1
|
Psyrakis D, Jasiewicz J, Wehrmeister M, Bonni K, Lutz B, Kodirov SA. Progressive long-term synaptic depression at cortical inputs into the amygdala. Neuroscience 2024; 556:52-65. [PMID: 39094820 PMCID: PMC11709117 DOI: 10.1016/j.neuroscience.2024.07.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/14/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
The convergence of conditioned and unconditioned stimuli (CS and US) into the lateral amygdala (LA) serves as a substrate for an adequate fear response in vivo. This well-known Pavlovian paradigm modulates the synaptic plasticity of neurons, as can be proved by the long-term potentiation (LTP) phenomenon in vitro. Although there is an increasing body of evidence for the existence of LTP in the amygdala, only a few studies were able to show a reliable long-term depression (LTD) of excitation in this structure. We have used coronal brain slices and conducted patch-clamp recordings in pyramidal neurons of the lateral amygdala (LA). After obtaining a stable baseline excitatory postsynaptic current (EPSC) response at a holding potential of -70 mV, we employed a paired-pulse paradigm at 1 Hz at the same membrane potential and could observe a reliable LTD. The different durations of stimulation (ranging between 1.5-24 min) were tested first in the same neuron, but the intensity was kept constant. The latter paradigm resulted in a step-wise LTD with a gradually increasing magnitude under these conditions.
Collapse
Affiliation(s)
- Dimitrios Psyrakis
- Institute of Physiological Chemistry and Pathobiochemistry, University Medical Center Mainz, Mainz, Germany
| | - Julia Jasiewicz
- Institute of Physiological Chemistry and Pathobiochemistry, University Medical Center Mainz, Mainz, Germany
| | - Michael Wehrmeister
- Institute of Physiological Chemistry and Pathobiochemistry, University Medical Center Mainz, Mainz, Germany
| | - Kathrin Bonni
- Institute of Physiological Chemistry and Pathobiochemistry, University Medical Center Mainz, Mainz, Germany
| | - Beat Lutz
- Institute of Physiological Chemistry and Pathobiochemistry, University Medical Center Mainz, Mainz, Germany
| | - Sodikdjon A Kodirov
- Institute of Physiological Chemistry and Pathobiochemistry, University Medical Center Mainz, Mainz, Germany; Center for Biomedical Studies, Department of Biological Sciences, University of Texas at Brownsville, TX 78520, USA; Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal; Institute of Biophysics, Johannes Kepler University, Linz, Austria.
| |
Collapse
|
2
|
Wang M, Xu B, Xie Y, Yao G, Chen Y. Mir155hg Accelerates Hippocampal Neuron Injury in Convulsive Status Epilepticus by Inhibiting Microglial Phagocytosis. Neurochem Res 2024; 49:1782-1793. [PMID: 38555337 DOI: 10.1007/s11064-024-04131-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/08/2024] [Accepted: 02/17/2024] [Indexed: 04/02/2024]
Abstract
Convulsive status epilepticus (CSE) is a common critical neurological condition that can lead to irreversible hippocampal neuron damage and cognitive dysfunction. Multiple studies have demonstrated the critical roles that long non-coding RNA Mir155hg plays in a variety of diseases. However, less is known about the function and mechanism of Mir155hg in CSE. Here we investigate and elucidate the mechanism underlying the contribution of Mir155hg to CSE-induced hippocampal neuron injury. By applying high-throughput sequencing, we examined the expression of differentially expressed genes in normal and CSE rats. Subsequent RT-qPCR enabled us to measure the level of Mir155hg in rat hippocampal tissue. Targeted knockdown of Mir155hg was achieved by the AAV9 virus. Additionally, we utilized HE and Tunel staining to evaluate neuronal injury. Immunofluorescence (IF), Golgi staining, and brain path clamping were also used to detect the synaptic plasticity of hippocampal neurons. Finally, through IF staining and Sholl analysis, we assessed the degree of microglial phagocytic function. It was found that the expression of Mir155hg was elevated in CSE rats. HE and Tunel staining results showed that Mir155hg knockdown suppressed the hippocampal neuron loss and apoptosis followed CSE. IF, Golgi staining and brain path clamp data found that Mir155hg knockdown enhanced neuronal synaptic plasticity. The results from IF staining and Sholl analysis showed that Mir155hg knockdown enhanced microglial phagocytosis. Our findings suggest that Mir155hg promotes CSE-induced hippocampal neuron injury by inhibiting microglial phagocytosis.
Collapse
Affiliation(s)
- Ming Wang
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Binyuan Xu
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Yangmei Xie
- Department of Neurology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Ge Yao
- Department of Neurology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| | - Yinghui Chen
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| |
Collapse
|
3
|
Chen S, Lu H, Cheng C, Ye Z, Hua T. Rapidly repeated visual stimulation induces long-term potentiation of VEPs and increased content of membrane AMPA and NMDA receptors in the V1 cortex of cats. Front Neurosci 2024; 18:1386801. [PMID: 38831757 PMCID: PMC11144871 DOI: 10.3389/fnins.2024.1386801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 04/25/2024] [Indexed: 06/05/2024] Open
Abstract
Studies report that rapidly repeated sensory stimulation can evoke LTP-like improvement of neural response in the sensory cortex. Whether this neural response potentiation is similar to the classic LTP induced by presynaptic electrical stimulation remains unclear. This study examined the effects of repeated high-frequency (9 Hz) versus low-frequency (1 Hz) visual stimulation on visually-evoked field potentials (VEPs) and the membrane protein content of AMPA / NMDA receptors in the primary visual cortex (V1) of cats. The results showed that repeated high-frequency visual stimulation (HFS) caused a long-term improvement in peak-to-peak amplitude of V1-cortical VEPs in response to visual stimuli at HFS-stimulated orientation (SO: 90°) and non-stimulated orientation (NSO: 180°), but the effect exhibited variations depending on stimulus orientation: the amplitude increase of VEPs in response to visual stimuli at SO was larger, reached a maximum earlier and lasted longer than at NSO. By contrast, repeated low-frequency visual stimulation (LFS) had not significantly affected the amplitude of V1-cortical VEPs in response to visual stimuli at both SO and NSO. Furthermore, the membrane protein content of the key subunit GluA1 of AMPA receptors and main subunit NR1 of AMPA receptors in V1 cortex was significantly increased after HFS but not LFS when compared with that of control cats. Taken together, these results indicate that HFS can induce LTP-like improvement of VEPs and an increase in membrane protein of AMPA and NMDA receptors in the V1 cortex of cats, which is similar to but less specific to stimulus orientation than the classic LTP.
Collapse
Affiliation(s)
| | | | | | | | - Tianmiao Hua
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| |
Collapse
|
4
|
Samadi M, Hales CA, Lustberg DJ, Farris S, Ross MR, Zhao M, Hepler JR, Harbin NH, Robinson ESJ, Banks PJ, Bashir ZI, Dudek SM. Mechanisms of mGluR-dependent plasticity in hippocampal area CA2. Hippocampus 2023; 33:730-744. [PMID: 36971428 PMCID: PMC10213158 DOI: 10.1002/hipo.23529] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/04/2023] [Accepted: 03/08/2023] [Indexed: 03/29/2023]
Abstract
Pyramidal cells in hippocampal area CA2 have synaptic properties that are distinct from the other CA subregions. Notably, this includes a lack of typical long-term potentiation of stratum radiatum synapses. CA2 neurons express high levels of several known and potential regulators of metabotropic glutamate receptor (mGluR)-dependent signaling including Striatal-Enriched Tyrosine Phosphatase (STEP) and several Regulator of G-protein Signaling (RGS) proteins, yet the functions of these proteins in regulating mGluR-dependent synaptic plasticity in CA2 are completely unknown. Thus, the aim of this study was to examine mGluR-dependent synaptic depression and to determine whether STEP and the RGS proteins RGS4 and RGS14 are involved. Using whole cell voltage-clamp recordings from mouse pyramidal cells, we found that mGluR agonist-induced long-term depression (mGluR-LTD) is more pronounced in CA2 compared with that observed in CA1. This mGluR-LTD in CA2 was found to be protein synthesis and STEP dependent, suggesting that CA2 mGluR-LTD shares mechanistic processes with those seen in CA1, but in addition, RGS14, but not RGS4, was essential for mGluR-LTD in CA2. In addition, we found that exogenous application of STEP could rescue mGluR-LTD in RGS14 KO slices. Supporting a role for CA2 synaptic plasticity in social cognition, we found that RGS14 KO mice had impaired social recognition memory as assessed in a social discrimination task. These results highlight possible roles for mGluRs, RGS14, and STEP in CA2-dependent behaviors, perhaps by biasing the dominant form of synaptic plasticity away from LTP and toward LTD in CA2.
Collapse
Affiliation(s)
- Mahsa Samadi
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences BuildingUniversity Walk, University of BristolBristolUKBS8 1TD
- Neurobiology Laboratory, National Institute of Environmental Health Sciences (NIH)111 T.W. Alexander Drive, Research Triangle ParkDurhamNorth Carolina27709USA
- Present address:
Faculty Education Office, Faculty of Medicine, Imperial College London, Hammersmith Campus, Wolfson Education CentreLondonUKW12 0NN
| | - Claire A. Hales
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences BuildingUniversity Walk, University of BristolBristolUKBS8 1TD
- Present address:
Department of Psychology, Djavad Mowafaghian Centre for Brain HealthUniversity of British Columbia2215, Wesbrook MallVancouverBritish ColumbiaV6T 1Z3Canada
| | - Daniel J. Lustberg
- Neurobiology Laboratory, National Institute of Environmental Health Sciences (NIH)111 T.W. Alexander Drive, Research Triangle ParkDurhamNorth Carolina27709USA
- Present address:
Mouse Pharmacology GroupPsychogenics Inc215 College RoadParamusNew Jersey07652USA
| | - Shannon Farris
- Neurobiology Laboratory, National Institute of Environmental Health Sciences (NIH)111 T.W. Alexander Drive, Research Triangle ParkDurhamNorth Carolina27709USA
- Present address:
Fralin Biomedical Research Institute at Virginia TechRoanokeVirginia24014USA
| | - Madeleine R. Ross
- Neurobiology Laboratory, National Institute of Environmental Health Sciences (NIH)111 T.W. Alexander Drive, Research Triangle ParkDurhamNorth Carolina27709USA
| | - Meilan Zhao
- Neurobiology Laboratory, National Institute of Environmental Health Sciences (NIH)111 T.W. Alexander Drive, Research Triangle ParkDurhamNorth Carolina27709USA
| | - John R. Hepler
- Department of Pharmacology and Chemical BiologyEmory University School of Medicine100 Woodruff CircleAtlantaGeorgia30322USA
| | - Nicholas H. Harbin
- Department of Pharmacology and Chemical BiologyEmory University School of Medicine100 Woodruff CircleAtlantaGeorgia30322USA
| | - Emma S. J. Robinson
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences BuildingUniversity Walk, University of BristolBristolUKBS8 1TD
| | - Paul J. Banks
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences BuildingUniversity Walk, University of BristolBristolUKBS8 1TD
| | - Zafar I. Bashir
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences BuildingUniversity Walk, University of BristolBristolUKBS8 1TD
| | - Serena M. Dudek
- Neurobiology Laboratory, National Institute of Environmental Health Sciences (NIH)111 T.W. Alexander Drive, Research Triangle ParkDurhamNorth Carolina27709USA
| |
Collapse
|
5
|
Wassum KM. Amygdala-cortical collaboration in reward learning and decision making. eLife 2022; 11:e80926. [PMID: 36062909 PMCID: PMC9444241 DOI: 10.7554/elife.80926] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/22/2022] [Indexed: 12/16/2022] Open
Abstract
Adaptive reward-related decision making requires accurate prospective consideration of the specific outcome of each option and its current desirability. These mental simulations are informed by stored memories of the associative relationships that exist within an environment. In this review, I discuss recent investigations of the function of circuitry between the basolateral amygdala (BLA) and lateral (lOFC) and medial (mOFC) orbitofrontal cortex in the learning and use of associative reward memories. I draw conclusions from data collected using sophisticated behavioral approaches to diagnose the content of appetitive memory in combination with modern circuit dissection tools. I propose that, via their direct bidirectional connections, the BLA and OFC collaborate to help us encode detailed, outcome-specific, state-dependent reward memories and to use those memories to enable the predictions and inferences that support adaptive decision making. Whereas lOFC→BLA projections mediate the encoding of outcome-specific reward memories, mOFC→BLA projections regulate the ability to use these memories to inform reward pursuit decisions. BLA projections to lOFC and mOFC both contribute to using reward memories to guide decision making. The BLA→lOFC pathway mediates the ability to represent the identity of a specific predicted reward and the BLA→mOFC pathway facilitates understanding of the value of predicted events. Thus, I outline a neuronal circuit architecture for reward learning and decision making and provide new testable hypotheses as well as implications for both adaptive and maladaptive decision making.
