1
|
Hobza R, Bačovský V, Čegan R, Horáková L, Hubinský M, Janíček T, Janoušek B, Jedlička P, Kružlicová J, Kubát Z, Rodríguez Lorenzo JL, Novotná P, Hudzieczek V. Sexy ways: approaches to studying plant sex chromosomes. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:5204-5219. [PMID: 38652048 PMCID: PMC11389836 DOI: 10.1093/jxb/erae173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 04/22/2024] [Indexed: 04/25/2024]
Abstract
Sex chromosomes have evolved in many plant species with separate sexes. Current plant research is shifting from examining the structure of sex chromosomes to exploring their functional aspects. New studies are progressively unveiling the specific genetic and epigenetic mechanisms responsible for shaping distinct sexes in plants. While the fundamental methods of molecular biology and genomics are generally employed for the analysis of sex chromosomes, it is often necessary to modify classical procedures not only to simplify and expedite analyses but sometimes to make them possible at all. In this review, we demonstrate how, at the level of structural and functional genetics, cytogenetics, and bioinformatics, it is essential to adapt established procedures for sex chromosome analysis.
Collapse
Affiliation(s)
- Roman Hobza
- Department of Plant Developmental Genetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 00 Brno, Czech Republic
| | - Václav Bačovský
- Department of Plant Developmental Genetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 00 Brno, Czech Republic
| | - Radim Čegan
- Department of Plant Developmental Genetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 00 Brno, Czech Republic
| | - Lucie Horáková
- Department of Plant Developmental Genetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 00 Brno, Czech Republic
- Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Marcel Hubinský
- Department of Plant Developmental Genetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 00 Brno, Czech Republic
- Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Tomáš Janíček
- Department of Plant Developmental Genetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 00 Brno, Czech Republic
- Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Bohuslav Janoušek
- Department of Plant Developmental Genetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 00 Brno, Czech Republic
| | - Pavel Jedlička
- Department of Plant Developmental Genetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 00 Brno, Czech Republic
| | - Jana Kružlicová
- Department of Plant Developmental Genetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 00 Brno, Czech Republic
- Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Zdeněk Kubát
- Department of Plant Developmental Genetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 00 Brno, Czech Republic
| | - José Luis Rodríguez Lorenzo
- Department of Plant Developmental Genetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 00 Brno, Czech Republic
| | - Pavla Novotná
- Department of Plant Developmental Genetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 00 Brno, Czech Republic
- Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Vojtěch Hudzieczek
- Department of Plant Developmental Genetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 00 Brno, Czech Republic
| |
Collapse
|
2
|
Monthony AS, de Ronne M, Torkamaneh D. Exploring ethylene-related genes in Cannabis sativa: implications for sexual plasticity. PLANT REPRODUCTION 2024; 37:321-339. [PMID: 38218931 DOI: 10.1007/s00497-023-00492-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 12/11/2023] [Indexed: 01/15/2024]
Abstract
KEY MESSAGE Presented here are model Yang cycle, ethylene biosynthesis and signaling pathways in Cannabis sativa. C. sativa floral transcriptomes were used to predict putative ethylene-related genes involved in sexual plasticity in the species. Sexual plasticity is a phenomenon, wherein organisms possess the ability to alter their phenotypic sex in response to environmental and physiological stimuli, without modifying their sex chromosomes. Cannabis sativa L., a medically valuable plant species, exhibits sexual plasticity when subjected to specific chemicals that influence ethylene biosynthesis and signaling. Nevertheless, the precise contribution of ethylene-related genes (ERGs) to sexual plasticity in cannabis remains unexplored. The current study employed Arabidopsis thaliana L. as a model organism to conduct gene orthology analysis and reconstruct the Yang Cycle, ethylene biosynthesis, and ethylene signaling pathways in C. sativa. Additionally, two transcriptomic datasets comprising male, female, and chemically induced male flowers were examined to identify expression patterns in ERGs associated with sexual determination and sexual plasticity. These ERGs involved in sexual plasticity were categorized into two distinct expression patterns: floral organ concordant (FOC) and unique (uERG). Furthermore, a third expression pattern, termed karyotype concordant (KC) expression, was proposed, which plays a role in sex determination. The study revealed that CsERGs associated with sexual plasticity are dispersed throughout the genome and are not limited to the sex chromosomes, indicating a widespread regulation of sexual plasticity in C. sativa.
Collapse
Affiliation(s)
- Adrian S Monthony
- Département de Phytologie, Université Laval, Québec City, Québec, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, Québec, Canada
- Centre de Recherche et d'innovation sur les végétaux (CRIV), Université Laval, Québec City, Québec, Canada
- Institut intelligence et données (IID), Université Laval, Québec City, Québec, Canada
| | - Maxime de Ronne
- Département de Phytologie, Université Laval, Québec City, Québec, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, Québec, Canada
- Centre de Recherche et d'innovation sur les végétaux (CRIV), Université Laval, Québec City, Québec, Canada
- Institut intelligence et données (IID), Université Laval, Québec City, Québec, Canada
| | - Davoud Torkamaneh
- Département de Phytologie, Université Laval, Québec City, Québec, Canada.
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, Québec, Canada.
- Centre de Recherche et d'innovation sur les végétaux (CRIV), Université Laval, Québec City, Québec, Canada.
- Institut intelligence et données (IID), Université Laval, Québec City, Québec, Canada.
| |
Collapse
|
3
|
He L, Wang Y, Wang Y, Zhang RG, Wang Y, Hörandl E, Ma T, Mao YF, Mank JE, Ming R. Allopolyploidization from two dioecious ancestors leads to recurrent evolution of sex chromosomes. Nat Commun 2024; 15:6893. [PMID: 39134553 PMCID: PMC11319354 DOI: 10.1038/s41467-024-51158-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 07/31/2024] [Indexed: 08/15/2024] Open
Abstract
Polyploidization presents an unusual challenge for species with sex chromosomes, as it can lead to complex combinations of sex chromosomes that disrupt reproductive development. This is particularly true for allopolyploidization between species with different sex chromosome systems. Here, we assemble haplotype-resolved chromosome-level genomes of a female allotetraploid weeping willow (Salix babylonica) and a male diploid S. dunnii. We show that weeping willow arose from crosses between a female ancestor from the Salix-clade, which has XY sex chromosomes on chromosome 7, and a male ancestor from the Vetrix-clade, which has ancestral XY sex chromosomes on chromosome 15. We find that weeping willow has one pair of sex chromosomes, ZW on chromosome 15, that derived from the ancestral XY sex chromosomes in the male ancestor of the Vetrix-clade. Moreover, the ancestral 7X chromosomes from the female ancestor of the Salix-clade have reverted to autosomal inheritance. Duplicated intact ARR17-like genes on the four homologous chromosomes 19 likely have contributed to the maintenance of dioecy during polyploidization and sex chromosome turnover. Taken together, our results suggest the rapid evolution and reversion of sex chromosomes following allopolyploidization in weeping willow.
Collapse
Affiliation(s)
- Li He
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China.
| | - Yuàn Wang
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China
| | - Yi Wang
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China
- Laboratory of Systematic Evolution and Biogeography of Woody Plants, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100083, China
| | - Ren-Gang Zhang
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Yuán Wang
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China
| | - Elvira Hörandl
- Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), University of Göttingen, Göttingen, Germany
| | - Tao Ma
- Key Laboratory for Bio‑Resource and Eco‑Environment of Ministry of Education & Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Science, Sichuan University, Chengdu, China
| | - Yan-Fei Mao
- CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Judith E Mank
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Ray Ming
- Centre for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|
4
|
Balant M, Garnatje T, Vitales D, Hidalgo O, Chitwood DH. Intra-leaf modeling of Cannabis leaflet shape produces leaf models that predict genetic and developmental identities. THE NEW PHYTOLOGIST 2024; 243:781-796. [PMID: 38757746 DOI: 10.1111/nph.19817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/28/2024] [Indexed: 05/18/2024]
Abstract
The iconic, palmately compound leaves of Cannabis have attracted significant attention in the past. However, investigations into the genetic basis of leaf shape or its connections to phytochemical composition have yielded inconclusive results. This is partly due to prominent changes in leaflet number within a single plant during development, which has so far prevented the proper use of common morphometric techniques. Here, we present a new method that overcomes the challenge of nonhomologous landmarks in palmate, pinnate, and lobed leaves, using Cannabis as an example. We model corresponding pseudo-landmarks for each leaflet as angle-radius coordinates and model them as a function of leaflet to create continuous polynomial models, bypassing the problems associated with variable number of leaflets between leaves. We analyze 341 leaves from 24 individuals from nine Cannabis accessions. Using 3591 pseudo-landmarks in modeled leaves, we accurately predict accession identity, leaflet number, and relative node number. Intra-leaf modeling offers a rapid, cost-effective means of identifying Cannabis accessions, making it a valuable tool for future taxonomic studies, cultivar recognition, and possibly chemical content analysis and sex identification, in addition to permitting the morphometric analysis of leaves in any species with variable numbers of leaflets or lobes.
