1
|
Zheng X, Shang H, Liu Q, Tian L, Yue Y, Meng S, Chen J, Su L, Quan J, Zhang Y, Li X, Xu K, Shangguan X. Genome-wide identification and expression patterns of uridine diphosphate (UDP)-glycosyltransferase genes in the brown planthopper, Nilaparvata lugens. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2025; 54:101403. [PMID: 39754993 DOI: 10.1016/j.cbd.2024.101403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 11/29/2024] [Accepted: 12/15/2024] [Indexed: 01/06/2025]
Abstract
Uridine diphosphate-glycosyltransferases (UGTs) are responsible for glycosylation by combining various small lipophilic molecules with sugars to produce water-soluble glycosides, which are crucial for the metabolism of plant secondary metabolites and detoxification in insects. This study presents a genome-wide analysis of the UGT gene family in the brown planthopper, Nilaparvata lugens, a destructive insect pest of rice in Asia. Based on the similarity to UGT homologs from other organisms, 20 putative NlUGT genes were identified in N. lugens. Sequence analysis revealed an average amino acid identity of 45.64 %; however, catalytic and sugar-binding residues, along with UGT signature motifs, were highly conserved. Phylogenetic analysis showed that the 20 NlUGTs were clustered into three main groups. The motif numbers ranged from 5 to 10, with motifs 1 and 4 being found in the functional domains of all 20 NlUGT proteins. Tandem and segmental duplication analysis identified one tandem duplication pair (UGT386K7 and UGT386K8) and two pairs of collinearity genes (UGT362C6/UGT386J4 and UGT386C2/UGT386G5) that expanded through segmental duplication within the UGT gene family of N. lugens. Combining the transcriptome and real-time quantitative PCR data showed that gut, antennae, integument, and ovaries were the tissues enriched with NlUGT gene expression. Six NlUGTs were present mainly in the gut, suggesting their putative roles in detoxification. This research provides valuable information on the molecular and genetic basis of NlUGTs, establishing a solid foundation for subsequent functional investigations of UGTs in planthopper, as well as paving the way for identifying potential targets to manage N. lugens effectively.
Collapse
Affiliation(s)
- Xiaohong Zheng
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou 466001, China; Henan Key Laboratory of Crop Molecular Breeding & Bioreactor, Zhoukou 466001, China
| | - Hongfei Shang
- College of Mechanical and Electrical Engineering, Zhoukou Normal University, Zhoukou 466001, China
| | - Qifan Liu
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466001, China
| | - Luao Tian
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466001, China
| | - Yuzhen Yue
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466001, China
| | - Shiqing Meng
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466001, China
| | - Jiahui Chen
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466001, China
| | - Linlin Su
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466001, China
| | - Jiaxin Quan
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466001, China
| | - Yi Zhang
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou 466001, China; Henan Key Laboratory of Crop Molecular Breeding & Bioreactor, Zhoukou 466001, China
| | - Xiaoli Li
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou 466001, China; Henan Key Laboratory of Crop Molecular Breeding & Bioreactor, Zhoukou 466001, China
| | - Kedong Xu
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou 466001, China; Henan Key Laboratory of Crop Molecular Breeding & Bioreactor, Zhoukou 466001, China.
| | - Xinxin Shangguan
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou 466001, China; Henan Key Laboratory of Crop Molecular Breeding & Bioreactor, Zhoukou 466001, China.
| |
Collapse
|
2
|
Wang Y, Xun H, Lv J, Ju W, Jiang Y, Wang M, Guo R, Zhang M, Ding X, Liu B, Xu C. A modulatory role of CG methylation on gene expression in soybean implicates its potential utility in breeding. PLANT BIOTECHNOLOGY JOURNAL 2025; 23:1585-1600. [PMID: 39887912 PMCID: PMC12018828 DOI: 10.1111/pbi.14606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 01/15/2025] [Accepted: 01/18/2025] [Indexed: 02/01/2025]
Abstract
Cytosine methylation (mCG) is an important heritable epigenetic modification, yet its functions remain to be fully defined in important crops. This study investigates mCG in soybean following the loss-of-function mutation of two GmMET1 genes. We generated knockout mutants of GmMET1s by CRISPR-Cas9 and conducted comprehensive methylome and transcriptome analyses. Our findings unravel the functional redundancy of the two GmMET1s, with GmMET1b being more critically involved in maintaining mCG levels, and complete knockout of both copies is lethal. We establish that genome-wide mCG levels scale with aggregated expression of GmMET1s. We identify a set of mCG-regulated genes whose expression levels were quantitatively modulated by upstream, body, or downstream mCG. Moreover, we find genes that were negatively regulated by upstream or body mCG are enriched in specific biological processes such as that of jasmonic acid metabolism. Notably, >80% of the differentially methylated genes (DMGs) in the mutants also exist as DMGs in natural soybean populations. Phenotypically, mutants that are heterozygous for GmMET1a and homozygous for GmMET1b knockouts (GmMET1a+/-GmMET1b-/-) exhibited early flowering, which was inherited by their selfed progeny (GmMET1a+/+GmMET1b-/-) with otherwise normal growth and development. Moreover, mutation of either GmMET1s, with slight reduction of mCG levels and similar phenotypes compared to the wild type under normal conditions, showed enhanced tolerance to cold and drought stresses. Together, our results underscore highly orchestrated regulatory effects of mCG on gene expression in soybean, which dictates growth, development and stress responses, implicating its utility in the improvement of soybean for better adaptability and higher yield.
Collapse
Affiliation(s)
- Ying Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE)Northeast Normal UniversityChangchunChina
| | - Hongwei Xun
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE)Northeast Normal UniversityChangchunChina
| | - Jiameng Lv
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE)Northeast Normal UniversityChangchunChina
| | - Wanting Ju
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE)Northeast Normal UniversityChangchunChina
| | - Yuhui Jiang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE)Northeast Normal UniversityChangchunChina
| | - Meng Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE)Northeast Normal UniversityChangchunChina
| | - Ruihong Guo
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE)Northeast Normal UniversityChangchunChina
| | - Mengru Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE)Northeast Normal UniversityChangchunChina
| | - Xiaoyang Ding
- Jilin Academy of Agricultural Sciences (Northeast Agricultural Research Center of China)ChangchunChina
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE)Northeast Normal UniversityChangchunChina
| | - Chunming Xu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE)Northeast Normal UniversityChangchunChina
| |
Collapse
|
3
|
Wu Y, Sa R, Mu Y, Zhou Y, Li Z, Song X, Tang L, Liu D, Yi L. Genome-Wide Identification and Transcriptome Analysis of P450 Superfamily Genes in Flax ( Linum usitatissimum L.). Int J Mol Sci 2025; 26:3637. [PMID: 40332225 PMCID: PMC12027707 DOI: 10.3390/ijms26083637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/29/2025] [Accepted: 04/02/2025] [Indexed: 05/08/2025] Open
Abstract
Flax (Linum usitatissimum L.) seed is rich in α-linolenic acid, lignans, and fiber, which have potential health benefits. However, the potential toxicity of its cyanogenic glycosides limits its widespread use. The cytochrome P450 gene family is one of the largest gene families in plants and is involved in synthesizing phytohormones, secondary metabolites, and various defense compounds. Two P450 genes have been found to be important enzymes for the biosynthesis of cyanogenic glycosides in common sorghum (Sorghum bicolor (L.) Moench). However, the P450 gene family and its involvement in cyanogenic glycoside synthesis have been less studied in flax. In previous studies, we assembled a high-quality flax genome. In this study, a total of 412 P450 genes were identified in the flax genome, with molecular weights in the range of 7.42 kDa to 154.5 kDa and encoding amino acid lengths between 67 and 1378. These genes belonged to 48 families under eight clans and were distributed across 15 chromosomes. The number of introns varied from 0 to 14. Thirty-nine cis-acting elements were identified within 1500 bp upstream of the promoter, mainly related to the light response. There were 147 segmental duplications and 53 tandem duplication events among these P450 genes. Eleven genes potentially related to cyanogenic glycoside synthesis were identified by transcriptome analysis, and the RT-qPCR results verified the reliability of the transcriptome analysis. This study lays the foundation for the classification and functional study of the flax P450 gene family. The results will be useful for breeding new low-cyanogenic-glycoside flax varieties by genetic engineering.
Collapse
Affiliation(s)
- Yang Wu
- College of Agriculture, Inner Mongolia Agricultural University, Hohhot 010018, China; (Y.W.); (Z.L.)
| | - Rula Sa
- College of Grassland Science, Inner Mongolia Agricultural University, Hohhot 010018, China;
| | - Yingnan Mu
- Institute of Crop Science, Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot 010031, China; (Y.M.); (Y.Z.)
| | - Yu Zhou
- Institute of Crop Science, Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot 010031, China; (Y.M.); (Y.Z.)
| | - Zhiwei Li
- College of Agriculture, Inner Mongolia Agricultural University, Hohhot 010018, China; (Y.W.); (Z.L.)
| | - Xixia Song
- Institute of Industrial Crops of Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (X.S.); (L.T.); (D.L.)
| | - Lili Tang
- Institute of Industrial Crops of Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (X.S.); (L.T.); (D.L.)
| | - Dandan Liu
- Institute of Industrial Crops of Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (X.S.); (L.T.); (D.L.)
| | - Liuxi Yi
- College of Agriculture, Inner Mongolia Agricultural University, Hohhot 010018, China; (Y.W.); (Z.L.)
| |
Collapse
|
4
|
Mitchell RAC. Identification of universal grass genes and estimates of their monocot-/commelinid-/grass-specificity. BIOINFORMATICS ADVANCES 2025; 5:vbaf079. [PMID: 40417655 PMCID: PMC12098945 DOI: 10.1093/bioadv/vbaf079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/20/2025] [Accepted: 04/04/2025] [Indexed: 05/27/2025]
Abstract
Motivation Where experiments identify sets of grass genes of unknown function, e.g. underlying a QTL or co-expressed in a transcriptome, it is useful to know which of these genes are common to all grasses (universal) and whether they likely have monocot-/commelinid-/grass-specific function. Results A pipeline used data on 16 grass full genomes from Ensembl Plants to generate 13 312 highly conserved, universal groups of grass protein-coding genes. Validation steps showed that 98.8% of these groups also had gene matches in recently sequenced genomes from two major grass clades not used in the pipeline. Comparison with many non-grass genomes identified 4609 of these groups as likely of monocot-/commelinid-/grass-specific function. Both grouping of genes and specificity were defined using hidden Markov model (HMM) profiles of the groups. The HMM-based approach performed better than simple percentage identity in discriminating between test sets of known specific and non-specific genes. The results give novel insight into the nature of monocot-/commelinid-/grass-specific genes. Researchers can use the universal_grass_peps database to gain evidence for their experimentally identified grass genes being involved in monocot-/commelinid-/grass-specific traits. Availability and implementation The universal_grass_peps database is available for download at https://data.rothamsted.ac.uk/dataset/universal_grass_peps.
Collapse
Affiliation(s)
- Rowan A C Mitchell
- Sustainable Soils and Crops, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, United Kingdom
| |
Collapse
|
5
|
Sharma P, Malhotra L, Dhamija RK. Comprehensive amino acid composition analysis of seed storage proteins of cereals and legumes: identification and understanding of intrinsically disordered and allergenic peptides. J Biomol Struct Dyn 2025; 43:3715-3727. [PMID: 38178552 DOI: 10.1080/07391102.2023.2300126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 12/18/2023] [Indexed: 01/06/2024]
Abstract
The seed storage proteins of cereal and legumes are the primary source of amino acids which are required for sustaining the nitrogen and carbon demands during germination and growth. Humans derive most of their dietary proteins from storage proteins in form of a wide variety of foods, for consumption. The amino acid content of most of these proteins is biased and the need for this biasness is not understood. The high abundance of proline, glutamine, and cysteine in cereals makes the gluten fraction viscoelastic. The cereal proteins have less charge and legume proteins have more charge on them. Their non-polar amino acid distribution has large variations. These characteristics are strongly responsible for the partial and complete unfolding of several domains of the storage proteins. Many of the storage proteins share a highly conserved structural feature within the cupin superfamily spread across all kingdoms of life. The intrinsically disordered viscoelastic proteins help in making dough which is vital for the quality of bread. Unfolded regions harbor more immunogenic sequences and cause food-related allergies and intolerance. We have discussed these properties in terms of comparison of cereal and legume storage protein sequences and allergy. Our study supports the findings that large disordered regions contain allergen-representative peptides. Interestingly, a high number of allergen-representative peptides were cleavable by digestive enzymes. Furthermore, unfolded storage proteins mimic microbial immunogens to induce a memory immune response. Results findings can be used to guide the understanding of immunological characteristics of storage proteins and may assist in treatment decisions for food allergy.
Collapse
Affiliation(s)
- Pratibha Sharma
- Human Behaviour Department, Institute of Human Behaviour and Allied Sciences, New Delhi, India
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Lakshay Malhotra
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
- Department of Biochemistry, Sri Venkateswara College, University of Delhi, New Delhi, India
| | | |
Collapse
|
6
|
Childress MK, Dragone NB, Young BD, Adams BJ, Fierer N, Quandt CA. Three new Pseudogymnoascus species ( Pseudeurotiaceae, Thelebolales) described from Antarctic soils. IMA Fungus 2025; 16:e142219. [PMID: 40162003 PMCID: PMC11953729 DOI: 10.3897/imafungus.16.e142219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 02/20/2025] [Indexed: 04/02/2025] Open
Abstract
The genus Pseudogymnoascus includes several species frequently isolated from extreme environments worldwide, including cold environments such as Antarctica. This study describes three new species of Pseudogymnoascus-P.russus sp. nov., P.irelandiae sp. nov., and P.ramosus sp. nov.-isolated from Antarctic soils. These species represent the first Pseudogymnoascus taxa to be formally described from Antarctic soil samples, expanding our understanding of fungal biodiversity in this extreme environment. Microscopic descriptions of asexual structures from living cultures, along with measurements of cultural characteristics and growth on various media types at different temperatures, identify three distinct new species. In addition, phylogenetic analyses based on five gene regions (ITS, LSU, MCM7, RPB2, TEF1) and whole-genome proteomes place these new species within three distinct previously described clades: P.irelandiae in clade K, P.ramosus in clade Q, and P.russus in clade B. These results provide further evidence of the extensive undescribed diversity of Pseudogymnoascus in high-latitude soils. This study contributes to the growing body of knowledge on Antarctic mycology and the broader ecology of psychrophilic and psychrotolerant fungi.
Collapse
Affiliation(s)
- Mary K. Childress
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, CO, USA
| | - Nicholas B. Dragone
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, CO, USA
| | - Benjamin D. Young
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, CO, USA
| | - Byron J. Adams
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO, USA
| | - Noah Fierer
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, CO, USA
| | - C. Alisha Quandt
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, CO, USA
| |
Collapse
|
7
|
Man QC, Wang YQ, Gao SJ, Gao ZC, Peng ZP, Cui JH. Pan-genome analysis and expression verification of the maize ARF gene family. FRONTIERS IN PLANT SCIENCE 2025; 15:1506853. [PMID: 40007769 PMCID: PMC11850412 DOI: 10.3389/fpls.2024.1506853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 12/23/2024] [Indexed: 02/27/2025]
Abstract
Auxin transcription factors regulate auxin responses and play crucial roles in plant growth, development, and responses to abiotic stress. Utilizing the maize pan-genome data, this study identified 35 ARF family members in maize, comprising 21 core genes, 10 near-core genes, and 4 non-essential genes; no private genes were detected. The construction of a phylogenetic tree using Arabidopsis thaliana revealed that the G3 subfamily comprises the highest number of core genes, with a total of 10, and exhibits relative stability throughout the evolution of maize. The calculation of the Ka/Ks ratios for ARF family members across 26 genomes indicated that, aside from ARF8 and ARF11, which were subjected to positive selection, the remaining genes underwent purifying selection. Analysis of structural variation revealed that the expression level of the ARF4 gene significantly differed as a result of this variation. Simultaneously, the structural variation also influenced the conserved domain and cis-acting elements of the gene. Further combining the transcriptome data and RT-qPCR found that, The expression levels of ARF family members in maize were higher at the early stage of embryo and grain development, and the expression levels of each member in embryo and grain were complementary, and the ARF4 plays an important role in abiotic stress. In summary, this study utilizes the maize pan-genome and bioinformatics methods to investigate the evolutionary relationships and functional roles of ARF family members in maize, thereby providing a novel theoretical framework for further research on the maize ARF family.
