1
|
Werner A, Kanhere A, Wahlestedt C, Mattick JS. Natural antisense transcripts as versatile regulators of gene expression. Nat Rev Genet 2024; 25:730-744. [PMID: 38632496 DOI: 10.1038/s41576-024-00723-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2024] [Indexed: 04/19/2024]
Abstract
Long non-coding RNAs (lncRNAs) are emerging as a major class of gene products that have central roles in cell and developmental biology. Natural antisense transcripts (NATs) are an important subset of lncRNAs that are expressed from the opposite strand of protein-coding and non-coding genes and are a genome-wide phenomenon in both eukaryotes and prokaryotes. In eukaryotes, a myriad of NATs participate in regulatory pathways that affect expression of their cognate sense genes. Recent developments in the study of NATs and lncRNAs and large-scale sequencing and bioinformatics projects suggest that whether NATs regulate expression, splicing, stability or translation of the sense transcript is influenced by the pattern and degrees of overlap between the sense-antisense pair. Moreover, epigenetic gene regulatory mechanisms prevail in somatic cells whereas mechanisms dependent on the formation of double-stranded RNA intermediates are prevalent in germ cells. The modulating effects of NATs on sense transcript expression make NATs rational targets for therapeutic interventions.
Collapse
Affiliation(s)
| | | | | | - John S Mattick
- University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
2
|
Chen Y, Ye Z, Lin M, Zhu L, Xu L, Wang X. Deciphering the Epigenetic Landscape: Placental Development and Its Role in Pregnancy Outcomes. Stem Cell Rev Rep 2024; 20:996-1014. [PMID: 38457061 DOI: 10.1007/s12015-024-10699-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2024] [Indexed: 03/09/2024]
Abstract
The placenta stands out as a unique, transitory, and multifaceted organ, essential to the optimal growth and maturation of the fetus. Functioning as a vital nexus between the maternal and fetal circulatory systems, it oversees the critical exchange of nutrients and waste. This exchange is facilitated by placental cells, known as trophoblasts, which adeptly invade and remodel uterine blood vessels. Deviations in placental development underpin a slew of pregnancy complications, notably fetal growth restriction (FGR), preeclampsia (PE), recurrent spontaneous abortions (RSA), and preterm birth. Central to placental function and development is epigenetic regulation. Despite its importance, the intricate mechanisms by which epigenetics influence the placenta are not entirely elucidated. Recently, the scientific community has turned its focus to parsing out the epigenetic alterations during placental development, such as variations in promoter DNA methylation, genomic imprints, and shifts in non-coding RNA expression. By establishing correlations between epigenetic shifts in the placenta and pregnancy complications, researchers are unearthing invaluable insights into the biology and pathophysiology of these conditions. This review seeks to synthesize the latest findings on placental epigenetic regulation, spotlighting its crucial role in shaping fetal growth trajectories and development. Through this lens, we underscore the overarching significance of the placenta in the larger narrative of gestational health.
Collapse
Affiliation(s)
- Yujia Chen
- Medical Research Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China
- National Health Commission (NHC), Key Laboratory of Technical Evaluation of Fertility Regulation for Non-Human Primate, Fujian Maternity and Child Health Hospital, Fuzhou, China
| | - Zhoujie Ye
- Medical Research Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China
- National Health Commission (NHC), Key Laboratory of Technical Evaluation of Fertility Regulation for Non-Human Primate, Fujian Maternity and Child Health Hospital, Fuzhou, China
| | - Meijia Lin
- Department of Pathology, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, China
| | - Liping Zhu
- Medical Research Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China
- National Health Commission (NHC), Key Laboratory of Technical Evaluation of Fertility Regulation for Non-Human Primate, Fujian Maternity and Child Health Hospital, Fuzhou, China
| | - Liangpu Xu
- Medical Genetic Diagnosis and Therapy Center of Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Provincial Key Laboratory of Prenatal Diagnosis and Birth Defect, Fuzhou, China.
| | - Xinrui Wang
- Medical Research Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China.
- National Health Commission (NHC), Key Laboratory of Technical Evaluation of Fertility Regulation for Non-Human Primate, Fujian Maternity and Child Health Hospital, Fuzhou, China.
| |
Collapse
|
3
|
Lenz T, Zhang X, Chakraborty A, Ardakany AR, Prudhomme J, Ay F, Deitsch K, Le Roch KG. Chromatin structure and var2csa - a tango in regulation of var gene expression in the human malaria parasite, Plasmodium falciparum? BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.13.580059. [PMID: 38405848 PMCID: PMC10888805 DOI: 10.1101/2024.02.13.580059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Over the last few decades, novel methods have been developed to study how chromosome positioning within the nucleus may play a role in gene regulation. Adaptation of these methods in the human malaria parasite, Plasmodium falciparum, has recently led to the discovery that the three-dimensional structure of chromatin within the nucleus may be critical in controlling expression of virulence genes (var genes). Recent work has implicated an unusual, highly conserved var gene called var2csa in contributing to coordinated transcriptional switching, however how this gene functions in this capacity is unknown. To further understand how var2csa influences var gene switching, targeted DNA double-strand breaks (DSBs) within the sub-telomeric region of chromosome 12 were used to delete the gene and the surrounding chromosomal region. To characterize the changes in chromatin architecture stemming from this deletion and how these changes could affect var gene expression, we used a combination of RNA-seq, Chip-seq and Hi-C to pinpoint epigenetic and chromatin structural modifications in regions of differential gene expression. We observed a net gain of interactions in sub-telomeric regions and internal var gene regions following var2csa knockout, indicating an increase of tightly controlled heterochromatin structures. Our results suggest that disruption of var2csa results not only in changes in var gene transcriptional regulation but also a significant tightening of heterochromatin clusters thereby disrupting coordinated activation of var genes throughout the genome. Altogether our result confirms a strong link between the var2csa locus, chromatin structure and var gene expression.
Collapse
Affiliation(s)
- Todd Lenz
- Department of Molecular, Cell and Systems Biology, University of California Riverside, 900 University Avenue, Riverside, CA 92521, USA
| | - Xu Zhang
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY 10065, USA
| | - Abhijit Chakraborty
- La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| | | | - Jacques Prudhomme
- Department of Molecular, Cell and Systems Biology, University of California Riverside, 900 University Avenue, Riverside, CA 92521, USA
| | - Ferhat Ay
- La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| | - Kirk Deitsch
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY 10065, USA
| | - Karine G. Le Roch
- Department of Molecular, Cell and Systems Biology, University of California Riverside, 900 University Avenue, Riverside, CA 92521, USA
| |
Collapse
|
4
|
Zhang X, Florini F, Visone JE, Lionardi I, Gross MR, Patel V, Deitsch KW. A coordinated transcriptional switching network mediates antigenic variation of human malaria parasites. eLife 2022; 11:e83840. [PMID: 36515978 PMCID: PMC9833823 DOI: 10.7554/elife.83840] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/13/2022] [Indexed: 12/15/2022] Open
Abstract
Malaria parasites avoid immune clearance through their ability to systematically alter antigens exposed on the surface of infected red blood cells. This is accomplished by tightly regulated transcriptional control of individual members of a large, multicopy gene family called var and is the key to both the virulence and chronic nature of malaria infections. Expression of var genes is mutually exclusive and controlled epigenetically, however how large populations of parasites coordinate var gene switching to avoid premature exposure of the antigenic repertoire is unknown. Here, we provide evidence for a transcriptional network anchored by a universally conserved gene called var2csa that coordinates the switching process. We describe a structured switching bias that shifts overtime and could shape the pattern of var expression over the course of a lengthy infection. Our results provide an explanation for a previously mysterious aspect of malaria infections and shed light on how parasites possessing a relatively small repertoire of variant antigen-encoding genes can coordinate switching events to limit antigen exposure, thereby maintaining chronic infections.
Collapse
Affiliation(s)
- Xu Zhang
- Department of Microbiology and Immunology, Weill Cornell Medical CollegeNew YorkUnited States
| | - Francesca Florini
- Department of Microbiology and Immunology, Weill Cornell Medical CollegeNew YorkUnited States
| | - Joseph E Visone
- Department of Microbiology and Immunology, Weill Cornell Medical CollegeNew YorkUnited States
| | - Irina Lionardi
- Jill Roberts Center for Inflammatory Bowel Disease, Weill Cornell Medical CollegeNew YorkUnited States
| | - Mackensie R Gross
- Department of Microbiology and Immunology, Weill Cornell Medical CollegeNew YorkUnited States
| | - Valay Patel
- Department of Microbiology and Immunology, Weill Cornell Medical CollegeNew YorkUnited States
| | - Kirk W Deitsch
- Department of Microbiology and Immunology, Weill Cornell Medical CollegeNew YorkUnited States
| |
Collapse
|
5
|
Wheatley LM, Holloway JW, Svanes C, Sears MR, Breton C, Fedulov AV, Nilsson E, Vercelli D, Zhang H, Togias A, Arshad SH. The role of epigenetics in multi-generational transmission of asthma: An NIAID workshop report-based narrative review. Clin Exp Allergy 2022; 52:1264-1275. [PMID: 36073598 PMCID: PMC9613603 DOI: 10.1111/cea.14223] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 08/27/2022] [Accepted: 08/29/2022] [Indexed: 01/26/2023]
Abstract
There is mounting evidence that environmental exposures can result in effects on health that can be transmitted across generations, without the need for a direct exposure to the original factor, for example, the effect of grandparental smoking on grandchildren. Hence, an individual's health should be investigated with the knowledge of cross-generational influences. Epigenetic factors are molecular factors or processes that regulate genome activity and may impact cross-generational effects. Epigenetic transgenerational inheritance has been demonstrated in plants and animals, but the presence and extent of this process in humans are currently being investigated. Experimental data in animals support transmission of asthma risk across generations from a single exposure to the deleterious factor and suggest that the nature of this transmission is in part due to changes in DNA methylation, the most studied epigenetic process. The association of father's prepuberty exposure with offspring risk of asthma and lung function deficit may also be mediated by epigenetic processes. Multi-generational birth cohorts are ideal to investigate the presence and impact of transfer of disease susceptibility across generations and underlying mechanisms. However, multi-generational studies require recruitment and assessment of participants over several decades. Investigation of adult multi-generation cohorts is less resource intensive but run the risk of recall bias. Statistical analysis is challenging given varying degrees of longitudinal and hierarchical data but path analyses, structural equation modelling and multilevel modelling can be employed, and directed networks addressing longitudinal effects deserve exploration as an effort to study causal pathways.