Collapse
Affiliation(s)
- Kate M Wassum
- Department of Psychology, University of California, Los AngelesLos AngelesUnited States
- Brain Research Institute, University of California, Los AngelesLos AngelesUnited States
- Integrative Center for Learning and Memory, University of California, Los AngelesLos AngelesUnited States
- Integrative Center for Addictive Disorders, University of California, Los AngelesLos AngelesUnited States
| |
Collapse
|
6
|
Wiatrak B, Mieszała P, Gąsiorowski K. Impact of NMDA receptor activation on DNA damage in PC12 neuron-like cell cultures in the presence of β-amyloid peptides. Mol Biol Rep 2022; 49:10443-10455. [PMID: 36107376 PMCID: PMC9618537 DOI: 10.1007/s11033-022-07856-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 07/14/2022] [Accepted: 08/11/2022] [Indexed: 11/28/2022]
Abstract
OBJECTIVE This study aimed to investigate the effect of low nanomolar concentrations of Aβ1-40 and Aβ25-35 on DNA double-strand breaks following NMDA activation of cells. MATERIALS AND METHODS After incubating the differentiated PC12 cells with Aβ25-35, Aβ1-40 or Aβ1-42 for 24 h, the culture was washed and stimulated for 15 min with NMDA. Then, tests were performed at four-time intervals from stimulation to assess the viability of the culture, the level of oxygen free radicals, and the γH2AX and pATM kinase. NMDAR1 expression was also evaluated by performing immunocytochemical staining. RESULTS It was found that amyloid peptides in nanomolar concentrations reduce double-stranded DNA breaks after NMDA neuron activation. A slight antioxidant effect was also demonstrated when measured 120 min after NMDA cell activation. CONCLUSION The NMDA stimulation of PC12 cells led to a rapid increase in the number of double-stranded DNA breaks in the cells and is assumed to be the initial step in IEG activation and LTP induction. The effect of Aβ on the reduction of double-strand breaks after NMDA cell stimulation indicates that at concentrations similar to physiological amyloid peptides, it may reduce the mobilization of the neuronal response to stimuli, leading to inhibition of LTP induction and decreasing synaptic plasticity in the early stages of Alzheimer's disease.
Collapse
Affiliation(s)
- Benita Wiatrak
- Department of Basic Medical Sciences, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland ,Department of Pharmacology, Faculty of Medicine, Wroclaw Medical University, Mikulicza-Radeckiego 2, 50-345 Wrocław, Poland
| | - Przemysław Mieszała
- Department of Basic Medical Sciences, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland
| | - Kazimierz Gąsiorowski
- Department of Basic Medical Sciences, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland
| |
Collapse
|
7
|
Ma X, Vuyyuru H, Munsch T, Endres T, Lessmann V, Meis S. ProBDNF Dependence of LTD and Fear Extinction Learning in the Amygdala of Adult Mice. Cereb Cortex 2021; 32:1350-1364. [PMID: 34470044 DOI: 10.1093/cercor/bhab265] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 11/12/2022] Open
Abstract
Neurotrophins are secreted proteins that control survival, differentiation, and synaptic plasticity. While mature neurotrophins regulate these functions via tyrosine kinase signaling (Trk), uncleaved pro-neurotrophins bind preferentially to the p75 neurotrophin receptor (p75NTR) and often exert opposite effects to those of mature neurotrophins. In the amygdala, brain-derived neurotrophic factor (BDNF) enables long-term potentiation as well as fear and fear extinction learning. In the present study, we focused on the impact of mature BDNF and proBDNF signaling on long-term depression (LTD) in the lateral amygdala (LA). Hence, we conducted extracellular field potential recordings in an in vitro slice preparation and recorded LTD in cortical and thalamic afferents to the LA. LTD was unchanged by acute block of BDNF/TrkB signaling. In contrast, LTD was inhibited by blocking p75NTR signaling, by disinhibition of the proteolytic cleavage of proBDNF into mature BDNF, and by preincubation with a function-blocking anti-proBDNF antibody. Since LTD-like processes in the amygdala are supposed to be related to fear extinction learning, we locally inhibited p75NTR signaling in the amygdala during or after fear extinction training, resulting in impaired fear extinction memory. Overall, these results suggest that in the amygdala proBDNF/p75NTR signaling plays a pivotal role in LTD and fear extinction learning.
Collapse
Affiliation(s)
- Xiaoyun Ma
- Institut für Physiologie, Otto-von-Guericke-Universität, D-39120 Magdeburg, Germany
| | - Harish Vuyyuru
- Institut für Physiologie, Otto-von-Guericke-Universität, D-39120 Magdeburg, Germany
| | - Thomas Munsch
- Institut für Physiologie, Otto-von-Guericke-Universität, D-39120 Magdeburg, Germany.,Center for Behavioral Brain Sciences, Universitätsplatz 2, D-39106 Magdeburg, Germany
| | - Thomas Endres
- Institut für Physiologie, Otto-von-Guericke-Universität, D-39120 Magdeburg, Germany
| | - Volkmar Lessmann
- Institut für Physiologie, Otto-von-Guericke-Universität, D-39120 Magdeburg, Germany.,Center for Behavioral Brain Sciences, Universitätsplatz 2, D-39106 Magdeburg, Germany
| | - Susanne Meis
- Institut für Physiologie, Otto-von-Guericke-Universität, D-39120 Magdeburg, Germany.,Center for Behavioral Brain Sciences, Universitätsplatz 2, D-39106 Magdeburg, Germany
| |
Collapse
|
8
|
Tan B, Aslan-Gülpınar E, Dursun N, Süer C. N-methyl-D-aspartate receptor blockade reduces plasticity-related tau expression and phosphorylation of tau at Ser416 residue but not Thr231 residue. Exp Brain Res 2021; 239:1627-1637. [PMID: 33768378 DOI: 10.1007/s00221-021-06090-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 03/15/2021] [Indexed: 12/27/2022]
Abstract
The molecular mechanisms regulating N-methyl-D-aspartate (NMDA) receptor-dependent synaptic plasticity are complex, and the contribution of Tau protein in the physiological process is not fully understood. Herein, we investigated whether the blockade of NMDA receptor activation might change Tau phosphorylation during long-term potentiation (LTP) and long-term depression (LTD) via contribution of GSK3β as a major Tau kinase. For this, we recorded two components (synaptic and population spike components) of hippocampal field potential, which is evoked by the stimulation of the perforant pathway with high- and low-frequency stimulation (HFS and LFS). We found under a 20-µl volume of D-AP5 infusion lasting 1 h that,HFS caused significant synaptic depression, whereas LFS induced a synaptic potentiation. Both the HFS and LFS protocols resulted in a significant increase in population spike component but were characterized by a slow increase in amplitude that occurred with the LFS. D-AP5 attenuated HFS-induced population spike potentiation, but augmented LFS-induced population spike potentiation. The enzymatic activity of GSK-3β was decreased by D-AP5 infusion in the hippocampus, indicating that NMDA receptor activity modulates the enzymatic activity of GSK-3β. In addition, NMDA receptor blockade reduced tau expression and phosphorylation of tau at Ser416 residue, but not Thr231 residue. These findings confirm previous studies that D-AP5 applied to the DG in vivo blocks HFS-induced LTP, but we further also showed that the same dose of D-AP5 resulted in a slowly rising LFS-induced LTP and HFS-induced LTD. The formation of such an LTP, together with reduced enzymatic activity of GSK-3β and tau phosphorylation at Ser416 epitope, can make it a candidate mechanism for prevention of taupathies.
Collapse
Affiliation(s)
- Burak Tan
- Department of Physiology, School of Medicine, Erciyes University, Kayseri, Turkey.
| | - Ezgi Aslan-Gülpınar
- Department of Physiology, School of Medicine, Erciyes University, Kayseri, Turkey
| | - Nurcan Dursun
- Department of Physiology, School of Medicine, Erciyes University, Kayseri, Turkey
| | - Cem Süer
- Department of Physiology, School of Medicine, Erciyes University, Kayseri, Turkey
| |
Collapse
|
9
|
Guadagno A, Verlezza S, Long H, Wong TP, Walker CD. It Is All in the Right Amygdala: Increased Synaptic Plasticity and Perineuronal Nets in Male, But Not Female, Juvenile Rat Pups after Exposure to Early-Life Stress. J Neurosci 2020; 40:8276-8291. [PMID: 32978287 PMCID: PMC7577595 DOI: 10.1523/jneurosci.1029-20.2020] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 09/13/2020] [Accepted: 09/16/2020] [Indexed: 01/09/2023] Open
Abstract
Early-life stress (ELS) is associated with increased vulnerability to mental disorders. The basolateral amygdala (BLA) plays a critical role in fear conditioning and is extremely sensitive to ELS. Using a naturalistic rodent model of ELS, the limited bedding paradigm (LB) between postnatal days 1-10, we previously documented that LB male, but not female preweaning rat pups display increased BLA neuron spine density paralleled with enhanced evoked synaptic responses and altered BLA functional connectivity. Since ELS effects are often sexually dimorphic and amygdala processes exhibit hemispheric asymmetry, we investigated changes in synaptic plasticity and neuronal excitability of BLA neurons in vitro in the left and right amygdala of postnatal days 22-28 male and female offspring from normal bedding or LB mothers. We report that LB conditions enhanced synaptic plasticity in the right, but not the left BLA of males exclusively. LB males also showed increased perineuronal net density, particularly around parvalbumin (PV) cells, and impaired fear-induced activity of PV interneurons only in the right BLA. Action potentials fired from right BLA neurons of LB females displayed slower maximal depolarization rates and decreased amplitudes compared with normal bedding females, concomitant with reduced NMDAR GluN1 subunit expression in the right BLA. In LB males, reduced GluA2 expression in the right BLA might contribute to the enhanced LTP. These findings suggest that LB differentially programs synaptic plasticity and PV/perineuronal net development in the left and right BLA. Furthermore, our study demonstrates that the effects of ELS exposure on BLA synaptic function are sexually dimorphic and possibly recruiting different mechanisms.SIGNIFICANCE STATEMENT Early-life stress (ELS) induces long-lasting consequences on stress responses and emotional regulation in humans, increasing vulnerability to the development of psychopathologies. The effects of ELS in a number of brain regions, including the amygdala, are often sexually dimorphic, and have been reproduced using the rodent limited bedding paradigm of early adversity. The present study examines sex differences in synaptic plasticity and cellular activation occurring in the developing left and right amygdala after limited bedding exposure, a phenomenon that could shape long-term emotional behavioral outcomes. Studying how ELS selectively produces effects in one amygdala hemisphere during a critical period of brain development could guide further investigation into sex-dependent mechanisms and allow for more targeted and improved treatment of stress-and emotionality-related disorders.