Collapse
Affiliation(s)
- Quan-cai Man
- College of Agriculture, Hebei Agricultural University, Baoding, China
| | - Yan-qun Wang
- College of Resource and Environmental Sciences, Hebei Agricultural University, Baoding, China
| | - Shun-juan Gao
- College of Agriculture, Hebei Agricultural University, Baoding, China
| | - Zhi-chang Gao
- College of Agriculture, Hebei Agricultural University, Baoding, China
| | - Zheng-ping Peng
- College of Resource and Environmental Sciences, Hebei Agricultural University, Baoding, China
| | - Jiang-hui Cui
- College of Agriculture, Hebei Agricultural University, Baoding, China
| |
Collapse
|
8
|
Goodall J, Pettersson ME, Bergström U, Cocco A, Delling B, Heimbrand Y, Karlsson OM, Larsson J, Waldetoft H, Wallberg A, Wennerström L, Andersson L. Evolution of fast-growing piscivorous herring in the young Baltic Sea. Nat Commun 2024; 15:10707. [PMID: 39715744 PMCID: PMC11666761 DOI: 10.1038/s41467-024-55216-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 12/02/2024] [Indexed: 12/25/2024] Open
Abstract
The circumstances under which species diversify to genetically distinct lineages is a fundamental question in biology. Atlantic herring (Clupea harengus) is an extremely abundant zooplanktivorous species that is subdivided into multiple ecotypes that differ regarding spawning time and genetic adaption to local environmental conditions such as temperature, salinity, and light conditions. Here we show using whole genome analysis that multiple populations of piscivorous (fish-eating) herring have evolved sympatrically after the colonization of the brackish Baltic Sea within the last 8000 years postglaciation. The piscivorous ecotype grows faster, and is much larger and less abundant than the zooplanktivorous Baltic herring. Lesions of the gill rakers in the piscivorous ecotype indicated incomplete adaptation to a fish diet. This niche expansion of herring in the young Baltic Sea, with its paucity of piscivorous species, suggests that empty niche space is more important than geographic isolation for the evolution of biodiversity.
Collapse
Affiliation(s)
- Jake Goodall
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Mats E Pettersson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Ulf Bergström
- Department of Aquatic Resources, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Arianna Cocco
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Bo Delling
- Department of Zoology, Swedish Museum of Natural History, Stockholm, Sweden
| | - Yvette Heimbrand
- Department of Aquatic Resources, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | | | | | | | - Andreas Wallberg
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Lovisa Wennerström
- Department of Aquatic Resources, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Leif Andersson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
9
|
Andreani-Gerard CM, Cambiazo V, González M. Biosynthetic gene clusters from uncultivated soil bacteria of the Atacama Desert. mSphere 2024; 9:e0019224. [PMID: 39287428 PMCID: PMC11520301 DOI: 10.1128/msphere.00192-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 08/15/2024] [Indexed: 09/19/2024] Open
Abstract
Soil microorganisms mediate several biological processes through the secretion of natural products synthesized in specialized metabolic pathways, yet functional characterization in ecological contexts remains challenging. Using culture-independent metagenomic analyses of microbial DNA derived directly from soil samples, we examined the potential of biosynthetic gene clusters (BGCs) from six bacterial communities distributed along an altitudinal gradient of the Andes Mountains in the Atacama Desert. We mined 38 metagenome-assembled genomes (MAGs) and identified 168 BGCs. Results indicated that most predicted BGCs were classified as non-ribosomal-peptides (NRP), post-translational modified peptides (RiPP), and terpenes, which were mainly identified in genomes of species from Acidobacteriota and Proteobacteria phyla. Based on BGC composition according to types of core biosynthetic genes, six clusters of MAGs were observed, three of them with predominance for a single phylum, of which two also showed specificity to a single sampling site. Comparative analyses of accessory genes in BGCs showed associations between membrane transporters and other protein domains involved in specialized metabolism with classes of biosynthetic cores, such as resistance-nodulation-cell division (RND) multidrug efflux pumps with RiPPs and the iron-dependent transporter TonB with terpenes. Our findings increase knowledge regarding the biosynthetic potential of uncultured bacteria inhabiting pristine locations from one of the oldest and driest nonpolar deserts on Earth.IMPORTANCEMuch of what we know about specialized metabolites in the Atacama Desert, including Andean ecosystems, comes from isolated microorganisms intended for drug development and natural product discovery. To complement research on the metabolic potential of microbes in extreme environments, comparative analyses on functional annotations of biosynthetic gene clusters (BGCs) from uncultivated bacterial genomes were carried out. Results indicated that in general, BGCs encode for structurally unique metabolites and that metagenome-assembled genomes did not show an obvious relationship between the composition of their core biosynthetic potential and taxonomy or geographic distribution. Nevertheless, some members of Acidobacteriota showed a phylogenetic relationship with specific metabolic traits and a few members of Proteobacteria and Desulfobacterota exhibited niche adaptations. Our results emphasize that studying specialized metabolism in environmental samples may significantly contribute to the elucidation of structures, activities, and ecological roles of microbial molecules.
Collapse
Affiliation(s)
- Constanza M. Andreani-Gerard
- Millennium Institute Center for Genome Regulation (CRG)
- Bioinformatic and Gene Expression Laboratory, Instituto de Nutrición y Tecnología de los Alimentos (INTA), Santiago, Chile
- Center for Mathematical Modeling (CMM) – Universidad de Chile, Santiago, Chile
| | - Verónica Cambiazo
- Millennium Institute Center for Genome Regulation (CRG)
- Bioinformatic and Gene Expression Laboratory, Instituto de Nutrición y Tecnología de los Alimentos (INTA), Santiago, Chile
| | - Mauricio González
- Millennium Institute Center for Genome Regulation (CRG)
- Bioinformatic and Gene Expression Laboratory, Instituto de Nutrición y Tecnología de los Alimentos (INTA), Santiago, Chile
| |
Collapse
|
10
|
Rakotoarivelo AR, Rambuda T, Taron UH, Stalder G, O'Donoghue P, Robovský J, Hartmann S, Hofreiter M, Moodley Y. Complex patterns of gene flow and convergence in the evolutionary history of the spiral-horned antelopes (Tragelaphini). Mol Phylogenet Evol 2024; 198:108131. [PMID: 38909875 DOI: 10.1016/j.ympev.2024.108131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 05/19/2024] [Accepted: 06/15/2024] [Indexed: 06/25/2024]
Abstract
The Tragelaphini, also known as spiral-horned antelope, is a phenotypically diverse mammalian tribe comprising a single genus, Tragelaphus. The evolutionary history of this tribe has attracted the attention of taxonomists and molecular geneticists for decades because its diversity is characterised by conflicts between morphological and molecular data as well as between mitochondrial, nuclear and chromosomal DNA. These inconsistencies point to a complex history of ecological diversification, coupled by either phenotypic convergence or introgression. Therefore, to unravel the phylogenetic relationships among spiral-horned antelopes, and to further investigate the role of divergence and gene flow in trait evolution, we sequenced genomes for all nine accepted species of the genus Tragelaphus, including a genome each for the highly divergent bushbuck lineages (T. s. scriptus and T. s. sylvaticus). We successfully reconstructed the Tragelaphus species tree, providing genome-level support for the early Pliocene divergence and monophyly of the nyala (T. angasii) and lesser kudu (T. imberbis), the monophyly of the two eland species (T. oryx and T. derbianus) and, importantly, the monophyly of kéwel (T. s. scriptus) and imbabala (T. s. sylvaticus) bushbuck. We found strong evidence for gene flow in at least four of eight nodes on the species tree. Among the six phenotypic traits assessed here, only habitat type mapped onto the species tree without homoplasy, showing that trait evolution was the result of complex patterns of divergence, introgression and convergent evolution.
Collapse
Affiliation(s)
- Andrinajoro R Rakotoarivelo
- Department of Biological Sciences, University of Venda, Private Bag X5050, Thohoyandou 0950, Republic of South Africa; Department of Zoology and Entomology, University of the Free State: QwaQwa Campus, Private Bag X13, Phuthaditjhaba 9866, Republic of South Africa
| | - Thabelo Rambuda
- Department of Biological Sciences, University of Venda, Private Bag X5050, Thohoyandou 0950, Republic of South Africa; Department of Genetics, University of Pretoria, Private Bag X20, Hatfield 0028, Republic of South Africa
| | - Ulrike H Taron
- Evolutionary Adaptive Genomics, Institute for Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Strasse 24-25, 14476 Potsdam, Germany
| | - Gabrielle Stalder
- Department of Interdisciplinary Life Sciences, Research Institute of Wildlife Ecology, University of Veterinary Medicine, Savoyenstraße 1, A-1160 Wien, Austria
| | | | - Jan Robovský
- Department of Zoology, Faculty of Science, University of South Bohemia, Branišovská 1760, 37005 České Budějovice, Czech Republic
| | - Stefanie Hartmann
- Evolutionary Adaptive Genomics, Institute for Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Strasse 24-25, 14476 Potsdam, Germany
| | - Michael Hofreiter
- Evolutionary Adaptive Genomics, Institute for Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Strasse 24-25, 14476 Potsdam, Germany
| | - Yoshan Moodley
- Department of Biological Sciences, University of Venda, Private Bag X5050, Thohoyandou 0950, Republic of South Africa.
| |
Collapse
|
11
|
Yang T, Li C, Xu D, Quan R, Wang L, Ren Y, Zhang Z, Yu R. Bioinformatics analysis of SH2D4A in glioblastoma multiforme to evaluate immune features and predict prognosis. Transl Cancer Res 2024; 13:4242-4256. [PMID: 39262462 PMCID: PMC11384316 DOI: 10.21037/tcr-23-2000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 05/30/2024] [Indexed: 09/13/2024]
Abstract
Background Glioblastoma multiforme (GBM) is the most common and aggressive primary brain cancer in adults. This study aimed to obtain data on immune cell infiltration based on public datasets and to examine the prognostic significance of SH2 domain containing 4A (SH2D4A) for GBM. Methods SH2D4A expression in GBM was analyzed using a Tumor Immunity Estimation Resource (TIMER) 2.0 dataset, and a gene expression profile interaction analysis (GEPIA), and the results were validated by quantitative reverse transcription polymerase chain reaction (qRT-PCR). The Chinese Glioma Genome Atlas (CGGA) dataset was used to assess the effect of SH2D4A on GBM patient survival. The SH2D4A co-expression network of the LinkedOmics dataset and GeneMANIA dataset was also investigated. Least absolute shrinkage and selection operator (LASSO) regression models and a nomogram were constructed to assess the prognosis of GBM patients. A Gene Set Enrichment Analysis (GSEA) was performed using The Cancer Genome Atlas (TCGA) dataset to find functional differences. The relationship between SH2D4A expression and tumor-infiltrating immune cells was analyzed using xCELL, the Cell Type Identification by Estimating Relative Subsets of RNA Transcripts (CIBERSORT) algorithm, and the TIMER dataset. Results We discovered that SH2D4A expression was upregulated in GBM patients, and elevated SH2D4A expression was also substantially correlated with tumor grade. The survival curve analysis and multivariate Cox regression analysis showed that high SH2D4A expression was a significant independent predictor of poor overall survival (OS) in GBM patients. The immunoassay results suggested that altered SH2D4A expression may affect the immune infiltration of GBM tissues and thus the survival outcomes of GBM patients. Conclusions In addition to being a possible prognostic marker and therapeutic target for GBM, SH2D4A may also accelerate the progression of GBM.
Collapse
Affiliation(s)
- Tian Yang
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, China
| | - Chujun Li
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, China
| | - Duo Xu
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, China
| | - Rui Quan
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, China
| | - Lansheng Wang
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, China
| | - Yanhong Ren
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, China
| | - Zhengkui Zhang
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, China
- Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Rutong Yu
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, China
- Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
12
|
Delgado S, Armijo Á, Bravo V, Orellana O, Salazar JC, Katz A. Impact of the chemical modification of tRNAs anticodon loop on the variability and evolution of codon usage in proteobacteria. Front Microbiol 2024; 15:1412318. [PMID: 39161601 PMCID: PMC11332805 DOI: 10.3389/fmicb.2024.1412318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 05/27/2024] [Indexed: 08/21/2024] Open
Abstract
Despite the highly conserved nature of the genetic code, the frequency of usage of each codon can vary significantly. The evolution of codon usage is shaped by two main evolutionary forces: mutational bias and selection pressures. These pressures can be driven by environmental factors, but also by the need for efficient translation, which depends heavily on the concentration of transfer RNAs (tRNAs) within the cell. The data presented here supports the proposal that tRNA modifications play a key role in shaping the overall preference of codon usage in proteobacteria. Interestingly, some codons, such as CGA and AGG (encoding arginine), exhibit a surprisingly low level of variation in their frequency of usage, even across genomes with differing GC content. These findings suggest that the evolution of GC content in proteobacterial genomes might be primarily driven by changes in the usage of a specific subset of codons, whose usage is itself influenced by tRNA modifications.
Collapse
Affiliation(s)
| | - Álvaro Armijo
- Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Verónica Bravo
- Programa Centro de Investigacion Biomédica y Aplicada, Escuela de Medicina, Facultad de Ciencias Médicas, Universidad de Santiago de Chile, Santiago, Chile
| | - Omar Orellana
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Juan Carlos Salazar
- Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Assaf Katz
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| |
Collapse
|
13
|
He S, Xu S, He Z, Hao X. Genome-wide identification, characterization and expression analysis of the bZIP transcription factors in garlic ( Allium sativum L.). FRONTIERS IN PLANT SCIENCE 2024; 15:1391248. [PMID: 39148621 PMCID: PMC11324451 DOI: 10.3389/fpls.2024.1391248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 07/15/2024] [Indexed: 08/17/2024]
Abstract
Introduction The bZIP genes (bZIPs) are essential in numerous biological processes, including development and stress responses. Despite extensive research on bZIPs in many plants, a comprehensive genome-wide analysis of bZIPs in garlic has yet to be undertaken. Methods In this study, we identified and classified 64 AsbZIP genes (AsbZIPs) into 10 subfamilies. A systematic analysis of the evolutionary characteristics of these AsbZIPs, including chromosome location, gene structure, conserved motifs, and gene duplication, was conducted. Furthermore, we also examined the nucleotide diversity, cis-acting elements, and expression profiles of AsbZIPs in various tissues and under different abiotic stresses and hormone treatments. Results and Discussion Our findings revealed that gene replication plays a crucial role in the expansion of AsbZIPs, with a minor genetic bottleneck observed during domestication. Moreover, the identification of cis-acting elements suggested potential associations of AsbZIPs with garlic development, hormone, and stress responses. Several AsbZIPs exhibited tissue-preferential and stress/hormone-responsive expression patterns. Additionally, Asa7G01972 and Asa7G01379 were notably differentially expressed under various stresses and hormone treatments. Subsequent yeast two-hybridization and yeast induction experiments validated their interactions with Asa1G01577, a homologue of ABI5, reinforcing their importance in hormone and abiotic stress responses. This study unveiled the characteristics of the AsbZIP superfamily and lays a solid foundation for further functional analysis of AsbZIP in garlic.
Collapse
Affiliation(s)
- Shutao He
- Institute of Neurobiology, Jining Medical University, Jining, China
- Institute of Biotechnology and Health, Beijing Academy of Science and Technology, Beijing, China
| | - Sen Xu
- Institute of Neurobiology, Jining Medical University, Jining, China
| | - Zhengjie He
- Rehabilitation Department, Traditional Chinese Medicine Hospital of Yanzhou District of Jining City, Jining, China
| | - Xiaomeng Hao
- Institute of Neurobiology, Jining Medical University, Jining, China
| |
Collapse
|
14
|
Unneberg P, Larsson M, Olsson A, Wallerman O, Petri A, Bunikis I, Vinnere Pettersson O, Papetti C, Gislason A, Glenner H, Cartes JE, Blanco-Bercial L, Eriksen E, Meyer B, Wallberg A. Ecological genomics in the Northern krill uncovers loci for local adaptation across ocean basins. Nat Commun 2024; 15:6297. [PMID: 39090106 PMCID: PMC11294593 DOI: 10.1038/s41467-024-50239-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 05/15/2024] [Indexed: 08/04/2024] Open
Abstract
Krill are vital as food for many marine animals but also impacted by global warming. To learn how they and other zooplankton may adapt to a warmer world we studied local adaptation in the widespread Northern krill (Meganyctiphanes norvegica). We assemble and characterize its large genome and compare genome-scale variation among 74 specimens from the colder Atlantic Ocean and warmer Mediterranean Sea. The 19 Gb genome likely evolved through proliferation of retrotransposons, now targeted for inactivation by extensive DNA methylation, and contains many duplicated genes associated with molting and vision. Analysis of 760 million SNPs indicates extensive homogenizing gene-flow among populations. Nevertheless, we detect signatures of adaptive divergence across hundreds of genes, implicated in photoreception, circadian regulation, reproduction and thermal tolerance, indicating polygenic adaptation to light and temperature. The top gene candidate for ecological adaptation was nrf-6, a lipid transporter with a Mediterranean variant that may contribute to early spring reproduction. Such variation could become increasingly important for fitness in Atlantic stocks. Our study underscores the widespread but uneven distribution of adaptive variation, necessitating characterization of genetic variation among natural zooplankton populations to understand their adaptive potential, predict risks and support ocean conservation in the face of climate change.
