1
|
Zhang J, Yang CQ, Liu ZQ, Wu SP, Li ZG, Zhang LM, Fan HW, Guo ZY, Man HY, Li X, Lu YM, Zhu LQ, Liu D. Cpeb1 remodels cell type-specific translational program to promote fear extinction. SCIENCE ADVANCES 2025; 11:eadr8687. [PMID: 39792668 PMCID: PMC11721575 DOI: 10.1126/sciadv.adr8687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 12/06/2024] [Indexed: 01/12/2025]
Abstract
Protein translation is crucial for fear extinction, a process vital for adaptive behavior and mental health, yet the underlying cell-specific mechanisms remain elusive. Using a Tet-On 3G genetic approach, we achieved precise temporal control over protein translation in the infralimbic medial prefrontal cortex (IL) during fear extinction. In addition, our results reveal that the disruption of cytoplasmic polyadenylation element binding protein 1 (Cpeb1) leads to notable alterations in cell type-specific translational programs, thereby affecting fear extinction. Specifically, Cpeb1 deficiency in neurons activates the translation of heterochromatin protein 1 binding protein 3, which enhances microRNA networks, whereas in microglia, it suppresses the translation of chemokine receptor 1 (Cx3cr1), resulting in an aged-like microglial phenotype. These coordinated alterations impair spine formation and plasticity. Our study highlights the critical role of cell type-specific protein translation in fear extinction and provides an insight into therapeutic targets for disorders with extinction deficits.
Collapse
Affiliation(s)
- Juan Zhang
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Chun-Qing Yang
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Zhi-Qiang Liu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Shi-Ping Wu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Zu-Guang Li
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Luo-Man Zhang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450002, China
| | - Hong-Wei Fan
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Zi-Yuan Guo
- Center for Stem Cell and Organoid Medicine (CuSTOM), Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Heng-Ye Man
- Department of Biology, Boston University, Boston, MA 02215, USA
| | - Xiang Li
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
- Medical Research Institute, Wuhan University, Wuhan, Hubei 430030, China
| | - You-Ming Lu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Ling-Qiang Zhu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Dan Liu
- Department of Medical Genetics, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| |
Collapse
|
2
|
Higa GSV, Viana FJC, Francis-Oliveira J, Cruvinel E, Franchin TS, Marcourakis T, Ulrich H, De Pasquale R. Serotonergic neuromodulation of synaptic plasticity. Neuropharmacology 2024; 257:110036. [PMID: 38876308 DOI: 10.1016/j.neuropharm.2024.110036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/15/2024] [Accepted: 06/11/2024] [Indexed: 06/16/2024]
Abstract
Synaptic plasticity constitutes a fundamental process in the reorganization of neural networks that underlie memory, cognition, emotional responses, and behavioral planning. At the core of this phenomenon lie Hebbian mechanisms, wherein frequent synaptic stimulation induces long-term potentiation (LTP), while less activation leads to long-term depression (LTD). The synaptic reorganization of neuronal networks is regulated by serotonin (5-HT), a neuromodulator capable of modify synaptic plasticity to appropriately respond to mental and behavioral states, such as alertness, attention, concentration, motivation, and mood. Lately, understanding the serotonergic Neuromodulation of synaptic plasticity has become imperative for unraveling its impact on cognitive, emotional, and behavioral functions. Through a comparative analysis across three main forebrain structures-the hippocampus, amygdala, and prefrontal cortex, this review discusses the actions of 5-HT on synaptic plasticity, offering insights into its role as a neuromodulator involved in emotional and cognitive functions. By distinguishing between plastic and metaplastic effects, we provide a comprehensive overview about the mechanisms of 5-HT neuromodulation of synaptic plasticity and associated functions across different brain regions.
Collapse
Affiliation(s)
- Guilherme Shigueto Vilar Higa
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, Butantã, São Paulo, SP, 05508-000, Brazil; Departamento de Bioquímica, Instituto de Química (USP), Butantã, São Paulo, SP, 05508-900, Brazil
| | - Felipe José Costa Viana
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, Butantã, São Paulo, SP, 05508-000, Brazil
| | - José Francis-Oliveira
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Emily Cruvinel
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, Butantã, São Paulo, SP, 05508-000, Brazil
| | - Thainá Soares Franchin
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, Butantã, São Paulo, SP, 05508-000, Brazil
| | - Tania Marcourakis
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, Butantã, São Paulo, SP, 05508-000, Brazil
| | - Henning Ulrich
- Departamento de Bioquímica, Instituto de Química (USP), Butantã, São Paulo, SP, 05508-900, Brazil
| | - Roberto De Pasquale
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, Butantã, São Paulo, SP, 05508-000, Brazil.
| |
Collapse
|
3
|
Klausing AD, Fukuwatari T, DeAngeli N, Bucci DJ, Schwarcz R. Adrenalectomy exacerbates stress-induced impairment in fear discrimination: A causal role for kynurenic acid? Biochem Pharmacol 2024; 228:116350. [PMID: 38852644 DOI: 10.1016/j.bcp.2024.116350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/28/2024] [Accepted: 06/06/2024] [Indexed: 06/11/2024]
Abstract
Impaired activity of the hypothalamic-pituitary axis and reduced blood levels of glucocorticoids (GCs) are signature features of stress-related maladies. Recent evidence suggests a possible role of the tryptophan metabolite kynurenic acid (KYNA) in this context. Here we investigated possible causal relationships in adult male rats, using stress-induced fear discrimination as a translationally relevant behavioral outcome measure. One week following adrenalectomy (ADX) or sham surgery, animals were for 2 h either physically restrained or exposed to a predator odor, which caused a much milder stress response. Extracellular KYNA levels were determined before, during and after stress by in vivo microdialysis in the prefrontal cortex. Separate cohorts underwent a fear discrimination procedure starting immediately after stress termination. Different auditory conditioned stimuli (CS) were either paired with a foot shock (CS+) or non-reinforced (CS-). One week later, fear was assessed by re-exposing the animals to each CS. Separate groups of rats were treated with the KYNA synthesis inhibitor BFF-816 prior to stress initiation to test a causal role of KYNA in fear discrimination. Restraint stress raised extracellular KYNA levels by ∼85 % in ADX rats for several hours, and these animals were unable to discriminate between CS+ and CS-. Both effects were prevented by BFF-816 and were not observed after exposure to predator odor or in sham-operated rats. These findings suggest that a causal connection exists between adrenal function, stress-induced KYNA increases, and behavioral deficits. Pharmacological inhibition of KYNA synthesis may therefore be an attractive, novel option for the treatment of stress-related disorders.
Collapse
Affiliation(s)
- Alex D Klausing
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Tsutomu Fukuwatari
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Nicole DeAngeli
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, USA
| | - David J Bucci
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, USA
| | - Robert Schwarcz
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
4
|
Molla HM, Miguelez Fernández AMM, Tseng KY. Late-adolescent onset of prefrontal endocannabinoid control of hippocampal and amygdalar inputs and its impact on trace-fear conditioning behavior. Neuropsychopharmacology 2024; 49:1417-1424. [PMID: 38467844 PMCID: PMC11250818 DOI: 10.1038/s41386-024-01844-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/28/2024] [Accepted: 03/04/2024] [Indexed: 03/13/2024]
Abstract
Prefrontal cortex (PFC) maturation during adolescence is characterized by structural and functional changes, which involve the remodeling of GABA and glutamatergic synapses, as well as changes in the endocannabinoid system. Yet, the way PFC endocannabinoid signaling interacts with local GABA and glutamatergic function to impact its processing of afferent transmission during the adolescent transition to adulthood remains unknown. Here we combined PFC local field potential recordings with local manipulations of 2-AG and anandamide levels to assess how PFC endocannabinoid signaling is recruited to modulate ventral hippocampal and basolateral amygdalar inputs in vivo in adolescent and adult male rats. We found that the PFC endocannabinoid signaling does not fully emerge until late-adolescence/young adulthood. Once present, both 2-AG and anandamide can be recruited in the PFC to limit the impact of hippocampal drive through a CB1R-mediated mechanism whereas basolateral amygdalar inputs are only inhibited by 2-AG. Similarly, the behavioral effects of increasing 2-AG and anandamide in the PFC do not emerge until late-adolescence/young adulthood. Using a trace fear conditioning paradigm, we found that elevating PFC 2-AG levels preferentially reduced freezing behavior during acquisition without affecting its extinction. In contrast, increasing anandamide levels in the PFC selectively disrupted the extinction of trace fear memory without affecting its acquisition. Collectively, these results indicate a protracted recruitment of PFC endocannabinoid signaling, which becomes online in late adolescence/young adulthood as revealed by its impact on hippocampal and amygdalar-evoked local field potential responses and trace fear memory behavior.
Collapse
Affiliation(s)
- Hanna M Molla
- Department of Anatomy and Cell Biology, University of Illinois Chicago - College of Medicine, Chicago, IL, 60612, USA
| | - Anabel M M Miguelez Fernández
- Department of Anatomy and Cell Biology, University of Illinois Chicago - College of Medicine, Chicago, IL, 60612, USA
| | - Kuei Y Tseng
- Department of Anatomy and Cell Biology, University of Illinois Chicago - College of Medicine, Chicago, IL, 60612, USA.
| |
Collapse
|
5
|
Rajbhandari AK, Barson JR, Gilmartin MR, Hammack SE, Chen BK. The functional heterogeneity of PACAP: Stress, learning, and pathology. Neurobiol Learn Mem 2023; 203:107792. [PMID: 37369343 PMCID: PMC10527199 DOI: 10.1016/j.nlm.2023.107792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/16/2023] [Accepted: 06/19/2023] [Indexed: 06/29/2023]
Abstract
Pituitary adenylate cyclase-activating peptide (PACAP) is a highly conserved and widely expressed neuropeptide that has emerged as a key regulator of multiple neural and behavioral processes. PACAP systems, including the various PACAP receptor subtypes, have been implicated in neural circuits of learning and memory, stress, emotion, feeding, and pain. Dysregulation within these PACAP systems may play key roles in the etiology of pathological states associated with these circuits, and PACAP function has been implicated in stress-related psychopathology, feeding and metabolic disorders, and migraine. Accordingly, central PACAP systems may represent important therapeutic targets; however, substantial heterogeneity in PACAP systems related to the distribution of multiple PACAP isoforms across multiple brain regions, as well as multiple receptor subtypes with several isoforms, signaling pathways, and brain distributions, provides both challenges and opportunities for the development of new clinically-relevant strategies to target the PACAP system in health and disease. Here we review the heterogeneity of central PACAP systems, as well as the data implicating PACAP systems in clinically-relevant behavioral processes, with a particular focus on the considerable evidence implicating a role of PACAP in stress responding and learning and memory. We also review data suggesting that there are sex differences in PACAP function and its interactions with sex hormones. Finally, we discuss both the challenges and promise of harnessing the PACAP system in the development of new therapeutic avenues and highlight PACAP systems for their critical role in health and disease.
Collapse
Affiliation(s)
| | - Jessica R Barson
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Marieke R Gilmartin
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI, United States
| | - Sayamwong E Hammack
- Department of Psychological Science, University of Vermont, 2 Colchester Avenue, Burlington, VT, United States
| | - Briana K Chen
- Division of Systems Neuroscience, Research Foundation for Mental Hygiene, Inc. (RFMH) / New York State Psychiatric Institute (NYSPI), New York, NY, United States; Department of Psychiatry, Columbia University Irving Medical Center (CUIMC), New York, NY, United States.
| |
Collapse
|
6
|
N-Methyl-D-Aspartate (NMDA) Receptors in the Prelimbic Cortex Are Required for Short- and Long-Term Memory Formation in Trace Fear Conditioning. Life (Basel) 2022; 12:life12050672. [PMID: 35629340 PMCID: PMC9147616 DOI: 10.3390/life12050672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 11/29/2022] Open
Abstract
Accumulating evidence suggests that the medial prefrontal cortex (mPFC) has been implicated in the acquisition of fear memory during trace fear conditioning in which a conditional stimulus (CS) is paired with an aversive unconditional stimulus (UCS) separated by a temporal gap (trace interval, TI). However, little is known about the role of the prefrontal cortex for short- and long-term trace fear memory formation. Thus, we investigated how the prelimbic (PL) subregion within mPFC in rats contributes to short- and long-term trace fear memory formation using electrolytic lesions and d,l,-2-amino-5-phosphonovaleric acid (APV), an N-methyl-D-aspartate receptor (NMDAR) antagonist infusions into PL. In experiment 1, pre-conditioning lesions of PL impaired freezing to the CS as well as TI during the acquisition and retrieval sessions, indicating that PL is critically involved in trace fear memory formation. In experiment 2, temporary blockade of NMDA receptors in PL impaired the acquisition, but not the expression of short- and long-term trace fear memory. In addition, the inactivation of NMDAR in PL had little effect on locomotor activity, pre-pulse inhibition (PPI), or shock sensitivity. Taken together, these results suggest that NMDA receptor-mediated neurotransmission in PL is required for the acquisition of trace fear memory.
