004 0546 1623Broad Institute of MIT and Harvard, Cambridge, MA USA ,grid.116068.80000 0001 2341 2786Microbiology Graduate Program, Massachusetts Institute of Technology, Cambridge, MA USA
| | - G. James Gatter
- grid.116068.80000 0001 2341 2786Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA USA ,grid.461656.60000 0004 0489 3491Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA USA ,grid.66859.340000 0004 0546 1623Broad Institute of MIT and Harvard, Cambridge, MA USA
| | - Hannah Gideon
- grid.21925.3d0000 0004 1936 9000Department of Microbiology and Molecular Genetics and Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, PA USA
| | - Kush Patel
- grid.21925.3d0000 0004 1936 9000Department of Microbiology and Molecular Genetics and Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, PA USA
| | - Sharie Keanne Ganchua
- grid.21925.3d0000 0004 1936 9000Department of Microbiology and Molecular Genetics and Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, PA USA
| | - Bonnie Berger
- grid.116068.80000 0001 2341 2786Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA USA ,grid.116068.80000 0001 2341 2786Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA USA
| | - Sarah M. Fortune
- grid.38142.3c000000041936754XDepartment of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA USA ,grid.461656.60000 0004 0489 3491Ragon Institute of MGH, MIT and Harvard, Boston, MA USA
| | - JoAnne L. Flynn
- grid.21925.3d0000 0004 1936 9000Department of Microbiology and Molecular Genetics and Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, PA USA
| | - Alex K. Shalek
- grid.116068.80000 0001 2341 2786Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA USA ,grid.461656.60000 0004 0489 3491Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA USA ,grid.66859.340000 0004 0546 1623Broad Institute of MIT and Harvard, Cambridge, MA USA ,grid.38142.3c000000041936754XDepartment of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA USA ,grid.461656.60000 0004 0489 3491Ragon Institute of MGH, MIT and Harvard, Boston, MA USA ,grid.116068.80000 0001 2341 2786Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA USA
| | - Samuel M. Behar
- Department of Microbiology and Physiological Systems, Universityof Massachusetts Chan Medical School, Worcester, MA USA
| |
Collapse
|
9
|
Arndt T, Meindel M, Clarke J, Shaw A, Gregori M. Comparison of Routine Hematology, Coagulation, and Clinical Chemistry Parameters of Cynomolgus Macaques of Mauritius Origin With Cynomolgus Macaques of Cambodia, China, and Vietnam Origin. Toxicol Pathol 2022; 50:591-606. [PMID: 35467458 DOI: 10.1177/01926233221089843] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Cynomolgus macaques (Macaca fascicularis) are commonly used in safety assessment and as translational models for drug development. Recent supply chain pressures, exportation bans, and increased demand for drug safety assessment studies exacerbated by the COVID-19 pandemic have prompted the investigation of utilizing macaques of different geographic origin in preclinical toxicity studies. This study compares routine hematology, coagulation, and clinical chemistry endpoints of 3 distinct subpopulations of mainland Asia origin (Cambodia, China, and Vietnam) with Mauritius origin macaques compiling results of 3,225 animals from 123 regulatory toxicology studies conducted at North American and European Union contract research organization facilities between 2016 and 2019. Results were generally similar amongst the subpopulations compared in this study. Few notable differences in hematology test results and several minor differences in serum biochemistry and coagulation test results were identified when 3 distinct subpopulations of mainland Asia origin macaques were compared with Mauritius origin macaques. Our findings support the use of different origin macaques in drug development programs; however, emphasizes the importance of maintaining consistency in geographic origin of animals within a study.
Collapse
Affiliation(s)
- Tara Arndt
- Labcorp Drug Development, Madison, Wisconsin, USA
| | | | | | | | | |
Collapse
|
10
|
Shen H, Yang Z, Rodrigues AD. Cynomolgus Monkey as an Emerging Animal Model to Study Drug Transporters: In Vitro, In Vivo, In Vitro-To-In Vivo Translation. Drug Metab Dispos 2021; 50:299-319. [PMID: 34893475 DOI: 10.1124/dmd.121.000695] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 12/06/2021] [Indexed: 11/22/2022] Open
Abstract
Membrane transporters have been recognized as one of the key determinants of pharmacokinetics and are also known to affect the efficacy and toxicity of drugs. Both qualitatively and quantitatively, however, transporter studies conducted using human in vitro systems have not always been predictive. Consequently, researchers have utilized cynomolgus monkeys as a model to study drug transporters and anticipate their effects in humans. Burgeoning reports of data in the last few years necessitates a comprehensive review on the topic of drug transporters in cynomolgus monkeys that includes cell-based tools, sequence homology, tissue expression, in vitro studies, in vivo studies, and in vitro-to-in vivo extrapolation (IVIVE). This review highlights the state-of-the-art applications of monkey transporter models to support the evaluation of transporter-mediated drug-drug interactions, clearance predictions, and endogenous transporter biomarker identification and validation. The data demonstrate that cynomolgus monkey transporter models, when used appropriately, can be an invaluable tool to support drug discovery and development processes. Most importantly, they provide an early IVIVE assessment which provides additional context to human in vitro data. Additionally, comprehending species similarities and differences in transporter tissue expression and activity is crucial when translating monkey data to humans. The challenges and limitations when applying such models to inform decision-making must also be considered. Significance Statement This paper presents a comprehensive review of currently available published reports describing cynomolgus monkey transporter models. The data indicate that cynomolgus monkeys provide mechanistic insight regarding the role of intestinal, hepatic, and renal transporters in drug and biomarker disposition and drug interactions. It is concluded that the data generated with cynomolgus monkey models provide mechanistic insight regarding transporter-mediated absorption and disposition, as well as human clearance prediction, drug-drug interaction assessment, and endogenous biomarker development related to drug transporters.
Collapse
Affiliation(s)
- Hong Shen
- Drug Metabolism and Pharmacokinetics, Bristol Myers Squibb, United States
| | - Zheng Yang
- Metabolism and Pharmacokinetics, Bristol-Myers Squibb Co., United States
| | | |
Collapse
|
11
|
Srikulnath K, Ahmad SF, Panthum T, Malaivijitnond S. Importance of Thai macaque bioresources for biological research and human health. J Med Primatol 2021; 51:62-72. [PMID: 34806191 DOI: 10.1111/jmp.12555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 11/09/2021] [Accepted: 11/09/2021] [Indexed: 01/25/2023]
Abstract
During the past century, macaque bioresources have provided remarkable scientific and biomedical discoveries related to the understanding of human physiology, neuroanatomy, reproduction, development, cognition, and pathology. Considerable progress has been made, and an urgent need has arisen to develop infrastructure and viable settings to meet the current global demand in research models during the so-called new normal after COVID-19 era. This review highlights the critical need for macaque bioresources and proposes the establishment of a designated primate research center to integrate research in primate laboratories for the rescue and rehabilitation of wild macaques. Key areas where macaque models have been and continue to be essential for advancing fundamental knowledge in biomedical and biological research are outlined. Detailed genetic studies on macaque bioresources of Thai origin can further facilitate the rapid pace of vaccine discovery.
Collapse
Affiliation(s)
- Kornsorn Srikulnath
- National Primate Research Center of Thailand-Chulalongkorn University, Saraburi, Thailand.,Animal Genomics and Bioresource Research Center (AGB Research Center), Faculty of Science, Kasetsart University, Bangkok, Thailand.,Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Syed Farhan Ahmad
- Animal Genomics and Bioresource Research Center (AGB Research Center), Faculty of Science, Kasetsart University, Bangkok, Thailand.,Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Thitipong Panthum
- Animal Genomics and Bioresource Research Center (AGB Research Center), Faculty of Science, Kasetsart University, Bangkok, Thailand.,Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Suchinda Malaivijitnond
- National Primate Research Center of Thailand-Chulalongkorn University, Saraburi, Thailand.,Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
12
|
The effects of exosomes derived from trabecular meshwork cells on Schlemm's canal endothelial cells. Sci Rep 2021; 11:21942. [PMID: 34754027 PMCID: PMC8578291 DOI: 10.1038/s41598-021-01450-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 10/26/2021] [Indexed: 11/16/2022] Open
Abstract
Trabecular meshwork (TM) and Schlemm’s canal (SC) are the main structures within the conventional outflow pathway, and TM cells and SC endothelial (SCE) cells are essential for controlling intraocular pressure. To examine the interaction between TM cells and SCE cells, we investigated whether exosomes contribute to intercellular communication. Additionally, TM cells in glaucoma acquire mesenchymal characteristics in response to transforming growth factor (TGF)-β2 and extracellular matrix proteins such as collagen type 1 (Col-1); these changes result in increased resistance of aqueous outflow. In this study, we stimulated TM cells with TGF-β2 and Col-1 and characterized the exosomal miRNAs (exomiRs) released in response to each stimulus. Isolated exosomes were rich in miRNAs, with downregulated miR-23a-5p and upregulated miR-3942-5p and miR-7515 levels following Col-1 or TGF-β2 stimulation. Next, a miRNA-mRNA network under TGF-β2 stimulation was constructed. There were no connections among the 3 miRNAs and predicted genes under Col-1 stimulation. GO and KEGG analyses revealed that the identified miRNAs were associated with various signaling pathways, including the inflammatory response. Interestingly, SCE cells treated with miR-7515 mimic showed increased VEGFA, VEGFR2, PECAM, and Tie2 expression. Ultrastructures typical of exosomes and positive staining for exosomal markers were observed in human TM cells. Our data showed that TM cells may communicate with SCE cells via exomiRs and that miR-7515 may be important for SCE cell reprogramming.
Collapse
|
13
|
Zhu Y, Yang X, Ma C, Tang H, Wang Q, Guan J, Xie W, Chen S, Chen Y, Wang M, Lan C, Sun D, Wei L, Sun C, Yu X, Zhang Z. Antibody upstream sequence diversity and its biological implications revealed by repertoire sequencing. J Genet Genomics 2021; 48:936-945. [PMID: 34420911 DOI: 10.1016/j.jgg.2021.06.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/10/2021] [Accepted: 06/16/2021] [Indexed: 12/26/2022]
Abstract
The sequence upstream of the antibody variable region (antibody upstream sequence [AUS]) consists of a 5' untranslated region (5' UTR) and a preceding leader region. The sequence variations in AUS affect antibody engineering and PCR based antibody quantification and may also be implicated in mRNA transcription and translation. However, the diversity of AUSs remains elusive. Using 5' rapid amplification of cDNA ends and high-throughput antibody repertoire sequencing technique, we acquired full-length AUSs for human, rhesus macaque, cynomolgus macaque, mouse, and rat. We designed a bioinformatics pipeline and identified 3307 unique AUSs, corresponding to 3026 and 1457 unique sequences for 5' UTR and leader region, respectively. Comparative analysis indicated that 928 (63.69%) leader sequences are novel relative to those recorded in the international ImMunoGeneTics information system. Evolutionarily, leader sequences are more conserved than 5' UTR and seem to coevolve with their downstream V genes. Besides, single-nucleotide polymorphisms are position dependent for leader regions and may contribute to the functional reversal of the downstream V genes. Finally, the AUGs in AUSs were found to have little impact on gene expression. Taken together, our findings can facilitate primer design for capturing antibodies efficiently and provide a valuable resource for antibody engineering and molecule-level antibody studies.
Collapse
Affiliation(s)
- Yan Zhu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; Center for Precision Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China; Guangdong-Hong Kong Joint Laboratory on Immunological and Genetic Kidney Diseases, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China; Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou 510515, China
| | - Xiujia Yang
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; Center for Precision Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China; Guangdong-Hong Kong Joint Laboratory on Immunological and Genetic Kidney Diseases, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China; Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou 510515, China
| | - Cuiyu Ma
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Haipei Tang
- Center for Precision Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Qilong Wang
- Center for Precision Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Junjie Guan
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Wenxi Xie
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Sen Chen
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yuan Chen
- Center for Precision Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Minhui Wang
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Department of Nephrology, Hainan Affiliated Hospital of Hainan Medical College, Haikou 570311, China; Department of Nephrology, Hainan General Hospital, Haikou 570311, China
| | - Chunhong Lan
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Center for Precision Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Deqiang Sun
- Department of Center Laboratory, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510700, China
| | - Lai Wei
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Caijun Sun
- School of Public Health, Sun Yat-sen University, Shenzhen 510006, China
| | - Xueqing Yu
- Guangdong-Hong Kong Joint Laboratory on Immunological and Genetic Kidney Diseases, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China; Division of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China.
| | - Zhenhai Zhang
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; Center for Precision Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China; Guangdong-Hong Kong Joint Laboratory on Immunological and Genetic Kidney Diseases, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China; Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
14
|
Colman K, Andrews RN, Atkins H, Boulineau T, Bradley A, Braendli-Baiocco A, Capobianco R, Caudell D, Cline M, Doi T, Ernst R, van Esch E, Everitt J, Fant P, Gruebbel MM, Mecklenburg L, Miller AD, Nikula KJ, Satake S, Schwartz J, Sharma A, Shimoi A, Sobry C, Taylor I, Vemireddi V, Vidal J, Wood C, Vahle JL. International Harmonization of Nomenclature and Diagnostic Criteria (INHAND): Non-proliferative and Proliferative Lesions of the Non-human Primate ( M. fascicularis). J Toxicol Pathol 2021; 34:1S-182S. [PMID: 34712008 PMCID: PMC8544165 DOI: 10.1293/tox.34.1s] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The INHAND (International Harmonization of Nomenclature and Diagnostic Criteria for Lesions Project (www.toxpath.org/inhand.asp) is a joint initiative of the Societies of Toxicologic Pathology from Europe (ESTP), Great Britain (BSTP), Japan (JSTP) and North America (STP) to develop an internationally accepted nomenclature for proliferative and nonproliferative lesions in laboratory animals. The purpose of this publication is to provide a standardized nomenclature for classifying microscopic lesions observed in most tissues and organs from the nonhuman primate used in nonclinical safety studies. Some of the lesions are illustrated by color photomicrographs. The standardized nomenclature presented in this document is also available electronically on the internet (http://www.goreni.org/). Sources of material included histopathology databases from government, academia, and industrial laboratories throughout the world. Content includes spontaneous lesions as well as lesions induced by exposure to test materials. Relevant infectious and parasitic lesions are included as well. A widely accepted and utilized international harmonization of nomenclature for lesions in laboratory animals will provide a common language among regulatory and scientific research organizations in different countries and increase and enrich international exchanges of information among toxicologists and pathologists.