Collapse
Affiliation(s)
- Per Unneberg
- Department of Cell and Molecular Biology, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Mårten Larsson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Husargatan 3, 751 23, Uppsala, Sweden
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Anna Olsson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Husargatan 3, 751 23, Uppsala, Sweden
| | - Ola Wallerman
- Department of Medical Biochemistry and Microbiology, Uppsala University, Husargatan 3, 751 23, Uppsala, Sweden
| | - Anna Petri
- Uppsala Genome Center, Department of Immunology, Genetics and Pathology, Uppsala University, National Genomics Infrastructure hosted by SciLifeLab, Uppsala, Sweden
| | - Ignas Bunikis
- Uppsala Genome Center, Department of Immunology, Genetics and Pathology, Uppsala University, National Genomics Infrastructure hosted by SciLifeLab, Uppsala, Sweden
| | - Olga Vinnere Pettersson
- Uppsala Genome Center, Department of Immunology, Genetics and Pathology, Uppsala University, National Genomics Infrastructure hosted by SciLifeLab, Uppsala, Sweden
| | | | - Astthor Gislason
- Marine and Freshwater Research Institute, Pelagic Division, Reykjavik, Iceland
| | - Henrik Glenner
- Department of Biological Sciences, University of Bergen, Bergen, Norway
- Center for Macroecology, Evolution and Climate Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Joan E Cartes
- Instituto de Ciencias del Mar (ICM-CSIC), Barcelona, Spain
| | | | | | - Bettina Meyer
- Section Polar Biological Oceanography, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
- Institute for Chemistry and Biology of the Marine Environment, Carlvon Ossietzky University of Oldenburg, Oldenburg, Germany
- Helmholtz Institute for Functional Marine Biodiversity (HIFMB), University of Oldenburg, Oldenburg, Germany
| | - Andreas Wallberg
- Department of Medical Biochemistry and Microbiology, Uppsala University, Husargatan 3, 751 23, Uppsala, Sweden.
| |
Collapse
|
15
|
Shangguan X, Yang X, Wang S, Geng L, Wang L, Zhao M, Cao H, Zhang Y, Li X, Yang M, Xu K, Zheng X. Genome-Wide Identification and Expression Pattern of Sugar Transporter Genes in the Brown Planthopper, Nilaparvata lugens (Stål). INSECTS 2024; 15:509. [PMID: 39057242 PMCID: PMC11277001 DOI: 10.3390/insects15070509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/28/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024]
Abstract
Sugar transporters play important roles in controlling carbohydrate transport and are responsible for mediating the movement of sugars into cells in numerous organisms. In insects, sugar transporters not only play a role in sugar transport but may also act as receptors for virus entry and the accumulation of plant defense compounds. The brown planthopper, Nilaparvata lugens, inflicts damage on rice plants by feeding on their phloem sap, which is rich in sugars. In the present study, we identified 34 sugar transporters in N. lugens, which were classified into three subfamilies based on phylogenetic analysis. The motif numbers varied from seven to eleven, and motifs 2, 3, and 4 were identified in the functional domains of all 34 NlST proteins. Chromosome 1 was found to possess the highest number of NlST genes, harboring 15. The gut, salivary glands, fat body, and ovary were the different tissues enriched with NlST gene expression. The expression levels of NlST2, 3, 4, 7, 20, 27, 28, and 31 were higher in the gut than in the other tissues. When expressed in a Saccharomyces cerevisiae hexose transporter deletion mutant (strain EBY.VW4000), only ApST4 (previously characterized) and NlST4, 28, and 31 were found to transport glucose and fructose, resulting in functional rescue of the yeast mutant. These results provide valuable data for further studies on sugar transporters in N. lugens and lay a foundation for finding potential targets to control N. lugens.
Collapse
Affiliation(s)
- Xinxin Shangguan
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou 466001, China
- Henan Key Laboratory of Crop Molecular Breeding & Bioreactor, Zhoukou 466001, China
| | - Xiaoyu Yang
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466001, China
| | - Siyin Wang
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466001, China
| | - Lijie Geng
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466001, China
| | - Lina Wang
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466001, China
| | - Mengfan Zhao
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466001, China
| | - Haohao Cao
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou 466001, China
- Henan Key Laboratory of Crop Molecular Breeding & Bioreactor, Zhoukou 466001, China
| | - Yi Zhang
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou 466001, China
- Henan Key Laboratory of Crop Molecular Breeding & Bioreactor, Zhoukou 466001, China
| | - Xiaoli Li
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou 466001, China
- Henan Key Laboratory of Crop Molecular Breeding & Bioreactor, Zhoukou 466001, China
| | - Mingsheng Yang
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466001, China
| | - Kedong Xu
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou 466001, China
- Henan Key Laboratory of Crop Molecular Breeding & Bioreactor, Zhoukou 466001, China
| | - Xiaohong Zheng
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou 466001, China
- Henan Key Laboratory of Crop Molecular Breeding & Bioreactor, Zhoukou 466001, China
| |
Collapse
|
16
|
Maheshwari N, Jermiin LS, Cotroneo C, Gordon SV, Shields DC. Insights into the production and evolution of lantibiotics from a computational analysis of peptides associated with the lanthipeptide cyclase domain. ROYAL SOCIETY OPEN SCIENCE 2024; 11:240491. [PMID: 39021782 PMCID: PMC11251773 DOI: 10.1098/rsos.240491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 07/20/2024]
Abstract
Lanthipeptides are a large group of ribosomally encoded peptides cyclized by thioether and methylene bridges, which include the lantibiotics, lanthipeptides with antimicrobial activity. There are over 100 experimentally characterized lanthipeptides, with at least 25 distinct cyclization bridging patterns. We set out to understand the evolutionary dynamics and diversity of lanthipeptides. We identified 977 peptides in 2785 bacterial genomes from short open-reading frames encoding lanthipeptide modifiable amino acids (C, S and T) that lay chromosomally adjacent to genes encoding proteins containing the cyclase domain. These appeared to be synthesized by both known and novel enzymatic combinations. Our predictor of bridging topology suggested 36 novel-predicted topologies, including a single-cysteine topology seen in 179 lanthionine or labionin containing peptides, which were enriched for histidine. Evidence that supported the relevance of the single-cysteine containing lanthipeptide precursors included the presence of the labionin motif among single cysteine peptides that clustered with labionin-associated synthetase domains, and the leader features of experimentally defined lanthipeptides that were shared with single cysteine predictions. Evolutionary rate variation among peptide subfamilies suggests that selection pressures for functional change differ among subfamilies. Lanthipeptides that have recently evolved specific novel features may represent a richer source of potential novel antimicrobials, since their target species may have had less time to evolve resistance.
Collapse
Affiliation(s)
- Nikunj Maheshwari
- School of Medicine, University College Dublin, Dublin, Ireland
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Lars S. Jermiin
- School of Medicine, University College Dublin, Dublin, Ireland
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
- Research School of Biology, Australian National University, Canberra, ACT, Australia
- School of Mathematical and Statistical Sciences, University of Galway, Galway, Ireland
| | - Chiara Cotroneo
- School of Medicine, University College Dublin, Dublin, Ireland
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Stephen V. Gordon
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
- School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - Denis C. Shields
- School of Medicine, University College Dublin, Dublin, Ireland
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| |
Collapse
|
17
|
Chuzel L, Sinha A, Cunningham CV, Taron CH. High-throughput nanopore DNA sequencing of large insert fosmid clones directly from bacterial colonies. Appl Environ Microbiol 2024; 90:e0024324. [PMID: 38767355 PMCID: PMC11218629 DOI: 10.1128/aem.00243-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/21/2024] [Indexed: 05/22/2024] Open
Abstract
Fosmids and cosmids are vectors frequently used in functional metagenomic studies. With a large insert capacity (around 30 kb) they can encode dozens of cloned genes or in some cases, entire biochemical pathways. Fosmids with cloned inserts can be transferred to heterologous hosts and propagated to enable screening for new enzymes and metabolites. After screening, fosmids from clones with an activity of interest must be de novo sequenced, a critical step toward the identification of the gene(s) of interest. In this work, we present a new approach for rapid and high-throughput fosmid sequencing directly from Escherichia coli colonies without liquid culturing or fosmid purification. Our sample preparation involves fosmid amplification with phi29 polymerase and then direct nanopore sequencing using the Oxford Nanopore Technologies system. We also present a bioinformatics pipeline termed "phiXXer" that facilitates both de novo read assembly and vector trimming to generate a linear sequence of the fosmid insert. Finally, we demonstrate the accurate sequencing of 96 fosmids in a single run and validate the method using two fosmid libraries that contain cloned large insert (~30-40 kb) genomic or metagenomic DNA.IMPORTANCELarge-insert clone (fosmids or cosmids) sequencing is challenging and arguably the most limiting step of functional metagenomic screening workflows. Our study establishes a new method for high-throughput nanopore sequencing of fosmid clones directly from lysed Escherichia coli cells. It also describes a companion bioinformatic pipeline that enables de novo assembly of fosmid DNA insert sequences. The devised method widens the potential of functional metagenomic screening by providing a simple, high-throughput approach to fosmid clone sequencing that dramatically speeds the pace of discovery.
Collapse
Affiliation(s)
- Léa Chuzel
- New England Biolabs, Ipswich, Massachusetts, USA
| | - Amit Sinha
- New England Biolabs, Ipswich, Massachusetts, USA
| | | | | |
Collapse
|
18
|
Liang Z, Yue X, Liu Y, Ye M, Zhong L, Luan Y, Wang Q. Genome-Wide Identification of Specific Genetic Loci Common to Sheep and Goat. Biomolecules 2024; 14:638. [PMID: 38927042 PMCID: PMC11201639 DOI: 10.3390/biom14060638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/24/2024] [Accepted: 05/01/2024] [Indexed: 06/28/2024] Open
Abstract
Sheep and goat may become carriers of some zoonotic diseases. They are important livestock and experimental model animals for human beings. The fast and accurate identification of genetic materials originating from sheep and goat can prevent and inhibit the spread of some zoonotic diseases, monitor market product quality, and maintain the stability of animal husbandry and food industries. This study proposed a methodology for identifying sheep and goat common specific sites from a genome-wide perspective. A total of 150 specific sites were selected from three data sources, including the coding sequences of single copy genes from nine species (sheep, goat, cow, pig, dog, horse, human, mouse, and chicken), the dbSNPs for these species, and human 100-way alignment data. These 150 sites exhibited low intraspecific heterogeneity in the resequencing data of 1450 samples from five species (sheep, goat, cow, pig, and chicken) and high interspecific divergence in the human 100-way alignment data after quality control. The results were proven to be reliable at the data level. Using the process proposed in this study, specific sites of other species can be screened, and genome-level species identification can be performed using the screened sites.
Collapse
Affiliation(s)
- Zuoxiang Liang
- State Key Laboratory of Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Z.L.); (X.Y.); (Y.L.); (M.Y.); (L.Z.); (Y.L.)
- Department of Animal Science, University of Minnesota, Saint Paul, MN 55108, USA
| | - Xiaoyu Yue
- State Key Laboratory of Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Z.L.); (X.Y.); (Y.L.); (M.Y.); (L.Z.); (Y.L.)
| | - Yangxiu Liu
- State Key Laboratory of Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Z.L.); (X.Y.); (Y.L.); (M.Y.); (L.Z.); (Y.L.)
| | - Mengyan Ye
- State Key Laboratory of Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Z.L.); (X.Y.); (Y.L.); (M.Y.); (L.Z.); (Y.L.)
| | - Ling Zhong
- State Key Laboratory of Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Z.L.); (X.Y.); (Y.L.); (M.Y.); (L.Z.); (Y.L.)
| | - Yue Luan
- State Key Laboratory of Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Z.L.); (X.Y.); (Y.L.); (M.Y.); (L.Z.); (Y.L.)
| | - Qin Wang
- State Key Laboratory of Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Z.L.); (X.Y.); (Y.L.); (M.Y.); (L.Z.); (Y.L.)
| |
Collapse
|
19
|
Lehikoinen J, Nurmi K, Ainola M, Clancy J, Nieminen JK, Jansson L, Vauhkonen H, Vaheri A, Smura T, Laakso SM, Eklund KK, Tienari PJ. Epstein-Barr Virus in the Cerebrospinal Fluid and Blood Compartments of Patients With Multiple Sclerosis and Controls. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2024; 11:e200226. [PMID: 38608226 PMCID: PMC11087029 DOI: 10.1212/nxi.0000000000200226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/24/2024] [Indexed: 04/14/2024]
Abstract
BACKGROUND AND OBJECTIVES Epstein-Barr virus (EBV) infection is a major risk factor of multiple sclerosis (MS). We examined the presence of EBV DNA in the CSF and blood of patients with MS and controls. We analyzed whether EBV DNA is more common in the CSF of patients with MS than in controls and estimated the proportions of EBV-positive B cells in the CSF and blood. METHODS CSF supernatants and cells were collected at diagnostic lumbar punctures from 45 patients with MS and 45 HLA-DR15 matched controls with other conditions, all participants were EBV seropositive. Cellular DNA was amplified by Phi polymerase targeting both host and viral DNA, and representative samples were obtained in 28 cases and 28 controls. Nonamplified DNA from CSF cells (14 cases, 14 controls) and blood B cells (10 cases, 10 controls) were analyzed in a subset of participants. Multiple droplet digital PCR (ddPCR) runs were performed per sample to assess the cumulative EBV positivity rate. To detect viral RNA as a sign of activation, RNA sequencing was performed in blood CD4-positive, CD8-positive, and CD19-positive cells from 21 patients with MS and 3 controls. RESULTS One of the 45 patients with MS and none of the 45 controls were positive for EBV DNA in CSF supernatants (1 mL). CSF cellular DNA was analyzed in 8 independent ddPCRs: EBV DNA was detected at least once in 18 (64%) of the 28 patients with MS and in 15 (54%) of the 28 controls (p = 0.59, Fisher test). The cumulative EBV positivity increased steadily up to 59% in the successive ddPCRs, suggesting that all individuals would have reached EBV positivity in the CSF cells, if more DNA would have been analyzed. The estimated proportion of EBV-positive B cells was >1/10,000 in both the CSF and blood. We did not detect viral RNA, except from endogenous retroviruses, in the blood lymphocyte subpopulations. DISCUSSION EBV-DNA is equally detectable in the CSF cells of both patients with MS and controls with ddPCR, and the probabilistic approach indicates that the true positivity rate approaches 100% in EBV-positive individuals. The proportion of EBV-positive B cells seems higher than previously estimated.
Collapse
Affiliation(s)
- Joonas Lehikoinen
- From the Translational Immunology Research Program (J.L., K.N., M.A., J.K.N., L.J., S.M.L., K.K.E., P.J.T.), University of Helsinki; Departments of Neurology (J.L., J.K.N., L.J., S.M.L., P.J.T.), Neurocenter, and Rheumatology (K.N., M.A., K.K.E.), Helsinki University Hospital; Research and Development (J.C.), Finnish Red Cross Blood Service, Helsinki; and Department of Virology (H.V., A.V., T.S.), Medicum, University of Helsinki, Finland
| | - Katariina Nurmi
- From the Translational Immunology Research Program (J.L., K.N., M.A., J.K.N., L.J., S.M.L., K.K.E., P.J.T.), University of Helsinki; Departments of Neurology (J.L., J.K.N., L.J., S.M.L., P.J.T.), Neurocenter, and Rheumatology (K.N., M.A., K.K.E.), Helsinki University Hospital; Research and Development (J.C.), Finnish Red Cross Blood Service, Helsinki; and Department of Virology (H.V., A.V., T.S.), Medicum, University of Helsinki, Finland
| | - Mari Ainola
- From the Translational Immunology Research Program (J.L., K.N., M.A., J.K.N., L.J., S.M.L., K.K.E., P.J.T.), University of Helsinki; Departments of Neurology (J.L., J.K.N., L.J., S.M.L., P.J.T.), Neurocenter, and Rheumatology (K.N., M.A., K.K.E.), Helsinki University Hospital; Research and Development (J.C.), Finnish Red Cross Blood Service, Helsinki; and Department of Virology (H.V., A.V., T.S.), Medicum, University of Helsinki, Finland
| | - Jonna Clancy
- From the Translational Immunology Research Program (J.L., K.N., M.A., J.K.N., L.J., S.M.L., K.K.E., P.J.T.), University of Helsinki; Departments of Neurology (J.L., J.K.N., L.J., S.M.L., P.J.T.), Neurocenter, and Rheumatology (K.N., M.A., K.K.E.), Helsinki University Hospital; Research and Development (J.C.), Finnish Red Cross Blood Service, Helsinki; and Department of Virology (H.V., A.V., T.S.), Medicum, University of Helsinki, Finland
| | - Janne K Nieminen
- From the Translational Immunology Research Program (J.L., K.N., M.A., J.K.N., L.J., S.M.L., K.K.E., P.J.T.), University of Helsinki; Departments of Neurology (J.L., J.K.N., L.J., S.M.L., P.J.T.), Neurocenter, and Rheumatology (K.N., M.A., K.K.E.), Helsinki University Hospital; Research and Development (J.C.), Finnish Red Cross Blood Service, Helsinki; and Department of Virology (H.V., A.V., T.S.), Medicum, University of Helsinki, Finland
| | - Lilja Jansson
- From the Translational Immunology Research Program (J.L., K.N., M.A., J.K.N., L.J., S.M.L., K.K.E., P.J.T.), University of Helsinki; Departments of Neurology (J.L., J.K.N., L.J., S.M.L., P.J.T.), Neurocenter, and Rheumatology (K.N., M.A., K.K.E.), Helsinki University Hospital; Research and Development (J.C.), Finnish Red Cross Blood Service, Helsinki; and Department of Virology (H.V., A.V., T.S.), Medicum, University of Helsinki, Finland
| | - Hanna Vauhkonen
- From the Translational Immunology Research Program (J.L., K.N., M.A., J.K.N., L.J., S.M.L., K.K.E., P.J.T.), University of Helsinki; Departments of Neurology (J.L., J.K.N., L.J., S.M.L., P.J.T.), Neurocenter, and Rheumatology (K.N., M.A., K.K.E.), Helsinki University Hospital; Research and Development (J.C.), Finnish Red Cross Blood Service, Helsinki; and Department of Virology (H.V., A.V., T.S.), Medicum, University of Helsinki, Finland
| | - Antti Vaheri
- From the Translational Immunology Research Program (J.L., K.N., M.A., J.K.N., L.J., S.M.L., K.K.E., P.J.T.), University of Helsinki; Departments of Neurology (J.L., J.K.N., L.J., S.M.L., P.J.T.), Neurocenter, and Rheumatology (K.N., M.A., K.K.E.), Helsinki University Hospital; Research and Development (J.C.), Finnish Red Cross Blood Service, Helsinki; and Department of Virology (H.V., A.V., T.S.), Medicum, University of Helsinki, Finland
| | - Teemu Smura
- From the Translational Immunology Research Program (J.L., K.N., M.A., J.K.N., L.J., S.M.L., K.K.E., P.J.T.), University of Helsinki; Departments of Neurology (J.L., J.K.N., L.J., S.M.L., P.J.T.), Neurocenter, and Rheumatology (K.N., M.A., K.K.E.), Helsinki University Hospital; Research and Development (J.C.), Finnish Red Cross Blood Service, Helsinki; and Department of Virology (H.V., A.V., T.S.), Medicum, University of Helsinki, Finland
| | - Sini M Laakso
- From the Translational Immunology Research Program (J.L., K.N., M.A., J.K.N., L.J., S.M.L., K.K.E., P.J.T.), University of Helsinki; Departments of Neurology (J.L., J.K.N., L.J., S.M.L., P.J.T.), Neurocenter, and Rheumatology (K.N., M.A., K.K.E.), Helsinki University Hospital; Research and Development (J.C.), Finnish Red Cross Blood Service, Helsinki; and Department of Virology (H.V., A.V., T.S.), Medicum, University of Helsinki, Finland
| | - Kari K Eklund
- From the Translational Immunology Research Program (J.L., K.N., M.A., J.K.N., L.J., S.M.L., K.K.E., P.J.T.), University of Helsinki; Departments of Neurology (J.L., J.K.N., L.J., S.M.L., P.J.T.), Neurocenter, and Rheumatology (K.N., M.A., K.K.E.), Helsinki University Hospital; Research and Development (J.C.), Finnish Red Cross Blood Service, Helsinki; and Department of Virology (H.V., A.V., T.S.), Medicum, University of Helsinki, Finland
| | - Pentti J Tienari
- From the Translational Immunology Research Program (J.L., K.N., M.A., J.K.N., L.J., S.M.L., K.K.E., P.J.T.), University of Helsinki; Departments of Neurology (J.L., J.K.N., L.J., S.M.L., P.J.T.), Neurocenter, and Rheumatology (K.N., M.A., K.K.E.), Helsinki University Hospital; Research and Development (J.C.), Finnish Red Cross Blood Service, Helsinki; and Department of Virology (H.V., A.V., T.S.), Medicum, University of Helsinki, Finland
| |
Collapse
|
20
|
Smith GP, Cohen H, Zorn JF, McFrederick QS, Ponisio LC. Plant-pollinator network architecture does not impact intraspecific microbiome variability. Mol Ecol 2024; 33:e17306. [PMID: 38414303 DOI: 10.1111/mec.17306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 01/22/2024] [Accepted: 02/05/2024] [Indexed: 02/29/2024]
Abstract
Variation in how individuals interact with food resources can directly impact, and be affected by, their microbial interactions due to the potential for transmission. The degree to which this transmission occurs, however, may depend on the structure of forager networks, which determine the community-scale transmission opportunities. In particular, how the community-scale opportunity for transfer balances individual-scale barriers to transmission is unclear. Examining the bee-flower and bee-microbial interactions of over 1000 individual bees, we tested (1) the degree to which individual floral visits predicted microbiome composition and (2) whether plant-bee networks with increased opportunity for microbial transmission homogenized the microbiomes of bees within that network. The pollen community composition carried by bees was associated with microbiome composition at some sites, suggesting that microbial transmission at flowers occurred. Contrary to our predictions, however, microbiome variability did not differ based on transfer opportunity: bee microbiomes in asymmetric networks with high opportunity for microbial transfer were similarly variable compared to microbiomes in networks with more evenly distributed links. These findings suggest that microbial transmission at flowers is frequent enough to be observed at the community level, but that community network structure did not substantially change the dynamics of this transmission, perhaps due to filtering processes in host guts.