Collapse
Affiliation(s)
- Lisa M. Wheatley
- National Institute of Allergy and Infectious DiseaseNational Institutes of HealthBethesdaMarylandUSA
| | - John W. Holloway
- Faculty of Medicine, Human Development and HealthUniversity of SouthamptonSouthamptonUK
| | - Cecilie Svanes
- Department of Global Public Health and Primary CareUniversity of BergenBergenNorway
| | | | - Carrie Breton
- University of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Alexey V. Fedulov
- Warren Alpert Medical School of Brown University, Rhode Island HospitalProvidenceRhode IslandUSA
| | - Eric Nilsson
- Washington State University PullmanPullmanWashingtonUSA
| | | | - Hongmei Zhang
- Division of Epidemiology, Biostatistics and Environmental Health, School of Public HealthUniversity of MemphisMemphisTennesseeUSA
| | - Alkis Togias
- National Institute of Allergy and Infectious DiseaseNational Institutes of HealthBethesdaMarylandUSA
| | - Syed Hasan Arshad
- Clinical and Experimental Sciences, Faculty of MedicineUniversity of SouthamptonSouthamptonUK
- The David Hide Asthma and Allergy CentreSt Mary's HospitalNewportUK
| |
Collapse
|
6
|
Van de Pette M, Dimond A, Galvão AM, Millership SJ, To W, Prodani C, McNamara G, Bruno L, Sardini A, Webster Z, McGinty J, French PMW, Uren AG, Castillo-Fernandez J, Watkinson W, Ferguson-Smith AC, Merkenschlager M, John RM, Kelsey G, Fisher AG. Epigenetic changes induced by in utero dietary challenge result in phenotypic variability in successive generations of mice. Nat Commun 2022; 13:2464. [PMID: 35513363 PMCID: PMC9072353 DOI: 10.1038/s41467-022-30022-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 04/13/2022] [Indexed: 11/22/2022] Open
Abstract
Transmission of epigenetic information between generations occurs in nematodes, flies and plants, mediated by specialised small RNA pathways, modified histones and DNA methylation. Similar processes in mammals can also affect phenotype through intergenerational or trans-generational mechanisms. Here we generate a luciferase knock-in reporter mouse for the imprinted Dlk1 locus to visualise and track epigenetic fidelity across generations. Exposure to high-fat diet in pregnancy provokes sustained re-expression of the normally silent maternal Dlk1 in offspring (loss of imprinting) and increased DNA methylation at the somatic differentially methylated region (sDMR). In the next generation heterogeneous Dlk1 mis-expression is seen exclusively among animals born to F1-exposed females. Oocytes from these females show altered gene and microRNA expression without changes in DNA methylation, and correct imprinting is restored in subsequent generations. Our results illustrate how diet impacts the foetal epigenome, disturbing canonical and non-canonical imprinting mechanisms to modulate the properties of successive generations of offspring.
Collapse
Affiliation(s)
- Mathew Van de Pette
- Lymphocyte Development & Epigenetic Memory Groups, MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Andrew Dimond
- Lymphocyte Development & Epigenetic Memory Groups, MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - António M Galvão
- Epigenetics Programme, The Babraham Institute, Cambridge, CB22 3AT, UK
- Institute of Animal Reproduction and Food Research of PAS, Department of Reproductive Immunology and Pathology, Olsztyn, Poland
- Centre for Trophoblast Research, University of Cambridge, Cambridge, CB2 3EG, UK
| | - Steven J Millership
- Department of Medicine, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Wilson To
- Lymphocyte Development & Epigenetic Memory Groups, MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Chiara Prodani
- Lymphocyte Development & Epigenetic Memory Groups, MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Gráinne McNamara
- Lymphocyte Development & Epigenetic Memory Groups, MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Ludovica Bruno
- Lymphocyte Development & Epigenetic Memory Groups, MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Alessandro Sardini
- Whole Animal Physiology and Imaging, MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Zoe Webster
- Transgenics and Embryonic Stem Cell Laboratory, MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - James McGinty
- Photonics Group, Department of Physics, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Paul M W French
- Photonics Group, Department of Physics, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Anthony G Uren
- Cancer Genomics Group, MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | | | - William Watkinson
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK
| | - Anne C Ferguson-Smith
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK
| | - Matthias Merkenschlager
- Lymphocyte Development & Epigenetic Memory Groups, MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Rosalind M John
- Cardiff School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK
| | - Gavin Kelsey
- Epigenetics Programme, The Babraham Institute, Cambridge, CB22 3AT, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, CB2 3EG, UK
- Wellcome-MRC Institute of Metabolic Science-Metabolic Research Laboratories, Cambridge, CB2 0QQ, UK
| | - Amanda G Fisher
- Lymphocyte Development & Epigenetic Memory Groups, MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK.
| |
Collapse
|
7
|
Hou X, Wang Z, Shi L, Wang L, Zhao F, Liu X, Gao H, Shi L, Yan H, Wang L, Zhang L. Identification of imprinted genes in the skeletal muscle of newborn piglets by high-throughput sequencing. Anim Genet 2022; 53:479-486. [PMID: 35481679 DOI: 10.1111/age.13212] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 04/01/2022] [Accepted: 04/13/2022] [Indexed: 11/28/2022]
Abstract
Imprinted genes - exhibiting parent-specific transcription - play essential roles in the process of mammalian development and growth. Skeletal muscle growth is crucial for meat production. To further understand the role of imprinted genes during the porcine skeletal muscle growth, DNA-seq and RNA-seq were used to explore the characteristics of imprinted genes from porcine reciprocal crosses. A total of 584 545 single-nucleotide variations were discovered in the DNA-seq data of F0 parents, heterozygous in two pig breeds (Yorkshire and Min pigs) but homozygous in each breed. These single-nucleotide variations were used to determine the allelic-specific expression in F1 individuals. Finally, eight paternal expression sites and three maternal expression sites were detected, whereas two paternally expressed imprinted genes (NDN and IGF2) and one maternally expressed imprinted gene (H1-3) were validated by Sanger sequencing. DNA methylation regulates the expression of imprinted genes, and all of the identified imprinted genes in this study were predicted to possess CpG islands. PBX1 and YY1 binding motifs were discovered in the promoter regions of all three imprinted genes, which were candidate elements regulating the transcription of imprinted genes. For these identified imprinted genes, IGF2 and NDN promoted muscle growth whereas H1-3 inhibited cell proliferation, corroborating the 'parental conflict' theory that paternally expressed imprinted genes assisted descendants' growth whereas maternally expressed imprinted genes inhibited it. This study discovered porcine imprinted genes in skeletal muscle and was the first to reveal that H1-3 was expressed by the maternal allele to our knowledge. Our findings provided valuable resources for the potential utilization of imprinted genes in pig breeding.
Collapse
Affiliation(s)
- Xinhua Hou
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zishuai Wang
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Liangyu Shi
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.,School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Ligang Wang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fuping Zhao
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xin Liu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hongmei Gao
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lijun Shi
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hua Yan
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lixian Wang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Longchao Zhang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
8
|
Nilsson EE, Ben Maamar M, Skinner MK. Role of epigenetic transgenerational inheritance in generational toxicology. ENVIRONMENTAL EPIGENETICS 2022; 8:dvac001. [PMID: 35186326 PMCID: PMC8848501 DOI: 10.1093/eep/dvac001] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/04/2021] [Accepted: 02/03/2022] [Indexed: 05/27/2023]
Abstract
Many environmental toxicants have been shown to be associated with the transgenerational inheritance of increased disease susceptibility. This review describes the generational toxicity of some of these chemicals and their role in the induction of epigenetic transgenerational inheritance of disease. Epigenetic factors include DNA methylation, histone modifications, retention of histones in sperm, changes to chromatin structure, and expression of non-coding RNAs. For toxicant-induced epigenetic transgenerational inheritance to occur, exposure to a toxicant must result in epigenetic changes to germ cells (sperm or eggs) since it is the germ cells that carry molecular information to subsequent generations. In addition, the epigenetic changes induced in transgenerational generation animals must cause alterations in gene expression in these animals' somatic cells. In some cases of generational toxicology, negligible changes are seen in the directly exposed generations, but increased disease rates are seen in transgenerational descendants. Governmental policies regulating toxicant exposure should take generational effects into account. A new approach that takes into consideration generational toxicity will be needed to protect our future populations.
Collapse
Affiliation(s)
- Eric E Nilsson
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA
| | - Millissia Ben Maamar
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA
| | - Michael K Skinner
- **Correspondence address. Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA. Tel: +509-335-1524; E-mail:
| |
Collapse
|
9
|
Yang K, Feng X, Yu G, Han W, Liu F, Xie Y, Zhang H, Yu Y, Zou G. Single polymeric microfiber waveguide platform for sensitive detection and discrimination of DNA methylation. Analyst 2022; 147:1892-1898. [DOI: 10.1039/d1an02243a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel sensitive detection platform for p16 and p16 methylation based on a single polymeric fluorescent microfiber waveguide with sandwich-structured hybridization designs.
Collapse
Affiliation(s)
- Kexin Yang
- Department of Polymer Science and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei 230026, China
| | - Xiaohui Feng
- Division of Gastroenterology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Gaoyuan Yu
- Undergraduate major in clinical medicine, grade 2017, class 1, Medical College of Hubei University of Science and Technology, Xianning, Hubei 437100, P. R. China
| | - Wenjie Han
- Department of Polymer Science and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei 230026, China
| | - Funing Liu
- Department of Polymer Science and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei 230026, China
| | - Yifan Xie
- Department of Polymer Science and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei 230026, China
| | - Hongli Zhang
- Department of Polymer Science and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei 230026, China
| | - Yue Yu
- Division of Gastroenterology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Gang Zou
- Department of Polymer Science and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei 230026, China
| |
Collapse
|
10
|
Ochoa E. Alteration of Genomic Imprinting after Assisted Reproductive Technologies and Long-Term Health. Life (Basel) 2021; 11:728. [PMID: 34440472 PMCID: PMC8398258 DOI: 10.3390/life11080728] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/24/2021] [Accepted: 07/15/2021] [Indexed: 01/16/2023] Open
Abstract
Assisted reproductive technologies (ART) are the treatment of choice for some infertile couples and even though these procedures are generally considered safe, children conceived by ART have shown higher reported risks of some perinatal and postnatal complications such as low birth weight, preterm birth, and childhood cancer. In addition, the frequency of some congenital imprinting disorders, like Beckwith-Wiedemann Syndrome and Silver-Russell Syndrome, is higher than expected in the general population after ART. Experimental evidence from animal studies suggests that ART can induce stress in the embryo and influence gene expression and DNA methylation. Human epigenome studies have generally revealed an enrichment of alterations in imprinted regions in children conceived by ART, but no global methylation alterations. ART procedures occur simultaneously with the establishment and maintenance of imprinting during embryonic development, so this may underlie the apparent sensitivity of imprinted regions to ART. The impact in adulthood of imprinting alterations that occurred during early embryonic development is still unclear, but some experimental evidence in mice showed higher risk to obesity and cardiovascular disease after the restriction of some imprinted genes in early embryonic development. This supports the hypothesis that imprinting alterations in early development might induce epigenetic programming of metabolism and affect long-term health. Given the growing use of ART, it is important to determine the impact of ART in genomic imprinting and long-term health.
Collapse
Affiliation(s)
- Eguzkine Ochoa
- Department of Medical Genetics, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Cambridge CB2 0QQ, UK
| |
Collapse
|
11
|
Do Transgenerational Epigenetic Inheritance and Immune System Development Share Common Epigenetic Processes? J Dev Biol 2021; 9:jdb9020020. [PMID: 34065783 PMCID: PMC8162332 DOI: 10.3390/jdb9020020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/02/2021] [Accepted: 05/06/2021] [Indexed: 12/14/2022] Open
Abstract
Epigenetic modifications regulate gene expression for development, immune response, disease, and other processes. A major role of epigenetics is to control the dynamics of chromatin structure, i.e., the condensed packaging of DNA around histone proteins in eukaryotic nuclei. Key epigenetic factors include enzymes for histone modifications and DNA methylation, non-coding RNAs, and prions. Epigenetic modifications are heritable but during embryonic development, most parental epigenetic marks are erased and reset. Interestingly, some epigenetic modifications, that may be resulting from immune response to stimuli, can escape remodeling and transmit to subsequent generations who are not exposed to those stimuli. This phenomenon is called transgenerational epigenetic inheritance if the epigenetic phenotype persists beyond the third generation in female germlines and second generation in male germlines. Although its primary function is likely immune response for survival, its role in the development and functioning of the immune system is not extensively explored, despite studies reporting transgenerational inheritance of stress-induced epigenetic modifications resulting in immune disorders. Hence, this review draws from studies on transgenerational epigenetic inheritance, immune system development and function, high-throughput epigenetics tools to study those phenomena, and relevant clinical trials, to focus on their significance and deeper understanding for future research, therapeutic developments, and various applications.