Collapse
Affiliation(s)
- Manica Balant
- Institut Botànic de Barcelona, IBB (CSIC-CMCNB), Passeig del Migdia s.n., 08038, Barcelona, Spain
- Laboratori de Botànica, Unitat Associada al CSIC, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona (UB), Av. Joan XXIII 27-31, 08028, Barcelona, Spain
- Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA
| | - Teresa Garnatje
- Institut Botànic de Barcelona, IBB (CSIC-CMCNB), Passeig del Migdia s.n., 08038, Barcelona, Spain
- Jardí Botànic Marimurtra - Fundació Carl Faust, pg. Carles Faust, 9, 17300, Blanes, Spain
| | - Daniel Vitales
- Institut Botànic de Barcelona, IBB (CSIC-CMCNB), Passeig del Migdia s.n., 08038, Barcelona, Spain
| | - Oriane Hidalgo
- Institut Botànic de Barcelona, IBB (CSIC-CMCNB), Passeig del Migdia s.n., 08038, Barcelona, Spain
- Royal Botanic Gardens, Kew, Richmond, TW9 3AE, UK
| | - Daniel H Chitwood
- Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA
- Department of Computational Mathematics, Science & Engineering, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
5
|
Tang Q, Xu Y, Gao F, Xu Y, Cheng C, Deng C, Chen J, Yuan X, Zhang X, Su J. Transcriptomic and metabolomic analyses reveal the differential accumulation of phenylpropanoids and terpenoids in hemp autotetraploid and its diploid progenitor. BMC PLANT BIOLOGY 2023; 23:616. [PMID: 38049730 PMCID: PMC10696708 DOI: 10.1186/s12870-023-04630-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 11/23/2023] [Indexed: 12/06/2023]
Abstract
BACKGROUND Cannabis sativa, a dioecious plant that has been cultivated worldwide for thousands of years, is known for its secondary metabolites, especially cannabinoids, which possess several medicinal effects. In this study, we investigated the autopolyploidization effects on the biosynthesis and accumulation of these metabolites, transcriptomic and metabolomic analyses were performed to explore the gene expression and metabolic variations in industrial hemp autotetraploids and their diploid progenitors. RESULTS Through these analyses, we obtained 1,663 differentially expressed metabolites and 1,103 differentially expressed genes. Integrative analysis revealed that phenylpropanoid and terpenoid biosynthesis were regulated by polyploidization. No substantial differences were found in the cannabidiol or tetrahydrocannabinol content between tetraploids and diploids. Following polyploidization, some transcription factors, including nine bHLH and eight MYB transcription factors, affected the metabolic biosynthesis as regulators. Additionally, several pivotal catalytic genes, such as flavonol synthase/flavanone 3-hydroxylase, related to the phenylpropanoid metabolic pathway, were identified as being modulated by polyploidization. CONCLUSIONS This study enhances the overall understanding of the impact of autopolyploidization in C. sativa and the findings may encourage the application of polyploid breeding for increasing the content of important secondary metabolites in industrial hemp.
Collapse
Affiliation(s)
- Qing Tang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, Hunan, China
- Center for Industrial Hemp Science and Technology Innovation, Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, Hunan, China
| | - Ying Xu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, Hunan, China
| | - Feng Gao
- Yunnan Academy of Industrial Hemp, Kunming, 650214, Yunnan, China
| | - Ying Xu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, Hunan, China
| | - Chaohua Cheng
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, Hunan, China
- Center for Industrial Hemp Science and Technology Innovation, Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, Hunan, China
| | - Canhui Deng
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, Hunan, China
| | - Jiquan Chen
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, Hunan, China
| | - Xiaoge Yuan
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, Hunan, China
| | - Xiaoyu Zhang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, Hunan, China
| | - Jianguang Su
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, Hunan, China.
- Center for Industrial Hemp Science and Technology Innovation, Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, Hunan, China.
| |
Collapse
|
6
|
Miotti N, Passera A, Ratti C, Dall'Ara M, Casati P. A Guide to Cannabis Virology: From the Virome Investigation to the Development of Viral Biotechnological Tools. Viruses 2023; 15:1532. [PMID: 37515219 PMCID: PMC10384868 DOI: 10.3390/v15071532] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
Cannabis sativa cultivation is experiencing a period of renewed interest due to the new opportunities for its use in different sectors including food, techno-industrial, construction, pharmaceutical and medical, cosmetics, and textiles. Moreover, its properties as a carbon sequestrator and soil improver make it suitable for sustainable agriculture and climate change mitigation strategies. The increase in cannabis cultivation is generating conditions for the spread of new pathogens. While cannabis fungal and bacterial diseases are better known and characterized, viral infections have historically been less investigated. Many viral infection reports on cannabis have recently been released, highlighting the increasing threat and spread of known and unknown viruses. However, the available information on these pathogens is still incomplete and fragmentary, and it is therefore useful to organize it into a single structured document to provide guidance to growers, breeders, and academic researchers. This review aims to present the historical excursus of cannabis virology, from the pioneering descriptions of virus-like symptoms in the 1940s/50s to the most recent high-throughput sequencing reports. Each of these viruses detected in cannabis will be categorized with an increasing degree of threat according to its potential risk to the crop. Lastly, the development of viral vectors for functional genetics studies will be described, revealing how cannabis virology is evolving not only for the characterization of its virome but also for the development of biotechnological tools for the genetic improvement of this crop.
Collapse
Affiliation(s)
- Niccolò Miotti
- Department of Agricultural and Food Sciences-Production, Landscape, Agroenergy, University of Milan, Via Celoria 2, 20133 Milan, Italy
| | - Alessandro Passera
- Department of Agricultural and Food Sciences-Production, Landscape, Agroenergy, University of Milan, Via Celoria 2, 20133 Milan, Italy
| | - Claudio Ratti
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Viale Giuseppe Fanin 40, 40127 Bologna, Italy
| | - Mattia Dall'Ara
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Viale Giuseppe Fanin 40, 40127 Bologna, Italy
| | - Paola Casati
- Department of Agricultural and Food Sciences-Production, Landscape, Agroenergy, University of Milan, Via Celoria 2, 20133 Milan, Italy
| |
Collapse
|
7
|
Sex ratios, damage and distribution of Myrianthus holstii Engl.: a dioecious afromontane forest tree. JOURNAL OF TROPICAL ECOLOGY 2023. [DOI: 10.1017/s0266467422000499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Abstract
Male and female dioecious tropical trees are subjected to distinct demands that may influence their ecology. An example is Myrianthus holstii Engl. that produces persistent fruit eaten by elephants and other large mammals that frequently damage the trees. Myrianthus holstii populations were assessed with 24 2-km transects, spanning an elevation range of 1435–2495 m in the Bwindi Impenetrable National Park in Uganda. Of 1089 stems ≥ 5 cm diameter 449 were female, 383 were male and the rest were non-fertile. We also noted one apparently monoecious individual. Males produced flowers at smaller sizes than did females (minimum recorded diameters 5.5 cm and 6.8 cm, respectively). Both sexes had similar distributions, favouring moderately closed forest and mid-slope locations. Female trees were more frequently damaged and typically slightly shorter than males at large diameters. Seedling densities were positively associated with the presence of larger female trees. Our results are consistent with a life history where both sexes have similar requirements, but fruiting females experience a greater frequency of severe damage.
Collapse
|
8
|
Razumova OV, Divashuk MG, Alexandrov OS, Karlov GI. GISH painting of the Y chromosomes suggests advanced phases of sex chromosome evolution in three dioecious Cannabaceae species (Humulus lupulus, H. japonicus, and Cannabis sativa). PROTOPLASMA 2023; 260:249-256. [PMID: 35595927 DOI: 10.1007/s00709-022-01774-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
In plants, dioecy is relatively rare, and it involves sex chromosome systems that often developed independently over time. These characteristics make dioecious plants an attractive model to study sex chromosome evolution. To clarify the patterns of plant sex chromosome evolution, studies should be performed on a wide range of dioecious species. It is interesting to study the sex chromosomes in related species that evolved during a long period of independent sex chromosome evolution. The Cannabaceae family includes three dioecious species with heteromorphic sex chromosomes. Cannabis sativa and Humulus lupulus use the XX/XY chromosome system, whereas Humulus japonicus contains multiple sex chromosomes (XX/XY1Y2). To better understand sex chromosome evolution and the level of genomic divergence of these three related species, we undertook self-GISH and comparative GISH analyses. The self-GISH allowed visualization of the Y chromosomes of C. sativa, H. lupulus, and H. japonicus. The self-GISH signal was distributed along the entire Y chromosome, excluding the pseudo-autosomal region (PAR). Our results indicate that the male-specific region of the Y chromosome (MSY) spans the overwhelming majority of the Y chromosomes of all three species studied. The self-GISH results reveal the accumulation of repetitive DNA sequences in the Y chromosomes of all three species studied. This sequences presented in autosomes and/or chromosome X at a lower copy number than in Y. In comparative GISH experiments where the probe DNA of one species was applied to another species, a weak signal was exclusively detected on 45S rDNA sites, indicating a high level of genomic differentiation of the species used in this study. We demonstrate small PAR size and opposing large MSY and its positions on Y chromosomes. We also found that these genomes are highly differentiated. Furthermore, the data obtained in this study indicate a long period of independent and advanced sex chromosome evolution. Our study provides a valuable basis for future genomic studies of sex and suggests that the Cannabaceae family offers a promising model to study sex chromosome evolution.
Collapse
Affiliation(s)
- Olga V Razumova
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya 42, Moscow, 127550, Russia
| | - Mikhail G Divashuk
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya 42, Moscow, 127550, Russia
| | - Oleg S Alexandrov
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya 42, Moscow, 127550, Russia
| | - Gennady I Karlov
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya 42, Moscow, 127550, Russia.
| |
Collapse
|
9
|
Torres A, Pauli C, Givens R, Argyris J, Allen K, Monfort A, Gaudino RJ. High-throughput methods to identify male Cannabis sativa using various genotyping methods. J Cannabis Res 2022; 4:57. [PMID: 36324130 PMCID: PMC9628020 DOI: 10.1186/s42238-022-00164-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022] Open
Abstract
Background Cannabis sativa is a primarily dioecious angiosperm that exhibits sexual developmental plasticity. Developmental genes for staminate male flowers have yet to be elucidated; however, there are regions of male-associated DNA from Cannabis (MADC) that correlate with the formation of pollen producing staminate flowers. MADC2 is an example of a PCR-based genetic marker that has been shown to produce a 390-bp amplicon that correlates with the expression of male phenotypes. We demonstrate applications of a cost-effective high-throughput male genotyping assay and other genotyping applications of male identification in Cannabis sativa. Methods In this study, we assessed data from 8200 leaf samples analyzed for real-time quantitative polymerase chain reaction (qPCR) detection of MADC2 in a commercial testing application offered through Steep Hill Laboratories. Through validation, collaborative research projects, and follow-up retest analysis, we observed a > 98.5% accuracy of detection of MADC2 by qPCR. We also carried out assay development for high-resolution melting analysis (HRM), loop-mediated isothermal amplification (LAMP), and TwistDx recombinase amplification (RPA) assays using MADC2 for male identification. Results We demonstrate a robust high-throughput duplex TaqMan qPCR assay for identification of male-specific genomic signatures using a novel MADC2 qPCR probe. The qPCR cycle quotient (Cq) value representative of MADC2 detection in 3156 males and the detection of tissue control cannabinoid synthesis for 8200 samples and the absence of MADC2 detection in 5047 non-males demonstrate a robust high-throughput real-time genotyping assay for Cannabis. Furthermore, we also demonstrated the viability of using nearby regions to MADC2 with novel primers as alternative assays. Finally, we also show proof of concept of several additional commercially viable sex determination methodologies for Cannabis sativa. Discussion In industrial applications, males are desirable for their more rapid growth and higher quality fiber quality, as well as their ability to pollinate female plants and produce grain. In medicinal applications, female cultivars are more desirable for their ability to produce large amounts of secondary metabolites, specifically the cannabinoids, terpenes, and flavonoids that have various medicinal and recreational properties. In previous studies, traditional PCR and non-high-throughput methods have been reported for the detection of male cannabis, and in our study, we present multiple methodologies that can be carried out in high-throughput commercial cannabis testing. Conclusion With these markers developed for high-throughput testing assays, the Cannabis industry will be able to easily screen and select for the desired sex of a given cultivar depending on the application. Supplementary Information The online version contains supplementary material available at 10.1186/s42238-022-00164-7.
