1
|
Zhakula-Kostadinova N, Taylor AM. Patterns of Aneuploidy and Signaling Consequences in Cancer. Cancer Res 2024; 84:2575-2587. [PMID: 38924459 PMCID: PMC11325152 DOI: 10.1158/0008-5472.can-24-0169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/29/2024] [Accepted: 06/20/2024] [Indexed: 06/28/2024]
Abstract
Aneuploidy, or a change in the number of whole chromosomes or chromosome arms, is a near-universal feature of cancer. Chromosomes affected by aneuploidy are not random, with observed cancer-specific and tissue-specific patterns. Recent advances in genome engineering methods have allowed the creation of models with targeted aneuploidy events. These models can be used to uncover the downstream effects of individual aneuploidies on cancer phenotypes including proliferation, apoptosis, metabolism, and immune signaling. Here, we review the current state of research into the patterns of aneuploidy in cancer and their impact on signaling pathways and biological processes.
Collapse
Affiliation(s)
- Nadja Zhakula-Kostadinova
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
- Department of Genetics and Development, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York
| | - Alison M Taylor
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York
| |
Collapse
|
2
|
Rastogi M, Bartolucci M, Nanni M, Aloisio M, Vozzi D, Petretto A, Contestabile A, Cancedda L. Integrative multi-omic analysis reveals conserved cell-projection deficits in human Down syndrome brains. Neuron 2024; 112:2503-2523.e10. [PMID: 38810652 DOI: 10.1016/j.neuron.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 03/17/2024] [Accepted: 05/01/2024] [Indexed: 05/31/2024]
Abstract
Down syndrome (DS) is the most common genetic cause of cognitive disability. However, it is largely unclear how triplication of a small gene subset may impinge on diverse aspects of DS brain physiopathology. Here, we took a multi-omic approach and simultaneously analyzed by RNA-seq and proteomics the expression signatures of two diverse regions of human postmortem DS brains. We found that the overexpression of triplicated genes triggered global expression dysregulation, differentially affecting transcripts, miRNAs, and proteins involved in both known and novel biological candidate pathways. Among the latter, we observed an alteration in RNA splicing, specifically modulating the expression of genes involved in cytoskeleton and axonal dynamics in DS brains. Accordingly, we found an alteration in axonal polarization in neurons from DS human iPSCs and mice. Thus, our study provides an integrated multilayer expression database capable of identifying new potential targets to aid in designing future clinical interventions for DS.
Collapse
Affiliation(s)
- Mohit Rastogi
- Brain Development and Disease Laboratory, Istituto Italiano di Tecnologia, Genova 16163, Italy
| | - Martina Bartolucci
- Core Facilities - Clinical Proteomics and Metabolomics, IRCCS Istituto Giannina Gaslini, Genova 16147, Italy
| | - Marina Nanni
- Brain Development and Disease Laboratory, Istituto Italiano di Tecnologia, Genova 16163, Italy
| | | | - Diego Vozzi
- Central RNA Laboratory, Istituto Italiano di Tecnologia, Genova 16152, Italy
| | - Andrea Petretto
- Core Facilities - Clinical Proteomics and Metabolomics, IRCCS Istituto Giannina Gaslini, Genova 16147, Italy
| | - Andrea Contestabile
- Brain Development and Disease Laboratory, Istituto Italiano di Tecnologia, Genova 16163, Italy.
| | - Laura Cancedda
- Brain Development and Disease Laboratory, Istituto Italiano di Tecnologia, Genova 16163, Italy; Dulbecco Telethon Institute, Rome 00185, Italy.
| |
Collapse
|
3
|
Bafor EE, Erwin-Cohen RA, Martin T, Baker C, Kimmel AE, Duverger O, Fenimore JM, Ramba M, Spindel T, Hess MM, Sanford M, Lazarevic V, Benayoun BA, Young HA, Valencia JC. Aberrant CD8 +T cells drive reproductive dysfunction in female mice with elevated IFN-γ levels. Front Immunol 2024; 15:1368572. [PMID: 38698852 PMCID: PMC11064017 DOI: 10.3389/fimmu.2024.1368572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 03/22/2024] [Indexed: 05/05/2024] Open
Abstract
Introduction Interferon-gamma (IFN-γ) is pivotal in orchestrating immune responses during healthy pregnancy. However, its dysregulation, often due to autoimmunity, infections, or chronic inflammatory conditions, is implicated in adverse reproductive outcomes such as pregnancy failure or infertility. Additionally, the underlying immunological mechanisms remain elusive. Methods Here, we explore the impact of systemic IFN-γ elevation on cytotoxic T cell responses in female reproduction utilizing a systemic lupus-prone mouse model with impaired IFN-γ degradation. Results Our findings reveal that heightened IFN-γ levels triggered the infiltration of CD8+T cells in the pituitary gland and female reproductive tract (FRT), resulting in prolactin deficiency and subsequent infertility. Furthermore, we demonstrate that chronic IFN-γ elevation increases effector memory CD8+T cells in the murine ovary and uterus. Discussion These insights broaden our understanding of the role of elevated IFN-γ in female reproductive dysfunction and suggest CD8+T cells as potential immunotherapeutic targets in female reproductive disorders associated with chronic systemic IFN-γ elevation.
Collapse
Affiliation(s)
- Enitome E. Bafor
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, United States
| | - Rebecca A. Erwin-Cohen
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, United States
| | - Toni Martin
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, United States
| | - Clayton Baker
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, United States
- Molecular and Computational Biology Department, University of Southern California, Dornsife College of Letters, Arts and Sciences, Los Angeles, CA, United States
| | - Adrienne E. Kimmel
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, United States
| | - Olivier Duverger
- Craniofacial Anomalies and Regeneration Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, United States
| | - John M. Fenimore
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, United States
| | - Meredith Ramba
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, United States
| | - Thea Spindel
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, United States
| | - Megan M. Hess
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, United States
| | - Michael Sanford
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, United States
| | - Vanja Lazarevic
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States
| | - Bérénice A. Benayoun
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, United States
- Molecular and Computational Biology Department, University of Southern California, Dornsife College of Letters, Arts and Sciences, Los Angeles, CA, United States
| | - Howard A. Young
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, United States
| | - Julio C. Valencia
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, United States
| |
Collapse
|
4
|
Hawley LE, Stringer M, Deal AJ, Folz A, Goodlett CR, Roper RJ. Sex-specific developmental alterations in DYRK1A expression in the brain of a Down syndrome mouse model. Neurobiol Dis 2024; 190:106359. [PMID: 37992782 PMCID: PMC10843801 DOI: 10.1016/j.nbd.2023.106359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/02/2023] [Accepted: 11/18/2023] [Indexed: 11/24/2023] Open
Abstract
Aberrant neurodevelopment in Down syndrome (DS)-caused by triplication of human chromosome 21-is commonly attributed to gene dosage imbalance, linking overexpression of trisomic genes with disrupted developmental processes, with DYRK1A particularly implicated. We hypothesized that regional brain DYRK1A protein overexpression in trisomic mice varies over development in sex-specific patterns that may be distinct from Dyrk1a transcription, and reduction of Dyrk1a copy number from 3 to 2 in otherwise trisomic mice reduces DYRK1A, independent of other trisomic genes. DYRK1A overexpression varied with age, sex, and brain region, with peak overexpression on postnatal day (P) 6 in both sexes. Sex-dependent differences were also evident from P15-P24. Reducing Dyrk1a copy number confirmed that these differences depended on Dyrk1a gene dosage and not other trisomic genes. Trisomic Dyrk1a mRNA and protein expression were not highly correlated. Sex-specific patterns of DYRK1A overexpression during trisomic neurodevelopment may provide mechanistic targets for therapeutic intervention in DS.
Collapse
Affiliation(s)
- Laura E Hawley
- Department of Biology, Indiana University - Purdue University Indianapolis, 723 W. Michigan Street, SL306, Indianapolis, IN, 46202, USA
| | - Megan Stringer
- Department of Psychology, Indiana University - Purdue University Indianapolis, 402 N. Blackford Street, LD124, Indianapolis, IN, 46202, USA
| | - Abigail J Deal
- Department of Biology, Indiana University - Purdue University Indianapolis, 723 W. Michigan Street, SL306, Indianapolis, IN, 46202, USA
| | - Andrew Folz
- Department of Biology, Indiana University - Purdue University Indianapolis, 723 W. Michigan Street, SL306, Indianapolis, IN, 46202, USA
| | - Charles R Goodlett
- Department of Psychology, Indiana University - Purdue University Indianapolis, 402 N. Blackford Street, LD124, Indianapolis, IN, 46202, USA
| | - Randall J Roper
- Department of Biology, Indiana University - Purdue University Indianapolis, 723 W. Michigan Street, SL306, Indianapolis, IN, 46202, USA.
| |
Collapse
|
5
|
Bravo‐Estupiñan DM, Aguilar‐Guerrero K, Quirós S, Acón M, Marín‐Müller C, Ibáñez‐Hernández M, Mora‐Rodríguez RA. Gene dosage compensation: Origins, criteria to identify compensated genes, and mechanisms including sensor loops as an emerging systems-level property in cancer. Cancer Med 2023; 12:22130-22155. [PMID: 37987212 PMCID: PMC10757140 DOI: 10.1002/cam4.6719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 10/31/2023] [Accepted: 11/07/2023] [Indexed: 11/22/2023] Open
Abstract
The gene dosage compensation hypothesis presents a mechanism through which the expression of certain genes is modulated to compensate for differences in the dose of genes when additional chromosomes are present. It is one of the means through which cancer cells actively cope with the potential damaging effects of aneuploidy, a hallmark of most cancers. Dosage compensation arises through several processes, including downregulation or overexpression of specific genes and the relocation of dosage-sensitive genes. In cancer, a majority of compensated genes are generally thought to be regulated at the translational or post-translational level, and include the basic components of a compensation loop, including sensors of gene dosage and modulators of gene expression. Post-translational regulation is mostly undertaken by a general degradation or aggregation of remaining protein subunits of macromolecular complexes. An increasingly important role has also been observed for transcriptional level regulation. This article reviews the process of targeted gene dosage compensation in cancer and other biological conditions, along with the mechanisms by which cells regulate specific genes to restore cellular homeostasis. These mechanisms represent potential targets for the inhibition of dosage compensation of specific genes in aneuploid cancers. This article critically examines the process of targeted gene dosage compensation in cancer and other biological contexts, alongside the criteria for identifying genes subject to dosage compensation and the intricate mechanisms by which cells orchestrate the regulation of specific genes to reinstate cellular homeostasis. Ultimately, our aim is to gain a comprehensive understanding of the intricate nature of a systems-level property. This property hinges upon the kinetic parameters of regulatory motifs, which we have termed "gene dosage sensor loops." These loops have the potential to operate at both the transcriptional and translational levels, thus emerging as promising candidates for the inhibition of dosage compensation in specific genes. Additionally, they represent novel and highly specific therapeutic targets in the context of aneuploid cancer.
Collapse
Affiliation(s)
- Diana M. Bravo‐Estupiñan
- CICICA, Centro de Investigación en Cirugía y Cáncer Research Center on Surgery and CancerUniversidad de Costa RicaSan JoséCosta Rica
- Programa de Doctorado en Ciencias, Sistema de Estudios de Posgrado (SEP)Universidad de Costa RicaSan JoséCosta Rica
- Laboratorio de Terapia Génica, Departamento de BioquímicaEscuela Nacional de Ciencias Biológicas del Instituto Politécnico NacionalCiudad de MéxicoMexico
- Speratum Biopharma, Inc.Centro Nacional de Innovación Biotecnológica Nacional (CENIBiot)San JoséCosta Rica
| | - Karol Aguilar‐Guerrero
- CICICA, Centro de Investigación en Cirugía y Cáncer Research Center on Surgery and CancerUniversidad de Costa RicaSan JoséCosta Rica
- Maestría académica en Microbiología, Programa de Posgrado en Microbiología, Parasitología, Química Clínica e InmunologíaUniversidad de Costa RicaSan JoséCosta Rica
| | - Steve Quirós
- CICICA, Centro de Investigación en Cirugía y Cáncer Research Center on Surgery and CancerUniversidad de Costa RicaSan JoséCosta Rica
- Laboratorio de Quimiosensibilidad tumoral (LQT), Centro de Investigación en enfermedades Tropicales (CIET), Facultad de MicrobiologíaUniversidad de Costa RicaSan JoséCosta Rica
| | - Man‐Sai Acón
- CICICA, Centro de Investigación en Cirugía y Cáncer Research Center on Surgery and CancerUniversidad de Costa RicaSan JoséCosta Rica
| | - Christian Marín‐Müller
- Speratum Biopharma, Inc.Centro Nacional de Innovación Biotecnológica Nacional (CENIBiot)San JoséCosta Rica
| | - Miguel Ibáñez‐Hernández
- Laboratorio de Terapia Génica, Departamento de BioquímicaEscuela Nacional de Ciencias Biológicas del Instituto Politécnico NacionalCiudad de MéxicoMexico
| | - Rodrigo A. Mora‐Rodríguez
- CICICA, Centro de Investigación en Cirugía y Cáncer Research Center on Surgery and CancerUniversidad de Costa RicaSan JoséCosta Rica
- Laboratorio de Quimiosensibilidad tumoral (LQT), Centro de Investigación en enfermedades Tropicales (CIET), Facultad de MicrobiologíaUniversidad de Costa RicaSan JoséCosta Rica
| |
Collapse
|
6
|
Gautier MK, Kelley CM, Lee SH, Alldred MJ, McDaid J, Mufson EJ, Stutzmann GE, Ginsberg SD. Maternal choline supplementation protects against age-associated cholinergic and GABAergic basal forebrain neuron degeneration in the Ts65Dn mouse model of Down syndrome and Alzheimer's disease. Neurobiol Dis 2023; 188:106332. [PMID: 37890559 PMCID: PMC10752300 DOI: 10.1016/j.nbd.2023.106332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/02/2023] [Accepted: 10/22/2023] [Indexed: 10/29/2023] Open
Abstract
Down syndrome (DS) is a genetic disorder caused by triplication of human chromosome 21. In addition to intellectual disability, DS is defined by a premature aging phenotype and Alzheimer's disease (AD) neuropathology, including septohippocampal circuit vulnerability and degeneration of basal forebrain cholinergic neurons (BFCNs). The Ts65Dn mouse model recapitulates key aspects of DS/AD pathology, namely age-associated atrophy of BFCNs and cognitive decline in septohippocampal-dependent behavioral tasks. We investigated whether maternal choline supplementation (MCS), a well-tolerated treatment modality, protects vulnerable BFCNs from age- and genotype-associated degeneration in trisomic offspring. We also examined the effect of trisomy, and MCS, on GABAergic basal forebrain parvalbumin neurons (BFPNs), an unexplored neuronal population in this DS model. Unbiased stereological analyses of choline acetyltransferase (ChAT)-immunoreactive BFCNs and parvalbumin-immunoreactive BFPNs were conducted using confocal z-stacks of the medial septal nucleus and the vertical limb of the diagonal band (MSN/VDB) in Ts65Dn mice and disomic (2N) littermates at 3-4 and 10-12 months of age. MCS trisomic offspring displayed significant increases in ChAT-immunoreactive neuron number and density compared to unsupplemented counterparts, as well as increases in the area of the MSN/VDB occupied by ChAT-immunoreactive neuropil. MCS also rescued BFPN number and density in Ts65Dn offspring, a novel rescue of a non-cholinergic cell population. Furthermore, MCS prevented age-associated loss of BFCNs and MSN/VDB regional area in 2N offspring, indicating genotype-independent neuroprotective benefits. These findings demonstrate MCS provides neuroprotection of vulnerable BFCNs and non-cholinergic septohippocampal BFPNs, indicating this modality has translational value as an early life therapy for DS, as well as extending benefits to the aging population at large.