Collapse
Affiliation(s)
- Angela Guadagno
- Douglas Mental Health University Institute, Montreal, Quebec, H4H 1R3, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec, H3A 0G4, Canada
| | - Silvanna Verlezza
- Douglas Mental Health University Institute, Montreal, Quebec, H4H 1R3, Canada
| | - Hong Long
- Douglas Mental Health University Institute, Montreal, Quebec, H4H 1R3, Canada
| | - Tak Pan Wong
- Douglas Mental Health University Institute, Montreal, Quebec, H4H 1R3, Canada
- Department of Psychiatry, McGill University, Montreal, Quebec, H3A 0G4, Canada
| | - Claire-Dominique Walker
- Douglas Mental Health University Institute, Montreal, Quebec, H4H 1R3, Canada
- Department of Psychiatry, McGill University, Montreal, Quebec, H3A 0G4, Canada
| |
Collapse
|
10
|
Yeung JHY, Calvo-Flores Guzmán B, Palpagama TH, Ethiraj J, Zhai Y, Tate WP, Peppercorn K, Waldvogel HJ, Faull RLM, Kwakowsky A. Amyloid-beta 1-42 induced glutamatergic receptor and transporter expression changes in the mouse hippocampus. J Neurochem 2020; 155:62-80. [PMID: 32491248 DOI: 10.1111/jnc.15099] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/21/2020] [Accepted: 05/22/2020] [Indexed: 12/22/2022]
Abstract
Alzheimer's disease (AD) is the leading type of dementia worldwide. With an increasing burden of an aging population coupled with the lack of any foreseeable cure, AD warrants the current intense research effort on the toxic effects of an increased concentration of beta-amyloid (Aβ) in the brain. Glutamate is the main excitatory brain neurotransmitter and it plays an essential role in the function and health of neurons and neuronal excitability. While previous studies have shown alterations in expression of glutamatergic signaling components in AD, the underlying mechanisms of these changes are not well understood. This is the first comprehensive anatomical study to characterize the subregion- and cell layer-specific long-term effect of Aβ1-42 on the expression of specific glutamate receptors and transporters in the mouse hippocampus, using immunohistochemistry with confocal microscopy. Outcomes are examined 30 days after Aβ1-42 stereotactic injection in aged male C57BL/6 mice. We report significant decreases in density of the glutamate receptor subunit GluA1 and the vesicular glutamate transporter (VGluT) 1 in the conus ammonis 1 region of the hippocampus in the Aβ1-42 injected mice compared with artificial cerebrospinal fluid injected and naïve controls, notably in the stratum oriens and stratum radiatum. GluA1 subunit density also decreased within the dentate gyrus dorsal stratum moleculare in Aβ1-42 injected mice compared with artificial cerebrospinal fluid injected controls. These changes are consistent with findings previously reported in the human AD hippocampus. By contrast, glutamate receptor subunits GluA2, GluN1, GluN2A, and VGluT2 showed no changes in expression. These findings indicate that Aβ1-42 induces brain region and layer specific expression changes of the glutamatergic receptors and transporters, suggesting complex and spatial vulnerability of this pathway during development of AD neuropathology. Read the Editorial Highlight for this article on page 7. Cover Image for this issue: https://doi.org/10.1111/jnc.14763.
Collapse
Affiliation(s)
- Jason H Y Yeung
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Beatriz Calvo-Flores Guzmán
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Thulani H Palpagama
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Jayarjun Ethiraj
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Ying Zhai
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Warren P Tate
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Katie Peppercorn
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Henry J Waldvogel
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Richard L M Faull
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Andrea Kwakowsky
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
11
|
Kabir MT, Sufian MA, Uddin MS, Begum MM, Akhter S, Islam A, Mathew B, Islam MS, Amran MS, Md Ashraf G. NMDA Receptor Antagonists: Repositioning of Memantine as a Multitargeting Agent for Alzheimer's Therapy. Curr Pharm Des 2020; 25:3506-3518. [PMID: 31604413 DOI: 10.2174/1381612825666191011102444] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 10/08/2019] [Indexed: 12/28/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease that causes problems with memory, thinking, and behavior. Currently, there is no drug that can reduce the pathological events of this degenerative disease but symptomatic relief is possible that can abate the disease condition. N-methyl-D-aspartate (NMDA) receptors exert a critical role for synaptic plasticity as well as transmission. Overstimulation of glutamate receptors, predominantly NMDA type, may cause excitotoxic effects on neurons and is recommended as a mechanism for neurodegeneration. Atypical activation of the NMDA receptor has been suggested for AD by synaptic dysfunction. NMDA receptor antagonists especially memantine block the NMDA receptor and can reduce the influx of calcium (Ca2+) ions into neuron, thus, toxic intracellular events are not activated. This review represents the role of NMDA receptors antagonists as potential therapeutic agents to reduce AD. Moreover, this review highlights the repositioning of memantine as a potential novel therapeutic multitargeting agent for AD.
Collapse
Affiliation(s)
| | | | - Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh.,Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | | | - Shammi Akhter
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh
| | - Ariful Islam
- Department of Cell Biology and Neuroscience, Rowan University School of Osteopathic Medicine, Stratford, United States
| | - Bijo Mathew
- Division of Drug Design and Medicinal Chemistry Research Lab, Department of Pharmaceutical Chemistry, Ahalia School of Pharmacy, Palakkad, India
| | | | - Md Shah Amran
- Department of Pharmaceutical Chemistry, University of Dhaka, Dhaka, Bangladesh
| | - Ghulam Md Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
12
|
Lloret A, Monllor P, Esteve D, Cervera-Ferri A, Lloret MA. Obesity as a Risk Factor for Alzheimer's Disease: Implication of Leptin and Glutamate. Front Neurosci 2019; 13:508. [PMID: 31191220 PMCID: PMC6540965 DOI: 10.3389/fnins.2019.00508] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 05/02/2019] [Indexed: 12/22/2022] Open
Abstract
Obesity is known to induce leptin and insulin resistance. Leptin is a peptide hormone synthesized in adipose tissue that mainly regulates food intake. It has been shown that insulin stimulates the production of leptin when adipocytes are exposed to glucose to encourage satiety; while leptin, via a negative feedback, decreases the insulin release and enhances tissue sensitivity to it, leading to glucose uptake for energy utilization or storage. Therefore, resistance to insulin is closely related to leptin resistance. Obesity in middle age has also been related to Alzheimer's disease (AD). In recent years, the relation between impaired leptin signaling pathway and the onset of AD has been studied. In all this context the role of the blood brain barrier (BBB) is crucial. Slow excitotoxicity happens in AD due to an excess of the neurotransmitter glutamate. Since leptin has been shown to regulate N-methyl-D-aspartate (NMDA) receptors, we want to review the link between these pathological pathways, and how they are affected by other AD triggering factors and its role in the onset of AD.
Collapse
Affiliation(s)
- Ana Lloret
- Department of Physiology, Faculty of Medicine, University of Valencia, Health Research Institute INCLIVA, Valencia, Spain
| | - Paloma Monllor
- Department of Physiology, Faculty of Medicine, University of Valencia, Health Research Institute INCLIVA, Valencia, Spain
| | - Daniel Esteve
- Department of Physiology, Faculty of Medicine, University of Valencia, Health Research Institute INCLIVA, Valencia, Spain
| | - Ana Cervera-Ferri
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Valencia, Valencia, Spain
| | - Maria-Angeles Lloret
- Department of Clinic Neurophysiology, University Clinic Hospital of Valencia, Valencia, Spain
| |
Collapse
|
13
|
Malvaez M, Shieh C, Murphy MD, Greenfield VY, Wassum KM. Distinct cortical-amygdala projections drive reward value encoding and retrieval. Nat Neurosci 2019; 22:762-769. [PMID: 30962632 PMCID: PMC6486448 DOI: 10.1038/s41593-019-0374-7] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 02/28/2019] [Indexed: 11/09/2022]
Abstract
The value of an anticipated rewarding event is a crucial component of the decision to engage in its pursuit. But little is known of the networks responsible for encoding and retrieving this value. By using biosensors and pharmacological manipulations, we found that basolateral amygdala (BLA) glutamatergic activity tracks and mediates encoding and retrieval of the state-dependent incentive value of a palatable food reward. Projection-specific, bidirectional chemogenetic and optogenetic manipulations revealed that the orbitofrontal cortex (OFC) supports the BLA in these processes. Critically, the function of ventrolateral and medial OFC→BLA projections is doubly dissociable. Whereas lateral OFC→BLA projections are necessary and sufficient for encoding of the positive value of a reward, medial OFC→BLA projections are necessary and sufficient for retrieving this value from memory. These data reveal a new circuit for adaptive reward valuation and pursuit and provide insight into the dysfunction in these processes that characterizes myriad psychiatric diseases.
Collapse
Affiliation(s)
- Melissa Malvaez
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Christine Shieh
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Michael D Murphy
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Venuz Y Greenfield
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Kate M Wassum
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA. .,Brain Research Institute, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
14
|
Innes S, Pariante CM, Borsini A. Microglial-driven changes in synaptic plasticity: A possible role in major depressive disorder. Psychoneuroendocrinology 2019; 102:236-247. [PMID: 30594100 DOI: 10.1016/j.psyneuen.2018.12.233] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 12/19/2018] [Accepted: 12/21/2018] [Indexed: 12/16/2022]
Abstract
Recent data gathered from both in vitro and in vivo models of Major Depressive Disorder (MDD) have indicated that microglia play an active role in modifying some of the most important sources for neuronal plasticity, specifically long-term potentiation (LTP) and long-term depression (LTD). In addition, microglia have been implicated in neuro-immune interaction dysregulations, which are considered a core constituent of MDD pathology. While prior studies have investigated the diverse effects activated microglia can have in the context of depression, including regulation of inflammatory cytokine production and structural changes, recent evidence has revealed a more direct relationship between microglial activation and changes in synaptic function and plasticity, including LTP and LTD. Here we review these findings from animal models, as well as discuss how current preclinical evidence might shed light on novel therapeutic targets for patients with depressive disorder.
Collapse
Affiliation(s)
- Stuart Innes
- Guy's King's and St Thomas' School of Life Science and Medicine, King's College London, UK
| | - Carmine M Pariante
- Stress, Psychiatry and Immunology Laboratory, Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
| | - Alessandra Borsini
- Stress, Psychiatry and Immunology Laboratory, Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK.
| |
Collapse
|
15
|
Liu J, Chang L, Song Y, Li H, Wu Y. The Role of NMDA Receptors in Alzheimer's Disease. Front Neurosci 2019; 13:43. [PMID: 30800052 PMCID: PMC6375899 DOI: 10.3389/fnins.2019.00043] [Citation(s) in RCA: 281] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 01/16/2019] [Indexed: 12/13/2022] Open
Abstract
In Alzheimer’s disease (AD), early synaptic dysfunction is associated with the increased oligomeric amyloid-beta peptide, which causes NMDAR-dependent synaptic depression and spine elimination. Memantine, low-affinity NMDAR channel blocker, has been used in the treatment of moderate to severe AD. However, clear evidence is still deficient in demonstrating the underlying mechanisms and a relationship between NMDARs dysfunction and AD. This review focuses on not only changes in expression of different NMDAR subunits, but also some unconventional modes of NMDAR action.
Collapse
Affiliation(s)
- Jinping Liu
- School of Medicine, Tsinghua University, Beijing, China
| | - Lirong Chang
- Department of Anatomy, Ministry of Science and Technology Laboratory of Brain Disorders, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Yizhi Song
- Department of Anatomy, Ministry of Science and Technology Laboratory of Brain Disorders, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Hui Li
- Department of Anatomy, Ministry of Science and Technology Laboratory of Brain Disorders, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Yan Wu
- Department of Anatomy, Ministry of Science and Technology Laboratory of Brain Disorders, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| |
Collapse
|
16
|
Gebhardt C, Mosienko V, Alenina N, Albrecht D. Priming of LTP in amygdala and hippocampus by prior paired pulse facilitation paradigm in mice lacking brain serotonin. Hippocampus 2018; 29:610-618. [PMID: 30457189 DOI: 10.1002/hipo.23055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 10/08/2018] [Accepted: 11/14/2018] [Indexed: 02/06/2023]
Abstract
This study focuses on analyzing long-term potentiation (LTP) changes in the lateral nucleus of the amygdala (LA) and in the CA1 region of the hippocampus in slices derived from mice deficient in tryptophan hydroxylase 2 (TPH2-/- ), the rate-limiting enzyme for 5-HT synthesis in the brain. We found a reduced LTP in both brain structures in TPH2-/- mice. However, we found no changes in the magnitude of LTP in TPH2-/- mice compared to wildtype mice when it was preceded by a paired pulse protocol. Whereas the magnitude of long-term depression (LTD) did not differ between wildtype and TPH2-/- mice, priming synapses by LTD-induction facilitated subsequent CA1-LTP in wildtype mice to a greater extent than in TPH2-/- mice. In the LA we found no differences between the genotypes in this protocol of metaplasticity. These data show that, unlike exogenous 5-HT application, lack of 5-HT in the brain impairs cellular mechanisms responsible for induction of LTP. It is supposed that suppression of LTP observed in TPH2-/- mice might be compensated by mechanisms of metaplasticity induced by paired pulse stimulation or low frequency stimulation before the induction of LTP.