Collapse
Affiliation(s)
- Gordon P Smith
- Department of Biology, Williams College, Williamstown, Massachusetts, USA
- Department of Biology, Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon, USA
| | - Hamutahl Cohen
- Department of Biology, Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon, USA
- University of California Cooperative Extension Ventura County, University of California Agriculture and Natural Resources, Ventura, California, USA
| | - Jocelyn F Zorn
- Department of Biology, Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon, USA
| | - Quinn S McFrederick
- Department of Entomology, University of California, Riverside, Riverside, California, USA
| | - Lauren C Ponisio
- Department of Biology, Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon, USA
| |
Collapse
|
21
|
Pacheco-Moreno A, Bollmann-Giolai A, Chandra G, Brett P, Davies J, Thornton O, Poole P, Ramachandran V, Brown JKM, Nicholson P, Ridout C, DeVos S, Malone JG. The genotype of barley cultivars influences multiple aspects of their associated microbiota via differential root exudate secretion. PLoS Biol 2024; 22:e3002232. [PMID: 38662644 PMCID: PMC11045101 DOI: 10.1371/journal.pbio.3002232] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 03/19/2024] [Indexed: 04/28/2024] Open
Abstract
Plant-associated microbes play vital roles in promoting plant growth and health, with plants secreting root exudates into the rhizosphere to attract beneficial microbes. Exudate composition defines the nature of microbial recruitment, with different plant species attracting distinct microbiota to enable optimal adaptation to the soil environment. To more closely examine the relationship between plant genotype and microbial recruitment, we analysed the rhizosphere microbiomes of landrace (Chevallier) and modern (NFC Tipple) barley (Hordeum vulgare) cultivars. Distinct differences were observed between the plant-associated microbiomes of the 2 cultivars, with the plant-growth promoting rhizobacterial genus Pseudomonas substantially more abundant in the Tipple rhizosphere. Striking differences were also observed between the phenotypes of recruited Pseudomonas populations, alongside distinct genotypic clustering by cultivar. Cultivar-driven Pseudomonas selection was driven by root exudate composition, with the greater abundance of hexose sugars secreted from Tipple roots attracting microbes better adapted to growth on these metabolites and vice versa. Cultivar-driven selection also operates at the molecular level, with both gene expression and the abundance of ecologically relevant loci differing between Tipple and Chevallier Pseudomonas isolates. Finally, cultivar-driven selection is important for plant health, with both cultivars showing a distinct preference for microbes selected by their genetic siblings in rhizosphere transplantation assays.
Collapse
Affiliation(s)
- Alba Pacheco-Moreno
- John Innes Centre, Norwich Research Park, Colney Lane, Norwich, United Kingdom
| | | | - Govind Chandra
- John Innes Centre, Norwich Research Park, Colney Lane, Norwich, United Kingdom
| | - Paul Brett
- John Innes Centre, Norwich Research Park, Colney Lane, Norwich, United Kingdom
| | - Jack Davies
- John Innes Centre, Norwich Research Park, Colney Lane, Norwich, United Kingdom
| | - Owen Thornton
- John Innes Centre, Norwich Research Park, Colney Lane, Norwich, United Kingdom
| | - Philip Poole
- Department of Biology, University of Oxford, South Parks Road, Oxford, United Kingdom
| | - Vinoy Ramachandran
- Department of Biology, University of Oxford, South Parks Road, Oxford, United Kingdom
| | - James K. M. Brown
- John Innes Centre, Norwich Research Park, Colney Lane, Norwich, United Kingdom
| | - Paul Nicholson
- John Innes Centre, Norwich Research Park, Colney Lane, Norwich, United Kingdom
| | - Chris Ridout
- John Innes Centre, Norwich Research Park, Colney Lane, Norwich, United Kingdom
- New Heritage Barley, Norwich Research Park, Norwich, United Kingdom
| | - Sarah DeVos
- John Innes Centre, Norwich Research Park, Colney Lane, Norwich, United Kingdom
- New Heritage Barley, Norwich Research Park, Norwich, United Kingdom
| | - Jacob G. Malone
- John Innes Centre, Norwich Research Park, Colney Lane, Norwich, United Kingdom
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| |
Collapse
|
22
|
Dickson ZW, Golding GB. Evolution of Transcript Abundance is Influenced by Indels in Protein Low Complexity Regions. J Mol Evol 2024; 92:153-168. [PMID: 38485789 DOI: 10.1007/s00239-024-10158-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 01/24/2024] [Indexed: 04/02/2024]
Abstract
Protein Protein low complexity regions (LCRs) are compositionally biased amino acid sequences, many of which have significant evolutionary impacts on the proteins which contain them. They are mutationally unstable experiencing higher rates of indels and substitutions than higher complexity regions. LCRs also impact the expression of their proteins, likely through multiple effects along the path from gene transcription, through translation, and eventual protein degradation. It has been observed that proteins which contain LCRs are associated with elevated transcript abundance (TAb), despite having lower protein abundance. We have gathered and integrated human data to investigate the co-evolution of TAb and LCRs through ancestral reconstructions and model inference using an approximate Bayesian calculation based method. We observe that on short evolutionary timescales TAb evolution is significantly impacted by changes in LCR length, with insertions driving TAb down. But in contrast, the observed data is best explained by indel rates in LCRs which are unaffected by shifts in TAb. Our work demonstrates a coupling between LCR and TAb evolution, and the utility of incorporating multiple responses into evolutionary analyses.
Collapse
Affiliation(s)
| | - G Brian Golding
- Department of Biology, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
23
|
Estevez-Castro CF, Rodrigues MF, Babarit A, Ferreira FV, de Andrade EG, Marois E, Cogni R, Aguiar ERGR, Marques JT, Olmo RP. Neofunctionalization driven by positive selection led to the retention of the loqs2 gene encoding an Aedes specific dsRNA binding protein. BMC Biol 2024; 22:14. [PMID: 38273313 PMCID: PMC10809485 DOI: 10.1186/s12915-024-01821-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 01/10/2024] [Indexed: 01/27/2024] Open
Abstract
BACKGROUND Mosquito borne viruses, such as dengue, Zika, yellow fever and Chikungunya, cause millions of infections every year. These viruses are mostly transmitted by two urban-adapted mosquito species, Aedes aegypti and Aedes albopictus. Although mechanistic understanding remains largely unknown, Aedes mosquitoes may have unique adaptations that lower the impact of viral infection. Recently, we reported the identification of an Aedes specific double-stranded RNA binding protein (dsRBP), named Loqs2, that is involved in the control of infection by dengue and Zika viruses in mosquitoes. Preliminary analyses suggested that the loqs2 gene is a paralog of loquacious (loqs) and r2d2, two co-factors of the RNA interference (RNAi) pathway, a major antiviral mechanism in insects. RESULTS Here we analyzed the origin and evolution of loqs2. Our data suggest that loqs2 originated from two independent duplications of the first double-stranded RNA binding domain of loqs that occurred before the origin of the Aedes Stegomyia subgenus, around 31 million years ago. We show that the loqs2 gene is evolving under relaxed purifying selection at a faster pace than loqs, with evidence of neofunctionalization driven by positive selection. Accordingly, we observed that Loqs2 is localized mainly in the nucleus, different from R2D2 and both isoforms of Loqs that are cytoplasmic. In contrast to r2d2 and loqs, loqs2 expression is stage- and tissue-specific, restricted mostly to reproductive tissues in adult Ae. aegypti and Ae. albopictus. Transgenic mosquitoes engineered to express loqs2 ubiquitously undergo developmental arrest at larval stages that correlates with massive dysregulation of gene expression without major effects on microRNAs or other endogenous small RNAs, classically associated with RNA interference. CONCLUSIONS Our results uncover the peculiar origin and neofunctionalization of loqs2 driven by positive selection. This study shows an example of unique adaptations in Aedes mosquitoes that could ultimately help explain their effectiveness as virus vectors.
Collapse
Affiliation(s)
- Carlos F Estevez-Castro
- Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil
- CNRS UPR9022, Inserm U1257, Université de Strasbourg, 67084, Strasbourg, France
| | - Murillo F Rodrigues
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, 97403-5289, USA
| | - Antinéa Babarit
- CNRS UPR9022, Inserm U1257, Université de Strasbourg, 67084, Strasbourg, France
| | - Flávia V Ferreira
- Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Elisa G de Andrade
- Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil
- CNRS UPR9022, Inserm U1257, Université de Strasbourg, 67084, Strasbourg, France
| | - Eric Marois
- CNRS UPR9022, Inserm U1257, Université de Strasbourg, 67084, Strasbourg, France
| | - Rodrigo Cogni
- Department of Ecology, Institute of Biosciences, University of São Paulo, São Paulo, 05508-090, Brazil
| | - Eric R G R Aguiar
- Department of Biological Science, Center of Biotechnology and Genetics, State University of Santa Cruz, Ilhéus, 45662-900, Brazil
| | - João T Marques
- Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil.
- CNRS UPR9022, Inserm U1257, Université de Strasbourg, 67084, Strasbourg, France.
| | - Roenick P Olmo
- Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil.
- CNRS UPR9022, Inserm U1257, Université de Strasbourg, 67084, Strasbourg, France.
| |
Collapse
|
24
|
Bogomolov A, Zolotareva K, Filonov S, Chadaeva I, Rasskazov D, Sharypova E, Podkolodnyy N, Ponomarenko P, Savinkova L, Tverdokhleb N, Khandaev B, Kondratyuk E, Podkolodnaya O, Zemlyanskaya E, Kolchanov NA, Ponomarenko M. AtSNP_TATAdb: Candidate Molecular Markers of Plant Advantages Related to Single Nucleotide Polymorphisms within Proximal Promoters of Arabidopsis thaliana L. Int J Mol Sci 2024; 25:607. [PMID: 38203780 PMCID: PMC10779315 DOI: 10.3390/ijms25010607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/18/2023] [Accepted: 12/30/2023] [Indexed: 01/12/2024] Open
Abstract
The mainstream of the post-genome target-assisted breeding in crop plant species includes biofortification such as high-throughput phenotyping along with genome-based selection. Therefore, in this work, we used the Web-service Plant_SNP_TATA_Z-tester, which we have previously developed, to run a uniform in silico analysis of the transcriptional alterations of 54,013 protein-coding transcripts from 32,833 Arabidopsis thaliana L. genes caused by 871,707 SNPs located in the proximal promoter region. The analysis identified 54,993 SNPs as significantly decreasing or increasing gene expression through changes in TATA-binding protein affinity to the promoters. The existence of these SNPs in highly conserved proximal promoters may be explained as intraspecific diversity kept by the stabilizing natural selection. To support this, we hand-annotated papers on some of the Arabidopsis genes possessing these SNPs or on their orthologs in other plant species and demonstrated the effects of changes in these gene expressions on plant vital traits. We integrated in silico estimates of the TBP-promoter affinity in the AtSNP_TATAdb knowledge base and showed their significant correlations with independent in vivo experimental data. These correlations appeared to be robust to variations in statistical criteria, genomic environment of TATA box regions, plants species and growing conditions.
Collapse
Affiliation(s)
- Anton Bogomolov
- Institute of Cytology and Genetics, Novosibirsk 630090, Russia; (A.B.); (K.Z.); (S.F.); (I.C.); (D.R.); (E.S.); (N.P.); (P.P.); (L.S.); (N.T.); (B.K.); (E.K.); (O.P.); (E.Z.); (N.A.K.)
| | - Karina Zolotareva
- Institute of Cytology and Genetics, Novosibirsk 630090, Russia; (A.B.); (K.Z.); (S.F.); (I.C.); (D.R.); (E.S.); (N.P.); (P.P.); (L.S.); (N.T.); (B.K.); (E.K.); (O.P.); (E.Z.); (N.A.K.)
| | - Sergey Filonov
- Institute of Cytology and Genetics, Novosibirsk 630090, Russia; (A.B.); (K.Z.); (S.F.); (I.C.); (D.R.); (E.S.); (N.P.); (P.P.); (L.S.); (N.T.); (B.K.); (E.K.); (O.P.); (E.Z.); (N.A.K.)
- Natural Science Department, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Irina Chadaeva
- Institute of Cytology and Genetics, Novosibirsk 630090, Russia; (A.B.); (K.Z.); (S.F.); (I.C.); (D.R.); (E.S.); (N.P.); (P.P.); (L.S.); (N.T.); (B.K.); (E.K.); (O.P.); (E.Z.); (N.A.K.)
| | - Dmitry Rasskazov
- Institute of Cytology and Genetics, Novosibirsk 630090, Russia; (A.B.); (K.Z.); (S.F.); (I.C.); (D.R.); (E.S.); (N.P.); (P.P.); (L.S.); (N.T.); (B.K.); (E.K.); (O.P.); (E.Z.); (N.A.K.)
| | - Ekaterina Sharypova
- Institute of Cytology and Genetics, Novosibirsk 630090, Russia; (A.B.); (K.Z.); (S.F.); (I.C.); (D.R.); (E.S.); (N.P.); (P.P.); (L.S.); (N.T.); (B.K.); (E.K.); (O.P.); (E.Z.); (N.A.K.)
| | - Nikolay Podkolodnyy
- Institute of Cytology and Genetics, Novosibirsk 630090, Russia; (A.B.); (K.Z.); (S.F.); (I.C.); (D.R.); (E.S.); (N.P.); (P.P.); (L.S.); (N.T.); (B.K.); (E.K.); (O.P.); (E.Z.); (N.A.K.)