Collapse
Affiliation(s)
- Megan K Gautier
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, USA; Pathobiology and Translational Medicine Program, New York University Grossman School of Medicine, New York, NY, USA; NYU Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA
| | - Christy M Kelley
- Complex Adaptive Systems Initiative, Arizona State University, Tempe, AZ, USA; Institute for Future Health, Scottsdale, AZ, USA
| | - Sang Han Lee
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, USA; Department of Child and Adolescent Psychiatry, New York University Grossman School of Medicine, New York, NY, USA
| | - Melissa J Alldred
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, USA; Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, USA
| | - John McDaid
- Center for Neurodegenerative Disease and Therapeutics, Rosalind Franklin University/The Chicago Medical School, North Chicago, IL, USA
| | - Elliott J Mufson
- Departments of Translational Neuroscience and Neurology, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Grace E Stutzmann
- Center for Neurodegenerative Disease and Therapeutics, Rosalind Franklin University/The Chicago Medical School, North Chicago, IL, USA
| | - Stephen D Ginsberg
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, USA; NYU Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA; Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, USA; Department of Neuroscience & Physiology, New York University Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
7
|
Ortega-Gascó A, Parcerisas A, Hino K, Herranz-Pérez V, Ulloa F, Elias-Tersa A, Bosch M, García-Verdugo JM, Simó S, Pujadas L, Soriano E. Regulation of young-adult neurogenesis and neuronal differentiation by neural cell adhesion molecule 2 (NCAM2). Cereb Cortex 2023; 33:10931-10948. [PMID: 37724425 PMCID: PMC10629901 DOI: 10.1093/cercor/bhad340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 09/20/2023] Open
Abstract
Adult neurogenesis persists in mammals in the neurogenic zones, where newborn neurons are incorporated into preexisting circuits to preserve and improve learning and memory tasks. Relevant structural elements of the neurogenic niches include the family of cell adhesion molecules (CAMs), which participate in signal transduction and regulate the survival, division, and differentiation of radial glial progenitors (RGPs). Here we analyzed the functions of neural cell adhesion molecule 2 (NCAM2) in the regulation of RGPs in adult neurogenesis and during corticogenesis. We characterized the presence of NCAM2 across the main cell types of the neurogenic process in the dentate gyrus, revealing different levels of NCAM2 amid the progression of RGPs and the formation of neurons. We showed that Ncam2 overexpression in adult mice arrested progenitors in an RGP-like state, affecting the normal course of young-adult neurogenesis. Furthermore, changes in Ncam2 levels during corticogenesis led to transient migratory deficits but did not affect the survival and proliferation of RGPs, suggesting a differential role of NCAM2 in adult and embryonic stages. Our data reinforce the relevance of CAMs in the neurogenic process by revealing a significant role of Ncam2 levels in the regulation of RGPs during young-adult neurogenesis in the hippocampus.
Collapse
Affiliation(s)
- Alba Ortega-Gascó
- Department of Cell Biology, Physiology, and Immunology, Institute of Neurosciences, Universitat de Barcelona (UB), 643 Diagonal Ave., Barcelona 08028, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), CIBER, Instituto de Salud Carlos III, 4 Sinesio Delgado, Madrid 28031, Spain
| | - Antoni Parcerisas
- Department of Cell Biology, Physiology, and Immunology, Institute of Neurosciences, Universitat de Barcelona (UB), 643 Diagonal Ave., Barcelona 08028, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), CIBER, Instituto de Salud Carlos III, 4 Sinesio Delgado, Madrid 28031, Spain
- Department of Biosciences, Faculty of Sciences, Technology and Engineering, University of Vic – Central University of Catalonia (UVic-UCC), 13 Laura St., Vic 08500, Spain
- Tissue Repair and Regeneration Laboratory (TR2Lab), Institut de Recerca i Innovació en Ciències de la Vida i de la Salut a la Catalunya Central (IRIS-CC), 70 Roda Rd., Vic 08500, Spain
- Department of Basic Sciences, International University of Catalonia (UIC), S/N Josep Trueta St., Sant Cugat del Vallès 08195, Spain
| | - Keiko Hino
- Department of Cell Biology and Human Anatomy, University of California Davis, 1275 Med Science Dr., Davis, CA 95616, USA
| | - Vicente Herranz-Pérez
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), CIBER, Instituto de Salud Carlos III, 4 Sinesio Delgado, Madrid 28031, Spain
- Laboratory of Comparative Neurobiology, Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, 7 Catedràtic Agustín Escardino Benlloch St., València 46010, Spain
- Predepartamental Unit of Medicine, Faculty of Health Sciences, Jaume I University, S/N Vicent Sos Baynat Ave., Castelló de la Plana 12006, Spain
| | - Fausto Ulloa
- Department of Cell Biology, Physiology, and Immunology, Institute of Neurosciences, Universitat de Barcelona (UB), 643 Diagonal Ave., Barcelona 08028, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), CIBER, Instituto de Salud Carlos III, 4 Sinesio Delgado, Madrid 28031, Spain
| | - Alba Elias-Tersa
- Department of Cell Biology, Physiology, and Immunology, Institute of Neurosciences, Universitat de Barcelona (UB), 643 Diagonal Ave., Barcelona 08028, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), CIBER, Instituto de Salud Carlos III, 4 Sinesio Delgado, Madrid 28031, Spain
| | - Miquel Bosch
- Department of Basic Sciences, International University of Catalonia (UIC), S/N Josep Trueta St., Sant Cugat del Vallès 08195, Spain
| | - José Manuel García-Verdugo
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), CIBER, Instituto de Salud Carlos III, 4 Sinesio Delgado, Madrid 28031, Spain
- Laboratory of Comparative Neurobiology, Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, 7 Catedràtic Agustín Escardino Benlloch St., València 46010, Spain
| | - Sergi Simó
- Department of Cell Biology and Human Anatomy, University of California Davis, 1275 Med Science Dr., Davis, CA 95616, USA
| | - Lluís Pujadas
- Department of Cell Biology, Physiology, and Immunology, Institute of Neurosciences, Universitat de Barcelona (UB), 643 Diagonal Ave., Barcelona 08028, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), CIBER, Instituto de Salud Carlos III, 4 Sinesio Delgado, Madrid 28031, Spain
- Tissue Repair and Regeneration Laboratory (TR2Lab), Institut de Recerca i Innovació en Ciències de la Vida i de la Salut a la Catalunya Central (IRIS-CC), 70 Roda Rd., Vic 08500, Spain
- Department of Experimental Sciences and Methodology, Faculty of Heath Sciences and Wellfare, University of Vic - Central University of Catalonia (UVic-UCC), 7 Sagrada Família St., Vic 08500, Spain
| | - Eduardo Soriano
- Department of Cell Biology, Physiology, and Immunology, Institute of Neurosciences, Universitat de Barcelona (UB), 643 Diagonal Ave., Barcelona 08028, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), CIBER, Instituto de Salud Carlos III, 4 Sinesio Delgado, Madrid 28031, Spain
| |
Collapse
|
8
|
Inguscio CR, Lacavalla MA, Cisterna B, Zancanaro C, Malatesta M. Physical Training Chronically Stimulates the Motor Neuron Cell Nucleus in the Ts65Dn Mouse, a Model of Down Syndrome. Cells 2023; 12:1488. [PMID: 37296609 PMCID: PMC10252427 DOI: 10.3390/cells12111488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/20/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
Down syndrome (DS) is a genetically-based disease based on the trisomy of chromosome 21 (Hsa21). DS is characterized by intellectual disability in association with several pathological traits among which early aging and altered motor coordination are prominent. Physical training or passive exercise were found to be useful in counteracting motor impairment in DS subjects. In this study we used the Ts65Dn mouse, a widely accepted animal model of DS, to investigate the ultrastructural architecture of the medullary motor neuron cell nucleus taken as marker of the cell functional state. Using transmission electron microscopy, ultrastructural morphometry, and immunocytochemistry we carried out a detailed investigation of possible trisomy-related alteration(s) of nuclear constituents, which are known to vary their amount and distribution as a function of nuclear activity, as well as the effect of adapted physical training upon them. Results demonstrated that trisomy per se affects nuclear constituents to a limited extent; however, adapted physical training is able to chronically stimulate pre-mRNA transcription and processing activity in motor neuron nuclei of trisomic mice, although to a lesser extent than in their euploid mates. These findings are a step towards understanding the mechanisms underlying the positive effect of physical activity in DS.
Collapse
Affiliation(s)
| | | | | | - Carlo Zancanaro
- Department of Neurosciences, Biomedicine and Movement Sciences, Anatomy and Histology Section, University of Verona, Strada Le Grazie 8, I-37134 Verona, Italy; (C.R.I.); (M.A.L.); (B.C.); (M.M.)
| | | |
Collapse
|
9
|
Li R, Song B, Xu L, Zheng J, Pan W, Cai F, Wang J, Wu Y, Song W. Regulation of USP25 by SP1 Associates with Amyloidogenesis. J Alzheimers Dis 2023; 92:1459-1472. [PMID: 36938736 DOI: 10.3233/jad-221184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
Abstract
BACKGROUND Trisomy 21, an extra copy of human chromosome 21 (HSA21), causes most Down's syndrome (DS) cases. Individuals with DS inevitably develop Alzheimer's disease (AD) neuropathological phenotypes after middle age including amyloid plaques and tau neurofibrillary tangles. Ubiquitin Specific Peptidase 25 (USP25), encoding by USP25 gene located on HSA21, is a deubiquitinating enzyme, which plays an important role in both DS and AD pathogenesis. However, the regulation of USP25 remains unclear. OBJECTIVE We aimed to determine the regulation of USP25 by specificity protein 1 (SP1) in neuronal cells and its potential role in amyloidogenesis. METHODS The transcription start site and promoter activity was identified by SMART-RACE and Dual-luciferase assay. Functional SP1-responsive elements were examined by EMSA. USP25 expression was examined by RT-PCR and immunoblotting. Student's t-test or one-way ANOVA were applied or statistical analysis. RESULTS The transcription start site of human USP25 gene was identified. Three functional SP1 responsive elements in human USP25 gene were revealed. SP1 promotes USP25 transcription and subsequent USP25 protein expression, while SP1 inhibition significantly reduces USP25 expression in both non-neuronal and neuronal cells. Moreover, SP1 inhibition dramatically reduces amyloidogenesis. CONCLUSION We demonstrates that transcription factor SP1 regulates USP25 gene expression, which associates with amyloidogenesis. It suggests that SP1 signaling may play an important role in USP25 regulation and contribute to USP25-mediated DS and AD pathogenesis.
Collapse
Affiliation(s)
- Ran Li
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province,Zhejiang Provincial Clinical Research Center for Mental Disorders, School of Mental Health and Kangning Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Beibei Song
- Townsend Family Laboratories, Department of Psychiatry, Graduate Program in Neuroscience, The University of British Columbia, Vancouver, BC, Canada
| | - Lu Xu
- Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province,Zhejiang Provincial Clinical Research Center for Mental Disorders, School of Mental Health and Kangning Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jiali Zheng
- Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province,Zhejiang Provincial Clinical Research Center for Mental Disorders, School of Mental Health and Kangning Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wenhao Pan
- Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province,Zhejiang Provincial Clinical Research Center for Mental Disorders, School of Mental Health and Kangning Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Fang Cai
- Townsend Family Laboratories, Department of Psychiatry, Graduate Program in Neuroscience, The University of British Columbia, Vancouver, BC, Canada
| | - Juelu Wang
- Townsend Family Laboratories, Department of Psychiatry, Graduate Program in Neuroscience, The University of British Columbia, Vancouver, BC, Canada
| | - Yili Wu
- Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province,Zhejiang Provincial Clinical Research Center for Mental Disorders, School of Mental Health and Kangning Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,Oujiang Laboratory Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou, Zhejiang, China
| | - Weihong Song
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province,Zhejiang Provincial Clinical Research Center for Mental Disorders, School of Mental Health and Kangning Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,Oujiang Laboratory Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou, Zhejiang, China
| |
Collapse
|
10
|
Fulton SL, Wenderski W, Lepack AE, Eagle AL, Fanutza T, Bastle RM, Ramakrishnan A, Hays EC, Neal A, Bendl J, Farrelly LA, Al-Kachak A, Lyu Y, Cetin B, Chan JC, Tran TN, Neve RL, Roper RJ, Brennand KJ, Roussos P, Schimenti JC, Friedman AK, Shen L, Blitzer RD, Robison AJ, Crabtree GR, Maze I. Rescue of deficits by Brwd1 copy number restoration in the Ts65Dn mouse model of Down syndrome. Nat Commun 2022; 13:6384. [PMID: 36289231 PMCID: PMC9606253 DOI: 10.1038/s41467-022-34200-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/17/2022] [Indexed: 12/25/2022] Open
Abstract
With an incidence of ~1 in 800 births, Down syndrome (DS) is the most common chromosomal condition linked to intellectual disability worldwide. While the genetic basis of DS has been identified as a triplication of chromosome 21 (HSA21), the genes encoded from HSA21 that directly contribute to cognitive deficits remain incompletely understood. Here, we found that the HSA21-encoded chromatin effector, BRWD1, was upregulated in neurons derived from iPS cells from an individual with Down syndrome and brain of trisomic mice. We showed that selective copy number restoration of Brwd1 in trisomic animals rescued deficits in hippocampal LTP, cognition and gene expression. We demonstrated that Brwd1 tightly binds the BAF chromatin remodeling complex, and that increased Brwd1 expression promotes BAF genomic mistargeting. Importantly, Brwd1 renormalization rescued aberrant BAF localization, along with associated changes in chromatin accessibility and gene expression. These findings establish BRWD1 as a key epigenomic mediator of normal neurodevelopment and an important contributor to DS-related phenotypes.