Collapse
|
7
|
Yang S, Tseng KY. Maturation of Corticolimbic Functional Connectivity During Sensitive Periods of Brain Development. Curr Top Behav Neurosci 2022; 53:37-53. [PMID: 34386969 DOI: 10.1007/7854_2021_239] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The maturation of key corticolimbic structures and the prefrontal cortex during sensitive periods of brain development from early life through adolescence is crucial for the acquisition of a variety of cognitive and affective processes associated with adult behavior. In this chapter, we first review how key cellular and circuit level changes during adolescence dictate the development of the prefrontal cortex and its capacity to integrate contextual and emotional information from the ventral hippocampus and the amygdala. We further discuss how afferent transmission from ventral hippocampal and amygdala inputs displays unique age-dependent trajectories that directly impact prefrontal functional maturation through adolescence. We conclude by proposing that time-sensitive strengthening of specific corticolimbic synapses is a critical contributing factor for the protracted maturation of cognitive and emotional regulation by the prefrontal cortex.
Collapse
Affiliation(s)
- Shaolin Yang
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kuei Y Tseng
- Department of Anatomy and Cell Biology, University of Illinois at Chicago - College of Medicine, Chicago, IL, USA.
| |
Collapse
|
8
|
Wu YT, Chang CH. Functional Reuniens and Rhomboid Nuclei Are Required for Proper Acquisition and Expression of Cued and Contextual Fear in Trace Fear Conditioning. Int J Neuropsychopharmacol 2021; 25:319-327. [PMID: 34958668 PMCID: PMC9017769 DOI: 10.1093/ijnp/pyab094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/10/2021] [Accepted: 12/24/2021] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND The reuniens (Re) and rhomboid (Rh) nuclei (ReRh) of the midline thalamus interconnect the hippocampus and the medial prefrontal cortex. The hippocampus and medial prefrontal cortex are both involved in the acquisition of trace fear conditioning, in which a conditioned stimulus (tone) and an aversive unconditioned stimulus (footshock) are paired but separated in time with a trace interval. Earlier, we demonstrated that ReRh inactivation during trace conditioning impaired the acquisition of cued fear. In contrast, ReRh inactivation during both conditioning and test resulted in heightened fear to tones during retrieval. Because there was a generalized contextual fear on top of heightened fear to tones in the latter experiment, here we aimed to examine the specific importance of the functional ReRh in cued fear and contextual fear through introducing prolonged contextual exposure. METHODS The ReRh were pharmacologically inactivated with muscimol (or saline as controls) before each experimental session. RESULTS We showed that although ReRh inactivation before trace fear conditioning impaired the acquisition of cued fear, the animals still acquired a certain level of fear to the tones. However, without the functional ReRh throughout the entire behavioral sessions, these animals showed heightened contextual fear that did not decline much with the passage of time, which generalized to the other context, and fear to tones reoccurred when the tones were presented. CONCLUSIONS Our results suggested that functional ReRh are important for proper acquisition and expression of fear to context and tones acquired under trace procedure.
Collapse
Affiliation(s)
- Yi-ting Wu
- Institute of Systems Neuroscience, National Tsing Hua University, Hsinchu, Taiwan
| | - Chun-hui Chang
- Institute of Systems Neuroscience, National Tsing Hua University, Hsinchu, Taiwan,Brain Research Center, National Tsing Hua University, Hsinchu, Taiwan,Correspondence: Dr Chun-hui Chang, PhD, Institute of Systems Neuroscience, National Tsing Hua University, Kuang-Fu Rd, Sec 2, No 101, Hsinchu, Taiwan, 30013 ()
| |
Collapse
|
9
|
Peng X, Burwell RD. Beyond the hippocampus: The role of parahippocampal-prefrontal communication in context-modulated behavior. Neurobiol Learn Mem 2021; 185:107520. [PMID: 34537379 DOI: 10.1016/j.nlm.2021.107520] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/30/2021] [Accepted: 09/10/2021] [Indexed: 01/08/2023]
Abstract
Multiple paradigms indicate that the physical environment can influence spontaneous and learned behavior. In rodents, context-dependent behavior is putatively supported by the prefrontal cortex and the medial temporal lobe. A preponderance of the literature has targeted the role of the hippocampus. In addition to the hippocampus proper, the medial temporal lobe also comprises parahippocampal areas, including the perirhinal and postrhinal cortices. These parahippocampal areas directly connect with multiple regions in the prefrontal cortex. The function of these connections, however, is not well understood. This article first reviews the involvement of the perirhinal, postrhinal, and prefrontal cortices in context-dependent behavior in rodents. Then, based on functional and anatomical evidence, we suggest that perirhinal and postrhinal contributions to context-dependent behavior go beyond supporting context representation in the hippocampus. Specifically, we propose that the perirhinal and postrhinal cortices act as a contextual-support network that directly provides contextual and spatial information to the prefrontal cortex. In turn, the perirhinal and postrhinal cortices modulate prefrontal input to the hippocampus in the service of context-guided behavior.
Collapse
Affiliation(s)
- Xiangyuan Peng
- Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, Providence, RI 02912, USA
| | - Rebecca D Burwell
- Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, Providence, RI 02912, USA; Department of Neuroscience, Brown University, Providence, RI 02912, USA.
| |
Collapse
|
10
|
Gilmartin MR, Ferrara NC. Pituitary Adenylate Cyclase-Activating Polypeptide in Learning and Memory. Front Cell Neurosci 2021; 15:663418. [PMID: 34239418 PMCID: PMC8258392 DOI: 10.3389/fncel.2021.663418] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 06/02/2021] [Indexed: 02/01/2023] Open
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a highly conserved neuropeptide that regulates neuronal physiology and transcription through Gs/Gq-coupled receptors. Its actions within hypothalamic, limbic, and mnemonic systems underlie its roles in stress regulation, affective processing, neuroprotection, and cognition. Recently, elevated PACAP levels and genetic disruption of PAC1 receptor signaling in humans has been linked to maladaptive threat learning and pathological stress and fear in post-traumatic stress disorder (PTSD). PACAP is positioned to integrate stress and memory in PTSD for which memory of the traumatic experience is central to the disorder. However, PACAP's role in memory has received comparatively less attention than its role in stress. In this review, we consider the evidence for PACAP-PAC1 receptor signaling in learning and plasticity, discuss emerging data on sex differences in PACAP signaling, and raise key questions for further study toward elucidating the contribution of PACAP to adaptive and maladaptive fear learning.
Collapse
Affiliation(s)
| | - Nicole C Ferrara
- Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| |
Collapse
|
11
|
Prefrontal NMDA-receptor antagonism disrupts encoding or consolidation but not retrieval of incidental context learning. Behav Brain Res 2021; 405:113175. [PMID: 33596432 DOI: 10.1016/j.bbr.2021.113175] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 01/12/2021] [Accepted: 02/07/2021] [Indexed: 01/27/2023]
Abstract
The Context Preexposure Facilitation Effect (CPFE) is a variant of contextual fear conditioning in which learning about the context, acquiring a context-shock association, and retrieval of this association occur separately across three phases (context preexposure, immediate-shock training, and retention). We have shown that prefrontal inactivation or muscarinic-receptor antagonism prior to any phase disrupts retention test freezing during the CPFE in adolescent rats (Heroux et al., 2017; Robinson-Drummer et al., 2017). Furthermore, the medial prefrontal cortex (mPFC) is the only region in which robust learning-related expression of the immediate early genes c-Fos, Arc, Egr-1 and Npas4 is observed during immediate-shock training in the CPFE (Asok et al., 2013; Heroux et al., 2018; Schreiber et al., 2014). However, the role of prefrontal NMDA-receptor plasticity in supporting preexposure- and training-day processes of the CPFE is not known. Therefore, the current study examined the effects of intra-mPFC infusion of the NMDA-receptor antagonist MK-801 or saline vehicle prior to context preexposure (Experiment 1) or immediate-shock training (Experiment 2) in adolescent Long-Evans male and female rats. This infusion given prior to context preexposure but not training abolished retention test freezing, with no difference between MK-801-infused rats and non-associative controls preexposed to an alternative context (pooled across drug). These results demonstrate a role of prefrontal NMDA-receptor plasticity in the acquisition and/or consolidation of incidental context learning (i.e., encoded in the absence of reinforcement). In contrast, this plasticity is not required for context retrieval, or acquisition, expression, or consolidation of a context-shock association during immediate-shock training in the CPFE. These experiments add to a growing body of work implicating the mPFC in Pavlovian contextual fear conditioning processes in rodents.
Collapse
|
12
|
Prefrontal α7nAChR Signaling Differentially Modulates Afferent Drive and Trace Fear Conditioning Behavior in Adolescent and Adult Rats. J Neurosci 2021; 41:1908-1916. [PMID: 33478990 DOI: 10.1523/jneurosci.1941-20.2020] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/29/2020] [Accepted: 12/23/2020] [Indexed: 01/22/2023] Open
Abstract
Increased level of kynurenic acid is thought to contribute to the development of cognitive deficits in schizophrenia through an α7nAChR-mediated mechanism in the prefrontal cortex (PFC). However, it remains unclear to what extent disruption of PFC α7nAChR signaling impacts afferent transmission and its modulation of behavior. Using male rats, we found that PFC infusion of methyllycaconitine (MLA; α7nAChR antagonist) shifts ventral hippocampal-induced local field potential (LFP) suppression to LFP facilitation, an effect only observed in adults. Hippocampal stimulation can also elicit a GluN2B-mediated LFP potentiation (when PFC GABAAR is blocked) that is insensitive to MLA. Conversely, PFC infusion of MLA diminished the gain of amygdalar transmission, which is already enabled by postnatal day (P)30. Behaviorally, the impact of prefrontal MLA on trace fear-conditioning and extinction was also age related. While freezing behavior during conditioning was reduced by MLA only in adults, it elicited opposite effects in adolescent and adult rats during extinction as revealed by the level of reduced and increased freezing response, respectively. We next asked whether the late-adolescent onset of α7nAChR modulation of hippocampal inputs contributes to the age-dependent effect of MLA during extinction. Data revealed that the increased freezing behavior elicited by MLA in adult rats could be driven by a dysregulation of the GluN2B transmission in the PFC. Collectively, these results indicate that distinct neural circuits are recruited during the extinction of trace fear memory in adolescents and adults, likely because of the late-adolescent maturation of the ventral hippocampal-PFC functional connectivity and its modulation by α7nAChR signaling.SIGNIFICANCE STATEMENT Abnormal elevation of the astrocyte-derived metabolite kynurenic acid in the prefrontal cortex (PFC) is thought to impair cognitive functions in schizophrenia through an α7nAChR-mediated mechanism. Here, we found that prefrontal α7nAChR signaling is recruited to control the gain of hippocampal and amygdalar afferent transmission in an input-specific, age-related manner during the adolescent transition to adulthood. Behaviorally, prefrontal α7nAChR modulation of trace fear memory was also age-related, likely because of the late-adolescent maturation of the ventral hippocampal pathway and its recruitment of PFC GABAergic transmission enabled by local α7nAChR signaling. Collectively, these results reveal that distinct α7nAChR-sensitive neural circuits contribute to regulate behavior responses in adolescents and adults, particularly those requiring proper integration of hippocampal and amygdalar inputs by the PFC.