Collapse
Affiliation(s)
- Karyn Colman
- Novartis Institutes for BioMedical Research, Cambridge, MA,
USA
| | - Rachel N. Andrews
- Wake Forest School of Medicine, Department of Radiation
Oncology, Winston-Salem, NC, USA
| | - Hannah Atkins
- Penn State College of Medicine, Department of Comparative
Medicine, Hershey, PA, USA
| | | | - Alys Bradley
- Charles River Laboratories Edinburgh Ltd., Tranent,
Scotland, UK
| | - Annamaria Braendli-Baiocco
- Roche Pharma Research and Early Development, Pharmaceutical
Sciences, Roche Innovation Center Basel, Switzerland
| | - Raffaella Capobianco
- Janssen Research & Development, a Division of Janssen
Pharmaceutica NV, Beerse, Belgium
| | - David Caudell
- Department of Pathology, Section on Comparative Medicine,
Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Mark Cline
- Department of Pathology, Section on Comparative Medicine,
Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Takuya Doi
- LSIM Safety Institute Corporation, Ibaraki, Japan
| | | | | | - Jeffrey Everitt
- Department of Pathology, Duke University School of
Medicine, Durham, NC, USA
| | | | | | | | - Andew D. Miller
- Cornell University College of Veterinary Medicine, Ithaca,
NY, USA
| | | | - Shigeru Satake
- Shin Nippon Biomedical Laboratories, Ltd., Kagoshima and
Tokyo, Japan
| | | | - Alok Sharma
- Covance Laboratories, Inc., Madison, WI, USA
| | | | | | | | | | | | - Charles Wood
- Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT,
USA
| | | |
Collapse
|
15
|
Zhang C, Chen S, Li Q, Wu J, Qiu F, Chen Z, Sun Y, Luo J, Bastarrachea RA, Grayburn PA, DeFronzo RA, Liu Y, Qian K, Huang P. Ultrasound-Targeted Microbubble Destruction Mediates Gene Transfection for Beta-Cell Regeneration and Glucose Regulation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2008177. [PMID: 34185956 DOI: 10.1002/smll.202008177] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 05/30/2021] [Indexed: 06/13/2023]
Abstract
Ultrasound-targeted microbubble destruction (UTMD) mediates gene transfection with high biosafety and thus has been promising toward treatment of type 1 diabetes. However, the potential application of UTMD in type 2 diabetes (T2D) is still limited, due to the lack of systematic design and dynamic monitoring. Herein, an efficient gene delivery system is constructed by plasmid deoxyribonucleic acid (DNA) encoding glucagon-like peptide 1 (GLP-1) in ultrasound-induced microbubbles, toward treatment of T2D in macaque. The as designed UTMD afforded enhancement of cell membrane penetration and GLP-1 expression in macaque, which is characterized by ultrasound-guided biopsy to monitor the dynamic process of islet cells for 6 months. Also, improvement of pancreatic beta cell regeneration, and regulation of plasma glucose in macaque with T2D is achieved. The approach would serve as promising alternatives for the treatment of T2D.
Collapse
Affiliation(s)
- Chao Zhang
- Department of Ultrasound and Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, 88 Jiefang Road, Shangcheng District, Hangzhou, 310009, China
| | - Shuyuan Chen
- Department of Internal Medicine, UT Southwestern medical center at Dallas, Dallas, TX, 75390, USA
| | - Qunying Li
- Department of Ultrasound and Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, 88 Jiefang Road, Shangcheng District, Hangzhou, 310009, China
| | - Jiao Wu
- School of Biomedical Engineering, Institute of Medical Robotics and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Fuqiang Qiu
- Department of Ultrasound and Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, 88 Jiefang Road, Shangcheng District, Hangzhou, 310009, China
| | - Zhiyi Chen
- Department of Ultrasound Medicine, Laboratory of Ultrasound Molecular Imaging, The Third Affiliated Hospital of Guangzhou Medical University, Guangdong, 510000, China
| | - Yang Sun
- Department of Ultrasound and Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, 88 Jiefang Road, Shangcheng District, Hangzhou, 310009, China
| | - Jieli Luo
- Department of Ultrasound and Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, 88 Jiefang Road, Shangcheng District, Hangzhou, 310009, China
| | | | - Paul A Grayburn
- Department of Internal Medicine, Division of Cardiology, Baylor Heart and Vascular Institute, Baylor University Medical Center, 621 N. Hall St, Suite H030, Dallas, Texas, 75226, USA
| | - Ralph A DeFronzo
- Department of Medicine, Division of Diabetes, University of Texas Health Science Center and Texas Diabetes Institute, University Health System, San Antonio, TX, 78229, USA
| | - Yajing Liu
- Department of Ultrasound and Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, 88 Jiefang Road, Shangcheng District, Hangzhou, 310009, China
| | - Kun Qian
- School of Biomedical Engineering, Institute of Medical Robotics and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Pintong Huang
- Department of Ultrasound and Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, 88 Jiefang Road, Shangcheng District, Hangzhou, 310009, China
| |
Collapse
|
16
|
Genetic variation in the Mauritian cynomolgus macaque population reflects variation in the human population. Gene 2021; 787:145648. [PMID: 33848572 DOI: 10.1016/j.gene.2021.145648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 03/23/2021] [Accepted: 04/07/2021] [Indexed: 11/21/2022]
Abstract
The cynomolgus macaque is an important species for preclinical research, however the extent of genetic variation in this population and its similarity to the human population is not well understood. Exome sequencing was conducted for 101 cynomolgus macaques to characterize genetic variation. The variant distribution frequency was 7.81 variants per kilobase across the sequenced regions, with a total of 2,770,009 single nucleotide variants identified from 2,996,041 loci. A large portion (85.6%) had minor allele frequencies greater than 5%. Enriched pathways for genes with high genetic diversity (≥10 variants per kilobase) were those involving signaling peptides and immune response. Compared to human, the variant distribution frequency and nucleotide diversity in the macaque exome was approximately 4 times greater; however the ratio of non-synonymous to synonymous variants was similar (0.735 and 0.831, respectively). Understanding genetic variability in cynomolgus macaques will enable better interpretation and human translation of phenotypic variability in this species.
Collapse
|
17
|
Liang X, Lai Y. Overcoming the shortcomings of the extended-clearance concept: a framework for developing a physiologically-based pharmacokinetic (PBPK) model to select drug candidates involving transporter-mediated clearance. Expert Opin Drug Metab Toxicol 2021; 17:869-886. [PMID: 33793347 DOI: 10.1080/17425255.2021.1912012] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Introduction:Human pharmacokinetic (PK) prediction can be a significant challenge to drug candidates undergoing transporter-mediated clearance, when only animal data and in vitro human parameters are available in the drug discovery stage.Areas covered:The extended clearance concept (ECC) that incorporates the processes of hepatic uptake, passive diffusion, metabolism and biliary secretion has been adapted to determine the rate-determining process of hepatic clearance and drug-drug interactions (DDIs). However, since the ECC is derived from the well-stirred model and does not consider the liver as a drug distribution organ to reflect the time-dependent variation of drug concentrations between the liver and plasma, it can be misused for compound selection in drug discovery.Expert opinion:The PBPK model consists of a set of differential equations of drug mass balance, and can overcome the shortcomings of the ECC in predicting human PK. The predictability, relevance and reliability of the model and the scaling factors for IVIVE must be validated using either the measured liver concentrations or DDI data with known transporter inhibitors, or both, in monkeys. A human PBPK model that incorporates in vitro human data and SFs obtained from the validated monkey PBPK model can be used for compound selection in the drug discovery phase.
Collapse
Affiliation(s)
- Xiaomin Liang
- Drug Metabolism, Gilead Sciences Inc., Foster City, CA, USA
| | - Yurong Lai
- Drug Metabolism, Gilead Sciences Inc., Foster City, CA, USA
| |
Collapse
|
18
|
Hu Y, Huang K, Zeng Q, Feng Y, Ke Q, An Q, Qin LJ, Cui Y, Guo Y, Zhao D, Peng Y, Tian D, Xia K, Chen Y, Ni B, Wang J, Zhu X, Wei L, Liu Y, Xiang P, Liu JY, Xue Z, Fan G. Single-cell analysis of nonhuman primate preimplantation development in comparison to humans and mice. Dev Dyn 2021; 250:974-985. [PMID: 33449399 DOI: 10.1002/dvdy.295] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 12/14/2020] [Accepted: 12/19/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Genetic programs underlying preimplantation development and early lineage segregation are highly conserved across mammals. It has been suggested that nonhuman primates would be better model organisms for human embryogenesis, but a limited number of studies have investigated the monkey preimplantation development. In this study, we collect single cells from cynomolgus monkey preimplantation embryos for transcriptome profiling and compare with single-cell RNA-seq data derived from human and mouse embryos. RESULTS By weighted gene-coexpression network analysis, we found that cynomolgus gene networks have greater conservation with human embryos including a greater number of conserved hub genes than that of mouse embryos. Consistently, we found that early ICM/TE lineage-segregating genes in monkeys exhibit greater similarity with human when compared to mouse, so are the genes in signaling pathways such as LRP1 and TCF7 involving in WNT pathway. Last, we tested the role of one conserved pre-EGA hub gene, SIN3A, using a morpholino knockdown of maternal RNA transcripts in monkey embryos followed by single-cell RNA-seq. We found that SIN3A knockdown disrupts the gene-silencing program during the embryonic genome activation transition and results in developmental delay of cynomolgus embryos. CONCLUSION Taken together, our study provided new insight into evolutionarily conserved and divergent transcriptome dynamics during mammalian preimplantation development.
Collapse
Affiliation(s)
- Youjin Hu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun-Ye-Sat University, Guangzhou, China.,Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Kevin Huang
- Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Qiao Zeng
- State Key Laboratory of Reproductive Medicine, Center of Clinical Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Yun Feng
- Reproductive Medicine Center, Tongji Hospital, Department of Regenerative Medicine, Tongji University School of Medicine, Shanghai, China
| | - Qiong Ke
- Key Laboratory of Stem Cell Engineering Ministry of Education, Zhongshan College of Medicine, Sun-Ye-Sat University, Guangzhou, China
| | - Qin An
- Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Lian-Ju Qin
- State Key Laboratory of Reproductive Medicine, Center of Clinical Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - YuGui Cui
- State Key Laboratory of Reproductive Medicine, Center of Clinical Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Ying Guo
- The Second Affiliated Hospital, Xiangya School of Medicine, Central South University, Changsha, China
| | - Dicheng Zhao
- State Key Laboratory of Medical Genetics, Xiangya School of Medicine, Central South University, Changsha, China
| | - Yu Peng
- State Key Laboratory of Medical Genetics, Xiangya School of Medicine, Central South University, Changsha, China
| | - Di Tian
- State Key Laboratory of Medical Genetics, Xiangya School of Medicine, Central South University, Changsha, China
| | - Kun Xia
- State Key Laboratory of Medical Genetics, Xiangya School of Medicine, Central South University, Changsha, China
| | - Yong Chen
- Key Laboratory of Genetics and Birth Health of Hunan Province, Changsha, China
| | - Bin Ni
- Key Laboratory of Genetics and Birth Health of Hunan Province, Changsha, China
| | - Jinmei Wang
- Shanghai East Hospital, School of Life Sciences & Technology, Tongji University, Shanghai, China
| | - Xianmin Zhu
- Shanghai East Hospital, School of Life Sciences & Technology, Tongji University, Shanghai, China
| | - Lai Wei
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun-Ye-Sat University, Guangzhou, China
| | - Yizhi Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun-Ye-Sat University, Guangzhou, China
| | - Peng Xiang
- Key Laboratory of Stem Cell Engineering Ministry of Education, Zhongshan College of Medicine, Sun-Ye-Sat University, Guangzhou, China
| | - Jia-Yin Liu
- State Key Laboratory of Reproductive Medicine, Center of Clinical Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Zhigang Xue
- Reproductive Medicine Center, Tongji Hospital, Department of Regenerative Medicine, Tongji University School of Medicine, Shanghai, China
| | - Guoping Fan
- Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| |
Collapse
|
19
|
Eng H, Bi YA, West MA, Ryu S, Yamaguchi E, Kosa RE, Tess DA, Griffith DA, Litchfield J, Kalgutkar AS, Varma MVS. Organic Anion-Transporting Polypeptide 1B1/1B3-Mediated Hepatic Uptake Determines the Pharmacokinetics of Large Lipophilic Acids: In Vitro-In Vivo Evaluation in Cynomolgus Monkey. J Pharmacol Exp Ther 2021; 377:169-180. [PMID: 33509903 DOI: 10.1124/jpet.120.000457] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 01/25/2021] [Indexed: 12/22/2022] Open
Abstract
It is generally presumed that uptake transport mechanisms are of limited significance in hepatic clearance for lipophilic or high passive-permeability drugs. In this study, we evaluated the mechanistic role of the hepato-selective organic anion-transporting polypeptides (OATPs) 1B1/1B3 in the pharmacokinetics of compounds representing large lipophilic acid space. Intravenous pharmacokinetics of 16 compounds with molecular mass ∼400-730 Da, logP ∼3.5-8, and acid pKa <6 were obtained in cynomolgus monkey after dosing without and with a single-dose rifampicin-OATP1B1/1B3 probe inhibitor. Rifampicin (30 mg/kg oral) significantly (P < 0.05) reduced monkey clearance and/or steady-state volume of distribution (VDss) for 15 of 16 acids evaluated. Additionally, clearance of danoprevir was reduced by about 35%, although statistical significance was not reached. A significant linear relationship was noted between the clearance ratio (i.e., ratio of control to treatment groups) and VDss ratio, suggesting hepatic uptake contributes to the systemic clearance and distribution simultaneously. In vitro transport studies using primary monkey and human hepatocytes showed uptake inhibition by rifampicin (100 µM) for compounds with logP ≤6.5 but not for the very lipophilic acids (logP > 6.5), which generally showed high nonspecific binding in hepatocyte incubations. In vitro uptake clearance and fraction transported by OATP1B1/1B3 (ft,OATP1B) were found to be similar in monkey and human hepatocytes. Finally, for compounds with logP ≤6.5, good agreement was noted between in vitro ft,OATP1B and clearance ratio (as well as VDss ratio) in cynomolgus monkey. In conclusion, this study provides mechanistic evidence for the pivotal role of OATP1B-mediated hepatic uptake in the pharmacokinetics across a wide, large lipophilic acid space. SIGNIFICANCE STATEMENT: This study provides mechanistic insight into the pharmacokinetics of a broad range of large lipophilic acids. Organic anion-transporting polypeptides 1B1/1B3-mediated hepatic uptake is of key importance in the pharmacokinetics and drug-drug interactions of almost all drugs and new molecular entities in this space. Diligent in vitro and in vivo transport characterization is needed to avoid the false negatives often noted because of general limitations in the in vitro assays while handling compounds with such physicochemical attributes.