Collapse
Affiliation(s)
- Sasha L Fulton
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Wendy Wenderski
- Department of Pathology, Stanford Medical School, Palo Alto, CA, 94305, USA
- Department of Genetics, Stanford Medical School, Palo Alto, CA, 94305, USA
- Department of Developmental Biology, Stanford Medical School, Palo Alto, CA, 94305, USA
- Howard Hughes Medical Institute, Stanford University, Palo Alto, CA, 94305, USA
| | - Ashley E Lepack
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Andrew L Eagle
- Department of Physiology, Michigan State University, East Lansing, MI, 48824, USA
| | - Tomas Fanutza
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Ryan M Bastle
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Aarthi Ramakrishnan
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Emma C Hays
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Arianna Neal
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Jaroslav Bendl
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Center for Disease Neuroepigenomics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Lorna A Farrelly
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Amni Al-Kachak
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Yang Lyu
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Bulent Cetin
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Jennifer C Chan
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Tina N Tran
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, 14853, USA
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14853, USA
| | - Rachael L Neve
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Randall J Roper
- Department of Biology, Indiana University-Purdue University, Indianapolis, IN, 46202, USA
| | - Kristen J Brennand
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Departments of Psychiatry and Genetics, Wu Tsai Institute, Yale School of Medicine, New Haven, CT, 065109, USA
| | - Panos Roussos
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Center for Disease Neuroepigenomics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- J.J. Peters Veterans Affairs Hospital, Bronx, NY, 10468, USA
| | - John C Schimenti
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, 14853, USA
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14853, USA
| | - Allyson K Friedman
- Department of Biological Sciences, City University of New York-Hunter College, New York, NY, 10065, USA
| | - Li Shen
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Robert D Blitzer
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Alfred J Robison
- Department of Physiology, Michigan State University, East Lansing, MI, 48824, USA
| | - Gerald R Crabtree
- Department of Pathology, Stanford Medical School, Palo Alto, CA, 94305, USA
- Department of Genetics, Stanford Medical School, Palo Alto, CA, 94305, USA
- Department of Developmental Biology, Stanford Medical School, Palo Alto, CA, 94305, USA
- Howard Hughes Medical Institute, Stanford University, Palo Alto, CA, 94305, USA
| | - Ian Maze
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Howard Hughes Medical Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
11
|
Caldwell ALM, Sancho L, Deng J, Bosworth A, Miglietta A, Diedrich JK, Shokhirev MN, Allen NJ. Aberrant astrocyte protein secretion contributes to altered neuronal development in multiple models of neurodevelopmental disorders. Nat Neurosci 2022; 25:1163-1178. [PMID: 36042312 PMCID: PMC10395413 DOI: 10.1038/s41593-022-01150-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 07/20/2022] [Indexed: 01/01/2023]
Abstract
Astrocytes negatively impact neuronal development in many models of neurodevelopmental disorders (NDs); however, how they do this, and if mechanisms are shared across disorders, is not known. In this study, we developed a cell culture system to ask how astrocyte protein secretion and gene expression change in three mouse models of genetic NDs (Rett, Fragile X and Down syndromes). ND astrocytes increase release of Igfbp2, a secreted inhibitor of insulin-like growth factor (IGF). IGF rescues neuronal deficits in many NDs, and we found that blocking Igfbp2 partially rescues inhibitory effects of Rett syndrome astrocytes, suggesting that increased astrocyte Igfbp2 contributes to decreased IGF signaling in NDs. We identified that increased BMP signaling is upstream of protein secretion changes, including Igfbp2, and blocking BMP signaling in Fragile X and Rett syndrome astrocytes reverses inhibitory effects on neurite outgrowth. This work provides a resource of astrocyte-secreted proteins in health and ND models and identifies novel targets for intervention in diverse NDs.
Collapse
Affiliation(s)
- Alison L M Caldwell
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
- Neurosciences Graduate Program, University of California, San Diego, La Jolla, CA, USA
| | - Laura Sancho
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - James Deng
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
- Neurosciences Graduate Program, University of California, San Diego, La Jolla, CA, USA
| | - Alexandra Bosworth
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
- Neurosciences Graduate Program, University of California, San Diego, La Jolla, CA, USA
| | - Audrey Miglietta
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Jolene K Diedrich
- Mass Spectrometry Core, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Maxim N Shokhirev
- Razavi Newman Integrative Genomics and Bioinformatics Core, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Nicola J Allen
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA.
| |
Collapse
|
12
|
Integrated Quantitative Neuro-Transcriptome Analysis of Several Brain Areas in Human Trisomy 21. Genes (Basel) 2022; 13:genes13040628. [PMID: 35456434 PMCID: PMC9033037 DOI: 10.3390/genes13040628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/15/2022] [Accepted: 03/18/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Although Down syndrome (DS) is the most frequent human chromosomal disorder and it causes mainly intellectual disability, its clinical presentation is complex and variable. Objective: We aimed to analyze and compare the transcriptome disruption in several brain areas from individuals with DS and euploid controls as a new approach to consider a global systemic differential disruption of gene expression beyond chromosome 21. Methods: We used data from a DNA microarray experiment with ID GSE59630 previously deposited in the GEO DataSet of NCBI database. The array contained log2 values of 17,537 human genes expressed in several aeras of the human brain. We calculated the differential gene expression (Z-ratio) of all genes. Results: We found several differences in gene expression along the DS brain transcriptome, not only in the genes located at chromosome 21 but in other chromosomes. Moreover, we registered the lowest Z-ratio correlation between the age ranks of 16–22 weeks of gestation and 39–42 years (R2 = 0.06) and the highest Z-ratio correlation between the age ranks of 30–39 years and 40–42 years (R2 = 0.89). The analysis per brain areas showed that the hippocampus and the cerebellar cortex had the most different gene expression pattern when compared to the brain as a whole. Conclusions: Our results support the hypothesis of a systemic imbalance of brain protein homeostasis, or proteostasis network of cognitive and neuroplasticity process, as new model to explain the important effect on the neurophenotype of trisomy that occur not only in the loci of chromosome 21 but also in genes located in other chromosomes.
Collapse
|
13
|
Ishihara K. The accumulation of copper in the brain of Down syndrome promotes oxidative stress: possible mechanism underlying cognitive impairment. J Clin Biochem Nutr 2022; 71:16-21. [PMID: 35903608 PMCID: PMC9309086 DOI: 10.3164/jcbn.21-155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 12/29/2021] [Indexed: 11/22/2022] Open
Affiliation(s)
- Keiichi Ishihara
- Department of Pathological Biochemistry, Kyoto Pharmaceutical University
| |
Collapse
|
14
|
Acón M, Geiß C, Torres-Calvo J, Bravo-Estupiñan D, Oviedo G, Arias-Arias JL, Rojas-Matey LA, Edwin B, Vásquez-Vargas G, Oses-Vargas Y, Guevara-Coto J, Segura-Castillo A, Siles-Canales F, Quirós-Barrantes S, Régnier-Vigouroux A, Mendes P, Mora-Rodríguez R. MYC dosage compensation is mediated by miRNA-transcription factor interactions in aneuploid cancer. iScience 2021; 24:103407. [PMID: 34877484 PMCID: PMC8627999 DOI: 10.1016/j.isci.2021.103407] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 10/01/2021] [Accepted: 11/03/2021] [Indexed: 12/11/2022] Open
Abstract
We hypothesize that dosage compensation of critical genes arises from systems-level properties for cancer cells to withstand the negative effects of aneuploidy. We identified several candidate genes in cancer multiomics data and developed a biocomputational platform to construct a mathematical model of their interaction network with micro-RNAs and transcription factors, where the property of dosage compensation emerged for MYC and was dependent on the kinetic parameters of its feedback interactions with three micro-RNAs. These circuits were experimentally validated using a genetic tug-of-war technique to overexpress an exogenous MYC, leading to overexpression of the three microRNAs involved and downregulation of endogenous MYC. In addition, MYC overexpression or inhibition of its compensating miRNAs led to dosage-dependent cytotoxicity in MYC-amplified colon cancer cells. Finally, we identified negative correlation of MYC dosage compensation with patient survival in TCGA breast cancer patients, highlighting the potential of this mechanism to prevent aneuploid cancer progression.
Collapse
Affiliation(s)
- ManSai Acón
- Lab of Tumor Chemosensitivity (LQT), Research Center for Tropical Diseases (CIET), Faculty of Microbiology, University of Costa Rica, 11501-2060 San José, Costa Rica
- Master Program on Bioinformatics and Systems Biology, Postgraduate Program SEP, University of Costa Rica, 11501-2060 San José, Costa Rica
| | - Carsten Geiß
- Institute for Developmental Biology and Neurobiology, Johannes Gutenberg University, 55128 Mainz, Germany
| | - Jorge Torres-Calvo
- Lab of Tumor Chemosensitivity (LQT), Research Center for Tropical Diseases (CIET), Faculty of Microbiology, University of Costa Rica, 11501-2060 San José, Costa Rica
- Master Program on Bioinformatics and Systems Biology, Postgraduate Program SEP, University of Costa Rica, 11501-2060 San José, Costa Rica
| | - Diana Bravo-Estupiñan
- Lab of Tumor Chemosensitivity (LQT), Research Center for Tropical Diseases (CIET), Faculty of Microbiology, University of Costa Rica, 11501-2060 San José, Costa Rica
- Ph.D. Program in Sciences, Postgraduate Program SEP, University of Costa Rica, 11501-2060 San José, Costa Rica
| | - Guillermo Oviedo
- Lab of Tumor Chemosensitivity (LQT), Research Center for Tropical Diseases (CIET), Faculty of Microbiology, University of Costa Rica, 11501-2060 San José, Costa Rica
- Master Program on Bioinformatics and Systems Biology, Postgraduate Program SEP, University of Costa Rica, 11501-2060 San José, Costa Rica
| | - Jorge L Arias-Arias
- Lab of Tumor Chemosensitivity (LQT), Research Center for Tropical Diseases (CIET), Faculty of Microbiology, University of Costa Rica, 11501-2060 San José, Costa Rica
| | - Luis A Rojas-Matey
- Master Program on Bioinformatics and Systems Biology, Postgraduate Program SEP, University of Costa Rica, 11501-2060 San José, Costa Rica
| | - Baez Edwin
- Lab of Tumor Chemosensitivity (LQT), Research Center for Tropical Diseases (CIET), Faculty of Microbiology, University of Costa Rica, 11501-2060 San José, Costa Rica
- Master Program on Bioinformatics and Systems Biology, Postgraduate Program SEP, University of Costa Rica, 11501-2060 San José, Costa Rica
| | - Gloriana Vásquez-Vargas
- Lab of Tumor Chemosensitivity (LQT), Research Center for Tropical Diseases (CIET), Faculty of Microbiology, University of Costa Rica, 11501-2060 San José, Costa Rica
| | - Yendry Oses-Vargas
- Lab of Tumor Chemosensitivity (LQT), Research Center for Tropical Diseases (CIET), Faculty of Microbiology, University of Costa Rica, 11501-2060 San José, Costa Rica
| | - José Guevara-Coto
- School of Computer Sciences and Informatics (ECCI), University of Costa Rica, San Jose Costa Rica, 11501-2060 San José, Costa Rica
| | - Andrés Segura-Castillo
- Laboratorio de Investigación e Innovación Tecnológica, Universidad Estatal a Distancia (UNED), 474-2050 San José, Costa Rica
| | - Francisco Siles-Canales
- Pattern Recognition and Intelligent Systems Laboratory, Department of Electrical Engineering, Universidad de Costa Rica, 11501-2060 San José, Costa Rica
- DC Lab, Lab of Surgery and Cancer, University of Costa Rica, 11501-2060 San José, Costa Rica
| | - Steve Quirós-Barrantes
- Lab of Tumor Chemosensitivity (LQT), Research Center for Tropical Diseases (CIET), Faculty of Microbiology, University of Costa Rica, 11501-2060 San José, Costa Rica
- DC Lab, Lab of Surgery and Cancer, University of Costa Rica, 11501-2060 San José, Costa Rica
| | - Anne Régnier-Vigouroux
- Institute for Developmental Biology and Neurobiology, Johannes Gutenberg University, 55128 Mainz, Germany
| | - Pedro Mendes
- Center for Cell Analysis and Modeling and Department of Cell Biology, University of Connecticut School of Medicine, Farmington, 06030 CT, USA
| | - Rodrigo Mora-Rodríguez
- Lab of Tumor Chemosensitivity (LQT), Research Center for Tropical Diseases (CIET), Faculty of Microbiology, University of Costa Rica, 11501-2060 San José, Costa Rica
- Master Program on Bioinformatics and Systems Biology, Postgraduate Program SEP, University of Costa Rica, 11501-2060 San José, Costa Rica
- DC Lab, Lab of Surgery and Cancer, University of Costa Rica, 11501-2060 San José, Costa Rica
- Institute for Developmental Biology and Neurobiology, Johannes Gutenberg University, 55128 Mainz, Germany
| |
Collapse
|
15
|
Pors J, Philipp T, Terry J. Placental Expression of the Forelimb Patterning Transcription Factor MEIS2 in Trisomy 15. Fetal Pediatr Pathol 2021; 40:597-604. [PMID: 32138576 DOI: 10.1080/15513815.2020.1732509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
BackgroundObservations of first trimester human trisomy 15 (T15) embryos have identified meromelic changes in the upper limbs. These changes are similar to those observed in animal studies investigating the effects of overexpression of Meis2, a signaling transcription factor expressed during forelimb development. Although it would be exceedingly difficult to assess MEIS2 expression in the human embryonic arm, MEIS2 has been reported as consistently expressed in first trimester placental villus stroma. Methods: This study addresses whether gene dosage effect might underlie meromelia in T15 by comparing MEIS2 expression in placentas from T15 and euploid spontaneous abortions employing manual and automated assessment of MEIS2 immunohistochemical scoring. Results: Average MEIS2 expression is increased in T15 first trimester placental tissue compared to euploid controls but that the difference is marginal. Manual and automated scoring showed moderately strong correlation. Conclusion: Extrapolation of these results suggests MEIS2 overexpression may not be required for meromelia in T15.
Collapse
Affiliation(s)
- Jennifer Pors
- Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Tom Philipp
- Department of Gynecology and Obstetrics, Danube Hospital, Vienna, Austria
| | - Jefferson Terry
- Pathology, BC Children's Hospital, Vancouver, British Columbia, Canada
| |
Collapse
|
16
|
Impaired Iron Homeostasis and Haematopoiesis Impacts Inflammation in the Ageing Process in Down Syndrome Dementia. J Clin Med 2021; 10:jcm10132909. [PMID: 34209847 PMCID: PMC8268765 DOI: 10.3390/jcm10132909] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/13/2021] [Accepted: 06/24/2021] [Indexed: 12/12/2022] Open
Abstract
Down syndrome (DS) subjects are more likely to develop the clinical features of Alzheimer's disease (AD) very early in the disease process due to the additional impact of neuroinflammation and because of activation of innate immunity. Many factors involved in the neuropathology of AD in DS, including epigenetic factors, innate immunity and impaired haematopoiesis, contribute significantly towards the pathophysiology and the enhanced ageing processes seen in DS and as a consequence of the triplication of genes RUNX1, S100β and OLIG2, together with the influence of proteins that collectively protect from cellular defects and inflammation, which include hepcidin, ferritin, IL-6 and TREM2. This study is aimed at determining whether genetic variants and inflammatory proteins are involved in haematopoiesis and cellular processes in DS compared with age-matched control participants, particularly with respect to neuroinflammation and accelerated ageing. Serum protein levels from DS, AD and control participants were measured by enzyme-linked immunosorbent assay (ELISA). Blood smears and post-mortem brain samples from AD and DS subjects were analysed by immunohistochemistry. RUNX1 mRNA expression was analysed by RT-PCR and in situ hybridisation in mouse tissues. Our results suggest that hepcidin, S100β and TREM2 play a critical role in survival and proliferation of glial cells through a common shared pathway. Blood smear analysis showed the presence of RUNX1 in megakaryocytes and platelets, implying participation in myeloid cell development. In contrast, hepcidin was expressed in erythrocytes and in platelets, suggesting a means of possible entry into the brain parenchyma via the choroid plexus (CP). The gene product of RUNX1 and hepcidin both play a critical role in haematopoiesis in DS. We propose that soluble TREM2, S100β and hepcidin can migrate from the periphery via the CP, modulate the blood-brain immune axis in DS and could form an important and hitherto neglected avenue for possible therapeutic interventions to reduce plaque formation.
Collapse
|
17
|
Saber MM, Karimiavargani M, Uzawa T, Hettiarachchi N, Hamada M, Ito Y, Saitou N. Possible roles for the hominoid-specific DSCR4 gene in human cells. Genes Genet Syst 2021; 96:1-11. [PMID: 33762515 DOI: 10.1266/ggs.20-00012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Down syndrome in humans is caused by trisomy of chromosome 21. DSCR4 (Down syndrome critical region 4) is a de novo-originated protein-coding gene present only in human chromosome 21 and its homologous chromosomes in apes. Despite being located in a medically critical genomic region and an abundance of evidence indicating its functionality, the roles of DSCR4 in human cells are unknown. We used a bioinformatic approach to infer the biological importance and cellular roles of this gene. Our analysis indicates that DSCR4 is likely involved in the regulation of interconnected biological pathways related to cell migration, coagulation and the immune system. We also showed that these predicted biological functions are consistent with tissue-specific expression of DSCR4 in migratory immune system leukocyte cells and neural crest cells (NCCs) that shape facial morphology in the human embryo. The immune system and NCCs are known to be affected in Down syndrome individuals, who suffer from DSCR4 misregulation, which further supports our findings. Providing evidence for the critical roles of DSCR4 in human cells, our findings establish the basis for further experimental investigations that will be necessary to confirm the roles of DSCR4 in the etiology of Down syndrome.