Collapse
Affiliation(s)
| | | | | | - Jason Argyris
- Centre for Agriculture and Genomics Research, Barcelona, Spain
| | | | - Amparo Monfort
- Centre for Agriculture and Genomics Research, Barcelona, Spain
| | | |
Collapse
|
10
|
Sirangelo TM, Ludlow RA, Spadafora ND. Multi-Omics Approaches to Study Molecular Mechanisms in Cannabis sativa. PLANTS (BASEL, SWITZERLAND) 2022; 11:2182. [PMID: 36015485 PMCID: PMC9416457 DOI: 10.3390/plants11162182] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 06/15/2023]
Abstract
Cannabis (Cannabis sativa L.), also known as hemp, is one of the oldest cultivated crops, grown for both its use in textile and cordage production, and its unique chemical properties. However, due to the legislation regulating cannabis cultivation, it is not a well characterized crop, especially regarding molecular and genetic pathways. Only recently have regulations begun to ease enough to allow more widespread cannabis research, which, coupled with the availability of cannabis genome sequences, is fuelling the interest of the scientific community. In this review, we provide a summary of cannabis molecular resources focusing on the most recent and relevant genomics, transcriptomics and metabolomics approaches and investigations. Multi-omics methods are discussed, with this combined approach being a powerful tool to identify correlations between biological processes and metabolic pathways across diverse omics layers, and to better elucidate the relationships between cannabis sub-species. The correlations between genotypes and phenotypes, as well as novel metabolites with therapeutic potential are also explored in the context of cannabis breeding programs. However, further studies are needed to fully elucidate the complex metabolomic matrix of this crop. For this reason, some key points for future research activities are discussed, relying on multi-omics approaches.
Collapse
Affiliation(s)
- Tiziana M. Sirangelo
- CREA—Council for Agricultural Research and Agricultural Economy Analysis, Genomics and Bioinformatics Department, 26836 Montanaso Lombardo, Italy
| | - Richard A. Ludlow
- School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff CF10 3AX, UK
| | - Natasha D. Spadafora
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
11
|
Dioecy and chromosomal sex determination are maintained through allopolyploid speciation in the plant genus Mercurialis. PLoS Genet 2022; 18:e1010226. [PMID: 35793353 PMCID: PMC9292114 DOI: 10.1371/journal.pgen.1010226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 07/18/2022] [Accepted: 04/29/2022] [Indexed: 11/19/2022] Open
Abstract
Polyploidization may precipitate dramatic changes to the genome, including chromosome rearrangements, gene loss, and changes in gene expression. In dioecious plants, the sex-determining mechanism may also be disrupted by polyploidization, with the potential evolution of hermaphroditism. However, while dioecy appears to have persisted through a ploidy transition in some species, it is unknown whether the newly formed polyploid maintained its sex-determining system uninterrupted, or whether dioecy re-evolved after a period of hermaphroditism. Here, we develop a bioinformatic pipeline using RNA-sequencing data from natural populations to demonstrate that the allopolyploid plant Mercurialis canariensis directly inherited its sex-determining region from one of its diploid progenitor species, M. annua, and likely remained dioecious through the transition. The sex-determining region of M. canariensis is smaller than that of its diploid progenitor, suggesting that the non-recombining region of M. annua expanded subsequent to the polyploid origin of M. canariensis. Homeologous pairs show partial sexual subfunctionalization. We discuss the possibility that gene duplicates created by polyploidization might contribute to resolving sexual antagonism.
Collapse
|
12
|
Transcriptome Analysis and Identification of a Female-Specific SSR Marker in Pistacia chinensis Based on Illumina Paired-End RNA Sequencing. Genes (Basel) 2022; 13:genes13061024. [PMID: 35741786 PMCID: PMC9222763 DOI: 10.3390/genes13061024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 05/27/2022] [Accepted: 05/31/2022] [Indexed: 02/08/2023] Open
Abstract
Pistacia chinensis Bunge (P. chinensis), a dioecious plant species, has been widely found in China. The female P. chinensis plants are more important than male plants in agricultural production, as their seeds can serve as an ideal feedstock for biodiesel. However, the sex of P. chinensis plants is hard to distinguish during the seedling stage due to the scarcity of available transcriptomic and genomic information. In this work, Illumina paired-end RNA sequencing assay was conducted to unravel the transcriptomic profiles of female and male P. chinensis flower buds. In total, 50,925,088 and 51,470,578 clean reads were obtained from the female and male cDNA libraries, respectively. After quality checks and de novo assembly, a total of 83,370 unigenes with a mean length of 1.3 kb were screened. Overall, 64,539 unigenes (77.48%) could be matched in at least one of the NR, NT, Swiss-Prot, COG, KEGG, and GO databases, 71 of which were putatively related to the floral development of P. chinensis. Additionally, 21,662 simple sequence repeat (SSR) motifs were identified in 17,028 unigenes of P. chinensis, and the mononucleotide motif was the most dominant type of repeats (52.59%) in P. chinensis, followed by dinucleotide (22.29%), trinucleotide (20.15%). The most abundant repeats were AG/CT (13.97%), followed by AAC/GTT (6.75%) and AT/TA (6.10%). Based on these SSR, 983 EST-SSR primers were designed, 151 of which were randomly chosen for validation. Of these validated EST-SSR markers, 25 SSR markers were found to be polymorphic between male and female plants. One SSR marker, namelyPCSSR55, displayed excellent specificity in female plants, which could clearly distinguish between male and female P. chinensis. Altogether, our findings not only reveal that the EST-SSR marker is extremely effective in distinguishing between male and female P. chinensis but also provide a solid framework for sex determination of plant seedlings.
Collapse
|
13
|
Melzer R, McCabe PF, Schilling S. Evolution, genetics and biochemistry of plant cannabinoid synthesis: a challenge for biotechnology in the years ahead. Curr Opin Biotechnol 2022; 75:102684. [DOI: 10.1016/j.copbio.2022.102684] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/14/2021] [Accepted: 01/03/2022] [Indexed: 12/14/2022]
|
14
|
Alexandrov OS, Romanov DV, Divashuk MG, Razumova OV, Ulyanov DS, Karlov GI. Study and Physical Mapping of the Species-Specific Tandem Repeat CS-237 Linked with 45S Ribosomal DNA Intergenic Spacer in Cannabis sativa L. PLANTS (BASEL, SWITZERLAND) 2022; 11:1396. [PMID: 35684169 PMCID: PMC9183113 DOI: 10.3390/plants11111396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/11/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
Hemp (Cannabis sativa L.) is a valuable crop and model plant for studying sex chromosomes. The scientific interest in the plant has led to its whole genome sequencing and the determination of its cytogenetic characteristics. A range of cytogenetic markers (subtelomeric repeat CS-1, 5S rDNA, and 45S rDNA) has been mapped onto hemp's chromosomes by fluorescent in situ hybridization (FISH). In this study, another cytogenetic marker (the tandem repeat CS-237, with a 237 bp monomer) was found, studied, and localized on chromosomes by FISH. The signal distribution and karyotyping revealed that the CS-237 probe was localized in chromosome 6 with one hybridization site and in chromosome 8 with two hybridization sites, one of which colocalizes with the 45S rDNA probe (with which a nucleolus organizer region, NOR, was detected). A BLAST analysis of the genomic data and PCR experiments showed that the modified CS-237 monomers (delCS-237, 208 bp in size) were present in the intergenic spacers (IGSs) of hemp 45S rDNA monomers. Such a feature was firstly observed in Cannabaceae species. However, IGS-linked DNA repeats were found in several plant species of other families (Fabaceae, Solanaceae, and Asteraceae). This phenomenon is discussed in this article. The example of CS-237 may be useful for further studying the phenomenon as well as for the physical mapping of hemp chromosomes.
Collapse
Affiliation(s)
| | - Dmitry V. Romanov
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya 42, 127550 Moscow, Russia; (O.S.A.); (M.G.D.); (O.V.R.); (D.S.U.); (G.I.K.)
| | | | | | | | | |
Collapse
|
15
|
Janousek B, Gogela R, Bacovsky V, Renner SS. The evolution of huge Y chromosomes in Coccinia grandis and its sister, Coccinia schimperi. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210294. [PMID: 35306898 PMCID: PMC8935295 DOI: 10.1098/rstb.2021.0294] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 12/06/2021] [Indexed: 12/22/2022] Open
Abstract
Microscopically dimorphic sex chromosomes in plants are rare, reducing our ability to study them. One difficulty has been the paucity of cultivatable species pairs for cytogenetic, genomic and experimental work. Here, we study the newly recognized sisters Coccinia grandis and Coccinia schimperi, both with large Y chromosomes as we here show for Co. schimperi. We built genetic maps for male and female Co. grandis using a full-sibling family, inferred gene sex-linkage, and, with Co. schimperi transcriptome data, tested whether X- and Y-alleles group by species or by sex. Most sex-linked genes for which we could include outgroups grouped the X- and Y-alleles by species, but some 10% instead grouped the two species' X-alleles. There was no relationship between XY synonymous-site divergences in these genes and gene position on the non-recombining part of the X, suggesting recombination arrest shortly before or after species divergence, here dated to about 3.6 Ma. Coccinia grandis and Co. schimperi are the species pair with the most heteromorphic sex chromosomes in vascular plants (the condition in their sister remains unknown), and future work could use them to study mechanisms of Y chromosome enlargement and parallel degeneration, or to test Haldane's rule about lower hybrid fitness in the heterogametic sex. This article is part of the theme issue 'Sex determination and sex chromosome evolution in land plants'.