Collapse
Affiliation(s)
- Heather Eng
- ADME Sciences, Medicine Design, Worldwide Research and Development, Pfizer Inc., Groton, Connecticut (H.E., Y.B., M.A.W., S.R., E.Y., R.E.K., M.V.S.V.), and PDM (D.A.T., J.L., A.S.K.) and Medicinal Chemistry, Medicine Design, Worldwide Research and Development (D.A.G.), Pfizer Inc., Cambridge, Massachusetts
| | - Yi-An Bi
- ADME Sciences, Medicine Design, Worldwide Research and Development, Pfizer Inc., Groton, Connecticut (H.E., Y.B., M.A.W., S.R., E.Y., R.E.K., M.V.S.V.), and PDM (D.A.T., J.L., A.S.K.) and Medicinal Chemistry, Medicine Design, Worldwide Research and Development (D.A.G.), Pfizer Inc., Cambridge, Massachusetts
| | - Mark A West
- ADME Sciences, Medicine Design, Worldwide Research and Development, Pfizer Inc., Groton, Connecticut (H.E., Y.B., M.A.W., S.R., E.Y., R.E.K., M.V.S.V.), and PDM (D.A.T., J.L., A.S.K.) and Medicinal Chemistry, Medicine Design, Worldwide Research and Development (D.A.G.), Pfizer Inc., Cambridge, Massachusetts
| | - Sangwoo Ryu
- ADME Sciences, Medicine Design, Worldwide Research and Development, Pfizer Inc., Groton, Connecticut (H.E., Y.B., M.A.W., S.R., E.Y., R.E.K., M.V.S.V.), and PDM (D.A.T., J.L., A.S.K.) and Medicinal Chemistry, Medicine Design, Worldwide Research and Development (D.A.G.), Pfizer Inc., Cambridge, Massachusetts
| | - Emi Yamaguchi
- ADME Sciences, Medicine Design, Worldwide Research and Development, Pfizer Inc., Groton, Connecticut (H.E., Y.B., M.A.W., S.R., E.Y., R.E.K., M.V.S.V.), and PDM (D.A.T., J.L., A.S.K.) and Medicinal Chemistry, Medicine Design, Worldwide Research and Development (D.A.G.), Pfizer Inc., Cambridge, Massachusetts
| | - Rachel E Kosa
- ADME Sciences, Medicine Design, Worldwide Research and Development, Pfizer Inc., Groton, Connecticut (H.E., Y.B., M.A.W., S.R., E.Y., R.E.K., M.V.S.V.), and PDM (D.A.T., J.L., A.S.K.) and Medicinal Chemistry, Medicine Design, Worldwide Research and Development (D.A.G.), Pfizer Inc., Cambridge, Massachusetts
| | - David A Tess
- ADME Sciences, Medicine Design, Worldwide Research and Development, Pfizer Inc., Groton, Connecticut (H.E., Y.B., M.A.W., S.R., E.Y., R.E.K., M.V.S.V.), and PDM (D.A.T., J.L., A.S.K.) and Medicinal Chemistry, Medicine Design, Worldwide Research and Development (D.A.G.), Pfizer Inc., Cambridge, Massachusetts
| | - David A Griffith
- ADME Sciences, Medicine Design, Worldwide Research and Development, Pfizer Inc., Groton, Connecticut (H.E., Y.B., M.A.W., S.R., E.Y., R.E.K., M.V.S.V.), and PDM (D.A.T., J.L., A.S.K.) and Medicinal Chemistry, Medicine Design, Worldwide Research and Development (D.A.G.), Pfizer Inc., Cambridge, Massachusetts
| | - John Litchfield
- ADME Sciences, Medicine Design, Worldwide Research and Development, Pfizer Inc., Groton, Connecticut (H.E., Y.B., M.A.W., S.R., E.Y., R.E.K., M.V.S.V.), and PDM (D.A.T., J.L., A.S.K.) and Medicinal Chemistry, Medicine Design, Worldwide Research and Development (D.A.G.), Pfizer Inc., Cambridge, Massachusetts
| | - Amit S Kalgutkar
- ADME Sciences, Medicine Design, Worldwide Research and Development, Pfizer Inc., Groton, Connecticut (H.E., Y.B., M.A.W., S.R., E.Y., R.E.K., M.V.S.V.), and PDM (D.A.T., J.L., A.S.K.) and Medicinal Chemistry, Medicine Design, Worldwide Research and Development (D.A.G.), Pfizer Inc., Cambridge, Massachusetts
| | - Manthena V S Varma
- ADME Sciences, Medicine Design, Worldwide Research and Development, Pfizer Inc., Groton, Connecticut (H.E., Y.B., M.A.W., S.R., E.Y., R.E.K., M.V.S.V.), and PDM (D.A.T., J.L., A.S.K.) and Medicinal Chemistry, Medicine Design, Worldwide Research and Development (D.A.G.), Pfizer Inc., Cambridge, Massachusetts
| |
Collapse
|
20
|
Dewi FN, Cline JM. Nonhuman primate model in mammary gland biology and neoplasia research. Lab Anim Res 2021; 37:3. [PMID: 33397518 PMCID: PMC7784333 DOI: 10.1186/s42826-020-00053-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/15/2020] [Indexed: 12/24/2022] Open
Abstract
Research on breast cancer pathogenesis, prevention and drug development remains an important field as this disease is still one of the leading causes of cancer death worldwide. Nonhuman primates, particularly macaque species, may serve as a highly translational animal model in breast cancer studies due to their similarity with humans in genetics, anatomy, reproductive and endocrine physiology including mammary gland development profile. The use of nonhuman primates in biomedical research, however, requires high ethical standards and an increasing expectation to improve strategies to replace, reduce and refine their use. Here, we discuss some key features of nonhuman primate mammary gland biology relevant to their strengths and limitations as models in studies of breast development and cancer risk.
Collapse
Affiliation(s)
- Fitriya N Dewi
- Primate Research Center at IPB University, Jl. Lodaya II No.5, Bogor, West Java, 16151, Indonesia.
| | - J Mark Cline
- Department of Pathology, Section on Comparative Medicine, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC, 27157, USA
| |
Collapse
|
21
|
Abstract
Accurate estimation of in vivo clearance in human is pivotal to determine the dose and dosing regimen for drug development. In vitro-in vivo extrapolation (IVIVE) has been performed to predict drug clearance using empirical and physiological scalars. Multiple in vitro systems and mathematical modeling techniques have been employed to estimate in vivo clearance. The models for predicting clearance have significantly improved and have evolved to become more complex by integrating multiple processes such as drug metabolism and transport as well as passive diffusion. This chapter covers the use of conventional as well as recently developed methods to predict metabolic and transporter-mediated clearance along with the advantages and disadvantages of using these methods and the associated experimental considerations. The general approaches to improve IVIVE by use of appropriate scalars, incorporation of extrahepatic metabolism and transport and application of physiologically based pharmacokinetic (PBPK) models with proteomics data are also discussed. The chapter also provides an overview of the advantages of using such dynamic mechanistic models over static models for clearance predictions to improve IVIVE.
Collapse
|
22
|
Ishigaki H, Pham VL, Terai J, Sasamura T, Nguyen CT, Ishida H, Okahara J, Kaneko S, Shiina T, Nakayama M, Itoh Y, Ogasawara K. No Tumorigenicity of Allogeneic Induced Pluripotent Stem Cells in Major Histocompatibility Complex-matched Cynomolgus Macaques. Cell Transplant 2021; 30:963689721992066. [PMID: 33588604 PMCID: PMC7894586 DOI: 10.1177/0963689721992066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/11/2020] [Accepted: 01/12/2021] [Indexed: 12/14/2022] Open
Abstract
Tumorigenicity of induced pluripotent stem cells (iPSCs) is anticipated when cells derived from iPSCs are transplanted. It has been reported that iPSCs formed a teratoma in vivo in autologous transplantation in a nonhuman primate model without immunosuppression. However, there has been no study on tumorigenicity in major histocompatibility complex (MHC)-matched allogeneic iPSC transplantation with immune-competent hosts. To examine the tumorigenicity of allogeneic iPSCs, we generated four iPSC clones carrying a homozygous haplotype of the MHC. Two clones were derived from female fibroblasts by using a retrovirus and the other two clones were derived from male peripheral blood mononuclear cells by using Sendai virus (episomal approach). The iPSC clones were transplanted into allogenic MHC-matched immune-competent cynomolgus macaques. After transplantation of the iPSCs into subcutaneous tissue of an MHC-matched female macaque and into four testes of two MHC-matched male macaques, histological analysis showed no tumor, inflammation, or regenerative change in the excised tissues 3 months after transplantation, despite the results that iPSCs formed teratomas in immune-deficient mice and in autologous transplantation as previously reported. The results in the present study suggest that there is no tumorigenicity of iPSCs in MHC-matched allogeneic transplantation in clinical application.
Collapse
Affiliation(s)
- Hirohito Ishigaki
- Division of Pathology and Disease Regulation, Department of Pathology, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Van Loi Pham
- Division of Pathology and Disease Regulation, Department of Pathology, Shiga University of Medical Science, Otsu, Shiga, Japan
- Biomolecular and Genetic Unit, Department of Hematology, Choray Hospital, Ho Chi Minh City, Vietnam
| | - Jun Terai
- Division of Pathology and Disease Regulation, Department of Pathology, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Takako Sasamura
- Division of Pathology and Disease Regulation, Department of Pathology, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Cong Thanh Nguyen
- Division of Pathology and Disease Regulation, Department of Pathology, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Hideaki Ishida
- Division of Pathology and Disease Regulation, Department of Pathology, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Junko Okahara
- Central Institute for Experimental Animals, Kawasaki, Kanagawa, Japan
| | - Shin Kaneko
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Takashi Shiina
- Division of Basic Medical Science and Molecular Medicine, Department of Molecular Life Science, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Misako Nakayama
- Division of Pathology and Disease Regulation, Department of Pathology, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Yasushi Itoh
- Division of Pathology and Disease Regulation, Department of Pathology, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Kazumasa Ogasawara
- Division of Pathology and Disease Regulation, Department of Pathology, Shiga University of Medical Science, Otsu, Shiga, Japan
| |
Collapse
|
23
|
Tess DA, Eng H, Kalgutkar AS, Litchfield J, Edmonds DJ, Griffith DA, Varma MVS. Predicting the Human Hepatic Clearance of Acidic and Zwitterionic Drugs. J Med Chem 2020; 63:11831-11844. [PMID: 32985885 DOI: 10.1021/acs.jmedchem.0c01033] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Prospective predictions of human hepatic clearance for anionic/zwitterionic compounds, which are oftentimes subjected to transporter-mediated uptake, are challenging in drug discovery. We evaluated the utility of preclinical species, rats and cynomolgus monkeys [nonhuman primates (NHPs)], to predict the human hepatic clearance using a diverse set of acidic/zwitterionic drugs. Preclinical clearance data were generated following intravenous dosing in rats/NHPs and compared to the human clearance data (n = 18/27). Single-species scaling of NHP clearance with an allometric exponent of 0.50 allowed for good prediction of human clearance (fold error ∼2.1, bias ∼1.0), with ∼86% predictions within 3-fold. In comparison, rats underpredicted the clearance of lipophilic acids, while overprediction was noted for hydrophilic acids. Finally, an in vitro clearance assay based on human hepatocytes, which is routinely used in discovery setting, markedly underpredicted human clearance (bias ∼0.12). Collectively, this study provides insights into the usefulness of the preclinical models in enabling pharmacokinetic optimization for acid/zwitterionic drug candidates.
Collapse
Affiliation(s)
- David A Tess
- Medicine Design, Pfizer Worldwide Research & Development, Cambridge, Massachusetts 02139, United States
| | - Heather Eng
- Medicine Design, Pfizer Worldwide Research & Development, Groton, Connecticut 06340, United States
| | - Amit S Kalgutkar
- Medicine Design, Pfizer Worldwide Research & Development, Cambridge, Massachusetts 02139, United States
| | - John Litchfield
- Medicine Design, Pfizer Worldwide Research & Development, Cambridge, Massachusetts 02139, United States
| | - David J Edmonds
- Medicine Design, Pfizer Worldwide Research & Development, Cambridge, Massachusetts 02139, United States
| | - David A Griffith
- Medicine Design, Pfizer Worldwide Research & Development, Cambridge, Massachusetts 02139, United States
| | - Manthena V S Varma
- Medicine Design, Pfizer Worldwide Research & Development, Groton, Connecticut 06340, United States
| |
Collapse
|
24
|
Huang X, Li S, Liu X, Huang S, Li S, Zhuo M. Analysis of conserved miRNAs in cynomolgus macaque genome using small RNA sequencing and homology searching. PeerJ 2020; 8:e9347. [PMID: 32728489 PMCID: PMC7357559 DOI: 10.7717/peerj.9347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 05/21/2020] [Indexed: 11/23/2022] Open
Abstract
MicroRNAs (miRNAs) are important regulators that fine-tune diverse cellular activities. Cynomolgus macaques (Macaca fascicularis) are used extensively in biomedical and pharmaceutical research; however, substantially fewer miRNAs have been identified in this species than in humans. Consequently, we investigated conserved miRNA profiles in cynomolgus macaques by homology searching and small RNA sequencing. In total, 1,455 high-confidence miRNA gene loci were identified, 408 of which were also confirmed by RNA sequencing, including 73 new miRNA loci reported in cynomolgus macaques for the first time. Comparing miRNA expression with age, we found a positive correlation between sequence conservation and expression levels during miRNA evolution. Additionally, we found that the miRNA gene locations in cynomolgus macaque genome were very flexible. Most were embedded in intergenic spaces or introns and clustered together. Several miRNAs were found in certain gene locations, including 64 exon-resident miRNAs, six splice-site-overlapping miRNAs (SO-miRNAs), and two pairs of distinct mirror miRNAs. We also identified 78 miRNA clusters, 68 of which were conserved in the human genome, including 10 large miRNA clusters predicted to regulate diverse developmental and cellular processes in cynomolgus macaque. Thus, this study not only expands the number of identified miRNAs in cynomolgus macaques but also provides clues for future research on the differences in miRNA repertoire between macaques and humans.