Collapse
Affiliation(s)
- Christine Gebhardt
- Institute of Neurophysiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Valentina Mosienko
- Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Natalia Alenina
- Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Doris Albrecht
- Institute of Neurophysiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
17
|
Zhan JQ, Zheng LL, Chen HB, Yu B, Wang W, Wang T, Ruan B, Pan BX, Chen JR, Li XF, Wei B, Yang YJ. Hydrogen Sulfide Reverses Aging-Associated Amygdalar Synaptic Plasticity and Fear Memory Deficits in Rats. Front Neurosci 2018; 12:390. [PMID: 29930496 PMCID: PMC5999728 DOI: 10.3389/fnins.2018.00390] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 05/22/2018] [Indexed: 01/05/2023] Open
Abstract
As an endogenous neuromodulator, hydrogen sulfide (H2S) exerts multiple biological effects in the brain. Previous studies have shown that H2S is involved in the regulation of neural synaptic plasticity and cognition in healthy rodents. It is well known that there is a progressive decline of cognitive function that occurs with increased age. The purpose of this study was to investigate the role of H2S in aging-associated amygdalar synaptic plasticity and cued fear memory deficits as well as to explore the underlying mechanisms. We found that H2S levels in the amygdala were significantly lower in aged rats when compared with healthy adult rates, which displayed significant deficits in long-term potentiation (LTP) in the thalamo-lateral amygdala (LA) pathway and amygdala-dependent cued fear memory. Bath application of an H2S donor, sodium hydrogen sulfide (NaHS), significantly reversed the impaired LTP in brain slices from aged rats, and intra-LA infusion of NaHS restored the cued fear memory in aged rats. Mechanismly, we found that H2S treatment significantly enhanced NMDAR-mediated synaptic responses in the thalamo-LA pathway of aged rats. Notably, GluN2B-containing NMDARs, but not GluN2A-containing NMDARs, contributed to the effects of H2S on aging-associated impairments of amygdalar LTP and fear memory, because applying GluN2B antagonist could abolish the beneficial effects of NaHS treatment on amygdalar LTP and cognitive performance in aged rats. Collectively, these results show that H2S can reverse aging-associated amygdalar synaptic plasticity and fear memory deficits by restoring the function of GluN2B-containing NMDARs, suggesting that supplement of H2S might be a therapeutic approach for aging-related cognitive disorders.
Collapse
Affiliation(s)
- Jin-Qiong Zhan
- Biological Psychiatry Laboratory, Department of Psychiatry, Jiangxi Mental Hospital/Affiliated Mental Hospital of Nanchang University, Nanchang, China
| | - Li-Li Zheng
- Department of Pharmacy, Jiangxi Maternal and Child Health Hospital, Nanchang, China
| | - Hai-Bo Chen
- Biological Psychiatry Laboratory, Department of Psychiatry, Jiangxi Mental Hospital/Affiliated Mental Hospital of Nanchang University, Nanchang, China
| | - Bin Yu
- Biological Psychiatry Laboratory, Department of Psychiatry, Jiangxi Mental Hospital/Affiliated Mental Hospital of Nanchang University, Nanchang, China
| | - Wei Wang
- Department of Neurology, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ting Wang
- Department of Pharmacology, College of Medical Science, China Three Gorges University, Yichang, China
| | - Bo Ruan
- Department of Pharmacology, College of Medical Science, China Three Gorges University, Yichang, China
| | - Bin-Xing Pan
- Laboratory of Fear and Anxiety Disorders, Institute of Life Science, Nanchang University, Nanchang, China
| | - Juan-Ru Chen
- Biological Psychiatry Laboratory, Department of Psychiatry, Jiangxi Mental Hospital/Affiliated Mental Hospital of Nanchang University, Nanchang, China
| | - Xue-Fen Li
- Department of Neurology, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Bo Wei
- Biological Psychiatry Laboratory, Department of Psychiatry, Jiangxi Mental Hospital/Affiliated Mental Hospital of Nanchang University, Nanchang, China
| | - Yuan-Jian Yang
- Biological Psychiatry Laboratory, Department of Psychiatry, Jiangxi Mental Hospital/Affiliated Mental Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
18
|
Rhynchophylline suppresses soluble Aβ 1-42-induced impairment of spatial cognition function via inhibiting excessive activation of extrasynaptic NR2B-containing NMDA receptors. Neuropharmacology 2018; 135:100-112. [PMID: 29510187 DOI: 10.1016/j.neuropharm.2018.03.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Revised: 02/15/2018] [Accepted: 03/03/2018] [Indexed: 01/06/2023]
Abstract
Rhynchophylline (RIN) is a significant active component isolated from the Chinese herbal medicine Uncaria rhynchophylla. The overproduction of soluble amyloid β protein (Aβ) oligomers in the hippocampus is closely involved in impairments in cognitive function at the early stage of Alzheimer's disease (AD). Growing evidences show that RIN possesses neuroprotective effects against Aβ-induced neurotoxicity. However, whether RIN can prevent soluble Aβ1-42-induced impairments in spatial cognitive function and synaptic plasticity is still unclear. Using the combined methods of behavioral tests, immunofluorescence and electrophysiological recordings, we characterized the key neuroprotective properties of RIN and its possible cellular and molecular mechanisms against soluble Aβ1-42-related impairments in rats. Our findings are as follows: (1) RIN efficiently rescued the soluble Aβ1-42-induced spatial learning and memory deficits in the Morris water maze test and prevented soluble Aβ1-42-induced suppression in long term potentiation (LTP) in the entorhinal cortex (EC)-dentate gyrus (DG) circuit. (2) Excessive activation of extrasynaptic GluN2B-NMDAR and subsequent Ca2+ overload contributed to the soluble Aβ1-42-induced impairments in spatial cognitive function and synaptic plasticity. (3) RIN prevented Aβ1-42-induced excessive activation of extrasynaptic NMDARs by reducing extrasynaptic NMDARs -mediated excitatory postsynaptic currents and down regulating GluN2B-NMDAR expression in the DG region, which inhibited Aβ1-42-induced Ca2+ overload mediated by extrasynanptic NMDARs. The results suggest that RIN could be an effective therapeutic candidate for cognitive impairment in AD.
Collapse
|
19
|
Gebhardt C, Albrecht D. Glutamate receptor GluA1 subunit is implicated in capsaicin induced modulation of amygdala LTP but not LTD. Learn Mem 2018; 25:1-7. [PMID: 29246976 PMCID: PMC5733465 DOI: 10.1101/lm.045948.117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 09/14/2017] [Indexed: 11/24/2022]
Abstract
Capsaicin has been shown to modulate synaptic plasticity in various brain regions including the amygdala. Whereas in the lateral amygdala the modulatory effect of capsaicin on long-term potentiation (LA-LTP) is mediated by TRPV1 channels, we have recently shown that capsaicin-induced enhancement of long term depression (LA-LTD) is mediated by TRPM1 receptors. However, the underlying mechanism by which capsaicin modulates synaptic plasticity is poorly understood. In the present study, we investigate the modulatory effect of capsaicin on synaptic plasticity in mice lacking the AMPAR subunit GluA1. Capsaicin reduced the magnitude of LA-LTP in slices derived from wild-type mice as previously described, whereas this capsaicin-induced suppression was absent in GluA1-deficient mice. In contrast, neither LA-LTD nor the capsaicin-mediated enhancement of LA-LTD was changed in GluA1 knockout mice. Our data indicate that capsaicin-induced modulation of LA-LTP via TRPV1 involves GluA1-containing AMPARs whereas capsaicin-induced modulation of LA-LTD via TRPM1 is independent of the expression of the AMPAR GluA1 subunit.
Collapse
|
20
|
Shi YW, Fan BF, Xue L, Wen JL, Zhao H. Regulation of Fear Extinction in the Basolateral Amygdala by Dopamine D2 Receptors Accompanied by Altered GluR1, GluR1-Ser845 and NR2B Levels. Front Behav Neurosci 2017; 11:116. [PMID: 28676746 PMCID: PMC5476700 DOI: 10.3389/fnbeh.2017.00116] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 05/30/2017] [Indexed: 01/17/2023] Open
Abstract
The amygdala, a critical structure for both Pavlovian fear conditioning and fear extinction, receives sparse but comprehensive dopamine innervation and contains dopamine D1 and D2 receptors. Fear extinction, which involves learning to suppress the expression of a previously learned fear, appears to require the dopaminergic system. The specific roles of D2 receptors in mediating associative learning underlying fear extinction require further study. Intra-basolateral amygdala (BLA) infusions of a D2 receptor agonist, quinpirole, and a D2 receptor antagonist, sulpiride, prior to fear extinction and extinction retention were tested 24 h after fear extinction training for long-term memory (LTM). LTM was facilitated by quinpirole and attenuated by sulpiride. In addition, A-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor glutamate receptor 1 (GluR1) subunit, GluR1 phospho-Ser845, and N-methyl-D-aspartic acid receptor NR2B subunit levels in the BLA were generally increased by quinpirole and down-regulated by sulpiride. The present study suggests that activation of D2 receptors facilitates fear extinction and that blockade of D2 receptors impairs fear extinction, accompanied by changes in GluR1, GluR1-Ser845 and NR2B levels in the amygdala.
Collapse
Affiliation(s)
- Yan-Wei Shi
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen UniversityGuangzhou, China.,Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen UniversityGuangzhou, China.,Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Zhongshan School of Medicine, Sun Yat-sen UniversityGuangzhou, China
| | - Bu-Fang Fan
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen UniversityGuangzhou, China
| | - Li Xue
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen UniversityGuangzhou, China.,Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen UniversityGuangzhou, China.,Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Zhongshan School of Medicine, Sun Yat-sen UniversityGuangzhou, China
| | - Jia-Ling Wen
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen UniversityGuangzhou, China
| | - Hu Zhao
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen UniversityGuangzhou, China.,Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen UniversityGuangzhou, China.,Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Zhongshan School of Medicine, Sun Yat-sen UniversityGuangzhou, China
| |
Collapse
|
21
|
Gebhardt C, von Bohlen und Halbach O, Hadler MD, Harteneck C, Albrecht D. A novel form of capsaicin-modified amygdala LTD mediated by TRPM1. Neurobiol Learn Mem 2016; 136:1-12. [DOI: 10.1016/j.nlm.2016.09.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 09/02/2016] [Accepted: 09/10/2016] [Indexed: 10/21/2022]
|
22
|
Bennett MR, Arnold J, Hatton SN, Lagopoulos J. Regulation of fear extinction by long-term depression: The roles of endocannabinoids and brain derived neurotrophic factor. Behav Brain Res 2016; 319:148-164. [PMID: 27867101 DOI: 10.1016/j.bbr.2016.11.029] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 11/10/2016] [Accepted: 11/15/2016] [Indexed: 11/19/2022]
Abstract
The extinction of a conditioned fear response is of great interest in the search for a means of ameliorating adverse neurobiological changes resulting from stress. The discovery that endocannibinoid (EC) levels are inversely related to the extent of such stress, and that the amygdala is a primary site mediating stress, suggests that ECs in this brain region might play a major role in extinction. Supporting this are the observations that the basolateral complex of the amygdala shows an increase in ECs only during extinction and that early clinical trials indicate that cannabinoid-like agents, when taken orally by patients suffering from post traumatic stress disorder (PTSD), reduce insomnia and nightmares. In order to optimize the potential of these agents to ameliorate symptoms of PTSD four important questions need to be answered: first, what is the identity of the cells that release ECs in the amygdala during extinction; second, what are their sites of action; third, what roles do the ECs play in the alleviation of long- depression (LTD), a process central to extinction; and finally, to what extent does brain derived neurotrophic factor (BDNF) facilitate the release of ECs? A review of the relevant literature is presented in an attempt to answer these questions. It is suggested that the principal cell involved in EC synthesis and release during extinction is the so-called excitatory extinction neuron in the basal nucleus of the amygdala. Furthermore that the main site of action of the ECs is the adjacent calcitonin gene-related peptide inhibitory interneurons, whose normal role of blocking the excitatory neurons is greatly diminished. The molecular pathways leading (during extinction trials) to the synthesis and release of ECs from synaptic spines of extinction neurons, that is potentiated by BDNF, are also delineated in this review. Finally, consideration is given to how the autocrine action of BDNF, linked to the release of ECs, can lead to the sustained release of these, so maintaining extinction over long times.