Collapse
Affiliation(s)
- Bohuslav Janousek
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 61265 Brno, Czech Republic
| | - Roman Gogela
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 61265 Brno, Czech Republic
| | - Vaclav Bacovsky
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 61265 Brno, Czech Republic
| | - Susanne S Renner
- Department of Biology, Washington University, Saint Louis, MO, USA
| |
Collapse
|
16
|
Mank JE. Are plant and animal sex chromosomes really all that different? Philos Trans R Soc Lond B Biol Sci 2022; 377:20210218. [PMID: 35306885 PMCID: PMC8935310 DOI: 10.1098/rstb.2021.0218] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/12/2021] [Indexed: 12/19/2022] Open
Abstract
Sex chromosomes in plants have often been contrasted with those in animals with the goal of identifying key differences that can be used to elucidate fundamental evolutionary properties. For example, the often homomorphic sex chromosomes in plants have been compared to the highly divergent systems in some animal model systems, such as birds, Drosophila and therian mammals, with many hypotheses offered to explain the apparent dissimilarities, including the younger age of plant sex chromosomes, the lesser prevalence of sexual dimorphism, or the greater extent of haploid selection. Furthermore, many plant sex chromosomes lack complete sex chromosome dosage compensation observed in some animals, including therian mammals, Drosophila, some poeciliids, and Anolis, and plant dosage compensation, where it exists, appears to be incomplete. Even the canonical theoretical models of sex chromosome formation differ somewhat between plants and animals. However, the highly divergent sex chromosomes observed in some animal groups are actually the exception, not the norm, and many animal clades are far more similar to plants in their sex chromosome patterns. This begs the question of how different are plant and animal sex chromosomes, and which of the many unique properties of plants would be expected to affect sex chromosome evolution differently than animals? In fact, plant and animal sex chromosomes exhibit more similarities than differences, and it is not at all clear that they differ in terms of sexual conflict, dosage compensation, or even degree of divergence. Overall, the largest difference between these two groups is the greater potential for haploid selection in plants compared to animals. This may act to accelerate the expansion of the non-recombining region at the same time that it maintains gene function within it. This article is part of the theme issue 'Sex determination and sex chromosome evolution in land plants'.
Collapse
Affiliation(s)
- Judith E. Mank
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, Canada
- Centre for Ecology and Conservation, University of Exeter, Penryn, UK
| |
Collapse
|
17
|
Charlesworth D. Some thoughts about the words we use for thinking about sex chromosome evolution. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210314. [PMID: 35306893 PMCID: PMC8935297 DOI: 10.1098/rstb.2021.0314] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Sex chromosomes are familiar to most biologists since they first learned about genetics. However, research over the past 100 years has revealed that different organisms have evolved sex-determining systems independently. The differences in the ages of systems, and in how they evolved, both affect whether sex chromosomes have evolved. However, the diversity means that the terminology used tends to emphasize either the similarities or the differences, sometimes causing misunderstandings. In this article, I discuss some concepts where special care is needed with terminology. The following four terms regularly create problems: ‘sex chromosome’, ‘master sex-determining gene’, ‘evolutionary strata’ and ‘genetic degeneration’. There is no generally correct or wrong use of these words, but efforts are necessary to make clear how they are to be understood in specific situations. I briefly outline some widely accepted ideas about sex chromosomes, and then discuss these ‘problem terms’, highlighting some examples where careful use of the words helps bring to light current uncertainties and interesting questions for future work. This article is part of the theme issue ‘Sex determination and sex chromosome evolution in land plants’.
Collapse
Affiliation(s)
- Deborah Charlesworth
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, West Mains Road, Edinburgh EH9 3LF, UK
| |
Collapse
|
18
|
Muyle A, Marais GAB, Bačovský V, Hobza R, Lenormand T. Dosage compensation evolution in plants: theories, controversies and mechanisms. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210222. [PMID: 35306896 PMCID: PMC8935305 DOI: 10.1098/rstb.2021.0222] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
In a minority of flowering plants, separate sexes are genetically determined by sex chromosomes. The Y chromosome has a non-recombining region that degenerates, causing a reduced expression of Y genes. In some species, the lower Y expression is accompanied by dosage compensation (DC), a mechanism that re-equalizes male and female expression and/or brings XY male expression back to its ancestral level. Here, we review work on DC in plants, which started as early as the late 1960s with cytological approaches. The use of transcriptomics fired a controversy as to whether DC existed in plants. Further work revealed that various plants exhibit partial DC, including a few species with young and homomorphic sex chromosomes. We are starting to understand the mechanisms responsible for DC in some plants, but in most species, we lack the data to differentiate between global and gene-by-gene DC. Also, it is unknown why some species evolve many dosage compensated genes while others do not. Finally, the forces that drive DC evolution remain mysterious, both in plants and animals. We review the multiple evolutionary theories that have been proposed to explain DC patterns in eukaryotes with XY or ZW sex chromosomes. This article is part of the theme issue 'Sex determination and sex chromosome evolution in land plants'.
Collapse
Affiliation(s)
- Aline Muyle
- Laboratoire 'Biométrie et Biologie Evolutive', CNRS/Université Lyon 1, Lyon, France
| | - Gabriel A B Marais
- Laboratoire 'Biométrie et Biologie Evolutive', CNRS/Université Lyon 1, Lyon, France.,CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal.,Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4099-002 Porto, Portugal.,BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal
| | - Václav Bačovský
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, Brno, Czech Republic
| | - Roman Hobza
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, Brno, Czech Republic
| | - Thomas Lenormand
- CEFE, University of Montpellier, CNRS, EPHE, IRD, Montpellier, France
| |
Collapse
|
19
|
Käfer J, Méndez M, Mousset S. Labile sex expression in angiosperm species with sex chromosomes. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210216. [PMID: 35306891 PMCID: PMC8935303 DOI: 10.1098/rstb.2021.0216] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 01/26/2022] [Indexed: 12/18/2022] Open
Abstract
Here, we review the literature on sexual lability in dioecious angiosperm species with well-studied sex chromosomes. We distinguish three types of departures from strict dioecy, concerning either a minority of flowers in some individuals (leakiness) or the entire individual, which can constantly be bisexual or change sex. We found that for only four of the 22 species studied, reports of lability are lacking. The occurrence of lability is only weakly related to sex chromosome characteristics (number of sex-linked genes, age of the non-recombining region). These results contradict the naive idea that lability is an indication of the absence or the recent evolution of sex chromosomes, and thereby contribute to a growing consensus that sex chromosomes do not necessarily fix sex determination once and for all. We discuss some implications of these findings for the evolution of sex chromosomes, and suggest that more species with well-characterized lability should be studied with genomic data and tools. This article is part of the theme issue 'Sex determination and sex chromosome evolution in land plants'.
Collapse
Affiliation(s)
- Jos Käfer
- Laboratoire de Biométrie et Biologie Evolutive, Université Lyon 1, CNRS UMR 5558, 69622 Villeurbanne, France
- CESAB–FRB, 34000 Montpellier, France
| | - Marcos Méndez
- Área de Biodiversidad y Conservación, Universidad Rey Juan Carlos, Tulipán s/n, 28933 Móstoles (Madrid), Spain
| | - Sylvain Mousset
- Laboratoire de Biométrie et Biologie Evolutive, Université Lyon 1, CNRS UMR 5558, 69622 Villeurbanne, France
| |
Collapse
|
20
|
Tobacco Rattle Virus as a Tool for Rapid Reverse-Genetics Screens and Analysis of Gene Function in Cannabis sativa L. PLANTS 2022; 11:plants11030327. [PMID: 35161308 PMCID: PMC8838890 DOI: 10.3390/plants11030327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/25/2022] [Accepted: 01/25/2022] [Indexed: 11/19/2022]
Abstract
Medical cannabis (Cannabis sativa L.) is quickly becoming a central agricultural crop as its production has continued to increase globally. The recent release of the cannabis reference genomes provides key genetic information for the functional analysis of cannabis genes. Currently, however, the established tools for in vivo gene functional analysis in cannabis are very limited. In this study, we investigated the use of the tobacco rattle virus (TRV) as a possible tool for virus-induced gene silencing (VIGS) and virus-aided gene expression (VAGE). Using leaf photobleaching as a visual marker of PHYTOENE DESATURASE (PDS) silencing, we found that VIGS was largely restricted to the agro-infiltrated leaves. However, when agro-infiltration was performed under vacuum, VIGS increased dramatically, which resulted in intense PDS silencing and an increased photobleaching phenotype. The suitability of TRV as a vector for virus-aided gene expression (VAGE) was demonstrated by an analysis of DsRed fluorescence protein. Interestingly, a DsRed signal was also observed in glandular trichomes in TRV2-DsRed-infected plants, which suggests the possibility of trichome-related gene function analysis. These results indicate that TRV, despite its limited spread, is an attractive vector for rapid reverse-genetics screens and for the analysis of gene function in cannabis.