- Institute of Computational Mathematics and Mathematical Geophysics, Novosibirsk 630090, Russia
| | - Petr Ponomarenko
- Institute of Cytology and Genetics, Novosibirsk 630090, Russia; (A.B.); (K.Z.); (S.F.); (I.C.); (D.R.); (E.S.); (N.P.); (P.P.); (L.S.); (N.T.); (B.K.); (E.K.); (O.P.); (E.Z.); (N.A.K.)
| | - Ludmila Savinkova
- Institute of Cytology and Genetics, Novosibirsk 630090, Russia; (A.B.); (K.Z.); (S.F.); (I.C.); (D.R.); (E.S.); (N.P.); (P.P.); (L.S.); (N.T.); (B.K.); (E.K.); (O.P.); (E.Z.); (N.A.K.)
| | - Natalya Tverdokhleb
- Institute of Cytology and Genetics, Novosibirsk 630090, Russia; (A.B.); (K.Z.); (S.F.); (I.C.); (D.R.); (E.S.); (N.P.); (P.P.); (L.S.); (N.T.); (B.K.); (E.K.); (O.P.); (E.Z.); (N.A.K.)
| | - Bato Khandaev
- Institute of Cytology and Genetics, Novosibirsk 630090, Russia; (A.B.); (K.Z.); (S.F.); (I.C.); (D.R.); (E.S.); (N.P.); (P.P.); (L.S.); (N.T.); (B.K.); (E.K.); (O.P.); (E.Z.); (N.A.K.)
- Natural Science Department, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Ekaterina Kondratyuk
- Institute of Cytology and Genetics, Novosibirsk 630090, Russia; (A.B.); (K.Z.); (S.F.); (I.C.); (D.R.); (E.S.); (N.P.); (P.P.); (L.S.); (N.T.); (B.K.); (E.K.); (O.P.); (E.Z.); (N.A.K.)
- Siberian Federal Scientific Centre of Agro-BioTechnologies of the Russian Academy of Sciences, Krasnoobsk 630501, Novosibirsk Region, Russia
| | - Olga Podkolodnaya
- Institute of Cytology and Genetics, Novosibirsk 630090, Russia; (A.B.); (K.Z.); (S.F.); (I.C.); (D.R.); (E.S.); (N.P.); (P.P.); (L.S.); (N.T.); (B.K.); (E.K.); (O.P.); (E.Z.); (N.A.K.)
| | - Elena Zemlyanskaya
- Institute of Cytology and Genetics, Novosibirsk 630090, Russia; (A.B.); (K.Z.); (S.F.); (I.C.); (D.R.); (E.S.); (N.P.); (P.P.); (L.S.); (N.T.); (B.K.); (E.K.); (O.P.); (E.Z.); (N.A.K.)
- Natural Science Department, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Nikolay A. Kolchanov
- Institute of Cytology and Genetics, Novosibirsk 630090, Russia; (A.B.); (K.Z.); (S.F.); (I.C.); (D.R.); (E.S.); (N.P.); (P.P.); (L.S.); (N.T.); (B.K.); (E.K.); (O.P.); (E.Z.); (N.A.K.)
- Natural Science Department, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Mikhail Ponomarenko
- Institute of Cytology and Genetics, Novosibirsk 630090, Russia; (A.B.); (K.Z.); (S.F.); (I.C.); (D.R.); (E.S.); (N.P.); (P.P.); (L.S.); (N.T.); (B.K.); (E.K.); (O.P.); (E.Z.); (N.A.K.)
| |
Collapse
|
25
|
Pokharel K, Weldenegodguad M, Dudeck S, Honkatukia M, Lindeberg H, Mazzullo N, Paasivaara A, Peippo J, Soppela P, Stammler F, Kantanen J. Whole-genome sequencing provides novel insights into the evolutionary history and genetic adaptation of reindeer populations in northern Eurasia. Sci Rep 2023; 13:23019. [PMID: 38155192 PMCID: PMC10754820 DOI: 10.1038/s41598-023-50253-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 12/18/2023] [Indexed: 12/30/2023] Open
Abstract
Domestic reindeer (Rangifer tarandus) play a vital role in the culture and livelihoods of indigenous people across northern Eurasia. These animals are well adapted to harsh environmental conditions, such as extreme cold, limited feed availability and long migration distances. Therefore, understanding the genomics of reindeer is crucial for improving their management, conservation and utilisation. In this study, we have generated a new genome assembly for the Fennoscandian domestic reindeer with high contiguity, making it the most complete reference genome for reindeer to date. The new genome assembly was utilised to explore genetic diversity, population structure and selective sweeps in Eurasian Rangifer tarandus populations which was based on the largest population genomic dataset for reindeer, encompassing 58 individuals from diverse populations. Phylogenetic analyses revealed distinct genetic clusters, with the Finnish wild forest reindeer (Rangifer tarandus fennicus) standing out as a unique subspecies. Divergence time estimates suggested a separation of ~ 52 thousand years ago (Kya) between the northern European Rangifer tarandus fennicus and Rangifer tarandus tarandus. Our study identified four main genetic clusters: Fennoscandian, the eastern/northern Russian and Alaskan group, the Finnish forest reindeer, and the Svalbard reindeer. Furthermore, two independent reindeer domestication processes were inferred, suggesting separate origins for the domestic Fennoscandian and eastern/northern Russian reindeer. Notably, shared genes under selection, including retroviral genes, point towards molecular domestication processes that aided adaptation of this species to diverse environments.
Collapse
Affiliation(s)
- Kisun Pokharel
- Natural Resources Institute Finland (Luke), Myllytie 1, 31600, Jokioinen, Finland
| | - Melak Weldenegodguad
- Natural Resources Institute Finland (Luke), Myllytie 1, 31600, Jokioinen, Finland
| | - Stephan Dudeck
- Arctic Centre, University of Lapland, 96100, Rovaniemi, Finland
| | | | - Heli Lindeberg
- Natural Resources Institute Finland (Luke), 71750, Maaninka, Finland
| | - Nuccio Mazzullo
- Arctic Centre, University of Lapland, 96100, Rovaniemi, Finland
| | - Antti Paasivaara
- Natural Resources Institute Finland (Luke), Paavo Havaksentie 3, 90570, Oulu, Finland
| | - Jaana Peippo
- Natural Resources Institute Finland (Luke), Myllytie 1, 31600, Jokioinen, Finland
- NordGen-Nordic Genetic Resource Center, 1432, Ås, Norway
| | - Päivi Soppela
- Arctic Centre, University of Lapland, 96100, Rovaniemi, Finland
| | | | - Juha Kantanen
- Natural Resources Institute Finland (Luke), Myllytie 1, 31600, Jokioinen, Finland.
| |
Collapse
|
26
|
Zhu Y, Ma T, Lin Y, Peng Y, Huang Y, Jiang J. SSR molecular marker developments and genetic diversity analysis of Zanthoxylum nitidum (Roxb.) DC. Sci Rep 2023; 13:20767. [PMID: 38008750 PMCID: PMC10679188 DOI: 10.1038/s41598-023-48022-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 11/21/2023] [Indexed: 11/28/2023] Open
Abstract
Zanthoxylum nitidum (Roxb.) is a commonly used traditional Chinese medicine. However, the collection and protection of wild germplasm resources of Z. nitidum are still insufficient, and there is limited research on its genetic diversity and fingerprint. In the present study, 15 simple sequence repeat (SSR) markers were developed by genotyping based on multiplexed shotgun sequencing. The genetic diversity of 51 populations (142 individuals) of Z. nitidum was evaluated using these 15 SSRs. A total of 245 alleles (Na) were detected, with an average value of 16.333, and the average polymorphism information content was 0.756. The genetic distance among 51 populations was 0.164~1.000, with an average of 0.659. Analysis of molecular variance showed low genetic differentiation (40%) and high genetic differentiation (60%) between populations and individuals, respectively. The genetic differentiation coefficient (Fst) of the population was 0.338, indicating that 66.2% of the genetic variation occurred within the population, and the gene flow (Nm) was 0.636, demonstrating that the gene exchange between populations was low. Clustering analysis revealed that the genetic similarity coefficient was 0.30, dividing the 51 populations into 4 groups of 2, 17, 3, and 29 populations. There was no specific relationship between geographical location differences and genetic distance. The genetic diversity level of Z. nitidum is relatively high, and our results provide a theoretical basis for the rapid identification of Z. nitidum germplasm resources and variety selection.
Collapse
Affiliation(s)
- Yanxia Zhu
- National Center for Traditional Chinese Medicine Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China
| | - Tao Ma
- College of Agriculture and Engineering, Guangxi Vocational University of Agriculture, Nanning, 530009, China
| | - Yang Lin
- National Center for Traditional Chinese Medicine Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China
| | - Yude Peng
- National Center for Traditional Chinese Medicine Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China
| | - Yuan Huang
- National Center for Traditional Chinese Medicine Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China
| | - Jianping Jiang
- National Center for Traditional Chinese Medicine Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China.
| |
Collapse
|
27
|
Choquet M, Lenner F, Cocco A, Toullec G, Corre E, Toullec JY, Wallberg A. Comparative Population Transcriptomics Provide New Insight into the Evolutionary History and Adaptive Potential of World Ocean Krill. Mol Biol Evol 2023; 40:msad225. [PMID: 37816123 PMCID: PMC10642690 DOI: 10.1093/molbev/msad225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 08/31/2023] [Accepted: 09/25/2023] [Indexed: 10/12/2023] Open
Abstract
Genetic variation is instrumental for adaptation to changing environments but it is unclear how it is structured and contributes to adaptation in pelagic species lacking clear barriers to gene flow. Here, we applied comparative genomics to extensive transcriptome datasets from 20 krill species collected across the Atlantic, Indian, Pacific, and Southern Oceans. We compared genetic variation both within and between species to elucidate their evolutionary history and genomic bases of adaptation. We resolved phylogenetic interrelationships and uncovered genomic evidence to elevate the cryptic Euphausia similis var. armata into species. Levels of genetic variation and rates of adaptive protein evolution vary widely. Species endemic to the cold Southern Ocean, such as the Antarctic krill Euphausia superba, showed less genetic variation and lower evolutionary rates than other species. This could suggest a low adaptive potential to rapid climate change. We uncovered hundreds of candidate genes with signatures of adaptive evolution among Antarctic Euphausia but did not observe strong evidence of adaptive convergence with the predominantly Arctic Thysanoessa. We instead identified candidates for cold-adaptation that have also been detected in Antarctic fish, including genes that govern thermal reception such as TrpA1. Our results suggest parallel genetic responses to similar selection pressures across Antarctic taxa and provide new insights into the adaptive potential of important zooplankton already affected by climate change.
Collapse
Affiliation(s)
- Marvin Choquet
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- Natural History Museum, University of Oslo, Oslo, Norway
| | - Felix Lenner
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Arianna Cocco
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Gaëlle Toullec
- Laboratory for Biological Geochemistry, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Erwan Corre
- CNRS, Sorbonne Université, FR 2424, ABiMS Platform, Station Biologique de Roscoff, Roscoff, France
| | - Jean-Yves Toullec
- CNRS, UMR 7144, AD2M, Sorbonne Université, Station Biologique de Roscoff, Roscoff, France
| | - Andreas Wallberg
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
28
|
Singh M, Kumar S. Effect of single nucleotide polymorphisms on the structure of long noncoding RNAs and their interaction with RNA binding proteins. Biosystems 2023; 233:105021. [PMID: 37703988 DOI: 10.1016/j.biosystems.2023.105021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 07/25/2023] [Accepted: 09/06/2023] [Indexed: 09/15/2023]
Abstract
Long non-coding RNAs (lncRNA) are emerging as a new class of regulatory RNAs with remarkable potential to be utilized as therapeutic targets against many human diseases. Several genome-wide association studies (GWAS) have catalogued Single Nucleotide Polymorphisms (SNPs) present in the noncoding regions of the genome from where lncRNAs originate. In this study, we have selected 67 lncRNAs with GWAS-tagged SNPs and have also investigated their role in affecting the local secondary structures. Majority of the SNPs lead to changes in the secondary structure of lncRNAs to a different extent by altering the base pairing patterns. These structural changes in lncRNA are also manifested in form of alteration in the binding site for RNA binding proteins (RBPs) along with affecting their binding efficacies. Ultimately, these structural modifications may influence the transcriptional and post-transcriptional pathways of these RNAs, leading to the causation of diseases. Hence, it is important to understand the possible underlying mechanism of RBPs in association with GWAS-tagged SNPs in human diseases.
Collapse
Affiliation(s)
- Mandakini Singh
- Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769008, India
| | - Santosh Kumar
- Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769008, India.
| |
Collapse
|
29
|
Nur M, Wood K, Michelmore R. EffectorO: Motif-Independent Prediction of Effectors in Oomycete Genomes Using Machine Learning and Lineage Specificity. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2023; 36:397-410. [PMID: 36853198 DOI: 10.1094/mpmi-11-22-0236-ta] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Oomycete plant pathogens cause a wide variety of diseases, including late blight of potato, sudden oak death, and downy mildews of plants. These pathogens are major contributors to loss in numerous food crops. Oomycetes secrete effector proteins to manipulate their hosts to the advantage of the pathogen. Plants have evolved to recognize effectors, resulting in an evolutionary cycle of defense and counter-defense in plant-microbe interactions. This selective pressure results in highly diverse effector sequences that can be difficult to computationally identify using only sequence similarity. We developed a novel effector prediction tool, EffectorO, that uses two complementary approaches to predict effectors in oomycete pathogen genomes: i) a machine learning-based pipeline that predicts effector probability based on the biochemical properties of the N-terminal amino-acid sequence of a protein and ii) a pipeline based on lineage specificity to find proteins that are unique to one species or genus, a sign of evolutionary divergence due to adaptation to the host. We tested EffectorO on Bremia lactucae, which causes lettuce downy mildew, and Phytophthora infestans, which causes late blight of potato and tomato, and predicted many novel effector candidates while recovering the majority of known effector candidates. EffectorO will be useful for discovering novel families of oomycete effectors without relying on sequence similarity to known effectors. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Munir Nur
- The Genome Center, University of California, Davis, CA, U.S.A
| | - Kelsey Wood
- The Genome Center, University of California, Davis, CA, U.S.A
- Integrative Genetics & Genomics Graduate Group, University of California, Davis, CA, U.S.A
| | - Richard Michelmore
- The Genome Center, University of California, Davis, CA, U.S.A
- Departments of Plant Sciences, Molecular & Cellular Biology, Medical Microbiology & Immunology, University of California, Davis, CA, U.S.A
| |
Collapse
|
30
|
Bogomolov A, Filonov S, Chadaeva I, Rasskazov D, Khandaev B, Zolotareva K, Kazachek A, Oshchepkov D, Ivanisenko VA, Demenkov P, Podkolodnyy N, Kondratyuk E, Ponomarenko P, Podkolodnaya O, Mustafin Z, Savinkova L, Kolchanov N, Tverdokhleb N, Ponomarenko M. Candidate SNP Markers Significantly Altering the Affinity of TATA-Binding Protein for the Promoters of Human Hub Genes for Atherogenesis, Atherosclerosis and Atheroprotection. Int J Mol Sci 2023; 24:ijms24109010. [PMID: 37240358 DOI: 10.3390/ijms24109010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/13/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Atherosclerosis is a systemic disease in which focal lesions in arteries promote the build-up of lipoproteins and cholesterol they are transporting. The development of atheroma (atherogenesis) narrows blood vessels, reduces the blood supply and leads to cardiovascular diseases. According to the World Health Organization (WHO), cardiovascular diseases are the leading cause of death, which has been especially boosted since the COVID-19 pandemic. There is a variety of contributors to atherosclerosis, including lifestyle factors and genetic predisposition. Antioxidant diets and recreational exercises act as atheroprotectors and can retard atherogenesis. The search for molecular markers of atherogenesis and atheroprotection for predictive, preventive and personalized medicine appears to be the most promising direction for the study of atherosclerosis. In this work, we have analyzed 1068 human genes associated with atherogenesis, atherosclerosis and atheroprotection. The hub genes regulating these processes have been found to be the most ancient. In silico analysis of all 5112 SNPs in their promoters has revealed 330 candidate SNP markers, which statistically significantly change the affinity of the TATA-binding protein (TBP) for these promoters. These molecular markers have made us confident that natural selection acts against underexpression of the hub genes for atherogenesis, atherosclerosis and atheroprotection. At the same time, upregulation of the one for atheroprotection promotes human health.
Collapse
Affiliation(s)
- Anton Bogomolov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
| | - Sergey Filonov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
- The Natural Sciences Department, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Irina Chadaeva
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
| | - Dmitry Rasskazov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
| | - Bato Khandaev
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
- The Natural Sciences Department, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Karina Zolotareva
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
- The Natural Sciences Department, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Anna Kazachek
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
- The Natural Sciences Department, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Dmitry Oshchepkov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
| | - Vladimir A Ivanisenko
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
| | - Pavel Demenkov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
| | - Nikolay Podkolodnyy
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
- Institute of Computational Mathematics and Mathematical Geophysics, Novosibirsk 630090, Russia
| | - Ekaterina Kondratyuk
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
| | - Petr Ponomarenko
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
| | - Olga Podkolodnaya
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
| | - Zakhar Mustafin
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
| | - Ludmila Savinkova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
| | - Nikolay Kolchanov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
| | - Natalya Tverdokhleb
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
| | - Mikhail Ponomarenko
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
| |
Collapse
|
31
|
Li L, Song J, Zhang M, Iqbal S, Li Y, Zhang H, Zhang H. A near complete genome assembly of chia assists in identification of key fatty acid desaturases in developing seeds. FRONTIERS IN PLANT SCIENCE 2023; 14:1102715. [PMID: 37021303 PMCID: PMC10067618 DOI: 10.3389/fpls.2023.1102715] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 03/06/2023] [Indexed: 06/19/2023]
Abstract
Chia is an annual crop whose seeds have the highest content of α-linolenic acid (ALA) of any plant known to date. We generated a high-quality assembly of the chia genome using circular consensus sequencing (CCS) of PacBio. The assembled six chromosomes are composed of 21 contigs and have a total length of 361.7 Mb. Genome annotation revealed a 53.5% repeat content and 35,850 protein-coding genes. Chia shared a common ancestor with Salvia splendens ~6.1 million years ago. Utilizing the reference genome and two transcriptome datasets, we identified candidate fatty acid desaturases responsible for ALA biosynthesis during chia seed development. Because the seed of S. splendens contains significantly lower proportion of ALA but similar total contents of unsaturated fatty acids, we suggest that strong expression of two ShFAD3 genes are critical for the high ALA content of chia seeds. This genome assembly will serve as a valuable resource for breeding, comparative genomics, and functional genomics studies of chia.
