1
|
Lounici A, Iacob A, Hongler K, Mölling MA, Drechsler M, Hersberger L, Sethi S, Lang UE, Liwinski T. Ketogenic Diet as a Nutritional Metabolic Intervention for Obsessive-Compulsive Disorder: A Narrative Review. Nutrients 2024; 17:31. [PMID: 39796465 PMCID: PMC11723184 DOI: 10.3390/nu17010031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/17/2024] [Accepted: 12/20/2024] [Indexed: 01/13/2025] Open
Abstract
The substantial evidence supporting the ketogenic diet (KD) in epilepsy management has spurred research into its effects on other neurological and psychiatric conditions. Despite differences in characteristics, symptoms, and underlying mechanisms, these conditions share common pathways that the KD may influence. The KD reverses metabolic dysfunction. Moreover, it has been shown to support neuroprotection through mechanisms such as neuronal energy support, inflammation reduction, amelioration of oxidative stress, and reversing mitochondrial dysfunction. The adequate intake of dietary nutrients is essential for maintaining normal brain functions, and strong evidence supports the role of nutrition in the treatment and prevention of many psychiatric and neurological disorders. Obsessive-compulsive disorder (OCD) is a neuropsychiatric condition marked by persistent, distressing thoughts or impulses (obsessions) and repetitive behaviors performed in response to these obsessions (compulsions). Recent studies have increasingly examined the role of nutrition and metabolic disorders in OCD. This narrative review examines current evidence on the potential role of the KD in the treatment of OCD. We explore research on the KD's effects on psychiatric disorders to assess its potential relevance for OCD treatment. Additionally, we identify key gaps in the preclinical and clinical research that warrant further study in applying the KD as a metabolic therapy for OCD.
Collapse
Affiliation(s)
- Astrid Lounici
- Clinic for Adults, University Psychiatric Clinics Basel, University of Basel, 4031 Basel, Switzerland; (A.L.); (K.H.); (U.E.L.)
| | - Ana Iacob
- Pôle de Psychiatrie et Psychothérapie (PPP), Unité de Psychiatrie de Liaison, Hôpital du Valais, 1950 Sion, Switzerland;
| | - Katarzyna Hongler
- Clinic for Adults, University Psychiatric Clinics Basel, University of Basel, 4031 Basel, Switzerland; (A.L.); (K.H.); (U.E.L.)
| | | | - Maria Drechsler
- Stiftung für Ganzheitliche Medizin (SGM), Klinik SGM Langenthal, 4900 Langenthal, Switzerland; (M.D.); (L.H.)
| | - Luca Hersberger
- Stiftung für Ganzheitliche Medizin (SGM), Klinik SGM Langenthal, 4900 Langenthal, Switzerland; (M.D.); (L.H.)
| | - Shebani Sethi
- Metabolic Psychiatry, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA 94305, USA;
| | - Undine E. Lang
- Clinic for Adults, University Psychiatric Clinics Basel, University of Basel, 4031 Basel, Switzerland; (A.L.); (K.H.); (U.E.L.)
| | - Timur Liwinski
- Clinic for Adults, University Psychiatric Clinics Basel, University of Basel, 4031 Basel, Switzerland; (A.L.); (K.H.); (U.E.L.)
| |
Collapse
|
2
|
Gilbert MB, Glastad KM, Fioriti M, Sorek M, Gannon T, Xu D, Pino LK, Korotkov A, Biashad A, Baeza J, Lauman R, Filippova A, Kacsoh BZ, Bonasio R, Mathis MW, Garcia BA, Seluanov A, Gorbunova V, Berger SL. Neuropeptides specify and reprogram division of labor in the leafcutter ant Atta cephalotes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.07.622473. [PMID: 39574686 PMCID: PMC11581030 DOI: 10.1101/2024.11.07.622473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Social insects offer powerful models to investigate the mechanistic foundation of elaborate individual behaviors comprising a cooperative community. Workers of the leafcutter ant genus Atta provide an extreme example of behavioral segregation among many phenotypically distinct worker types. We utilize the complex worker system of Atta cephalotes to test the molecular underpinnings of behavioral programming and, in particular, the extent of plasticity to reprogramming. We identify specific neuropeptides as mediators of worker division of labor in A. cephalotes , finding two neuropeptides associated with characteristic behaviors of leafcutting and of brood care. Manipulation via genetic knockdown or by injection of these neuropeptides led to stark loss or gain of each behavior and to transcriptomic shifts in the predicted direction, that is, towards gene pathways expressed in the natural caste. We also compare specific A. cephalotes worker transcriptomes with those of orthologous workers of the eusocial mammal, the naked mole rat H. gaber , revealing global similarities between caste-biased expression and link to specific roles of our studied neuropeptides in ants. This work underscores the essential function of neuropeptides in establishing complex social behavior and a remarkable plasticity among individual behavioral types.
Collapse
|
3
|
Huf F, Gutierres JM, da Silva GN, Zago AM, Koenig LFC, Fernandes MC. Neuroprotection elicited by taurine in sporadic Alzheimer-like disease: benefits on memory and control of neuroinflammation in the hippocampus of rats. Mol Cell Biochem 2024; 479:2663-2678. [PMID: 37874493 DOI: 10.1007/s11010-023-04872-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 10/05/2023] [Indexed: 10/25/2023]
Abstract
This study aimed to analyze whether taurine has a nootropic effect on short-term and long-term memory in a model of sporadic dementia of the Alzheimer's type (SDAT). Moreover, we evaluated the immunoreactivity and insulin receptor (IR) distribution and markers for neurons and glial cells in the hippocampus of rats with SDAT and treated with taurine. For this, Male Wistar rats received STZ (ICV, 3 mg/kg, bilateral, 5ul per site, aCFS vehicle) and were treated with taurine (100 mg/kg orally, 1 time per day, saline vehicle) for 25 days. The animals were divided into 4 groups: vehicle (VE), taurine (TAU), ICV-STZ (STZ) and ICV-STZ plus taurine (STZ + TAU). At the end of taurine treatment, short- and long-term memory were assessed by performance on object recognition and Y-maze tasks. Insulin receptor (IR) was evaluated by immunoperoxidase while mature neurons (NeuN), astrocytes (GFAP, S100B, SOX9), and microglia (Iba-1) were evaluated by immunofluorescence. STZ induced worse spatial and recognition memory (INDEX) in YM and ORT tasks. Taurine protected against STZ-induced memory impairment. SDAT reduced the population of mature neurons as well as increased astrocytic and microglial reactivity, and taurine protected against these STZ-induced effects, mainly in the CA1 region of the hippocampus. Taurine increases IR expression in the hippocampus, and protects against the reduction in the density of this receptor in CA1 induced by STZ. In conclusion, these findings demonstrate that taurine is able to enhance memory, up-regulates IR in the hippocampus, protects the neuron population, and reduces the astrogliosis found in SDAT.