Collapse
|
13
|
Bo JZ, Xue L, Li S, Yin JW, Li ZY, Wang X, Wang JF, Zhang YS. D-serine reduces memory impairment and neuronal damage induced by chronic lead exposure. Neural Regen Res 2021; 16:836-841. [PMID: 33229717 PMCID: PMC8178793 DOI: 10.4103/1673-5374.297086] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Although exogenous D-serine has been applied as a neural regulatory intervention in many studies, the role played by D-serine in hippocampal injuries caused by lead exposure remains poorly understood. Rat models of chronic lead exposure were established through the administration of 0.05% lead acetate for 8 weeks. Simultaneously, rats were administered 30 or 60 mg/kg D-serine, intraperitoneally, twice a day. Our results showed that D-serine treatment shortened the escape latency from the Morris water maze, increased the number of times that mice crossed the original platform location, and alleviated the pathological damage experienced by hippocampal neurons in response to lead exposure. Although D-serine administration did not increase the expression levels of the N-methyl-D-aspartate receptor subtype 2B (NR2B) in the hippocampi of lead-exposed rats, 60 mg/kg D-serine treatment restored the expression levels of NR2A, which are reduced by lead exposure. These findings suggested that D-serine can alleviate learning and memory impairments induced by lead exposure and that the underlying mechanism is associated with the increased expression of NR2A in the hippocampus. This study was approved by the Animal Ethics Committee of North China University of Science and Technology, China (approval No. LX2018155) on December 21, 2018.
Collapse
Affiliation(s)
- Jian-Zhu Bo
- College of Public Health, North China University of Science and Technology, Tangshan, Hebei Province, China
| | - Ling Xue
- College of Public Health, North China University of Science and Technology, Tangshan, Hebei Province, China
| | - Shuang Li
- Laboratory Animal Center, North China University of Science and Technology, Tangshan, Hebei Province, China
| | - Jing-Wen Yin
- College of Public Health, North China University of Science and Technology, Tangshan, Hebei Province, China
| | - Zheng-Yao Li
- College of Public Health, North China University of Science and Technology, Tangshan, Hebei Province, China
| | - Xi Wang
- College of Public Health, North China University of Science and Technology, Tangshan, Hebei Province, China
| | - Jun-Feng Wang
- College of Public Health, North China University of Science and Technology, Tangshan, Hebei Province, China
| | - Yan-Shu Zhang
- College of Public Health; Laboratory Animal Center, North China University of Science and Technology, Tangshan, Hebei Province, China
| |
Collapse
|
14
|
Kirry AJ, Twining RC, Gilmartin MR. Prelimbic input to basolateral amygdala facilitates the acquisition of trace cued fear memory under weak training conditions. Neurobiol Learn Mem 2020; 172:107249. [DOI: 10.1016/j.nlm.2020.107249] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 03/28/2020] [Accepted: 05/12/2020] [Indexed: 11/30/2022]
|
15
|
Twining RC, Lepak K, Kirry AJ, Gilmartin MR. Ventral Hippocampal Input to the Prelimbic Cortex Dissociates the Context from the Cue Association in Trace Fear Memory. J Neurosci 2020; 40:3217-3230. [PMID: 32188770 PMCID: PMC7159889 DOI: 10.1523/jneurosci.1453-19.2020] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 03/02/2020] [Accepted: 03/05/2020] [Indexed: 12/17/2022] Open
Abstract
The PFC, through its high degree of interconnectivity with cortical and subcortical brain areas, mediates cognitive and emotional processes in support of adaptive behaviors. This includes the formation of fear memories when the anticipation of threat demands learning about temporal or contextual cues, as in trace fear conditioning. In this variant of fear learning, the association of a cue and shock across an empty trace interval of several seconds requires sustained cue-elicited firing in the prelimbic cortex (PL). However, it is unknown how and when distinct PL afferents contribute to different associative components of memory. Among the prominent inputs to PL, the hippocampus shares with PL a role in both working memory and contextual processing. Here we tested the necessity of direct hippocampal input to the PL for the acquisition of trace-cued fear memory and the simultaneously acquired contextual fear association. Optogenetic silencing of ventral hippocampal (VH) terminals in the PL of adult male Long-Evans rats selectively during paired trials revealed that direct communication between the VH and PL during training is necessary for contextual fear memory, but not for trace-cued fear acquisition. The pattern of the contextual memory deficit and the disruption of local PL firing during optogenetic silencing of VH-PL suggest that the VH continuously updates the PL with the current contextual state of the animal, which, when disrupted during memory acquisition, is detrimental to the subsequent rapid retrieval of aversive contextual associations.SIGNIFICANCE STATEMENT Learning to anticipate threat from available contextual and discrete cues is crucial for survival. The prelimbic cortex is required for forming fear memories when temporal or contextual complexity is involved, as in trace fear conditioning. However, the respective contribution of distinct prelimbic afferents to the temporal and contextual components of memory is not known. We report that direct input from the ventral hippocampus enables the formation of the contextual, but not trace-cued, fear memory necessary for the subsequent rapid expression of a fear response. This finding dissociates the contextual and working-memory contributions of prelimbic cortex to the formation of a fear memory and demonstrates the crucial role for hippocampal input in contextual fear learning.
Collapse
Affiliation(s)
- Robert C Twining
- Department of Biomedical Sciences, Marquette University, Milwaukee, Wisconsin 53233
| | - Katie Lepak
- Department of Biomedical Sciences, Marquette University, Milwaukee, Wisconsin 53233
| | - Adam J Kirry
- Department of Biomedical Sciences, Marquette University, Milwaukee, Wisconsin 53233
| | - Marieke R Gilmartin
- Department of Biomedical Sciences, Marquette University, Milwaukee, Wisconsin 53233
| |
Collapse
|
16
|
Zhu Z, Wang H, Jiang Y, Hua T, Zhang C. Heroin exposure and withdrawal differentially influence expression of NMDA receptor NR2 subunits in the prelimbic region of rat medial prefrontal cortex. Neurosci Lett 2020; 721:134819. [PMID: 32032749 DOI: 10.1016/j.neulet.2020.134819] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/24/2020] [Accepted: 02/03/2020] [Indexed: 11/19/2022]
Abstract
It is widely reported that drug addiction involves the strengthening of specific reward circuits through N-methyl-d-aspartic acid receptor (NMDAR)-dependent synaptic potentiation, and several lines of evidence strongly implicate NMDA receptor 2 (NR2) subunits in drug abuse. To explore the potential mechanism of heroin dependence, this study examined changes in the expression levels of NR2 subunits NR2A-D in the prelimbic (PL) region of the medial prefrontal cortex (mPFC) after repeated heroin administration and subsequent abstinence. The conditioned place preference (CPP) test confirmed successful induction of heroin dependence and withdrawal. Western blotting and qRT-PCR revealed no differences in NR2A subunit expression among heroin-exposure, heroin-withdrawal, and control group rats; in contrast, expression of NR2B was significantly higher in the heroin-exposure group, whereas expression levels of NR2C and NR2D were significantly higher in the heroin-withdrawal group relative to the controls. Further studies are needed to identify the functional significance based on alterations of NR2 subunits.
Collapse
Affiliation(s)
- Zaiman Zhu
- College of Life Sciences, Anhui Normal University, Wuhu, 241000, China; Department of Physiology, Wannan Medical College, Wuhu, 241000, China
| | - Hui Wang
- Department of Physiology, Wannan Medical College, Wuhu, 241000, China
| | - Yuxin Jiang
- Department of Physiology, Wannan Medical College, Wuhu, 241000, China
| | - Tianmiao Hua
- College of Life Sciences, Anhui Normal University, Wuhu, 241000, China.
| | - Changzheng Zhang
- Department of Psychology & Guangdong Provincial Key Laboratory of Development and Education for Special Needs Children, Lingnan Normal University, Zhanjiang, 524048, China.
| |
Collapse
|
17
|
Yousuf H, Ehlers VL, Sehgal M, Song C, Moyer JR. Modulation of intrinsic excitability as a function of learning within the fear conditioning circuit. Neurobiol Learn Mem 2019; 167:107132. [PMID: 31821881 DOI: 10.1016/j.nlm.2019.107132] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 11/27/2019] [Indexed: 11/28/2022]
Abstract
Experience-dependent neuronal plasticity is a fundamental substrate of learning and memory. Intrinsic excitability is a form of neuronal plasticity that can be altered by learning and indicates the pattern of neuronal responding to external stimuli (e.g. a learning or synaptic event). Associative fear conditioning is one form of learning that alters intrinsic excitability, reflecting an experience-dependent change in neuronal function. After fear conditioning, intrinsic excitability changes are evident in brain regions that are a critical part of the fear circuit, including the amygdala, hippocampus, retrosplenial cortex, and prefrontal cortex. Some of these changes are transient and/or reversed by extinction as well as learning-specific (i.e. they are not observed in neurons from control animals). This review will explore how intrinsic neuronal excitability changes within brain structures that are critical for fear learning, and it will also discuss evidence promoting intrinsic excitability as a vital mechanism of associative fear memories. This work has raised interesting questions regarding the role of fear learning in changes of intrinsic excitability within specific subpopulations of neurons, including those that express immediate early genes and thus demonstrate experience-dependent activity, as well as in neurons classified as having a specific firing type (e.g. burst-spiking vs. regular-spiking). These findings have interesting implications for how intrinsic excitability can serve as a neural substrate of learning and memory, and suggest that intrinsic plasticity within specific subpopulations of neurons may promote consolidation of the memory trace in a flexible and efficient manner.
Collapse
Affiliation(s)
- Hanna Yousuf
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI 53201, USA
| | - Vanessa L Ehlers
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI 53201, USA
| | - Megha Sehgal
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI 53201, USA
| | - Chenghui Song
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI 53201, USA
| | - James R Moyer
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI 53201, USA; Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI 53201, USA.
| |
Collapse
|
18
|
Heroux NA, Horgan CJ, Pinizzotto CC, Rosen JB, Stanton ME. Medial prefrontal and ventral hippocampal contributions to incidental context learning and memory in adolescent rats. Neurobiol Learn Mem 2019; 166:107091. [DOI: 10.1016/j.nlm.2019.107091] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 09/11/2019] [Accepted: 09/14/2019] [Indexed: 12/15/2022]
|
19
|
Ren W, Liu X, Cheng L, Wang G, Liu X, Peng L, Wang Y. Embryonic Ketamine Produces a Downregulation of Prefrontal Cortex NMDA Receptors and Anxiety-Like Behavior in Adult Offspring. Neuroscience 2019; 415:18-30. [DOI: 10.1016/j.neuroscience.2019.07.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 07/08/2019] [Accepted: 07/09/2019] [Indexed: 01/09/2023]
|
20
|
Zou Y, Zhang H, Chen X, Ji W, Mao L, Lei H. Age-dependent effects of (+)-MK801 treatment on glutamate release and metabolism in the rat medial prefrontal cortex. Neurochem Int 2019; 129:104503. [PMID: 31299416 DOI: 10.1016/j.neuint.2019.104503] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 06/25/2019] [Accepted: 07/09/2019] [Indexed: 12/27/2022]
Abstract
NMDAR antagonist treatments in adolescent/young adult rodents are associated with augmented glutamate (Glu) release and perturbed Glu/glutamine (Gln) metabolism in the medial prefrontal cortex (mPFC) resembling those found in first-episode schizophrenia. Few studies, however, investigated NMDAR antagonist-induced changes in the adult mPFC and whether there is an age-dependence to this end. In this study, the effects of acute/repeated (+)-MK801 treatment on Glu release/metabolism were measured in the mPFC of male adolescent (postnatal day 30) and adult (14 weeks) rats. Acute (+)-MK801 treatment at 0.5 mg/kg body weight induced an approximately 4-fold increase of extracellular Glu concentration in the adolescent rats, and repeated treatment for 6 consecutive days significantly increased the levels of Glu + Gln (Glx) and glial metabolites 7 days after the last dose. Histologically (+)-MK801 treatments induced reactive astrocytosis and elevated oxidative stress in the mPFC of adolescent rats, without causing evident neuronal degeneration in the region. All (+)-MK801-induced changes observed in the mPFC of adolescent rats were not present or evident in the adult rats, suggesting that the treatments might have caused less disinhibition in the adult mPFC than in the adolescent mPFC. In conclusion, the effects of (+)-MK801 treatments on the Glu release/metabolism in the mPFC were found to be age-dependent; and the adult mPFC is likely equipped with more robust neurobiological mechanisms to preserve excitatory-inhibitory balance in response to NMDAR hypofunction.