Collapse
Affiliation(s)
- Leiting Li
- National Key Laboratory of Molecular Plant Genetics, Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jingjing Song
- National Key Laboratory of Molecular Plant Genetics, Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Meiling Zhang
- Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, China
| | - Shahid Iqbal
- Institute of Plant Breeding and Biotechnology, Muhammad Nawaz Shareef University of Agriculture, Multan, Pakistan
| | - Yuanyuan Li
- Centre for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Heng Zhang
- National Key Laboratory of Molecular Plant Genetics, Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Hui Zhang
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, Shandong, China
| |
Collapse
|
32
|
Shikhevich S, Chadaeva I, Khandaev B, Kozhemyakina R, Zolotareva K, Kazachek A, Oshchepkov D, Bogomolov A, Klimova NV, Ivanisenko VA, Demenkov P, Mustafin Z, Markel A, Savinkova L, Kolchanov NA, Kozlov V, Ponomarenko M. Differentially Expressed Genes and Molecular Susceptibility to Human Age-Related Diseases. Int J Mol Sci 2023; 24:ijms24043996. [PMID: 36835409 PMCID: PMC9966505 DOI: 10.3390/ijms24043996] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/02/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
Mainstream transcriptome profiling of susceptibility versus resistance to age-related diseases (ARDs) is focused on differentially expressed genes (DEGs) specific to gender, age, and pathogeneses. This approach fits in well with predictive, preventive, personalized, participatory medicine and helps understand how, why, when, and what ARDs one can develop depending on their genetic background. Within this mainstream paradigm, we wanted to find out whether the known ARD-linked DEGs available in PubMed can reveal a molecular marker that will serve the purpose in anyone's any tissue at any time. We sequenced the periaqueductal gray (PAG) transcriptome of tame versus aggressive rats, identified rat-behavior-related DEGs, and compared them with their known homologous animal ARD-linked DEGs. This analysis yielded statistically significant correlations between behavior-related and ARD-susceptibility-related fold changes (log2 values) in the expression of these DEG homologs. We found principal components, PC1 and PC2, corresponding to the half-sum and the half-difference of these log2 values, respectively. With the DEGs linked to ARD susceptibility and ARD resistance in humans used as controls, we verified these principal components. This yielded only one statistically significant common molecular marker for ARDs: an excess of Fcγ receptor IIb suppressing immune cell hyperactivation.
Collapse
Affiliation(s)
- Svetlana Shikhevich
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
| | - Irina Chadaeva
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
| | - Bato Khandaev
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
- The Natural Sciences Department, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Rimma Kozhemyakina
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
| | - Karina Zolotareva
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
- The Natural Sciences Department, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Anna Kazachek
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
- The Natural Sciences Department, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Dmitry Oshchepkov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
- The Natural Sciences Department, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Anton Bogomolov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
- The Natural Sciences Department, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Natalya V. Klimova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
| | - Vladimir A. Ivanisenko
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
- The Natural Sciences Department, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Pavel Demenkov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
| | - Zakhar Mustafin
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
- The Natural Sciences Department, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Arcady Markel
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
- The Natural Sciences Department, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Ludmila Savinkova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
| | - Nikolay A. Kolchanov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
- The Natural Sciences Department, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Vladimir Kozlov
- Research Institute of Fundamental and Clinical Immunology (RIFCI) SB RAS, Novosibirsk 630099, Russia
| | - Mikhail Ponomarenko
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
- Correspondence: ; Tel.: +7-(383)-363-4963 (ext. 1311)
| |
Collapse
|
33
|
Zrelovs N, Jansons J, Kazaka T, Kazaks A, Dislers A. Three Phages One Host: Isolation and Characterization of Pantoea agglomerans Phages from a Grasshopper Specimen. Int J Mol Sci 2023; 24:1820. [PMID: 36768143 PMCID: PMC9915841 DOI: 10.3390/ijms24031820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 01/19/2023] Open
Abstract
The bacterial genus Pantoea comprises species found in a variety of different environmental sources. Pantoea spp. are often recovered from plant material and are capable of both benefitting the plants and acting like phytopathogens. Some species of Pantoea (including P. agglomerans) are considered opportunistic human pathogens capable of causing various infections in immunocompromised subjects. In this study, a strain of P. agglomerans (identified by 16S rRNA gene sequencing) was isolated from a dead specimen of an unidentified Latvian grasshopper species. The retrieved strain of P. agglomerans was then used as a host for the potential retrieval of phages from the same source material. After rounds of plaque purification and propagation, three high-titer lysates corresponding to putatively distinct phages were acquired. Transmission electron microscopy revealed that one of the phages was a myophage with an unusual morphology, while the two others were typical podophages. Whole-genome sequencing (WGS) was performed for each of these isolated phages. Genome de novo assembly and subsequent functional annotation confirmed that three different strictly lytic phages were isolated. Elaborate genomic characterization of the acquired phages was performed to elucidate their place within the so-far-uncovered phage diversity.
Collapse
Affiliation(s)
| | | | | | - Andris Kazaks
- Latvian Biomedical Research and Study Centre, Ratsupites 1 k-1, LV-1067 Riga, Latvia
| | - Andris Dislers
- Latvian Biomedical Research and Study Centre, Ratsupites 1 k-1, LV-1067 Riga, Latvia
| |
Collapse
|
34
|
Law CTY, Nivesvivat T, Xiong Q, Kulkeaw K, Shi L, Ruenchit P, Suwanpakdee D, Suwanpakdee P, Tongkrajang N, Sarasombath PT, Tsui SKW. Mitochondrial genome diversity of Balamuthia mandrillaris revealed by a fatal case of granulomatous amoebic encephalitis. Front Microbiol 2023; 14:1162963. [PMID: 37213512 PMCID: PMC10196457 DOI: 10.3389/fmicb.2023.1162963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/06/2023] [Indexed: 05/23/2023] Open
Abstract
Introduction Balamuthia (B.) mandrillaris is a free-living amoeba that can cause rare yet fatal granulomatous amoebic encephalitis (GAE). However, efficacious treatment for GAE is currently unavailable, especially when genomic studies on B. mandrillaris are limited. Methods In this study, B. mandrillaris strain KM-20 was isolated from the brain tissue of a GAE patient, and its mitochondrial genome was de novo assembled using high-coverage Nanopore long reads and Illumina short reads. Results and Discussion Phylogenetic and comparative analyses revealed a range of diversification in the mitochondrial genome of KM-20 and nine other B. mandrillaris strains. According to the mitochondrial genome alignment, one of the most variable regions was observed in the ribosomal protein S3 (rps3), which was caused by an array of novel protein tandem repeats. The repeating units in the rps3 protein tandem region present significant copy number variations (CNVs) among B. mandrillaris strains and suggest KM-20 as the most divergent strain for its highly variable sequence and highest copy number in rps3. Moreover, mitochondrial heteroplasmy was observed in strain V039, and two genotypes of rps3 are caused by the CNVs in the tandem repeats. Taken together, the copy number and sequence variations of the protein tandem repeats enable rps3 to be a perfect target for clinical genotyping assay for B. mandrillaris. The mitochondrial genome diversity of B. mandrillaris paves the way to investigate the phylogeny and diversification of pathogenic amoebae.
Collapse
Affiliation(s)
- Cherie Tsz-Yiu Law
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- Hong Kong Bioinformatics Centre, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Thirapa Nivesvivat
- Infectious Disease Unit, Department of Pediatrics, Phramongkutklao Hospital, Bangkok, Thailand
| | - Qing Xiong
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- Hong Kong Bioinformatics Centre, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Kasem Kulkeaw
- Siriraj Integrative Center for Neglected Parasitic Diseases, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Ling Shi
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- Hong Kong Bioinformatics Centre, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Pichet Ruenchit
- Siriraj Integrative Center for Neglected Parasitic Diseases, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Detchvijitr Suwanpakdee
- Infectious Disease Unit, Department of Pediatrics, Phramongkutklao Hospital, Bangkok, Thailand
| | - Piradee Suwanpakdee
- Neurology Division, Department of Pediatrics, Phramongkutklao Hospital, Bangkok, Thailand
| | - Nongnat Tongkrajang
- Siriraj Integrative Center for Neglected Parasitic Diseases, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Patsharaporn T. Sarasombath
- Siriraj Integrative Center for Neglected Parasitic Diseases, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Patsharaporn T. Sarasombath, ;
| | - Stephen Kwok-Wing Tsui
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- Hong Kong Bioinformatics Centre, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- *Correspondence: Stephen Kwok-Wing Tsui,
| |
Collapse
|
35
|
Dandekar T, Kunz M. Extremely Fast Sequence Comparisons Identify All the Molecules That Are Present in the Cell. Bioinformatics 2023. [DOI: 10.1007/978-3-662-65036-3_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
|
36
|
Delehelle F, Roest Crollius H. FUSTA: leveraging FUSE for manipulation of multiFASTA files at scale. BIOINFORMATICS ADVANCES 2022; 2:vbac091. [PMID: 36713287 PMCID: PMC9875552 DOI: 10.1093/bioadv/vbac091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 11/13/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022]
Abstract
Motivation FASTA files are the de facto standard for sharing, manipulating and storing biological sequences, while concatenated in multiFASTA they tend to be unwieldy for two main reasons: (i) they can become big enough that their manipulation with standard text-editing tools is unpractical, either due to slowness or memory consumption; (ii) by mixing metadata (headers) and data (sequences), bulk operations using standard text streaming tools (such as sed or awk) are impossible without including a parsing step, which may be error-prone and introduce friction in the development process. Results Here, we present FUSTA (FUse for faSTA), a software utility which makes use of the FUSE technology to expose a multiFASTA file as a hierarchy of virtual files, letting users operate directly on the sequences as independent virtual files through classical file manipulation methods. Availability and implementation FUSTA is freely available under the CeCILL-C (LGPLv3-compatible) license at https://github.com/delehef/fusta. Supplementary information Supplementary data are available at Bioinformatics Advances online.
Collapse
Affiliation(s)
| | - Hugues Roest Crollius
- Département de biologie, Institut de Biologie de l’ENS (IBENS), École normale supérieure, CNRS, INSERM, Paris 75005, France
| |
Collapse
|
37
|
Paetzold C, Barke BH, Hörandl E. Evolution of Transcriptomes in Early-Generation Hybrids of the Apomictic Ranunculus auricomus Complex ( Ranunculaceae). Int J Mol Sci 2022; 23:ijms232213881. [PMID: 36430360 PMCID: PMC9697309 DOI: 10.3390/ijms232213881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/03/2022] [Accepted: 11/09/2022] [Indexed: 11/12/2022] Open
Abstract
Hybridisation in plants may cause a shift from sexual to asexual seed formation (apomixis). Indeed, natural apomictic plants are usually hybrids, but it is still unclear how hybridisation could trigger the shift to apomixis. The genome evolution of older apomictic lineages is influenced by diverse processes such as polyploidy, mutation accumulation, and allelic sequence divergence. To disentangle the effects of hybridisation from these other factors, we analysed the transcriptomes of flowering buds from artificially produced, diploid F2 hybrids of the Ranunculus auricomus complex. The hybrids exhibited unreduced embryo sac formation (apospory) as one important component of apomixis, whereas their parental species were sexual. We revealed 2915 annotated single-copy genes that were mostly under purifying selection according to dN/dS ratios. However, pairwise comparisons revealed, after rigorous filtering, 79 genes under diversifying selection between hybrids and parents, whereby gene annotation assigned ten of them to reproductive processes. Four genes belong to the meiosis-sporogenesis phase (ASY1, APC1, MSP1, and XRI1) and represent, according to literature records, candidate genes for apospory. We conclude that hybridisation could combine novel (or existing) mutations in key developmental genes in certain hybrid lineages, and establish (together with altered gene expression profiles, as observed in other studies) a heritable regulatory mechanism for aposporous development.
Collapse
Affiliation(s)
- Claudia Paetzold
- Department of Botany and Molecular Evolution, Senckenberg Research Institute, 60325 Frankfurt am Main, Germany
| | - Birthe H. Barke
- Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), University of Goettingen, 37073 Goettingen, Germany
| | - Elvira Hörandl
- Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), University of Goettingen, 37073 Goettingen, Germany
- Correspondence:
| |
Collapse
|
38
|
Leigh RJ, McKenna C, McWade R, Lynch B, Walsh F. Comparative genomics and pangenomics of vancomycin-resistant and susceptible Enterococcus faecium from Irish hospitals. J Med Microbiol 2022; 71. [DOI: 10.1099/jmm.0.001590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Introduction.
Enterococcus faecium
has emerged as an important nosocomial pathogen, which is increasingly difficult to treat due to the genetic acquisition of vancomycin resistance. Ireland has a recalcitrant vancomycin-resistant bloodstream infection rate compared to other developed countries.
Hypothesis/Gap statement. Vancomycin resistance rates persist amongst
E. faecium
isolates from Irish hospitals. The evolutionary genomics governing these trends have not been fully elucidated.
Methodology. A set of 28 vancomycin-resistant isolates was sequenced to construct a dataset alongside 61 other publicly available Irish genomes. This dataset was extensively analysed using in silico methodologies (comparative genomics, pangenomics, phylogenetics, genotypics and comparative functional analyses) to uncover distinct evolutionary, coevolutionary and clinically relevant population trends.
Results. These results suggest that a stable (in terms of genome size, GC% and number of genes), yet genetically diverse population (in terms of gene content) of
E. faecium
persists in Ireland with acquired resistance arising via plasmid acquisition (vanA) or, to a lesser extent, chromosomal recombination (vanB). Population analysis revealed five clusters with one cluster partitioned into four clades which transcend isolation dates. Pangenomic and recombination analyses revealed an open (whole genome and chromosomal specific) pangenome illustrating a rampant evolutionary pattern. Comparative resistomics and virulomics uncovered distinct chromosomal and mobilomal propensity for multidrug resistance, widespread chromosomal point-mutation-mediated resistance and chromosomally harboured arsenals of virulence factors. Interestingly, a potential difference in biofilm formation strategies was highlighted by coevolutionary analysis, suggesting differential biofilm genotypes between vanA and vanB isolates.
Conclusions. These results highlight the evolutionary history of Irish
E. faecium
isolates and may provide insight into underlying infection dynamics in a clinical setting. Due to the apparent ease of vancomycin resistance acquisition over time, susceptible
E. faecium
should be concurrently reduced in Irish hospitals to mitigate potential resistant infections.
Collapse
Affiliation(s)
- Robert J. Leigh
- Department of Biology, Maynooth University, Mariavilla, Maynooth, Co. Kildare, Ireland
| | - Chloe McKenna
- Department of Biology, Maynooth University, Mariavilla, Maynooth, Co. Kildare, Ireland
| | - Robert McWade
- Department of Microbiology, Mater Misericordiae University Hospital, Eccles St., Dublin 7, D07 R2WY, Ireland
| | - Breda Lynch
- Department of Microbiology, Mater Misericordiae University Hospital, Eccles St., Dublin 7, D07 R2WY, Ireland
| | - Fiona Walsh
- Department of Biology, Maynooth University, Mariavilla, Maynooth, Co. Kildare, Ireland
| |
Collapse
|
39
|
Yuan J, Liu Y, Wang Z, Lei T, Hu Y, Zhang L, Yuan M, Wang J, Li Y. Genome-Wide Analysis of the NAC Family Associated with Two Paleohexaploidization Events in the Tomato. Life (Basel) 2022; 12:1236. [PMID: 36013415 PMCID: PMC9410287 DOI: 10.3390/life12081236] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/06/2022] [Accepted: 08/10/2022] [Indexed: 11/17/2022] Open
Abstract
NAC transcription factors play an important regulatory role in tomato fruit ripening. We chose a novel perspective to explore the traces left by two paleopolyploidizations in the NAC family using a bioinformatics approach. We found that 85 (S. lycopersicum) and 88 (S. pennellii) members of the NAC family were present in two tomatoes, and most of them were amplified from two paleohexaploidizations. We differentiated NAC family members from the different paleohexaploidizations and found that the SWGT-derived NAC genes had more rearrangement events, so it was different from the DWGT-derived NAC genes in terms of physicochemical properties, phylogeny, and gene location. The results of selection pressure show that DWGT-derived NAC genes tended to be positively selected in S. lycopersicum and negatively selected in S. pennellii. A comprehensive analysis of paleopolyploidization and expression reveals that DWGT-derived NAC genes tend to promote fruit ripening, and are expressed at the early and middle stages, whereas SWGT-derived NAC genes tend to terminate fruit growth and are expressed at the late stages of fruit ripening. This study obtained NAC genes from different sources that can be used as materials for tomato fruit development, and the method in the study can be extended to the study of other plants.