Collapse
Affiliation(s)
- Fernanda Huf
- Pathology Research Laboratory, Federal University of Health Sciences of Porto Alegre, Sarmento Leite, 245, Room 514 - Building 3, Porto Alegre, CEP 90050-170, RS, Brazil
| | - Jessié Martins Gutierres
- Pathology Research Laboratory, Federal University of Health Sciences of Porto Alegre, Sarmento Leite, 245, Room 514 - Building 3, Porto Alegre, CEP 90050-170, RS, Brazil.
| | - Gabrielle N da Silva
- Pathology Research Laboratory, Federal University of Health Sciences of Porto Alegre, Sarmento Leite, 245, Room 514 - Building 3, Porto Alegre, CEP 90050-170, RS, Brazil
| | - Adriana M Zago
- Pathology Research Laboratory, Federal University of Health Sciences of Porto Alegre, Sarmento Leite, 245, Room 514 - Building 3, Porto Alegre, CEP 90050-170, RS, Brazil
| | - Luiz Felipe C Koenig
- Pathology Research Laboratory, Federal University of Health Sciences of Porto Alegre, Sarmento Leite, 245, Room 514 - Building 3, Porto Alegre, CEP 90050-170, RS, Brazil
| | - Marilda C Fernandes
- Pathology Research Laboratory, Federal University of Health Sciences of Porto Alegre, Sarmento Leite, 245, Room 514 - Building 3, Porto Alegre, CEP 90050-170, RS, Brazil.
| |
Collapse
|
4
|
Shen J, Wang X, Wang M, Zhang H. Potential molecular mechanism of exercise reversing insulin resistance and improving neurodegenerative diseases. Front Physiol 2024; 15:1337442. [PMID: 38818523 PMCID: PMC11137309 DOI: 10.3389/fphys.2024.1337442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 04/29/2024] [Indexed: 06/01/2024] Open
Abstract
Neurodegenerative diseases are debilitating nervous system disorders attributed to various conditions such as body aging, gene mutations, genetic factors, and immune system disorders. Prominent neurodegenerative diseases include Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, and multiple sclerosis. Insulin resistance refers to the inability of the peripheral and central tissues of the body to respond to insulin and effectively regulate blood sugar levels. Insulin resistance has been observed in various neurodegenerative diseases and has been suggested to induce the occurrence, development, and exacerbation of neurodegenerative diseases. Furthermore, an increasing number of studies have suggested that reversing insulin resistance may be a critical intervention for the treatment of neurodegenerative diseases. Among the numerous measures available to improve insulin sensitivity, exercise is a widely accepted strategy due to its convenience, affordability, and significant impact on increasing insulin sensitivity. This review examines the association between neurodegenerative diseases and insulin resistance and highlights the molecular mechanisms by which exercise can reverse insulin resistance under these conditions. The focus was on regulating insulin resistance through exercise and providing practical ideas and suggestions for future research focused on exercise-induced insulin sensitivity in the context of neurodegenerative diseases.
Collapse
Affiliation(s)
- Jiawen Shen
- Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, China
| | - Xianping Wang
- School of Medicine, Taizhou University, Taizhou, China
| | - Minghui Wang
- College of Sports Medicine, Wuhan Sports University, Wuhan, China
| | - Hu Zhang
- College of Sports Medicine, Wuhan Sports University, Wuhan, China
| |
Collapse
|
5
|
Zhou AL, Swaminathan SK, Salian VS, Wang L, Curran GL, Min HK, Lowe VJ, Kandimalla KK. Insulin Signaling Differentially Regulates the Trafficking of Insulin and Amyloid Beta Peptides at the Blood-Brain Barrier. Mol Pharm 2024; 21:2176-2186. [PMID: 38625027 PMCID: PMC11929044 DOI: 10.1021/acs.molpharmaceut.3c00784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
The blood-brain barrier (BBB) is instrumental in clearing toxic metabolites from the brain, such as amyloid-β (Aβ) peptides, and in delivering essential nutrients to the brain, like insulin. In Alzheimer's disease (AD) brain, increased Aβ levels are paralleled by decreased insulin levels, which are accompanied by insulin signaling deficits at the BBB. Thus, we investigated the impact of insulin-like growth factor and insulin receptor (IGF1R and IR) signaling on Aβ and insulin trafficking at the BBB. Following intravenous infusion of an IGF1R/IR kinase inhibitor (AG1024) in wild-type mice, the BBB trafficking of 125I radiolabeled Aβ peptides and insulin was assessed by dynamic SPECT/CT imaging. The brain efflux of [125I]iodo-Aβ42 decreased upon AG1024 treatment. Additionally, the brain influx of [125I]iodoinsulin, [125I]iodo-Aβ42, [125I]iodo-Aβ40, and [125I]iodo-BSA (BBB integrity marker) was decreased, increased, unchanged, and unchanged, respectively, upon AG1024 treatment. Subsequent mechanistic studies were performed using an in vitro BBB cell model. The cell uptake of [125I]iodoinsulin, [125I]iodo-Aβ42, and [125I]iodo-Aβ40 was decreased, increased, and unchanged, respectively, upon AG1024 treatment. Further, AG1024 reduced the phosphorylation of insulin signaling kinases (Akt and Erk) and the membrane expression of Aβ and insulin trafficking receptors (LRP-1 and IR-β). These findings reveal that insulin signaling differentially regulates the BBB trafficking of Aβ peptides and insulin. Moreover, deficits in IGF1R and IR signaling, as observed in the brains of type II diabetes and AD patients, are expected to increase Aβ accumulation while decreasing insulin delivery to the brain, which has been linked to the progression of cognitive decline in AD.
Collapse
Affiliation(s)
- Andrew L Zhou
- Department of Pharmaceutics and Brain Barriers Research Center, University of Minnesota College of Pharmacy, Minneapolis, Minnesota 55455, United States
| | - Suresh K Swaminathan
- Department of Pharmaceutics and Brain Barriers Research Center, University of Minnesota College of Pharmacy, Minneapolis, Minnesota 55455, United States
| | - Vrishali S Salian
- Department of Pharmaceutics and Brain Barriers Research Center, University of Minnesota College of Pharmacy, Minneapolis, Minnesota 55455, United States
| | - Lushan Wang
- Department of Pharmaceutics and Brain Barriers Research Center, University of Minnesota College of Pharmacy, Minneapolis, Minnesota 55455, United States
| | - Geoffry L Curran
- Department of Radiology, Mayo Clinic College of Medicine, Rochester, Minnesota 55905, United States
- Department of Neurology, Mayo Clinic College of Medicine, Rochester, Minnesota 55905, United States
| | - Hoon-Ki Min
- Department of Radiology, Mayo Clinic College of Medicine, Rochester, Minnesota 55905, United States
| | - Val J Lowe
- Department of Radiology, Mayo Clinic College of Medicine, Rochester, Minnesota 55905, United States
| | - Karunya K Kandimalla
- Department of Pharmaceutics and Brain Barriers Research Center, University of Minnesota College of Pharmacy, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
6
|
Jahromi HM, Rafati A, Karbalay-Doust S, Keshavarz S, Naseh M. The combination treatment of hypothermia and intranasal insulin ameliorates the structural and functional changes in a rat model of traumatic brain injury. Brain Struct Funct 2024; 229:947-957. [PMID: 38498064 DOI: 10.1007/s00429-024-02769-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 01/26/2024] [Indexed: 03/19/2024]
Abstract
The present study aimed to investigate the combination effects of hypothermia (HT) and intranasal insulin (INS) on structural changes of the hippocampus and cognitive impairments in the traumatic brain injury (TBI) rat model. The rats were divided randomly into the following five groups (n = 10): Sham, TBI, TBI with HT treatment for 3 h (TBI + HT), TBI with INS (ten microliters of insulin) treatment daily for 7 days (TBI + INS), and TBI with combining HT and INS (TBI + HT + INS). At the end of the 7th day, the open field and the Morris water maze tests were done for evaluation of anxiety-like behavior and memory performance. Then, after sacrificing, the brain was removed for stereological study. TBI led to an increase in the total volume of hippocampal subfields CA1 and DG and a decrease in the total number of neurons and non-neuronal cells in both sub-regions, which was associated with anxiety-like behavior and memory impairment. Although, the combination of HT and INS prevented the increased hippocampal volume and cell loss and improved behavioral performances in the TBI group. Our study suggests that the combined treatment of HT and INS could prevent increased hippocampal volume and cell loss in CA1 and DG sub-regions and consequently improve anxiety-like behaviors and memory impairment following TBI.