Collapse
Affiliation(s)
- Maxwell R Bennett
- The Brain and Mind Centre, University of Sydney, 94 Mallett Street, Camperdown, NSW, Australia.
| | - Jonathon Arnold
- The Brain and Mind Centre, University of Sydney, 94 Mallett Street, Camperdown, NSW, Australia
| | - Sean N Hatton
- The Brain and Mind Centre, University of Sydney, 94 Mallett Street, Camperdown, NSW, Australia
| | - Jim Lagopoulos
- The Brain and Mind Centre, University of Sydney, 94 Mallett Street, Camperdown, NSW, Australia; The Sunshine Coast Mind and Neuroscience, Thompson Institute, The University of the Sunshine Coast, QLD, Australia
| |
Collapse
|
23
|
Regulation of extrasynaptic signaling by polysialylated NCAM: Impact for synaptic plasticity and cognitive functions. Mol Cell Neurosci 2016; 81:12-21. [PMID: 27865768 DOI: 10.1016/j.mcn.2016.11.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 11/10/2016] [Accepted: 11/11/2016] [Indexed: 01/24/2023] Open
Abstract
The activation of synaptic N-methyl-d-aspartate-receptors (NMDARs) is crucial for induction of synaptic plasticity and supports cell survival, whereas activation of extrasynaptic NMDARs inhibits long-term potentiation and triggers neurodegeneration. A soluble polysialylated form of the neural cell adhesion molecule (polySia-NCAM) suppresses signaling through peri-/extrasynaptic GluN2B-containing NMDARs. Genetic or enzymatic manipulations blocking this mechanism result in impaired synaptic plasticity and learning, which could be repaired by reintroduction of polySia, or inhibition of either GluN1/GluN2B receptors or downstream signaling through RasGRF1 and p38 MAP kinase. Ectodomain shedding of NCAM, and hence generation of soluble NCAM, is controlled by metalloproteases of a disintegrin and metalloprotease (ADAM) family. As polySia-NCAM is predominantly associated with GABAergic interneurons in the prefrontal cortex, it is noteworthy that EphrinA5/EphA3-induced ADAM10 activity promotes polySia-NCAM shedding in these neurons. Thus, in addition to the well-known regulation of synaptic NMDARs by the secreted molecule Reelin, shed polySia-NCAM may restrain activation of extrasynaptic NMDARs. These data support a concept that GABAergic interneuron-derived extracellular proteins control the balance in synaptic/extrasynaptic NMDAR-mediated signaling in principal cells. Strikingly, dysregulation of Reelin or polySia expression is linked to schizophrenia. Thus, targeting of the GABAergic interneuron-principle cell communication and restoring the balance in synaptic/extrasynaptic NMDARs represent promising strategies for treatment of psychiatric diseases.
Collapse
|
24
|
Mannix R, Berkner J, Mei Z, Alcon S, Hashim J, Robinson S, Jantzie L, Meehan WP, Qiu J. Adolescent Mice Demonstrate a Distinct Pattern of Injury after Repetitive Mild Traumatic Brain Injury. J Neurotrauma 2016; 34:495-504. [PMID: 27368354 DOI: 10.1089/neu.2016.4457] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Recently, there has been increasing interest in outcomes after repetitive mild traumatic brain injury (rmTBI) (e.g., sports concussions). Although most of the scientific attention has focused on elite athlete populations, the sequelae of rmTBI in children and young adults have not been well studied. Prior TBI studies have suggested that developmental differences in response to injury, including differences in excitotoxicity and inflammation, could result in differences in functional and histopathological outcomes after injury. The purpose of this study is to compare outcomes in adolescent (5-week-old) versus adult (4-month-old) mice in a clinically relevant model of rmTBI. We hypothesized that functional and histopathological outcomes after rmTBI would differ in developing adolescent brains compared with mature adult brains. Male adolescent and adult (C57Bl/6) mice were subjected to a weight drop model of rmTBI (n = 10-16/group). Loss of consciousness (LOC) after each injury was measured. Functional outcomes were assessed including tests of balance (rotorod), spatial memory (Morris water maze), and impulsivity (elevated plus maze). After behavioral testing, brains were assessed for histopathological outcomes including microglial immunolabeling and N-methyl-d-aspartate (NMDA) receptor subunit expression. Injured adolescent mice had longer LOC than injured adult mice compared with their respective sham controls. Compared with sham mice, adolescent and adult mice subjected to rmTBI had impaired balance, increased impulsivity, and worse spatial memory that persisted up to 3 months after injury, and the effect of injury was worse in adolescent than in adult mice in terms of spatial memory. Three months after injury, adolescent and adult mice demonstrated increased ionized calcium binding adaptor 1 (IbA1) immunolabeling compared with sham controls. Compared with sham controls, NMDA receptor subtype 2B (NR2B) expression in the hippocampus was reduced by ∼20% in both adolescent and adult injured mice. The data suggest that injured adolescent mice may show a distinct pattern of functional deficits after injury that warrants further mechanistic studies.
Collapse
Affiliation(s)
- Rebekah Mannix
- 1 Division of Emergency Medicine, Boston Children's Hospital , Boston, Massachusetts
- 2 Harvard Medical School , Boston, Massachusetts
| | - Justin Berkner
- 1 Division of Emergency Medicine, Boston Children's Hospital , Boston, Massachusetts
| | - Zhengrong Mei
- 3 Department of Pharmacy, The Third Affiliated Hospital, Guangzhou Medical University , Guangzhou, Guangdong Province, People's Republic of China
| | - Sasha Alcon
- 1 Division of Emergency Medicine, Boston Children's Hospital , Boston, Massachusetts
| | - Jumana Hashim
- 1 Division of Emergency Medicine, Boston Children's Hospital , Boston, Massachusetts
| | - Shenandoah Robinson
- 2 Harvard Medical School , Boston, Massachusetts
- 4 Department of Neurosurgery, Boston Children's Hospital , Boston, Massachusetts
| | - Lauren Jantzie
- 5 Department of Pediatrics and Neuroscience, Office of Pediatric Research, University of New Mexico , Albuquerque, New Mexico
| | - William P Meehan
- 1 Division of Emergency Medicine, Boston Children's Hospital , Boston, Massachusetts
- 2 Harvard Medical School , Boston, Massachusetts
- 6 The Micheli Center for Sports Injury Prevention, Boston Children's Hospital , Boston, Massachusetts
- 7 Sports Concussion Clinic, Division of Sports Medicine, Boston Children's Hospital , Boston, Massachusetts
| | - Jianhua Qiu
- 1 Division of Emergency Medicine, Boston Children's Hospital , Boston, Massachusetts
- 2 Harvard Medical School , Boston, Massachusetts
| |
Collapse
|
25
|
Zhang Y, Li P, Feng J, Wu M. Dysfunction of NMDA receptors in Alzheimer's disease. Neurol Sci 2016; 37:1039-47. [PMID: 26971324 PMCID: PMC4917574 DOI: 10.1007/s10072-016-2546-5] [Citation(s) in RCA: 165] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 03/02/2016] [Indexed: 11/05/2022]
Abstract
N-methyl-D-aspartate receptors (NMDARs) play a pivotal role in the synaptic transmission and synaptic plasticity thought to underlie learning and memory. NMDARs activation has been recently implicated in Alzheimer's disease (AD) related to synaptic dysfunction. Synaptic NMDARs are neuroprotective, whereas overactivation of NMDARs located outside of the synapse cause loss of mitochondrial membrane potential and cell death. NMDARs dysfunction in the glutamatergic tripartite synapse, comprising presynaptic and postsynaptic neurons and glial cells, is directly involved in AD. This review discusses that both beta-amyloid (Aβ) and tau perturb synaptic functioning of the tripartite synapse, including alterations in glutamate release, astrocytic uptake, and receptor signaling. Particular emphasis is given to the role of NMDARs as a possible convergence point for Aβ and tau toxicity and possible reversible stages of the AD through preventive and/or disease-modifying therapeutic strategies.
Collapse
Affiliation(s)
- Yan Zhang
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, 410013, Hunan, China
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, 410078, Hunan, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Changsha, 410078, Hunan, China
- Key Laboratory of Carcinogenesis, Ministry of Health, Changsha, 410078, Hunan, China
| | - Peiyao Li
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, 410078, Hunan, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Changsha, 410078, Hunan, China
- Key Laboratory of Carcinogenesis, Ministry of Health, Changsha, 410078, Hunan, China
| | - Jianbo Feng
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, 410078, Hunan, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Changsha, 410078, Hunan, China
- Key Laboratory of Carcinogenesis, Ministry of Health, Changsha, 410078, Hunan, China
| | - Minghua Wu
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, 410013, Hunan, China.
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, 410078, Hunan, China.
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Changsha, 410078, Hunan, China.
- Key Laboratory of Carcinogenesis, Ministry of Health, Changsha, 410078, Hunan, China.
| |
Collapse
|
26
|
The Functional and Molecular Properties, Physiological Functions, and Pathophysiological Roles of GluN2A in the Central Nervous System. Mol Neurobiol 2016; 54:1008-1021. [DOI: 10.1007/s12035-016-9715-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 01/11/2016] [Indexed: 11/25/2022]
|
27
|
Luo HB, Li Y, Liu ZJ, Cao L, Zhang ZQ, Wang Y, Zhang XY, Liu Z, Shi XQ. Protective effect of tetrahydroxy stilbene glucoside on learning and memory by regulating synaptic plasticity. Neural Regen Res 2016; 11:1480-1486. [PMID: 27857754 PMCID: PMC5090853 DOI: 10.4103/1673-5374.191223] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Damage to synaptic plasticity induced by neurotoxicity of amyloid-beta is regarded to be one of the pathological mechanisms of learning and memory disabilities in Alzheimer's disease patients. This study assumed that the damage of amyloid-beta to learning and memory abilities was strongly associated with the changes in the Fyn/N-methyl-D-aspartate receptor 2B (NR2B) expression. An APP695V7171 transgenic mouse model of Alzheimer's disease was used and treatment with tetrahydroxy-stilbene glucoside was administered intragastrically. Results showed that intragastric administration of tetrahydroxy-stilbene glucoside improved the learning and memory abilities of the transgenic mice through increasing NR2B receptors and Fyn expression. It also reversed parameters for synaptic interface structure of gray type I. These findings indicate that tetrahydroxy stilbene glucoside has protective effects on the brain, and has prospects for its clinical application to improve the learning and memory abilities and treat Alzheimer's disease.
Collapse
Affiliation(s)
- Hong-Bo Luo
- Department of Neurology, Lanzhou General Hospital, Lanzhou Military Area Command, Lanzhou, Gansu Province, China
| | - Yun Li
- Department of Neurology, Lanzhou General Hospital, Lanzhou Military Area Command, Lanzhou, Gansu Province, China
| | - Zun-Jing Liu
- Department of Neurology, China-Japan Friendship Hospital, Beijing, China
| | - Li Cao
- Department of Neurology, Lanzhou General Hospital, Lanzhou Military Area Command, Lanzhou, Gansu Province, China
| | - Zhi-Qiang Zhang
- Department of Neurology, Lanzhou General Hospital, Lanzhou Military Area Command, Lanzhou, Gansu Province, China
| | - Yong Wang
- Department of Neurology, Lanzhou General Hospital, Lanzhou Military Area Command, Lanzhou, Gansu Province, China
| | - Xiao-Yan Zhang
- Department of Neurology, Lanzhou General Hospital, Lanzhou Military Area Command, Lanzhou, Gansu Province, China
| | - Zhao Liu
- Department of Neurology, Lanzhou General Hospital, Lanzhou Military Area Command, Lanzhou, Gansu Province, China
| | - Xiang-Qun Shi
- Department of Neurology, Lanzhou General Hospital, Lanzhou Military Area Command, Lanzhou, Gansu Province, China
| |
Collapse
|
28
|
Wang H, Peng R, Zhao L, Wang S, Gao Y, Wang L, Zuo H, Dong J, Xu X, Zhou H, Su Z. The relationship between NMDA receptors and microwave-induced learning and memory impairment: a long-term observation on Wistar rats. Int J Radiat Biol 2015; 91:262-9. [PMID: 25426698 DOI: 10.3109/09553002.2014.988893] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
UNLABELLED Abstract Purpose: To investigate whether high power microwave could cause continuous disorders to learning and memory in Wistar rats and to explore the underlying mechanisms. MATERIALS AND METHODS Eighty Wistar rats were exposed to a 2.856 GHz pulsed microwave source at a power density of 0 mW/cm(2) and 50 mW/cm(2) microwave for 6 min. The spatial memory ability, the structure of the hippocampus, contents of amino acids neurotransmitters in hippocampus and the expression of N-methyl-D-aspartic acid receptors (NMDAR) subunit 1, 2A and 2B (NR1, NR2A and NR2B) were detected at 1, 3, 6, 9, 12 and 18 months after microwave exposure. RESULTS Our results showed that the microwave-exposed rats showed consistent deficiencies in spatial learning and memory. The level of amino acid neurotransmitters also decreased after microwave radiation. The ratio of glutamate (Glu) and gammaaminobutyric acid (GABA) significantly decreased at 6 months. Besides, the hippocampus showed varying degrees of degeneration of neurons, increased postsynaptic density and blurred synaptic clefts in the exposure group. The NR1 and NR2B expression showed a significant decrease, especially the NR2B expression. CONCLUSIONS This study indicated that the content of amino acids neurotransmitters, the expression of NMDAR subunits and the variation of hippocampal structure might contribute to the long-term cognitive impairment after microwave exposure.