Collapse
Affiliation(s)
- Yijuan Zou
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, PR China; National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, PR China
| | - Hui Zhang
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, PR China
| | - Xi Chen
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, PR China
| | - Wenliang Ji
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences (CAS), CAS Research/Education Center for Excellence in Molecule Sciences, Beijing, 100190, PR China
| | - Lanqun Mao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences (CAS), CAS Research/Education Center for Excellence in Molecule Sciences, Beijing, 100190, PR China
| | - Hao Lei
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, PR China; National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, PR China.
| |
Collapse
|
21
|
Estrous cycle stage gates sex differences in prefrontal muscarinic control of fear memory formation. Neurobiol Learn Mem 2019; 161:26-36. [PMID: 30851433 DOI: 10.1016/j.nlm.2019.03.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 02/08/2019] [Accepted: 03/05/2019] [Indexed: 11/20/2022]
Abstract
The association of a sensory cue and an aversive footshock that are separated in time, as in trace fear conditioning, requires persistent activity in prelimbic cortex during the cue-shock interval. The activation of muscarinic acetylcholine receptors has been shown to facilitate persistent firing of cortical cells in response to brief stimulation, and muscarinic antagonists in the prefrontal cortex impair working memory. It is unknown, however, if the acquisition of associative trace fear conditioning is dependent on muscarinic signaling in the prefrontal cortex. Here, we delivered the muscarinic receptor antagonist scopolamine to the prelimbic cortex of rats prior to trace fear conditioning and tested their memories of the cue and training context the following day. The effect of scopolamine on working memory performance was also tested using a spatial delayed non-match to sample task. Male and female subjects were included to examine potential sex differences in the modulation of memory formation, as we have previously observed for pituitary adenylate cyclase-activating polypeptide signaling in the prefrontal cortex (Kirry et al., 2018). We found that pre-training administration of intra-prelimbic scopolamine impaired the formation of cued and contextual fear memories in males, but not females at a dose that impairs spatial working memory in both sexes. Fear memory formation in females was impaired by a higher dose of scopolamine and this impairment was gated by estrous cycle stage: scopolamine failed to impair memory in rats in the diestrus or proestrus stages of the estrous cycle. These findings add to the growing body of evidence that the prefrontal cortex is sexually dimorphic in learning and memory and additionally suggest that males and females differentially engage prefrontal neuromodulatory systems in support of learning.
Collapse
|
22
|
Stubbendorff C, Hale E, Cassaday HJ, Bast T, Stevenson CW. Dopamine D1-like receptors in the dorsomedial prefrontal cortex regulate contextual fear conditioning. Psychopharmacology (Berl) 2019; 236:1771-1782. [PMID: 30656366 PMCID: PMC6602997 DOI: 10.1007/s00213-018-5162-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 12/21/2018] [Indexed: 11/29/2022]
Abstract
RATIONALE Dopamine D1 receptor (D1R) signalling is involved in contextual fear conditioning. The D1R antagonist SCH23390 impairs the acquisition of contextual fear when administered systemically or infused locally into the dorsal hippocampus or basolateral amygdala. OBJECTIVES We determined if state dependency may account for the impairment in contextual fear conditioning caused by systemic SCH23390 administration. We also examined if the dorsomedial prefrontal cortex (dmPFC), nucleus accumbens (NAc), and ventral hippocampus (VH) are involved in mediating the effect of systemic SCH23390 treatment on contextual fear conditioning. METHODS In experiment 1, SCH23390 (0.1 mg/kg) or vehicle was given before contextual fear conditioning and/or retrieval. In experiment 2, SCH23390 (2.5 μg/0.5 uL) or vehicle was infused locally into dmPFC, NAc, or VH before contextual fear conditioning, and retrieval was tested drug-free. Freezing was quantified as a measure of contextual fear. RESULTS In experiment 1, SCH23390 given before conditioning or before both conditioning and retrieval decreased freezing at retrieval, whereas SCH23390 given only before retrieval had no effect. In experiment 2, SCH23390 infused into dmPFC before conditioning decreased freezing at retrieval, while infusion of SCH23390 into NAc or VH had no effect. CONCLUSIONS The results of experiment 1 confirm those of previous studies indicating that D1Rs are required for the acquisition but not retrieval of contextual fear and rule out state dependency as an explanation for these findings. Moreover, the results of experiment 2 provide evidence that dmPFC is also part of the neural circuitry through which D1R signalling regulates contextual fear conditioning.
Collapse
Affiliation(s)
- Christine Stubbendorff
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK.
| | - Ed Hale
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD UK
| | - Helen J. Cassaday
- School of Psychology@Nottingham, University of Nottingham, University Park, Nottingham, NG7 2RD UK ,School of Neuroscience@Nottingham, University of Nottingham, University Park, Nottingham, NG7 2RD UK
| | - Tobias Bast
- School of Psychology@Nottingham, University of Nottingham, University Park, Nottingham, NG7 2RD UK ,School of Neuroscience@Nottingham, University of Nottingham, University Park, Nottingham, NG7 2RD UK
| | - Carl W. Stevenson
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD UK
| |
Collapse
|
23
|
Neonatal ethanol exposure impairs long-term context memory formation and prefrontal immediate early gene expression in adolescent rats. Behav Brain Res 2018; 359:386-395. [PMID: 30447241 DOI: 10.1016/j.bbr.2018.11.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 10/19/2018] [Accepted: 11/13/2018] [Indexed: 11/21/2022]
Abstract
Fetal alcohol exposure leads to severe disruptions in learning and memory involving the hippocampus and prefrontal cortex in humans. Animal model research on FASD has documented impairment of hippocampal neuroanatomy and function but animal studies of cognition involving the prefrontal cortex are sparse. We have found that a variant of contextual fear conditioning in which both the hippocampus and prefrontal cortex is required, the Context Preexposure Facilitation Effect (CPFE), is particularly sensitive to neurobehavioral disruption caused by neonatal ethanol exposure during the third trimester equivalent of human pregnancy in the rat (i.e., PD4-9). In the CPFE, learning about the context, acquiring a context-shock association, and retrieving contextual fear are temporally separated across three days. The current study asked whether neonatal alcohol exposure impairs context learning, consolidation, or retrieval and examined prefrontal and hippocampal molecular signaling as correlates of this impairment. Long-Evans rats that received oral intubation of ethanol (AE; 5.25 g/kg/day, split into two doses) or underwent sham-intubation (SI) from PND4-9 were tested on the CPFE on PD31-33. Extending our previous reports, ethanol abolished both post-shock and retention test freezing in the CPFE. Assays (qPCR) of immediate early gene expression revealed that ethanol disrupted prefrontal but not hippocampal expression of c-Fos, Arc, Egr-1, and Npas4 during context learning. Finally, ethanol-exposed animals were unimpaired in a standard contextual fear conditioning procedure in which learning about the context and acquiring a context-shock association occurs concurrently. These findings implicate impaired prefrontal function in cognitive deficits arising from 3rd-trimester equivalent alcohol exposure in the rat.
Collapse
|
24
|
Rea K, McGowan F, Corcoran L, Roche M, Finn DP. The prefrontal cortical endocannabinoid system modulates fear-pain interactions in a subregion-specific manner. Br J Pharmacol 2018; 176:1492-1505. [PMID: 29847859 DOI: 10.1111/bph.14376] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 05/11/2018] [Accepted: 05/15/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND PURPOSE The emotional processing and coordination of top-down responses to noxious and conditioned aversive stimuli involves the medial prefrontal cortex (mPFC). Evidence suggests that subregions of the mPFC [infralimbic (IfL), prelimbic (PrL) and anterior cingulate (ACC) cortices] differentially alter the expression of contextually induced fear and nociceptive behaviour. We investigated the role of the endocannabinoid system in the IfL, PrL and ACC in formalin-evoked nociceptive behaviour, fear-conditioned analgesia (FCA) and conditioned fear in the presence of nociceptive tone. EXPERIMENTAL APPROACH FCA was modelled in male Lister-hooded rats by assessing formalin-evoked nociceptive behaviour in an arena previously paired with footshock. The effects of intra-mPFC administration of AM251 [cannabinoid type 1 (CB1 ) receptor antagonist/inverse agonist], URB597 [fatty acid amide hydrolase (FAAH) inhibitor] or URB597 + AM251 on FCA and freezing behaviour were assessed. KEY RESULTS AM251 attenuated FCA when injected into the IfL or PrL and reduced contextually induced freezing behaviour when injected intra-IfL but not intra-PrL or intra-ACC. Intra-ACC administration of AM251 alone or in combination with URB597 had no effect on FCA or freezing. URB597 attenuated FCA and freezing behaviour when injected intra-IfL, prolonged the expression of FCA when injected intra-PrL and had no effect on these behaviours when injected intra-ACC. CONCLUSIONS AND IMPLICATIONS These results suggest important and differing roles for FAAH substrates or CB1 receptors in the PrL, IfL and ACC in the expression of FCA and conditioned fear in the presence of nociceptive tone. LINKED ARTICLES This article is part of a themed section on 8th European Workshop on Cannabinoid Research. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.10/issuetoc.
Collapse
Affiliation(s)
- Kieran Rea
- Pharmacology and Therapeutics, School of Medicine, National University of Ireland Galway, Galway, Ireland.,Galway Neuroscience Centre and Centre for Pain Research, NCBES, National University of Ireland Galway, Galway, Ireland
| | - Fiona McGowan
- Pharmacology and Therapeutics, School of Medicine, National University of Ireland Galway, Galway, Ireland.,Galway Neuroscience Centre and Centre for Pain Research, NCBES, National University of Ireland Galway, Galway, Ireland
| | - Louise Corcoran
- Pharmacology and Therapeutics, School of Medicine, National University of Ireland Galway, Galway, Ireland.,Galway Neuroscience Centre and Centre for Pain Research, NCBES, National University of Ireland Galway, Galway, Ireland
| | - Michelle Roche
- Physiology, School of Medicine, National University of Ireland Galway, Galway, Ireland.,Galway Neuroscience Centre and Centre for Pain Research, NCBES, National University of Ireland Galway, Galway, Ireland
| | - David P Finn
- Pharmacology and Therapeutics, School of Medicine, National University of Ireland Galway, Galway, Ireland.,Galway Neuroscience Centre and Centre for Pain Research, NCBES, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
25
|
Pituitary adenylate cyclase-activating polypeptide (PACAP) signaling in the prefrontal cortex modulates cued fear learning, but not spatial working memory, in female rats. Neuropharmacology 2018; 133:145-154. [DOI: 10.1016/j.neuropharm.2018.01.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 12/04/2017] [Accepted: 01/07/2018] [Indexed: 11/19/2022]
|
26
|
Monaco SA, Ferguson BR, Gao WJ. Lithium Inhibits GSK3β and Augments GluN2A Receptor Expression in the Prefrontal Cortex. Front Cell Neurosci 2018; 12:16. [PMID: 29449801 PMCID: PMC5799274 DOI: 10.3389/fncel.2018.00016] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Accepted: 01/11/2018] [Indexed: 12/12/2022] Open
Abstract
Glycogen synthase kinase 3β (GSK3β) is a highly conserved serine/threonine kinase that has been implicated in both psychiatric and neurodegenerative diseases including schizophrenia, bipolar disorder, and Alzheimer's disease; therefore regulating its activity has become an important strategy for treatment of cognitive impairments in these disorders. This study examines the effects of lithium on GSK3β and its interaction with β-catenin and NMDA receptors within the prefrontal cortex. Lithium, a clinically relevant drug commonly prescribed as a mood stabilizer for psychiatric disorders, significantly increased levels of phosphorylated GSK3β serine 9, an inhibitory phosphorylation site, and decreased β-catenin ser33/37/thr41 phosphorylation in vitro, indicating GSK3β inhibition and reduced β-catenin degradation. GluN2A subunit levels were concurrently increased following lithium treatment. Similar alterations were also demonstrated in vivo; lithium administration increased GSK3β serine 9 phosphorylation and GluN2A levels, suggesting a reduced GSK3β activity and augmented GluN2A expression. Correspondingly, we observed that the amplitudes of evoked GluN2A-mediated excitatory postsynaptic currents in mPFC pyramidal neurons were significantly increased following lithium administration. Our data suggest that GSK3β activity negatively regulates GluN2A expression, likely by mediating upstream β-catenin phosphorylation, in prefrontal cortical neurons. Furthermore, our biochemical and electrophysiological experiments demonstrate that lithium mediates a specific increase in GluN2A subunit expression, ultimately augmenting GluN2A-mediated currents in the prefrontal cortex.