Collapse
Affiliation(s)
- Hadi Moatamed Jahromi
- Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Physiology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Rafati
- Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Physiology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saied Karbalay-Doust
- Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Anatomy Department, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Somaye Keshavarz
- Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
- Department of Physiology, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Maryam Naseh
- Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
7
|
Matsumoto Y, Matsumoto CS, Mizunami M. Critical roles of nicotinic acetylcholine receptors in olfactory memory formation and retrieval in crickets. Front Physiol 2024; 15:1345397. [PMID: 38405118 PMCID: PMC10884312 DOI: 10.3389/fphys.2024.1345397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/29/2024] [Indexed: 02/27/2024] Open
Abstract
Acetylcholine (ACh) is a major excitatory neurotransmitter in the insect central nervous system, and insect neurons express several types of ACh receptors (AChRs). AChRs are classified into two subgroups, muscarinic AChRs and nicotinic AChRs (nAChRs). nAChRs are also divided into two subgroups by sensitivity to α-bungarotoxin (α-BGT). The cricket Gryllus bimaculatus is one of the useful insects for studying the molecular mechanisms in olfactory learning and memory. However, the roles of nAChRs in olfactory learning and memory of the cricket are still unknown. In the present study, to investigate whether nAChRs are involved in cricket olfactory learning and memory, we tested the effects of two different AChR antagonists on long-term memory (LTM) formation and retrieval in a behavioral assay. The two AChR antagonists that we used are mecamylamine (MEC), an α-BGT-insensitive nAChR antagonist, and methyllycaconitine (MLA), an α-BGT-sensitive nAChR antagonist. In crickets, multiple-trial olfactory conditioning induced 1-day memory (LTM), whereas single-trial olfactory conditioning induced 1-h memory (mid-term memory, MTM) but not 1-day memory. Crickets injected with MEC 20 min before the retention test at 1 day after the multiple-trial conditioning exhibited no memory retrieval. This indicates that α-BGT-insensitive nAChRs participate in memory retrieval. In addition, crickets injected with MLA before the multiple-trial conditioning exhibited MTM but not LTM, indicating that α-BGT-sensitive nAChRs participate in the formation of LTM. Moreover, injection of nicotine (an nAChR agonist) before the single-trial conditioning induced LTM. Finally, the nitric oxide (NO)-cGMP signaling pathway is known to participate in the formation of LTM in crickets, and we conducted co-injection experiments with an agonist or inhibitor of the nAChR and an activator or inhibitor of the NO-cGMP signaling pathway. The results suggest that nAChR works upstream of the NO-cGMP signaling system in the LTM formation process.
Collapse
Affiliation(s)
- Yukihisa Matsumoto
- Institute of Education, Liberal Arts and Sciences Division, Tokyo Medical and Dental University, Ichikawa, Chiba, Japan
| | | | - Makoto Mizunami
- Faculty of Science, Hokkaido University, Sapporo, Hokkaido, Japan
- Research Institute for Electronic Science, Hokkaido University, Sapporo, Hokkaido, Japan
| |
Collapse
|
8
|
Ansari MA, Rao MS, Al-Jarallah A. Insights into early pathogenesis of sporadic Alzheimer's disease: role of oxidative stress and loss of synaptic proteins. Front Neurosci 2024; 17:1273626. [PMID: 38260013 PMCID: PMC10800995 DOI: 10.3389/fnins.2023.1273626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 12/11/2023] [Indexed: 01/24/2024] Open
Abstract
Oxidative stress, induced by impaired insulin signaling in the brain contributes to cognitive loss in sporadic Alzheimer's disease (sAD). This study evaluated early hippocampal oxidative stress, pre- and post-synaptic proteins in intraperitoneal (IP) and intracerebroventricular (ICV) streptozotocin (STZ) models of impaired insulin signaling. Adult male Wistar rats were injected with STZ, IP, or ICV, and sacrificed 1-, 3-, or 6-weeks post injection. Rat's cognitive behavior was assessed using Morris water maze (MWM) tests at weeks 3 and 6. Hippocampal synaptosomal fractions were examined for oxidative stress markers and presynaptic [synapsin I, synaptophysin, growth-associated protein-43 (GAP-43), synaptosomal-associated protein-25 (SNAP-25)] and postsynaptic [drebrin, synapse-associated protein-97 (SAP-97), postsynaptic density protein-95 (PSD-95)] proteins. IP-STZ and ICV-STZ treatment impaired rat's cognition, decreased the levels of reduced glutathione (GSH) and increased the levels of thiobarbituric acid reactive species (TBARS) in a time dependent manner. In addition, it reduced the expression of pre- and post-synaptic proteins in the hippocampus. The decline in cognition is significantly correlated with the reduction in synaptic proteins in the hippocampus. In conclusion, impaired insulin signaling in the brain is deleterious in causing early synaptosomal oxidative damage and synaptic loss that exacerbates with time and correlates with cognitive impairments. Our data implicates oxidative stress and synaptic protein loss as an early feature of sAD and provides insights into early biochemical and behavioral changes during disease progression.
Collapse
Affiliation(s)
- Mubeen A. Ansari
- Department of Pharmacology and Toxicology, College of Medicine, Kuwait University, Jabriya, Kuwait
| | | | - Aishah Al-Jarallah
- Department of Biochemistry, College of Medicine, Kuwait University, Jabriya, Kuwait
| |
Collapse
|
9
|
Kong F, Wu T, Dai J, Zhai Z, Cai J, Zhu Z, Xu Y, Sun T. Glucagon-like peptide 1 (GLP-1) receptor agonists in experimental Alzheimer's disease models: a systematic review and meta-analysis of preclinical studies. Front Pharmacol 2023; 14:1205207. [PMID: 37771725 PMCID: PMC10525376 DOI: 10.3389/fphar.2023.1205207] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 09/04/2023] [Indexed: 09/30/2023] Open
Abstract
Alzheimer's disease (AD) is a degenerative disease of the nervous system. Glucagon-like peptide-1 receptor agonists (GLP-1 RAs), a drug used to treat type 2 diabetes, have been shown to have neuroprotective effects. This systematic review and meta-analysis evaluated the effects and potential mechanisms of GLP-1 RAs in AD animal models. 26 studies were included by searching relevant studies from seven databases according to a predefined search strategy and inclusion criteria. Methodological quality was assessed using SYRCLE's risk of bias tool, and statistical analysis was performed using ReviewManger 5.3. The results showed that, in terms of behavioral tests, GLP-1 RAs could improve the learning and memory abilities of AD rodents; in terms of pathology, GLP-1 RAs could reduce Aβ deposition and phosphorylated tau levels in the brains of AD rodents. The therapeutic potential of GLP-1 RAs in AD involves a range of mechanisms that work synergistically to enhance the alleviation of various pathological manifestations associated with the condition. A total of five clinical trials were retrieved from ClinicalTrials.gov. More large-scale and high-quality preclinical trials should be conducted to more accurately assess the therapeutic effects of GLP-1 RAs on AD.