Collapse
Affiliation(s)
- Morteza M Saber
- Population Genetics Laboratory, National Institute of Genetics.,Department of Biological Sciences, Graduate School of Science, University of Tokyo.,Nano Medical Engineering Laboratory, RIKEN.,Department of Electrical Engineering and Bioscience, Faculty of Science and Engineering, Waseda University
| | - Marziyeh Karimiavargani
- Nano Medical Engineering Laboratory, RIKEN.,Graduate School of Science and Engineering, Saitama University
| | | | | | - Michiaki Hamada
- Department of Electrical Engineering and Bioscience, Faculty of Science and Engineering, Waseda University.,Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), National Institute of Advanced Industrial Science and Technology (AIST)
| | | | - Naruya Saitou
- Population Genetics Laboratory, National Institute of Genetics.,Department of Biological Sciences, Graduate School of Science, University of Tokyo.,Department of Genetics, School of Life Science, Graduate University for Advanced Studies.,Faculty of Medicine, University of the Ryukyus
| |
Collapse
|
18
|
Jilderda LJ, Zhou L, Foijer F. Understanding How Genetic Mutations Collaborate with Genomic Instability in Cancer. Cells 2021; 10:342. [PMID: 33562057 PMCID: PMC7914657 DOI: 10.3390/cells10020342] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 01/25/2021] [Accepted: 02/03/2021] [Indexed: 01/23/2023] Open
Abstract
Chromosomal instability is the process of mis-segregation for ongoing chromosomes, which leads to cells with an abnormal number of chromosomes, also known as an aneuploid state. Induced aneuploidy is detrimental during development and in primary cells but aneuploidy is also a hallmark of cancer cells. It is therefore believed that premalignant cells need to overcome aneuploidy-imposed stresses to become tumorigenic. Over the past decade, some aneuploidy-tolerating pathways have been identified through small-scale screens, which suggest that aneuploidy tolerance pathways can potentially be therapeutically exploited. However, to better understand the processes that lead to aneuploidy tolerance in cancer cells, large-scale and unbiased genetic screens are needed, both in euploid and aneuploid cancer models. In this review, we describe some of the currently known aneuploidy-tolerating hits, how large-scale genome-wide screens can broaden our knowledge on aneuploidy specific cancer driver genes, and how we can exploit the outcomes of these screens to improve future cancer therapy.
Collapse
Affiliation(s)
| | | | - Floris Foijer
- European Research Institute for the Biology of Ageing (ERIBA), University of Groningen, University Medical Centre Groningen, 9713 AV Groningen, The Netherlands; (L.J.J.); (L.Z.)
| |
Collapse
|
19
|
Puente-Bedia A, Berciano MT, Tapia O, Martínez-Cué C, Lafarga M, Rueda N. Nuclear Reorganization in Hippocampal Granule Cell Neurons from a Mouse Model of Down Syndrome: Changes in Chromatin Configuration, Nucleoli and Cajal Bodies. Int J Mol Sci 2021; 22:ijms22031259. [PMID: 33514010 PMCID: PMC7865916 DOI: 10.3390/ijms22031259] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 01/16/2021] [Accepted: 01/22/2021] [Indexed: 01/05/2023] Open
Abstract
Down syndrome (DS) or trisomy of chromosome 21 (Hsa21) is characterized by impaired hippocampal-dependent learning and memory. These alterations are due to defective neurogenesis and to neuromorphological and functional anomalies of numerous neuronal populations, including hippocampal granular cells (GCs). It has been proposed that the additional gene dose in trisomic cells induces modifications in nuclear compartments and on the chromatin landscape, which could contribute to some DS phenotypes. The Ts65Dn (TS) mouse model of DS carries a triplication of 92 genes orthologous to those found in Hsa21, and shares many phenotypes with DS individuals, including cognitive and neuromorphological alterations. Considering its essential role in hippocampal memory formation, we investigated whether the triplication of this set of Hsa21 orthologous genes in TS mice modifies the nuclear architecture of their GCs. Our results show that the TS mouse presents alterations in the nuclear architecture of its GCs, affecting nuclear compartments involved in transcription and pre-rRNA and pre-mRNA processing. In particular, the GCs of the TS mouse show alterations in the nucleolar fusion pattern and the molecular assembly of Cajal bodies (CBs). Furthermore, hippocampal GCs of TS mice present an epigenetic dysregulation of chromatin that results in an increased heterochromatinization and reduced global transcriptional activity. These nuclear alterations could play an important role in the neuromorphological and/or functional alterations of the hippocampal GCs implicated in the cognitive dysfunction characteristic of TS mice.
Collapse
Affiliation(s)
- Alba Puente-Bedia
- Department of Physiology and Pharmacology, Faculty of Medicine, University of Cantabria, 39011 Santander, Spain; (A.P.-B.); (C.M.-C.)
| | - María T. Berciano
- Department of Molecular Biology, “Red sobre Enfermedades Neurodegenerativas (CIBERNED)” and University of Cantabria-IDIVAL, 39011 Santander, Spain;
| | - Olga Tapia
- Instituto de Investigación Sanitaria Valdecilla (IDIVAL), “Red sobre Enfermedades Neurodegenerativas (CIBERNED)” and Universidad Europea del Atlántico, 39011 Santander, Spain;
| | - Carmen Martínez-Cué
- Department of Physiology and Pharmacology, Faculty of Medicine, University of Cantabria, 39011 Santander, Spain; (A.P.-B.); (C.M.-C.)
| | - Miguel Lafarga
- Department of Anatomy and Cell Biology, “Red sobre Enfermedades Neurodegenerativas (CIBERNED)” and University of Cantabria-IDIVAL, 39011 Santander, Spain
- Correspondence: (M.L.); (N.R.); Tel.: +34-942201966 (N.R.); Fax: +34-942201903 (N.R.)
| | - Noemí Rueda
- Department of Physiology and Pharmacology, Faculty of Medicine, University of Cantabria, 39011 Santander, Spain; (A.P.-B.); (C.M.-C.)
- Correspondence: (M.L.); (N.R.); Tel.: +34-942201966 (N.R.); Fax: +34-942201903 (N.R.)
| |
Collapse
|
20
|
4-Phenylbutyrate ameliorates apoptotic neural cell death in Down syndrome by reducing protein aggregates. Sci Rep 2020; 10:14047. [PMID: 32820178 PMCID: PMC7441064 DOI: 10.1038/s41598-020-70362-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 07/27/2020] [Indexed: 01/11/2023] Open
Abstract
Individuals with Down syndrome (DS) commonly show unique pathological phenotypes throughout their life span. Besides the specific effects of dosage-sensitive genes on chromosome 21, recent studies have demonstrated that the gain of a chromosome exerts an adverse impact on cell physiology, regardless of the karyotype. Although dysregulated transcription and perturbed protein homeostasis are observed in common in human fibroblasts with trisomy 21, 18, and 13, whether and how this aneuploidy-associated stress acts on other cell lineages and affects the pathophysiology are unknown. Here, we investigated cellular stress responses in human trisomy 21 and 13 neurons differentiated from patient-derived induced pluripotent stem cells. Neurons of both trisomies showed increased vulnerability to apoptotic cell death, accompanied by dysregulated protein homeostasis and upregulation of the endoplasmic reticulum stress pathway. In addition, misfolded protein aggregates, comprising various types of neurodegenerative disease-related proteins, were abnormally accumulated in trisomic neurons. Intriguingly, treatment with sodium 4-phenylbutyrate, a chemical chaperone, successfully decreased the formation of protein aggregates and prevented the progression of cell apoptosis in trisomic neurons. These results suggest that aneuploidy-associated stress might be a therapeutic target for the neurodegenerative phenotypes in DS.
Collapse
|
21
|
Simpson BS, Camacho N, Luxton HJ, Pye H, Finn R, Heavey S, Pitt J, Moore CM, Whitaker HC. Genetic alterations in the 3q26.31-32 locus confer an aggressive prostate cancer phenotype. Commun Biol 2020; 3:440. [PMID: 32796921 PMCID: PMC7429505 DOI: 10.1038/s42003-020-01175-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 07/10/2020] [Indexed: 12/13/2022] Open
Abstract
Large-scale genetic aberrations that underpin prostate cancer development and progression, such as copy-number alterations (CNAs), have been described but the consequences of specific changes in many identified loci is limited. Germline SNPs in the 3q26.31 locus are associated with aggressive prostate cancer, and is the location of NAALADL2, a gene overexpressed in aggressive disease. The closest gene to NAALADL2 is TBL1XR1, which is implicated in tumour development and progression. Using publicly-available cancer genomic data we report that NAALADL2 and TBL1XR1 gains/amplifications are more prevalent in aggressive sub-types of prostate cancer when compared to primary cohorts. In primary disease, gains/amplifications occurred in 15.99% (95% CI: 13.02–18.95) and 14.96% (95% CI: 12.08–17.84%) for NAALADL2 and TBL1XR1 respectively, increasing in frequency in higher Gleason grade and stage tumours. Gains/amplifications result in transcriptional changes and the development of a pro-proliferative and aggressive phenotype. These results support a pivotal role for copy-number gains in this genetic region. Benjamin Simpson et al. use publicly available cancer genomic data to investigate copy number changes at the 3q26.31–32 locus, which has been associated with aggressive prostate cancer based on single-nucleotide polymorphisms. They find that gains of NAALADL2 and TBL1XR1 in this locus are associated with more aggressive subtypes of prostate cancer and the transcription of pro-proliferative signalling processes.
Collapse
Affiliation(s)
- Benjamin S Simpson
- Molecular Diagnostics and Therapeutics Group, Research Department of Targeted Intervention, Division of Surgery & Interventional Science, University College London, London, UK
| | - Niedzica Camacho
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Hayley J Luxton
- Molecular Diagnostics and Therapeutics Group, Research Department of Targeted Intervention, Division of Surgery & Interventional Science, University College London, London, UK
| | - Hayley Pye
- Molecular Diagnostics and Therapeutics Group, Research Department of Targeted Intervention, Division of Surgery & Interventional Science, University College London, London, UK
| | - Ron Finn
- Molecular Diagnostics and Therapeutics Group, Research Department of Targeted Intervention, Division of Surgery & Interventional Science, University College London, London, UK
| | - Susan Heavey
- Molecular Diagnostics and Therapeutics Group, Research Department of Targeted Intervention, Division of Surgery & Interventional Science, University College London, London, UK
| | - Jason Pitt
- Cancer Institute of Singapore, National University of Singapore, Singapore, Singapore
| | | | - Hayley C Whitaker
- Molecular Diagnostics and Therapeutics Group, Research Department of Targeted Intervention, Division of Surgery & Interventional Science, University College London, London, UK.
| |
Collapse
|
22
|
Singla S, Iwamoto-Stohl LK, Zhu M, Zernicka-Goetz M. Autophagy-mediated apoptosis eliminates aneuploid cells in a mouse model of chromosome mosaicism. Nat Commun 2020; 11:2958. [PMID: 32528010 PMCID: PMC7290028 DOI: 10.1038/s41467-020-16796-3] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 05/11/2020] [Indexed: 12/12/2022] Open
Abstract
The high incidence of aneuploidy in the embryo is considered the principal cause for low human fecundity. However, the prevalence of aneuploidy dramatically declines as pregnancy progresses, with the steepest drop occurring as the embryo completes implantation. Despite the fact that the plasticity of the embryo in dealing with aneuploidy is fundamental to normal development, the mechanisms responsible for eliminating aneuploid cells are unclear. Here, using a mouse model of chromosome mosaicism, we show that aneuploid cells are preferentially eliminated from the embryonic lineage in a p53-dependent process involving both autophagy and apoptosis before, during and after implantation. Moreover, we show that diploid cells in mosaic embryos undertake compensatory proliferation during the implantation stages to confer embryonic viability. Together, our results indicate a close link between aneuploidy, autophagy, and apoptosis to refine the embryonic cell population and ensure only chromosomally fit cells proceed through development of the fetus. The mechanisms behind the plasticity of embryos and how they deal with aneuploid cells are unclear. Here, the authors show that aneuploid cells in a mouse embryo are preferentially eliminated during pre- and peri-implantation development in a p53-dependent process involving both autophagy and apoptosis.
Collapse
Affiliation(s)
- Shruti Singla
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3EG, UK
| | - Lisa K Iwamoto-Stohl
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3EG, UK
| | - Meng Zhu
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3EG, UK
| | - Magdalena Zernicka-Goetz
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3EG, UK. .,Division of Biology and Biological Engineering, California Institute of Technology, 1200 E. California Boulevard, Pasadena, CA, 91125, USA.
| |
Collapse
|
23
|
Sheng L, Leshchyns'ka I, Sytnyk V. Neural Cell Adhesion Molecule 2 (NCAM2)-Induced c-Src-Dependent Propagation of Submembrane Ca2+ Spikes Along Dendrites Inhibits Synapse Maturation. Cereb Cortex 2020. [PMID: 29522129 DOI: 10.1093/cercor/bhy041] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The neural cell adhesion molecule 2 (NCAM2) is encoded by a gene on chromosome 21 in humans. NCAM2 accumulates in synapses, but its role in regulation of synapse formation remains poorly understood. We demonstrate that an increase in NCAM2 levels results in increased instability of dendritic protrusions and reduced conversion of protrusions to dendritic spines in mouse cortical neurons. NCAM2 overexpression induces an increase in the frequency of submembrane Ca2+ spikes localized in individual dendritic protrusions and promotes propagation of submembrane Ca2+ spikes over segments of dendrites or the whole dendritic tree. NCAM2-dependent submembrane Ca2+ spikes are L-type voltage-gated Ca2+ channel-dependent, and their propagation but not initiation depends on the c-Src protein tyrosine kinase. Inhibition of initiation or propagation of NCAM2-dependent submembrane Ca2+ spikes reduces the NCAM2-dependent instability of dendritic protrusions. Synaptic boutons formed on dendrites of neurons with elevated NCAM2 expression are enriched in the protein marker of immature synapses GAP43, and the number of boutons with mature activity-dependent synaptic vesicle recycling is reduced. Our results indicate that synapse maturation is inhibited in NCAM2-overexpressing neurons and suggest that changes in NCAM2 levels and altered submembrane Ca2+ dynamics can cause defects in synapse maturation in Down syndrome and other brain disorders associated with abnormal NCAM2 expression.