Collapse
Affiliation(s)
- Hui Wang
- Department of Experimental Pathology, Beijing Institute of Radiation Medicine , Beijing , P. R. China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Ding X, Cai J, Li S, Liu XD, Wan Y, Xing GG. BDNF contributes to the development of neuropathic pain by induction of spinal long-term potentiation via SHP2 associated GluN2B-containing NMDA receptors activation in rats with spinal nerve ligation. Neurobiol Dis 2014; 73:428-51. [PMID: 25447233 DOI: 10.1016/j.nbd.2014.10.025] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 10/16/2014] [Accepted: 10/31/2014] [Indexed: 12/30/2022] Open
Abstract
The pathogenic mechanisms underlying neuropathic pain still remain largely unknown. In this study, we investigated whether spinal BDNF contributes to dorsal horn LTP induction and neuropathic pain development by activation of GluN2B-NMDA receptors via Src homology-2 domain-containing protein tyrosine phosphatase-2 (SHP2) phosphorylation in rats following spinal nerve ligation (SNL). We first demonstrated that spinal BDNF participates in the development of long-lasting hyperexcitability of dorsal horn WDR neurons (i.e. central sensitization) as well as pain allodynia in both intact and SNL rats. Second, we revealed that BDNF induces spinal LTP at C-fiber synapses via functional up-regulation of GluN2B-NMDA receptors in the spinal dorsal horn, and this BDNF-mediated LTP-like state is responsible for the occlusion of spinal LTP elicited by subsequent high-frequency electrical stimulation (HFS) of the sciatic nerve in SNL rats. Finally, we validated that BDNF-evoked SHP2 phosphorylation is required for subsequent GluN2B-NMDA receptors up-regulation and spinal LTP induction, and also for pain allodynia development. Blockade of SHP2 phosphorylation in the spinal dorsal horn using a potent SHP2 protein tyrosine phosphatase inhibitor NSC-87877, or knockdown of spinal SHP2 by intrathecal delivery of SHP2 siRNA, not only prevents BDNF-mediated GluN2B-NMDA receptors activation as well as spinal LTP induction and pain allodynia elicitation in intact rats, but also reduces the SNL-evoked GluN2B-NMDA receptors up-regulation and spinal LTP occlusion, and ultimately alleviates pain allodynia in neuropathic rats. Taken together, these results suggest that the BDNF/SHP2/GluN2B-NMDA signaling cascade plays a vital role in the development of central sensitization and neuropathic pain after peripheral nerve injury.
Collapse
Affiliation(s)
- Xu Ding
- Neuroscience Research Institute, Peking University, Beijing 100191, P.R. China; Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, P.R. China.
| | - Jie Cai
- Neuroscience Research Institute, Peking University, Beijing 100191, P.R. China; Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, P.R. China.
| | - Song Li
- Neuroscience Research Institute, Peking University, Beijing 100191, P.R. China; Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, P.R. China.
| | - Xiao-Dan Liu
- Neuroscience Research Institute, Peking University, Beijing 100191, P.R. China; Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, P.R. China.
| | - You Wan
- Neuroscience Research Institute, Peking University, Beijing 100191, P.R. China; Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, P.R. China.
| | - Guo-Gang Xing
- Neuroscience Research Institute, Peking University, Beijing 100191, P.R. China; Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, P.R. China; Key Laboratory for Neuroscience, Ministry of Education and Ministry of Health, Beijing 100191, P.R. China.
| |
Collapse
|
30
|
Wang CM, Yang YJ, Zhang JT, Liu J, Guan XL, Li MX, Lu HF, Wu PF, Chen JG, Wang F. Regulation of emotional memory by hydrogen sulfide: role of GluN2B-containing NMDA receptor in the amygdala. J Neurochem 2014; 132:124-34. [PMID: 25279828 DOI: 10.1111/jnc.12961] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 09/08/2014] [Accepted: 09/24/2014] [Indexed: 12/21/2022]
Abstract
As an endogenous gaseous molecule, hydrogen sulfide (H2 S) has attracted extensive attention because of its multiple biological effects. However, the effect of H2 S on amygdala-mediated emotional memory has not been elucidated. Here, by employing Pavlovian fear conditioning, an animal model widely used to explore the neural substrates of emotion, we determined whether H2 S could regulate emotional memory. It was shown that the H2 S levels in the amygdala of rats were significantly elevated after cued fear conditioning. Both intraamygdala and systemic administrations of H2 S markedly enhanced amygdala-dependent cued fear memory in rats. Moreover, it was found that H2 S selectively increased the surface expression and currents of NMDA-type glutamate receptor subunit 2B (GluN2B)-containing NMDA receptors (NMDARs) in lateral amygdala of rats, whereas blockade of GluN2B-containing NMDARs in lateral amygdala eliminated the effects of H2 S to enhance amygdalar long-term potentiation and cued fear memory. These results demonstrate that H2 S can regulate amygdala-dependent emotional memory by promoting the function of GluN2B-containing NMDARs in amygdala, suggesting that H2 S-associated signaling may hold potential as a new target for the treatment of emotional disorders. In our study, the effect of hydrogen sulfide (H2 S) on amygdala-mediated emotional memory was investigated. It was found that H2 S could enhance amygdala-dependent emotional memory and long-term potentiation (LTP) in rats by selectively increasing the function of GluN2B-containing NMDA receptors in the amygdala. These results suggest that H2 S-associated signaling may be a new target for the treatment of emotional disorders.
Collapse
Affiliation(s)
- Can-Ming Wang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Mirante O, Brandalise F, Bohacek J, Mansuy IM. Distinct molecular components for thalamic- and cortical-dependent plasticity in the lateral amygdala. Front Mol Neurosci 2014; 7:62. [PMID: 25071439 PMCID: PMC4080466 DOI: 10.3389/fnmol.2014.00062] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 06/16/2014] [Indexed: 01/05/2023] Open
Abstract
N-methyl-D-aspartate receptor (NMDAR)-dependent long-term depression (LTD) in the lateral nucleus of the amygdala (LA) is a form of synaptic plasticity thought to be a cellular substrate for the extinction of fear memory. The LA receives converging inputs from the sensory thalamus and neocortex that are weakened following fear extinction. Combining field and patch-clamp electrophysiological recordings in mice, we show that paired-pulse low-frequency stimulation can induce a robust LTD at thalamic and cortical inputs to LA, and we identify different underlying molecular components at these pathways. We show that while LTD depends on NMDARs and activation of the protein phosphatases PP2B and PP1 at both pathways, it requires NR2B-containing NMDARs at the thalamic pathway, but NR2C/D-containing NMDARs at the cortical pathway. LTD appears to be induced post-synaptically at the thalamic input but presynaptically at the cortical input, since post-synaptic calcium chelation and NMDAR blockade prevent thalamic but not cortical LTD. These results highlight distinct molecular features of LTD in LA that may be relevant for traumatic memory and its erasure, and for pathologies such as post-traumatic stress disorder (PTSD).
Collapse
Affiliation(s)
- Osvaldo Mirante
- Brain Research Institute, Medical Faculty, University Zürich Zürich, Switzerland ; Department of Health Science and Technology, Swiss Federal Institute of Technology Zürich, Switzerland
| | - Federico Brandalise
- Brain Research Institute, Medical Faculty, University Zürich Zürich, Switzerland
| | - Johannes Bohacek
- Brain Research Institute, Medical Faculty, University Zürich Zürich, Switzerland ; Department of Health Science and Technology, Swiss Federal Institute of Technology Zürich, Switzerland
| | - Isabelle M Mansuy
- Brain Research Institute, Medical Faculty, University Zürich Zürich, Switzerland ; Department of Health Science and Technology, Swiss Federal Institute of Technology Zürich, Switzerland
| |
Collapse
|
32
|
Danielewicz J, Hess G. Early life stress alters synaptic modification range in the rat lateral amygdala. Behav Brain Res 2014; 265:32-7. [PMID: 24556204 DOI: 10.1016/j.bbr.2014.02.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2013] [Revised: 02/06/2014] [Accepted: 02/10/2014] [Indexed: 02/06/2023]
Abstract
The influence of exposure to early adversity on emotional learning later in life remains poorly understood. Long-term potentiation (LTP) in the cortico-amygdalar and thalamo-amygdalar pathways has been postulated to provide a mechanism of synaptic modifications underlying fear learning and memory. These synapses also express homosynaptic long-term depression (LTD). Here we examined the effects of maternal separation stress on the extent of LTP and LTD which could be induced in the lateral amygdala (LA) of adolescent rats. Rat pups were subjected to maternal separation (MS, 3 h/day) on post-natal days 1-21. Field potentials were recorded ex vivo from slices containing the LA, which were prepared from adolescent males. Saturating levels of LTP and LTD were induced using repeated sequences of theta-burst stimulation and low frequency stimulation, respectively. An impairment of the maximum LTP and an enhancement of the maximum LTD were observed in the cortical input in slices prepared from MS-subjected rats. In the thalamic input, both the maximum LTP and the maximum LTD were reduced when compared to control animals. Thus, in the cortico-amygdalar pathway MS stress shifted the potential for bidirectional synaptic modification toward LTD but it shrank the synaptic modification range in the thalamo-amygdalar pathway.
Collapse
Affiliation(s)
| | - Grzegorz Hess
- Institute of Zoology, Jagiellonian University, Krakow, Poland; Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland.
| |
Collapse
|
33
|
Tipps ME, Raybuck JD, Lattal KM. Substance abuse, memory, and post-traumatic stress disorder. Neurobiol Learn Mem 2013; 112:87-100. [PMID: 24345414 DOI: 10.1016/j.nlm.2013.12.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 11/23/2013] [Accepted: 12/03/2013] [Indexed: 12/20/2022]
Abstract
A large body of literature demonstrates the effects of abused substances on memory. These effects differ depending on the drug, the pattern of delivery (acute or chronic), and the drug state at the time of learning or assessment. Substance use disorders involving these drugs are often comorbid with anxiety disorders, such as post-traumatic stress disorder (PTSD). When the cognitive effects of these drugs are considered in the context of the treatment of these disorders, it becomes clear that these drugs may play a deleterious role in the development, maintenance, and treatment of PTSD. In this review, we examine the literature evaluating the cognitive effects of three commonly abused drugs: nicotine, cocaine, and alcohol. These three drugs operate through both common and distinct neurobiological mechanisms and alter learning and memory in multiple ways. We consider how the cognitive and affective effects of these drugs interact with the acquisition, consolidation, and extinction of learned fear, and we discuss the potential impediments that substance abuse creates for the treatment of PTSD.