Collapse
Affiliation(s)
- Fanjing Kong
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tianyu Wu
- School of Acupuncture-Moxibustion and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jingyi Dai
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhenwei Zhai
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jie Cai
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhishan Zhu
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ying Xu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tao Sun
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
10
|
Mantik KEK, Kim S, Gu B, Moon S, Kwak HB, Park DH, Kang JH. Repositioning of Anti-Diabetic Drugs against Dementia: Insight from Molecular Perspectives to Clinical Trials. Int J Mol Sci 2023; 24:11450. [PMID: 37511207 PMCID: PMC10380685 DOI: 10.3390/ijms241411450] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Insulin resistance as a hallmark of type 2 DM (T2DM) plays a role in dementia by promoting pathological lesions or enhancing the vulnerability of the brain. Numerous studies related to insulin/insulin-like growth factor 1 (IGF-1) signaling are linked with various types of dementia. Brain insulin resistance in dementia is linked to disturbances in Aβ production and clearance, Tau hyperphosphorylation, microglial activation causing increased neuroinflammation, and the breakdown of tight junctions in the blood-brain barrier (BBB). These mechanisms have been studied primarily in Alzheimer's disease (AD), but research on other forms of dementia like vascular dementia (VaD), Lewy body dementia (LBD), and frontotemporal dementia (FTD) has also explored overlapping mechanisms. Researchers are currently trying to repurpose anti-diabetic drugs to treat dementia, which are dominated by insulin sensitizers and insulin substrates. Although it seems promising and feasible, none of the trials have succeeded in ameliorating cognitive decline in late-onset dementia. We highlight the possibility of repositioning anti-diabetic drugs as a strategy for dementia therapy by reflecting on current and previous clinical trials. We also describe the molecular perspectives of various types of dementia through the insulin/IGF-1 signaling pathway.
Collapse
Affiliation(s)
- Keren Esther Kristina Mantik
- Department of Pharmacology, Research Center for Controlling Intercellular Communication, College of Medicine, Inha University, Incheon 22212, Republic of Korea
- Program in Biomedical Science and Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Sujin Kim
- Department of Pharmacology, Research Center for Controlling Intercellular Communication, College of Medicine, Inha University, Incheon 22212, Republic of Korea
| | - Bonsang Gu
- Department of Pharmacology, Research Center for Controlling Intercellular Communication, College of Medicine, Inha University, Incheon 22212, Republic of Korea
- Program in Biomedical Science and Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Sohee Moon
- Department of Pharmacology, Research Center for Controlling Intercellular Communication, College of Medicine, Inha University, Incheon 22212, Republic of Korea
| | - Hyo-Bum Kwak
- Program in Biomedical Science and Engineering, Inha University, Incheon 22212, Republic of Korea
- Department of Kinesiology, College of Arts and Sports, Inha University, Incheon 22212, Republic of Korea
| | - Dong-Ho Park
- Program in Biomedical Science and Engineering, Inha University, Incheon 22212, Republic of Korea
- Department of Kinesiology, College of Arts and Sports, Inha University, Incheon 22212, Republic of Korea
| | - Ju-Hee Kang
- Department of Pharmacology, Research Center for Controlling Intercellular Communication, College of Medicine, Inha University, Incheon 22212, Republic of Korea
- Program in Biomedical Science and Engineering, Inha University, Incheon 22212, Republic of Korea
| |
Collapse
|
11
|
Ansari MA, Al-Jarallah A, Babiker FA. Impaired Insulin Signaling Alters Mediators of Hippocampal Synaptic Dynamics/Plasticity: A Possible Mechanism of Hyperglycemia-Induced Cognitive Impairment. Cells 2023; 12:1728. [PMID: 37443762 PMCID: PMC10340300 DOI: 10.3390/cells12131728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/12/2023] [Accepted: 06/16/2023] [Indexed: 07/15/2023] Open
Abstract
Alzheimer's disease (AD) is a neurological condition that affects the elderly and is characterized by progressive and irreversible neurodegeneration in the cerebral cortex [...].
Collapse
Affiliation(s)
- Mubeen A. Ansari
- Department of Pharmacology and Toxicology, Faculty of Medicine, Kuwait University, Kuwait City 13110, Kuwait
| | - Aishah Al-Jarallah
- Department of Biochemistry, Faculty of Medicine, Kuwait University, Kuwait City 13110, Kuwait
| | - Fawzi A. Babiker
- Department of Physiology, Faculty of Medicine, Kuwait University, Kuwait City 13110, Kuwait
| |
Collapse
|
12
|
Gupta M, Pandey S, Rumman M, Singh B, Mahdi AA. Molecular mechanisms underlying hyperglycemia associated cognitive decline. IBRO Neurosci Rep 2023; 14:57-63. [PMID: 36590246 PMCID: PMC9800261 DOI: 10.1016/j.ibneur.2022.12.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 12/10/2022] [Indexed: 12/14/2022] Open
Abstract
Diabetes mellitus (DM) is a metabolic disease characterized by chronic hyperglycemia. DM can lead to a number of secondary complications affecting multiple organs in the body including the eyes, kidney, heart, and brain. The most common effect of hyperglycemia on the brain is cognitive decline. It has been estimated that 20-70% of people with DM have cognitive deficits. High blood sugar affects key brain areas involved in learning, memory, and spatial navigation, and the structural complexity of the brain has made it prone to a variety of pathological disorders, including T2DM. Studies have reported that cognitive decline can occur in people with diabetes, which could go undetected for several years. Moreover, studies on brain imaging suggest extensive effects on different brain regions in patients with T2D. It remains unclear whether diabetes-associated cognitive decline is a consequence of hyperglycemia or a complication that co-occurs with T2D. The exact mechanism underlying cognitive impairment in diabetes is complex; however, impaired glucose metabolism and abnormal insulin function are thought to play important roles. In this review, we have tried to summarize the effect of hyperglycemia on the brain structure and functions, along with the potential mechanisms underlying T2DM-associated cognitive decline.