Collapse
|
21
|
Selection and validation of reference genes for normalization of qRT-PCR data to study the cannabinoid pathway genes in industrial hemp. PLoS One 2021; 16:e0260660. [PMID: 34928958 PMCID: PMC8687539 DOI: 10.1371/journal.pone.0260660] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 11/13/2021] [Indexed: 11/19/2022] Open
Abstract
There has been significant interest in researching the pharmaceutical applications of Industrial hemp since its legalization three years ago. The crop is mostly dioecious and known for its production of phytocannabinoids, flavonoids, and terpenes. Although many scientific reports have showed gene expression analysis of hemp through OMICs approaches, unreliable reference genes for normalization of qRT-PCR data make it difficult to validate the OMICs data. Four software packages: geNorm, NormFinder, BestKeeper, and RefFinder were used to evaluate the differential gene expression patterns of 13 candidate reference genes under osmotic, heavy metal, hormonal, and UV stresses. EF-1α ranked as the most stable reference gene across all stresses, TUB was the most stable under osmotic stress, and TATA was the most stable under both heavy metal stress and hormonal stimuli. The expression patterns of two cannabinoid pathway genes, AAE1 and CBDAS, were used to validate the reliability of the selected reference genes. This work provides useful information for gene expression characterization in hemp and future research in the synthesis, transport, and accumulation of secondary metabolites.
Collapse
|
22
|
Borin M, Palumbo F, Vannozzi A, Scariolo F, Sacilotto GB, Gazzola M, Barcaccia G. Developing and Testing Molecular Markers in Cannabis sativa (Hemp) for Their Use in Variety and Dioecy Assessments. PLANTS 2021; 10:plants10102174. [PMID: 34685983 PMCID: PMC8540786 DOI: 10.3390/plants10102174] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 11/16/2022]
Abstract
Cannabis sativa (2n = 2x = 20) is a popular species belonging to the Cannabaceae family. Despite its use for medical, recreational, and industrial purposes as well as its long history, the genetic research on this species is in its infancy due to the legal implications and the prohibition campaigns. The recent legalization of Cannabis in many countries along with the use of genomics boosted the approaches aimed at marker-assisted selection, germplasm management, genetic discrimination, and authentication of cultivars. Nonetheless, the exploitation of molecular markers for the development of commercial varieties through marker-assisted breeding schemes is still rare. The present study aimed to develop an informative panel of simple sequence repeat markers to be used for the genotyping of high breeding value C. sativa lines. Starting from 41 nuclear SSR designated by in silico analyses, we selected 20 highly polymorphic and discriminant loci that were tested in 104 individuals belonging to 11 distinct hemp varieties. The selected markers were successful in accessing homozygosity, genetic uniformity, and genetic variation within and among varieties. Population structure analysis identified eight genetic groups, clustering individuals based on sexual behaviors (dioecious and monoecious) and geographical origins. Overall, this study provides important tools for the genetic characterization, authentication, conservation of biodiversity, genetic improvement and traceability of this increasingly important plant species.
Collapse
Affiliation(s)
- Marcello Borin
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37034 Verona, Italy;
- Gruppo Padana Ortofloricoltura S.S., Via Olimpia 41, 31038 Treviso, Italy; (G.B.S.); (M.G.)
| | - Fabio Palumbo
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Viale dell’Università 16, 35020 Padova, Italy; (F.P.); (A.V.); (F.S.)
| | - Alessandro Vannozzi
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Viale dell’Università 16, 35020 Padova, Italy; (F.P.); (A.V.); (F.S.)
| | - Francesco Scariolo
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Viale dell’Università 16, 35020 Padova, Italy; (F.P.); (A.V.); (F.S.)
| | - Gio Batta Sacilotto
- Gruppo Padana Ortofloricoltura S.S., Via Olimpia 41, 31038 Treviso, Italy; (G.B.S.); (M.G.)
| | - Marco Gazzola
- Gruppo Padana Ortofloricoltura S.S., Via Olimpia 41, 31038 Treviso, Italy; (G.B.S.); (M.G.)
| | - Gianni Barcaccia
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Viale dell’Università 16, 35020 Padova, Italy; (F.P.); (A.V.); (F.S.)
- Correspondence:
| |
Collapse
|
23
|
Vergara D, Huscher EL, Keepers KG, Pisupati R, Schwabe AL, McGlaughlin ME, Kane NC. Genomic Evidence That Governmentally Produced Cannabis sativa Poorly Represents Genetic Variation Available in State Markets. FRONTIERS IN PLANT SCIENCE 2021; 12:668315. [PMID: 34594346 PMCID: PMC8476804 DOI: 10.3389/fpls.2021.668315] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 06/28/2021] [Indexed: 06/13/2023]
Abstract
The National Institute on Drug Abuse (NIDA) is the sole producer of Cannabis for research purposes in the United States, including medical investigation. Previous research established that cannabinoid profiles in the NIDA varieties lacked diversity and potency relative to the Cannabis produced commercially. Additionally, microsatellite marker analyses have established that the NIDA varieties are genetically divergent form varieties produced in the private legal market. Here, we analyzed the genomes of multiple Cannabis varieties from diverse lineages including two produced by NIDA, and we provide further support that NIDA's varieties differ from widely available medical, recreational, or industrial Cannabis. Furthermore, our results suggest that NIDA's varieties lack diversity in the single-copy portion of the genome, the maternally inherited genomes, the cannabinoid genes, and in the repetitive content of the genome. Therefore, results based on NIDA's varieties are not generalizable regarding the effects of Cannabis after consumption. For medical research to be relevant, material that is more widely used would have to be studied. Clearly, having research to date dominated by a single, non-representative source of Cannabis has hindered scientific investigation.
Collapse
Affiliation(s)
- Daniela Vergara
- Kane Laboratory, Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, CO, United States
| | - Ezra L. Huscher
- Kane Laboratory, Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, CO, United States
| | - Kyle G. Keepers
- Kane Laboratory, Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, CO, United States
| | - Rahul Pisupati
- Austrian Academy of Sciences, Vienna Biocenter, Gregor Mendel Institute, Vienna, Austria
| | - Anna L. Schwabe
- School of Biological Sciences, University of Northern Colorado, Greeley, CO, United States
| | | | - Nolan C. Kane
- Kane Laboratory, Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, CO, United States
| |
Collapse
|
24
|
Dioecious hemp (Cannabis sativa L.) plants do not express significant sexually dimorphic morphology in the seedling stage. Sci Rep 2021; 11:16825. [PMID: 34413374 PMCID: PMC8376874 DOI: 10.1038/s41598-021-96311-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 07/30/2021] [Indexed: 11/19/2022] Open
Abstract
Some economically important crop species are dioecious, producing pollen and ovules on distinct, unisexual, individuals. On-the-spot diagnosis of sex is important to breeders and farmers for crop improvement and maximizing yield, yet diagnostic tools at the seedling stage are understudied and lack a scientific basis. Understanding sexual dimorphism in juvenile plants may provide key ecological, evolutionary and economic insights into dioecious plant species in addition to improving the process of crop cultivation. To address this gap in the literature, we asked: can we reliably differentiate males, females, and co-sexual individuals based on seedling morphology in Cannabis sativa, and do the traits used to distinguish sex at this stage vary between genotypes? To answer these questions, we collected data on phenotypic traits of 112 C. sativa plants (50 female, 52 male, 10 co-sexuals) from two hemp cultivars (CFX-1, CFX-2) during the second week of vegetative growth and used ANOVAs to compare morphology among sexes. We found males grew significantly longer hypocotyls than females by week 2, but this difference depended on the cultivar investigated. Preliminary evidence suggests that co-sexual plants may be distinguished from male and female plants using short hypocotyl length and seedling height, although this relationship requires more study since sample sizes of co-sexual plants were small. In one of the cultivars, two-week old male plants tend to produce longer hypocotyls than other plants, which may help to identify these plants prior to anthesis. We call for increased research effort on co-sexual plants, given their heavy economic cost in industrial contexts and rare mention in the literature. Our preliminary data suggests that short hypocotyl length may be an indicator of co-sexuality. These results are the first steps towards developing diagnostic tools for predicting sex using vegetative morphology in dioecious species and understanding how sexual dimorphism influences phenotype preceding sexual maturity.
Collapse
|
25
|
Pan G, Li Z, Huang S, Tao J, Shi Y, Chen A, Li J, Tang H, Chang L, Deng Y, Li D, Zhao L. Genome-wide development of insertion-deletion (InDel) markers for Cannabis and its uses in genetic structure analysis of Chinese germplasm and sex-linked marker identification. BMC Genomics 2021; 22:595. [PMID: 34353285 PMCID: PMC8340516 DOI: 10.1186/s12864-021-07883-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 06/28/2021] [Indexed: 12/30/2022] Open
Abstract
Background Cannabis sativa L., a dioecious plant derived from China, demonstrates important medicinal properties and economic value worldwide. Cannabis properties have been usually harnessed depending on the sex of the plant. To analyse the genetic structure of Chinese Cannabis and identify sex-linked makers, genome-wide insertion-deletion (InDel) markers were designed and used. Results In this study, a genome-wide analysis of insertion-deletion (InDel) polymorphisms was performed based on the recent genome sequences. In total, 47,558 InDels were detected between the two varieties, and the length of InDels ranged from 4 bp to 87 bp. The most common InDels were tetranucleotides, followed by pentanucleotides. Chromosome 5 exhibited the highest number of InDels among the Cannabis chromosomes, while chromosome 10 exhibited the lowest number. Additionally, 31,802 non-redundant InDel markers were designed, and 84 primers evenly distributed in the Cannabis genome were chosen for polymorphism analysis. A total of 38 primers exhibited polymorphisms among three accessions, and of the polymorphism primers, 14 biallelic primers were further used to analyse the genetic structure. A total of 39 fragments were detected, and the PIC value ranged from 0.1209 to 0.6351. According to the InDel markers and the flowering time, the 115 Chinese germplasms were divided into two subgroups, mainly composed of cultivars obtained from the northernmost and southernmost regions, respectively. Additional two markers, “Cs-I1–10” and “Cs-I1–15”, were found to amplify two bands (398 bp and 251 bp; 293 bp and 141 bp) in the male plants, while 389-bp or 293-bp bands were amplified in female plants. Using the two markers, the feminized and dioecious varieties could also be distinguished. Conclusion Based on the findings obtained herein, we believe that this study will facilitate the genetic improvement and germplasm conservation of Cannabis in China, and the sex-linked InDel markers will provide accurate sex identification strategies for Cannabis breeding and production. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07883-w.