Collapse
|
12
|
Guzman-Novoa E, Morfin N, De la Mora A, Macías-Macías JO, Tapia-González JM, Contreras-Escareño F, Medina-Flores CA, Correa-Benítez A, Quezada-Euán JJG. The Process and Outcome of the Africanization of Honey Bees in Mexico: Lessons and Future Directions. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.608091] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
|
13
|
Zhao X, Chang S, Liu X, Wang S, Zhang Y, Lu X, Zhang T, Zhang H, Wang L. Imprinting aberrations of SNRPN, ZAC1 and INPP5F genes involved in the pathogenesis of congenital heart disease with extracardiac malformations. J Cell Mol Med 2020; 24:9898-9907. [PMID: 32693431 PMCID: PMC7520315 DOI: 10.1111/jcmm.15584] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 05/28/2020] [Accepted: 06/05/2020] [Indexed: 12/12/2022] Open
Abstract
Congenital heart disease (CHD) with extracardiac malformations (EM) is the most common multiple malformation, resulting from the interaction between genetic abnormalities and environmental factors. Most studies have attributed the causes of CHD with EM to chromosomal abnormalities. However, multi‐system dysplasia is usually caused by both genetic mutations and epigenetic dysregulation. The epigenetic mechanisms underlying the pathogenesis of CHD with EM remain unclear. In this study, we investigated the mechanisms of imprinting alterations, including those of the Small nuclear ribonucleoprotein polypeptide N (SNRPN), PLAG1 like zinc finger 1 (ZAC1) and inositol polyphosphate‐5‐phosphatase F (INPP5F) genes, in the pathogenesis of CHD with EM. The methylation levels of SNRPN, ZAC1, and INPP5F genes were analysed by the MassARRAY platform in 24 children with CHD with EM and 20 healthy controls. The expression levels of these genes were detected by real‐time polymerase chain reaction (PCR). The correlation between methylation regulation and gene expression was confirmed using 5‐azacytidine (5‐Aza) treated cells. The methylation levels of SNRPN and ZAC1 genes were significantly increased in CHD with EM, while that of INPP5F was decreased. The methylation alterations of these genes were negatively correlated with expression. Risk analysis showed that abnormal hypermethylation of SNRPN and ZAC1 resulted in 5.545 and 7.438 times higher risks of CHD with EM, respectively, and the abnormal hypomethylation of INPP5F was 8.38 times higher than that of the control group. We concluded that abnormally high methylation levels of SNRPN and ZAC1 and decreased levels of INPP5F imply an increased risk of CHD with EM by altering their gene functions. This study provides evidence of imprinted regulation in the pathogenesis of multiple malformations.
Collapse
Affiliation(s)
- Xiaolei Zhao
- Department of Cardiac Surgery, The Capital Institute of Pediatrics, Beijing, China
| | - Shaoyan Chang
- Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China
| | - Xinli Liu
- Department of Obstetrics and Gynecology, PLA Army General Hospital 263rd Clinical Department, Beijing, China
| | - Shuangxing Wang
- Department of Cardiac Surgery, The Capital Institute of Pediatrics, Beijing, China
| | - Yueran Zhang
- Department of Cardiac Surgery, The Capital Institute of Pediatrics, Beijing, China
| | - Xiaolin Lu
- Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China
| | - Ting Zhang
- Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China
| | - Hui Zhang
- Department of Cardiac Surgery, The Capital Institute of Pediatrics, Beijing, China
| | - Li Wang
- Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China
| |
Collapse
|
14
|
Liu W, Wang BQ, Liu-Fu G, Fung WK, Zhou JY. X-chromosome genetic association test incorporating X-chromosome inactivation and imprinting effects. J Genet 2019. [DOI: 10.1007/s12041-019-1146-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
15
|
Ben Maamar M, King SE, Nilsson E, Beck D, Skinner MK. Epigenetic transgenerational inheritance of parent-of-origin allelic transmission of outcross pathology and sperm epimutations. Dev Biol 2019; 458:106-119. [PMID: 31682807 PMCID: PMC6987017 DOI: 10.1016/j.ydbio.2019.10.030] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 09/25/2019] [Accepted: 10/29/2019] [Indexed: 12/11/2022]
Abstract
Epigenetic transgenerational inheritance potentially impacts disease etiology, phenotypic variation, and evolution. An increasing number of environmental factors from nutrition to toxicants have been shown to promote the epigenetic transgenerational inheritance of disease. Previous observations have demonstrated that the agricultural fungicide vinclozolin and pesticide DDT (dichlorodiphenyltrichloroethane) induce transgenerational sperm epimutations involving DNA methylation, ncRNA, and histone modifications or retention. These two environmental toxicants were used to investigate the impacts of parent-of-origin outcross on the epigenetic transgenerational inheritance of disease. Male and female rats were collected from a paternal outcross (POC) or a maternal outcross (MOC) F4 generation control and exposure lineages for pathology and epigenetic analysis. This model allows the parental allelic transmission of disease and epimutations to be investigated. There was increased pathology incidence in the MOC F4 generation male prostate, kidney, obesity, and multiple diseases through a maternal allelic transmission. The POC F4 generation female offspring had increased pathology incidence for kidney, obesity and multiple types of diseases through the paternal allelic transmission. Some disease such as testis or ovarian pathology appear to be transmitted through the combined actions of both male and female alleles. Analysis of the F4 generation sperm epigenomes identified differential DNA methylated regions (DMRs) in a genome-wide analysis. Observations demonstrate that DDT and vinclozolin have the potential to promote the epigenetic transgenerational inheritance of disease and sperm epimutations to the outcross F4 generation in a sex specific and exposure specific manner. The parent-of-origin allelic transmission observed appears similar to the process involved with imprinted-like genes.
Collapse
Affiliation(s)
- Millissia Ben Maamar
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, 99164-4236, USA
| | - Stephanie E King
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, 99164-4236, USA
| | - Eric Nilsson
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, 99164-4236, USA
| | - Daniel Beck
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, 99164-4236, USA
| | - Michael K Skinner
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, 99164-4236, USA.
| |
Collapse
|
16
|
Nilsson EE, Sadler-Riggleman I, Skinner MK. Environmentally induced epigenetic transgenerational inheritance of disease. ENVIRONMENTAL EPIGENETICS 2018; 4:dvy016. [PMID: 30038800 PMCID: PMC6051467 DOI: 10.1093/eep/dvy016] [Citation(s) in RCA: 224] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 05/01/2018] [Accepted: 05/15/2018] [Indexed: 05/21/2023]
Abstract
Ancestral environmental exposures such as toxicants, abnormal nutrition or stress can promote the epigenetic transgenerational inheritance of disease and phenotypic variation. These environmental factors induce the epigenetic reprogramming of the germline (sperm and egg). The germline epimutations can in turn increase disease susceptibility of subsequent generations of the exposed ancestors. A variety of environmental factors, species and exposure specificity of this induced epigenetic transgenerational inheritance of disease is discussed with a consideration of generational toxicology. The molecular mechanisms and processes involved in the ability of these inherited epimutations to increase disease susceptibility are discussed. In addition to altered disease susceptibility, the potential impact of the epigenetic inheritance on phenotypic variation and evolution is considered. Observations suggest environmentally induced epigenetic transgenerational inheritance of disease is a critical aspect of disease etiology, toxicology and evolution that needs to be considered.
Collapse
Affiliation(s)
- Eric E Nilsson
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Ingrid Sadler-Riggleman
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Michael K Skinner
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, USA
- Correspondence address. Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA. Tel: +1-509-335-1524; Fax: +1-509-335-2176; E-mail:
| |
Collapse
|
17
|
Wang L, Chang S, Wang Z, Wang S, Huo J, Ding G, Li R, Liu C, Shangguan S, Lu X, Zhang T, Qiu Z, Wu J. Altered GNAS imprinting due to folic acid deficiency contributes to poor embryo development and may lead to neural tube defects. Oncotarget 2017; 8:110797-110810. [PMID: 29340017 PMCID: PMC5762285 DOI: 10.18632/oncotarget.22731] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 10/29/2017] [Indexed: 01/28/2023] Open
Abstract
Disturbed epigenetic modifications have been linked to the pathogenesis of Neural Tube Defects (NTDs) in those with folate deficiency during pregnancy. However, evidence is lacking to delineate the critical region in epigenome regulated by parental folic acid and mechanisms by which folate deficiency affects normal embryogenesis. Our data from clinical samples revealed the presence of aberrant DNA methylation in GNAS imprinting cluster in NTD samples with low folate concentrations. Results from mouse models indicated that the establishment of GNAS imprinting was influenced by both maternal and paternal folate-deficient diets. Such aberrant GNAS imprinting was present prior to the gametogenesis period. Imprinting in Exon1A/GNAS gDMR was abolished in both spermatozoa and oocytes upon treating with a parental folate-deficient diet (3.6% in spermatozoa, 9.8% in oocytes). Interestingly, loss of imprinting in the GNAS gene cluster altered chromatin structure to an overwhelmingly open structure (58.48% in the folate-free medium group vs. 39.51% in the folate-normal medium group; P < 0.05), and led to a disturbed expression of genes in this region. Furthermore, an elevated cyclic AMP levels was observed in folate acid deficiency group. Our results imply that GNAS imprinting plays major roles in folic acid metabolism regulation during embryogenesis. Aberrant GNAS imprinting is an attribute to NTDs, providing a new perspective for explaining the molecular mechanisms by which folate supplementation in human pregnancy provides protection from NTDs.
Collapse
Affiliation(s)
- Li Wang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, P.R. China
| | - Shaoyan Chang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, P.R. China
| | - Zhen Wang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, P.R. China
| | - Shan Wang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, P.R. China
| | - Junsheng Huo
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, P.R. China
| | - Gangqiang Ding
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, P.R. China
| | - Rui Li
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, P.R. China
| | - Chi Liu
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, P.R. China
| | - Shaofang Shangguan
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, P.R. China
| | - Xiaolin Lu
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, P.R. China
| | - Ting Zhang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, P.R. China
| | - Zhiyong Qiu
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, P.R. China
| | - Jianxin Wu
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, P.R. China
| |
Collapse
|
18
|
Patiño-Parrado I, Gómez-Jiménez Á, López-Sánchez N, Frade JM. Strand-specific CpG hemimethylation, a novel epigenetic modification functional for genomic imprinting. Nucleic Acids Res 2017; 45:8822-8834. [PMID: 28605464 PMCID: PMC5587773 DOI: 10.1093/nar/gkx518] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 06/01/2017] [Indexed: 12/13/2022] Open
Abstract
Imprinted genes are regulated by allele-specific differentially DNA-methylated regions (DMRs). Epigenetic methylation of the CpGs constituting these DMRs is established in the germline, resulting in a 5-methylcytosine-specific pattern that is tightly maintained in somatic tissues. Here, we show a novel epigenetic mark, characterized by strand-specific hemimethylation of contiguous CpG sites affecting the germline DMR of the murine Peg3, but not Snrpn, imprinted domain. This modification is enriched in tetraploid cortical neurons, a cell type where evidence for a small proportion of formylmethylated CpG sites within the Peg3-controlling DMR is also provided. Single nucleotide polymorphism (SNP)-based transcriptional analysis indicated that these epigenetic modifications participate in the maintainance of the monoallelic expression pattern of the Peg3 imprinted gene. Our results unexpectedly demonstrate that the methylation pattern observed in DMRs controlling defined imprinting regions can be modified in somatic cells, resulting in a novel epigenetic modification that gives rise to strand-specific hemimethylated domains functional for genomic imprinting. We anticipate the existence of a novel molecular mechanism regulating the transition from fully methylated CpGs to strand-specific hemimethylated CpGs.