Collapse
Affiliation(s)
- Mrinal Gupta
- Department of Biochemistry, King George’s Medical University, Lucknow, Uttar Pradesh, India
| | - Shivani Pandey
- Department of Biochemistry, King George’s Medical University, Lucknow, Uttar Pradesh, India
| | - Mohammad Rumman
- Department of Biochemistry, King George’s Medical University, Lucknow, Uttar Pradesh, India
| | - Babita Singh
- Department of Biochemistry, King George’s Medical University, Lucknow, Uttar Pradesh, India
| | - Abbas Ali Mahdi
- Department of Biochemistry, King George’s Medical University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
13
|
Lin HC, Chung CH, Chen LC, Wang JY, Chen CC, Huang KY, Tsai MH, Chien WC, Lin HA. Pioglitazone use increases risk of Alzheimer's disease in patients with type 2 diabetes receiving insulin. Sci Rep 2023; 13:6625. [PMID: 37095270 PMCID: PMC10126143 DOI: 10.1038/s41598-023-33674-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 04/17/2023] [Indexed: 04/26/2023] Open
Abstract
Pioglitazone is an insulin resistance inhibitor widely used as monotherapy or combined with metformin or insulin in treating type 2 diabetes mellitus (T2DM). This study further investigated the relationship between pioglitazone use and the risk of developing Alzheimer's disease (AD) in patients newly diagnosed with T2DM, and examined the potential impact of insulin use on this association. Data were extracted from the National Health Insurance Research Database (NHIRD) of Taiwan. Our data exhibited that the risk of developing AD in the pioglitazone group was 1.584-fold (aHR = 1.584, 95% CI 1.203-1.967, p < 0.05) higher than that in the non-pioglitazone controls. Compared to patients without both insulin and pioglitazone, higher cumulative risk of developing AD was found in patients receiving both insulin and pioglitazone (aHR = 2.004, 95% CI = 1.702-2.498), pioglitazone alone (aHR = 1.596, 95% CI = 1.398-1.803), and insulin alone (aHR = 1.365, 95% CI = 1.125-1.572), respectively (all p < 0.05). A similar observation also found in the evaluation the use of diabetic drugs with a cumulative defined daily dose (cDDD). No interaction between pioglitazone and major risk factors (comorbidities) of AD was observed. In conclusion, alternative drug therapies may be an effective strategy for reducing risk of developing AD in T2DM patients.
Collapse
Affiliation(s)
- Hsin-Chung Lin
- Division of Clinical Pathology, Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei City, 11490, Taiwan
- Graduate Institute of Pathology and Parasitology, National Defense Medical Center, Taipei City, 11490, Taiwan
| | - Chi-Hsiang Chung
- School of Public Health, National Defense Medical Center, Taipei City, 11490, Taiwan
- Taiwanese Injury Prevention and Safety Promotion Association, Taipei City, 11490, Taiwan
| | - Lih-Chyang Chen
- Department of Medicine, Mackay Medical College, New Taipei City, 252, Taiwan
| | - Jui-Yang Wang
- Department of Family Medicine, Tri-Service General Hospital Songshan Branch, National Defense Medical Center, Taipei City, 10581, Taiwan
| | - Chien-Chou Chen
- Division of Nephrology, Department of Medicine, Tri-Service General Hospital Songshan Branch, National Defense Medical Center, Taipei City, 10581, Taiwan
| | - Kuo-Yang Huang
- Graduate Institute of Pathology and Parasitology, National Defense Medical Center, Taipei City, 11490, Taiwan
| | - Ming-Hang Tsai
- Department of Medicine, Tri-Service General Hospital Songshan Branch, National Defense Medical Center, Taipei City, 10581, Taiwan
| | - Wu-Chien Chien
- School of Public Health, National Defense Medical Center, Taipei City, 11490, Taiwan.
- Department of Medical Research, Tri-Service General Hospital, National Defense Medical Center, No.161, Sec. 6, Minquan E. Rd., Neihu Dist., Taipei City, 11490, Taiwan.
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei City, 11490, Taiwan.
| | - Hsin-An Lin
- Division of Infection, Department of Medicine, Tri-Service General Hospital Songshan Branch, National Defense Medical Center, No. 131, Jiankang Rd., Songshan District, Taipei City, 10581, Taiwan.
| |
Collapse
|
14
|
Loss of brain energy metabolism control as a driver for memory impairment upon insulin resistance. Biochem Soc Trans 2023; 51:287-301. [PMID: 36606696 DOI: 10.1042/bst20220789] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/10/2022] [Accepted: 12/12/2022] [Indexed: 01/07/2023]
Abstract
The pathophysiological mechanisms intersecting metabolic and neurodegenerative disorders include insulin resistance, which has a strong involvement of environmental factors. Besides central regulation of whole-body homeostasis, insulin in the central nervous system controls molecular signalling that is critical for cognitive performance, namely signalling through pathways that modulate synaptic transmission and plasticity, and metabolism in neurons and astrocytes. This review provides an overview on how insulin signalling in the brain might regulate brain energy metabolism, and further identified molecular mechanisms by which brain insulin resistance might impair synaptic fuelling, and lead to cognitive deterioration.
Collapse
|
15
|
Effect of Various Intermittent Fasting Protocols on Hyperglycemia-Induced Cognitive Dysfunction in Rats. Brain Sci 2023; 13:brainsci13020165. [PMID: 36831708 PMCID: PMC9954499 DOI: 10.3390/brainsci13020165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/15/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023] Open
Abstract
Diabetes mellitus is a highly prevalent metabolic disorder that causes cognitive decline. Here, we investigated the impact of various intermittent fasting protocols on type 2 diabetes mellitus (T2DM)-induced cognitive dysfunction in a rodent model. Male Sprague-Dawley rats (aged 3 months) were randomly assigned to five groups (n = 6 per group) and T2DM was induced by streptozotocin (60 mg/kg, IM). The control group was untreated. Cognitive function was tested (Y-maze, novel object recognition, and elevated plus maze tests) and glucose was assessed. The T2DM rats exhibited significantly higher blood glucose, which is associated with cognitive dysfunction. Compared to the validated animal model of T2DM in rats, various intermittent fasting protocols decreased blood glucose and improved cognitive function. These results indicate that various intermittent fasting protocols may be a potential strategy for managing the hyperglycemia-associated cognitive dysfunction.
Collapse
|
16
|
Aghaei Z, Karbalaei N, Namavar MR, Haghani M, Razmkhah M, Ghaffari MK, Nemati M. Neuroprotective Effect of Wharton's Jelly-Derived Mesenchymal Stem Cell-Conditioned Medium (WJMSC-CM) on Diabetes-Associated Cognitive Impairment by Improving Oxidative Stress, Neuroinflammation, and Apoptosis. Stem Cells Int 2023; 2023:7852394. [PMID: 37081849 PMCID: PMC10113062 DOI: 10.1155/2023/7852394] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/13/2023] [Accepted: 03/16/2023] [Indexed: 04/22/2023] Open
Abstract
According to strong evidence, diabetes mellitus increases the risk of cognitive impairment. Mesenchymal stem cells have been shown to be potential therapeutic agents for neurological disorders. In the current study, we aimed to examine the effects of Wharton's jelly-derived mesenchymal stem cell-conditioned medium (WJMSC-CM) on learning and memory, oxidative stress, apoptosis, and histological changes in the hippocampus of diabetic rats. Randomly, 35 male Sprague Dawley rats weighing 260-300 g were allocated into five groups: control, diabetes, and three diabetic groups treated with insulin, WJMSC-CM, and DMEM. The injections of insulin (3 U/day, S.C.) and WJMSC-CM (10 mg/week, I.P.) were done for 60 days. The Morris water maze and open field were used to measure cognition and anxiety-like behaviors. Colorimetric assays were used to determine hippocampus glutathione (GSH), malondialdehyde (MDA) levels, and antioxidant enzyme activity. The histopathological evaluation of the hippocampus was performed by Nissl staining. The expression levels of Bax, Bcl-2, BDNF, and TNF-α were detected by real-time polymerase chain reaction (RT-PCR). According to our findings, WJMSC-CM significantly reduced and increased blood glucose and insulin levels, respectively. Enhanced cognition and improved anxiety-like behavior were also found in WJMSC-CM-treated diabetic rats. In addition, WJMSC-CM treatment reduced oxidative stress by lowering MDA and elevating GSH and antioxidant enzyme activity. Reduced TNF-α and enhanced Bcl-2 gene expression levels and elevated neuronal and nonneuronal (astrocytes and oligodendrocytes) cells were detected in the hippocampus of WJMSC-CM-treated diabetic rats. In conclusion, WJMSC-CM alleviated diabetes-related cognitive impairment by reducing oxidative stress, neuroinflammation, and apoptosis in diabetic rats.