Collapse
Affiliation(s)
- Xia Huang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong, China
| | - Shijia Li
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong, China
| | - Xiaoming Liu
- Guangzhou Tulip Information Technologies Ltd., Guangzhou, Guangdong, China
| | - Shuting Huang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong, China
| | - Shuang Li
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong, China
| | - Min Zhuo
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong, China
| |
Collapse
|
25
|
Du L, Guo T, Liu Q, Li J, Zhang X, Xing J, Yue B, Li J, Fan Z. MACSNVdb: a high-quality SNV database for interspecies genetic divergence investigation among macaques. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2020; 2020:5827658. [PMID: 32367112 PMCID: PMC7198316 DOI: 10.1093/database/baaa027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 01/06/2020] [Accepted: 03/22/2020] [Indexed: 11/14/2022]
Abstract
Macaques are the most widely used non-human primates in biomedical research. The genetic divergence between these animal models is responsible for their phenotypic differences in response to certain diseases. However, the macaque single nucleotide polymorphism resources mainly focused on rhesus macaque (Macaca mulatta), which hinders the broad research and biomedical application of other macaques. In order to overcome these limitations, we constructed a database named MACSNVdb that focuses on the interspecies genetic diversity among macaque genomes. MACSNVdb is a web-enabled database comprising ~74.51 million high-quality non-redundant single nucleotide variants (SNVs) identified among 20 macaque individuals from six species groups (muttla, fascicularis, sinica, arctoides, silenus, sylvanus). In addition to individual SNVs, MACSNVdb also allows users to browse and retrieve groups of user-defined SNVs. In particular, users can retrieve non-synonymous SNVs that may have deleterious effects on protein structure or function within macaque orthologs of human disease and drug-target genes. Besides position, alleles and flanking sequences, MACSNVdb integrated additional genomic information including SNV annotations and gene functional annotations. MACSNVdb will facilitate biomedical researchers to discover molecular mechanisms of diverse responses to diseases as well as primatologist to perform population genetic studies. We will continue updating MACSNVdb with newly available sequencing data and annotation to keep the resource up to date. Database URL: http://big.cdu.edu.cn/macsnvdb/
Collapse
Affiliation(s)
- Lianming Du
- Institute for Advanced Study, Chengdu University, 2025 Chengluo Rd, Chengdu 610106, China
| | - Tao Guo
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, 20 Section 3, South Renmin Rd, Chengdu 610041, China
| | - Qin Liu
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Science, Sichuan University, 29 Wangjiang Rd, Chengdu 610065, China.,College of Life Sciences and Food Engineering, Yibin University, 8 Wuliangye Rd, Yibin 644000, China
| | - Jing Li
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Science, Sichuan University, 29 Wangjiang Rd, Chengdu 610065, China
| | - Xiuyue Zhang
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Science, Sichuan University, 29 Wangjiang Rd, Chengdu 610065, China
| | - Jinchuan Xing
- Department of Genetics, Rutgers, the State University of New Jersey, 145 Bevier Rd, Piscataway, NJ 08854, USA
| | - Bisong Yue
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Science, Sichuan University, 29 Wangjiang Rd, Chengdu 610065, China
| | - Jing Li
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Science, Sichuan University, 29 Wangjiang Rd, Chengdu 610065, China
| | - Zhenxin Fan
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Science, Sichuan University, 29 Wangjiang Rd, Chengdu 610065, China
| |
Collapse
|
26
|
Sii-Felice K, Castillo Padilla J, Relouzat F, Cheuzeville J, Tantawet S, Maouche L, Le Grand R, Leboulch P, Payen E. Enhanced Transduction of Macaca fascicularis Hematopoietic Cells with Chimeric Lentiviral Vectors. Hum Gene Ther 2019; 30:1306-1323. [DOI: 10.1089/hum.2018.179] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Karine Sii-Felice
- Division of Innovative Therapies, UMR E007, Institute of Biology François Jacob, CEA, Paris-Sud University, Paris-Saclay University, Fontenay aux Roses, France
| | - Javier Castillo Padilla
- Division of Innovative Therapies, UMR E007, Institute of Biology François Jacob, CEA, Paris-Sud University, Paris-Saclay University, Fontenay aux Roses, France
- Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Francis Relouzat
- Division of Innovative Therapies, UMR E007, Institute of Biology François Jacob, CEA, Paris-Sud University, Paris-Saclay University, Fontenay aux Roses, France
| | - Joëlle Cheuzeville
- Division of Innovative Therapies, UMR E007, Institute of Biology François Jacob, CEA, Paris-Sud University, Paris-Saclay University, Fontenay aux Roses, France
- bluebird bio France, Fontenay aux Roses, France
| | - Siriporn Tantawet
- Division of Innovative Therapies, UMR E007, Institute of Biology François Jacob, CEA, Paris-Sud University, Paris-Saclay University, Fontenay aux Roses, France
| | - Leïla Maouche
- Division of Innovative Therapies, UMR E007, Institute of Biology François Jacob, CEA, Paris-Sud University, Paris-Saclay University, Fontenay aux Roses, France
- INSERM, Paris, France
| | - Roger Le Grand
- Immunology of Viral Infections and Autoimmune Diseases, UMR 1184, IDMIT Department, Institute of Biology François Jacob, INSERM, CEA, Paris-Sud University, Paris-Saclay University, Fontenay aux Roses, France
| | - Philippe Leboulch
- Division of Innovative Therapies, UMR E007, Institute of Biology François Jacob, CEA, Paris-Sud University, Paris-Saclay University, Fontenay aux Roses, France
- Ramathibodi Hospital and Mahidol University, Bangkok, Thailand
- Harvard Medical School and Genetics Division, Department of Medicine, Brigham and Women's Hospital, Boston Massachusetts
| | - Emmanuel Payen
- Division of Innovative Therapies, UMR E007, Institute of Biology François Jacob, CEA, Paris-Sud University, Paris-Saclay University, Fontenay aux Roses, France
- INSERM, Paris, France
| |
Collapse
|
27
|
Binti Badlishah Sham NI, Lewin SD, Grant MM. Proteomic Investigations of In Vitro and In Vivo Models of Periodontal Disease. Proteomics Clin Appl 2019; 14:e1900043. [PMID: 31419032 DOI: 10.1002/prca.201900043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/29/2019] [Indexed: 12/14/2022]
Abstract
Proteomics has currently been a developing field in periodontal diseases to obtain protein information of certain samples. Periodontal disease is an inflammatory disorder that attacks the teeth, connective tissues, and alveolar bone within the oral cavity. Proteomics information can provide proteins that are differentially expressed in diseased or healthy samples. This review provides insight into approaches researching single species, multi species, bacteria, non-human, and human models of periodontal disease for proteomics information. The approaches that have been taken include gel electrophoresis and qualitative and quantitative mass spectrometry. This review is carried out by extracting information about in vitro and in vivo studies of proteomics in models of periodontal diseases that have been carried out in the past two decades. The research has concentrated on a relatively small but well-known group of microorganisms. A wide range of models has been reviewed and conclusions across the breadth of these studies are presented in this review.
Collapse
Affiliation(s)
- Nurul Iman Binti Badlishah Sham
- School of Dentistry, Institute of Clinical Sciences, University of Birmingham, 5 Mill Pool Way, Edgbaston, Birmingham, B5 7EG, UK.,Faculty of Dentistry , Universiti Sains Islam Malaysia, 55100, Kuala Lumpur, Malaysia
| | - Sean D Lewin
- School of Dentistry, Institute of Clinical Sciences, University of Birmingham, 5 Mill Pool Way, Edgbaston, Birmingham, B5 7EG, UK
| | - Melissa M Grant
- School of Dentistry, Institute of Clinical Sciences, University of Birmingham, 5 Mill Pool Way, Edgbaston, Birmingham, B5 7EG, UK
| |
Collapse
|
28
|
Cynomolgus macaque IL37 polymorphism and control of SIV infection. Sci Rep 2019; 9:7981. [PMID: 31138840 PMCID: PMC6538695 DOI: 10.1038/s41598-019-44235-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 04/27/2019] [Indexed: 01/17/2023] Open
Abstract
The association between gene polymorphisms and plasma virus load at the set point (SP-PVL) was investigated in Mauritian macaques inoculated with SIV. Among 44 macaques inoculated with 50 AID50, six individuals were selected: three with SP-PVL among the highest and three with SP-PVL among the lowest. The exons of 390 candidate genes of these six animals were sequenced. Twelve non-synonymous single nucleotide polymorphisms (NS-SNPs) lying in nine genes potentially associated with PVL were genotyped in 23 animals. Three NS-SNPs with probabilities of association with PVL less than 0.05 were genotyped in a total of 44 animals. One NS-SNP lying in exon 1 of the IL37 gene displayed a significant association (p = 3.33 × 10−4) and a strong odds ratio (19.52). Multiple linear regression modeling revealed three significant predictors of SP-PVL, including the IL37 exon 1 NS-SNP (p = 0.0004) and the MHC Class IB haplotypes M2 (p = 0.0007) and M6 (p = 0.0013). These three factors in conjunction explained 48% of the PVL variance (p = 4.8 × 10−6). The potential role of IL37 in the control of SIV infection is discussed.
Collapse
|
29
|
Christe KL, Salyards GW, Houghton SD, Ardeshir A, Yee JL. Modified Dose Efficacy Trial of a Canine Distemper-Measles Vaccine for Use in Rhesus Macaques ( Macaca mulatta). JOURNAL OF THE AMERICAN ASSOCIATION FOR LABORATORY ANIMAL SCIENCE : JAALAS 2019; 58:397-405. [PMID: 30922419 PMCID: PMC6526495 DOI: 10.30802/aalas-jaalas-18-000091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 09/26/2018] [Accepted: 10/29/2018] [Indexed: 12/31/2022]
Abstract
Measles virus causes a highly infectious disease in NHP. Clinical signs range from asymptomatic to fatal, although measles virus is most well-known for its characteristic generalized maculopapular rash. Along with appropriate quarantine practices, restricted human access, and appropriate personal protective equipment, vaccines are used to combat the risk of infection. The canine distemper-measles vaccine (CDMV), administered at the manufacturer's standard dose (1.0 mL IM), has been shown to be effective against clinical measles disease in rhesus macaques (Macaca mulatta). The goal of the current study was to test whether doses smaller than the manufacturer's recommended dose stimulated adequate antibody production to protect against infection. We hypothesized that either 0.25 or 0.5 mL IM of CDMV would stimulate antibody production comparable to the manufacturer's recommended dose. We found that the 0.25-mL dose was less effective at inducing antibodies than either the standard (1.0 mL) or 0.5-mL dose, which both yielded similar titers. The primary implication of this study informs balancing resource allocation and providing efficacious immunity. By using half the manufacturer-recommended dose, the 50% cost reduction may provide sufficient monetary incentive to implement, maintain, or modify measles vaccination programs at NHP facilities.
Collapse
Affiliation(s)
- Kari L Christe
- California National Primate Research Center, University of California, Davis, Davis, California; Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, Davis, California;,
| | - Gregory W Salyards
- California National Primate Research Center, University of California, Davis, Davis, California
| | - Serena D Houghton
- Pathogen Assay Laboratory, California National Primate Research Center, University of California, Davis, Davis, California
| | - Amir Ardeshir
- California National Primate Research Center, University of California, Davis, Davis, California
| | - JoAnn L Yee
- Pathogen Assay Laboratory, California National Primate Research Center, University of California, Davis, Davis, California
| |
Collapse
|
30
|
Zhou XJ, Wang J, Ye HH, Fa YZ. Signature MicroRNA expression profile is associated with lipid metabolism in African green monkey. Lipids Health Dis 2019; 18:55. [PMID: 30819205 PMCID: PMC6396449 DOI: 10.1186/s12944-019-0999-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 02/22/2019] [Indexed: 01/04/2023] Open
Abstract
Background Non-human primates (NHPs) are important models of medical research on obesity and cardiovascular diseases. As two of the most commonly used NHPs, cynomolgus macaque (CM) and African green monkey (AGM) own different capacities in lipid metabolism of which the mechanism is unknown. This study investigated the expression profiles of lipid metabolism-related microRNAs (miRNAs) in CM and AGM and their possible roles in controlling lipid metabolism-related gene expression. Methods By small RNA deep sequencing, the plasma miRNA expression patterns of CM and AGM were compared. The lipid metabolism-related miRNAs were validated through quantitative reverse-transcription (RT) polymerase chain reaction (PCR). Related-target genes were predicted by TargetScan and validated in Vero cells. Results Compared to CM, 85 miRNAs were upregulated with over 1.5-fold change in AGM of which 12 miRNAs were related to lipid metabolism. miR-122, miR-9, miR-185, miR-182 exhibited the greatest fold changes(fold changes are 51.2, 3.8, 3.7, 3.3 respectively; all P < 0.01). And 77 miRNAs were downregulated with over 1.5-fold change in AGM of which 3, miR-370, miR-26, miR-128 (fold changes are 9.3, 1.8, 1.7 respectively; all P < 0.05) were related to lipid metabolism. The lipid metabolism-related gene targets were predicted by TargetScan and confirmed in the Vero cells. Conclusion We report for the first time a circulating lipid metabolism-related miRNA profile for CM and AGM, which may add to knowledge of differences between these two non-human primate species and miRNAs’ roles in lipid metabolism. Electronic supplementary material The online version of this article (10.1186/s12944-019-0999-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiao-Jun Zhou
- Laboratory Animal Center, the Academy of Military Medical Sciences, Beijing, 100071, People's Republic of China.