Collapse
Affiliation(s)
- Iris Patiño-Parrado
- Department of Molecular, Cellular, and Developmental Neurobiology, Cajal Institute, Consejo Superior de Investigaciones Científicas (IC-CSIC), Madrid E-28002, Spain
| | - Álvaro Gómez-Jiménez
- Department of Molecular, Cellular, and Developmental Neurobiology, Cajal Institute, Consejo Superior de Investigaciones Científicas (IC-CSIC), Madrid E-28002, Spain
| | - Noelia López-Sánchez
- Department of Molecular, Cellular, and Developmental Neurobiology, Cajal Institute, Consejo Superior de Investigaciones Científicas (IC-CSIC), Madrid E-28002, Spain
| | - José M Frade
- Department of Molecular, Cellular, and Developmental Neurobiology, Cajal Institute, Consejo Superior de Investigaciones Científicas (IC-CSIC), Madrid E-28002, Spain
| |
Collapse
|
19
|
Camprubí C, Cigliano RA, Salas-Huetos A, Garrido N, Blanco J. What the human sperm methylome tells us. Epigenomics 2017; 9:1299-1315. [DOI: 10.2217/epi-2017-0049] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Aim: To characterize the sperm methylome in semen samples from 19 donors with proven fertility. Materials & methods: Bisulfite-converted sperm DNA was hybridized on the HumanMethylation450 Infinium BeadChip platform. CpG fluorescence intensities were extracted and converted to β-values. Results: The sperm methylome is highly homogeneous and hypomethylated. Genes with hypomethylated promoters are ontologically associated to biological functions related to spermatogenesis and embryogenesis. Sex chromosomes are the most hypomethylated chromosomes, supporting data that indicated their essential role in spermatogenesis. A total of 94 genes are resistant to demethylation, being strong candidates for transgenerational inheritance. Conclusion: Spermatozoa carry a homogeneous methylation profile that is a footprint of past events (spermatogenesis), is designed to facilitate future events (embryogenesis) and has a possible influence in the adult life (transgenerational effects).
Collapse
Affiliation(s)
- Cristina Camprubí
- Genetics of Male Fertility Group, Unitat de Biologia Cellular (Facultat de Biociències), Universitat Autònoma de Barcelona, 08193-Bellaterra (Cerdanyola del Vallès), Spain
- GenIntegral, Barcelona, Spain
- Reference Laboratory Genetics, Pablo Iglesias 57-59, 08908-L'Hospitalet de Llobregat, Barcelona, Spain
| | - Riccardo Aiese Cigliano
- Sequentia Biotech, Edifici Eureka, Campus UAB, 08193-Bellaterra (Cerdanyola del Vallès), Spain
| | - Albert Salas-Huetos
- Genetics of Male Fertility Group, Unitat de Biologia Cellular (Facultat de Biociències), Universitat Autònoma de Barcelona, 08193-Bellaterra (Cerdanyola del Vallès), Spain
| | - Nicolas Garrido
- IVI Foundation, Parc Científic Universitat de València, 46980-Paterna, Spain
| | - Joan Blanco
- Genetics of Male Fertility Group, Unitat de Biologia Cellular (Facultat de Biociències), Universitat Autònoma de Barcelona, 08193-Bellaterra (Cerdanyola del Vallès), Spain
| |
Collapse
|
20
|
Stem Cell Technology for (Epi)genetic Brain Disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 978:443-475. [PMID: 28523560 DOI: 10.1007/978-3-319-53889-1_23] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Despite the enormous efforts of the scientific community over the years, effective therapeutics for many (epi)genetic brain disorders remain unidentified. The common and persistent failures to translate preclinical findings into clinical success are partially attributed to the limited efficiency of current disease models. Although animal and cellular models have substantially improved our knowledge of the pathological processes involved in these disorders, human brain research has generally been hampered by a lack of satisfactory humanized model systems. This, together with our incomplete knowledge of the multifactorial causes in the majority of these disorders, as well as a thorough understanding of associated (epi)genetic alterations, has been impeding progress in gaining more mechanistic insights from translational studies. Over the last years, however, stem cell technology has been offering an alternative approach to study and treat human brain disorders. Owing to this technology, we are now able to obtain a theoretically inexhaustible source of human neural cells and precursors in vitro that offer a platform for disease modeling and the establishment of therapeutic interventions. In addition to the potential to increase our general understanding of how (epi)genetic alterations contribute to the pathology of brain disorders, stem cells and derivatives allow for high-throughput drugs and toxicity testing, and provide a cell source for transplant therapies in regenerative medicine. In the current chapter, we will demonstrate the validity of human stem cell-based models and address the utility of other stem cell-based applications for several human brain disorders with multifactorial and (epi)genetic bases, including Parkinson's disease (PD), Alzheimer's disease (AD), fragile X syndrome (FXS), Angelman syndrome (AS), Prader-Willi syndrome (PWS), and Rett syndrome (RTT).
Collapse
|
21
|
Optical biosensing strategies for DNA methylation analysis. Biosens Bioelectron 2017; 92:668-678. [DOI: 10.1016/j.bios.2016.10.034] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 10/05/2016] [Accepted: 10/18/2016] [Indexed: 11/23/2022]
|
22
|
Hossain T, Mahmudunnabi G, Masud MK, Islam MN, Ooi L, Konstantinov K, Hossain MSA, Martinac B, Alici G, Nguyen NT, Shiddiky MJA. Electrochemical biosensing strategies for DNA methylation analysis. Biosens Bioelectron 2017; 94:63-73. [PMID: 28259051 DOI: 10.1016/j.bios.2017.02.026] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 02/15/2017] [Accepted: 02/16/2017] [Indexed: 12/31/2022]
Abstract
DNA methylation is one of the key epigenetic modifications of DNA that results from the enzymatic addition of a methyl group at the fifth carbon of the cytosine base. It plays a crucial role in cellular development, genomic stability and gene expression. Aberrant DNA methylation is responsible for the pathogenesis of many diseases including cancers. Over the past several decades, many methodologies have been developed to detect DNA methylation. These methodologies range from classical molecular biology and optical approaches, such as bisulfite sequencing, microarrays, quantitative real-time PCR, colorimetry, Raman spectroscopy to the more recent electrochemical approaches. Among these, electrochemical approaches offer sensitive, simple, specific, rapid, and cost-effective analysis of DNA methylation. Additionally, electrochemical methods are highly amenable to miniaturization and possess the potential to be multiplexed. In recent years, several reviews have provided information on the detection strategies of DNA methylation. However, to date, there is no comprehensive evaluation of electrochemical DNA methylation detection strategies. Herein, we address the recent developments of electrochemical DNA methylation detection approaches. Furthermore, we highlight the major technical and biological challenges involved in these strategies and provide suggestions for the future direction of this important field.
Collapse
Affiliation(s)
- Tanvir Hossain
- Department of Biochemistry & Molecular Biology, Shahjalal University of Science & Technology, Sylhet 3114, Bangladesh
| | - Golam Mahmudunnabi
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science & Technology, Sylhet 3114, Bangladesh
| | - Mostafa Kamal Masud
- Department of Biochemistry & Molecular Biology, Shahjalal University of Science & Technology, Sylhet 3114, Bangladesh; Institute for Superconducting and Electronic Materials, Australian Institute for Innovative Materials (AIIM), University of Wollongong, Squires Way, Innovation Campus, North Wollongong, NSW 2519, Australia; Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, QLD 4111, Australia
| | - Md Nazmul Islam
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, QLD 4111, Australia; School of Natural Sciences, Griffith University (Nathan Campus), Nathan, QLD 4111, Australia
| | - Lezanne Ooi
- Illawarra Health and Medical Research Institute, School of Biological Sciences, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522, Australia
| | - Konstantin Konstantinov
- Institute for Superconducting and Electronic Materials, Australian Institute for Innovative Materials (AIIM), University of Wollongong, Squires Way, Innovation Campus, North Wollongong, NSW 2519, Australia
| | - Md Shahriar Al Hossain
- Institute for Superconducting and Electronic Materials, Australian Institute for Innovative Materials (AIIM), University of Wollongong, Squires Way, Innovation Campus, North Wollongong, NSW 2519, Australia
| | - Boris Martinac
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia
| | - Gursel Alici
- ARC Centre of Excellence for Electromaterials Science, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522, Australia
| | - Nam-Trung Nguyen
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, QLD 4111, Australia
| | - Muhammad J A Shiddiky
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, QLD 4111, Australia; School of Natural Sciences, Griffith University (Nathan Campus), Nathan, QLD 4111, Australia.
| |
Collapse
|
23
|
Disparities in Cervical Cancer Incidence and Mortality: Can Epigenetics Contribute to Eliminating Disparities? Adv Cancer Res 2017; 133:129-156. [PMID: 28052819 DOI: 10.1016/bs.acr.2016.09.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Screening for uterine cervical intraepithelial neoplasia (CIN) followed by aggressive treatment has reduced invasive cervical cancer (ICC) incidence and mortality. However, ICC cases and carcinoma in situ (CIS) continue to be diagnosed annually in the United States, with minorities bearing the brunt of this burden. Because ICC peak incidence and mortality are 10-15 years earlier than other solid cancers, the number of potential years of life lost to this cancer is substantial. Screening for early signs of CIN is still the mainstay of many cervical cancer control programs. However, the accuracy of existing screening tests remains suboptimal. Changes in epigenetic patterns that occur as a result of human papillomavirus infection contribute to CIN progression to cancer, and can be harnessed to improve existing screening tests. However, this requires a concerted effort to identify the epigenomic landscape that is reliably altered by HPV infection specific to ICC, distinct from transient changes.
Collapse
|
24
|
Zhou JY, You XP, Yang R, Fung WK. Detection of imprinting effects for qualitative traits on X chromosome based on nuclear families. Stat Methods Med Res 2016; 27:2329-2343. [PMID: 27920363 DOI: 10.1177/0962280216680243] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Methods for detecting imprinting effects have been developed primarily for autosomal markers. However, no method is available in the literature to test for imprinting effects on X chromosome. Therefore, it is necessary to suggest methods for detecting such imprinting effects. In this article, the parental-asymmetry test on X chromosome (XPAT) is first developed to test for imprinting for qualitative traits in the presence of association, based on family trios each with both parents and their affected daughter. Then, we propose 1-XPAT to deal with parent-daughter pairs, each with one parent and his/her affected daughter. By simultaneously considering family trios and parent-daughter pairs, C-XPAT (the combined test statistic of XPAT and 1-XPAT) is constructed to test for imprinting. Further, we extend the proposed methods to accommodate complete (with both parents) and incomplete (with one parent) nuclear families having multiple daughters of which at least one is affected. Simulation results demonstrate that the proposed methods control the size well, irrespective of the inbreeding coefficient in females being zero or non-zero. By incorporating incomplete nuclear families, C-XPAT is more powerful than XPAT using only complete nuclear families. For practical use, these proposed methods are applied to analyse the rheumatoid arthritis data and Turner's syndrome data.