Collapse
Affiliation(s)
| | | | - Wen-Jun Gao
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, United States
| |
Collapse
|
27
|
Heroux NA, Osborne BF, Miller LA, Kawan M, Buban KN, Rosen JB, Stanton ME. Differential expression of the immediate early genes c-Fos, Arc, Egr-1, and Npas4 during long-term memory formation in the context preexposure facilitation effect (CPFE). Neurobiol Learn Mem 2018; 147:128-138. [PMID: 29222058 PMCID: PMC6314028 DOI: 10.1016/j.nlm.2017.11.016] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 11/20/2017] [Accepted: 11/30/2017] [Indexed: 12/23/2022]
Abstract
The context preexposure facilitation effect (CPFE) is a contextual fear conditioning paradigm in which learning about the context, acquiring the context-shock association, and retrieving/expressing contextual fear are temporally dissociated into three distinct phases (context preexposure, immediate-shock training, and retention). The current study examined changes in the expression of plasticity-associated immediate early genes (IEGs) during context and contextual fear memory formation on the preexposure and training days of the CPFE, respectively. Using adolescent Long-Evans rats, preexposure and training day expression of the IEGs c-Fos, Arc, Egr-1, and Npas4 in the medial prefrontal cortex (mPFC), dorsal hippocampus (dHPC), and basolateral amygdala (BLA) was analyzed using qPCR as an extension of previous studies from our lab examining Egr-1 via in situ hybridization (Asok, Schreiber, Jablonski, Rosen, & Stanton, 2013; Schreiber, Asok, Jablonski, Rosen, & Stanton, 2014). In Expt. 1, context preexposure induced expression of c-Fos, Arc, Egr-1 and Npas4 significantly above that of home-cage (HC) controls in all three regions. In Expt. 2, immediate-shock was followed by a post-shock freezing test, resulting in increased mPFC c-Fos expression in a group preexposed to the training context but not a control group preexposed to an alternate context, indicating expression related to associative learning. This was not seen with other IEGs in mPFC or with any IEG in dHPC or BLA. Finally, when the post-shock freezing test was omitted in Expt. 3, training-related increases were observed in prefrontal c-Fos, Arc, Egr-1, and Npas4, hippocampal c-Fos, and amygdalar Egr-1 expression. These results indicate that context exposure in a post-shock freezing test re-engages IEG expression that may obscure associatively-induced expression during contextual fear conditioning. Additionally, these studies suggest a key role for long-term synaptic plasticity in the mPFC in supporting the CPFE.
Collapse
Affiliation(s)
- Nicholas A Heroux
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, United States
| | - Brittany F Osborne
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, United States
| | - Lauren A Miller
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, United States
| | - Malak Kawan
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, United States
| | - Katelyn N Buban
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, United States
| | - Jeffrey B Rosen
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, United States
| | - Mark E Stanton
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, United States.
| |
Collapse
|
28
|
Heroux NA, Robinson-Drummer PA, Sanders HR, Rosen JB, Stanton ME. Differential involvement of the medial prefrontal cortex across variants of contextual fear conditioning. ACTA ACUST UNITED AC 2017; 24:322-330. [PMID: 28716952 PMCID: PMC5516685 DOI: 10.1101/lm.045286.117] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 05/12/2017] [Indexed: 11/24/2022]
Abstract
The context preexposure facilitation effect (CPFE) is a contextual fear conditioning paradigm in which learning about the context, acquiring the context-shock association, and retrieving/expressing contextual fear are temporally dissociated into three distinct phases. In contrast, learning about the context and the context-shock association happens concurrently in standard contextual fear conditioning (sCFC). By infusing the GABAA receptor agonist muscimol into medial prefrontal cortex (mPFC) in adolescent Long-Evans rats, the current set of experiments examined the functional role of the mPFC in each phase of the CPFE and sCFC. In the CPFE, the mPFC is necessary for the following: acquisition and/or consolidation of context memory (Experiment 1), reconsolidation of a context memory to include shock (Experiment 2), and expression of contextual fear memory during a retention test (Experiment 3). In contrast to the CPFE, inactivation of the mPFC prior to conditioning in sCFC has no effect on acquisition, consolidation, or retention of a contextual fear memory (Experiment 4). Interestingly, the mPFC is not required for acquiring a context-shock association (measured by post-shock freezing) in the CPFE or sCFC (Experiment 2b and 4). Taken together, these results indicate that the mPFC is differentially recruited across stages of learning and variants of contextual fear conditioning (CPFE versus sCFC). More specifically, separating out learning about the context and the context-shock association necessitates activation of the medial prefrontal cortex during early learning and/or consolidation.
Collapse
Affiliation(s)
- Nicholas A Heroux
- Department of Psychological and Brain Sciences, University of Delaware, Newark, Delaware 19716, USA
| | | | - Hollie R Sanders
- Department of Psychological and Brain Sciences, University of Delaware, Newark, Delaware 19716, USA
| | - Jeffrey B Rosen
- Department of Psychological and Brain Sciences, University of Delaware, Newark, Delaware 19716, USA
| | - Mark E Stanton
- Department of Psychological and Brain Sciences, University of Delaware, Newark, Delaware 19716, USA
| |
Collapse
|
29
|
A GluN2B-Selective NMDAR Antagonist Reverses Synapse Loss and Cognitive Impairment Produced by the HIV-1 Protein Tat. J Neurosci 2017; 37:7837-7847. [PMID: 28716964 DOI: 10.1523/jneurosci.0226-17.2017] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 05/18/2017] [Accepted: 07/07/2017] [Indexed: 12/17/2022] Open
Abstract
HIV-associated neurocognitive disorder (HAND) affects approximately half of HIV-infected patients. Loss of synaptic connections is a hallmark of many neurocognitive disorders, including HAND. The HIV-1 protein transactivator of transcription (Tat) disrupts synaptic connections both in vitro and in vivo and has been linked to impaired neurocognitive function in humans. In vitro studies have shown that ifenprodil, an antagonist selective for GluN2B-containing NMDARs, reverses synapse loss when applied after Tat. Here, we tested the hypothesis that Tat-induced loss and ifenprodil-mediated rescue of synaptic spines in vivo would predict impairment and rescue of cognitive function. Using intracranial multiphoton imaging, we found that infusion of 100 ng of HIV-1 Tat into the lateral ventricle of yellow fluorescent protein-expressing transgenic mice produced a 17 ± 1% loss of dendritic spines in layer 1 of retrosplenial cortex. Repeated imaging of the same dendrites over 3 weeks enabled longitudinal experiments that demonstrated sustained spine loss after Tat infusion and transient rescue after ifenprodil administration (10 mg/kg, i.p.). Parallel trace fear conditioning experiments showed that spine loss predicted learning deficits and that the time course of ifenprodil-induced rescue of spine density correlated with restoration of cognitive function. These results show for the first time that, during exposure to an HIV-1 neurotoxin in vivo, alteration of GluN2B-containing NMDAR signaling suppresses spine density and impairs learning. Pharmacological inhibition of these NMDARs rescued spines and restored cognitive function. Drugs that rescue synapses may improve neurocognitive function in HAND.SIGNIFICANCE STATEMENT Synaptodendritic damage correlates with cognitive decline in HIV-associated neurocognitive disorder (HAND) patients. We developed an in vivo imaging approach for longitudinal tracking of spine density that enabled correlation of synaptic changes with behavioral outcomes in a model of HAND. We show for the first time that spine loss after exposure to an HIV-1 protein can be reversed pharmacologically and that loss and recovery of dendritic spines predict impairment and restoration of cognitive function, respectively. Therefore, synapse loss, the hallmark of cognitive decline in HAND, is reversible. Drugs that restore spine density may have broad application for improving cognitive function during the early phases of neurodegenerative diseases.
Collapse
|
30
|
Connor DA, Kutlu MG, Gould TJ. Nicotine disrupts safety learning by enhancing fear associated with a safety cue via the dorsal hippocampus. J Psychopharmacol 2017; 31:934-944. [PMID: 28675115 PMCID: PMC5755391 DOI: 10.1177/0269881117695861] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Learned safety, a learning process in which a cue becomes associated with the absence of threat, is disrupted in individuals with post-traumatic stress disorder (PTSD). A bi-directional relationship exists between smoking and PTSD and one potential explanation is that nicotine-associated changes in cognition facilitate PTSD emotional dysregulation by disrupting safety associations. Therefore, we investigated whether nicotine would disrupt learned safety by enhancing fear associated with a safety cue. In the present study, C57BL/6 mice were administered acute or chronic nicotine and trained over three days in a differential backward trace conditioning paradigm consisting of five trials of a forward conditioned stimulus (CS)+ (Light) co-terminating with a footshock unconditioned stimulus followed by a backward CS- (Tone) presented 20 s after cessation of the unconditioned stimulus. Summation testing found that acute nicotine disrupted learned safety, but chronic nicotine had no effect. Another group of animals administered acute nicotine showed fear when presented with the backward CS (Light) alone, indicating the formation of a maladaptive fear association with the backward CS. Finally, we investigated the brain regions involved by administering nicotine directly into the dorsal hippocampus, ventral hippocampus, and prelimbic cortex. Infusion of nicotine into the dorsal hippocampus disrupted safety learning.
Collapse
Affiliation(s)
- David A Connor
- Department of Psychology, Neuroscience Program, Temple University, Philadelphia, PA, USA
| | - Munir G Kutlu
- Department of Psychology, Neuroscience Program, Temple University, Philadelphia, PA, USA
| | - Thomas J Gould
- Department of Biobehavioral Health, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
31
|
Robinson-Drummer PA, Heroux NA, Stanton ME. Antagonism of muscarinic acetylcholine receptors in medial prefrontal cortex disrupts the context preexposure facilitation effect. Neurobiol Learn Mem 2017; 143:27-35. [PMID: 28411153 DOI: 10.1016/j.nlm.2017.04.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 04/09/2017] [Accepted: 04/10/2017] [Indexed: 11/25/2022]
Abstract
Cholinergic function plays a role in a variant of context fear conditioning known as the context preexposure facilitation effect (CPFE; Robinson-Drummer, Dokovna, Heroux, & Stanton, 2016). In the CPFE, acquisition of a context representation, the context-shock association, and expression of context fear occur across successive phases, usually 24h apart. Systemic administration of scopolamine, a muscarinic acetylcholine receptor antagonist, prior to each phase (context preexposure, immediate-shock training, and testing) disrupts the CPFE in juvenile rats (Robinson-Drummer et al., 2016). Dorsal hippocampal (dHPC) cholinergic function contributes significantly to this effect, as local infusion of scopolamine into the dHPC prior to any individual phase of the CPFE produces a disruption identical to systemic administration (Robinson-Drummer et al., 2016). The current experiment extended these findings to another forebrain region implicated in the CPFE, the medial prefrontal cortex (mPFC). Adolescent rats received bilateral infusions of scopolamine (35μg/side) or PBS 10min before all three phases of the CPFE or only prior to a single phase. Intra-mPFC administration of scopolamine prior to all three phases significantly impaired fear conditioning suggesting that mPFC cholinergic function is necessary for successful CPFE performance. Analyses of the individual infusion days revealed a significant impairment of the CPFE when infusions occurred prior to preexposure or training (i.e. immediate footshock) but not prior to testing. In total, these findings suggests a role of mPFC cholinergic function in the acquisition and/or consolidation of a contextual representation and the context-shock association but not in retrieval or expression of fear memory. Implications for mPFC involvement in contextual fear conditioning and neurological dysfunction following neonatal alcohol exposure are discussed.