Collapse
Affiliation(s)
- Zohre Aghaei
- Department of Physiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Narges Karbalaei
- Department of Physiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Reza Namavar
- Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Anatomy, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Masoud Haghani
- Department of Physiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahboobeh Razmkhah
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahdi Khorsand Ghaffari
- Department of Physiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Marzieh Nemati
- Department of Endocrinology and Metabolism Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
17
|
Liu Q, Wang Z, Cao J, Dong Y, Chen Y. The Role of Insulin Signaling in Hippocampal-Related Diseases: A Focus on Alzheimer's Disease. Int J Mol Sci 2022; 23:ijms232214417. [PMID: 36430894 PMCID: PMC9699017 DOI: 10.3390/ijms232214417] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/09/2022] [Accepted: 11/15/2022] [Indexed: 11/22/2022] Open
Abstract
Alzheimer's disease (AD) is a global concern and has become a major public health event affecting human health. Insulin is a metabolic hormone secreted mainly by the peripheral tissue pancreas. In recent years, more and more evidence has proved that insulin regulates various functions of the brain. The hippocampus, one of the earliest brain regions affected by AD, is widely distributed with insulin receptors. Studies have shown that type 2 diabetes mellitus, characterized by insulin resistance, is closely related to AD, which has drawn extensive attention to the relationship between hippocampal insulin signaling and AD. Therefore, we provide an overview of intranasal insulin administration on memory and its underlying mechanism. We also highlight the molecular link between hippocampal insulin resistance and AD and provide a theoretical basis for finding new therapeutic targets for AD in clinical practice.
Collapse
Affiliation(s)
| | | | | | | | - Yaoxing Chen
- Correspondence: ; Tel.: +86-10-6273-3778; Fax: +86-10-6273-3199
| |
Collapse
|
18
|
Shvadchenko AM, Volobueva MN, Ivanova VO, Beletskiy AP, Smirnova GR, Bal NV, Balaban PM. New Context Significantly Changes Expression of Irs2 Gene in Hippocampal Areas. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:1243-1251. [PMID: 36509718 DOI: 10.1134/s0006297922110037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Memory formation is a complex process involving changes in the synaptic activity and gene expression encoding the insulin-like growth factors. We analyzed changes in the expression of genes encoding the insulin/insulin-like growth factors' proteins at the early period of learning in the CA1 region and dentate gyrus of the dorsal and ventral hippocampus in mice 1 hour after presentation of a new context (contextual fear conditioning) with and without negative reinforcement. It was found that in addition to changes in the expression of immediate early genes c-Fos (in all studied hippocampal fields) and Arc (in dorsal and ventral CA1, as well as in dorsal dentate gyrus), exposure to a new context significantly altered expression of the insulin receptor substrate 2 gene (Irs2) in dorsal CA1 and ventral dentate gyrus irrespectively of the negative reinforcement, which suggests participation of the insulin/IGF system in the early stages of neural activation during learning.
Collapse
Affiliation(s)
- Anastasia M Shvadchenko
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, 117485, Russia
| | - Maria N Volobueva
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, 117485, Russia
| | - Violetta O Ivanova
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, 117485, Russia
| | - Alexandr P Beletskiy
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, 117485, Russia
| | - Gulnur R Smirnova
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, 117485, Russia
| | - Natalia V Bal
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, 117485, Russia
| | - Pavel M Balaban
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, 117485, Russia.
| |
Collapse
|
19
|
Zhai Z, Xie D, Qin T, Zhong Y, Xu Y, Sun T. Effect and Mechanism of Exogenous Melatonin on Cognitive Deficits in Animal Models of Alzheimer's Disease: A Systematic review and Meta-analysis. Neuroscience 2022; 505:91-110. [PMID: 36116555 DOI: 10.1016/j.neuroscience.2022.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 09/05/2022] [Accepted: 09/08/2022] [Indexed: 12/09/2022]
Abstract
Melatonin (MT) has been reported to control and prevent Alzheimer's disease (AD) in the clinic; however, the effect and mechanism of MT on AD have not been specifically described. Therefore, the main purpose of this meta-analysis was to explore the effect and mechanism of MT on AD models by studying behavioural indicators and pathological features. Seven databases were searched and 583 articles were retrieved. Finally, nine studies (13 analyses, 294 animals) were included according to pre-set criteria. Three authors independently judged the selected literature and the methodological quality. Meta-analysis showed that MT markedly ameliorated the learning ability by reducing the escape latency (EL), and the memory deficit was significantly corrected by increasing the dwell time in the target quadrant and crossings over the platform location in the Morris Water Maze (MWM). Among the pathological features, subgroup analysis found that MT may ease the symptoms of AD mainly by reducing the deposition of Aβ40 and Aβ42 in the cortex. In addition, MT exerted a superior effect on ameliorating the learning ability of senescence-related and metabolic AD models, and corrected the memory deficit of the toxin-induced AD model. The study was registered at PROSPERO (CRD42021226594).
Collapse
Affiliation(s)
- Zhenwei Zhai
- School of Medical Information Engineering, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Danni Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Tao Qin
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Yanmei Zhong
- School of Medical Information Engineering, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Ying Xu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
| | - Tao Sun
- School of Medical Information Engineering, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
20
|
Duarte JMN. Serine racemase modulation for improving brain insulin resistance: An Editorial Highlight for "Deletion of serine racemase reverses neuronal insulin signaling inhibition by amyloid-β oligomers". J Neurochem 2022; 163:6-7. [PMID: 35996309 DOI: 10.1111/jnc.15688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 08/08/2022] [Indexed: 11/28/2022]
Abstract
This Editorial highlights an interesting study in the current issue of the Journal of Neurochemistry in which Zhou et al. report new data showing that the ablation of serine racemase increases local insulin production in neurons of the hippocampus. The authors explored some of the possible mechanisms mediating the interaction between dampening production of D-serine and the local synthesis of insulin, and they further propose that stimulating insulin production could counteract hippocampal insulin resistance in Alzheimer's disease (AD). Most importantly, they leave open a number of questions that need to be experimentally addressed to ascertain whether D-serine modulation of neuronal insulin expression can effectively improve insulin sensitivity in AD, as well as in metabolic disease with neurological impact.