Collapse
Affiliation(s)
- Ji-Yuan Zhou
- 1 State Key Laboratory of Organ Failure Research, Ministry of Education, and Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Biostatistics, School of Public Health, Southern Medical University, China
| | - Xiao-Ping You
- 2 Zhujiang Hospital, Southern Medical University, China
| | - Ran Yang
- 3 Department of Statistics and Actuarial Science, The University of Hong Kong, Hong Kong
| | - Wing Kam Fung
- 3 Department of Statistics and Actuarial Science, The University of Hong Kong, Hong Kong
| |
Collapse
|
25
|
DNA methylation of CiRIG-I gene notably relates to the resistance against GCRV and negatively-regulates mRNA expression in grass carp, Ctenopharyngodon idella. Immunobiology 2016; 221:23-30. [DOI: 10.1016/j.imbio.2015.08.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 05/29/2015] [Accepted: 08/11/2015] [Indexed: 11/19/2022]
|
26
|
He J, Sun MA, Wang Z, Wang Q, Li Q, Xie H. Characterization and machine learning prediction of allele-specific DNA methylation. Genomics 2015; 106:331-9. [PMID: 26407641 DOI: 10.1016/j.ygeno.2015.09.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Revised: 09/15/2015] [Accepted: 09/20/2015] [Indexed: 12/23/2022]
Abstract
A large collection of Single Nucleotide Polymorphisms (SNPs) has been identified in the human genome. Currently, the epigenetic influences of SNPs on their neighboring CpG sites remain elusive. A growing body of evidence suggests that locus-specific information, including genomic features and local epigenetic state, may play important roles in the epigenetic readout of SNPs. In this study, we made use of mouse methylomes with known SNPs to develop statistical models for the prediction of SNP associated allele-specific DNA methylation (ASM). ASM has been classified into parent-of-origin dependent ASM (P-ASM) and sequence-dependent ASM (S-ASM), which comprises scattered-S-ASM (sS-ASM) and clustered-S-ASM (cS-ASM). We found that P-ASM and cS-ASM CpG sites are both enriched in CpG rich regions, promoters and exons, while sS-ASM CpG sites are enriched in simple repeat and regions with high frequent SNP occurrence. Using Lasso-grouped Logistic Regression (LGLR), we selected 21 out of 282 genomic and methylation related features that are powerful in distinguishing cS-ASM CpG sites and trained the classifiers with machine learning techniques. Based on 5-fold cross-validation, the logistic regression classifier was found to be the best for cS-ASM prediction with an ACC of 0.77, an AUC of 0.84 and an MCC of 0.54. Lastly, we applied the logistic regression classifier on human brain methylome and predicted 608 genes associated with cS-ASM. Gene ontology term enrichment analysis indicated that these cS-ASM associated genes are significantly enriched in the category coding for transcripts with alternative splicing forms. In summary, this study provided an analytical procedure for cS-ASM prediction and shed new light on the understanding of different types of ASM events.
Collapse
Affiliation(s)
- Jianlin He
- Laboratory of Genome Variation and Precision Biomedicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China.
| | - Ming-an Sun
- Epigenomics and Computational Biology Lab, Virginia Bioinformatics Institute, Virginia Tech, VA 24060, USA.
| | - Zhong Wang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510080, China; Center for Cellular & Structural Biology, Sun Yat-Sen University, Guangzhou 510080, China.
| | - Qianfei Wang
- Laboratory of Genome Variation and Precision Biomedicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China.
| | - Qing Li
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510080, China; Center for Cellular & Structural Biology, Sun Yat-Sen University, Guangzhou 510080, China.
| | - Hehuang Xie
- Laboratory of Genome Variation and Precision Biomedicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; Epigenomics and Computational Biology Lab, Virginia Bioinformatics Institute, Virginia Tech, VA 24060, USA; Department of Biological Sciences, Virginia Tech, VA 24060, USA.
| |
Collapse
|
27
|
Prokopuk L, Western PS, Stringer JM. Transgenerational epigenetic inheritance: adaptation through the germline epigenome? Epigenomics 2015; 7:829-46. [PMID: 26367077 DOI: 10.2217/epi.15.36] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Epigenetic modifications direct the way DNA is packaged into the nucleus, making genes more or less accessible to transcriptional machinery and influencing genomic stability. Environmental factors have the potential to alter the epigenome, allowing genes that are silenced to be activated and vice versa. This ultimately influences disease susceptibility and health in an individual. Furthermore, altered chromatin states can be transmitted to subsequent generations, thus epigenetic modifications may provide evolutionary mechanisms that impact on adaptation to changed environments. However, the mechanisms involved in establishing and maintaining these epigenetic modifications during development remain unclear. This review discusses current evidence for transgenerational epigenetic inheritance, confounding issues associated with its study, and the biological relevance of altered epigenetic states for subsequent generations.
Collapse
Affiliation(s)
- Lexie Prokopuk
- Centre for Genetic Diseases, Hudson Institute of Medical Research, 27-31 Wright Street, Clayton, Victoria 3168, Australia.,Molecular & Translational Science, Monash University, Clayton, Victoria 3168, Australia
| | - Patrick S Western
- Centre for Genetic Diseases, Hudson Institute of Medical Research, 27-31 Wright Street, Clayton, Victoria 3168, Australia.,Molecular & Translational Science, Monash University, Clayton, Victoria 3168, Australia
| | - Jessica M Stringer
- Centre for Genetic Diseases, Hudson Institute of Medical Research, 27-31 Wright Street, Clayton, Victoria 3168, Australia.,Molecular & Translational Science, Monash University, Clayton, Victoria 3168, Australia
| |
Collapse
|
28
|
Nakagaki A, Osanai H, Kishino T. Imprinting analysis of the mouse chromosome 7C region in DNMT1-null embryos. Gene 2014; 553:63-8. [PMID: 25300248 DOI: 10.1016/j.gene.2014.10.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Revised: 07/02/2014] [Accepted: 10/05/2014] [Indexed: 02/06/2023]
Abstract
The mouse chromosome 7C, orthologous to the human 15q11-q13 has an imprinted domain, where most of the genes are expressed only from the paternal allele. The imprinted domain contains paternally expressed genes, Snurf/Snrpn, Ndn, Magel2, Mkrn3, and Frat3, C/D-box small nucleolar RNAs (snoRNAs), and the maternally expressed gene, Ube3a. Imprinted expression in this large (approximately 3-4 Mb) domain is coordinated by a bipartite cis-acting imprinting center (IC), located upstream of the Snurf/Snrpn gene. The molecular mechanism how IC regulates gene expression of the whole domain remains partially understood. Here we analyzed the relationship between imprinted gene expression and DNA methylation in the mouse chromosome 7C using DNA methyltransferase 1 (DNMT1)-null mutant embryos carrying Dnmt1(ps) alleles, which show global loss of DNA methylation and embryonic lethality. In the DNMT1-null embryos at embryonic day 9.5, the paternally expressed genes were biallelically expressed. Bisulfite DNA methylation analysis revealed loss of methylation on the maternal allele in the promoter regions of the genes. These results demonstrate that DNMT1 is necessary for monoallelic expression of the imprinted genes in the chromosome 7C domain, suggesting that DNA methylation in the secondary differentially methylated regions (DMRs), which are acquired during development serves primarily to control the imprinted expression from the maternal allele in the mouse chromosome 7C.
Collapse
Affiliation(s)
- Ayumi Nakagaki
- Division of Functional Genomics, Center for Frontier Life Sciences, Nagasaki University, Sakamoto 1-12-4, Nagasaki 852-8523, Japan
| | - Hanae Osanai
- Division of Functional Genomics, Center for Frontier Life Sciences, Nagasaki University, Sakamoto 1-12-4, Nagasaki 852-8523, Japan
| | - Tatsuya Kishino
- Division of Functional Genomics, Center for Frontier Life Sciences, Nagasaki University, Sakamoto 1-12-4, Nagasaki 852-8523, Japan.
| |
Collapse
|
29
|
Bahar Halpern K, Vana T, Walker MD. Paradoxical role of DNA methylation in activation of FoxA2 gene expression during endoderm development. J Biol Chem 2014; 289:23882-92. [PMID: 25016019 DOI: 10.1074/jbc.m114.573469] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The transcription factor FoxA2 is a master regulator of endoderm development and pancreatic beta cell gene expression. To elucidate the mechanisms underlying the activation of the FoxA2 gene during differentiation, we have compared the epigenetic status of undifferentiated human embryonic stem cells (hESCs), hESC-derived early endoderm stage cells (CXCR4+ cells), and pancreatic islet cells. Unexpectedly, a CpG island in the promoter region of the FoxA2 gene displayed paradoxically high levels of DNA methylation in expressing tissues (CXCR4+, islets) and low levels in nonexpressing tissues. This CpG island region was found to repress reporter gene expression and bind the Polycomb group protein SUZ12 and the DNA methyltransferase (DNMT)3b preferentially in undifferentiated hESCs as compared with CXCR4+ or islets cells. Consistent with this, activation of FoxA2 gene expression, but not CXCR4 or SOX17, was strongly inhibited by 5-aza-2'-deoxycytidine and by knockdown of DNMT3b. We hypothesize that in nonexpressing tissues, the lack of DNA methylation allows the binding of DNA methyltransferases and repressing proteins, such as Polycomb group proteins; upon differentiation, DNMT activation leads to CpG island methylation, causing loss of repressor protein binding. These results suggest a novel and unexpected role for DNA methylation in the activation of FoxA2 gene expression during differentiation.
Collapse
Affiliation(s)
- Keren Bahar Halpern
- From the Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Tal Vana
- From the Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Michael D Walker
- From the Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
30
|
Buckberry S, Bianco-Miotto T, Roberts CT. Imprinted and X-linked non-coding RNAs as potential regulators of human placental function. Epigenetics 2013; 9:81-9. [PMID: 24081302 DOI: 10.4161/epi.26197] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Pregnancy outcome is inextricably linked to placental development, which is strictly controlled temporally and spatially through mechanisms that are only partially understood. However, increasing evidence suggests non-coding RNAs (ncRNAs) direct and regulate a considerable number of biological processes and therefore may constitute a previously hidden layer of regulatory information in the placenta. Many ncRNAs, including both microRNAs and long non-coding transcripts, show almost exclusive or predominant expression in the placenta compared with other somatic tissues and display altered expression patterns in placentas from complicated pregnancies. In this review, we explore the results of recent genome-scale and single gene expression studies using human placental tissue, but include studies in the mouse where human data are lacking. Our review focuses on the ncRNAs epigenetically regulated through genomic imprinting or X-chromosome inactivation and includes recent evidence surrounding the H19 lincRNA, the imprinted C19MC cluster microRNAs, and X-linked miRNAs associated with pregnancy complications.