Collapse
Affiliation(s)
- Jiale Yuan
- Center for Genomics and Computational Biology, School of Life Sciences, North China University of Science and Technology, Tangshan 063000, China
| | - Ying Liu
- Center for Genomics and Computational Biology, School of Life Sciences, North China University of Science and Technology, Tangshan 063000, China
| | - Zhenyi Wang
- Center for Genomics and Computational Biology, School of Life Sciences, North China University of Science and Technology, Tangshan 063000, China
| | - Tianyu Lei
- Center for Genomics and Computational Biology, School of Life Sciences, North China University of Science and Technology, Tangshan 063000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanfang Hu
- Center for Genomics and Computational Biology, School of Life Sciences, North China University of Science and Technology, Tangshan 063000, China
| | - Lan Zhang
- Center for Genomics and Computational Biology, School of Life Sciences, North China University of Science and Technology, Tangshan 063000, China
| | - Min Yuan
- Center for Genomics and Computational Biology, School of Life Sciences, North China University of Science and Technology, Tangshan 063000, China
| | - Jinpeng Wang
- Center for Genomics and Computational Biology, School of Life Sciences, North China University of Science and Technology, Tangshan 063000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuxian Li
- Center for Genomics and Computational Biology, School of Life Sciences, North China University of Science and Technology, Tangshan 063000, China
| |
Collapse
|
40
|
Moco V, Cazenave D, Garnier M, Pot M, Marcelino I, Talarmin A, Guyomard-Rabenirina S, Breurec S, Ferdinand S, Dereeper A, Reynaud Y, Couvin D. getSequenceInfo: a suite of tools allowing to get genome sequence information from public repositories. BMC Bioinformatics 2022; 23:268. [PMID: 35804320 PMCID: PMC9264741 DOI: 10.1186/s12859-022-04809-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 06/23/2022] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Biological sequences are increasing rapidly and exponentially worldwide. Nucleotide sequence databases play an important role in providing meaningful genomic information on a variety of biological organisms. RESULTS The getSequenceInfo software tool allows to access sequence information from various public repositories (GenBank, RefSeq, and the European Nucleotide Archive), and is compatible with different operating systems (Linux, MacOS, and Microsoft Windows) in a programmatic way (command line) or as a graphical user interface. getSequenceInfo or gSeqI v1.0 should help users to get some information on queried sequences that could be useful for specific studies (e.g. the country of origin/isolation or the release date of queried sequences). Queries can be made to retrieve sequence data based on a given kingdom and species, or from a given date. This program allows the separation between chromosomes and plasmids (or other genetic elements/components) by arranging each component in a given folder. Some basic statistics are also performed by the program (such as the calculation of GC content for queried assemblies). An empirically designed nucleotide ratio is calculated using nucleotide information in order to tentatively provide a "NucleScore" for studied genome assemblies. Besides the main gSeqI tool, other additional tools have been developed to perform various tasks related to sequence analysis. CONCLUSION The aim of this study is to democratize the use of public repositories in programmatic ways, and to facilitate sequence data analysis in a pedagogical perspective. Output results are available in FASTA, FASTQ, Excel/TSV or HTML formats. The program is freely available at: https://github.com/karubiotools/getSequenceInfo . getSequenceInfo and supplementary tools are partly available through the recently released Galaxy KaruBioNet platform ( http://calamar.univ-ag.fr/c3i/galaxy_karubionet.html ).
Collapse
Affiliation(s)
- Vincent Moco
- Unité Transmission, Réservoir et Diversité des Pathogènes, Institut Pasteur de Guadeloupe, Les Abymes, Guadeloupe, France
| | - Damien Cazenave
- Unité Transmission, Réservoir et Diversité des Pathogènes, Institut Pasteur de Guadeloupe, Les Abymes, Guadeloupe, France
| | - Maëlle Garnier
- Unité Transmission, Réservoir et Diversité des Pathogènes, Institut Pasteur de Guadeloupe, Les Abymes, Guadeloupe, France
| | - Matthieu Pot
- Unité Transmission, Réservoir et Diversité des Pathogènes, Institut Pasteur de Guadeloupe, Les Abymes, Guadeloupe, France
| | - Isabel Marcelino
- Unité Transmission, Réservoir et Diversité des Pathogènes, Institut Pasteur de Guadeloupe, Les Abymes, Guadeloupe, France
| | - Antoine Talarmin
- Unité Transmission, Réservoir et Diversité des Pathogènes, Institut Pasteur de Guadeloupe, Les Abymes, Guadeloupe, France
| | - Stéphanie Guyomard-Rabenirina
- Unité Transmission, Réservoir et Diversité des Pathogènes, Institut Pasteur de Guadeloupe, Les Abymes, Guadeloupe, France
| | - Sébastien Breurec
- Unité Transmission, Réservoir et Diversité des Pathogènes, Institut Pasteur de Guadeloupe, Les Abymes, Guadeloupe, France
- Faculté de Médecine Hyacinthe Bastaraud, Université des Antilles, Pointe-à-Pitre, France
- Centre d'Investigation Clinique Antilles Guyane, Inserm CIC 1424, Pointe-à-Pitre, France
| | - Séverine Ferdinand
- Unité Transmission, Réservoir et Diversité des Pathogènes, Institut Pasteur de Guadeloupe, Les Abymes, Guadeloupe, France
| | - Alexis Dereeper
- Unité Transmission, Réservoir et Diversité des Pathogènes, Institut Pasteur de Guadeloupe, Les Abymes, Guadeloupe, France
| | - Yann Reynaud
- Unité Transmission, Réservoir et Diversité des Pathogènes, Institut Pasteur de Guadeloupe, Les Abymes, Guadeloupe, France
| | - David Couvin
- Unité Transmission, Réservoir et Diversité des Pathogènes, Institut Pasteur de Guadeloupe, Les Abymes, Guadeloupe, France.
| |
Collapse
|
41
|
Kopf A, Bunk B, Coldewey SM, Gunzer F, Riedel T, Schröttner P. Comparative Genomic Analysis of the Human Pathogen Wohlfahrtiimonas Chitiniclastica Provides Insight Into the Identification of Antimicrobial Resistance Genotypes and Potential Virulence Traits. Front Cell Infect Microbiol 2022; 12:912427. [PMID: 35873140 PMCID: PMC9301364 DOI: 10.3389/fcimb.2022.912427] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/02/2022] [Indexed: 11/20/2022] Open
Abstract
Recent studies suggest that Wohlfahrtiimonas chitiniclastica may be the cause of several diseases in humans including sepsis and bacteremia making the bacterium as a previously underappreciated human pathogen. However, very little is known about the pathogenicity and genetic potential of W. chitiniclastica; therefore, it is necessary to conduct systematic studies to gain a deeper understanding of its virulence characteristics and treatment options. In this study, the entire genetic repertoire of all publicly available W. chitiniclastica genomes was examined including in silico characterization of bacteriophage content, antibiotic resistome, and putative virulence profile. The pan-genome of W. chitiniclastica comprises 3819 genes with 1622 core genes (43%) indicating a putative metabolic conserved species. Furthermore, in silico analysis indicated presumed resistome expansion as defined by the presence of genome-encoded transposons and bacteriophages. While macrolide resistance genes macA and macB are located within the core genome, additional antimicrobial resistance genotypes for tetracycline (tetH, tetB, and tetD), aminoglycosides (ant(2'')-Ia, aac(6')-Ia,aph(3'')-Ib, aph(3')-Ia, and aph(6)-Id)), sulfonamide (sul2), streptomycin (strA), chloramphenicol (cat3), and beta-lactamase (blaVEB) are distributed among the accessory genome. Notably, our data indicate that the type strain DSM 18708T does not encode any additional clinically relevant antibiotic resistance genes, whereas drug resistance is increasing within the W. chitiniclastica clade. This trend should be monitored with caution. To the best of our knowledge, this is the first comprehensive genome analysis of this species, providing new insights into the genome of this opportunistic human pathogen.
Collapse
Affiliation(s)
- Anna Kopf
- Medical Microbiology and Virology, University Hospital Carl Gustav Carus, Dresden, Germany
- Clinic for Hematology and Oncology, Carl-Thiem-Klinikum, Cottbus, Germany
| | - Boyke Bunk
- German Collection of Microorganisms and Cell Cultures GmbH, Leibniz Institute DSMZ, Braunschweig, Germany
| | - Sina M. Coldewey
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany
- Septomics Research Center, Jena University Hospital, Jena, Germany
| | - Florian Gunzer
- Department of Hospital Infection Control, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Thomas Riedel
- German Collection of Microorganisms and Cell Cultures GmbH, Leibniz Institute DSMZ, Braunschweig, Germany
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Braunschweig, Germany
| | - Percy Schröttner
- Medical Microbiology and Virology, University Hospital Carl Gustav Carus, Dresden, Germany
| |
Collapse
|
42
|
Truong Nguyen PT, Culverwell CL, Suvanto MT, Korhonen EM, Uusitalo R, Vapalahti O, Smura T, Huhtamo E. Characterisation of the RNA Virome of Nine Ochlerotatus Species in Finland. Viruses 2022; 14:1489. [PMID: 35891469 PMCID: PMC9324324 DOI: 10.3390/v14071489] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/19/2022] [Accepted: 06/19/2022] [Indexed: 02/01/2023] Open
Abstract
RNA viromes of nine commonly encountered Ochlerotatus mosquito species collected around Finland in 2015 and 2017 were studied using next-generation sequencing. Mosquito homogenates were sequenced from 91 pools comprising 16-60 morphologically identified adult females of Oc. cantans, Oc. caspius, Oc. communis, Oc. diantaeus, Oc. excrucians, Oc. hexodontus, Oc. intrudens, Oc. pullatus and Oc. punctor/punctodes. In total 514 viral Reverse dependent RNA polymerase (RdRp) sequences of 159 virus species were recovered, belonging to 25 families or equivalent rank, as follows: Aliusviridae, Aspiviridae, Botybirnavirus, Chrysoviridae, Chuviridae, Endornaviridae, Flaviviridae, Iflaviridae, Negevirus, Partitiviridae, Permutotetraviridae, Phasmaviridae, Phenuiviridae, Picornaviridae, Qinviridae, Quenyavirus, Rhabdoviridae, Sedoreoviridae, Solemoviridae, Spinareoviridae, Togaviridae, Totiviridae, Virgaviridae, Xinmoviridae and Yueviridae. Of these, 147 are tentatively novel viruses. One sequence of Sindbis virus, which causes Pogosta disease in humans, was detected from Oc. communis from Pohjois-Karjala. This study greatly increases the number of mosquito-associated viruses known from Finland and presents the northern-most mosquito-associated viruses in Europe to date.
Collapse
Affiliation(s)
- Phuoc T. Truong Nguyen
- Department of Virology, Medicum, University of Helsinki, Haartmaninkatu 3, FI-00290 Helsinki, Finland; (C.L.C.); (M.T.S.); (E.M.K.); (R.U.); (O.V.); (T.S.); (E.H.)
| | - C. Lorna Culverwell
- Department of Virology, Medicum, University of Helsinki, Haartmaninkatu 3, FI-00290 Helsinki, Finland; (C.L.C.); (M.T.S.); (E.M.K.); (R.U.); (O.V.); (T.S.); (E.H.)
- The Natural History Museum, Cromwell Road, South Kensington, London SW5 7BD, UK
| | - Maija T. Suvanto
- Department of Virology, Medicum, University of Helsinki, Haartmaninkatu 3, FI-00290 Helsinki, Finland; (C.L.C.); (M.T.S.); (E.M.K.); (R.U.); (O.V.); (T.S.); (E.H.)
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Agnes Sjöbergin Katu 2, P.O. Box 66, FI-00014 Helsinki, Finland
| | - Essi M. Korhonen
- Department of Virology, Medicum, University of Helsinki, Haartmaninkatu 3, FI-00290 Helsinki, Finland; (C.L.C.); (M.T.S.); (E.M.K.); (R.U.); (O.V.); (T.S.); (E.H.)
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Agnes Sjöbergin Katu 2, P.O. Box 66, FI-00014 Helsinki, Finland
| | - Ruut Uusitalo
- Department of Virology, Medicum, University of Helsinki, Haartmaninkatu 3, FI-00290 Helsinki, Finland; (C.L.C.); (M.T.S.); (E.M.K.); (R.U.); (O.V.); (T.S.); (E.H.)
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Agnes Sjöbergin Katu 2, P.O. Box 66, FI-00014 Helsinki, Finland
- Department of Geosciences and Geography, Faculty of Science, University of Helsinki, Gustaf Hällströmin Katu 2, P.O. Box 64, FI-00014 Helsinki, Finland
| | - Olli Vapalahti
- Department of Virology, Medicum, University of Helsinki, Haartmaninkatu 3, FI-00290 Helsinki, Finland; (C.L.C.); (M.T.S.); (E.M.K.); (R.U.); (O.V.); (T.S.); (E.H.)
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Agnes Sjöbergin Katu 2, P.O. Box 66, FI-00014 Helsinki, Finland
- Virology and Immunology, Diagnostic Center, HUSLAB, Helsinki University Hospital, FI-00029 Helsinki, Finland
| | - Teemu Smura
- Department of Virology, Medicum, University of Helsinki, Haartmaninkatu 3, FI-00290 Helsinki, Finland; (C.L.C.); (M.T.S.); (E.M.K.); (R.U.); (O.V.); (T.S.); (E.H.)
| | - Eili Huhtamo
- Department of Virology, Medicum, University of Helsinki, Haartmaninkatu 3, FI-00290 Helsinki, Finland; (C.L.C.); (M.T.S.); (E.M.K.); (R.U.); (O.V.); (T.S.); (E.H.)
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Agnes Sjöbergin Katu 2, P.O. Box 66, FI-00014 Helsinki, Finland
| |
Collapse
|
43
|
Jeong H, Lee S, Ko J, Ko M, Seo HW. Identification of conserved regions from 230,163 SARS-CoV-2 genomes and their use in diagnostic PCR primer design. Genes Genomics 2022; 44:899-912. [PMID: 35653026 PMCID: PMC9160177 DOI: 10.1007/s13258-022-01264-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/03/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND As the rapidly evolving characteristic of SARS-CoV-2 could result in false negative diagnosis, the use of as much sequence data as possible is key to the identification of conserved viral sequences. However, multiple alignment of massive genome sequences is computationally intensive. OBJECTIVE To extract conserved sequences from SARS-CoV-2 genomes for the design of diagnostic PCR primers using a bioinformatics approach that can handle massive genomic sequences efficiently. METHODS A total of 230,163 full-length viral genomes were retrieved from the NCBI SARS-CoV-2 Resources and GISAID EpiCoV database. This number was reduced to 14.11% following removal of 5'-/3'-untranslated regions and sequence dereplication. Fast, reference-based, multiple sequence alignments identified conserved sequences and specific primer sets were designed against these regions using a conventional tool. Primer sets chosen among the candidates were evaluated by in silico PCR and RT-qPCR. RESULTS Out of 17 conserved sequences (totaling 4.3 kb), two primer sets targeting the nsp2 and ORF3a genes were picked that exhibited > 99.9% in silico amplification coverage against the original dataset (230,163 genomes) when a 5% mismatch between the primers and target was allowed. In addition, the primer sets successfully detected nine SARS-CoV-2 variant RNA samples (Alpha, Beta, Gamma, Delta, Epsilon, Zeta, Eta, Iota, and Kappa) in experimental RT-qPCR validations. CONCLUSION In addition to the RdRp, E, N, and S genes that are targeted commonly, our approach can be used to identify novel primer targets in SARS-CoV-2 and should be a priority strategy in the event of novel SARS-CoV-2 variants or other pandemic outbreaks.
Collapse
Affiliation(s)
- Haeyoung Jeong
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea.
| | - Siseok Lee
- NanoHelix Co., Ltd. 43-15, Daejeon, 34014, Republic of Korea
| | - Junsang Ko
- NanoHelix Co., Ltd. 43-15, Daejeon, 34014, Republic of Korea
| | - Minsu Ko
- NanoHelix Co., Ltd. 43-15, Daejeon, 34014, Republic of Korea
| | - Hwi Won Seo
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea.
| |
Collapse
|
44
|
Kwolek K, Kędzierska P, Hankiewicz M, Mirouze M, Panaud O, Grzebelus D, Macko‐Podgórni A. Diverse and mobile: eccDNA-based identification of carrot low-copy-number LTR retrotransposons active in callus cultures. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:1811-1828. [PMID: 35426957 PMCID: PMC9324142 DOI: 10.1111/tpj.15773] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/15/2022] [Accepted: 03/29/2022] [Indexed: 05/28/2023]
Abstract
Long terminal repeat retrotransposons (LTR-RTs) are mobilized via an RNA intermediate using a 'copy and paste' mechanism, and account for the majority of repetitive DNA in plant genomes. As a side effect of mobilization, the formation of LTR-RT-derived extrachromosomal circular DNAs (eccDNAs) occurs. Thus, high-throughput sequencing of eccDNA can be used to identify active LTR-RTs in plant genomes. Despite the release of a reference genome assembly, carrot LTR-RTs have not yet been thoroughly characterized. LTR-RTs are abundant and diverse in the carrot genome. We identified 5976 carrot LTR-RTs, 2053 and 1660 of which were attributed to Copia and Gypsy superfamilies, respectively. They were further classified into lineages, families and subfamilies. More diverse LTR-RT lineages, i.e. lineages comprising many low-copy-number subfamilies, were more frequently associated with genic regions. Certain LTR-RT lineages have been recently active in Daucus carota. In particular, low-copy-number LTR-RT subfamilies, e.g. those belonging to the DcAle lineage, have significantly contributed to carrot genome diversity as a result of continuing activity. We utilized eccDNA sequencing to identify and characterize two DcAle subfamilies, Alex1 and Alex3, active in carrot callus. We documented 14 and 32 de novo insertions of Alex1 and Alex3, respectively, which were positioned in non-repetitive regions.