Collapse
Affiliation(s)
- P A Robinson-Drummer
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, United States.
| | - N A Heroux
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, United States
| | - M E Stanton
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, United States
| |
Collapse
|
32
|
Hafenbreidel M, Rafa Todd C, Mueller D. Infralimbic GluN2A-Containing NMDA Receptors Modulate Reconsolidation of Cocaine Self-Administration Memory. Neuropsychopharmacology 2017; 42:1113-1125. [PMID: 28042872 PMCID: PMC5506782 DOI: 10.1038/npp.2016.288] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 12/10/2016] [Accepted: 12/19/2016] [Indexed: 01/01/2023]
Abstract
Addiction is characterized by high relapse susceptibility, and relapse can be triggered by drug-associated cues. Cue presentation induces retrieval of the drug-cue memory, which becomes labile and must be reconsolidated into long-term storage. Repeated unpaired cue presentation, however, promotes extinction. Cue-reactivity can be reduced by blocking reconsolidation or facilitating extinction, which are mediated by NMDA receptors (NMDArs). However, the role of NMDArs in either process following self-administration is unclear. Thus, to determine their role in extinction, rats learned to self-administer cocaine before receiving injections of the NMDAr antagonist CPP immediately after four 45-min extinction sessions. During a subsequent 90-min extinction retention test, CPP-treated rats lever pressed less than saline-treated rats indicating that NMDAr blockade facilitated extinction or disrupted drug-cue memory reconsolidation. In addition, infusing CPP into the infralimbic medial prefrontal cortex (IL-mPFC), a structure implicated in extinction, before four 45-min or immediately after four 30min extinction sessions, had similar results during the extinction retention tests. Next, the GluN2A-selective antagonist NVP or GluN2B-selective antagonist Ro25 was infused into IL-mPFC or nucleus accumbens (NAc) shell, another structure implicated in extinction, after four 45-min extinction sessions. Blocking GluN2A-, but not GluN2B-, containing NMDArs, in IL-mPFC or NAc shell reduced lever pressing during the extinction retention tests. Finally, to dissociate reconsolidation from extinction, NVP was infused into IL-mPFC after four 10-min reactivation sessions, which resulted in reduced lever pressing during the retention test. These results indicate that IL-mPFC GluN2A-containing NMDArs modulate reconsolidation, and suggest a novel treatment strategy, as reducing cue reactivity could limit relapse susceptibility.
Collapse
Affiliation(s)
| | - Carolynn Rafa Todd
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Devin Mueller
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI, USA,Department of Basic Sciences, Ponce Health Sciences University-School of Medicine/Ponce Research Institute, Ponce, Puerto Rico,Department of Basic Sciences, Ponce Health Sciences University-School of Medicine, Ponce Research Institute, PO Box 7004, Ponce 00732-7004, Puerto Rico, Tel: +1 787 840 2575 Ext. 2588, Fax: +1 787 844 1980, E-mail:
| |
Collapse
|
33
|
Rizzo V, Touzani K, Raveendra BL, Swarnkar S, Lora J, Kadakkuzha BM, Liu XA, Zhang C, Betel D, Stackman RW, Puthanveettil SV. Encoding of contextual fear memory requires de novo proteins in the prelimbic cortex. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2017; 2:158-169. [PMID: 28503670 DOI: 10.1016/j.bpsc.2016.10.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Despite our understanding of the significance of the prefrontal cortex in the consolidation of long-term memories (LTM), its role in the encoding of LTM remains elusive. Here we investigated the role of new protein synthesis in the mouse medial prefrontal cortex (mPFC) in encoding contextual fear memory. METHODS Because a change in the association of mRNAs to polyribosomes is an indicator of new protein synthesis, we assessed the changes in polyribosome-associated mRNAs in the mPFC following contextual fear conditioning (CFC) in the mouse. Differential gene expression in mPFC was identified by polyribosome profiling (n = 18). The role of new protein synthesis in mPFC was determined by focal inhibition of protein synthesis (n = 131) and by intra-prelimbic cortex manipulation (n = 56) of Homer 3, a candidate identified from polyribosome profiling. RESULTS We identified several mRNAs that are differentially and temporally recruited to polyribosomes in the mPFC following CFC. Inhibition of protein synthesis in the prelimbic (PL), but not in the anterior cingulate cortex (ACC) region of the mPFC immediately after CFC disrupted encoding of contextual fear memory. Intriguingly, inhibition of new protein synthesis in the PL 6 hours after CFC did not impair encoding. Furthermore, expression of Homer 3, an mRNA enriched in polyribosomes following CFC, in the PL constrained encoding of contextual fear memory. CONCLUSIONS Our studies identify several molecular substrates of new protein synthesis in the mPFC and establish that encoding of contextual fear memories require new protein synthesis in PL subregion of mPFC.
Collapse
Affiliation(s)
- Valerio Rizzo
- Department of Neuroscience, The Scripps Research Institute, Scripps Florida 130 Scripps Way, Jupiter, FL 33458
| | - Khalid Touzani
- Department of Neuroscience, The Scripps Research Institute, Scripps Florida 130 Scripps Way, Jupiter, FL 33458
| | - Bindu L Raveendra
- Department of Neuroscience, The Scripps Research Institute, Scripps Florida 130 Scripps Way, Jupiter, FL 33458
| | - Supriya Swarnkar
- Department of Neuroscience, The Scripps Research Institute, Scripps Florida 130 Scripps Way, Jupiter, FL 33458
| | - Joan Lora
- Department of Psychology, Center for Complex Systems & Brain Sciences, College of Science, Florida Atlantic University, Jupiter, FL 33458
| | - Beena M Kadakkuzha
- Department of Neuroscience, The Scripps Research Institute, Scripps Florida 130 Scripps Way, Jupiter, FL 33458
| | - Xin-An Liu
- Department of Neuroscience, The Scripps Research Institute, Scripps Florida 130 Scripps Way, Jupiter, FL 33458
| | - Chao Zhang
- Department of Medicine and Institute for Computational Biomedicine, Weill Cornell Medical College, New York. NY10065. USA
| | - Doron Betel
- Department of Medicine and Institute for Computational Biomedicine, Weill Cornell Medical College, New York. NY10065. USA
| | - Robert W Stackman
- Department of Psychology, Center for Complex Systems & Brain Sciences, College of Science, Florida Atlantic University, Jupiter, FL 33458
| | | |
Collapse
|
34
|
Newly acquired and reactivated contextual fear memories are more intense and prone to generalize after activation of prelimbic cortex NMDA receptors. Neurobiol Learn Mem 2017; 137:154-162. [DOI: 10.1016/j.nlm.2016.12.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 11/25/2016] [Accepted: 12/02/2016] [Indexed: 11/19/2022]
|
35
|
Connor DA, Gould TJ. The role of working memory and declarative memory in trace conditioning. Neurobiol Learn Mem 2016; 134 Pt B:193-209. [PMID: 27422017 PMCID: PMC5755400 DOI: 10.1016/j.nlm.2016.07.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 07/07/2016] [Accepted: 07/11/2016] [Indexed: 01/18/2023]
Abstract
Translational assays of cognition that are similarly implemented in both lower and higher-order species, such as rodents and primates, provide a means to reconcile preclinical modeling of psychiatric neuropathology and clinical research. To this end, Pavlovian conditioning has provided a useful tool for investigating cognitive processes in both lab animal models and humans. This review focuses on trace conditioning, a form of Pavlovian conditioning typified by the insertion of a temporal gap (i.e., trace interval) between presentations of a conditioned stimulus (CS) and an unconditioned stimulus (US). This review aims to discuss pre-clinical and clinical work investigating the mnemonic processes recruited for trace conditioning. Much work suggests that trace conditioning involves unique neurocognitive mechanisms to facilitate formation of trace memories in contrast to standard Pavlovian conditioning. For example, the hippocampus and prefrontal cortex (PFC) appear to play critical roles in trace conditioning. Moreover, cognitive mechanistic accounts in human studies suggest that working memory and declarative memory processes are engaged to facilitate formation of trace memories. The aim of this review is to integrate cognitive and neurobiological accounts of trace conditioning from preclinical and clinical studies to examine involvement of working and declarative memory.
Collapse
Affiliation(s)
- David A Connor
- Department of Psychology, Neuroscience Program, Temple University, Philadelphia, PA 19122, United States
| | - Thomas J Gould
- Department of Psychology, Neuroscience Program, Temple University, Philadelphia, PA 19122, United States.
| |
Collapse
|
36
|
Pershing ML, Phenis D, Valentini V, Pocivavsek A, Lindquist DH, Schwarcz R, Bruno JP. Prenatal kynurenine exposure in rats: age-dependent changes in NMDA receptor expression and conditioned fear responding. Psychopharmacology (Berl) 2016; 233:3725-3735. [PMID: 27527585 PMCID: PMC5808405 DOI: 10.1007/s00213-016-4404-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 08/02/2016] [Indexed: 10/21/2022]
Abstract
RATIONALE Levels of kynurenic acid (KYNA), an endogenous negative modulator of alpha 7 nicotinic acetylcholine receptors (α7nAChRs) and antagonist at glutamatergic N-methyl-D-aspartate receptors (NMDARs), are elevated in the brain of patients with schizophrenia (SZ). In rats, dietary exposure to KYNA's immediate precursor kynurenine during the last week of gestation produces neurochemical and cognitive deficits in adulthood that resemble those seen in patients with SZ. OBJECTIVES The present experiments examined whether prenatal kynurenine exposure results in age-dependent changes in the kynurenine pathway (KP), expression of selected receptors, and cognitive function. METHODS Pregnant dams were fed unadulterated mash (progeny = ECON) or mash containing kynurenine (100 mg/day; progeny = EKYN) from embryonic day (ED) 15 to 22. Male offspring were assessed as juveniles, i.e., prior to puberty (postnatal day [PD] 32), or as adults (PD70) for brain KYNA levels, α7nAChR and NMDAR gene expression, and performance on a trace fear conditioning (TFC) task. RESULTS KYNA levels were comparable between juvenile ECON and EKYN rats, whereas EKYN adults exhibited a ~3-fold increase in brain KYNA relative to ECONs. NR2A expression was persistently reduced (30-40 %) in EKYN rats at both ages. Compared to ECON adults, there was a 50 % reduction in NR1, and a trend toward decreased α7nAChR expression, in adult EKYN rats. Surprisingly, juvenile EKYN rats performed significantly better in the TFC paradigm than controls, whereas adult EKYN animals showed the predicted deficits. CONCLUSIONS Collectively, our results provide evidence that KP changes in the fetal brain alter neuronal development and cause age-dependent effects on neurochemistry and cognitive performance.
Collapse
Affiliation(s)
| | - David Phenis
- Department of Neuroscience, The Ohio State University, Columbus, OH, USA
| | | | - Ana Pocivavsek
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Derick H. Lindquist
- Department of Psychology, The Ohio State University, Columbus, OH, USA,Department of Neuroscience, The Ohio State University, Columbus, OH, USA
| | - Robert Schwarcz
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - John P. Bruno
- Department of Psychology, The Ohio State University, Columbus, OH, USA,Department of Neuroscience, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
37
|
Caballero A, Granberg R, Tseng KY. Mechanisms contributing to prefrontal cortex maturation during adolescence. Neurosci Biobehav Rev 2016; 70:4-12. [PMID: 27235076 DOI: 10.1016/j.neubiorev.2016.05.013] [Citation(s) in RCA: 205] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 05/17/2016] [Accepted: 05/18/2016] [Indexed: 12/17/2022]
Abstract
Adolescence is defined as a transitional period between childhood and adulthood characterized by changes in social interaction and acquisition of mature cognitive abilities. These changes have been associated with the maturation of brain regions involved in the control of motivation, emotion, and cognition. Among these regions, the protracted development of the human prefrontal cortex during adolescence has been proposed to underlie the maturation of cognitive functions and the regulation of affective responses. Studies in animal models allow us to test the causal contribution of specific neural processes in the development of the prefrontal cortex and the acquisition of adult behavior. This review summarizes the cellular and synaptic mechanisms occurring in the rodent prefrontal cortex during adolescence as a model for understanding the changes underlying human prefrontal development.