Collapse
Affiliation(s)
- Sam Buckberry
- The Robinson Institute; Research Centre for Reproductive Health; School of Paediatrics and Reproductive Health; The University of Adelaide; Adelaide, SA Australia
| | - Tina Bianco-Miotto
- The Robinson Institute; Research Centre for Reproductive Health; School of Paediatrics and Reproductive Health; The University of Adelaide; Adelaide, SA Australia; School of Agriculture Food & Wine; The University of Adelaide; Adelaide, SA Australia
| | - Claire T Roberts
- The Robinson Institute; Research Centre for Reproductive Health; School of Paediatrics and Reproductive Health; The University of Adelaide; Adelaide, SA Australia
| |
Collapse
|
31
|
Loke YJ, Galati JC, Morley R, Joo EJH, Novakovic B, Li X, Weinrich B, Carson N, Ollikainen M, Ng HK, Andronikos R, Aziz NKA, Saffery R, Craig JM. Association of maternal and nutrient supply line factors with DNA methylation at the imprinted IGF2/H19 locus in multiple tissues of newborn twins. Epigenetics 2013; 8:1069-79. [PMID: 23917818 DOI: 10.4161/epi.25908] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Epigenetic events are crucial for early development, but can be influenced by environmental factors, potentially programming the genome for later adverse health outcomes. The insulin-like growth factor 2 (IGF2)/H19 locus is crucial for prenatal growth and the epigenetic state at this locus is environmentally labile. Recent studies have implicated maternal factors, including folate intake and smoking, in the regulation of DNA methylation at this locus, although data are often conflicting in the direction and magnitude of effect. Most studies have focused on single tissues and on one or two differentially-methylated regions (DMRs) regulating IGF2/H19 expression. In this study, we investigated the relationship between multiple shared and non-shared gestational/maternal factors and DNA methylation at four IGF2/H19 DMRs in five newborn cell types from 67 pairs of monozygotic and 49 pairs of dizygotic twins. Data on maternal and non-shared supply line factors were collected during the second and third trimesters of pregnancy and DNA methylation was measured via mass spectrometry using Sequenom MassArray EpiTyper analysis. Our exploratory approach showed that the site of umbilical cord insertion into the placenta in monochorionic twins has the strongest positive association with methylation in all IGF2/H19 DMRs (p<0.05). Further, evidence for tissue- and locus-specific effects were observed, emphasizing that responsiveness to environmental exposures in utero cannot be generalized across genes and tissues, potentially accounting for the lack of consistency in previous findings. Such complexity in responsiveness to environmental exposures in utero has implications for all epigenetic studies investigating the developmental origins of health and disease.
Collapse
Affiliation(s)
- Yuk Jing Loke
- Department of Paediatrics; University of Melbourne; Parkville, VIC Australia; Early Life Epigenetics Group; Murdoch Childrens Research Institute (MCRI); Royal Children's Hospital; Parkville, VIC Australia
| | - John C Galati
- Clinical Epidemiology and Biostatistics Unit; Murdoch Childrens Research Institute (MCRI); Royal Children's Hospital; Parkville, VIC Australia; Department of Mathematics and Statistics; La Trobe University; Melbourne, VIC Australia
| | - Ruth Morley
- Early Life Epigenetics Group; Murdoch Childrens Research Institute (MCRI); Royal Children's Hospital; Parkville, VIC Australia
| | - Eric Ji-Hoon Joo
- Department of Paediatrics; University of Melbourne; Parkville, VIC Australia; Cancer, Disease and Developmental Epigenetics Group; Murdoch Childrens Research Institute (MCRI); Royal Children's Hospital; Parkville, VIC Australia
| | - Boris Novakovic
- Department of Paediatrics; University of Melbourne; Parkville, VIC Australia; Cancer, Disease and Developmental Epigenetics Group; Murdoch Childrens Research Institute (MCRI); Royal Children's Hospital; Parkville, VIC Australia
| | - Xin Li
- Early Life Epigenetics Group; Murdoch Childrens Research Institute (MCRI); Royal Children's Hospital; Parkville, VIC Australia
| | - Blaise Weinrich
- Early Life Epigenetics Group; Murdoch Childrens Research Institute (MCRI); Royal Children's Hospital; Parkville, VIC Australia
| | - Nicole Carson
- Early Life Epigenetics Group; Murdoch Childrens Research Institute (MCRI); Royal Children's Hospital; Parkville, VIC Australia
| | - Miina Ollikainen
- Hjelt Institute; Department of Public Health; University of Helsinki; Helsinki, Finland
| | - Hong-Kiat Ng
- Cancer, Disease and Developmental Epigenetics Group; Murdoch Childrens Research Institute (MCRI); Royal Children's Hospital; Parkville, VIC Australia
| | - Roberta Andronikos
- Department of Paediatrics; University of Melbourne; Parkville, VIC Australia; Early Life Epigenetics Group; Murdoch Childrens Research Institute (MCRI); Royal Children's Hospital; Parkville, VIC Australia
| | - Nur Khairunnisa Abdul Aziz
- Department of Paediatrics; University of Melbourne; Parkville, VIC Australia; Early Life Epigenetics Group; Murdoch Childrens Research Institute (MCRI); Royal Children's Hospital; Parkville, VIC Australia
| | - Richard Saffery
- Department of Paediatrics; University of Melbourne; Parkville, VIC Australia; Cancer, Disease and Developmental Epigenetics Group; Murdoch Childrens Research Institute (MCRI); Royal Children's Hospital; Parkville, VIC Australia
| | - Jeffrey M Craig
- Department of Paediatrics; University of Melbourne; Parkville, VIC Australia; Early Life Epigenetics Group; Murdoch Childrens Research Institute (MCRI); Royal Children's Hospital; Parkville, VIC Australia
| |
Collapse
|
32
|
Kedia-Mokashi NA, Kadam L, Ankolkar M, Dumasia K, Balasinor NH. Aberrant methylation of multiple imprinted genes in embryos of tamoxifen-treated male rats. Reproduction 2013; 146:155-68. [DOI: 10.1530/rep-12-0439] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Genomic imprinting is an epigenetic phenomenon known to regulate fetal growth and development. Studies from our laboratory have demonstrated that treatment of adult male rats with tamoxifen increased postimplantation loss around mid gestation. Further studies demonstrated the aberrant expression of transcripts of several imprinted genes in the resorbing embryos at days 11 and 13 of gestation including IGF2. In addition, decreased methylation at theIgf2–H19imprint control region was observed in spermatozoa and in resorbing embryos sired by tamoxifen-treated males. In this study, methylation analysis of the imprinted genes, which were found to be differentially expressed, was done using EpiTYPER in the spermatozoa of tamoxifen-treated rats and in postimplantation embryos sired by tamoxifen-treated rats. Differentially methylated regions (DMRs) for most imprinted genes have not been identified in the rats. Hence, initial experiments were performed to identify the putative DMRs in the genes selected for the study. Increased methylation at CpG islands present in the putative DMRs of a number of imprinted genes was observed in the resorbing embryos sired by tamoxifen-treated male rats. This increase in methylation is associated with the downregulation of most of these genes at the transcript level in resorbing embryos. No change in the methylation status of these genes was observed in spermatozoa. These observations suggest that a deregulation of mechanisms protecting unmethylated alleles from a wave ofde novomethylation occurs following implantation.
Collapse
|
33
|
Haggarty P, Hoad G, Horgan GW, Campbell DM. DNA methyltransferase candidate polymorphisms, imprinting methylation, and birth outcome. PLoS One 2013; 8:e68896. [PMID: 23922667 PMCID: PMC3724884 DOI: 10.1371/journal.pone.0068896] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Accepted: 06/09/2013] [Indexed: 01/10/2023] Open
Abstract
Background Birth weight and prematurity are important obstetric outcomes linked to lifelong health. We studied a large birth cohort to look for evidence of epigenetic involvement in birth outcomes. Methods We investigated the association between birth weight, length, placental weight and duration of gestation and four candidate variants in 1,236 mothers and 1,073 newborns; DNMT1 (rs2162560), DNMT3A (rs734693), DNMT3B (rs2424913) and DNMT3L (rs7354779). We measured methylation of LINE1 and the imprinted genes, PEG3, SNRPN, and IGF2, in cord blood. Results The minor DNMT3L allele in the baby was associated with higher birth weight (+54 95% CI 10,99 g; p = 0.016), birth length (+0.23 95% CI 0.04,0.42 cm; p = 0.017), placental weight, (+18 95% CI 3,33 g; p = 0.017), and reduced risk of being in the lowest birth weight decile (p = 0.018) or requiring neonatal care (p = 0.039). The DNMT3B minor allele in the mother was associated with an increased risk of prematurity (p = 0.001). Placental size was related to PEG3 (p<0.001) and IGF2 (p<0.001) methylation. Birth weight was related to LINE1 and IGF2 methylation but only at p = 0.052. The risk of requiring neonatal treatment was related to LINE1 (p = 0.010) and SNRPN (p = 0.001) methylation. PEG3 methylation was influenced by baby DNMT3A genotype (p = 0.012) and LINE1 by baby 3B genotype (p = 0.044). Maternal DNMT3L genotype was related to IGF2 methylation in the cord blood but this effect was only seen in carriers of the minor frequency allele (p = 0.050). Conclusions The results here suggest that epigenetic processes are linked birth outcome and health in early life. Our emerging understanding of the role of epigenetics in health and biological function across the lifecourse suggests that these early epigenetic events could have longer term implications.
Collapse
Affiliation(s)
- Paul Haggarty
- Lifelong Health, Rowett Institute of Nutrition and Health, University of Aberdeen, Aberdeen, United Kingdom.
| | | | | | | |
Collapse
|
34
|
Stringer JM, Barrand S, Western P. Fine-tuning evolution: germ-line epigenetics and inheritance. Reproduction 2013; 146:R37-48. [PMID: 23633622 DOI: 10.1530/rep-12-0526] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
In mice, epiblast cells found both the germ-line and somatic lineages in the developing embryo. These epiblast cells carry epigenetic information from both parents that is required for development and cell function in the fetus and during post-natal life. However, germ cells must establish an epigenetic program that supports totipotency and the configuration of parent-specific epigenetic states in the gametes. To achieve this, the epigenetic information inherited by the primordial germ cells at specification is erased and new epigenetic states are established during development of the male and female germ-lines. Errors in this process can lead to transmission of epimutations through the germ-line, which have the potential to affect development and disease in the parent's progeny. This review discusses epigenetic reprogramming in the germ-line and the transmission of epigenetic information to the following generation.
Collapse
Affiliation(s)
- Jessica M Stringer
- Germ Cell Development and Epigenetics Laboratory, Centre for Reproduction and Development, Monash Institute of Medical Research, 27-31 Wright Street, Clayton, Victoria 3168, Australia
| | | | | |
Collapse
|
35
|
Haggarty P, Hoad G, Campbell DM, Horgan GW, Piyathilake C, McNeill G. Folate in pregnancy and imprinted gene and repeat element methylation in the offspring. Am J Clin Nutr 2013; 97:94-9. [PMID: 23151531 DOI: 10.3945/ajcn.112.042572] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Epigenetic regulation of imprinted genes and transposable elements has been implicated in human disease and may be affected by maternal diet. OBJECTIVE The objective was to determine the effect on offspring epigenetic status of nutritional and genetic factors that influence folate exposure in pregnancy. DESIGN We measured folate intake from diet, the use of folic acid supplements and the period of consumption, maternal and cord red blood cell (RBC) folate, and genotypes for 5 methylation cycle enzymes in a prospective cohort study of pregnancies in the United Kingdom between 2000 and 2006. We related these to offspring methylation status within 3 maternally methylated imprinted genes: paternally expressed gene 3 (PEG3), insulin-like growth factor 2 (IGF2), and small nuclear ribonucleoprotein polypeptide N, and the long interspersed nuclear element 1 (LINE-1) in genomic DNA extracted from whole blood in 913 pregnancies. RESULTS Supplement use after 12 wk of gestation was associated with a higher level of methylation in IGF2 (+0.7%; 95% CI: 0.02, 1.4; P = 0.044) and reduced methylation in both PEG3 (-0.5%; 95% CI: -0.9, -0.1; P = 0.018) and LINE-1 (-0.3%; 95% CI: -0.6, -0.04; P = 0.029). The same pattern was observed in relation to RBC folate in the cord blood at birth: IGF2 (P = 0.038), PEG3 (P < 0.001), and LINE-1 (P < 0.001). LINE-1 methylation was related to maternal RBC folate (P = 0.001) at 19 wk. No effect of supplement use up to 12 wk (current recommendation) was found. CONCLUSIONS Folic acid use after 12 wk of gestation influences offspring repeat element and imprinted gene methylation. We need to understand the consequences of these epigenetic effects.