Collapse
Affiliation(s)
- Lifu Sheng
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, New South Wales, Australia
| | - Iryna Leshchyns'ka
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, New South Wales, Australia
| | - Vladimir Sytnyk
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
24
|
Lim JH, Kang YJ, Lee BY, Han YJ, Chung JH, Kim MY, Kim MH, Kim JW, Cho YH, Ryu HM. Epigenome-wide base-resolution profiling of DNA methylation in chorionic villi of fetuses with Down syndrome by methyl-capture sequencing. Clin Epigenetics 2019; 11:180. [PMID: 31801612 PMCID: PMC6894197 DOI: 10.1186/s13148-019-0756-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 10/06/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Epigenetic mechanisms provide an interface between environmental factors and the genome and are influential in various diseases. These mechanisms, including DNA methylation, influence the regulation of development, differentiation, and establishment of cellular identity. Here, we performed high-throughput methylome profiling to determine whether differential patterns of DNA methylation correlate with Down syndrome (DS). MATERIALS AND METHODS We extracted DNA from the chorionic villi cells of five normal and five DS fetuses at the early developmental stage (12-13 weeks of gestation). Methyl-capture sequencing (MC-Seq) was used to investigate the methylation levels of CpG sites distributed across the whole genome to identify differentially methylated CpG sites (DMCs) and regions (DMRs) in DS. New functional annotations of DMR genes using bioinformatics tools were predicted. RESULTS DNA hypermethylation was observed in DS fetal chorionic villi cells. Significant differences were evident for 4,439 DMCs, including hypermethylation (n = 4,261) and hypomethylation (n = 178). Among them, 140 hypermethylated DMRs and only 1 hypomethylated DMR were located on 121 genes and 1 gene, respectively. One hundred twenty-two genes, including 141 DMRs, were associated with heart morphogenesis and development of the ear, thyroid gland, and nervous systems. The genes were significantly associated with DS and various diseases, including hepatopulmonary syndrome, conductive hearing loss, holoprosencephaly, heart diseases, glaucoma, and musculoskeletal abnormalities. CONCLUSIONS This is the first study to compare the whole-epigenome DNA methylation pattern of the chorionic villi cells from normal and DS fetuses at the early developmental-stage using MC-seq. Overall, our results indicate that the chorionic villi cells of DS fetuses are hypermethylated in all autosomes and suggested that altered DNA methylation may be a recurrent and functionally relevant downstream response to DS in human cells. This study provides basic information for future research focused on the pathophysiology of the DS and its potential effects, as well as the role DNA methylation plays in the early developmental stage of DS fetuses.
Collapse
Affiliation(s)
- Ji Hyae Lim
- Center for Biomarker Research and Precision Medicine, CHA Advanced Research Institute, Gyeonggi-do, Republic of Korea.,Department of Medical Genetics, College of Medicine, Hanyang University, 222, Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Yu-Jung Kang
- Center for Biomarker Research and Precision Medicine, CHA Advanced Research Institute, Gyeonggi-do, Republic of Korea
| | - Bom Yi Lee
- SD Genomics Co., Ltd., Seoul, Republic of Korea
| | - You Jung Han
- Department of Obstetrics and Gynecology, CHA Gangnam Medical Center, CHA University, Seoul, Republic of Korea
| | - Jin Hoon Chung
- Department of Obstetrics and Gynecology, CHA Gangnam Medical Center, CHA University, Seoul, Republic of Korea
| | - Moon Young Kim
- Department of Obstetrics and Gynecology, CHA Gangnam Medical Center, CHA University, Seoul, Republic of Korea
| | - Min Hyoung Kim
- Department of Obstetrics Gynecology, Mizmedi Hospital, Seoul, Republic of Korea
| | - Jin Woo Kim
- Laboratory of Medical Genetics, Medical Research Institute, Cheil General Hospital and Women's Healthcare Center, Seoul, Republic of Korea
| | - Youl-Hee Cho
- Department of Medical Genetics, College of Medicine, Hanyang University, 222, Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea.
| | - Hyun Mee Ryu
- Center for Biomarker Research and Precision Medicine, CHA Advanced Research Institute, Gyeonggi-do, Republic of Korea. .,Department of Obstetrics and Gynecology, CHA Bundang Medical Center, CHA University, 59, Yatap-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13496, Republic of Korea.
| |
Collapse
|
25
|
Abstract
Aneuploidy (i.e., abnormal chromosome number) is the leading cause of miscarriage and congenital defects in humans. Moreover, aneuploidy is ubiquitous in cancer. The deleterious phenotypes associated with aneuploidy are likely a result of the imbalance in the levels of gene products derived from the additional chromosome(s). Here, we summarize the current knowledge on how the presence of extra chromosomes impacts gene expression. We describe studies that have found a strict correlation between gene dosage and transcript levels as wells as studies that have found a less stringent correlation, hinting at the possible existence of dosage compensation mechanisms. We conclude by peering into the epigenetic changes found in aneuploid cells and outlining current knowledge gaps and potential areas of future investigation.
Collapse
Affiliation(s)
- Shihoko Kojima
- Department of Biological Sciences & Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA 24061, USA
| | - Daniela Cimini
- Department of Biological Sciences & Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
26
|
Yu YE, Xing Z, Do C, Pao A, Lee EJ, Krinsky-McHale S, Silverman W, Schupf N, Tycko B. Genetic and epigenetic pathways in Down syndrome: Insights to the brain and immune system from humans and mouse models. PROGRESS IN BRAIN RESEARCH 2019; 251:1-28. [PMID: 32057305 PMCID: PMC7286740 DOI: 10.1016/bs.pbr.2019.09.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The presence of an extra copy of human chromosome 21 (Hsa21) leads to a constellation of phenotypic manifestations in Down syndrome (DS), including prominent effects on the brain and immune system. Intensive efforts to unravel the molecular mechanisms underlying these phenotypes may help developing effective therapies, both in DS and in the general population. Here we review recent progress in genetic and epigenetic analysis of trisomy 21 (Ts21). New mouse models of DS based on syntenic conservation of segments of the mouse and human chromosomes are starting to clarify the contributions of chromosomal subregions and orthologous genes to specific phenotypes in DS. The expression of genes on Hsa21 is regulated by epigenetic mechanisms, and with recent findings of highly recurrent gene-specific changes in DNA methylation patterns in brain and immune system cells with Ts21, the epigenomics of DS has become an active research area. Here we highlight the value of combining human studies with mouse models for defining DS critical genes and understanding the trans-acting effects of a simple chromosomal aneuploidy on genome-wide epigenetic patterning. These genetic and epigenetic studies are starting to uncover fundamental biological mechanisms, leading to insights that may soon become therapeutically relevant.
Collapse
Affiliation(s)
- Y Eugene Yu
- The Children's Guild Foundation Down Syndrome Research Program, Genetics and Genomics Program and Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States; Genetics, Genomics and Bioinformatics Program, State University of New York at Buffalo, Buffalo, NY, United States.
| | - Zhuo Xing
- The Children's Guild Foundation Down Syndrome Research Program, Genetics and Genomics Program and Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Catherine Do
- Department of Biomedical Research, Division of Genetics & Epigenetics, Hackensack-Meridian Health Center for Discovery and Innovation and Hackensack-Meridian Health School of Medicine at Seton Hall University, Nutley, NJ, United States
| | - Annie Pao
- The Children's Guild Foundation Down Syndrome Research Program, Genetics and Genomics Program and Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Eun Joon Lee
- Department of Biomedical Research, Division of Genetics & Epigenetics, Hackensack-Meridian Health Center for Discovery and Innovation and Hackensack-Meridian Health School of Medicine at Seton Hall University, Nutley, NJ, United States
| | - Sharon Krinsky-McHale
- New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, United States
| | - Wayne Silverman
- Kennedy Krieger Institute and Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Pediatrics, University of California at Irvine, Irvine, CA, United States
| | - Nicole Schupf
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, United States
| | - Benjamin Tycko
- Department of Biomedical Research, Division of Genetics & Epigenetics, Hackensack-Meridian Health Center for Discovery and Innovation and Hackensack-Meridian Health School of Medicine at Seton Hall University, Nutley, NJ, United States.
| |
Collapse
|
27
|
Muñiz Moreno MDM, Brault V, Birling MC, Pavlovic G, Herault Y. Modeling Down syndrome in animals from the early stage to the 4.0 models and next. PROGRESS IN BRAIN RESEARCH 2019; 251:91-143. [PMID: 32057313 DOI: 10.1016/bs.pbr.2019.08.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The genotype-phenotype relationship and the physiopathology of Down Syndrome (DS) have been explored in the last 20 years with more and more relevant mouse models. From the early age of transgenesis to the new CRISPR/CAS9-derived chromosomal engineering and the transchromosomic technologies, mouse models have been key to identify homologous genes or entire regions homologous to the human chromosome 21 that are necessary or sufficient to induce DS features, to investigate the complexity of the genetic interactions that are involved in DS and to explore therapeutic strategies. In this review we report the new developments made, how genomic data and new genetic tools have deeply changed our way of making models, extended our panel of animal models, and increased our understanding of the neurobiology of the disease. But even if we have made an incredible progress which promises to make DS a curable condition, we are facing new research challenges to nurture our knowledge of DS pathophysiology as a neurodevelopmental disorder with many comorbidities during ageing.
Collapse
Affiliation(s)
- Maria Del Mar Muñiz Moreno
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
| | - Véronique Brault
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
| | - Marie-Christine Birling
- Université de Strasbourg, CNRS, INSERM, PHENOMIN Institut Clinique de la Souris, Illkirch, France
| | - Guillaume Pavlovic
- Université de Strasbourg, CNRS, INSERM, PHENOMIN Institut Clinique de la Souris, Illkirch, France
| | - Yann Herault
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Université de Strasbourg, CNRS, INSERM, PHENOMIN Institut Clinique de la Souris, Illkirch, France.
| |
Collapse
|
28
|
Stamoulis G, Garieri M, Makrythanasis P, Letourneau A, Guipponi M, Panousis N, Sloan-Béna F, Falconnet E, Ribaux P, Borel C, Santoni F, Antonarakis SE. Single cell transcriptome in aneuploidies reveals mechanisms of gene dosage imbalance. Nat Commun 2019; 10:4495. [PMID: 31582743 PMCID: PMC6776538 DOI: 10.1038/s41467-019-12273-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 08/16/2019] [Indexed: 12/13/2022] Open
Abstract
Aneuploidy is a major source of gene dosage imbalance due to copy number alterations (CNA), and viable human trisomies are model disorders of altered gene expression. We study gene and allele-specific expression (ASE) of 9668 single-cell fibroblasts from trisomy 21 (T21) discordant twins and from mosaic T21, T18, T13 and T8. We examine 928 single cells with deep scRNAseq. Expected and observed overexpression of trisomic genes in trisomic vs. diploid bulk RNAseq is not detectable in trisomic vs. diploid single cells. Instead, for trisomic genes with low-to-average expression, their altered gene dosage is mainly due to the higher fraction of trisomic cells simultaneously expressing these genes, in agreement with a stochastic 2-state burst-like model of transcription. These results, confirmed in a further analysis of 8740 single fibroblasts with shallow scRNAseq, suggest that the specific transcriptional profile of each gene contributes to the phenotypic variability of trisomies. We propose an improved model to understand the effects of CNA and, generally, of gene regulation on gene dosage imbalance.
Collapse
Affiliation(s)
- Georgios Stamoulis
- Department of Genetic Medicine and Development, University of Geneva Medical School, 1211 Geneva 4, Geneva, Switzerland
| | - Marco Garieri
- Department of Genetic Medicine and Development, University of Geneva Medical School, 1211 Geneva 4, Geneva, Switzerland
| | - Periklis Makrythanasis
- Department of Genetic Medicine and Development, University of Geneva Medical School, 1211 Geneva 4, Geneva, Switzerland
- Biomedical Research Institute Academy of Athens, Athens, Greece
| | - Audrey Letourneau
- Department of Genetic Medicine and Development, University of Geneva Medical School, 1211 Geneva 4, Geneva, Switzerland
| | - Michel Guipponi
- Geneva University Hospitals, Service of Genetic Medicine, 1211 Geneva 4, Geneva, Switzerland
| | - Nikolaos Panousis
- Department of Genetic Medicine and Development, University of Geneva Medical School, 1211 Geneva 4, Geneva, Switzerland
| | - Frédérique Sloan-Béna
- Geneva University Hospitals, Service of Genetic Medicine, 1211 Geneva 4, Geneva, Switzerland
| | - Emilie Falconnet
- Department of Genetic Medicine and Development, University of Geneva Medical School, 1211 Geneva 4, Geneva, Switzerland
| | - Pascale Ribaux
- Department of Genetic Medicine and Development, University of Geneva Medical School, 1211 Geneva 4, Geneva, Switzerland
| | - Christelle Borel
- Department of Genetic Medicine and Development, University of Geneva Medical School, 1211 Geneva 4, Geneva, Switzerland
| | - Federico Santoni
- Service of Endocrinology, Diabetes and Metabolism, University Hospital of Lausanne - CHUV, Lausanne, 1011, Switzerland.
| | - Stylianos E Antonarakis
- Department of Genetic Medicine and Development, University of Geneva Medical School, 1211 Geneva 4, Geneva, Switzerland.
- Geneva University Hospitals, Service of Genetic Medicine, 1211 Geneva 4, Geneva, Switzerland.
- iGE3 Institute of Genetics and Genomics of Geneva, University of Geneva, 1211 Geneva 4, Geneva, Switzerland.
| |
Collapse
|
29
|
Chai M, Su L, Hao X, Zhang M, Zheng L, Bi J, Han X, Gao C. Identification of a thymus microRNA‑mRNA regulatory network in Down syndrome. Mol Med Rep 2019; 20:2063-2072. [PMID: 31257513 PMCID: PMC6691205 DOI: 10.3892/mmr.2019.10433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 08/28/2018] [Indexed: 12/21/2022] Open
Abstract
The present bioinformatics analysis was performed using a multi‑step approach to identify a microRNA (miR)‑mRNA regulatory network in Down syndrome. miR (GSE69210) and mRNA (GSE70573) data was downloaded and collected from the thymic tissues of both Down syndrome and karyotypically normal subjects and placed in a public repository. Then, weighted gene co‑expression network analysis (WGCNA) was performed to screen for miRs and mRNAs associated with Down syndrome. Subsequently, differentially expressed miRs (DEmiRs) and mRNAs/differentially expressed genes (DEGs) were identified following screening and mapping to RNA data. Bidirectional hierarchical clustering analysis was then performed to distinguish DEmiRs and DEGs between Down syndrome samples and normal control samples. DEmiR targets were retrieved using the miRanda database and mapped to the mRNA module screen by WGCNA. A gene co‑expression network was constructed and subjected to functional enrichment analysis. During WGCNA, a total of 6 miR modules and 20 mRNA modules associated with Down syndrome were identified. Following mapping of these miRs and mRNAs to the miR and mRNA modules screened using WGNCA, a total of 12 DEmiRs and 237 DEGs were collected. Following comparison with DEmiR targets retrieved from the miRanda database, a total of 255 DEmiR‑DEG pairs, including 6 DEmiRs and 106 DEGs were obtained. At expression correlation coefficient >0.9, a total of 231 gene pairs were selected. These gene pairs were enriched in response to stress and response to stimuli following functional annotation and module division. An integrated analysis of miR and mRNA expression in the thymus in Down syndrome is reported in the present study. miR‑30c, miR‑145, miR‑183 and their targets may serve important roles in the pathogenesis and development of complications in Down syndrome. However, further experimental studies are required to verify these results.