Collapse
Affiliation(s)
- João M N Duarte
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden.,Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| |
Collapse
|
21
|
Grassi G, Figee M, Pozza A, Dell'Osso B. Obsessive-compulsive disorder, insulin signaling and diabetes - A novel form of physical health comorbidity: The sweet compulsive brain. Compr Psychiatry 2022; 117:152329. [PMID: 35679658 DOI: 10.1016/j.comppsych.2022.152329] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 05/03/2022] [Accepted: 05/17/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND While a growing body of research highlights a bi-directional link between diabetes and mood disorders, little is known about the relationship between diabetes and obsessive-compulsive disorder (OCD). The aim of the present review is to investigate current evidence linking OCD, insulin-signaling and diabetes. METHODS A PubMed search was conducted to review all the available studies assessing diabetes, glucose metabolism and insulin-signaling in OCD patients and vice versa. RESULTS Some clinical and epidemiological studies show a higher prevalence of diabetes in OCD and vice versa compared to the general population. Animal and genetic studies suggest a possible role of insulin-signaling in the pathophysiology of OCD. Deep brain stimulation (DBS) studies suggest that abnormal dopaminergic transmission in the striatum may contribute to impaired insulin sensitivity in OCD. While DBS seems to increase insulin sensitivity, a possible protective role of serotonin reuptake-inhibitors on diabetic risk needs further studies. CONCLUSION Despite their preliminary nature, these data highlight the importance of further investigations aimed at assessing metabolic features in OCD patients and OCD symptoms in diabetes patients to understand the impact of each condition on the pathophysiology and course of the other. Understanding the role of insulin in the obsessive-compulsive brain could open new treatment pathways for OCD.
Collapse
Affiliation(s)
| | - Martijn Figee
- Department of Psychiatry, Icahn Medical School at Mount Sinai, New York, NY, USA
| | | | - Bernardo Dell'Osso
- University of Milan, Department of Biomedical and Clinical Sciences Luigi Sacco, Ospedale Sacco-Polo Universitario, ASST Fatebenefratelli-Sacco, Milan, Italy
| |
Collapse
|
22
|
Li M, Chi X, Wang Y, Setrerrahmane S, Xie W, Xu H. Trends in insulin resistance: insights into mechanisms and therapeutic strategy. Signal Transduct Target Ther 2022; 7:216. [PMID: 35794109 PMCID: PMC9259665 DOI: 10.1038/s41392-022-01073-0] [Citation(s) in RCA: 270] [Impact Index Per Article: 90.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/15/2022] [Accepted: 06/20/2022] [Indexed: 02/06/2023] Open
Abstract
The centenary of insulin discovery represents an important opportunity to transform diabetes from a fatal diagnosis into a medically manageable chronic condition. Insulin is a key peptide hormone and mediates the systemic glucose metabolism in different tissues. Insulin resistance (IR) is a disordered biological response for insulin stimulation through the disruption of different molecular pathways in target tissues. Acquired conditions and genetic factors have been implicated in IR. Recent genetic and biochemical studies suggest that the dysregulated metabolic mediators released by adipose tissue including adipokines, cytokines, chemokines, excess lipids and toxic lipid metabolites promote IR in other tissues. IR is associated with several groups of abnormal syndromes that include obesity, diabetes, metabolic dysfunction-associated fatty liver disease (MAFLD), cardiovascular disease, polycystic ovary syndrome (PCOS), and other abnormalities. Although no medication is specifically approved to treat IR, we summarized the lifestyle changes and pharmacological medications that have been used as efficient intervention to improve insulin sensitivity. Ultimately, the systematic discussion of complex mechanism will help to identify potential new targets and treat the closely associated metabolic syndrome of IR.
Collapse
Affiliation(s)
- Mengwei Li
- The Engineering Research Center of Synthetic Peptide Drug Discovery and Evaluation of Jiangsu Province, China Pharmaceutical University, Nanjing, 210009, China
- State Key Laboratory of Natural Medicines, Ministry of Education, China Pharmaceutical University, Nanjing, 210009, China
| | - Xiaowei Chi
- Development Center for Medical Science & Technology National Health Commission of the People's Republic of China, 100044, Beijing, China
| | - Ying Wang
- The Engineering Research Center of Synthetic Peptide Drug Discovery and Evaluation of Jiangsu Province, China Pharmaceutical University, Nanjing, 210009, China
- State Key Laboratory of Natural Medicines, Ministry of Education, China Pharmaceutical University, Nanjing, 210009, China
| | | | - Wenwei Xie
- The Engineering Research Center of Synthetic Peptide Drug Discovery and Evaluation of Jiangsu Province, China Pharmaceutical University, Nanjing, 210009, China
- State Key Laboratory of Natural Medicines, Ministry of Education, China Pharmaceutical University, Nanjing, 210009, China
| | - Hanmei Xu
- The Engineering Research Center of Synthetic Peptide Drug Discovery and Evaluation of Jiangsu Province, China Pharmaceutical University, Nanjing, 210009, China.
- State Key Laboratory of Natural Medicines, Ministry of Education, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
23
|
Chronic exposure of bisphenol-A impairs cognitive function and disrupts hippocampal insulin signaling pathway in male mice. Toxicology 2022; 472:153192. [PMID: 35489422 DOI: 10.1016/j.tox.2022.153192] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 04/23/2022] [Accepted: 04/25/2022] [Indexed: 01/04/2023]
Abstract
Bisphenol-A (BPA), a well-known estrogenic endocrine disruptor, is generally applied to turn out plastic consumer products. Available data have manifested that exposure to BPA can trigger insulin resistance. Hence, the purpose of the actual study was to consider the impacts of BPA exposure on cognitive function and insulin signaling pathway in the hippocampus of male offspring mice. For this purpose, the pregnant female mice were treated either vehicle (0.1% ethanol) or BPA (0.01, 0.1, and 1µg/mL) via drinking water from day 1 of gestation until delactation (D1-PND21, newborn exposure). Afterward, the three-week-old male offspring mice took orally with the same doses of BPA for nine weeks (PND84). The behavioral tests, blood sugar level, histological observation, transcriptome sequencing, glucose transporter 4 (GLUT4), and hippocampal insulin signaling pathway were checked for the male offspring mice at 13 weeks of age (PND91). Our data indicated that BPA exposure impaired cognitive function, disrupted the hippocampal regular cell arrangement, increased blood glucose levels, disturbed the insulin signaling pathway including phosphorylated insulin receptor substrate1 (p-IRS1), protein kinase B (p-AKT), and glycogen synthase kinase 3β (p-GSK3β). At the same time, the mRNA and protein expressions of GLUT4 were markedly down-regulated in the BPA-exposed groups. To sum up, it has been suggested from these results that BPA has detrimental effects on the insulin signaling pathway, which might subsequently be conducive to the impairment of cognitive function in the adult male offspring mice. Therefore, BPA exposure might in part be an element of risk for the long-term neurodegeneration in male offspring mice.