Collapse
Affiliation(s)
- Paul Haggarty
- Lifelong Health, Rowett Institute of Nutrition and Health, University of Aberdeen, Aberdeen, United Kingdom.
| | | | | | | | | | | |
Collapse
|
36
|
Li H, Su X, Gallegos J, Lu Y, Ji Y, Molldrem JJ, Liang S. dsPIG: a tool to predict imprinted genes from the deep sequencing of whole transcriptomes. BMC Bioinformatics 2012; 13:271. [PMID: 23083219 PMCID: PMC3497615 DOI: 10.1186/1471-2105-13-271] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Accepted: 09/28/2012] [Indexed: 12/01/2022] Open
Abstract
Background Dysregulation of imprinted genes, which are expressed in a parent-of-origin-specific manner, plays an important role in various human diseases, such as cancer and behavioral disorder. To date, however, fewer than 100 imprinted genes have been identified in the human genome. The recent availability of high-throughput technology makes it possible to have large-scale prediction of imprinted genes. Here we propose a Bayesian model (dsPIG) to predict imprinted genes on the basis of allelic expression observed in mRNA-Seq data of independent human tissues. Results Our model (dsPIG) was capable of identifying imprinted genes with high sensitivity and specificity and a low false discovery rate when the number of sequenced tissue samples was fairly large, according to simulations. By applying dsPIG to the mRNA-Seq data, we predicted 94 imprinted genes in 20 cerebellum samples and 57 imprinted genes in 9 diverse tissue samples with expected low false discovery rates. We also assessed dsPIG using previously validated imprinted and non-imprinted genes. With simulations, we further analyzed how imbalanced allelic expression of non-imprinted genes or different minor allele frequencies affected the predictions of dsPIG. Interestingly, we found that, among biallelically expressed genes, at least 18 genes expressed significantly more transcripts from one allele than the other among different individuals and tissues. Conclusion With the prevalence of the mRNA-Seq technology, dsPIG has become a useful tool for analysis of allelic expression and large-scale prediction of imprinted genes. For ease of use, we have set up a web service and also provided an R package for dsPIG at http://www.shoudanliang.com/dsPIG/.
Collapse
Affiliation(s)
- Hua Li
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | | | | | | | | | | | | |
Collapse
|
37
|
Xiao Z, Wang C, Mo D, Li J, Chen Y, Zhang Z, Cong P. Promoter CpG methylation status in porcine Lyn is associated with its expression levels. Gene 2012; 511:73-8. [PMID: 23000019 DOI: 10.1016/j.gene.2012.08.050] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Revised: 08/07/2012] [Accepted: 08/28/2012] [Indexed: 11/26/2022]
Abstract
Resistance to disease and improvement of product quality are important goals in pig farming. Tyrosine Protein Kinase Lyn (LYN) is one of several Src-family tyrosine kinases in immune cells. This protein functions both as a positive and negative regulator of B cell activation, and regulates signaling pathways through phosphorylation of inhibitory receptors, enzymes and adaptors, which suggested that LYN could be correlated with immunity and can be considered as a candidate gene to study in disease resistance. Until now, the profiles of expression and transcriptional regulation of the LYN gene in pig breeds different in immune capacity remain unclear. Using real-time PCR, it indicated that porcine LYN mRNA expressed mainly in immune organs including the spleen, duodenum and liver. Furthermore, Dahuabai pigs (a kind of Chinese indigenous pig breeds with higher immune capacity) showed significant higher LYN mRNA expression levels than that in Landrace. Methylation analysis indicates that LYN expression levels were associated with the methylation status of the LYN promoter, and methylation of the novel CpG site at -1268C/-1267G generated by transposition at -1267 (A→G) results in up-regulating transcriptional activity of this gene. Interestingly, the base A located in -1267 mainly exhibited in landrace while the base G mainly in Dahuabai pigs. These results might contribute to study the function of this gene in pig breeding for disease resistance.
Collapse
Affiliation(s)
- Zhengzhong Xiao
- College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China
| | | | | | | | | | | | | |
Collapse
|
38
|
Braun K, Beining M, Wiessler M, Lammers T, Pipkorn R, Hennrich U, Nokihara K, Semmler W, Debus J, Waldeck W. BioShuttle mobility in living cells studied with high-resolution FCS & CLSM methodologies. Int J Med Sci 2012; 9:339-52. [PMID: 22811608 PMCID: PMC3399214 DOI: 10.7150/ijms.4414] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 06/18/2012] [Indexed: 01/04/2023] Open
Abstract
With the increase in molecular diagnostics and patient-specific therapeutic approaches, the delivery and targeting of imaging molecules and pharmacologically active agents gain increasing importance. The ideal delivery system does not exist yet. The realization of two features is indispensable: first, a locally high concentration of target-specific diagnostic and therapeutic molecules; second, the broad development of effective and safe carrier systems. Here we characterize the transport properties of the peptide-based BioShuttle transporter using FFM and CLSM methods. The modular design of BioShuttle-based formulations results in a multi-faceted field of applications, also as a theranostic tool.
Collapse
Affiliation(s)
- Klaus Braun
- Dept. of Imaging and Radiooncology, German Cancer Research Center, Im Neuenheimer Feld 280, Heidelberg, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
|
40
|
Anastasiadou C, Malousi A, Maglaveras N, Kouidou S. Human epigenome data reveal increased CpG methylation in alternatively spliced sites and putative exonic splicing enhancers. DNA Cell Biol 2011; 30:267-75. [PMID: 21545276 DOI: 10.1089/dna.2010.1094] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The role of gene body methylation, which represents a major part of methylation in DNA, remains mostly unknown. Evidence based on the CpG distribution associates its presence with nucleosome positioning and alternative splicing. Recently, it was also shown that cytosine methylation influences splicing. However, to date, there is no methylation-based data on the association of methylation with alternative splicing and the distribution in exonic splicing enhancers (ESEs). We presently report that, based on the computational analysis of the Human Epigenome Project data, CpG hypermethylation (>80%) is frequent in alternatively spliced sites (particularly in noncanonical) but not in alternate promoters. The methylation frequency increases in sequences containing multiple putative ESEs. However, significant differences in the extent of methylation are observed among different ESEs. Specifically, moderate levels of methylation, ranging from 20% to 80%, are frequent in SRp55-binding elements, which are associated with response to extracellular conditions, but not in SF2/ASF, primarily responsible for alternative splicing, or in CpG islands. Finally, methylation is more frequent in the presence of AT repeats and CpGs separated by 10 nucleotides and lower in adjacent CpGs, probably indicating its dependence on helical formations and on the presence of nucleosome positioning-related sequences. In conclusion, our results show the regulation of methylation in ESEs and support its involvement in alternative splicing.
Collapse
Affiliation(s)
- Christina Anastasiadou
- Laboratory of Medical Informatics, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | | | | |
Collapse
|
41
|
Assisted reproductive technologies do not increase risk of abnormal methylation of PEG1/MEST in human early pregnancy loss. Fertil Steril 2011; 96:84-89.e2. [DOI: 10.1016/j.fertnstert.2011.04.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Revised: 04/01/2011] [Accepted: 04/04/2011] [Indexed: 12/21/2022]
|
42
|
Riminucci M, Robey PG, Saggio I, Bianco P. Skeletal progenitors and the GNAS gene: fibrous dysplasia of bone read through stem cells. J Mol Endocrinol 2010; 45:355-64. [PMID: 20841428 PMCID: PMC3384548 DOI: 10.1677/jme-10-0097] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Activating mutations of the GNAS gene, which causes fibrous dysplasia of bone (FD), lead to remarkable changes in the properties of skeletal progenitors, and it is these changes that mediate the pathological effect of this gene on bone. Mutated skeletal stem cells lose the ability to differentiate into adipocytes, and to maintain in situ, and transfer heterotopically, the hematopoietic microenvironment, leading to abnormal bone marrow histology in FD. They overexpress molecular effectors of osteoclastogenesis, thus promoting inappropriate bone resorption leading to fragility of FD bone. They express the phosphate-regulating hormone FGF-23 at normal levels, whose excess in the serum of FD patients correlates with the mass of osteogenic cells within FD lesions, leading to osteomalacia and deformity of the FD bone, and revealing that bone is an endocrine organ regulating renal handling of phosphate. Mechanisms of allelic selection and stem cell selection occur in mutated skeletal stem cells and contribute to the inherent diversity and evolution over time in FD. The definition of the etiological role of GNAS mutations marks the watershed between many decades of descriptive observation and the definition of cellular and molecular mechanisms that would explain and hopefully allow for a cure for the disease. Placing stem cells at center stage has permitted substantial advances in one decade, and promises more for the one to come.
Collapse
Affiliation(s)
- Mara Riminucci
- Department of Molecular Medicine, La Sapienza University, 00161 Rome, Italy
- Biomedical Science Park San Raffaele, 00128 Rome, Italy
| | - Pamela Gehron Robey
- Craniofacial and Skeletal Diseases Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, USA
| | - Isabella Saggio
- Biomedical Science Park San Raffaele, 00128 Rome, Italy
- Department of Genetics and Molecular Biology, Sapienza University of Rome, and Institute for Molecular Biology and Pathology, National Research Council (CNR) Rome, Italy
| | - Paolo Bianco
- Department of Molecular Medicine, La Sapienza University, 00161 Rome, Italy
- Biomedical Science Park San Raffaele, 00128 Rome, Italy
| |
Collapse
|
43
|
Yang J, Cai J, Zhang Y, Wang X, Li W, Xu J, Li F, Guo X, Deng K, Zhong M, Chen Y, Lai L, Pei D, Esteban MA. Induced pluripotent stem cells can be used to model the genomic imprinting disorder Prader-Willi syndrome. J Biol Chem 2010; 285:40303-11. [PMID: 20956530 DOI: 10.1074/jbc.m110.183392] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The recent discovery of induced pluripotent stem cell (iPSC) technology provides an invaluable tool for creating in vitro representations of human genetic conditions. This is particularly relevant for those diseases that lack adequate animal models or where the species comparison is difficult, e.g. imprinting diseases such as the neurogenetic disorder Prader-Willi syndrome (PWS). However, recent reports have unveiled transcriptional and functional differences between iPSCs and embryonic stem cells that in cases are attributable to imprinting errors. This has suggested that human iPSCs may not be useful to model genetic imprinting diseases. Here, we describe the generation of iPSCs from a patient with PWS bearing a partial translocation of the paternally expressed chromosome 15q11-q13 region to chromosome 4. The resulting iPSCs match all standard criteria of bona fide reprogramming and could be readily differentiated into tissues derived from the three germ layers, including neurons. Moreover, these iPSCs retain a high level of DNA methylation in the imprinting center of the maternal allele and show concomitant reduced expression of the disease-associated small nucleolar RNA HBII-85/SNORD116. These results indicate that iPSCs may be a useful tool to study PWS and perhaps other genetic imprinting diseases as well.