Collapse
Affiliation(s)
- Miao Chai
- Department of Clinical Laboratory, The First Hospital of Harbin, Harbin, Heilongjiang 150010, P.R. China
| | - Liju Su
- Department of Clinical Laboratory, The First Hospital of Harbin, Harbin, Heilongjiang 150010, P.R. China
| | - Xiaolei Hao
- Department of Clinical Laboratory, The First Hospital of Harbin, Harbin, Heilongjiang 150010, P.R. China
| | - Meng Zhang
- Department of Clinical Laboratory, The First Hospital of Harbin, Harbin, Heilongjiang 150010, P.R. China
| | - Lihui Zheng
- Department of Clinical Laboratory, The First Hospital of Harbin, Harbin, Heilongjiang 150010, P.R. China
| | - Jiabing Bi
- Department of Clinical Laboratory, The First Hospital of Harbin, Harbin, Heilongjiang 150010, P.R. China
| | - Xiao Han
- Department of Clinical Laboratory, The First Hospital of Harbin, Harbin, Heilongjiang 150010, P.R. China
| | - Chunbo Gao
- Department of Clinical Laboratory, The First Hospital of Harbin, Harbin, Heilongjiang 150010, P.R. China
| |
Collapse
|
30
|
Farrelly LA, Maze I. An emerging perspective on 'histone code' mediated regulation of neural plasticity and disease. Curr Opin Neurobiol 2019; 59:157-163. [PMID: 31382083 PMCID: PMC6889037 DOI: 10.1016/j.conb.2019.07.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 07/07/2019] [Indexed: 12/19/2022]
Abstract
The last two decades have witnessed explosive advances in our understanding as to how the organization of chromatin, the association of DNA with histones and vast numbers of non-histone regulatory proteins, controls the expression of specific genes in brain. Prominent among such regulatory mechanisms are modifications of histones, along with the 'writers,' 'erasers,' and 'readers' of these modifications. Much of the work delineating these mechanisms has contributed to the idea that a 'histone code' may be a central determinant of a gene's activity and its potential to be activated or repressed in response to environmental perturbations (both beneficial and aberrant). Indeed, increasing evidence has demonstrated the significance of histone regulation in neurological plasticity and disease, although we are still at the earliest stages of examining all of the many potential chromatin changes involved. In this short review, we provide an emerging perspective on putative roles for histones, and their combinatorial readouts, in the context of neural plasticity, and we provide a conceptual framework for future mechanistic studies aimed at uncovering causal links between the neural 'histone code' and brain function/disease.
Collapse
Affiliation(s)
- Lorna A Farrelly
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Ian Maze
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States.
| |
Collapse
|
31
|
Kelley CM, Ginsberg SD, Alldred MJ, Strupp BJ, Mufson EJ. Maternal Choline Supplementation Alters Basal Forebrain Cholinergic Neuron Gene Expression in the Ts65Dn Mouse Model of Down Syndrome. Dev Neurobiol 2019; 79:664-683. [PMID: 31120189 PMCID: PMC6756931 DOI: 10.1002/dneu.22700] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 05/16/2019] [Accepted: 05/18/2019] [Indexed: 12/12/2022]
Abstract
Down syndrome (DS), trisomy 21, is marked by intellectual disability and a premature aging profile including degeneration of the basal forebrain cholinergic neuron (BFCN) projection system, similar to Alzheimer's disease (AD). Although data indicate that perinatal maternal choline supplementation (MCS) alters the structure and function of these neurons in the Ts65Dn mouse model of DS and AD (Ts), whether MCS affects the molecular profile of vulnerable BFCNs remains unknown. We investigated the genetic signature of BFCNs obtained from Ts and disomic (2N) offspring of Ts65Dn dams maintained on a MCS diet (Ts+, 2N+) or a choline normal diet (ND) from mating until weaning, then maintained on ND until 4.4-7.5 months of age. Brains were then collected and prepared for choline acetyltransferase (ChAT) immunohistochemistry and laser capture microdissection followed by RNA extraction and custom-designed microarray analysis. Findings revealed upregulation of select transcripts in classes of genes related to the cytoskeleton (Tubb4b), AD (Cav1), cell death (Bcl2), presynaptic (Syngr1), immediate early (Fosb, Arc), G protein signaling (Gabarap, Rgs10), and cholinergic neurotransmission (Chrnb3) in Ts compared to 2N mice, which were normalized with MCS. Moreover, significant downregulation was seen in select transcripts associated with the cytoskeleton (Dync1h1), intracellular signaling (Itpka, Gng3, and Mlst8), and cell death (Ccng1) in Ts compared to 2N mice that was normalized with MCS. This study provides insight into genotype-dependent differences and the effects of MCS at the molecular level within a key vulnerable cell type in DS and AD.
Collapse
Affiliation(s)
- Christy M. Kelley
- Department of Neurobiology, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Stephen D. Ginsberg
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, USA
- Department of Psychiatry, NYU Langone School of Medicine, New York, NY, USA
- Department of Neuroscience & Physiology, NYU Langone School of Medicine, New York, NY, USA
- NYU Neuroscience Institute, NYU Langone School of Medicine, New York, NY, USA
| | - Melissa J. Alldred
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, USA
- Department of Psychiatry, NYU Langone School of Medicine, New York, NY, USA
| | - Barbara J. Strupp
- Division of Nutritional Sciences and Department of Psychology, Cornell University, Ithaca, NY, USA
| | - Elliott J. Mufson
- Department of Neurobiology, Barrow Neurological Institute, Phoenix, AZ, USA
| |
Collapse
|
32
|
Brose RD, Savonenko A, Devenney B, Smith KD, Reeves RH. Hydroxyurea Improves Spatial Memory and Cognitive Plasticity in Mice and Has a Mild Effect on These Parameters in a Down Syndrome Mouse Model. Front Aging Neurosci 2019; 11:96. [PMID: 31139073 PMCID: PMC6527804 DOI: 10.3389/fnagi.2019.00096] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 04/09/2019] [Indexed: 01/08/2023] Open
Abstract
Down syndrome (DS), a genetic disorder caused by partial or complete triplication of chromosome 21, is the most common genetic cause of intellectual disability. DS mouse models and cell lines display defects in cellular adaptive stress responses including autophagy, unfolded protein response, and mitochondrial bioenergetics. We tested the ability of hydroxyurea (HU), an FDA-approved pharmacological agent that activates adaptive cellular stress response pathways, to improve the cognitive function of Ts65Dn mice. The chronic HU treatment started at a stage when early mild cognitive deficits are present in this model (∼3 months of age) and continued until a stage of advanced cognitive deficits in untreated mice (∼5–6 months of age). The HU effects on cognitive performance were analyzed using a battery of water maze tasks designed to detect changes in different types of memory with sensitivity wide enough to detect deficits as well as improvements in spatial memory. The most common characteristic of cognitive deficits observed in trisomic mice at 5–6 months of age was their inability to rapidly acquire new information for long-term storage, a feature akin to episodic-like memory. On the background of severe cognitive impairments in untreated trisomic mice, HU-treatment produced mild but significant benefits in Ts65Dn by improving memory acquisition and short-term retention of spatial information. In control mice, HU treatment facilitated memory retention in constant (reference memory) as well as time-variant conditions (episodic-like memory) implicating a robust nootropic effect. This was the first proof-of-concept study of HU treatment in a DS model, and indicates that further studies are warranted to assess a window to optimize timing and dosage of the treatment in this pre-clinical phase. Findings of this study indicate that HU has potential for improving memory retention and cognitive flexibility that can be harnessed for the amelioration of cognitive deficits in normal aging and in cognitive decline (dementia) related to DS and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Rebecca Deering Brose
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Alena Savonenko
- Departments of Pathology and Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Benjamin Devenney
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Kirby D Smith
- McKusick-Nathans Institute of Genetic Medicine, Baltimore, MD, United States
| | - Roger H Reeves
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, United States.,McKusick-Nathans Institute of Genetic Medicine, Baltimore, MD, United States
| |
Collapse
|
33
|
Li W, Wang X, Li S. Investigation of copy number variations on chromosome 21 detected by comparative genomic hybridization (CGH) microarray in patients with congenital anomalies. Mol Cytogenet 2018; 11:42. [PMID: 31061677 PMCID: PMC6497326 DOI: 10.1186/s13039-018-0391-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 07/19/2018] [Indexed: 11/10/2022] Open
Abstract
Background The clinical features of Down syndrome vary among individuals, with those most common being congenital heart disease, intellectual disability, developmental abnormity and dysmorphic features. Complex combination of Down syndrome phenotype could be produced by partially copy number variations (CNVs) on chromosome 21 as well. By comparing individual with partial CNVs of chromosome 21 with other patients of known CNVs and clinical phenotypes, we hope to provide a better understanding of the genotype-phenotype correlation of chromosome 21. Methods A total of 2768 pediatric patients sample collected at the Genetics Laboratory at Oklahoma University Health Science Center were screened using CGH Microarray for CNVs on chromosome 21. Results We report comprehensive clinical and molecular descriptions of six patients with microduplication and seven patients with microdeletion on the long arm of chromosome 21. Patients with microduplication have varied clinical features including developmental delay, microcephaly, facial dysmorphic features, pulmonary stenosis, autism, preauricular skin tag, eye pterygium, speech delay and pain insensitivity. We found that patients with microdeletion presented with developmental delay, microcephaly, intrauterine fetal demise, epilepsia partialis continua, congenital coronary anomaly and seizures. Conclusion Three patients from our study combine with four patients in public database suggests an association between 21q21.1 microduplication of CXADR gene and patients with developmental delay. One patient with 21q22.13 microdeletion of DYRK1A shows association with microcephaly and scoliosis. Our findings helped pinpoint critical genes in the genotype-phenotype association with a high resolution of 0.1 Mb and expanded the clinical features observed in patients with CNVs on the long arm of chromosome 21.
Collapse
Affiliation(s)
- Wenfu Li
- Genetics Laboratory, University of Oklahoma Health Sciences Center, 1122 NE 13th Street, Suite 1400, Oklahoma City, OK 73104 USA
| | - Xianfu Wang
- Genetics Laboratory, University of Oklahoma Health Sciences Center, 1122 NE 13th Street, Suite 1400, Oklahoma City, OK 73104 USA
| | - Shibo Li
- Genetics Laboratory, University of Oklahoma Health Sciences Center, 1122 NE 13th Street, Suite 1400, Oklahoma City, OK 73104 USA
| |
Collapse
|
34
|
Survey of Human Chromosome 21 Gene Expression Effects on Early Development in Danio rerio. G3-GENES GENOMES GENETICS 2018; 8:2215-2223. [PMID: 29760202 PMCID: PMC6027891 DOI: 10.1534/g3.118.200144] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Trisomy for human chromosome 21 (Hsa21) results in Down syndrome (DS), one of the most genetically complex conditions compatible with human survival. Assessment of the physiological consequences of dosage-driven overexpression of individual Hsa21 genes during early embryogenesis and the resulting contributions to DS pathology in mammals are not tractable in a systematic way. A recent study looked at loss-of-function of a subset of Caenorhabditis elegans orthologs of Hsa21 genes and identified ten candidates with behavioral phenotypes, but the equivalent over-expression experiment has not been done. We turned to zebrafish as a developmental model and, using a number of surrogate phenotypes, we screened Hsa21 genes for effects on early embyrogenesis. We prepared a library of 164 cDNAs of conserved protein coding genes, injected mRNA into early embryos and evaluated up to 5 days post-fertilization (dpf). Twenty-four genes produced a gross morphological phenotype, 11 of which could be reproduced reliably. Seven of these gave a phenotype consistent with down regulation of the sonic hedgehog (Shh) pathway; two showed defects indicative of defective neural crest migration; one resulted consistently in pericardial edema; and one was embryonic lethal. Combinatorial injections of multiple Hsa21 genes revealed both additive and compensatory effects, supporting the notion that complex genetic relationships underlie end phenotypes of trisomy that produce DS. Together, our data suggest that this system is useful in the genetic dissection of dosage-sensitive gene effects on early development and can inform the contribution of both individual loci and their combinatorial effects to phenotypes relevant to the etiopathology of DS.
Collapse
|
35
|
Aziz NM, Guedj F, Pennings JLA, Olmos-Serrano JL, Siegel A, Haydar TF, Bianchi DW. Lifespan analysis of brain development, gene expression and behavioral phenotypes in the Ts1Cje, Ts65Dn and Dp(16)1/Yey mouse models of Down syndrome. Dis Model Mech 2018; 11:dmm031013. [PMID: 29716957 PMCID: PMC6031353 DOI: 10.1242/dmm.031013] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 04/23/2018] [Indexed: 12/26/2022] Open
Abstract
Down syndrome (DS) results from triplication of human chromosome 21. Neuropathological hallmarks of DS include atypical central nervous system development that manifests prenatally and extends throughout life. As a result, individuals with DS exhibit cognitive and motor deficits, and have delays in achieving developmental milestones. To determine whether different mouse models of DS recapitulate the human prenatal and postnatal phenotypes, here, we directly compared brain histogenesis, gene expression and behavior over the lifespan of three cytogenetically distinct mouse models of DS: Ts1Cje, Ts65Dn and Dp(16)1/Yey. Histological data indicated that Ts65Dn mice were the most consistently affected with respect to somatic growth, neurogenesis and brain morphogenesis. Embryonic and adult gene expression results showed that Ts1Cje and Ts65Dn brains had considerably more differentially expressed (DEX) genes compared with Dp(16)1/Yey mice, despite the larger number of triplicated genes in the latter model. In addition, DEX genes showed little overlap in identity and chromosomal distribution in the three models, leading to dissimilarities in affected functional pathways. Perinatal and adult behavioral testing also highlighted differences among the models in their abilities to achieve various developmental milestones and perform hippocampal- and motor-based tasks. Interestingly, Dp(16)1/Yey mice showed no abnormalities in prenatal brain phenotypes, yet they manifested behavioral deficits starting at postnatal day 15 that continued through adulthood. In contrast, Ts1Cje mice showed mildly abnormal embryonic brain phenotypes, but only select behavioral deficits as neonates and adults. Altogether, our data showed widespread and unexpected fundamental differences in behavioral, gene expression and brain development phenotypes between these three mouse models. Our findings illustrate unique limitations of each model when studying aspects of brain development and function in DS. This work helps to inform model selection in future studies investigating how observed neurodevelopmental abnormalities arise, how they contribute to cognitive impairment, and when testing therapeutic molecules to ameliorate the intellectual disability associated with DS.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Nadine M Aziz
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA 02118, USA
| | - Faycal Guedj
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jeroen L A Pennings
- Center for Health Protection, National Institute for Public Health and the Environment, 3720 BA Bilthoven, The Netherlands
| | - Jose Luis Olmos-Serrano
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA 02118, USA
| | - Ashley Siegel
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tarik F Haydar
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA 02118, USA
| | - Diana W Bianchi
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
36
|
Alldred MJ, Chao HM, Lee SH, Beilin J, Powers BE, Petkova E, Strupp BJ, Ginsberg SD. CA1 pyramidal neuron gene expression mosaics in the Ts65Dn murine model of Down syndrome and Alzheimer's disease following maternal choline supplementation. Hippocampus 2018; 28:251-268. [PMID: 29394516 PMCID: PMC5874173 DOI: 10.1002/hipo.22832] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 12/14/2017] [Accepted: 01/23/2018] [Indexed: 12/15/2022]
Abstract
Although there are changes in gene expression and alterations in neuronal density and afferent inputs in the forebrain of trisomic mouse models of Down syndrome (DS) and Alzheimer's disease (AD), there is a lack of systematic assessments of gene expression and encoded proteins within individual vulnerable cell populations, precluding translational investigations at the molecular and cellular level. Further, no effective treatment exists to combat intellectual disability and basal forebrain cholinergic neurodegeneration seen in DS. To further our understanding of gene expression changes before and following cholinergic degeneration in a well-established mouse model of DS/AD, the Ts65Dn mouse, we assessed RNA expression levels from CA1 pyramidal neurons at two adult ages (∼6 months of age and ∼11 months of age) in both Ts65Dn and their normal disomic (2N) littermates. We further examined a therapeutic intervention, maternal choline supplementation (MCS), which has been previously shown to lessen dysfunction in spatial cognition and attention, and have protective effects on the survival of basal forebrain cholinergic neurons in the Ts65Dn mouse model. Results indicate that MCS normalized expression of several genes in key gene ontology categories, including synaptic plasticity, calcium signaling, and AD-associated neurodegeneration related to amyloid-beta peptide (Aβ) clearance. Specifically, normalized expression levels were found for endothelin converting enzyme-2 (Ece2), insulin degrading enzyme (Ide), Dyrk1a, and calcium/calmodulin-dependent protein kinase II (Camk2a), among other relevant genes. Single population expression profiling of vulnerable CA1 pyramidal neurons indicates that MCS is a viable therapeutic for long-term reprogramming of key transcripts involved in neuronal signaling that are dysregulated in the trisomic mouse brain which have translational potential for DS and AD.