Collapse
Affiliation(s)
- Kornelia Kwolek
- Department of Plant Biology and Biotechnology, Faculty of Biotechnology and HorticultureUniversity of Agriculture in Krakow31 120KrakowPoland
| | - Patrycja Kędzierska
- Department of Plant Biology and Biotechnology, Faculty of Biotechnology and HorticultureUniversity of Agriculture in Krakow31 120KrakowPoland
| | - Magdalena Hankiewicz
- Department of Plant Biology and Biotechnology, Faculty of Biotechnology and HorticultureUniversity of Agriculture in Krakow31 120KrakowPoland
| | - Marie Mirouze
- Laboratoire Génome et Développement des Plantes, UMR 5096 CNRS/UPVDUniversité de PerpignanVia Domitia, 52 Avenue Paul Alduy66 860Perpignan CedexFrance
- IRD, EMR IRD‐CNRS‐UPVD ‘MANGO’Université de PerpignanPerpignanFrance
| | - Olivier Panaud
- Laboratoire Génome et Développement des Plantes, UMR 5096 CNRS/UPVDUniversité de PerpignanVia Domitia, 52 Avenue Paul Alduy66 860Perpignan CedexFrance
| | - Dariusz Grzebelus
- Department of Plant Biology and Biotechnology, Faculty of Biotechnology and HorticultureUniversity of Agriculture in Krakow31 120KrakowPoland
| | - Alicja Macko‐Podgórni
- Department of Plant Biology and Biotechnology, Faculty of Biotechnology and HorticultureUniversity of Agriculture in Krakow31 120KrakowPoland
| |
Collapse
|
45
|
Wu XT, Xiong ZP, Chen KX, Zhao GR, Feng KR, Li XH, Li XR, Tian Z, Huo FL, Wang MX, Song W. Genome-Wide Identification and Transcriptional Expression Profiles of PP2C in the Barley (Hordeum vulgare L.) Pan-Genome. Genes (Basel) 2022; 13:genes13050834. [PMID: 35627219 PMCID: PMC9140614 DOI: 10.3390/genes13050834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 04/29/2022] [Accepted: 05/03/2022] [Indexed: 11/16/2022] Open
Abstract
The gene family protein phosphatase 2C (PP2C) is related to developmental processes and stress responses in plants. Barley (Hordeum vulgare L.) is a popular cereal crop that is primarily utilized for human consumption and nutrition. However, there is little knowledge regarding the PP2C gene family in barley. In this study, a total of 1635 PP2C genes were identified in 20 barley pan-genome accessions. Then, chromosome localization, physical and chemical feature predictions and subcellular localization were systematically analyzed. One wild barley accession (B1K-04-12) and one cultivated barley (Morex) were chosen as representatives to further analyze and compare the differences in HvPP2Cs between wild and cultivated barley. Phylogenetic analysis showed that these HvPP2Cs were divided into 12 subgroups. Additionally, gene structure, conserved domain and motif, gene duplication event detection, interaction networks and gene expression profiles were analyzed in accessions Morex and B1K-04-12. In addition, qRT-PCR experiments in Morex indicated that seven HvMorexPP2C genes were involved in the response to aluminum and low pH stresses. Finally, a series of positively selected homologous genes were identified between wild accession B1K-04-12 and another 14 cultivated materials, indicating that these genes are important during barley domestication. This work provides a global overview of the putative physiological and biological functions of PP2C genes in barley. We provide a broad framework for understanding the domestication- and evolutionary-induced changes in PP2C genes between wild and cultivated barley.
Collapse
Affiliation(s)
- Xiao-Tong Wu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Xianyang 712100, China; (X.-T.W.); (Z.-P.X.); (K.-X.C.); (G.-R.Z.); (K.-R.F.); lxh (X.-H.L.); (X.-R.L.); (Z.T.); (F.-L.H.)
| | - Zhu-Pei Xiong
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Xianyang 712100, China; (X.-T.W.); (Z.-P.X.); (K.-X.C.); (G.-R.Z.); (K.-R.F.); lxh (X.-H.L.); (X.-R.L.); (Z.T.); (F.-L.H.)
| | - Kun-Xiang Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Xianyang 712100, China; (X.-T.W.); (Z.-P.X.); (K.-X.C.); (G.-R.Z.); (K.-R.F.); lxh (X.-H.L.); (X.-R.L.); (Z.T.); (F.-L.H.)
| | - Guo-Rong Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Xianyang 712100, China; (X.-T.W.); (Z.-P.X.); (K.-X.C.); (G.-R.Z.); (K.-R.F.); lxh (X.-H.L.); (X.-R.L.); (Z.T.); (F.-L.H.)
| | - Ke-Ru Feng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Xianyang 712100, China; (X.-T.W.); (Z.-P.X.); (K.-X.C.); (G.-R.Z.); (K.-R.F.); lxh (X.-H.L.); (X.-R.L.); (Z.T.); (F.-L.H.)
| | - Xiu-Hua Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Xianyang 712100, China; (X.-T.W.); (Z.-P.X.); (K.-X.C.); (G.-R.Z.); (K.-R.F.); lxh (X.-H.L.); (X.-R.L.); (Z.T.); (F.-L.H.)
| | - Xi-Ran Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Xianyang 712100, China; (X.-T.W.); (Z.-P.X.); (K.-X.C.); (G.-R.Z.); (K.-R.F.); lxh (X.-H.L.); (X.-R.L.); (Z.T.); (F.-L.H.)
| | - Zhao Tian
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Xianyang 712100, China; (X.-T.W.); (Z.-P.X.); (K.-X.C.); (G.-R.Z.); (K.-R.F.); lxh (X.-H.L.); (X.-R.L.); (Z.T.); (F.-L.H.)
| | - Fu-Lin Huo
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Xianyang 712100, China; (X.-T.W.); (Z.-P.X.); (K.-X.C.); (G.-R.Z.); (K.-R.F.); lxh (X.-H.L.); (X.-R.L.); (Z.T.); (F.-L.H.)
| | - Meng-Xing Wang
- College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China
- Correspondence: (M.-X.W.); (W.S.)
| | - Weining Song
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Xianyang 712100, China; (X.-T.W.); (Z.-P.X.); (K.-X.C.); (G.-R.Z.); (K.-R.F.); lxh (X.-H.L.); (X.-R.L.); (Z.T.); (F.-L.H.)
- Correspondence: (M.-X.W.); (W.S.)
| |
Collapse
|
46
|
Garrison E, Kronenberg ZN, Dawson ET, Pedersen BS, Prins P. A spectrum of free software tools for processing the VCF variant call format: vcflib, bio-vcf, cyvcf2, hts-nim and slivar. PLoS Comput Biol 2022; 18:e1009123. [PMID: 35639788 PMCID: PMC9286226 DOI: 10.1371/journal.pcbi.1009123] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 07/15/2022] [Accepted: 04/11/2022] [Indexed: 11/30/2022] Open
Abstract
Since its introduction in 2011 the variant call format (VCF) has been widely adopted for processing DNA and RNA variants in practically all population studies—as well as in somatic and germline mutation studies. The VCF format can represent single nucleotide variants, multi-nucleotide variants, insertions and deletions, and simple structural variants called and anchored against a reference genome. Here we present a spectrum of over 125 useful, complimentary free and open source software tools and libraries, we wrote and made available through the multiple vcflib, bio-vcf, cyvcf2, hts-nim and slivar projects. These tools are applied for comparison, filtering, normalisation, smoothing and annotation of VCF, as well as output of statistics, visualisation, and transformations of files variants. These tools run everyday in critical biomedical pipelines and countless shell scripts. Our tools are part of the wider bioinformatics ecosystem and we highlight best practices. We shortly discuss the design of VCF, lessons learnt, and how we can address more complex variation through pangenome graph formats, variation that can not easily be represented by the VCF format. Most bioinformatics workflows deal with DNA/RNA variations that are typically represented in the variant call format (VCF)—a file format that describes mutations (SNP and MNP), insertions and deletions (INDEL) against a reference genome. Here we present a wide range of free and open source software tools that are used in biomedical sequencing workflows around the world today.
Collapse
Affiliation(s)
- Erik Garrison
- Department Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Zev N. Kronenberg
- Pacific Biosciences, San Diego, California, United States of America
| | - Eric T. Dawson
- NVIDIA Corporation, Santa Clara, California, United States of America
| | - Brent S. Pedersen
- Center for Molecular Medicine, University Medical Center, Utrecht, The Netherlands
| | - Pjotr Prins
- Department Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
47
|
Garrison E, Kronenberg ZN, Dawson ET, Pedersen BS, Prins P. A spectrum of free software tools for processing the VCF variant call format: vcflib, bio-vcf, cyvcf2, hts-nim and slivar. PLoS Comput Biol 2022. [PMID: 35639788 DOI: 10.1101/2021.05.21.445151] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023] Open
Abstract
Since its introduction in 2011 the variant call format (VCF) has been widely adopted for processing DNA and RNA variants in practically all population studies-as well as in somatic and germline mutation studies. The VCF format can represent single nucleotide variants, multi-nucleotide variants, insertions and deletions, and simple structural variants called and anchored against a reference genome. Here we present a spectrum of over 125 useful, complimentary free and open source software tools and libraries, we wrote and made available through the multiple vcflib, bio-vcf, cyvcf2, hts-nim and slivar projects. These tools are applied for comparison, filtering, normalisation, smoothing and annotation of VCF, as well as output of statistics, visualisation, and transformations of files variants. These tools run everyday in critical biomedical pipelines and countless shell scripts. Our tools are part of the wider bioinformatics ecosystem and we highlight best practices. We shortly discuss the design of VCF, lessons learnt, and how we can address more complex variation through pangenome graph formats, variation that can not easily be represented by the VCF format.
Collapse
Affiliation(s)
- Erik Garrison
- Department Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Zev N Kronenberg
- Pacific Biosciences, San Diego, California, United States of America
| | - Eric T Dawson
- NVIDIA Corporation, Santa Clara, California, United States of America
| | - Brent S Pedersen
- Center for Molecular Medicine, University Medical Center, Utrecht, The Netherlands
| | - Pjotr Prins
- Department Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| |
Collapse
|
48
|
Nie YM, Han FX, Ma JJ, Chen X, Song YT, Niu SH, Wu HX. Genome-wide TCP transcription factors analysis provides insight into their new functions in seasonal and diurnal growth rhythm in Pinus tabuliformis. BMC PLANT BIOLOGY 2022; 22:167. [PMID: 35366809 PMCID: PMC8976390 DOI: 10.1186/s12870-022-03554-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 03/23/2022] [Indexed: 05/12/2023]
Abstract
BACKGROUND Pinus tabuliformis adapts to cold climate with dry winter in northern China, serving as important commercial tree species. The TEOSINTE BRANCHED 1, CYCLOIDEA, and PROLIFERATING CELL FACTOR family(TCP)transcription factors were found to play a role in the circadian clock system in Arabidopsis. However, the role of TCP transcription factors in P. tabuliformis remains little understood. RESULTS In the present study, 43 TCP genes were identified from P. tabuliformis genome database. Based on the phylogeny tree and sequence similarity, the 43 TCP genes were classified into four groups. The motif results showed that different subfamilies indeed contained different motifs. Clade II genes contain motif 1, clade I genes contain motif 1, 8, 10 and clade III and IV contain more motifs, which is consistent with our grouping results. The structural analysis of PtTCP genes showed that most PtTCPs lacked introns. The distribution of clade I and clade II on the chromosome is relatively scattered, while clade III and clade IV is relatively concentrated. Co-expression network indicated that PtTCP2, PtTCP12, PtTCP36, PtTCP37, PtTCP38, PtTCP41 and PtTCP43 were co-expressed with clock genes in annual cycle and their annual cycle expression profiles both showed obvious seasonal oscillations. PtTCP2, PtTCP12, PtTCP37, PtTCP38, PtTCP40, PtTCP41, PtTCP42 and PtTCP43 were co-expressed with clock genes in diurnal cycle. Only the expression of PtTCP42 showed diurnal oscillation. CONCLUSIONS The TCP gene family, especially clade II, may play an important role in the regulation of the season and circadian rhythm of P. tabuliformis. In addition, the low temperature in winter may affect the diurnal oscillations.
Collapse
Affiliation(s)
- Yu-meng Nie
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, 100083 Beijing, PR China
| | - Fang-xu Han
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, 100083 Beijing, PR China
| | - Jing-jing Ma
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, 100083 Beijing, PR China
| | - Xi Chen
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, 100083 Beijing, PR China
| | - Yi-tong Song
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, 100083 Beijing, PR China
| | - Shi-Hui Niu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, 100083 Beijing, PR China
| | - Harry X. Wu
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Linnaeus väg 6, SE-901 83 Umeå, Sweden
| |
Collapse
|
49
|
Fenstemaker S, Sim L, Cooperstone J, Francis D. Solanum galapagense-derived purple tomato fruit color is conferred by novel alleles of the anthocyanin fruit and atroviolacium loci. PLANT DIRECT 2022; 6:e394. [PMID: 35449754 PMCID: PMC9014491 DOI: 10.1002/pld3.394] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 03/07/2022] [Accepted: 03/16/2022] [Indexed: 06/14/2023]
Abstract
One hypothesis for the origin of endemic species of tomato on the Galápagos islands postulates a hybridization of Solanum pimpinellifolium and Solanum habrochaites. Solanum galapagense accession LA1141 has purple fruit pigmentation, previously described in green-fruited wild tomatoes such as S. habrochaites or Solanum chilense. Characterization of LA1141 derived purple pigmentation provides a test of the hybridization hypothesis. Purple pigmentation was recovered in progenies derived from LA1141, and the anthocyanins malvidin 3(coumaroyl)rutinoside-5-glucoside, petunidin 3-(coumaroyl) rutinoside-5-glucoside, and petunidin 3-(caffeoyl)rutinoside-5-glucoside were abundant. Fruit color was evaluated in an introgression population, and three quantitative trait loci (QTLs) were mapped and validated in subsequent populations. The loci atroviolacium on chromosome 7, Anthocyanin fruit on chromosome 10, and uniform ripening also on chromosome 10 underly these QTLs. Sequence analysis suggested that the LA1141 alleles of Aft and atv are unique relative to those previously described from S. chilense accession LA0458 and Solanum cheesmaniae accession LA0434, respectively. Phylogenetic analysis of the LA1141 Aft genomic sequence did not support a green-fruited origin, and the locus clustered with members of the red-fruited tomato clade. The LA1141 allele of Aft is not the result of an ancient introgression from the green-fruited clade and underlies a gain of anthocyanin pigmentation in the red-fruited clade.
Collapse
Affiliation(s)
- Sean Fenstemaker
- Department of Horticulture and Crop ScienceThe Ohio State UniversityWoosterOhioUSA
| | - Leah Sim
- Department of Horticulture and Crop ScienceThe Ohio State UniversityWoosterOhioUSA
| | - Jessica Cooperstone
- Department of Food Science and TechnologyThe Ohio State UniversityColumbusOhioUSA
- Department of Horticulture and Crop ScienceThe Ohio State UniversityColumbusOhioUSA
| | - David Francis
- Department of Horticulture and Crop ScienceThe Ohio State UniversityWoosterOhioUSA
| |
Collapse
|
50
|
Stress Reactivity, Susceptibility to Hypertension, and Differential Expression of Genes in Hypertensive Compared to Normotensive Patients. Int J Mol Sci 2022; 23:ijms23052835. [PMID: 35269977 PMCID: PMC8911431 DOI: 10.3390/ijms23052835] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/14/2022] [Accepted: 02/28/2022] [Indexed: 12/14/2022] Open
Abstract
Although half of hypertensive patients have hypertensive parents, known hypertension-related human loci identified by genome-wide analysis explain only 3% of hypertension heredity. Therefore, mainstream transcriptome profiling of hypertensive subjects addresses differentially expressed genes (DEGs) specific to gender, age, and comorbidities in accordance with predictive preventive personalized participatory medicine treating patients according to their symptoms, individual lifestyle, and genetic background. Within this mainstream paradigm, here, we determined whether, among the known hypertension-related DEGs that we could find, there is any genome-wide hypertension theranostic molecular marker applicable to everyone, everywhere, anytime. Therefore, we sequenced the hippocampal transcriptome of tame and aggressive rats, corresponding to low and high stress reactivity, an increase of which raises hypertensive risk; we identified stress-reactivity-related rat DEGs and compared them with their known homologous hypertension-related animal DEGs. This yielded significant correlations between stress reactivity-related and hypertension-related fold changes (log2 values) of these DEG homologs. We found principal components, PC1 and PC2, corresponding to a half-difference and half-sum of these log2 values. Using the DEGs of hypertensive versus normotensive patients (as the control), we verified the correlations and principal components. This analysis highlighted downregulation of β-protocadherins and hemoglobin as whole-genome hypertension theranostic molecular markers associated with a wide vascular inner diameter and low blood viscosity, respectively.
Collapse
|