Collapse
Affiliation(s)
- Megan E Tipps
- Department of Behavioral Neuroscience, Oregon Health & Science University, United States.
| | - Jonathan D Raybuck
- Department of Behavioral Neuroscience, Oregon Health & Science University, United States.
| | - K Matthew Lattal
- Department of Behavioral Neuroscience, Oregon Health & Science University, United States.
| |
Collapse
|
34
|
Zhang J, Wang C, Deng T, Xue Z, Chen X, Chang L, Wang Q. The preventive effect of NR2B and NR2D-containing NMDAR antagonists on Aβ-induced LTP disruption in the dentate gyrus of rats. Metab Brain Dis 2013; 28:697-704. [PMID: 23975536 DOI: 10.1007/s11011-013-9424-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 07/17/2013] [Indexed: 01/10/2023]
Abstract
Amyloid β-protein (Aβ) in the brain of Alzheimer's disease (AD) potently inhibits the synaptic plasticity subsequently causing the cognitive deficits. Long-term potentiation (LTP) of synaptic transmission is thought to be an important cellular mechanism underlying memory formation. Different NR2 subunits are involved in NMDA receptor-dependent LTP. In the present study, we investigated the roles of NR2B and NR2D-containing NMDAR on Aβ(1-42)-induced LTP deficits in the hippocampal slices of rats by using selective NMDAR antagonists. First, we found that Aβ(1-42) significantly inhibited the LTP in the dentate gyrus of slices as reported before. Following that the Aβ(1-42)-induced LTP inhibition was prevented by the pre-perfusion of the specific NR2B-containing NMDAR antagonists ifenprodil (approximately >200-fold selectivity for NR2B) and Ro25-6981 (>3,000-fold selectivity for NR2B), as well as PPDA, a specific NR2D receptor antagonist. Meanwhile, the antagonists on their own had no or only partial effects on the normal LTP in the same dose condition. These findings not only support the effects of NR2B and NR2D subunits on Aβ(1-42)-induced LTP deficits, but also imply that preferentially targeting NR2B- and NR2D-containing NMDARs may provide an effective means to prevent cognitive deficits in the early AD.
Collapse
Affiliation(s)
- Junfang Zhang
- Zhejiang Provincial Key Laboratory of Pathophysiology, Department of Physiology and Pharmacology, School of Medicine, Ningbo University, No.818 Fenghua Road, Ningbo, Zhejiang, China, 315211
| | | | | | | | | | | | | |
Collapse
|
35
|
Mota SI, Ferreira IL, Rego AC. Dysfunctional synapse in Alzheimer's disease - A focus on NMDA receptors. Neuropharmacology 2013; 76 Pt A:16-26. [PMID: 23973316 DOI: 10.1016/j.neuropharm.2013.08.013] [Citation(s) in RCA: 138] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 08/03/2013] [Accepted: 08/08/2013] [Indexed: 12/31/2022]
Abstract
Alzheimer's disease (AD) is the most prevalent form of dementia in the elderly. Alterations capable of causing brain circuitry dysfunctions in AD may take several years to develop. Oligomeric amyloid-beta peptide (Aβ) plays a complex role in the molecular events that lead to progressive loss of function and eventually to neurodegeneration in this devastating disease. Moreover, N-methyl-D-aspartate (NMDA) receptors (NMDARs) activation has been recently implicated in AD-related synaptic dysfunction. Thus, in this review we focus on glutamatergic neurotransmission impairment and the changes in NMDAR regulation in AD, following the description on the role and location of NMDARs at pre- and post-synaptic sites under physiological conditions. In addition, considering that there is currently no effective ways to cure AD or stop its progression, we further discuss the relevance of NMDARs antagonists to prevent AD symptomatology. This review posits additional information on the role played by Aβ in AD and the importance of targeting the tripartite glutamatergic synapse in early asymptomatic and possible reversible stages of the disease through preventive and/or disease-modifying therapeutic strategies. This article is part of the Special Issue entitled 'The Synaptic Basis of Neurodegenerative Disorders'.
Collapse
Affiliation(s)
- Sandra I Mota
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal.
| | | | | |
Collapse
|
36
|
Paoletti P, Bellone C, Zhou Q. NMDA receptor subunit diversity: impact on receptor properties, synaptic plasticity and disease. Nat Rev Neurosci 2013; 14:383-400. [DOI: 10.1038/nrn3504] [Citation(s) in RCA: 1525] [Impact Index Per Article: 127.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
37
|
A risk variant for alcoholism in the NMDA receptor affects amygdala activity during fear conditioning in humans. Biol Psychol 2013; 94:74-81. [PMID: 23693003 DOI: 10.1016/j.biopsycho.2013.05.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 05/04/2013] [Accepted: 05/10/2013] [Indexed: 01/09/2023]
Abstract
People at high risk for alcoholism show deficits in aversive learning, as indicated by impaired electrodermal responses during fear conditioning, a basic form of associative learning that depends on the amygdala. A positive family history of alcohol dependence has also been related to decreased amygdala responses during emotional processing. In the present study we report reduced amygdala activity during the acquisition of conditioned fear in healthy carriers of a risk variant for alcoholism (rs2072450) in the NR2A subunit-containing N-methyl-d-aspartate (NMDA)-receptor. These results indicate that rs2072450 might confer risk for alcohol dependence through deficient fear acquisition indexed by a diminished amygdala response during aversive learning, and provide a neural basis for a weak behavioral inhibition previously documented in individuals at high risk for alcohol dependence. Carriers of the risk variant additionally exhibit dampened insula activation, a finding that further strengthens our data, given the importance of this brain region in fear conditioning.
Collapse
|
38
|
Chronic inactivation of a neural circuit enhances LTP by inducing silent synapse formation. J Neurosci 2013; 33:2087-96. [PMID: 23365245 DOI: 10.1523/jneurosci.3880-12.2013] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Chronic inactivation of a neural network is known to induce homeostatic upregulation of synaptic strength, a form of synaptic plasticity that differs from Hebbian-type synaptic plasticity in that it is not input-specific, but involves all synapses of an individual neuron. However, it is unclear how homeostatic and Hebbian synaptic plasticity interact in the same neuron. Here we show that long-term potentiation (LTP) at Schaffer collateral-CA1 synapses is greatly enhanced in cultured mouse hippocampal slices after chronic (60 h) network-activity blockade with tetrodotoxin (TTX). This increase in LTP is not due to an altered synaptic NMDA receptor composition or presynaptic function. Instead, we found that silencing neural network activity not only increases the abundance of both AMPA and NMDA receptors at existing synapses as previously described, but also promotes the presence of new glutamatergic synapses that contain only NMDA receptors-a class of synapses that are functionally silent due to the absence of AMPA receptors. Induction of LTP in TTX-treated neurons leads to insertion of AMPA receptors into the silent synapses, thereby "switching on" these silent synapses, which produces the observed enhancement of LTP magnitude. Our findings suggest that homeostatic synaptic plasticity manifests not only in the adjustment of the strength of existing synapses, but also in the modulation of new synapse formation/maintenance. Moreover, presence of new but functionally silent synapses enables more robust LTP to occur through rapid conversion of silent synapses to active synapses, resulting in a stronger input-specific modulation of synapses following prolonged network silencing.
Collapse
|
39
|
John YJ, Bullock D, Zikopoulos B, Barbas H. Anatomy and computational modeling of networks underlying cognitive-emotional interaction. Front Hum Neurosci 2013; 7:101. [PMID: 23565082 PMCID: PMC3613599 DOI: 10.3389/fnhum.2013.00101] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2012] [Accepted: 03/11/2013] [Indexed: 11/13/2022] Open
Abstract
The classical dichotomy between cognition and emotion equated the first with rationality or logic and the second with irrational behaviors. The idea that cognition and emotion are separable, antagonistic forces competing for dominance of mind has been hard to displace despite abundant evidence to the contrary. For instance, it is now known that a pathological absence of emotion leads to profound impairment of decision making. Behavioral observations of this kind are corroborated at the mechanistic level: neuroanatomical studies reveal that brain areas typically described as underlying either cognitive or emotional processes are linked in ways that imply complex interactions that do not resemble a simple mutual antagonism. Instead, physiological studies and network simulations suggest that top-down signals from prefrontal cortex realize "cognitive control" in part by either suppressing or promoting emotional responses controlled by the amygdala, in a way that facilitates adaptation to changing task demands. Behavioral, anatomical, and physiological data suggest that emotion and cognition are equal partners in enabling a continuum or matrix of flexible behaviors that are subserved by multiple brain regions acting in concert. Here we focus on neuroanatomical data that highlight circuitry that structures cognitive-emotional interactions by directly or indirectly linking prefrontal areas with the amygdala. We also present an initial computational circuit model, based on anatomical, physiological, and behavioral data to explicitly frame the learning and performance mechanisms by which cognition and emotion interact to achieve flexible behavior.
Collapse
Affiliation(s)
- Yohan J John
- Neural Systems Laboratory, Boston University Boston, MA, USA
| | | | | | | |
Collapse
|
40
|
Double dissociation of the requirement for GluN2B- and GluN2A-containing NMDA receptors in the destabilization and restabilization of a reconsolidating memory. J Neurosci 2013; 33:1109-15. [PMID: 23325248 DOI: 10.1523/jneurosci.3273-12.2013] [Citation(s) in RCA: 141] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Signaling at NMDA receptors (NMDARs) is known to be important for memory reconsolidation, but while most studies show that NMDAR antagonists prevent memory restabilization and produce amnesia, others have shown that GluN2B-selective NMDAR antagonists prevent memory destabilization, protecting the memory. These apparently paradoxical, conflicting data provide an opportunity to define more precisely the requirement for different NMDAR subtypes in the mechanisms underlying memory reconsolidation and to further understand the contribution of glutamatergic signaling to this process. Here, using rats with fully consolidated pavlovian auditory fear memories, we demonstrate a double dissociation in the requirement for GluN2B-containing and GluN2A-containing NMDARs within the basolateral amygdala in the memory destabilization and restabilization processes, respectively. We further show a double dissociation in the mechanisms underlying memory retrieval and memory destabilization, since AMPAR antagonism prevented memory retrieval while still allowing the destabilization process to occur. These data demonstrate that glutamatergic signaling mechanisms within the basolateral amygdala differentially and dissociably mediate the retrieval, destabilization, and restabilization of previously consolidated fear memories.
Collapse
|
41
|
Bartlett TE, Wang YT. The intersections of NMDAR-dependent synaptic plasticity and cell survival. Neuropharmacology 2013; 74:59-68. [PMID: 23357336 DOI: 10.1016/j.neuropharm.2013.01.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 01/09/2013] [Accepted: 01/14/2013] [Indexed: 10/27/2022]
Abstract
The discovery of a requirement for N-methyl d-aspartate receptor (NMDAR) activation in long-term potentiation (LTP) set off an explosion of interest in the mechanisms of NMDAR-dependent synaptic plasticity. Meanwhile other research has advanced our understanding of how NMDAR activation regulates neuronal death and survival. Surprisingly, there have been few attempts to correlate these important areas of research. Here we review current knowledge of the various mechanisms of NMDAR-dependent synaptic plasticity that are shared with neuronal survival and death, while drawing comparisons with the proneurotrophin/neurotrophin receptor and intracellular signaling systems. Our conclusion is that NMDAR-dependent LTP and long-term depression (LTD) share many common mechanisms with cell survival and cell death, respectively. The intersections of plasticity and cell survival may represent novel avenues for neuroprotection. This article is part of the Special Issue entitled 'Glutamate Receptor-Dependent Synaptic Plasticity'.
Collapse
Affiliation(s)
- Thomas E Bartlett
- Brain Research Centre, Room F270, University of British Columbia, 2211 Wesbrook Mall, Vancouver, BC V6T 2B5, Canada
| | | |
Collapse
|
42
|
Cui Z, Feng R, Jacobs S, Duan Y, Wang H, Cao X, Tsien JZ. Increased NR2A:NR2B ratio compresses long-term depression range and constrains long-term memory. Sci Rep 2013; 3:1036. [PMID: 23301157 PMCID: PMC3539144 DOI: 10.1038/srep01036] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 11/02/2012] [Indexed: 12/28/2022] Open
Abstract
The NR2A:NR2B subunit ratio of the NMDA receptors is widely known to increase in the brain from postnatal development to sexual maturity and to aging, yet its impact on memory function remains speculative. We have generated forebrain-specific NR2A overexpression transgenic mice and show that these mice had normal basic behaviors and short-term memory, but exhibited broad long-term memory deficits as revealed by several behavioral paradigms. Surprisingly, increased NR2A expression did not affect 1-Hz-induced long-term depression (LTD) or 100 Hz-induced long-term potentiation (LTP) in the CA1 region of the hippocampus, but selectively abolished LTD responses in the 3–5 Hz frequency range. Our results demonstrate that the increased NR2A:NR2B ratio is a critical genetic factor in constraining long-term memory in the adult brain. We postulate that LTD-like process underlies post-learning information sculpting, a novel and essential consolidation step in transforming new information into long-term memory.