Collapse
Affiliation(s)
- Melissa J. Alldred
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY
- Departments of Psychiatry, New York University Langone Medical Center, New York, NY
| | - Helen M. Chao
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY
- Departments of Psychiatry, New York University Langone Medical Center, New York, NY
| | - Sang Han Lee
- Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute, Orangeburg, NY
- Child Psychiatry, Nathan Kline Institute, Orangeburg, NY
- Departments of Psychiatry, New York University Langone Medical Center, New York, NY
- Child and Adolescent Psychiatry, New York University Langone Medical Center, New York, NY
| | - Judah Beilin
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY
| | | | - Eva Petkova
- Child Psychiatry, Nathan Kline Institute, Orangeburg, NY
- Child and Adolescent Psychiatry, New York University Langone Medical Center, New York, NY
| | - Barbara J. Strupp
- Division of Nutritional Sciences, Cornell University, Ithaca, NY
- Department of Psychology, Cornell University, Ithaca, NY
| | - Stephen D. Ginsberg
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY
- Departments of Psychiatry, New York University Langone Medical Center, New York, NY
- Neuroscience & Physiology, New York University Langone Medical Center, New York, NY
- NYU Neuroscience Institute, New York University Langone Medical Center, New York, NY
| |
Collapse
|
37
|
Bennetzen JL, Wang X. Relationships between Gene Structure and Genome Instability in Flowering Plants. MOLECULAR PLANT 2018; 11:407-413. [PMID: 29462722 DOI: 10.1016/j.molp.2018.02.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 02/11/2018] [Accepted: 02/13/2018] [Indexed: 06/08/2023]
Abstract
Flowering plant (angiosperm) genomes are exceptional in their variability with respect to genome size, ploidy, chromosome number, gene content, and gene arrangement. Gene movement, although observed in some of the earliest plant genome comparisons, has been relatively underinvestigated. We present herein a description of several interesting properties of plant gene and genome structure that are pertinent to the successful movement of a gene to a new location. These considerations lead us to propose a model that can explain the frequent success of plant gene mobility, namely that Small Insulated Genes Move Around (SIGMAR). The SIGMAR model is then compared with known processes for gene mobilization, and predictions of the SIGMAR model are formulated to encourage future experimentation. The overall results indicate that the frequent gene movement in angiosperm genomes is partly an outcome of the unusual properties of angiosperm genes, especially their small size and insulation from epigenetic silencing.
Collapse
Affiliation(s)
- Jeffrey L Bennetzen
- State Key Laboratory of Tea Plant Biology and Utilization/Key Laboratory of Tea Biology and Processing, Ministry of Agriculture, Anhui Agricultural University, Hefei, Anhui 230036, People's Republic of China; Department of Genetics, University of Georgia, Athens, GA 30602, USA.
| | - Xuewen Wang
- State Key Laboratory of Tea Plant Biology and Utilization/Key Laboratory of Tea Biology and Processing, Ministry of Agriculture, Anhui Agricultural University, Hefei, Anhui 230036, People's Republic of China; Department of Genetics, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
38
|
Steenwyk JL, Rokas A. Copy Number Variation in Fungi and Its Implications for Wine Yeast Genetic Diversity and Adaptation. Front Microbiol 2018; 9:288. [PMID: 29520259 PMCID: PMC5826948 DOI: 10.3389/fmicb.2018.00288] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 02/07/2018] [Indexed: 11/13/2022] Open
Abstract
In recent years, copy number (CN) variation has emerged as a new and significant source of genetic polymorphisms contributing to the phenotypic diversity of populations. CN variants are defined as genetic loci that, due to duplication and deletion, vary in their number of copies across individuals in a population. CN variants range in size from 50 base pairs to whole chromosomes, can influence gene activity, and are associated with a wide range of phenotypes in diverse organisms, including the budding yeast Saccharomyces cerevisiae. In this review, we introduce CN variation, discuss the genetic and molecular mechanisms implicated in its generation, how they can contribute to genetic and phenotypic diversity in fungal populations, and consider how CN variants may influence wine yeast adaptation in fermentation-related processes. In particular, we focus on reviewing recent work investigating the contribution of changes in CN of fermentation-related genes in yeast wine strains and offer notable illustrations of such changes, including the high levels of CN variation among the CUP genes, which confer resistance to copper, a metal with fungicidal properties, and the preferential deletion and duplication of the MAL1 and MAL3 loci, respectively, which are responsible for metabolizing maltose and sucrose. Based on the available data, we propose that CN variation is a substantial dimension of yeast genetic diversity that occurs largely independent of single nucleotide polymorphisms. As such, CN variation harbors considerable potential for understanding and manipulating yeast strains in the wine fermentation environment and beyond.
Collapse
Affiliation(s)
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
39
|
Philipp T, Terry J, Feichtinger M, Grillenberger S, Hartmann B, Jirecek S. Morphology of early intrauterine deaths with full trisomy 15. Prenat Diagn 2018; 38:267-272. [DOI: 10.1002/pd.5230] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 01/22/2018] [Accepted: 01/30/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Tom Philipp
- Department of Gynecology and Obstetrics; Danube Hospital; Vienna Austria
| | - Jefferson Terry
- Department of Pathology; BC Children's Hospital; Vancouver Canada
| | - Michael Feichtinger
- Department of Obstetrics and Gynecology, Division of Gynecologic Endocrinology and Reproductive Medicine; Medical University of Vienna; Vienna Austria
| | - Sandra Grillenberger
- Department of Pathology, Cytogenetic Laboratory; Danube Hospital; Vienna Austria
| | - Beda Hartmann
- Department of Gynecology and Obstetrics; Danube Hospital; Vienna Austria
| | | |
Collapse
|
40
|
A Pair of Maternal Chromosomes Derived from Meiotic Nondisjunction in Trisomy 21 Affects Nuclear Architecture and Transcriptional Regulation. Sci Rep 2017; 7:764. [PMID: 28396582 PMCID: PMC5429678 DOI: 10.1038/s41598-017-00714-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 03/10/2017] [Indexed: 12/22/2022] Open
Abstract
Eukaryotic genomes are organised into complex higher-order structures within the nucleus, and the three-dimensional arrangement of chromosomes is functionally important for global gene regulation. The existence of supernumerary chromosome 21 in Down syndrome may perturb the nuclear architecture at different levels, which is normally optimised to maintain the physiological balance of gene expression. However, it has not been clearly elucidated whether and how aberrant configuration of chromosomes affects gene activities. To investigate the effects of trisomy 21 on nuclear organisation and gene expression, we performed three-dimensional fluorescent imaging analysis of chromosome-edited human induced pluripotent stem cells (iPSCs), which enabled identification of the parental origin of the three copies of chromosome 21. We found that two copies of maternal chromosomes resulting from meiotic nondisjunction had a higher tendency to form an adjacent pair and were located relatively distant from the nuclear membrane, suggesting the conserved interaction between these homologous chromosomes. Transcriptional profiling of parental-origin-specific corrected disomy 21 iPSC lines indicated upregulated expression of the maternal alleles for a group of genes, which was accompanied by a fluctuating expression pattern. These results suggest the unique effects of a pair of maternal chromosomes in trisomy 21, which may contribute to the pathological phenotype.
Collapse
|
41
|
Abstract
Detection of genomic changes at single cell resolution is important for characterizing genetic heterogeneity and evolution in normal tissues, cancers, and microbial populations. Traditional methods for assessing genetic heterogeneity have been limited by low resolution, low sensitivity, and/or low specificity. Single cell sequencing has emerged as a powerful tool for detecting genetic heterogeneity with high resolution, high sensitivity and, when appropriately analyzed, high specificity. Here we provide a protocol for the isolation, whole genome amplification, sequencing, and analysis of single cells. Our approach allows for the reliable identification of megabase-scale copy number variants in single cells. However, aspects of this protocol can also be applied to investigate other types of genetic alterations in single cells.
Collapse
Affiliation(s)
- Kristin A Knouse
- Koch Institute for Integrative Cancer Research, Department of Biology, Massachusetts Institute of Technology; Howard Hughes Medical Institute; Division of Health Sciences and Technology, Harvard Medical School;
| | - Jie Wu
- The Barbara K. Ostrom (1978) Bioinformatics and Computing Facility in the Swanson Biotechnology Center, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology
| | - Austin Hendricks
- BioMicro Center, Department of Biology, Massachusetts Institute of Technology
| |
Collapse
|
42
|
Do C, Xing Z, Yu YE, Tycko B. Trans-acting epigenetic effects of chromosomal aneuploidies: lessons from Down syndrome and mouse models. Epigenomics 2016; 9:189-207. [PMID: 27911079 PMCID: PMC5549717 DOI: 10.2217/epi-2016-0138] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
An important line of postgenomic research seeks to understand how genetic factors can influence epigenetic patterning. Here we review epigenetic effects of chromosomal aneuploidies, focusing on findings in Down syndrome (DS, trisomy 21). Recent work in human DS and mouse models has shown that the extra chromosome 21 acts in trans to produce epigenetic changes, including differential CpG methylation (DS-DM), in specific sets of downstream target genes, mostly on other chromosomes. Mechanistic hypotheses emerging from these data include roles of chromosome 21-linked methylation pathway genes (DNMT3L and others) and transcription factor genes (RUNX1, OLIG2, GABPA, ERG and ETS2) in shaping the patterns of DS-DM. The findings may have broader implications for trans-acting epigenetic effects of chromosomal and subchromosomal aneuploidies in other human developmental and neuropsychiatric disorders, and in cancers.
Collapse
Affiliation(s)
- Catherine Do
- Institute for Cancer Genetics, Columbia University, New York, NY 10032, USA
| | - Zhuo Xing
- The Children's Guild Foundation Down Syndrome Research Program, Genetics Program & Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - Y Eugene Yu
- The Children's Guild Foundation Down Syndrome Research Program, Genetics Program & Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - Benjamin Tycko
- Institute for Cancer Genetics, Columbia University, New York, NY 10032, USA.,Taub Institute for Research on Alzheimer's disease & the Aging Brain, Columbia University, New York, NY 10032, USA.,Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA.,Department of Pathology & Cell Biology, Columbia University, New York, NY 10032, USA
| |
Collapse
|
43
|
Ong OTW, Young LJ, Old JM. Evaluation of reference genes for gene expression in red-tailed phascogale ( Phascogale calura) liver, lung, small intestine and spleen. PeerJ 2016; 4:e2552. [PMID: 27761339 PMCID: PMC5068414 DOI: 10.7717/peerj.2552] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 09/12/2016] [Indexed: 11/20/2022] Open
Abstract
Background Reference genes serve an important role as an endogenous control/standard for data normalisation in gene expression studies. Although reference genes have recently been suggested for marsupials, independent analysis of reference genes on different immune tissues is yet to be tested. Therefore, an assessment of reference genes is needed for the selection of stable, expressed genes across different marsupial tissues. Methods The study was conducted on red-tailed phascogales (Phascogale calura) using five juvenile and five adult males. The stability of five reference genes (glyceraldehyde-3-phosphate dehydrogenase, GAPDH; β-actin, ACTB; 18S rRNA, 18S; 28S rRNA, 28S; and ribosomal protein L13A, RPL13A) was investigated using SYBR Green and analysed with the geNorm application available in qBasePLUS software. Results Gene stability for juvenile and adult tissue samples combined show that GAPDH was most stable in liver and lung tissue, and 18S in small intestine and spleen. While all reference genes were suitable for small intestine and spleen tissues, all reference genes except 28S were stable for lung and only 18S and 28S were stable for liver tissue. Separating the two age groups, we found that two different reference genes were considered stable in juveniles (ACTB and GAPDH) and adults (18S and 28S), and RPL13A was not stable for juvenile small intestine tissue. Except for 28S, all reference genes were stable in juvenile and adult lungs, and all five reference genes were stable in spleen tissue. Discussion Based on expression stability, ACTB and GAPDH are suitable for all tissues when studying the expression of marsupials in two age groups, except for adult liver tissues. The expression stability between juvenile and adult liver tissue was most unstable, as the stable reference genes for juveniles and adults were different. Juvenile and adult lung, small intestine and spleen share similar stable reference genes, except for small intestine tissues where all reference genes were stable in adults but RPL13A was not suitable in juveniles.
Collapse
Affiliation(s)
- Oselyne T W Ong
- School of Science and Health, Western Sydney University , Richmond , New South Wales , Australia
| | - Lauren J Young
- School of Science and Health, Western Sydney University , Richmond , New South Wales , Australia
| | - Julie M Old
- School of Science and Health, Western Sydney University , Richmond , New South Wales , Australia
| |
Collapse
|
44
|
Kelley CM, Ash JA, Powers BE, Velazquez R, Alldred MJ, Ikonomovic MD, Ginsberg SD, Strupp BJ, Mufson EJ. Effects of Maternal Choline Supplementation on the Septohippocampal Cholinergic System in the Ts65Dn Mouse Model of Down Syndrome. Curr Alzheimer Res 2016; 13:84-96. [PMID: 26391045 DOI: 10.2174/1567205012666150921100515] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 09/01/2015] [Accepted: 09/10/2015] [Indexed: 01/07/2023]
Abstract
Down syndrome (DS), caused by trisomy of chromosome 21, is marked by intellectual disability (ID) and early onset of Alzheimer's disease (AD) neuropathology including hippocampal cholinergic projection system degeneration. Here we determined the effects of age and maternal choline supplementation (MCS) on hippocampal cholinergic deficits in Ts65Dn mice compared to 2N mice sacrificed at 6-8 and 14-18 months of age. Ts65Dn mice and disomic (2N) littermates sacrificed at ages 6-8 and 14-18 mos were used for an aging study and Ts65Dn and 2N mice derived from Ts65Dn dams were maintained on either a choline-supplemented or a choline-controlled diet (conception to weaning) and examined at 14-18 mos for MCS studies. In the latter, mice were behaviorally tested on the radial arm Morris water maze (RAWM) and hippocampal tissue was examined for intensity of choline acetyltransferase (ChAT) immunoreactivity. Hippocampal ChAT activity was evaluated in a separate cohort. ChAT-positive fiber innervation was significantly higher in the hippocampus and dentate gyrus in Ts65Dn mice compared with 2N mice, independent of age or maternal diet. Similarly, hippocampal ChAT activity was significantly elevated in Ts65Dn mice compared to 2N mice, independent of maternal diet. A significant increase with age was seen in hippocampal cholinergic innervation of 2N mice, but not Ts65Dn mice. Degree of ChAT intensity correlated negatively with spatial memory ability in unsupplemented 2N and Ts65Dn mice, but positively in MCS 2N mice. The increased innervation produced by MCS appears to improve hippocampal function, making this a therapy that may be exploited for future translational approaches in human DS.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Elliott J Mufson
- Barrow Neurological Institute, Dept. Neurobiology, Phoenix, AZ 85031, USA.
| |
Collapse
|
45
|
Créau N, Cabet E, Daubigney F, Souchet B, Bennaï S, Delabar J. Specific age-related molecular alterations in the cerebellum of Down syndrome mouse models. Brain Res 2016; 1646:342-353. [PMID: 27297494 DOI: 10.1016/j.brainres.2016.06.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 05/07/2016] [Accepted: 06/02/2016] [Indexed: 12/27/2022]
Abstract
Down syndrome, or trisomy 21, has been modeled with various trisomic and transgenic mice to help understand the consequences of an altered gene dosage in brain development and function. Though Down syndrome has been associated with premature aging, little is known about the molecular and cellular alterations that target brain function. To help identify alterations at specific ages, we analyzed the cerebellum of Ts1Cje mice, trisomic for 77 HSA21 orthologs, at three ages-young (4 months), middle-age (12 months), and old (17 months)-compared to age-matched controls. Quantification of neuronal and glial markers (n=11) revealed increases in GFAP, with an age effect, and S100B, with age and genotype effects. The genotype effect on S100B with age was unexpected as Ts1Cje has only two copies of the S100b gene. Interestingly, the different increase in GFAP observed between Ts1Cje (trisomic segment includes Pcp4 gene) and controls was magnified in TgPCP4 mice (1 extra copy of the human PCP4 gene) at the same age. S100B increase was not found in the TgPCP4 confirming a difference of regulation with aging for GFAP and S100B and excluding the calcium signaling regulator, Pcp4, as a potential candidate for increase of S100B in the Ts1Cje. To understand these differences, comparison of GFAP and S100B immunostainings at young and middle-age were performed. Immunohistochemical detection of differences in GFAP and S100B localization with aging implicate S100B+ oligodendrocytes as a new phenotypic target in this specific aging process.