Collapse
Affiliation(s)
- Gen Pan
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, China.,Key Laboratory of the Biology and Process of Bast Fiber Crops, Ministry of Agriculture, Changsha, China
| | - Zheng Li
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, China
| | - Siqi Huang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, China.,Key Laboratory of the Biology and Process of Bast Fiber Crops, Ministry of Agriculture, Changsha, China
| | - Jie Tao
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, China
| | - Yaliang Shi
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, China
| | - Anguo Chen
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, China.,Key Laboratory of the Biology and Process of Bast Fiber Crops, Ministry of Agriculture, Changsha, China
| | - Jianjun Li
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, China.,Key Laboratory of the Biology and Process of Bast Fiber Crops, Ministry of Agriculture, Changsha, China
| | - Huijuan Tang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, China.,Key Laboratory of the Biology and Process of Bast Fiber Crops, Ministry of Agriculture, Changsha, China
| | - Li Chang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, China.,Key Laboratory of the Biology and Process of Bast Fiber Crops, Ministry of Agriculture, Changsha, China
| | - Yong Deng
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, China.,Key Laboratory of the Biology and Process of Bast Fiber Crops, Ministry of Agriculture, Changsha, China
| | - Defang Li
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, China. .,Key Laboratory of the Biology and Process of Bast Fiber Crops, Ministry of Agriculture, Changsha, China.
| | - Lining Zhao
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, China. .,Key Laboratory of the Biology and Process of Bast Fiber Crops, Ministry of Agriculture, Changsha, China.
| |
Collapse
|
26
|
Prentout D, Stajner N, Cerenak A, Tricou T, Brochier-Armanet C, Jakse J, Käfer J, Marais GAB. Plant genera Cannabis and Humulus share the same pair of well-differentiated sex chromosomes. THE NEW PHYTOLOGIST 2021; 231:1599-1611. [PMID: 33978992 DOI: 10.1111/nph.17456] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/29/2021] [Indexed: 06/12/2023]
Abstract
We recently described, in Cannabis sativa, the oldest sex chromosome system documented so far in plants (12-28 Myr old). Based on the estimated age, we predicted that it should be shared by its sister genus Humulus, which is known also to possess XY chromosomes. Here, we used transcriptome sequencing of an F1 family of H. lupulus to identify and study the sex chromosomes in this species using the probabilistic method SEX-DETector. We identified 265 sex-linked genes in H. lupulus, which preferentially mapped to the C. sativa X chromosome. Using phylogenies of sex-linked genes, we showed that a region of the sex chromosomes had already stopped recombining in an ancestor of both species. Furthermore, as in C. sativa, Y-linked gene expression reduction is correlated to the position on the X chromosome, and highly Y degenerated genes showed dosage compensation. We report, for the first time in Angiosperms, a sex chromosome system that is shared by two different genera. Thus, recombination suppression started at least 21-25 Myr ago, and then (either gradually or step-wise) spread to a large part of the sex chromosomes (c. 70%), leading to a degenerated Y chromosome.
Collapse
Affiliation(s)
- Djivan Prentout
- Laboratoire de Biométrie et Biologie Evolutive, UMR 5558, Université de Lyon, Université Lyon 1, CNRS, Villeurbanne, F-69622, France
| | - Natasa Stajner
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, Ljubljana, SI-1000, Slovenia
| | - Andreja Cerenak
- Slovenian Institute of Hop Research and Brewing, Cesta Zalskega Tabora 2, Zalec, SI-3310, Slovenia
| | - Theo Tricou
- Laboratoire de Biométrie et Biologie Evolutive, UMR 5558, Université de Lyon, Université Lyon 1, CNRS, Villeurbanne, F-69622, France
| | - Celine Brochier-Armanet
- Laboratoire de Biométrie et Biologie Evolutive, UMR 5558, Université de Lyon, Université Lyon 1, CNRS, Villeurbanne, F-69622, France
| | - Jernej Jakse
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, Ljubljana, SI-1000, Slovenia
| | - Jos Käfer
- Laboratoire de Biométrie et Biologie Evolutive, UMR 5558, Université de Lyon, Université Lyon 1, CNRS, Villeurbanne, F-69622, France
| | - Gabriel A B Marais
- Laboratoire de Biométrie et Biologie Evolutive, UMR 5558, Université de Lyon, Université Lyon 1, CNRS, Villeurbanne, F-69622, France
- LEAF- Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, 1349-017, Portugal
| |
Collapse
|
27
|
Käfer J, Lartillot N, Marais GAB, Picard F. Detecting sex-linked genes using genotyped individuals sampled in natural populations. Genetics 2021; 218:iyab053. [PMID: 33764439 PMCID: PMC8225351 DOI: 10.1093/genetics/iyab053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 03/21/2021] [Indexed: 12/20/2022] Open
Abstract
We propose a method, SDpop, able to infer sex-linkage caused by recombination suppression typical of sex chromosomes. The method is based on the modeling of the allele and genotype frequencies of individuals of known sex in natural populations. It is implemented in a hierarchical probabilistic framework, accounting for different sources of error. It allows statistical testing for the presence or absence of sex chromosomes, and detection of sex-linked genes based on the posterior probabilities in the model. Furthermore, for gametologous sequences, the haplotype and level of nucleotide polymorphism of each copy can be inferred, as well as the divergence between them. We test the method using simulated data, as well as data from both a relatively recent and an old sex chromosome system (the plant Silene latifolia and humans) and show that, for most cases, robust predictions are obtained with 5 to 10 individuals per sex.
Collapse
Affiliation(s)
- Jos Käfer
- Laboratoire de Biométrie et Biologie Evolutive, CNRS, UMR 5558, Université Lyon 1, Université de Lyon, Villeurbanne F-69622, France
| | - Nicolas Lartillot
- Laboratoire de Biométrie et Biologie Evolutive, CNRS, UMR 5558, Université Lyon 1, Université de Lyon, Villeurbanne F-69622, France
| | - Gabriel A B Marais
- Laboratoire de Biométrie et Biologie Evolutive, CNRS, UMR 5558, Université Lyon 1, Université de Lyon, Villeurbanne F-69622, France
| | - Franck Picard
- Laboratoire de Biométrie et Biologie Evolutive, CNRS, UMR 5558, Université Lyon 1, Université de Lyon, Villeurbanne F-69622, France
| |
Collapse
|
28
|
Vekemans X, Castric V, Hipperson H, Müller NA, Westerdahl H, Cronk Q. Whole-genome sequencing and genome regions of special interest: Lessons from major histocompatibility complex, sex determination, and plant self-incompatibility. Mol Ecol 2021; 30:6072-6086. [PMID: 34137092 PMCID: PMC9290700 DOI: 10.1111/mec.16020] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 05/31/2021] [Accepted: 06/07/2021] [Indexed: 11/27/2022]
Abstract
Whole‐genome sequencing of non‐model organisms is now widely accessible and has allowed a range of questions in the field of molecular ecology to be investigated with greater power. However, some genomic regions that are of high biological interest remain problematic for assembly and data‐handling. Three such regions are the major histocompatibility complex (MHC), sex‐determining regions (SDRs) and the plant self‐incompatibility locus (S‐locus). Using these as examples, we illustrate the challenges of both assembling and resequencing these highly polymorphic regions and how bioinformatic and technological developments are enabling new approaches to their study. Mapping short‐read sequences against multiple alternative references improves genotyping comprehensiveness at the S‐locus thereby contributing to more accurate assessments of allelic frequencies. Long‐read sequencing, producing reads of several tens to hundreds of kilobase pairs in length, facilitates the assembly of such regions as single sequences can span the multiple duplicated gene copies of the MHC region, and sequence through repetitive stretches and translocations in SDRs and S‐locus haplotypes. These advances are adding value to short‐read genome resequencing approaches by allowing, for example, more accurate haplotype phasing across longer regions. Finally, we assessed further technical improvements, such as nanopore adaptive sequencing and bioinformatic tools using pangenomes, which have the potential to further expand our knowledge of a number of genomic regions that remain challenging to study with classical resequencing approaches.
Collapse
Affiliation(s)
| | | | - Helen Hipperson
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| | - Niels A Müller
- Thünen Institute of Forest Genetics, Grosshansdorf, Germany
| | - Helena Westerdahl
- Molecular Ecology and Evolution Laboratory, Department of Biology, Lund University, Lund, Sweden
| | - Quentin Cronk
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
29
|
Muyle A, Bachtrog D, Marais GAB, Turner JMA. Epigenetics drive the evolution of sex chromosomes in animals and plants. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200124. [PMID: 33866802 DOI: 10.1098/rstb.2020.0124] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
We review how epigenetics affect sex chromosome evolution in animals and plants. In a few species, sex is determined epigenetically through the action of Y-encoded small RNAs. Epigenetics is also responsible for changing the sex of individuals through time, even in species that carry sex chromosomes, and could favour species adaptation through breeding system plasticity. The Y chromosome accumulates repeats that become epigenetically silenced which leads to an epigenetic conflict with the expression of Y genes and could accelerate Y degeneration. Y heterochromatin can be lost through ageing, which activates transposable elements and lowers male longevity. Y chromosome degeneration has led to the evolution of meiotic sex chromosome inactivation in eutherians (placentals) and marsupials, and dosage compensation mechanisms in animals and plants. X-inactivation convergently evolved in eutherians and marsupials via two independently evolved non-coding RNAs. In Drosophila, male X upregulation by the male specific lethal (MSL) complex can spread to neo-X chromosomes through the transposition of transposable elements that carry an MSL-binding motif. We discuss similarities and possible differences between plants and animals and suggest future directions for this dynamic field of research. This article is part of the theme issue 'How does epigenetics influence the course of evolution?'