| | - Jin Wang
- Laboratory Animal Center, the Academy of Military Medical Sciences, Beijing, 100071, People's Republic of China
| | - Hua-Hu Ye
- Laboratory Animal Center, the Academy of Military Medical Sciences, Beijing, 100071, People's Republic of China
| | - Yun-Zhi Fa
- Laboratory Animal Center, the Academy of Military Medical Sciences, Beijing, 100071, People's Republic of China
| |
Collapse
|
31
|
Haj AK, Arbanas JM, Yamniuk AP, Karl JA, Bussan HE, Drinkwater KY, Graham ME, Ericsen AJ, Prall TM, Moore K, Cheng L, Gao M, Graziano RF, Loffredo JT, Wiseman RW, O'Connor DH. Characterization of Mauritian Cynomolgus Macaque FcγR Alleles Using Long-Read Sequencing. THE JOURNAL OF IMMUNOLOGY 2018; 202:151-159. [PMID: 30530595 DOI: 10.4049/jimmunol.1800843] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 10/30/2018] [Indexed: 01/08/2023]
Abstract
The FcγRs are immune cell surface proteins that bind IgG and facilitate cytokine production, phagocytosis, and Ab-dependent, cell-mediated cytotoxicity. FcγRs play a critical role in immunity; variation in these genes is implicated in autoimmunity and other diseases. Cynomolgus macaques are an excellent animal model for many human diseases, and Mauritian cynomolgus macaques (MCMs) are particularly useful because of their restricted genetic diversity. Previous studies of MCM immune gene diversity have focused on the MHC and killer cell Ig-like receptor. In this study, we characterize FcγR diversity in 48 MCMs using PacBio long-read sequencing to identify novel alleles of each of the four expressed MCM FcγR genes. We also developed a high-throughput FcγR genotyping assay, which we used to determine allele frequencies and identify FcγR haplotypes in more than 500 additional MCMs. We found three alleles for FcγR1A, seven each for FcγR2A and FcγR2B, and four for FcγR3A; these segregate into eight haplotypes. We also assessed whether different FcγR alleles confer different Ab-binding affinities by surface plasmon resonance and found minimal difference in binding affinities across alleles for a panel of wild type and Fc-engineered human IgG. This work suggests that although MCMs may not fully represent the diversity of FcγR responses in humans, they may offer highly reproducible results for mAb therapy and toxicity studies.
Collapse
Affiliation(s)
- Amelia K Haj
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI 53705
| | | | | | - Julie A Karl
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI 53705
| | - Hailey E Bussan
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI 53705
| | - Kenneth Y Drinkwater
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53715
| | - Michael E Graham
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53715
| | - Adam J Ericsen
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53715
| | - Trent M Prall
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53715
| | | | - Lin Cheng
- Bristol-Myers Squibb, Princeton, NJ 08648; and
| | - Mian Gao
- Bristol-Myers Squibb, Princeton, NJ 08648; and
| | | | | | - Roger W Wiseman
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI 53705.,Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53715
| | - David H O'Connor
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI 53705; .,Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53715
| |
Collapse
|
32
|
Ishigaki H, Shiina T, Ogasawara K. MHC-identical and transgenic cynomolgus macaques for preclinical studies. Inflamm Regen 2018; 38:30. [PMID: 30479676 PMCID: PMC6249769 DOI: 10.1186/s41232-018-0088-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 10/19/2018] [Indexed: 01/14/2023] Open
Abstract
Cynomolgus macaques are useful experimental animals that are physiologically and genetically close to humans. We have developed two kinds of experimental usage of cynomolgus macaque: transplantation and disease models. First, we identified certain major histocompatibility complex (MHC) haplotypes including homozygotes and heterozygotes in cynomolgus macaques native to the Philippines, because they have less polymorphism in the MHC than that in other origins such as Vietnam and Indonesia. As a preclinical model of the induced pluripotent stem cell (iPSC) stock project, we established iPSCs from various types of MHC homozygous macaques, which were transplanted into compatible MHC heterozygous macaques, the iPSC stock project was experimentally shown to be effective. Second, to obtain disease models of cynomolgus macaques for studies on regenerative medicine including cell therapies, we established two kinds of genetic technology to modify cynomolgus macaques: transgenic technology and gene editing technology using CRISPR-Cas9. We will establish disease models, such as Alzheimer's disease and progeria (Werner syndrome). In future, we will distribute the MHC-identical cynomolgus monkeys and genetically modified macaques to researchers, especially those engaging in regenerative medicine.
Collapse
Affiliation(s)
- Hirohito Ishigaki
- 1Division of Pathology and Disease Regulation, Department of Pathology, Shiga University of Medical Science, Setatsukinowa, Otsu, Shiga 520-2192 Japan
| | - Takashi Shiina
- 2Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, 143 Shiomokasuya, Isehara, Kanagawa 259-1193 Japan
| | - Kazumasa Ogasawara
- 1Division of Pathology and Disease Regulation, Department of Pathology, Shiga University of Medical Science, Setatsukinowa, Otsu, Shiga 520-2192 Japan.,3Research Center for Animal Life Science, Shiga University of Medical Science, Setatsukinowa, Otsu, Shiga 520-2192 Japan
| |
Collapse
|
33
|
Cook JC, Wu H, Aleo MD, Adkins K. Principles of precision medicine and its application in toxicology. J Toxicol Sci 2018; 43:565-577. [PMID: 30298845 DOI: 10.2131/jts.43.565] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Precision medicine is an approach to developing drugs that focuses on employing biomarkers to stratify patients in clinical trials with the goal of improving efficacy and/or safety outcomes, ultimately increasing the odds of clinical success and drug approval. Precision medicine is an important tool for toxicologists to utilize, because its principles can be used to decide whether to pursue a drug target, to understand interindividual differences in response to drugs in both nonclinical and clinical settings, to aid in selecting doses that optimize efficacy or reduce adverse events, and to facilitate understanding of a drug's mode-of-action. Nonclinical models such as the mouse and non-human primate can be used to understand genetic variation and its potential translation to humans, and are available for toxicologists to employ in advance of drugs moving into clinical development. Understanding interindividual differences in response to drugs and how these differences can influence the drug's risk-benefit profile and lead to the identification of biomarkers that enhance patient efficacy and safety is of critical importance for toxicologists today, and in the future, as the fields of pharmacogenomics and genetics continue to advance.
Collapse
Affiliation(s)
- Jon C Cook
- Pfizer Worldwide Research and Development, Groton, CT 06340
| | - Hong Wu
- Pfizer Worldwide Research and Development, Groton, CT 06340
| | - Michael D Aleo
- Pfizer Worldwide Research and Development, Groton, CT 06340
| | - Karissa Adkins
- Pfizer Worldwide Research and Development, Groton, CT 06340
| |
Collapse
|
34
|
Tan T, Xia L, Tu K, Tang J, Yin S, Dai L, Lei P, Dong B, Hu H, Fan Y, Yu Y, Xie D. Improved Macaca fascicularis gene annotation reveals evolution of gene expression profiles in multiple tissues. BMC Genomics 2018; 19:787. [PMID: 30382841 PMCID: PMC6211470 DOI: 10.1186/s12864-018-5183-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 10/17/2018] [Indexed: 02/05/2023] Open
Abstract
Backgrounds Macaca fascicularis (M. fascicularis) is a primate model organism that played important role in studying human health. It is vital to better understand the similarity and differences of gene regulation between M. fascicularis and human. Current comparative study of gene regulation between the two species are limited by low quality of gene annotation and lack of regulatory element data on M. fascicularis genome. Results In this study, we improved the M. fascicularis gene annotation with 57 gene expression data from multiple tissues and, more importantly, a manual curation procedure. The new annotation enabled us to map gene expression and identify gene location more accurately. Conclusions Comparing with human gene expression data from the same cell types, we characterized the evolution of expression patterns of homologous genes. Electronic supplementary material The online version of this article (10.1186/s12864-018-5183-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tao Tan
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.,Yunnan Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
| | - Lin Xia
- State Key Laboratory of Biotherapy & Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Kailing Tu
- State Key Laboratory of Biotherapy & Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Jie Tang
- State Key Laboratory of Biotherapy & Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Senlin Yin
- State Key Laboratory of Biotherapy & Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Lunzhi Dai
- State Key Laboratory of Biotherapy & Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,Lab of PTM and Department of General Practice, West China Hospital, Sichuan University, Chengdu, China
| | - Peng Lei
- State Key Laboratory of Biotherapy & Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Biao Dong
- State Key Laboratory of Biotherapy & Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Hongbo Hu
- State Key Laboratory of Biotherapy & Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Yong Fan
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yang Yu
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.
| | - Dan Xie
- State Key Laboratory of Biotherapy & Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China. .,Center of Precision medicine, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
35
|
Gene expression dataset for whole cochlea of Macaca fascicularis. Sci Rep 2018; 8:15554. [PMID: 30349143 PMCID: PMC6197234 DOI: 10.1038/s41598-018-33985-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 10/09/2018] [Indexed: 11/17/2022] Open
Abstract
Macaca fascicularis is a highly advantageous model in which to study human cochlea with regard to both evolutionary proximity and physiological similarity of the auditory system. To better understand the properties of primate cochlear function, we analyzed the genes predominantly expressed in M. fascicularis cochlea. We compared the cochlear transcripts obtained from an adult male M. fascicularis by macaque and human GeneChip microarrays with those in multiple macaque and human tissues or cells and identified 344 genes with expression levels more than 2-fold greater than in the other tissues. These “cochlear signature genes” included 35 genes responsible for syndromic or nonsyndromic hereditary hearing loss. Gene set enrichment analysis revealed groups of genes categorized as “ear development” and “ear morphogenesis” in the top 20 gene ontology categories in the macaque and human arrays, respectively. This dataset will facilitate both the study of genes that contribute to primate cochlear function and provide insight to discover novel genes associated with hereditary hearing loss that have yet to be established using animal models.
Collapse
|
36
|
de Manuel M, Shiina T, Suzuki S, Dereuddre-Bosquet N, Garchon HJ, Tanaka M, Congy-Jolivet N, Aarnink A, Le Grand R, Marques-Bonet T, Blancher A. Whole genome sequencing in the search for genes associated with the control of SIV infection in the Mauritian macaque model. Sci Rep 2018; 8:7131. [PMID: 29739964 PMCID: PMC5940699 DOI: 10.1038/s41598-018-25071-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 04/11/2018] [Indexed: 11/09/2022] Open
Abstract
In the Mauritian macaque experimentally inoculated with SIV, gene polymorphisms potentially associated with the plasma virus load at a set point, approximately 100 days post inoculation, were investigated. Among the 42 animals inoculated with 50 AID50 of the same strain of SIV, none of which received any preventive or curative treatment, nine individuals were selected: three with a plasma virus load (PVL) among the lowest, three with intermediate PVL values and three among the highest PVL values. The complete genomes of these nine animals were then analyzed. Initially, attention was focused on variants with a potential functional impact on protein encoding genes (non-synonymous SNPs (NS-SNPs) and splicing variants). Thus, 424 NS-SNPs possibly associated with PVL were detected. The 424 candidates SNPs were genotyped in these 42 SIV experimentally infected animals (including the nine animals subjected to whole genome sequencing). The genes containing variants most probably associated with PVL at a set time point are analyzed herein.
Collapse
Affiliation(s)
- Marc de Manuel
- Institute of Evolutionary Biology, UPF-CSIC, PRBB, Dr. Aiguader 88, 08003, Barcelona, Spain
- Catalan Institution of Research and Advanced Studies, ICREA, Passeig de Lluís Companys, 23, 08010, Barcelona, Spain
- CNAG-CRG, Centre for Genomic Regulation, CRG, Barcelona Institute of Science and Technology (BIST, Baldiri i Reixac 4, 08028, Barcelona, Spain
| | - Takashi Shiina
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Shingo Suzuki
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Nathalie Dereuddre-Bosquet
- CEA - Université Paris-Sud 11 - INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases, IDMIT Department, IBFJ, 92265, Fontenay-aux-Roses, France
| | - Henri-Jean Garchon
- Inserm U1173, Simone Veil School of Health Sciences, University of Versailles Saint-Quentin-en-Yvelines, Montigny-le-Bretonneux, France
- Genetics Division, Ambroise Paré Hospital (AP-HP), Boulogne-Billancourt, France
| | - Masayuki Tanaka
- Support Center for Medical Research and Education, Tokai University, Isehara, Kanagawa, Japan
| | - Nicolas Congy-Jolivet
- Laboratoire d'immunogénétique moléculaire (LIMT, EA 3034, Faculté de médecine Purpan, Université Toulouse 3 (Université Paul Sabatier, UPS), Toulouse, France
- Laboratoire d'immunologie, CHU de Toulouse, France
| | - Alice Aarnink
- Laboratoire d'immunogénétique moléculaire (LIMT, EA 3034, Faculté de médecine Purpan, Université Toulouse 3 (Université Paul Sabatier, UPS), Toulouse, France
| | - Roger Le Grand
- CEA - Université Paris-Sud 11 - INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases, IDMIT Department, IBFJ, 92265, Fontenay-aux-Roses, France
| | - Tomas Marques-Bonet
- Institute of Evolutionary Biology, UPF-CSIC, PRBB, Dr. Aiguader 88, 08003, Barcelona, Spain
- Catalan Institution of Research and Advanced Studies, ICREA, Passeig de Lluís Companys, 23, 08010, Barcelona, Spain
- CNAG-CRG, Centre for Genomic Regulation, CRG, Barcelona Institute of Science and Technology (BIST, Baldiri i Reixac 4, 08028, Barcelona, Spain
| | - Antoine Blancher
- Laboratoire d'immunogénétique moléculaire (LIMT, EA 3034, Faculté de médecine Purpan, Université Toulouse 3 (Université Paul Sabatier, UPS), Toulouse, France.