Collapse
Affiliation(s)
- Adriana Caballero
- Department of Cellular & Molecular Pharmacology, The Chicago Medical School at Rosalind Franklin University of Medicine & Science, North Chicago, IL 60064, USA
| | - Rachel Granberg
- Department of Cellular & Molecular Pharmacology, The Chicago Medical School at Rosalind Franklin University of Medicine & Science, North Chicago, IL 60064, USA
| | - Kuei Y Tseng
- Department of Cellular & Molecular Pharmacology, The Chicago Medical School at Rosalind Franklin University of Medicine & Science, North Chicago, IL 60064, USA.
| |
Collapse
|
38
|
Goodfellow MJ, Abdulla KA, Lindquist DH. Neonatal Ethanol Exposure Impairs Trace Fear Conditioning and Alters NMDA Receptor Subunit Expression in Adult Male and Female Rats. Alcohol Clin Exp Res 2016; 40:309-18. [DOI: 10.1111/acer.12958] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Accepted: 11/04/2015] [Indexed: 01/10/2023]
Affiliation(s)
| | - Khalid A. Abdulla
- Department of Psychology; The Ohio State University; Columbus Ohio
- Department of Neuroscience; The Ohio State University; Columbus Ohio
| | - Derick H. Lindquist
- Department of Psychology; The Ohio State University; Columbus Ohio
- Department of Neuroscience; The Ohio State University; Columbus Ohio
| |
Collapse
|
39
|
The Functional and Molecular Properties, Physiological Functions, and Pathophysiological Roles of GluN2A in the Central Nervous System. Mol Neurobiol 2016; 54:1008-1021. [DOI: 10.1007/s12035-016-9715-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 01/11/2016] [Indexed: 11/25/2022]
|
40
|
Jarome TJ, Ferrara NC, Kwapis JL, Helmstetter FJ. Contextual Information Drives the Reconsolidation-Dependent Updating of Retrieved Fear Memories. Neuropsychopharmacology 2015; 40:3044-52. [PMID: 26062788 PMCID: PMC4864640 DOI: 10.1038/npp.2015.161] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 05/12/2015] [Accepted: 06/04/2015] [Indexed: 12/15/2022]
Abstract
Stored memories enter a temporary state of vulnerability following retrieval known as 'reconsolidation', a process that can allow memories to be modified to incorporate new information. Although reconsolidation has become an attractive target for treatment of memories related to traumatic past experiences, we still do not know what new information triggers the updating of retrieved memories. Here, we used biochemical markers of synaptic plasticity in combination with a novel behavioral procedure to determine what was learned during memory reconsolidation under normal retrieval conditions. We eliminated new information during retrieval by manipulating animals' training experience and measured changes in proteasome activity and GluR2 expression in the amygdala, two established markers of fear memory lability and reconsolidation. We found that eliminating new contextual information during the retrieval of memories for predictable and unpredictable fear associations prevented changes in proteasome activity and glutamate receptor expression in the amygdala, indicating that this new information drives the reconsolidation of both predictable and unpredictable fear associations on retrieval. Consistent with this, eliminating new contextual information prior to retrieval prevented the memory-impairing effects of protein synthesis inhibitors following retrieval. These results indicate that under normal conditions, reconsolidation updates memories by incorporating new contextual information into the memory trace. Collectively, these results suggest that controlling contextual information present during retrieval may be a useful strategy for improving reconsolidation-based treatments of traumatic memories associated with anxiety disorders such as post-traumatic stress disorder.
Collapse
Affiliation(s)
- Timothy J Jarome
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Nicole C Ferrara
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Janine L Kwapis
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Fred J Helmstetter
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| |
Collapse
|
41
|
Licznerski P, Duric V, Banasr M, Alavian KN, Ota KT, Kang HJ, Jonas EA, Ursano R, Krystal JH, Duman RS. Decreased SGK1 Expression and Function Contributes to Behavioral Deficits Induced by Traumatic Stress. PLoS Biol 2015; 13:e1002282. [PMID: 26506154 PMCID: PMC4623974 DOI: 10.1371/journal.pbio.1002282] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 09/18/2015] [Indexed: 02/06/2023] Open
Abstract
Exposure to extreme stress can trigger the development of major depressive disorder (MDD) as well as post-traumatic stress disorder (PTSD). The molecular mechanisms underlying the structural and functional alterations within corticolimbic brain regions, including the prefrontal cortex (PFC) and amygdala of individuals subjected to traumatic stress, remain unknown. In this study, we show that serum and glucocorticoid regulated kinase 1 (SGK1) expression is down-regulated in the postmortem PFC of PTSD subjects. Furthermore, we demonstrate that inhibition of SGK1 in the rat medial PFC results in helplessness- and anhedonic-like behaviors in rodent models. These behavioral changes are accompanied by abnormal dendritic spine morphology and synaptic dysfunction. Together, the results are consistent with the possibility that altered SGK1 signaling contributes to the behavioral and morphological phenotypes associated with traumatic stress pathophysiology. Activity of the protein kinase SGK1 is reduced in the prefrontal cortex of individuals with post-traumatic stress disorder (PTSD), and SGK1 inhibition can cause PTSD-related behavioral changes in an animal model. Improper functioning of the brain regions known as prefrontal cortex and amygdala is associated with the development of post-traumatic stress disorder. However, little is known about the molecular mechanisms that underlie this condition. We found that the expression of a protein kinase involved in cellular responses to stress, known as serum and glucocorticoid regulated kinase 1 (SGK1), was decreased in the prefrontal cortex of subjects who had died with post-traumatic stress disorder. Furthermore, we found that experimentally decreasing SGK1 function in the prefrontal cortex of rats resulted in behaviors characteristic of traumatic stress, including the unwillingness to avoid discomfort and the inability to experience pleasure. Finally, reduced SGK1 function in neurons affected their basic electrophysiological properties and caused a decrease in the number of dendritic spines—the specialized protrusions of dendrites that receive synaptic inputs.
Collapse
Affiliation(s)
- Pawel Licznerski
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Department of Internal Medicine, Section of Endocrinology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Vanja Duric
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Department of Physiology and Pharmacology, Des Moines University, Des Moines, Iowa, United States of America
| | - Mounira Banasr
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Kambiz N. Alavian
- Department of Internal Medicine, Section of Endocrinology, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Division of Brain Sciences, Department of Medicine, Imperial College London, London, United Kingdom
| | - Kristie T. Ota
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Hyo Jung Kang
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Elizabeth A. Jonas
- Department of Internal Medicine, Section of Endocrinology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Robert Ursano
- Department of Psychiatry and Center for the Study of Traumatic Stress, Uniformed Services University of the Health Sciences and for the Traumatic Stress Brain Study Group, Bethesda, Maryland, United States of America
| | - John H. Krystal
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Abraham Ribicoff Research Facilities, Connecticut Mental Health Center, New Haven, Connecticut, United States of America
- VA National Center for PTSD, VA Connecticut Healthcare System, West Haven, Connecticut, United States of America
- Yale-New Haven Hospital, New Haven, Connecticut, United States of America
| | - Ronald S. Duman
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Abraham Ribicoff Research Facilities, Connecticut Mental Health Center, New Haven, Connecticut, United States of America
- VA National Center for PTSD, VA Connecticut Healthcare System, West Haven, Connecticut, United States of America
- * E-mail:
| | | |
Collapse
|
42
|
Korzus E. Prefrontal Cortex in Learning to Overcome Generalized Fear. J Exp Neurosci 2015; 9:53-6. [PMID: 26244030 PMCID: PMC4505918 DOI: 10.4137/jen.s26227] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 06/09/2015] [Accepted: 06/22/2015] [Indexed: 11/26/2022] Open
Abstract
Normal brain functioning relies critically on the ability to control appropriate behavioral responses to fearful stimuli. Overgeneralized fear is the major symptom of anxiety disorders including posttraumatic stress disorder. This review describes recent data demonstrating that the medial prefrontal cortex (mPFC) plays a critical role in the refining of cues that drive the acquisition of fear response. Recent studies on molecular mechanisms that underlie the role of mPFC in fear discrimination learning are discussed. These studies suggest that prefrontal N-methyl-D-aspartate receptors expressed in excitatory neurons govern fear discrimination learning via a mechanism involving cAMP response element-binding protein-dependent engagement of acetyltransferase.
Collapse
Affiliation(s)
- Edward Korzus
- Department of Psychology, Neuroscience and Biomedical Sciences Programs, University of California Riverside, CA, USA
| |
Collapse
|
43
|
Tipps ME, Raybuck JD, Buck KJ, Lattal KM. Acute ethanol withdrawal impairs contextual learning and enhances cued learning. Alcohol Clin Exp Res 2015; 39:282-90. [PMID: 25684050 PMCID: PMC4331355 DOI: 10.1111/acer.12614] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 10/24/2014] [Indexed: 11/29/2022]
Abstract
BACKGROUND Alcohol affects many of the brain regions and neural processes that support learning and memory, and these effects are thought to underlie, at least in part, the development of addiction. Although much work has been done regarding the effects of alcohol intoxication on learning and memory, little is known about the effects of acute withdrawal from a single alcohol exposure. METHODS We assess the effects of acute ethanol withdrawal (6 hours postinjection with 4 g/kg ethanol) on 2 forms of fear conditioning (delay and trace fear conditioning) in C57BL/6J and DBA/2J mice. The influence of a number of experimental parameters (pre- and post training withdrawal exposure; foreground/background processing; training strength; and nonassociative effects) is also investigated. RESULTS Acute ethanol withdrawal during training had a bidirectional effect on fear-conditioned responses, decreasing contextual responses and increasing cued responses. These effects were apparent for both trace and delay conditioning in DBA/2J mice and for trace conditioning in C57BL/6J mice; however, C57BL/6J mice were selectively resistant to the effects of acute withdrawal on delay cued responses. CONCLUSIONS Our results show that acute withdrawal from a single, initial ethanol exposure is sufficient to alter long-term learning in mice. In addition, the differences between the strains and conditioning paradigms used suggest that specific learning processes can be differentially affected by acute withdrawal in a manner that is distinct from the reported effects of both alcohol intoxication and withdrawal following chronic alcohol exposure. Thus, our results suggest a unique effect of acute alcohol withdrawal on learning and memory processes.
Collapse
Affiliation(s)
- Megan E. Tipps
- Portland Alcohol Research Center; Portland VA Medical Center 3710 SW US Veterans Hospital Rd., Bld 104 Portland, OR 97239-3098, USA
- Department of Behavioral Neuroscience; Oregon Health & Science University 3181 SW Sam Jackson Park Rd. Portland, OR 97239-3098, USA
| | - Jonathan D. Raybuck
- Department of Behavioral Neuroscience; Oregon Health & Science University 3181 SW Sam Jackson Park Rd. Portland, OR 97239-3098, USA
| | - Kari J. Buck
- Portland Alcohol Research Center; Portland VA Medical Center 3710 SW US Veterans Hospital Rd., Bld 104 Portland, OR 97239-3098, USA
- Department of Behavioral Neuroscience; Oregon Health & Science University 3181 SW Sam Jackson Park Rd. Portland, OR 97239-3098, USA
| | - K. Matthew Lattal
- Department of Behavioral Neuroscience; Oregon Health & Science University 3181 SW Sam Jackson Park Rd. Portland, OR 97239-3098, USA
| |
Collapse
|
44
|
Hafenbreidel M, Rafa Todd C, Twining RC, Tuscher JJ, Mueller D. Bidirectional effects of inhibiting or potentiating NMDA receptors on extinction after cocaine self-administration in rats. Psychopharmacology (Berl) 2014; 231:4585-94. [PMID: 24847958 PMCID: PMC4233003 DOI: 10.1007/s00213-014-3607-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 04/22/2014] [Indexed: 01/01/2023]
Abstract
RATIONALE Extinction of drug seeking is facilitated by NMDA receptor (NMDAr) agonists, but it remains unclear whether extinction is dependent on NMDAr activity. OBJECTIVES We investigated the necessity of NMDArs for extinction of cocaine seeking and whether extinction altered NMDAr expression within extinction-related neuroanatomical loci. METHODS Rats were trained to lever press for i.v. infusions of cocaine or sucrose reinforcement prior to extinction training or withdrawal. RESULTS Administration of the NMDAr competitive antagonist CPP prior to four brief extinction sessions impaired subsequent extinction retention. In contrast, administration of the NMDAr coagonist D-serine after four brief extinction sessions attenuated lever pressing during subsequent extinction, indicative of facilitated consolidation of extinction. Furthermore, expression of the NMDAr subunits, GluN2A and GluN2B, was not altered in the ventromedial prefrontal cortex. However, both GluN2A and GluN2B subunit expression in the nucleus accumbens increased following cocaine self-administration, and this increased expression was relatively resistant to modulation by extinction. CONCLUSIONS Our findings demonstrate that extinction of cocaine seeking is bidirectionally mediated by NMDArs and suggest that selective modulation of NMDAr activity could facilitate extinction-based therapies for treatment of cocaine abuse.