Collapse
Affiliation(s)
- Jiayin Yang
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Guerrero-Bosagna C, Settles M, Lucker B, Skinner MK. Epigenetic transgenerational actions of vinclozolin on promoter regions of the sperm epigenome. PLoS One 2010; 5. [PMID: 20927350 PMCID: PMC2948035 DOI: 10.1371/journal.pone.0013100] [Citation(s) in RCA: 289] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Accepted: 08/31/2010] [Indexed: 12/16/2022] Open
Abstract
Previous observations have demonstrated that embryonic exposure to the endocrine disruptor vinclozolin during gonadal sex determination promotes transgenerational adult onset disease such as male infertility, kidney disease, prostate disease, immune abnormalities and tumor development. The current study investigates genome-wide promoter DNA methylation alterations in the sperm of F3 generation rats whose F0 generation mother was exposed to vinclozolin. A methylated DNA immunoprecipitation with methyl-cytosine antibody followed by a promoter tilling microarray (MeDIP-Chip) procedure was used to identify 52 different regions with statistically significant altered methylation in the sperm promoter epigenome. Mass spectrometry bisulfite analysis was used to map the CpG DNA methylation and 16 differential DNA methylation regions were confirmed, while the remainder could not be analyzed due to bisulfite technical limitations. Analysis of these validated regions identified a consensus DNA sequence (motif) that associated with 75% of the promoters. Interestingly, only 16.8% of a random set of 125 promoters contained this motif. One candidate promoter (Fam111a) was found to be due to a copy number variation (CNV) and not a methylation change, suggesting initial alterations in the germline epigenome may promote genetic abnormalities such as induced CNV in later generations. This study identifies differential DNA methylation sites in promoter regions three generations after the initial exposure and identifies common genome features present in these regions. In addition to primary epimutations, a potential indirect genetic abnormality was identified, and both are postulated to be involved in the epigenetic transgenerational inheritance observed. This study confirms that an environmental agent has the ability to induce epigenetic transgenerational changes in the sperm epigenome.
Collapse
Affiliation(s)
- Carlos Guerrero-Bosagna
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, Washington, United States of America
| | - Matthew Settles
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, Washington, United States of America
| | - Ben Lucker
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, Washington, United States of America
| | - Michael K. Skinner
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, Washington, United States of America
- * E-mail:
| |
Collapse
|
45
|
Turan N, Katari S, Gerson LF, Chalian R, Foster MW, Gaughan JP, Coutifaris C, Sapienza C. Inter- and intra-individual variation in allele-specific DNA methylation and gene expression in children conceived using assisted reproductive technology. PLoS Genet 2010; 6:e1001033. [PMID: 20661447 PMCID: PMC2908687 DOI: 10.1371/journal.pgen.1001033] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Accepted: 06/17/2010] [Indexed: 11/29/2022] Open
Abstract
Epidemiological studies have reported a higher incidence of rare disorders involving imprinted genes among children conceived using assisted reproductive technology (ART), suggesting that ART procedures may be disruptive to imprinted gene methylation patterns. We examined intra- and inter-individual variation in DNA methylation at the differentially methylated regions (DMRs) of the IGF2/H19 and IGF2R loci in a population of children conceived in vitro or in vivo. We found substantial variation in allele-specific methylation at both loci in both groups. Aberrant methylation of the maternal IGF2/H19 DMR was more common in the in vitro group, and the overall variance was also significantly greater in the in vitro group. We estimated the number of trophoblast stem cells in each group based on approximation of the variance of the binomial distribution of IGF2/H19 methylation ratios, as well as the distribution of X chromosome inactivation scores in placenta. Both of these independent measures indicated that placentas of the in vitro group were derived from fewer stem cells than the in vivo conceived group. Both IGF2 and H19 mRNAs were significantly lower in placenta from the in vitro group. Although average birth weight was lower in the in vitro group, we found no correlation between birth weight and IGF2 or IGF2R transcript levels or the ratio of IGF2/IGF2R transcript levels. Our results show that in vitro conception is associated with aberrant methylation patterns at the IGF2/H19 locus. However, very little of the inter- or intra-individual variation in H19 or IGF2 mRNA levels can be explained by differences in maternal DMR DNA methylation, in contrast to the expectations of current transcriptional imprinting models. Extraembryonic tissues of embryos cultured in vitro appear to be derived from fewer trophoblast stem cells. It is possible that this developmental difference has an effect on placental and fetal growth. We have screened a population of children conceived in vitro for epigenetic alterations at two loci that carry parent-of-origin specific methylation marks. We made the observation that epigenetic variability was greater in extraembryonic tissues than embryonic tissues in both groups, as has also been demonstrated in the mouse. The greater level of intra-individual variation in extraembryonic tissues of the in vitro group appears to result from these embryos having fewer trophoblast stem cells. We also made the unexpected observation that variability in parental origin-dependent epigenetic marking was poorly correlated with gene expression. In fact, there is such a high level of inter-individual variation in IGF2 transcript level that the presumed half-fold reduction in IGF2 mRNA accounted for by proper transcriptional imprinting versus complete loss of imprinting would account for less than 5% of the total population variance. Given this level of variability in the expression of an imprinted gene, the presumed operation of “parental conflict” as the selective force acting to maintain imprinted gene expression at the IGF2/H19 locus in the human should be revisited.
Collapse
Affiliation(s)
- Nahid Turan
- Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Sunita Katari
- Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Leigh F. Gerson
- Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Raffi Chalian
- Department of Obstetrics and Gynecology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Michael W. Foster
- Department of Obstetrics and Gynecology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - John P. Gaughan
- Biostatistics Consulting Center, Temple University School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Christos Coutifaris
- Department of Obstetrics and Gynecology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Carmen Sapienza
- Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, Philadelphia, Pennsylvania, United States of America
- Department of Pathology and Laboratory Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
46
|
Abstract
Normal fetal growth and development depends on multiple molecular mechanisms that coordinate both placental and fetal development. Efforts to better understand fetal/placental growth dysregulation and fetal growth restriction (FGR) are now being driven by several findings that highlight the longterm impact of FGR on susceptibility to disease. The association of poor fetal growth to perinatal medical complications is well accepted but more recent data also show that FGR is linked to common, serious adult health problems. Several large-scale human epidemiological studies from diverse countries have shown that conditions such as coronary heart disease, hypertension, stroke, type 2 diabetes mellitus, adiposity, insulin resistance and osteoporosis are more prevalent in individuals with a history of low birthweight.
Collapse
|
47
|
ZHAO YL, YU SX, YE WW, WANG HM, WANG JJ, FANG BX. Study on DNA Cytosine Methylation of Cotton (Gossypium hirsutum L.) Genome and Its Implication for Salt Tolerance. ACTA ACUST UNITED AC 2010. [DOI: 10.1016/s1671-2927(09)60155-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
48
|
Skinner MK, Manikkam M, Guerrero-Bosagna C. Epigenetic transgenerational actions of environmental factors in disease etiology. Trends Endocrinol Metab 2010; 21:214-22. [PMID: 20074974 PMCID: PMC2848884 DOI: 10.1016/j.tem.2009.12.007] [Citation(s) in RCA: 464] [Impact Index Per Article: 33.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2009] [Revised: 12/09/2009] [Accepted: 12/14/2009] [Indexed: 12/26/2022]
Abstract
The ability of environmental factors to promote a phenotype or disease state not only in the individual exposed but also in subsequent progeny for successive generations is termed transgenerational inheritance. The majority of environmental factors such as nutrition or toxicants such as endocrine disruptors do not promote genetic mutations or alterations in DNA sequence. However, these factors do have the capacity to alter the epigenome. Epimutations in the germline that become permanently programmed can allow transmission of epigenetic transgenerational phenotypes. This review provides an overview of the epigenetics and biology of how environmental factors can promote transgenerational phenotypes and disease.
Collapse
Affiliation(s)
- Michael K Skinner
- Center for Reproductive Biology, School of Molecular Biosciences, Washington State University, Pullman, WA 99164-4236, USA.
| | | | | |
Collapse
|
49
|
PELLEGRINI M, ARGIBAY P, GOMEZ D. Dietary factors, genetic and epigenetic influences in colorectal cancer. Exp Ther Med 2010; 1:241-250. [PMID: 22993535 PMCID: PMC3445943 DOI: 10.3892/etm_00000038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2009] [Accepted: 11/10/2009] [Indexed: 01/05/2023] Open
Abstract
Genetic influences, together with epigenetic components and dietary factors, play a fundamental role in the initiation and progression of cancer by causing a number of deregulations. Colorectal cancer (CRC) is a disease influenced by dietary factors, for which established genetic and epigenetic alterations have been identified. Within CRC, there are hereditary syndromes that present mutations in the germ-line hMLH1, and also alterations in the methylation of the promoters. Epigenetics has also been established as a pathway of carcinogenesis. In the present review, we analyzed studies conducted to discern the different pathways leading to established CRC, stressing the importance of identifying factors that may predict CRC at an early stage, since it is mostly a silent disease observed at the clinical level in advanced stages.
Collapse
Affiliation(s)
- M.L. PELLEGRINI
- Instituto de Ciencias Básicas y Medicina Experimental, Hospital Italiano de Buenos Aires
| | - P. ARGIBAY
- Instituto de Ciencias Básicas y Medicina Experimental, Hospital Italiano de Buenos Aires
| | - D.E. GOMEZ
- Laboratorio de Oncología Molecular, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Buenos Aires,
Argentina
| |
Collapse
|
50
|
Boissonnas CC, Abdalaoui HE, Haelewyn V, Fauque P, Dupont JM, Gut I, Vaiman D, Jouannet P, Tost J, Jammes H. Specific epigenetic alterations of IGF2-H19 locus in spermatozoa from infertile men. Eur J Hum Genet 2010; 18:73-80. [PMID: 19584898 DOI: 10.1038/ejhg.2009.117] [Citation(s) in RCA: 166] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
DNA methylation marks, a key modification of imprinting, are erased in primordial germ cells and sex specifically re-established during gametogenesis. Abnormal epigenetic programming has been proposed as a possible mechanism compromising male fertility. We analysed by pyrosequencing the DNA methylation status of 47 CpGs located in differentially methylated regions (DMRs), the DMR0 and DMR2 of the IGF2 gene and in the 3rd and 6th CTCF-binding sites of the H19 DMR in human sperm from men with normal semen and patients with teratozoospermia (T) and/or oligo-astheno-teratozoospermia (OAT). All normal semen samples presented the expected high global methylation level for all CpGs analysed. In the teratozoospermia group, 11 of 19 patients presented a loss of methylation at variable CpG positions either in the IGF2 DMR2 or in both the IGF2 DMR2 and the 6th CTCF of the H19 DMR. In the OAT group, 16 of 22 patients presented a severe loss of methylation of the 6th CTCF, closely correlated with sperm concentration. The methylation state of DMR0 and of the 3rd CTCF was never affected by the pathological status of sperm samples. This study demonstrates that epigenetic perturbations of the 6th CTCF site of the H19 DMR might be a relevant biomarker for quantitative defects of spermatogenesis in humans. Moreover, we defined a methylation threshold sustaining the classification of patients in two groups, unmethylated and methylated. Using this new classification of patients, the observed intrinsic imprinting defects of spermatozoa appear not to impair significantly the outcome of assisted reproductive technologies.
Collapse
Affiliation(s)
- Céline Chalas Boissonnas
- Biology of Reproduction-CECOS, Cochin-Saint Vincent de Paul Hospital, AP-HP, Department of Genetics and Development, Cochin Institute, University Paris-Descartes, Paris, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|