- Laboratoire d'immunologie, CHU de Toulouse, France.
| |
Collapse
|
37
|
De Bruyn T, Ufuk A, Cantrill C, Kosa RE, Bi YA, Niosi M, Modi S, Rodrigues AD, Tremaine LM, Varma MVS, Galetin A, Houston JB. Predicting Human Clearance of Organic Anion Transporting Polypeptide Substrates Using Cynomolgus Monkey: In Vitro–In Vivo Scaling of Hepatic Uptake Clearance. Drug Metab Dispos 2018; 46:989-1000. [DOI: 10.1124/dmd.118.081315] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 04/26/2018] [Indexed: 12/17/2022] Open
|
38
|
Lee JR, Ryu DS, Park SJ, Choe SH, Cho HM, Lee SR, Kim SU, Kim YH, Huh JW. Successful application of human-based methyl capture sequencing for methylome analysis in non-human primate models. BMC Genomics 2018; 19:267. [PMID: 29669513 PMCID: PMC5907189 DOI: 10.1186/s12864-018-4666-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 04/12/2018] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND The characterization of genomic or epigenomic variation in human and animal models could provide important insight into pathophysiological mechanisms of various diseases, and lead to new developments in disease diagnosis and clinical intervention. The African green monkey (AGM; Chlorocebus aethiops) and cynomolgus monkey (CM; Macaca fascicularis) have long been considered important animal models in biomedical research. However, non-human primate-specific methods applicable to epigenomic analyses in AGM and CM are lacking. The recent development of methyl-capture sequencing (MC-seq) has an unprecedented advantage of cost-effectiveness, and further allows for extending the methylome coverage compared to conventional sequencing approaches. RESULTS Here, we used a human probe-designed MC-seq method to assay DNA methylation in DNA obtained from 13 CM and three AGM blood samples. To effectively adapt the human probe-designed target region for methylome analysis in non-human primates, we redefined the target regions, focusing on regulatory regions and intragenic regions with consideration of interspecific sequence homology and promoter region variation. Methyl-capture efficiency was controlled by the sequence identity between the captured probes based on the human reference genome and the AGM and CM genome sequences, respectively. Using reasonable guidelines, 56 and 62% of the human-based capture probes could be effectively mapped for DNA methylome profiling in the AGM and CM genome, respectively, according to numeric global statistics. In particular, our method could cover up to 89 and 87% of the regulatory regions of the AGM and CM genome, respectively. CONCLUSIONS Use of human-based MC-seq methods provides an attractive, cost-effective approach for the methylome profiling of non-human primates at the single-base resolution level.
Collapse
Affiliation(s)
- Ja-Rang Lee
- Primate Resource Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup, 56216, Republic of Korea
| | - Dong-Sung Ryu
- Theragen Etex Bio Institute, Suwon, Republic of Korea
| | - Sang-Je Park
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, 28116, Republic of Korea
| | - Se-Hee Choe
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, 28116, Republic of Korea.,Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - Hyeon-Mu Cho
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, 28116, Republic of Korea.,Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - Sang-Rae Lee
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, 28116, Republic of Korea.,Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - Sun-Uk Kim
- Futuristic Animal Resource and Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, 28116, Republic of Korea.,Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - Young-Hyun Kim
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, 28116, Republic of Korea. .,Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, 34113, Republic of Korea.
| | - Jae-Won Huh
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, 28116, Republic of Korea. .,Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, 34113, Republic of Korea.
| |
Collapse
|
39
|
Ufuk A, Kosa RE, Gao H, Bi YA, Modi S, Gates D, Rodrigues AD, Tremaine LM, Varma MVS, Houston JB, Galetin A. In Vitro-In Vivo Extrapolation of OATP1B-Mediated Drug-Drug Interactions in Cynomolgus Monkey. J Pharmacol Exp Ther 2018; 365:688-699. [PMID: 29643253 DOI: 10.1124/jpet.118.247767] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 04/06/2018] [Indexed: 12/31/2022] Open
Abstract
Hepatic organic anion-transporting polypeptides (OATP) 1B1 and 1B3 are clinically relevant transporters associated with significant drug-drug interactions (DDIs) and safety concerns. Given that OATP1Bs in cynomolgus monkey share >90% degree of gene and amino acid sequence homology with human orthologs, we evaluated the in vitro-in vivo translation of OATP1B-mediated DDI risk using this preclinical model. In vitro studies using plated cynomolgus monkey hepatocytes showed active uptake Km values of 2.0 and 3.9 µM for OATP1B probe substrates, pitavastatin and rosuvastatin, respectively. Rifampicin inhibited pitavastatin and rosuvastatin active uptake in monkey hepatocytes with IC50 values of 3.0 and 0.54 µM, respectively, following preincubation with the inhibitor. Intravenous pharmacokinetics of 2H4-pitavastatin and 2H6-rosuvastatin (0.2 mg/kg) and the oral pharmacokinetics of cold probes (2 mg/kg) were studied in cynomolgus monkeys (n = 4) without or with coadministration of single oral ascending doses of rifampicin (1, 3, 10, and 30 mg/kg). A rifampicin dose-dependent reduction in i.v. clearance of statins was observed. Additionally, oral pitavastatin and rosuvastatin plasma exposure increased up to 19- and 15-fold at the highest dose of rifampicin, respectively. Use of in vitro IC50 obtained following 1 hour preincubation with rifampicin (0.54 µM) predicted correctly the change in mean i.v. clearance and oral exposure of statins as a function of mean unbound maximum plasma concentration of rifampicin. This study demonstrates quantitative translation of in vitro OATP1B IC50 to predict DDIs using cynomolgus monkey as a preclinical model and provides further confidence in application of in vitro hepatocyte data for the prediction of clinical OATP1B-mediated DDIs.
Collapse
Affiliation(s)
- Ayşe Ufuk
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, University of Manchester, Manchester, United Kingdom (A.U., J.B.H., A.G.); and Pharmacokinetics, Dynamics, and Metabolism (R.E.K., H.G., Y.-A.B., A.D.R., L.M.T., M.V.S.V.) and Research Formulations, Pharmaceutical Sciences (S.M., D.G.), Medicine Design, Pfizer Worldwide R&D, Groton, Connecticut
| | - Rachel E Kosa
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, University of Manchester, Manchester, United Kingdom (A.U., J.B.H., A.G.); and Pharmacokinetics, Dynamics, and Metabolism (R.E.K., H.G., Y.-A.B., A.D.R., L.M.T., M.V.S.V.) and Research Formulations, Pharmaceutical Sciences (S.M., D.G.), Medicine Design, Pfizer Worldwide R&D, Groton, Connecticut
| | - Hongying Gao
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, University of Manchester, Manchester, United Kingdom (A.U., J.B.H., A.G.); and Pharmacokinetics, Dynamics, and Metabolism (R.E.K., H.G., Y.-A.B., A.D.R., L.M.T., M.V.S.V.) and Research Formulations, Pharmaceutical Sciences (S.M., D.G.), Medicine Design, Pfizer Worldwide R&D, Groton, Connecticut
| | - Yi-An Bi
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, University of Manchester, Manchester, United Kingdom (A.U., J.B.H., A.G.); and Pharmacokinetics, Dynamics, and Metabolism (R.E.K., H.G., Y.-A.B., A.D.R., L.M.T., M.V.S.V.) and Research Formulations, Pharmaceutical Sciences (S.M., D.G.), Medicine Design, Pfizer Worldwide R&D, Groton, Connecticut
| | - Sweta Modi
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, University of Manchester, Manchester, United Kingdom (A.U., J.B.H., A.G.); and Pharmacokinetics, Dynamics, and Metabolism (R.E.K., H.G., Y.-A.B., A.D.R., L.M.T., M.V.S.V.) and Research Formulations, Pharmaceutical Sciences (S.M., D.G.), Medicine Design, Pfizer Worldwide R&D, Groton, Connecticut
| | - Dana Gates
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, University of Manchester, Manchester, United Kingdom (A.U., J.B.H., A.G.); and Pharmacokinetics, Dynamics, and Metabolism (R.E.K., H.G., Y.-A.B., A.D.R., L.M.T., M.V.S.V.) and Research Formulations, Pharmaceutical Sciences (S.M., D.G.), Medicine Design, Pfizer Worldwide R&D, Groton, Connecticut
| | - A David Rodrigues
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, University of Manchester, Manchester, United Kingdom (A.U., J.B.H., A.G.); and Pharmacokinetics, Dynamics, and Metabolism (R.E.K., H.G., Y.-A.B., A.D.R., L.M.T., M.V.S.V.) and Research Formulations, Pharmaceutical Sciences (S.M., D.G.), Medicine Design, Pfizer Worldwide R&D, Groton, Connecticut
| | - Larry M Tremaine
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, University of Manchester, Manchester, United Kingdom (A.U., J.B.H., A.G.); and Pharmacokinetics, Dynamics, and Metabolism (R.E.K., H.G., Y.-A.B., A.D.R., L.M.T., M.V.S.V.) and Research Formulations, Pharmaceutical Sciences (S.M., D.G.), Medicine Design, Pfizer Worldwide R&D, Groton, Connecticut
| | - Manthena V S Varma
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, University of Manchester, Manchester, United Kingdom (A.U., J.B.H., A.G.); and Pharmacokinetics, Dynamics, and Metabolism (R.E.K., H.G., Y.-A.B., A.D.R., L.M.T., M.V.S.V.) and Research Formulations, Pharmaceutical Sciences (S.M., D.G.), Medicine Design, Pfizer Worldwide R&D, Groton, Connecticut
| | - J Brian Houston
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, University of Manchester, Manchester, United Kingdom (A.U., J.B.H., A.G.); and Pharmacokinetics, Dynamics, and Metabolism (R.E.K., H.G., Y.-A.B., A.D.R., L.M.T., M.V.S.V.) and Research Formulations, Pharmaceutical Sciences (S.M., D.G.), Medicine Design, Pfizer Worldwide R&D, Groton, Connecticut
| | - Aleksandra Galetin
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, University of Manchester, Manchester, United Kingdom (A.U., J.B.H., A.G.); and Pharmacokinetics, Dynamics, and Metabolism (R.E.K., H.G., Y.-A.B., A.D.R., L.M.T., M.V.S.V.) and Research Formulations, Pharmaceutical Sciences (S.M., D.G.), Medicine Design, Pfizer Worldwide R&D, Groton, Connecticut
| |
Collapse
|
40
|
Zhang Y, Sun J, Tan M, Liu Y, Li Q, Jiang H, Wang H, Li Z, Wan W, Jiang H, Lu H, Wang B, Ren J, Gong L. Species-Specific Involvement of Integrin αIIbβ3 in a Monoclonal Antibody CH12 Triggers Off-Target Thrombocytopenia in Cynomolgus Monkeys. Mol Ther 2018; 26:1457-1470. [PMID: 29724685 DOI: 10.1016/j.ymthe.2018.04.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 03/27/2018] [Accepted: 04/04/2018] [Indexed: 12/21/2022] Open
Abstract
CH12 is a novel humanized monoclonal antibody against epidermal growth factor receptor variant III (EGFRvIII) for cancer treatment. Unfortunately, in pre-clinical safety evaluation studies, acute thrombocytopenia was observed after administration of CH12 in cynomolgus monkeys, but not rats. More importantly, in vitro experiments found that CH12 can bind and activate platelets in cynomolgus monkey, but not human peripheral blood samples. Cynomolgus monkey-specific thrombocytopenia has been reported previously; however, the underlying mechanism remains unclear. Here, we first showed that CH12 induced thrombocytopenia in cynomolgus monkeys through off-target platelet binding and activation, resulting in platelet destruction. We subsequently found that integrin αIIbβ3 (which is expressed on platelets) contributed to this off-target toxicity. Furthermore, three-dimensional structural modeling of the αIIbβ3 molecules in cynomolgus monkeys, humans, and rats suggested that an additional unique loop exists in the ligand-binding pocket of the αIIb subunit in cynomolgus monkeys, which may explain why CH12 binds to platelets only in cynomolgus monkeys. Moreover, this study supported the hypothesis that the minor differences between cynomolgus monkeys and humans can confuse human risk assessments and suggests that species differences can help the prediction of human risks and avoid losses in drug development.
Collapse
Affiliation(s)
- Yiting Zhang
- Center for Drug Safety Evaluation and Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianhua Sun
- Center for Drug Safety Evaluation and Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Minjia Tan
- University of Chinese Academy of Sciences, Beijing 100049, China; The Chemical Proteomics Center and State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yongzhen Liu
- Center for Drug Safety Evaluation and Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Qian Li
- University of Chinese Academy of Sciences, Beijing 100049, China; The Chemical Proteomics Center and State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Hua Jiang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China
| | - Huamao Wang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China
| | - Zonghai Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China
| | - Wei Wan
- University of Chinese Academy of Sciences, Beijing 100049, China; Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Hualiang Jiang
- University of Chinese Academy of Sciences, Beijing 100049, China; Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Henglei Lu
- Center for Drug Safety Evaluation and Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Bingshun Wang
- Department of Biostatistics, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jin Ren
- Center for Drug Safety Evaluation and Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Likun Gong
- Center for Drug Safety Evaluation and Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
41
|
Vázquez-Borrego MC, Gahete MD, Martínez-Fuentes AJ, Fuentes-Fayos AC, Castaño JP, Kineman RD, Luque RM. Multiple signaling pathways convey central and peripheral signals to regulate pituitary function: Lessons from human and non-human primate models. Mol Cell Endocrinol 2018; 463:4-22. [PMID: 29253530 DOI: 10.1016/j.mce.2017.12.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 12/14/2017] [Accepted: 12/14/2017] [Indexed: 12/12/2022]
Abstract
The anterior pituitary gland is a key organ involved in the control of multiple physiological functions including growth, reproduction, metabolism and stress. These functions are controlled by five distinct hormone-producing pituitary cell types that produce growth hormone (somatotropes), prolactin (lactotropes), adrenocorticotropin (corticotropes), thyrotropin (thyrotropes) and follicle stimulating hormone/luteinizing hormone (gonadotropes). Classically, the synthesis and release of pituitary hormones was thought to be primarily regulated by central (neuroendocrine) signals. However, it is now becoming apparent that factors produced by pituitary hormone targets (endocrine and non-endocrine organs) can feedback directly to the pituitary to adjust pituitary hormone synthesis and release. Therefore, pituitary cells serve as sensors to integrate central and peripheral signals in order to fine-tune whole-body homeostasis, although it is clear that pituitary cell regulation is species-, age- and sex-dependent. The purpose of this review is to provide a comprehensive, general overview of our current knowledge of both central and peripheral regulators of pituitary cell function and associated intracellular mechanisms, focusing on human and non-human primates.