Collapse
Affiliation(s)
- Aline Muyle
- University of California Irvine, Irvine, CA 92697, USA
| | - Doris Bachtrog
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA, USA
| | - Gabriel A B Marais
- Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Évolutive UMR 5558, F-69622 Villeurbanne, France.,LEAF- Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, Portugal
| | | |
Collapse
|
30
|
Renner SS, Müller NA. Plant sex chromosomes defy evolutionary models of expanding recombination suppression and genetic degeneration. NATURE PLANTS 2021; 7:392-402. [PMID: 33782581 DOI: 10.1038/s41477-021-00884-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 02/18/2021] [Indexed: 05/17/2023]
Abstract
Hundreds of land plant lineages have independently evolved separate sexes in either gametophytes (dioicy) or sporophytes (dioecy), but 43% of all dioecious angiosperms are found in just 34 entirely dioecious clades, suggesting that their mode of sex determination evolved a long time ago. Here, we review recent insights on the molecular mechanisms that underlie the evolutionary change from individuals that each produce male and female gametes to individuals specializing in the production of just one type of gamete. The canonical model of sex chromosome evolution in plants predicts that two sex-determining genes will become linked in a sex-determining region (SDR), followed by expanding recombination suppression, chromosome differentiation and, ultimately, degeneration. Experimental work, however, is showing that single genes function as master regulators in model systems, such as the liverwort Marchantia and the angiosperms Diospyros and Populus. In Populus, this type of regulatory function has been demonstrated by genome editing. In other systems, including Actinidia, Asparagus and Vitis, two coinherited factors appear to independently regulate female and male function, yet sex chromosome differentiation has remained low. We discuss the best-understood systems and evolutionary pathways to dioecy, and present a meta-analysis of the sizes and ages of SDRs. We propose that limited sexual conflict explains why most SDRs are small and sex chromosomes remain homomorphic. It appears that models of increasing recombination suppression with age do not apply because selection favours mechanisms in which sex determination depends on minimal differences, keeping it surgically precise.
Collapse
Affiliation(s)
- Susanne S Renner
- Systematic Botany and Mycology, University of Munich (LMU), Munich, Germany.
| | - Niels A Müller
- Thünen Institute of Forest Genetics, Grosshansdorf, Germany.
| |
Collapse
|
31
|
Charlesworth D. When and how do sex-linked regions become sex chromosomes? Evolution 2021; 75:569-581. [PMID: 33592115 DOI: 10.1111/evo.14196] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/02/2021] [Accepted: 02/05/2021] [Indexed: 12/22/2022]
Abstract
The attention given to heteromorphism and genetic degeneration of "classical sex chromosomes" (Y chromosomes in XY systems, and the W in ZW systems that were studied first and are best described) has perhaps created the impression that the absence of recombination between sex chromosomes is inevitable. I here argue that continued recombination is often to be expected, that absence of recombination is surprising and demands further study, and that the involvement of selection in reduced recombination is not yet well understood. Despite a long history of investigations of sex chromosome pairs, there is a need for more quantitative approaches to studying sex-linked regions. I describe a scheme to help understand the relationships between different properties of sex-linked regions. Specifically, I focus on their sizes (differentiating between small regions and extensive fully sex-linked ones), the times when they evolved, and their differentiation, and review studies using DNA sequencing in nonmodel organisms that are providing information about the processes causing these properties.
Collapse
Affiliation(s)
- Deborah Charlesworth
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, EH9 3JT, United Kingdom
| |
Collapse
|
32
|
Rovatsos M, Kratochvíl L. Evolution of dosage compensation does not depend on genomic background. Mol Ecol 2021; 30:1836-1845. [PMID: 33606326 DOI: 10.1111/mec.15853] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 02/14/2021] [Accepted: 02/15/2021] [Indexed: 12/30/2022]
Abstract
Organisms have evolved various mechanisms to cope with the differences in the gene copy numbers between sexes caused by degeneration of Y and W sex chromosomes. Complete dosage compensation or at least expression balance between sexes has been reported predominantly in XX/XY systems, but rarely in ZZ/ZW systems. However, this often-reported pattern is based on comparisons of lineages where sex chromosomes evolved from nonhomologous genomic regions, potentially differing in sensitivity to differences in gene copy numbers. Here we document that two reptilian lineages (XX/XY iguanas and ZZ/ZW softshell turtles), which independently co-opted the same ancestral genomic region for the function of sex chromosomes, evolved different gene dose regulatory mechanisms. The independent co-option of the same genomic region for the role of sex chromosomes as in the iguanas and the softshell turtles offers great opportunity for testing evolutionary scenarios on sex chromosome evolution under the explicit control of the genomic background and gene identity. We show that the parallel loss of functional genes from the Y chromosome of the green anole and the W chromosome of the Florida softshell turtle led to different dosage compensation mechanisms. Our approach controlling for genetic background thus does not support that the variability in the regulation of gene dose differences is a consequence of ancestral autosomal gene content.
Collapse
Affiliation(s)
- Michail Rovatsos
- Department of Ecology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Lukáš Kratochvíl
- Department of Ecology, Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
33
|
Badouin H, Velt A, Gindraud F, Flutre T, Dumas V, Vautrin S, Marande W, Corbi J, Sallet E, Ganofsky J, Santoni S, Guyot D, Ricciardelli E, Jepsen K, Käfer J, Berges H, Duchêne E, Picard F, Hugueney P, Tavares R, Bacilieri R, Rustenholz C, Marais GAB. The wild grape genome sequence provides insights into the transition from dioecy to hermaphroditism during grape domestication. Genome Biol 2020; 21:223. [PMID: 32892750 PMCID: PMC7487632 DOI: 10.1186/s13059-020-02131-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 08/05/2020] [Indexed: 12/22/2022] Open
Abstract
Background A key step in domestication of the grapevine was the transition from separate sexes (dioecy) in wild Vitis vinifera ssp. sylvestris (V. sylvestris) to hermaphroditism in cultivated Vitis vinifera ssp. sativa (V. vinifera). It is known that V. sylvestris has an XY system and V. vinifera a modified Y haplotype (Yh) and that the sex locus is small, but it has not previously been precisely characterized. Results We generate a high-quality de novo reference genome for V. sylvestris, onto which we map whole-genome re-sequencing data of a cross to locate the sex locus. Assembly of the full X, Y, and Yh haplotypes of V. sylvestris and V. vinifera sex locus and examining their gene content and expression profiles during flower development in wild and cultivated accessions show that truncation and deletion of tapetum and pollen development genes on the X haplotype likely causes male sterility, while the upregulation of a Y allele of a cytokinin regulator (APRT3) may cause female sterility. The downregulation of this cytokinin regulator in the Yh haplotype may be sufficient to trigger reversal to hermaphroditism. Molecular dating of X and Y haplotypes is consistent with the sex locus being as old as the Vitis genus, but the mechanism by which recombination was suppressed remains undetermined. Conclusions We describe the genomic and evolutionary characterization of the sex locus of cultivated and wild grapevine, providing a coherent model of sex determination in the latter and for transition from dioecy to hermaphroditism during domestication.
Collapse
Affiliation(s)
- Hélène Badouin
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, F-69622, Villeurbanne, France.
| | - Amandine Velt
- Université de Strasbourg, INRAE, SVQV UMR-A 1131, F-68000, Colmar, France
| | - François Gindraud
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, F-69622, Villeurbanne, France
| | - Timothée Flutre
- GQE-Le Moulon, INRAE, Univ. Paris-Sud, CNRS, AgroParisTech, Univ. Paris-Saclay, 91190, Gif-sur-Yvette, France
| | - Vincent Dumas
- Université de Strasbourg, INRAE, SVQV UMR-A 1131, F-68000, Colmar, France
| | - Sonia Vautrin
- INRAE, Centre National de Ressources Génomiques Végétales, F-31326, Castanet-Tolosan, France
| | - William Marande
- INRAE, Centre National de Ressources Génomiques Végétales, F-31326, Castanet-Tolosan, France
| | - Jonathan Corbi
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, F-69622, Villeurbanne, France
| | - Erika Sallet
- LIPM, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| | - Jérémy Ganofsky
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, F-69622, Villeurbanne, France
| | - Sylvain Santoni
- INRAE, UMR AGAP, Univ. Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | | | | | - Kristen Jepsen
- IGM Genomics Center, University of California, San Diego, La Jolla, CA, USA
| | - Jos Käfer
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, F-69622, Villeurbanne, France
| | - Hélène Berges
- INRAE, Centre National de Ressources Génomiques Végétales, F-31326, Castanet-Tolosan, France
| | - Eric Duchêne
- Université de Strasbourg, INRAE, SVQV UMR-A 1131, F-68000, Colmar, France
| | - Franck Picard
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, F-69622, Villeurbanne, France
| | - Philippe Hugueney
- Université de Strasbourg, INRAE, SVQV UMR-A 1131, F-68000, Colmar, France
| | - Raquel Tavares
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, F-69622, Villeurbanne, France
| | - Roberto Bacilieri
- INRAE, UMR AGAP, Univ. Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France.
| | - Camille Rustenholz
- Université de Strasbourg, INRAE, SVQV UMR-A 1131, F-68000, Colmar, France.
| | - Gabriel A B Marais
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, F-69622, Villeurbanne, France.