Collapse
Affiliation(s)
- Nicole Créau
- Univ Paris Diderot, Sorbonne Paris Cité, Unité de Biologie Fonctionnelle et Adaptative, UMR8251, CNRS, Paris, France.
| | - Eva Cabet
- Univ Paris Diderot, Sorbonne Paris Cité, Unité de Biologie Fonctionnelle et Adaptative, UMR8251, CNRS, Paris, France
| | - Fabrice Daubigney
- Univ Paris Diderot, Sorbonne Paris Cité, Unité de Biologie Fonctionnelle et Adaptative, UMR8251, CNRS, Paris, France
| | - Benoit Souchet
- Univ Paris Diderot, Sorbonne Paris Cité, Unité de Biologie Fonctionnelle et Adaptative, UMR8251, CNRS, Paris, France
| | - Soumia Bennaï
- Univ Paris Diderot, Sorbonne Paris Cité, Unité de Biologie Fonctionnelle et Adaptative, UMR8251, CNRS, Paris, France
| | - Jean Delabar
- Univ Paris Diderot, Sorbonne Paris Cité, Unité de Biologie Fonctionnelle et Adaptative, UMR8251, CNRS, Paris, France
| |
Collapse
|
46
|
Sun X, Li M, Sun Y, Cai H, Li R, Wei X, Lan X, Huang Y, Lei C, Chen H. The developmental transcriptome landscape of bovine skeletal muscle defined by Ribo-Zero ribonucleic acid sequencing. J Anim Sci 2016; 93:5648-58. [PMID: 26641174 DOI: 10.2527/jas.2015-9562] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Ribonucleic acid sequencing (RNA-Seq) libraries are normally prepared with oligo(dT) selection of poly(A)+ mRNA, but it depends on intact total RNA samples. Recent studies have described Ribo-Zero technology, a novel method that can capture both poly(A)+ and poly(A)- transcripts from intact or fragmented RNA samples. We report here the first application of Ribo-Zero RNA-Seq for the analysis of the bovine embryonic, neonatal, and adult skeletal muscle whole transcriptome at an unprecedented depth. Overall, 19,893 genes were found to be expressed, with a high correlation of expression levels between the calf and the adult. Hundreds of genes were found to be highly expressed in the embryo and decreased at least 10-fold after birth, indicating their potential roles in embryonic muscle development. In addition, we present for the first time the analysis of global transcript isoform discovery in bovine skeletal muscle and identified 36,694 transcript isoforms. Transcriptomic data were also analyzed to unravel sequence variations; 185,036 putative SNP and 12,428 putative short insertions-deletions (InDel) were detected. Specifically, many stop-gain, stop-loss, and frameshift mutations were identified that probably change the relative protein production and sequentially affect the gene function. Notably, the numbers of stage-specific transcripts, alternative splicing events, SNP, and InDel were greater in the embryo than in the calf and the adult, suggesting that gene expression is most active in the embryo. The resulting view of the transcriptome at a single-base resolution greatly enhances the comprehensive transcript catalog and uncovers the global trends in gene expression during bovine skeletal muscle development.
Collapse
|
47
|
El Hajj N, Dittrich M, Böck J, Kraus TFJ, Nanda I, Müller T, Seidmann L, Tralau T, Galetzka D, Schneider E, Haaf T. Epigenetic dysregulation in the developing Down syndrome cortex. Epigenetics 2016; 11:563-78. [PMID: 27245352 PMCID: PMC4990229 DOI: 10.1080/15592294.2016.1192736] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 05/12/2016] [Accepted: 05/17/2016] [Indexed: 12/18/2022] Open
Abstract
Using Illumina 450K arrays, 1.85% of all analyzed CpG sites were significantly hypermethylated and 0.31% hypomethylated in fetal Down syndrome (DS) cortex throughout the genome. The methylation changes on chromosome 21 appeared to be balanced between hypo- and hyper-methylation, whereas, consistent with prior reports, all other chromosomes showed 3-11 times more hyper- than hypo-methylated sites. Reduced NRSF/REST expression due to upregulation of DYRK1A (on chromosome 21q22.13) and methylation of REST binding sites during early developmental stages may contribute to this genome-wide excess of hypermethylated sites. Upregulation of DNMT3L (on chromosome 21q22.4) could lead to de novo methylation in neuroprogenitors, which then persists in the fetal DS brain where DNMT3A and DNMT3B become downregulated. The vast majority of differentially methylated promoters and genes was hypermethylated in DS and located outside chromosome 21, including the protocadherin gamma (PCDHG) cluster on chromosome 5q31, which is crucial for neural circuit formation in the developing brain. Bisulfite pyrosequencing and targeted RNA sequencing showed that several genes of PCDHG subfamilies A and B are hypermethylated and transcriptionally downregulated in fetal DS cortex. Decreased PCDHG expression is expected to reduce dendrite arborization and growth in cortical neurons. Since constitutive hypermethylation of PCDHG and other genes affects multiple tissues, including blood, it may provide useful biomarkers for DS brain development and pharmacologic targets for therapeutic interventions.
Collapse
Affiliation(s)
- Nady El Hajj
- Institute of Human Genetics, Julius Maximilians University, Würzburg, Germany
| | - Marcus Dittrich
- Institute of Human Genetics, Julius Maximilians University, Würzburg, Germany
- Department of Bioinformatics, Julius Maximilians University, Würzburg, Germany
| | - Julia Böck
- Institute of Human Genetics, Julius Maximilians University, Würzburg, Germany
| | - Theo F. J. Kraus
- Center for Neuropathology and Prion Research, Ludwig Maximilians University, Munich, Germany
| | - Indrajit Nanda
- Institute of Human Genetics, Julius Maximilians University, Würzburg, Germany
| | - Tobias Müller
- Department of Bioinformatics, Julius Maximilians University, Würzburg, Germany
| | - Larissa Seidmann
- Department of Pathology, University Medical Center, Mainz, Germany
| | - Tim Tralau
- Rehabilitation Clinic for Children and Adolescents, Westerland/Sylt, Germany
| | - Danuta Galetzka
- Department of Radiation Oncology and Radiotherapy, University Medical Center, Mainz, Germany
| | - Eberhard Schneider
- Institute of Human Genetics, Julius Maximilians University, Würzburg, Germany
| | - Thomas Haaf
- Institute of Human Genetics, Julius Maximilians University, Würzburg, Germany
| |
Collapse
|
48
|
McCallie BR, Parks JC, Patton AL, Griffin DK, Schoolcraft WB, Katz-Jaffe MG. Hypomethylation and Genetic Instability in Monosomy Blastocysts May Contribute to Decreased Implantation Potential. PLoS One 2016; 11:e0159507. [PMID: 27434648 PMCID: PMC4951028 DOI: 10.1371/journal.pone.0159507] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 07/05/2016] [Indexed: 02/03/2023] Open
Abstract
DNA methylation is a key epigenetic mechanism responsible for gene regulation, chromatin remodeling, and genome stability, playing a fundamental role during embryonic development. The aim of this study was to determine if these epigenetic marks are associated with chromosomal aneuploidy in human blastocysts. Surplus, cryopreserved blastocysts that were donated to research with IRB consent were chosen with varying chromosomal aneuploidies and respective implantation potential: monosomies and trisomies 7, 11, 15, 21, and 22. DNA methylation analysis was performed using the Illumina Infinium HumanMethylation450 BeadChip (~485,000 CpG sites). The methylation profiles of these human blastocysts were found to be similar across all samples, independent of chromosome constitution; however, more detailed examination identified significant hypomethylation in the chromosome involved in the monosomy. Real-time PCR was also performed to determine if downstream messenger RNA (mRNA) was affected for genes on the monosomy chromosome. Gene dysregulation was observed for monosomy blastocysts within significant regions of hypo-methylation (AVEN, CYFIP1, FAM189A1, MYO9A, ADM2, PACSIN2, PARVB, and PIWIL3) (P < 0.05). Additional analysis was performed to examine the gene expression profiles of associated methylation regulators including: DNA methyltransferases (DNMT1, DNMT3A, DNMT3B, DNMT3L), chromatin modifying regulators (CSNK1E, KDM1, PRKCA), and a post-translational modifier (PRMT5). Decreased RNA transcription was confirmed for each DNMT, and the regulators that impact DNMT activity, for only monosomy blastocysts (P < 0.05). In summary, monosomy blastocysts displayed hypomethylation for the chromosome involved in the error, as well as transcription alterations of associated developmental genes. Together, these modifications may be contributing to genetic instability and therefore be responsible for the limited implantation potential observed for full monosomy blastocysts.
Collapse
Affiliation(s)
- Blair R. McCallie
- National Foundation for Fertility Research, Lone Tree, Colorado, 80124, United States of America
- School of Biosciences, University of Kent, Canterbury, CT2 7NJ, United Kingdom
- * E-mail:
| | - Jason C. Parks
- National Foundation for Fertility Research, Lone Tree, Colorado, 80124, United States of America
- School of Biosciences, University of Kent, Canterbury, CT2 7NJ, United Kingdom
| | - Alyssa L. Patton
- National Foundation for Fertility Research, Lone Tree, Colorado, 80124, United States of America
| | - Darren K. Griffin
- School of Biosciences, University of Kent, Canterbury, CT2 7NJ, United Kingdom
| | - William B. Schoolcraft
- Colorado Center for Reproductive Medicine, Lone Tree, Colorado, 80124, United States of America
| | - Mandy G. Katz-Jaffe
- National Foundation for Fertility Research, Lone Tree, Colorado, 80124, United States of America
- Colorado Center for Reproductive Medicine, Lone Tree, Colorado, 80124, United States of America
| |
Collapse
|
49
|
Slager J, Veening JW. Hard-Wired Control of Bacterial Processes by Chromosomal Gene Location. Trends Microbiol 2016; 24:788-800. [PMID: 27364121 PMCID: PMC5034851 DOI: 10.1016/j.tim.2016.06.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 05/31/2016] [Accepted: 06/08/2016] [Indexed: 12/23/2022]
Abstract
Bacterial processes, such as stress responses and cell differentiation, are controlled at many different levels. While some factors, such as transcriptional regulation, are well appreciated, the importance of chromosomal gene location is often underestimated or even completely neglected. A combination of environmental parameters and the chromosomal location of a gene determine how many copies of its DNA are present at a given time during the cell cycle. Here, we review bacterial processes that rely, completely or partially, on the chromosomal location of involved genes and their fluctuating copy numbers. Special attention will be given to the several different ways in which these copy-number fluctuations can be used for bacterial cell fate determination or coordination of interdependent processes in a bacterial cell.
Collapse
Affiliation(s)
- Jelle Slager
- Molecular Genetics Group, Groningen Biomolecular Sciences and Biotechnology Institute, Centre for Synthetic Biology, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Jan-Willem Veening
- Molecular Genetics Group, Groningen Biomolecular Sciences and Biotechnology Institute, Centre for Synthetic Biology, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands.
| |
Collapse
|
50
|
Shi WL, Liu ZZ, Wang HD, Wu D, Zhang H, Xiao H, Chu Y, Hou QF, Liao SX. Integrated miRNA and mRNA expression profiling in fetal hippocampus with Down syndrome. J Biomed Sci 2016; 23:48. [PMID: 27266699 PMCID: PMC4897952 DOI: 10.1186/s12929-016-0265-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 05/26/2016] [Indexed: 12/18/2022] Open
Abstract
Backgrounds Down syndrome (DS), caused by triplication of human chromosome 21, is the most common aneuploidies. The main characteristic of DS patients is intellectual disability. MicroRNAs (miRNAs) play important regulatory roles in various biological processes, such as embryonic development, cell differentiation, proliferation and apoptosis. Several miRNAs have shown association with DS. However, the role of miRNAs in DS patients has not been well elaborated. Methods In this research, total RNA extracted from fetal hippocampal tissues was used to analyze miRNA and mRNA expression via Affymetrix miRNA 4.0 and PrimeView Human Gene Expression Array, respectively. Then miRNA and gene expression profiles were integrated by correlation analysis to identify dysregulated miRNAs with their predicted target mRNAs. Microarray data were further validated by real-time PCR. Regulation of zeste homolog 2 (EZH2) expression by hsa-miR-138 was determined by luciferase reporter assay. Results We analyzed microRNA expression profile in hippocampal tissues from DS fetal using miRNA microarray. Further with the use of mRNA microarray data, we integrate miRNA expression and mRNA expression in hippocampus of trisomy 21 fetus to elucidate the mechanism that underlying DS abnormalities. We characterized the repertoire of specific miRNAs involved in hippocampus in trisomy 21 patients, highlighting hsa-miR-138 and hsa-miR-409, in particular the importance of hsa-miR-138, especially the -5p strand. Furthermore, the expression level of predicted target genes of hsa-miR-138-5p in trisomy 21 fetus, including zeste homolog 2 (EZH2) were further confirmed. In addition, luciferase assay indicated that EZH2 was a direct target of hsa-miR-138 in HEK293T cells. Conclusion The function of hsa-miR-138-5p and its target EZH2 was involved in hippocampus in DS patients. Our findings provide a clue to study the underlying molecular mechanisms in DS patients, and its potential contribution in improving understanding of intellectual disability development in DS patients. Electronic supplementary material The online version of this article (doi:10.1186/s12929-016-0265-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wei-Li Shi
- Medical Genetic Institute of Henan Province, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Zhong-Zhen Liu
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Hong-Dan Wang
- Medical Genetic Institute of Henan Province, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Dong Wu
- Medical Genetic Institute of Henan Province, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Hui Zhang
- Medical Genetic Institute of Henan Province, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Hai Xiao
- Medical Genetic Institute of Henan Province, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Yan Chu
- Medical Genetic Institute of Henan Province, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Qiao-Fang Hou
- Medical Genetic Institute of Henan Province, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Shi-Xiu Liao
- Medical Genetic Institute of Henan Province, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, People's Republic of China.
| |
Collapse
|