Collapse
Affiliation(s)
- Zhenzhong Cui
- Brain and Behavior Discovery Institute and Department of Neurology, Medical College of Georgia, Georgia Health Sciences University, Augusta, GA 30907, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Kulisch C, Albrecht D. Effects of single swim stress on changes in TRPV1-mediated plasticity in the amygdala. Behav Brain Res 2013; 236:344-349. [DOI: 10.1016/j.bbr.2012.09.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 08/15/2012] [Accepted: 09/05/2012] [Indexed: 10/27/2022]
|
44
|
Abstract
N-methyl-D-aspartate (NMDA) receptor activation can be neuroprotective or neurotoxic depending on receptor location. In this issue of Neuron, Martel et al. (2012) demonstrate that the C-terminal of NMDA receptor subunits also contributes critically to excitotoxicity. NMDA receptor subunits containing the GluN2B C-terminal are more lethal than those containing the GluN2A tails, regardless of location.
Collapse
Affiliation(s)
- Carlos Cepeda
- Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience and Human Behavior, Brain Research Institute, The David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | | |
Collapse
|
45
|
Dalton GL, Wu DC, Wang YT, Floresco SB, Phillips AG. NMDA GluN2A and GluN2B receptors play separate roles in the induction of LTP and LTD in the amygdala and in the acquisition and extinction of conditioned fear. Neuropharmacology 2012; 62:797-806. [DOI: 10.1016/j.neuropharm.2011.09.001] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Revised: 08/29/2011] [Accepted: 09/02/2011] [Indexed: 01/14/2023]
|
46
|
Bartlett TE, Lu J, Wang YT. Slice orientation and muscarinic acetylcholine receptor activation determine the involvement of N-methyl D-aspartate receptor subunit GluN2B in hippocampal area CA1 long-term depression. Mol Brain 2011; 4:41. [PMID: 22082088 PMCID: PMC3226435 DOI: 10.1186/1756-6606-4-41] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2011] [Accepted: 11/15/2011] [Indexed: 12/03/2022] Open
Abstract
Background The contribution of different GluN2 subunits of the N-methyl D-aspartate (NMDA) receptor to the induction of bidirectional hippocampal synaptic plasticity is a controversial topic. As both supporting and refuting evidence for the hypothesis of subunit specialization in opposing directions of plasticity has accumulated since it was first proposed a few years ago, we hypothesize that differences in experimental conditions may have in part contributed to some of the inconsistent results from these studies. Here we investigate the controversial hypothesis that long-term depression (LTD) is preferentially induced by GluN2B-containing NMDA receptors in area CA1 of hippocampal slices. Results We find that brain slices from 2-3 week old rats prepared in the sagittal orientation have GluN2B-independent LTD whereas slices prepared in the coronal orientation have GluN2B-dependent LTD. There was no difference between the orientations in the fraction of the NMDAR EPSC sensitive to a GluN2B-selective antagonist, leading us to believe that the intracellular signaling properties of the NMDARs were different in the two preparations. Coronal slices had greater association of LTD-related intracellular signaling protein RasGRF1 with GluN2B relative to sagittal slices. Antagonism of muscarinic acetylcholine receptors (mAChRs) in the sagittal slices returned LTD to a GluN2B-dependent form and increased the association of GluN2B with RasGRF1. Conclusions These results suggest a novel form of NMDAR modulation by mAChRs and clarify some disagreement in the literature.
Collapse
Affiliation(s)
- Thomas E Bartlett
- Brain Research Centre, University of British Columbia, 2211 Wesbrook Mall, Vancouver, BC, Canada
| | | | | |
Collapse
|
47
|
Synergistic activation of dopamine D1 and TrkB receptors mediate gain control of synaptic plasticity in the basolateral amygdala. PLoS One 2011; 6:e26065. [PMID: 22022509 PMCID: PMC3193533 DOI: 10.1371/journal.pone.0026065] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Accepted: 09/19/2011] [Indexed: 12/22/2022] Open
Abstract
Fear memory formation is thought to require dopamine, brain-derived neurotrophic factor (BDNF) and zinc release in the basolateral amygdala (BLA), as well as the induction of long term potentiation (LTP) in BLA principal neurons. However, no study to date has shown any relationship between these processes in the BLA. Here, we have used in vitro whole-cell patch clamp recording from BLA principal neurons to investigate how dopamine, BDNF, and zinc release may interact to modulate the LTP induction in the BLA. LTP was induced by either theta burst stimulation (TBS) protocol or spaced 5 times high frequency stimulation (5xHFS). Significantly, both TBS and 5xHFS induced LTP was fully blocked by the dopamine D1 receptor antagonist, SCH23390. LTP induction was also blocked by the BDNF scavenger, TrkB-FC, the zinc chelator, DETC, as well as by an inhibitor of matrix metalloproteinases (MMPs), gallardin. Conversely, prior application of the dopamine reuptake inhibitor, GBR12783, or the D1 receptor agonist, SKF39393, induced robust and stable LTP in response to a sub-threshold HFS protocol (2xHFS), which does not normally induce LTP. Similarly, prior activation of TrkB receptors with either a TrkB receptor agonist, or BDNF, also reduced the threshold for LTP-induction, an effect that was blocked by the MEK inhibitor, but not by zinc chelation. Intriguingly, the TrkB receptor agonist-induced reduction of LTP threshold was fully blocked by prior application of SCH23390, and the reduction of LTP threshold induced by GBR12783 was blocked by prior application of TrkB-FC. Together, our results suggest a cellular mechanism whereby the threshold for LTP induction in BLA principal neurons is critically dependent on the level of dopamine in the extracellular milieu and the synergistic activation of postsynaptic D1 and TrkB receptors. Moreover, activation of TrkB receptors appears to be dependent on concurrent release of zinc and activation of MMPs.
Collapse
|
48
|
Interplay of amygdala and cingulate plasticity in emotional fear. Neural Plast 2011; 2011:813749. [PMID: 21912749 PMCID: PMC3168900 DOI: 10.1155/2011/813749] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Accepted: 06/30/2011] [Indexed: 11/18/2022] Open
Abstract
The amygdala is known to be a critical brain region for emotional fear. It is believed that synaptic plasticity within the amygdala is the cellular basis of fear memory. Recent studies demonstrate that cortical areas such as the prefrontal cortex (PFC) and anterior cingulate cortex (ACC) may also contribute to the formation of fear memory, including trace fear memory and remote fear memory. At synaptic level, fear conditioning also triggers plastic changes within the cortical areas immediately after the condition. These results raise the possibility that certain forms of synaptic plasticity may occur within the cortex while synaptic potentiation takes place within synapses in the hippocampus and amygdala. This hypothesis is supported by electrophysiological evidence obtained from freely moving animals that neurons in the hippocampus/amygdala fire synchronous activities with cortical neurons during the learning. To study fear-related synaptic plasticity in the cortex and its functional connectivity with neurons in the amygdala and hippocampus will help us understand brain mechanisms of fear and improve clinical treatment of emotional disorders in patients.
Collapse
|
49
|
Method of euthanasia affects amygdala plasticity in horizontal brain slices from mice. J Neurosci Methods 2011; 201:340-5. [PMID: 21875617 DOI: 10.1016/j.jneumeth.2011.08.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Revised: 08/11/2011] [Accepted: 08/12/2011] [Indexed: 11/23/2022]
Abstract
An important consideration in any terminal experiment is the method used for euthanizing animals. Although the prime consideration is that the method is humane, some methods can have a dramatic impact on experimental outcomes. The standard inhalant anesthetic for experiments in brain slices is isoflurane, which replaced the flammable ethers used in the pioneer days of surgery. To our knowledge, there are no data available evaluating the effects of the method of euthanasia on plasticity changes in brain slices. Here, we compare the magnitude of long-term potentiation (LTP) and long-term depression (LTD) in the lateral nucleus of the amygdala (LA) after euthanasia following either ether or isoflurane anesthesia, as well as in mice decapitated without anesthesia. We found no differences in input-output curves using different methods of euthanasia. The LTP magnitude did not differ between ether and normal isoflurane anesthesia. After deep isoflurane anesthesia LTP induced by high frequency stimulation of cortical or intranuclear afferents was significantly reduced compared to ether anesthesia. In contrast to ether anesthesia and decapitation without anesthesia, the low frequency stimulation of cortical afferents induced a reliable LA-LTD after deep isoflurane anesthesia. Low frequency stimulation of intranuclear afferents only caused LTD after pretreatment with ether anesthesia. The results demonstrate that the method of euthanasia can influence brain plasticity for hours at least in the interface chamber. Therefore, the method of euthanasia is an important consideration when brain plasticity will be evaluated.
Collapse
|
50
|
Singh P, Hockenberry AJ, Tiruvadi VR, Meaney DF. Computational investigation of the changing patterns of subtype specific NMDA receptor activation during physiological glutamatergic neurotransmission. PLoS Comput Biol 2011; 7:e1002106. [PMID: 21738464 PMCID: PMC3127809 DOI: 10.1371/journal.pcbi.1002106] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Accepted: 05/13/2011] [Indexed: 11/23/2022] Open
Abstract
NMDA receptors (NMDARs) are the major mediator of the postsynaptic response during synaptic neurotransmission. The diversity of roles for NMDARs in influencing synaptic plasticity and neuronal survival is often linked to selective activation of multiple NMDAR subtypes (NR1/NR2A-NMDARs, NR1/NR2B-NMDARs, and triheteromeric NR1/NR2A/NR2B-NMDARs). However, the lack of available pharmacological tools to block specific NMDAR populations leads to debates on the potential role for each NMDAR subtype in physiological signaling, including different models of synaptic plasticity. Here, we developed a computational model of glutamatergic signaling at a prototypical dendritic spine to examine the patterns of NMDAR subtype activation at temporal and spatial resolutions that are difficult to obtain experimentally. We demonstrate that NMDAR subtypes have different dynamic ranges of activation, with NR1/NR2A-NMDAR activation sensitive at univesicular glutamate release conditions, and NR2B containing NMDARs contributing at conditions of multivesicular release. We further show that NR1/NR2A-NMDAR signaling dominates in conditions simulating long-term depression (LTD), while the contribution of NR2B containing NMDAR significantly increases for stimulation frequencies that approximate long-term potentiation (LTP). Finally, we show that NR1/NR2A-NMDAR content significantly enhances response magnitude and fidelity at single synapses during chemical LTP and spike timed dependent plasticity induction, pointing out an important developmental switch in synaptic maturation. Together, our model suggests that NMDAR subtypes are differentially activated during different types of physiological glutamatergic signaling, enhancing the ability for individual spines to produce unique responses to these different inputs. Release of glutamate from one neuron onto glutamate receptors on adjacent neurons serves as the primary basis for neuronal communication. Further, different types of glutamate signals produce unique responses within the neuronal network, providing the ability for glutamate receptors to discriminate between alternative types of signaling. The NMDA receptor (NMDAR) is a glutamate receptor that mediates a variety of physiological functions, including the molecular basis for learning and memory. These receptors exist as a variety of subtypes, and this molecular heterogeneity is used to explain the diversity in signaling initiated by NMDARs. However, the lack of reliable experimental tools to control the activation of each subtype has led to debate over the subtype specific roles of the NMDAR. We have developed a stochastic model of glutamate receptor activation at a single synapse and find that NMDAR subtypes detect different types of glutamate signals. Moreover, the presence of multiple populations of NMDAR subtypes on a given neuron allows for differential patterns of NMDAR activation in response to varied glutamate inputs. This model demonstrates how NMDAR subtypes enable effective and reliable communication within neuronal networks and can be used as a tool to examine specific roles of NMDAR subtypes in neuronal function.
Collapse
Affiliation(s)
- Pallab Singh
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Adam J. Hockenberry
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Vineet R. Tiruvadi
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - David F. Meaney
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|