| |
Collapse
|
34
|
Baránková S, Pascual-Díaz JP, Sultana N, Alonso-Lifante MP, Balant M, Barros K, D'Ambrosio U, Malinská H, Peska V, Pérez Lorenzo I, Kovařík A, Vyskot B, Janoušek B, Garcia S. Sex-chrom, a database on plant sex chromosomes. THE NEW PHYTOLOGIST 2020; 227:1594-1604. [PMID: 32357248 DOI: 10.1111/nph.16635] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 04/25/2020] [Indexed: 05/15/2023]
Affiliation(s)
- Simona Baránková
- Institut Botanic de Barcelona (IBB-CSIC, Ajuntament de Barcelona), Passeig del Migdia s/n, 08038, Barcelona, Catalonia, Spain
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65, Brno, Czech Republic
| | - Joan Pere Pascual-Díaz
- Institut Botanic de Barcelona (IBB-CSIC, Ajuntament de Barcelona), Passeig del Migdia s/n, 08038, Barcelona, Catalonia, Spain
| | - Nusrat Sultana
- Institut Botanic de Barcelona (IBB-CSIC, Ajuntament de Barcelona), Passeig del Migdia s/n, 08038, Barcelona, Catalonia, Spain
- Department of Botany, Faculty of Life and Earth Sciences, Jagannath University, Dhaka, 1100, Bangladesh
| | - Maria Pilar Alonso-Lifante
- Institut Botanic de Barcelona (IBB-CSIC, Ajuntament de Barcelona), Passeig del Migdia s/n, 08038, Barcelona, Catalonia, Spain
| | - Manica Balant
- Institut Botanic de Barcelona (IBB-CSIC, Ajuntament de Barcelona), Passeig del Migdia s/n, 08038, Barcelona, Catalonia, Spain
| | - Karina Barros
- Institut Botanic de Barcelona (IBB-CSIC, Ajuntament de Barcelona), Passeig del Migdia s/n, 08038, Barcelona, Catalonia, Spain
| | - Ugo D'Ambrosio
- Institut Botanic de Barcelona (IBB-CSIC, Ajuntament de Barcelona), Passeig del Migdia s/n, 08038, Barcelona, Catalonia, Spain
| | - Hana Malinská
- Institut Botanic de Barcelona (IBB-CSIC, Ajuntament de Barcelona), Passeig del Migdia s/n, 08038, Barcelona, Catalonia, Spain
- Department of Biology, Faculty of Science, Jan Evangelista Purkyně University in Ústí nad Labem, 400 96, Ústí nad Labem, Czech Republic
| | - Vratislav Peska
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65, Brno, Czech Republic
| | - Iván Pérez Lorenzo
- Institut Botanic de Barcelona (IBB-CSIC, Ajuntament de Barcelona), Passeig del Migdia s/n, 08038, Barcelona, Catalonia, Spain
| | - Aleš Kovařík
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65, Brno, Czech Republic
| | - Boris Vyskot
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65, Brno, Czech Republic
| | - Bohuslav Janoušek
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65, Brno, Czech Republic
| | - Sònia Garcia
- Institut Botanic de Barcelona (IBB-CSIC, Ajuntament de Barcelona), Passeig del Migdia s/n, 08038, Barcelona, Catalonia, Spain
| |
Collapse
|
35
|
Trenkel VM, Boudry P, Verrez-Bagnis V, Lorance P. Methods for identifying and interpreting sex-linked SNP markers and carrying out sex assignment: application to thornback ray (Raja clavata). Mol Ecol Resour 2020; 20:1610-1619. [PMID: 32657500 DOI: 10.1111/1755-0998.13225] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 06/18/2020] [Accepted: 07/08/2020] [Indexed: 11/28/2022]
Abstract
Sex-determining modes remain unknown in numerous species, notably in fishes, in which a variety of modalities have been reported. Additionally, noninvasive individual sexing is problematic for species without external sex attributes or for early life stages, requiring cytogenetic or molecular analyses when sex chromosomes or sex-linked markers have been characterized. Genomics now provide a means to achieve this. Here, we review common sex-determination systems and corresponding statistical methods for identifying sex-linked genetic markers and their use for sex assignment, focusing on single nucleotide polymorphism (SNP) markers derived from reduced representation sequencing methods. We demonstrate the dependence of expected sex assignment error on the number of sex-linked SNPs and minor allele frequency. The application of three methods was made here: (a) identification of heterozygote excess in one sex, (b) FST outlier analysis between the two sexes and (c) neuronal net modelling. These methods were applied to a large SNP data set (4604 SNPs) for 1680 thornback rays (Raja clavata). Using method (a), nineteen putative sex-linked SNPs were identified. Comparison with the reference genome of a related species (Amblyraja radiata) indicated that all 19 SNPs are probably located on the same chromosome. These results suggest that thornback ray has a XX/XY sex-determination system. Method (b) identified eight SNPs probably located on different chromosomes. Method (a) led to the lowest sex assignment error among the three methods (4.2% error for females and 3.7% for males).
Collapse
Affiliation(s)
| | - Pierre Boudry
- CNRS, IRD, LEMAR, Ifremer, Univ Brest, Plouzané, France
| | | | | |
Collapse
|
36
|
Fruchard C, Badouin H, Latrasse D, Devani RS, Muyle A, Rhoné B, Renner SS, Banerjee AK, Bendahmane A, Marais GAB. Evidence for Dosage Compensation in Coccinia grandis, a Plant with a Highly Heteromorphic XY System. Genes (Basel) 2020; 11:E787. [PMID: 32668777 PMCID: PMC7397054 DOI: 10.3390/genes11070787] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/01/2020] [Accepted: 07/08/2020] [Indexed: 01/17/2023] Open
Abstract
About 15,000 angiosperms are dioecious, but the mechanisms of sex determination in plants remain poorly understood. In particular, how Y chromosomes evolve and degenerate, and whether dosage compensation evolves as a response, are matters of debate. Here, we focus on Coccinia grandis, a dioecious cucurbit with the highest level of X/Y heteromorphy recorded so far. We identified sex-linked genes using RNA sequences from a cross and a model-based method termed SEX-DETector. Parents and F1 individuals were genotyped, and the transmission patterns of SNPs were then analyzed. In the >1300 sex-linked genes studied, maximum X-Y divergence was 0.13-0.17, and substantial Y degeneration is implied by an average Y/X expression ratio of 0.63 and an inferred gene loss on the Y of ~40%. We also found reduced Y gene expression being compensated by elevated expression of corresponding genes on the X and an excess of sex-biased genes on the sex chromosomes. Molecular evolution of sex-linked genes in C. grandis is thus comparable to that in Silene latifolia, another dioecious plant with a strongly heteromorphic XY system, and cucurbits are the fourth plant family in which dosage compensation is described, suggesting it might be common in plants.
Collapse
Affiliation(s)
- Cécile Fruchard
- Laboratoire de Biométrie et Biologie Evolutive (LBBE), UMR5558, Université Lyon 1, 69622 Villeurbanne, France; (C.F.); (H.B.); (B.R.)
| | - Hélène Badouin
- Laboratoire de Biométrie et Biologie Evolutive (LBBE), UMR5558, Université Lyon 1, 69622 Villeurbanne, France; (C.F.); (H.B.); (B.R.)
| | - David Latrasse
- Institute of Plant Sciences Paris Saclay (IPS2), University of Paris Saclay, 91405 Orsay, France; (D.L.); (R.S.D.); (A.B.)
| | - Ravi S. Devani
- Institute of Plant Sciences Paris Saclay (IPS2), University of Paris Saclay, 91405 Orsay, France; (D.L.); (R.S.D.); (A.B.)
- Biology Division, Indian Institute of Science Education and Research (IISER), Pune 411008, Maharashtra, India;
| | - Aline Muyle
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, CA 92697, USA;
| | - Bénédicte Rhoné
- Laboratoire de Biométrie et Biologie Evolutive (LBBE), UMR5558, Université Lyon 1, 69622 Villeurbanne, France; (C.F.); (H.B.); (B.R.)
- Institut de Recherche pour le Développement (IRD), Université Montpellier, DIADE, F-34394 Montpellier, France
| | - Susanne S. Renner
- Systematic Botany and Mycology, University of Munich (LMU), Menzinger Str. 67, 80638 Munich, Germany;
| | - Anjan K. Banerjee
- Biology Division, Indian Institute of Science Education and Research (IISER), Pune 411008, Maharashtra, India;
| | - Abdelhafid Bendahmane
- Institute of Plant Sciences Paris Saclay (IPS2), University of Paris Saclay, 91405 Orsay, France; (D.L.); (R.S.D.); (A.B.)
| | - Gabriel A. B. Marais
- Laboratoire de Biométrie et Biologie Evolutive (LBBE), UMR5558, Université Lyon 1, 69622 Villeurbanne, France; (C.F.); (H.B.); (B.R.)
| |
Collapse
|
37
|
Kovalchuk I, Pellino M, Rigault P, van Velzen R, Ebersbach J, Ashnest JR, Mau M, Schranz ME, Alcorn J, Laprairie RB, McKay JK, Burbridge C, Schneider D, Vergara D, Kane NC, Sharbel TF. The Genomics of Cannabis and Its Close Relatives. ANNUAL REVIEW OF PLANT BIOLOGY 2020; 71:713-739. [PMID: 32155342 DOI: 10.1146/annurev-arplant-081519-040203] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Cannabis sativa L. is an important yet controversial plant with a long history of recreational, medicinal, industrial, and agricultural use, and together with its sister genus Humulus, it represents a group of plants with a myriad of academic, agricultural, pharmaceutical, industrial, and social interests. We have performed a meta-analysis of pooled published genomics data, andwe present a comprehensive literature review on the evolutionary history of Cannabis and Humulus, including medicinal and industrial applications. We demonstrate that current Cannabis genome assemblies are incomplete, with ∼10% missing, 10-25% unmapped, and 45S and 5S ribosomal DNA clusters as well as centromeres/satellite sequences not represented. These assemblies are also ordered at a low resolution, and their consensus quality clouds the accurate annotation of complete, partial, and pseudogenized gene copies. Considering the importance of genomics in the development of any crop, this analysis underlines the need for a coordinated effort to quantify the genetic and biochemical diversity of this species.
Collapse
Affiliation(s)
- I Kovalchuk
- Department of Biology, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| | - M Pellino
- College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, Saskatchewan S7N 4J8, Canada;
| | - P Rigault
- Gydle Inc., Québec, Québec G1S 1E7, Canada
- Center for Organismal Studies (COS), University of Heidelberg, 69120 Heidelberg, Germany
| | - R van Velzen
- Biosystematics Group, Wageningen University, 6703 BD Wageningen, The Netherlands
- Bedrocan International, 9640 CA Veendam, The Netherlands
| | - J Ebersbach
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, Saskatoon, Saskatchewan S7N 0X2, Canada
| | - J R Ashnest
- College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, Saskatchewan S7N 4J8, Canada;
| | - M Mau
- College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, Saskatchewan S7N 4J8, Canada;
| | - M E Schranz
- Biosystematics Group, Wageningen University, 6703 BD Wageningen, The Netherlands
| | - J Alcorn
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - R B Laprairie
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
- Department of Pharmacology, College of Medicine, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - J K McKay
- College of Agricultural Sciences, Colorado State University, Fort Collins, Colorado 80523, USA
| | - C Burbridge
- School of Environment and Sustainability, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - D Schneider
- School of Environment and Sustainability, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - D Vergara
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado 80309, USA
| | - N C Kane
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado 80309, USA
| | - T F Sharbel
- College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, Saskatchewan S7N 4J8, Canada;
| |
Collapse
|