Collapse
Affiliation(s)
- M C Vázquez-Borrego
- Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), 14004 Cordoba, Spain; Department of Cell Biology, Physiology and Immunology, University of Cordoba, 14004 Cordoba, Spain; Reina Sofia University Hospital (HURS), 14004 Cordoba, Spain; CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004 Cordoba, Spain; Agrifood Campus of International Excellence (ceiA3), 14004 Cordoba, Spain
| | - M D Gahete
- Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), 14004 Cordoba, Spain; Department of Cell Biology, Physiology and Immunology, University of Cordoba, 14004 Cordoba, Spain; Reina Sofia University Hospital (HURS), 14004 Cordoba, Spain; CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004 Cordoba, Spain; Agrifood Campus of International Excellence (ceiA3), 14004 Cordoba, Spain
| | - A J Martínez-Fuentes
- Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), 14004 Cordoba, Spain; Department of Cell Biology, Physiology and Immunology, University of Cordoba, 14004 Cordoba, Spain; Reina Sofia University Hospital (HURS), 14004 Cordoba, Spain; CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004 Cordoba, Spain; Agrifood Campus of International Excellence (ceiA3), 14004 Cordoba, Spain
| | - A C Fuentes-Fayos
- Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), 14004 Cordoba, Spain; Department of Cell Biology, Physiology and Immunology, University of Cordoba, 14004 Cordoba, Spain; Reina Sofia University Hospital (HURS), 14004 Cordoba, Spain; CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004 Cordoba, Spain; Agrifood Campus of International Excellence (ceiA3), 14004 Cordoba, Spain
| | - J P Castaño
- Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), 14004 Cordoba, Spain; Department of Cell Biology, Physiology and Immunology, University of Cordoba, 14004 Cordoba, Spain; Reina Sofia University Hospital (HURS), 14004 Cordoba, Spain; CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004 Cordoba, Spain; Agrifood Campus of International Excellence (ceiA3), 14004 Cordoba, Spain
| | - R D Kineman
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA; Jesse Brown Veterans Affairs Medical Center, Research and Development Division, Chicago, IL, USA
| | - R M Luque
- Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), 14004 Cordoba, Spain; Department of Cell Biology, Physiology and Immunology, University of Cordoba, 14004 Cordoba, Spain; Reina Sofia University Hospital (HURS), 14004 Cordoba, Spain; CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004 Cordoba, Spain; Agrifood Campus of International Excellence (ceiA3), 14004 Cordoba, Spain.
| |
Collapse
|
42
|
Tang Y, Liu Y, Fan Y, Zhao Y, Feng J, Liu Y. To develop a novel animal model of myocardial infarction: A research imperative. Animal Model Exp Med 2018; 1:36-39. [PMID: 30891545 PMCID: PMC6357429 DOI: 10.1002/ame2.12010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 01/31/2018] [Indexed: 11/18/2022] Open
Abstract
Although great progress has been made in therapeutic interventions for coronary artery disease (CAD), it is still the deadliest disease in the world. Currently animals that are similar to human beings in their cardiovascular pathophysiology are being used to explore the pathogenesis and therapy of CAD. There have been a series of developments in creating CAD animal models using mice, rats, rabbits, dogs, and pigs, but unfortunately there is still no acceptable model for human CAD. The ideal CAD animal model should satisfy several conditions as follows. First of all, it should have a pathophysiological process for CAD that is similar to humans. Second, it should be useable for assessing drug efficacy. The last and most important condition is that the model can be used to duplicate clinical therapeutic skills. The limitations of current methods for making animal models have meant that these models not only do not duplicate the actual pathogenesis, but also cannot be used to simulate clinical therapy, and do not support scientific evaluation of drug efficacy. Therefore, the development of a fit-for-purpose animal model for CAD is imperative for future research. Such a development will lead to rapid progress and greater efficiency in CAD research. This paper summarizes the present situation in the field of CAD animal models, and puts forwards ideas for developing a novel animal model of myocardial infarction.
Collapse
Affiliation(s)
- Yao‐ping Tang
- Guangxi University of Chinese MedicineNanningGuangxiChina
| | - Ying Liu
- Guangxi University of Chinese MedicineNanningGuangxiChina
| | - Yong‐jie Fan
- Guangxi University of Chinese MedicineNanningGuangxiChina
| | - Yang‐yang Zhao
- Guangxi University of Chinese MedicineNanningGuangxiChina
| | - Jiao‐qun Feng
- Guangxi University of Chinese MedicineNanningGuangxiChina
| | - Yuan Liu
- Guangxi University of Chinese MedicineNanningGuangxiChina
| |
Collapse
|
43
|
Ishigaki H, Maeda T, Inoue H, Akagi T, Sasamura T, Ishida H, Inubushi T, Okahara J, Shiina T, Nakayama M, Itoh Y, Ogasawara K. Transplantation of iPS-Derived Tumor Cells with a Homozygous MHC Haplotype Induces GRP94 Antibody Production in MHC-Matched Macaques. Cancer Res 2017; 77:6001-6010. [PMID: 28882998 DOI: 10.1158/0008-5472.can-17-0775] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 07/24/2017] [Accepted: 08/31/2017] [Indexed: 11/16/2022]
Abstract
Immune surveillance is a critical component of the antitumor response in vivo, yet the specific components of the immune system involved in this regulatory response remain unclear. In this study, we demonstrate that autoantibodies can mitigate tumor growth in vitro and in vivo We generated two cancer cell lines, embryonal carcinoma and glioblastoma cell lines, from monkey-induced pluripotent stem cells (iPSC) carrying a homozygous haplotype of major histocompatibility complex (MHC, Mafa in Macaca fascicularis). To establish a monkey cancer model, we transplanted these cells into monkeys carrying the matched Mafa haplotype in one of the chromosomes. Neither Mafa-homozygous cancer cell line grew in monkeys carrying the matched Mafa haplotype heterozygously. We detected in the plasma of these monkeys an IgG autoantibody against GRP94, a heat shock protein. Injection of the plasma prevented growth of the tumor cells in immunodeficient mice, whereas plasma IgG depleted of GRP94 IgG exhibited reduced killing activity against cancer cells in vitro These results indicate that humoral immunity, including autoantibodies against GRP94, plays a role in cancer immune surveillance. Cancer Res; 77(21); 6001-10. ©2017 AACR.
Collapse
Affiliation(s)
- Hirohito Ishigaki
- Division of Pathology and Disease Regulation, Department of Pathology, Shiga University of Medical Science, Otsu, Shiga, Japan.
| | - Toshinaga Maeda
- Central Research Laboratory, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Hirokazu Inoue
- Division of Microbiology and Infectious Diseases, Department of Pathology, Shiga University of Medical Science, Otsu, Shiga, Japan
| | | | - Takako Sasamura
- Division of Pathology and Disease Regulation, Department of Pathology, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Hideaki Ishida
- Division of Pathology and Disease Regulation, Department of Pathology, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Toshiro Inubushi
- Biomedical MR Science Center, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Junko Okahara
- Central Institute for Experimental Animals, Kawasaki, Kanagawa, Japan
| | - Takashi Shiina
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Misako Nakayama
- Division of Pathology and Disease Regulation, Department of Pathology, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Yasushi Itoh
- Division of Pathology and Disease Regulation, Department of Pathology, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Kazumasa Ogasawara
- Division of Pathology and Disease Regulation, Department of Pathology, Shiga University of Medical Science, Otsu, Shiga, Japan
| |
Collapse
|
44
|
Kanthaswamy S, Ng J, Oldt RF, Valdivia L, Houghton P, Smith DG. ABO blood group phenotype frequency estimation using molecular phenotyping in rhesus and cynomolgus macaques. HLA 2017; 90:295-299. [PMID: 28800212 DOI: 10.1111/tan.13118] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 07/19/2017] [Accepted: 08/07/2017] [Indexed: 01/25/2023]
Abstract
A much larger sample (N = 2369) was used to evaluate a previously reported distribution of the A, AB and B blood group phenotypes in rhesus and cynomolgus macaques from six different regional populations. These samples, acquired from 15 different breeding and research facilities in the United States, were analyzed using a real-time quantitative polymerase chain reaction (qPCR) assay that targets single nucleotide polymorphisms (SNPs) responsible for the macaque A, B and AB phenotypes. The frequency distributions of blood group phenotypes of the two species differ significantly from each other and significant regional differentiation within the geographic ranges of each species was also observed. The B blood group phenotype was prevalent in rhesus macaques, especially those from India, while the frequencies of the A, B and AB phenotypes varied significantly among cynomolgus macaques from different geographic regions. The Mauritian cynomolgus macaques, despite having originated in Indonesia, showed significant (P ≪ .01) divergence from the Indonesian animals at the ABO blood group locus. Most Mauritian animals belonged to the B blood group while the Indonesian animals were mostly A. The close similarity in blood group frequency distributions between the Chinese rhesus and Indochinese cynomolgus macaques demonstrates that the introgression between these two species extends beyond the zone of intergradation in Indochina. This study underscores the importance of ABO blood group phenotyping of the domestic supply of macaques and their biospecimens.
Collapse
Affiliation(s)
- S Kanthaswamy
- California National Primate Research Center, University of California, Davis, California.,School of Mathematics and Natural Sciences, Arizona State University (ASU) at the West Campus, Glendale, Arizona
| | - J Ng
- School of Mathematics and Natural Sciences, Arizona State University (ASU) at the West Campus, Glendale, Arizona
| | - R F Oldt
- School of Mathematics and Natural Sciences, Arizona State University (ASU) at the West Campus, Glendale, Arizona.,Evolutionary Biology Graduate Program, School of Life Sciences, Arizona State University, Tempe, Arizona
| | - L Valdivia
- School of Mathematics and Natural Sciences, Arizona State University (ASU) at the West Campus, Glendale, Arizona
| | | | - D G Smith
- California National Primate Research Center, University of California, Davis, California
| |
Collapse
|
45
|
Ee Uli J, Yong CSY, Yeap SK, Rovie-Ryan JJ, Mat Isa N, Tan SG, Alitheen NB. RNA sequencing (RNA-Seq) of lymph node, spleen, and thymus transcriptome from wild Peninsular Malaysian cynomolgus macaque ( Macaca fascicularis). PeerJ 2017; 5:e3566. [PMID: 28828235 PMCID: PMC5563440 DOI: 10.7717/peerj.3566] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 06/21/2017] [Indexed: 12/25/2022] Open
Abstract
The cynomolgus macaque (Macaca fascicularis) is an extensively utilised nonhuman primate model for biomedical research due to its biological, behavioural, and genetic similarities to humans. Genomic information of cynomolgus macaque is vital for research in various fields; however, there is presently a shortage of genomic information on the Malaysian cynomolgus macaque. This study aimed to sequence, assemble, annotate, and profile the Peninsular Malaysian cynomolgus macaque transcriptome derived from three tissues (lymph node, spleen, and thymus) using RNA sequencing (RNA-Seq) technology. A total of 174,208,078 paired end 70 base pair sequencing reads were obtained from the Illumina Hi-Seq 2500 sequencer. The overall mapping percentage of the sequencing reads to the M. fascicularis reference genome ranged from 53–63%. Categorisation of expressed genes to Gene Ontology (GO) and KEGG pathway categories revealed that GO terms with the highest number of associated expressed genes include Cellular process, Catalytic activity, and Cell part, while for pathway categorisation, the majority of expressed genes in lymph node, spleen, and thymus fall under the Global overview and maps pathway category, while 266, 221, and 138 genes from lymph node, spleen, and thymus were respectively enriched in the Immune system category. Enriched Immune system pathways include Platelet activation pathway, Antigen processing and presentation, B cell receptor signalling pathway, and Intestinal immune network for IgA production. Differential gene expression analysis among the three tissues revealed 574 differentially expressed genes (DEG) between lymph and spleen, 5402 DEGs between lymph and thymus, and 7008 DEGs between spleen and thymus. Venn diagram analysis of expressed genes revealed a total of 2,630, 253, and 279 tissue-specific genes respectively for lymph node, spleen, and thymus tissues. This is the first time the lymph node, spleen, and thymus transcriptome of the Peninsular Malaysian cynomolgus macaque have been sequenced via RNA-Seq. Novel transcriptomic data will further enrich the present M. fascicularis genomic database and provide future research potentials, including novel transcript discovery, comparative studies, and molecular markers development.