Collapse
Affiliation(s)
- Madalyn Hafenbreidel
- Department of Psychology, University of Wisconsin-Milwaukee, 2441 E. Hartford Ave., Garland Hall 224, Milwaukee, WI, 53211, USA
| | | | | | | | | |
Collapse
|
45
|
Pomierny-Chamiolo L, Miszkiel J, Frankowska M, Pomierny B, Niedzielska E, Smaga I, Fumagalli F, Filip M. Withdrawal from cocaine self-administration and yoked cocaine delivery dysregulates glutamatergic mGlu5 and NMDA receptors in the rat brain. Neurotox Res 2014; 27:246-58. [PMID: 25408547 PMCID: PMC4353866 DOI: 10.1007/s12640-014-9502-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 10/06/2014] [Accepted: 11/06/2014] [Indexed: 12/16/2022]
Abstract
In human addicts and in animal models, chronic cocaine use leads to numerous alterations in glutamatergic transmission, including its receptors. The present study focused on metabotropic glutamatergic receptors type 5 (mGluR5) and N-methyl-D-aspartate receptor subunits (NMDAR: GluN1, GluN2A, GluN2B) proteins during cocaine self-administration and after 10-day of extinction training in rats. To discriminate the contingent from the non-contingent cocaine delivery, we employed the “yoked”-triad control procedure. Protein expression in rat prefrontal cortex, nucleus accumbens, hippocampus, and dorsal striatum was determined. We also examined the Homer1b/c protein, a member of the postsynaptic density protein family that links NMDAR to mGluR5. Our results revealed that cocaine self-administration selectively increased GluN1 and GluN2A subunit in the rat hippocampus and dorsal striatum, respectively, while mGluR5 protein expression was similarly increased in the dorsal striatum of both experimental groups. Withdrawal from both contingent and non-contingent cocaine delivery induced parallel increases in prefrontal cortical GluN2A protein expression, hippocampal mGluR5, and GluN1 protein expression as well as in accumbal GluN1 subunit expression, while the mGluR5 expression was reduced in the prefrontal cortex. Extinction training in animals with a history of cocaine self-administration resulted in an elevation of the hippocampal GluN2A/GluN2B subunits and accumbal mGluR5, and in a 50 % decrease of mGluR5 protein expression in the dorsal striatum. The latter reduction was associated with Homer1b/1c protein level decrease. Our results showed that both contingent and non-contingent cocaine administration produces numerous, brain region specific, alterations in the mGluR5, NMDA, and Homer1b/1c protein expression which are dependent on the modality of cocaine administration.
Collapse
Affiliation(s)
- Lucyna Pomierny-Chamiolo
- Department of Toxicology, Department of Biochemical Toxicology, Faculty of Pharmacy, Jagiellonian University, Medical College, Medyczna 9, 30-688, Kraków, Poland,
| | | | | | | | | | | | | | | |
Collapse
|
46
|
The role of GluN2A and GluN2B subunits on the effects of NMDA receptor antagonists in modeling schizophrenia and treating refractory depression. Neuropsychopharmacology 2014; 39:2673-80. [PMID: 24871546 PMCID: PMC4207347 DOI: 10.1038/npp.2014.123] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 05/22/2014] [Accepted: 05/24/2014] [Indexed: 11/08/2022]
Abstract
Paradoxically, N-methyl-D-aspartate (NMDA) receptor antagonists are used to model certain aspects of schizophrenia as well as to treat refractory depression. However, the role of different subunits of the NMDA receptor in both conditions is poorly understood. Here we used biochemical and behavioral readouts to examine the in vivo prefrontal efflux of serotonin and glutamate as well as the stereotypical behavior and the antidepressant-like activity in the forced swim test elicited by antagonists selective for the GluN2A (NVP-AAM077) and GluN2B (Ro 25-6981) subunits. The effects of the non-subunit selective antagonist, MK-801; were also studied for comparison. The administration of MK-801 dose dependently increased the prefrontal efflux of serotonin and glutamate and markedly increased the stereotypy scores. NVP-AAM077 also increased the efflux of serotonin and glutamate, but without the induction of stereotypies. In contrast, Ro 25-6981 did not change any of the biochemical and behavioral parameters tested. Interestingly, the administration of NVP-AAM077 and Ro 25-6981 alone elicited antidepressant-like activity in the forced swim test, in contrast to the combination of both compounds that evoked marked stereotypies. Our interpretation of the results is that both GluN2A and GluN2B subunits are needed to induce stereotypies, which might be suggestive of potential psychotomimetic effects in humans, but the antagonism of only one of these subunits is sufficient to evoke an antidepressant response. We also propose that GluN2A receptor antagonists could have potential antidepressant activity in the absence of potential psychotomimetic effects.
Collapse
|
47
|
Gilmartin MR, Balderston NL, Helmstetter FJ. Prefrontal cortical regulation of fear learning. Trends Neurosci 2014; 37:455-64. [PMID: 24929864 PMCID: PMC4119830 DOI: 10.1016/j.tins.2014.05.004] [Citation(s) in RCA: 124] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 05/07/2014] [Accepted: 05/13/2014] [Indexed: 11/29/2022]
Abstract
The prefrontal cortex regulates the expression of fear based on previously learned information. Recently, this brain area has emerged as being crucial in the initial formation of fear memories, providing new avenues to study the neurobiology underlying aberrant learning in anxiety disorders. Here we review the circumstances under which the prefrontal cortex is recruited in the formation of memory, highlighting relevant work in laboratory animals and human subjects. We propose that the prefrontal cortex facilitates fear memory through the integration of sensory and emotional signals and through the coordination of memory storage in an amygdala-based network.
Collapse
Affiliation(s)
- Marieke R Gilmartin
- Department of Psychology, University of Wisconsin-Milwaukee, 2441 E. Hartford Ave., Milwaukee, WI 53211, USA; Department of Biomedical Sciences, Marquette University, 561 N 15th Street, Milwaukee, WI 53233, USA.
| | - Nicholas L Balderston
- Department of Psychology, University of Wisconsin-Milwaukee, 2441 E. Hartford Ave., Milwaukee, WI 53211, USA
| | - Fred J Helmstetter
- Department of Psychology, University of Wisconsin-Milwaukee, 2441 E. Hartford Ave., Milwaukee, WI 53211, USA
| |
Collapse
|
48
|
Pisar M, Forrest CM, Khalil OS, McNair K, Vincenten MC, Qasem S, Darlington LG, Stone TW. Modified neocortical and cerebellar protein expression and morphology in adult rats following prenatal inhibition of the kynurenine pathway. Brain Res 2014; 1576:1-17. [DOI: 10.1016/j.brainres.2014.06.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 06/12/2014] [Accepted: 06/13/2014] [Indexed: 10/25/2022]
|
49
|
Jarome TJ, Helmstetter FJ. Protein degradation and protein synthesis in long-term memory formation. Front Mol Neurosci 2014; 7:61. [PMID: 25018696 PMCID: PMC4072070 DOI: 10.3389/fnmol.2014.00061] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 06/09/2014] [Indexed: 11/19/2022] Open
Abstract
Long-term memory (LTM) formation requires transient changes in the activity of intracellular signaling cascades that are thought to regulate new gene transcription and de novo protein synthesis in the brain. Consistent with this, protein synthesis inhibitors impair LTM for a variety of behavioral tasks when infused into the brain around the time of training or following memory retrieval, suggesting that protein synthesis is a critical step in LTM storage in the brain. However, evidence suggests that protein degradation mediated by the ubiquitin-proteasome system (UPS) may also be a critical regulator of LTM formation and stability following retrieval. This requirement for increased protein degradation has been shown in the same brain regions in which protein synthesis is required for LTM storage. Additionally, increases in the phosphorylation of proteins involved in translational control parallel increases in protein polyubiquitination and the increased demand for protein degradation is regulated by intracellular signaling molecules thought to regulate protein synthesis during LTM formation. In some cases inhibiting proteasome activity can rescue memory impairments that result from pharmacological blockade of protein synthesis, suggesting that protein degradation may control the requirement for protein synthesis during the memory storage process. Results such as these suggest that protein degradation and synthesis are both critical for LTM formation and may interact to properly “consolidate” and store memories in the brain. Here, we review the evidence implicating protein synthesis and degradation in LTM storage and highlight the areas of overlap between these two opposing processes. We also discuss evidence suggesting these two processes may interact to properly form and store memories. LTM storage likely requires a coordinated regulation between protein degradation and synthesis at multiple sites in the mammalian brain.
Collapse
Affiliation(s)
- Timothy J Jarome
- Department of Neurobiology, University of Alabama at Birmingham Birmingham, AL, USA ; Department of Psychology, University of Wisconsin-Milwaukee Milwaukee, WI, USA
| | - Fred J Helmstetter
- Department of Psychology, University of Wisconsin-Milwaukee Milwaukee, WI, USA
| |
Collapse
|
50
|
Puzzo D, Lee L, Palmeri A, Calabrese G, Arancio O. Behavioral assays with mouse models of Alzheimer's disease: practical considerations and guidelines. Biochem Pharmacol 2014; 88:450-67. [PMID: 24462904 PMCID: PMC4014001 DOI: 10.1016/j.bcp.2014.01.011] [Citation(s) in RCA: 133] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 01/09/2014] [Accepted: 01/09/2014] [Indexed: 12/14/2022]
Abstract
In Alzheimer's disease (AD) basic research and drug discovery, mouse models are essential resources for uncovering biological mechanisms, validating molecular targets and screening potential compounds. Both transgenic and non-genetically modified mouse models enable access to different types of AD-like pathology in vivo. Although there is a wealth of genetic and biochemical studies on proposed AD pathogenic pathways, as a disease that centrally features cognitive failure, the ultimate readout for any interventions should be measures of learning and memory. This is particularly important given the lack of knowledge on disease etiology - assessment by cognitive assays offers the advantage of targeting relevant memory systems without requiring assumptions about pathogenesis. A multitude of behavioral assays are available for assessing cognitive functioning in mouse models, including ones specific for hippocampal-dependent learning and memory. Here we review the basics of available transgenic and non-transgenic AD mouse models and detail three well-established behavioral tasks commonly used for testing hippocampal-dependent cognition in mice - contextual fear conditioning, radial arm water maze and Morris water maze. In particular, we discuss the practical considerations, requirements and caveats of these behavioral testing paradigms.
Collapse
Affiliation(s)
- Daniela Puzzo
- Department of Bio-Medical Sciences - Section of Physiology, University of Catania, Viale A. Doria 6, Catania 95125, Italy
| | - Linda Lee
- Department of Pathology & Cell Biology, The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, P&S #12-420D, 630W 168th Street, New York, NY 10032, USA
| | - Agostino Palmeri
- Department of Bio-Medical Sciences - Section of Physiology, University of Catania, Viale A. Doria 6, Catania 95125, Italy
| | - Giorgio Calabrese
- Department of Pharmacy, Federico II University, Via D. Montesano 49, Naples 80131, Italy
| | - Ottavio Arancio
- Department of Pathology & Cell Biology, The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, P&S #12-420D, 630W 168th Street, New York, NY 10032, USA.
| |
Collapse
|