Collapse
Affiliation(s)
- Joey Ee Uli
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Christina Seok Yien Yong
- Department of Biology, Faculty of Science, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Swee Keong Yeap
- China-ASEAN College of Marine Sciences, Xiamen University, Sepang, Selangor, Malaysia
| | - Jeffrine J Rovie-Ryan
- Department of Wildlife and National Parks (DWNP), Ex-Situ Conservation Division, Department of Wildlife and National Parks, Kuala Lumpur, Malaysia
| | - Nurulfiza Mat Isa
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Soon Guan Tan
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Noorjahan Banu Alitheen
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
46
|
Salyards GW, Lemoy MJ, Knych HK, Hill AE, Christe KL. Pharmacokinetics of a Novel, Transdermal Fentanyl Solution in Rhesus Macaques ( Macaca mulatta). JOURNAL OF THE AMERICAN ASSOCIATION FOR LABORATORY ANIMAL SCIENCE : JAALAS 2017; 56:443-451. [PMID: 28724494 PMCID: PMC5517334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 02/22/2017] [Accepted: 02/23/2017] [Indexed: 06/07/2023]
Abstract
Rhesus macaques (Macaca mulatta) are the most commonly used NHP biomedical model and experience both research and clinical procedures requiring analgesia. Opioids are a mainstay of analgesic therapy. A novel, transdermal fentanyl solution (TFS) has been developed as a long-acting, single-administration topical opioid and was reported to provide at least 4 d of effective plasma concentrations in beagles (Canis familiaris). To evaluate the pharmacokinetic profile of TFS in healthy adult rhesus macaques, we used a 2-period, 2-treatment crossover study of a single topical administration of 1.3 (25) and 2.6 mg/kg (50 μL/kg) TFS. TFS was applied to the clipped dorsal skin of adult rhesus macaques (n = 6; 3 male, 3 female) under ketamine sedation (10 mg/kg IM). We hypothesized that TFS in rhesus macaques would provide at least 4 d of effective plasma concentrations (assumed to be ≥ 0.2 ng/mL, based on human studies). Plasma fentanyl concentrations were determined by liquid chromatography-tandem mass spectrometry before drug administration and at 0, 0.5, 1, 2, 4, 8, 12, 24, 36, 48, 60, 72, 96, 120, 144, 168, 240, 336, 408, and 504 h afterward. Noncompartmental pharmacokinetic analysis was performed. For each dose (1.3 and 2.6 mg/kg), respectively, the maximal plasma concentration was 1.95 ± 0.40 and 4.19 ± 0.69 ng/mL, occurring at 21.3 ± 4.1 and 30.7 ± 8.7 h; the AUC was 227.3 ± 31.7 and 447.0 ± 49.1 h/ng/mL, and the terminal elimination half-life was 93.7 ± 7.1 and 98.8 ± 5.4 h. No adverse effects were noted after drug administration at either dose. Macaques maintained plasma fentanyl concentrations of 0.2 ng/mL or greater for at least 7 d after 1.3 mg/kg and at least 10 d after 2.6 mg/kg topical administration of TFS. A single TFS dose may provide efficacious analgesia to rhesus macaques and reduce stress, discomfort, and risk to animals and personnel.
Collapse
Affiliation(s)
- Gregory W Salyards
- Department of Primate Medicine, California National Primate Research Center, School of Veterinary Medicine, University of California, Davis, Davis, California;,
| | - Marie-Josee Lemoy
- Department of Primate Medicine, California National Primate Research Center, School of Veterinary Medicine, University of California, Davis, Davis, California
| | - Heather K Knych
- K L Maddy Equine Analytical Chemistry Laboratory, School of Veterinary Medicine, University of California, Davis, Davis, California
| | - Ashley E Hill
- California Animal Health and Food Safety Laboratory, Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, Davis, California
| | - Kari L Christe
- Department of Primate Medicine, California National Primate Research Center, Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, Davis, California
| |
Collapse
|
47
|
Harding JD. Genomic Tools for the Use of Nonhuman Primates in Translational Research. ILAR J 2017; 58:59-68. [PMID: 28838069 PMCID: PMC6279127 DOI: 10.1093/ilar/ilw042] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 12/19/2016] [Accepted: 12/20/2016] [Indexed: 12/31/2022] Open
Abstract
Nonhuman primates (NHPs) are important preclinical models for understanding the etiology of human diseases and for developing therapies and vaccines to cure or eliminate disease. Most human diseases have genetic components. Therefore, to be of maximal utility, the NHP species used for translational science should be as well characterized in regard to their genome and transcriptome as possible. This article reviews the current status of genomic information for the five NHP species used most often in translational research: rhesus macaque, cynomolgus macaque, vervet (African green) monkey, baboon, and marmoset NHP. These species have published whole genome sequences (with the exception of the baboon) and relatively well-characterized transcriptomes. Some have also been characterized in regard to specific genetic loci that are particularly related to translational concerns, such as the major histocompatability complex and the cytochrome P40 genes. Genomic resources to aid in stratifying captive populations in regard to genetic and phenotypic characteristics have been developed as an aid to enhancing reproducibility and facilitating more efficient use of animals. Taken together, the current genomic resources and numerous studies currently underway to improve them should enhance the value of NHPs as preclinical models of human disease.
Collapse
Affiliation(s)
- John D. Harding
- John D. Harding, PhD, recently retired after several years of service at the National Institutes of Health in Bethesda, Maryland, where he was program officer for grants funding the US National Primate Research Centers
| |
Collapse
|
48
|
Zhao X, Howell KA, He S, Brannan JM, Wec AZ, Davidson E, Turner HL, Chiang CI, Lei L, Fels JM, Vu H, Shulenin S, Turonis AN, Kuehne AI, Liu G, Ta M, Wang Y, Sundling C, Xiao Y, Spence JS, Doranz BJ, Holtsberg FW, Ward AB, Chandran K, Dye JM, Qiu X, Li Y, Aman MJ. Immunization-Elicited Broadly Protective Antibody Reveals Ebolavirus Fusion Loop as a Site of Vulnerability. Cell 2017; 169:891-904.e15. [PMID: 28525756 PMCID: PMC5803079 DOI: 10.1016/j.cell.2017.04.038] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 03/20/2017] [Accepted: 04/27/2017] [Indexed: 12/30/2022]
Abstract
While neutralizing antibodies are highly effective against ebolavirus infections, current experimental ebolavirus vaccines primarily elicit species-specific antibody responses. Here, we describe an immunization-elicited macaque antibody (CA45) that clamps the internal fusion loop with the N terminus of the ebolavirus glycoproteins (GPs) and potently neutralizes Ebola, Sudan, Bundibugyo, and Reston viruses. CA45, alone or in combination with an antibody that blocks receptor binding, provided full protection against all pathogenic ebolaviruses in mice, guinea pigs, and ferrets. Analysis of memory B cells from the immunized macaque suggests that elicitation of broadly neutralizing antibodies (bNAbs) for ebolaviruses is possible but difficult, potentially due to the rarity of bNAb clones and their precursors. Unexpectedly, germline-reverted CA45, while exhibiting negligible binding to full-length GP, bound a proteolytically remodeled GP with picomolar affinity, suggesting that engineered ebolavirus vaccines could trigger rare bNAb precursors more robustly. These findings have important implications for developing pan-ebolavirus vaccine and immunotherapeutic cocktails.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antibodies, Neutralizing/chemistry
- Antibodies, Neutralizing/immunology
- Antibodies, Neutralizing/isolation & purification
- Antibodies, Viral/chemistry
- Antibodies, Viral/immunology
- Antibodies, Viral/isolation & purification
- Complementarity Determining Regions
- Cross Reactions
- Ebola Vaccines/immunology
- Ebolavirus/immunology
- Epitope Mapping
- Epitopes, B-Lymphocyte/immunology
- Female
- Ferrets
- Guinea Pigs
- Hemorrhagic Fever, Ebola/immunology
- Immunoglobulin Fab Fragments/ultrastructure
- Macaca fascicularis
- Male
- Mice
- Mice, Inbred BALB C
- Models, Molecular
Collapse
Affiliation(s)
- Xuelian Zhao
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20878, USA
| | | | - Shihua He
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada; Deparment of Medical Microbiology, University of Manitoba, MB R3E 0J9, Canada
| | - Jennifer M Brannan
- US Army Medical Research Institute of Infectious Diseases, Frederick, MD 21701, USA
| | - Anna Z Wec
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | - Hannah L Turner
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Chi-I Chiang
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20878, USA
| | - Lin Lei
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20878, USA
| | - J Maximilian Fels
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Hong Vu
- Integrated BioTherapeutics, Rockville, MD 20850, USA
| | | | | | - Ana I Kuehne
- US Army Medical Research Institute of Infectious Diseases, Frederick, MD 21701, USA
| | - Guodong Liu
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada; Deparment of Medical Microbiology, University of Manitoba, MB R3E 0J9, Canada
| | - Mi Ta
- Integral Molecular, Philadelphia, PA 19104, USA
| | - Yimeng Wang
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20878, USA
| | - Christopher Sundling
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales 2010, Australia
| | - Yongli Xiao
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Jennifer S Spence
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Kartik Chandran
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - John M Dye
- US Army Medical Research Institute of Infectious Diseases, Frederick, MD 21701, USA
| | - Xiangguo Qiu
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada; Deparment of Medical Microbiology, University of Manitoba, MB R3E 0J9, Canada
| | - Yuxing Li
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20878, USA; Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | - M Javad Aman
- Integrated BioTherapeutics, Rockville, MD 20850, USA.
| |
Collapse
|
49
|
Sarmento-Cabral A, Peinado JR, Halliday LC, Malagon MM, Castaño JP, Kineman RD, Luque RM. Adipokines (Leptin, Adiponectin, Resistin) Differentially Regulate All Hormonal Cell Types in Primary Anterior Pituitary Cell Cultures from Two Primate Species. Sci Rep 2017; 7:43537. [PMID: 28349931 PMCID: PMC5640086 DOI: 10.1038/srep43537] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 01/25/2017] [Indexed: 12/27/2022] Open
Abstract
Adipose-tissue (AT) is an endocrine organ that dynamically secretes multiple hormones, the adipokines, which regulate key physiological processes. However, adipokines and their receptors are also expressed and regulated in other tissues, including the pituitary, suggesting that locally- and AT-produced adipokines might comprise a regulatory circuit that relevantly modulate pituitary cell-function. Here, we used primary pituitary cell-cultures from two normal nonhuman-primate species [Papio-anubis/Macaca-fascicularis] to determine the impact of different adipokines on the functioning of all anterior-pituitary cell-types. Leptin and resistin stimulated GH-release, a response that was blocked by somatostatin. Conversely, adiponectin decreased GH-release, and inhibited GHRH-, but not ghrelin-stimulated GH-secretion. Furthermore: 1) Leptin stimulated PRL/ACTH/FSH- but not LH/TSH-release; 2) adiponectin stimulated PRL-, inhibited ACTH- and did not alter LH/FSH/TSH-release; and 3) resistin increased ACTH-release and did not alter PRL/LH/FSH/TSH-secretion. These effects were mediated through the activation of common (AC/PKA) and distinct (PLC/PKC, intra-/extra-cellular calcium, PI3K/MAPK/mTOR) signaling-pathways, and by the gene-expression regulation of key receptors/transcriptional-factors involved in the functioning of these pituitary cell-types (e.g. GHRH/ghrelin/somatostatin/insulin/IGF-I-receptors/Pit-1). Finally, we found that primate pituitaries expressed leptin/adiponectin/resistin. Altogether, these and previous data suggest that local-production of adipokines/receptors, in conjunction with circulating adipokine-levels, might comprise a relevant regulatory circuit that contribute to the fine-regulation of pituitary functions.
Collapse
Affiliation(s)
- André Sarmento-Cabral
- Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), Córdoba, Spain.,Department of Cell Biology, Physiology and Immunology, University of Córdoba, Córdoba, Spain.,Hospital Universitario Reina Sofía (HURS), Córdoba, Spain.,CIBER de la Fisiopatología de la Obesidad y Nutrición (CIBERobn), Córdoba, Spain.,Campus de Excelencia Internacional Agroalimentario (ceiA3), Córdoba, Spain
| | - Juan R Peinado
- Department of Medical Sciences, Faculty of Medicine of Ciudad Real, University of Castilla-La Mancha, Spain
| | - Lisa C Halliday
- Biologic Resources Laboratory, University of Illinois at Chicago, Chicago, Illinois, USA
| | - María M Malagon
- Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), Córdoba, Spain.,Department of Cell Biology, Physiology and Immunology, University of Córdoba, Córdoba, Spain.,Hospital Universitario Reina Sofía (HURS), Córdoba, Spain.,CIBER de la Fisiopatología de la Obesidad y Nutrición (CIBERobn), Córdoba, Spain
| | - Justo P Castaño
- Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), Córdoba, Spain.,Department of Cell Biology, Physiology and Immunology, University of Córdoba, Córdoba, Spain.,Hospital Universitario Reina Sofía (HURS), Córdoba, Spain.,CIBER de la Fisiopatología de la Obesidad y Nutrición (CIBERobn), Córdoba, Spain.,Campus de Excelencia Internacional Agroalimentario (ceiA3), Córdoba, Spain
| | - Rhonda D Kineman
- Research and Development Division, Jesse Brown Veterans Affairs Medical Center, University of Illinois at Chicago, Chicago, Illinois, USA.,Department of Medicine, Section of Endocrinology, Diabetes, and Metabolism, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Raúl M Luque
- Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), Córdoba, Spain.,Department of Cell Biology, Physiology and Immunology, University of Córdoba, Córdoba, Spain.,Hospital Universitario Reina Sofía (HURS), Córdoba, Spain.,CIBER de la Fisiopatología de la Obesidad y Nutrición (CIBERobn), Córdoba, Spain.,Campus de Excelencia Internacional Agroalimentario (ceiA3), Córdoba, Spain
| |
Collapse
|
50
|
Gschwind AR, Singh A, Certa U, Reymond A, Heckel T. Diversity and regulatory impact of copy number variation in the primate Macaca fascicularis. BMC Genomics 2017; 18:144. [PMID: 28183275 PMCID: PMC5301398 DOI: 10.1186/s12864-017-3531-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Accepted: 02/01/2017] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Copy number variations (CNVs) are a significant source of genetic diversity and commonly found in mammalian genomes. We have generated a genome-wide CNV map for Cynomolgus monkeys (Macaca fascicularis). This crab-eating macaque is the closest animal model to humans that is used in biomedical research. RESULTS We show that Cynomolgus monkey CNVs are in general much smaller in size than gene loci and are specific to the population of origin. Genome-wide expression data from five vitally important organs demonstrates that CNVs in close proximity to transcription start sites associate strongly with expression changes. Among these eQTL genes we find an overrepresentation of genes involved in metabolism, receptor activity, and transcription. CONCLUSION These results provide evidence that CNVs shape tissue transcriptomes in monkey populations, potentially offering an adaptive advantage. We suggest that this genetic diversity should be taken into account when using Cynomolgus macaques as models.
Collapse
Affiliation(s)
- Andreas R Gschwind
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland.,Swiss Institute of Bioinformatics SIB, Lausanne, Switzerland
| | - Anjali Singh
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, 4070, Basel, Switzerland
| | - Ulrich Certa
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, 4070, Basel, Switzerland
| | - Alexandre Reymond
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland.
| | - Tobias Heckel
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, 4070, Basel, Switzerland.
| |
Collapse
|