Collapse
|
24
|
Bashir J, Yarube IU. Occurrence of mild cognitive impairment with hyperinsulinaemia in Africans with advanced type 2 diabetes mellitus. IBRO Neurosci Rep 2022; 12:182-187. [PMID: 35746970 PMCID: PMC9210459 DOI: 10.1016/j.ibneur.2022.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 02/09/2022] [Indexed: 11/08/2022] Open
Abstract
There is paucity of information on the prevalence of mild cognitive impairment (MCI) among individuals with type 2 diabetes mellitus (T2DM) in sub-Saharan Africa, including Nigeria. In addition, the role of hyperinsulinaemia in the development of MCI needs further investigation. This study sought to assess cognition and hyperinsulinaemia, with the associated characteristics in patients with advanced T2DM. Cognition was assessed using Montreal cognitive assessment test (MoCA), while fasting plasma insulin was measured using an ELISA kit. Sixty one diabetic subjects and 32 non-diabetic controls, matched for age, gender and level of education were studied. The diabetics had MCI while the controls had normal cognitive function. About 88.5% of the diabetic subjects had MCI, in contrast with only 50% of the non-diabetic controls. The most significantly affected cognitive domains among the diabetics were executive function, naming, attention, abstraction and delayed recall. Among the diabetics, MCI correlated with age, weight and body mass index (BMI); and in addition, age and weight found to be significant predictors of MCI. Plasma insulin concentration among the diabetics (16.24 ± 13.5 µIU/ml) was more than twice that of the controls (7.59 ± 2.9 µIU/ml). Hyperinsulinaemia among the diabetics correlated with weight, BMI, blood pressure and fasting blood sugar (FBS). Glycated haemoglobin and FBS levels were higher among diabetics compared with the controls. In conclusion, Africans with advanced T2DM show multi-domain MCI with high prevalence, coexisting with hyperinsulinaemia. Majority of the patients have diabetic complications and poor glycaemic control. Hyperinsulinaemia may play a complementary role in the pathophysiology of MCI in T2DM. Patients with advanced T2DM manifest multi-domain MCI with up to 88% prevalence. There is hyperinsulinaemia coexisting with the MCI among patients with advanced 2DM. Majority of the patients have diabetic complications and poor glycaemic control.
Collapse
|
25
|
Glibenclamide ameliorates the expression of neurotrophic factors in sevoflurane anaesthesia-induced oxidative stress and cognitive impairment in hippocampal neurons of old rats. J Vet Res 2021; 65:527-538. [PMID: 35112009 PMCID: PMC8775723 DOI: 10.2478/jvetres-2021-0064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 11/19/2021] [Indexed: 11/28/2022] Open
Abstract
Introduction Several antidiabetic medications have been proposed as prospective treatments for cognitive impairments in type 2 diabetes patients, glibenclamide (GBC) among them. Our research aimed to evaluate the impact of GBC on hippocampal learning memory and inflammation due to enhanced neurotrophic signals induced by inhalation of sevoflurane. Material and Methods Rats (Sprague Dawley, both sexes) were assigned to four groups: a control (vehicle, p.o.), GBC (10 mg/kg b.w.; p.o.), low-dose sevoflurane and low-dose sevoflurane + GBC (10 mg/kg b.w.; p.o.) for 23 days. Terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL) staining was performed to analyse the count of apoptotic cells and ELISA was conducted to assess the protein signals. A Western blot, a Y-maze test, and a Morris maze test were performed, and the results analysed. Blood and tissues were collected, and isolation of RNA was performed with qRT-PCR. Results The Morris maze test results revealed an improvement in the length of the escape latency on days 1 (P < 0.05), 2 (P < 0.01), 3, and 4 in the low-dose Sevo group. Time spent in the quadrant and crossing axis and the percentage of spontaneous alterations showed a substantial decrease in the low-dose Sevo group which received GBC at 10 mg/kg b.w. Significant increases were shown in IL-6 and TNF-α levels in the low-dose Sevo group, whereas a decrease was evident in the GBC group. Conclusion Our results indicate that glibenclamide may be a novel drug to prevent sevoflurane inhalation-induced impaired learning and reduce brain-derived neurotrophic factor release, which may be a vital target for the development of potential therapies for cognitive deficits and neurodegeneration.
Collapse
|
26
|
Selenius JS, Silveira PP, Salonen M, Kautiainen H, von Bonsdorff M, Kajantie E, Lahti J, Eriksson JG, Wasenius NS. The relationship between health-related quality of life and melancholic depressive symptoms is modified by brain insulin receptor gene network. Sci Rep 2021; 11:21588. [PMID: 34732766 PMCID: PMC8566480 DOI: 10.1038/s41598-021-00631-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 09/28/2021] [Indexed: 11/17/2022] Open
Abstract
To investigate whether expression-based polygenic risk scores for the insulin receptor gene network (ePRS-IRs) modifiy the association between type of depressive symptoms and health-related quality of life (HRQoL). This cross-sectional study includes 1558 individuals from the Helsinki Birth Cohort Study. Between 2001 and 2004, the Short Form-36 questionnaire was employed to assess mental and physical components of HRQoL and Beck Depression Inventory (BDI) to assess depressive symptoms. Depressive symptoms were categorized into minimal (BDI < 10), non-melancholic and melancholic types of depression. The ePRS-IRs were calculated for the hippocampal (hePRS-IR) and the mesocorticolimbic (mePRS-IR) regions of the brain. General linear regression models adjusted for age, sex, population stratification, lifestyle factors and body mass index were applied to analyze the data. Both types of depressive symptoms were associated with lower HRQoL (p < 0.0001). HePRS-IR modified the association between the types of depression and mental HRQoL (p for interaction = 0.005). Melancholic type of depressive symptoms was associated with higher mental HRQoL compared to the non-melancholic symptoms among individuals with low hePRS-IR (adjusted mean 4.1, 95% CI 0.7-7.4, p = 0.018). However, no such difference was evident in moderate or high hePRS-IR groups as higher hePRS-IR was associated with lower mental HRQoL (B = - 3.4, 95% CI - 5.6 to - 1.2) in individuals with melancholic type of depressive symptoms. No direct associations were detected between the ePRS-IRs and type of depressive symptoms or HRQoL. Variations in the glucose-insulin metabolism can lower HRQoL in individuals with melancholic depressive symptoms.
Collapse
Affiliation(s)
- Jannica S Selenius
- Folkhälsan Research Center, Finbyntie 136 Karjaa, 10300, Helsinki, Finland.
- Department of General Practice and Primary Health Care, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.
| | - Patricia P Silveira
- Department of Psychiatry, Faculty of Medicine, McGill University, 6875 Boulevard LaSalle, Verdun, QC, H4H1R3, Canada
- Ludmer Centre for Neuroinformatic and Mental Health, Douglas Mental Health University Institute, McGill University, 6875 Boulevard LaSalle, Verdun, QC, H4H1R3, Canada
| | - Minna Salonen
- Folkhälsan Research Center, Finbyntie 136 Karjaa, 10300, Helsinki, Finland
- Public Health Promotion Unit, The National Institute for Health and Welfare, Helsinki, Finland
| | - Hannu Kautiainen
- Department of General Practice and Primary Health Care, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Mikaela von Bonsdorff
- Folkhälsan Research Center, Finbyntie 136 Karjaa, 10300, Helsinki, Finland
- Gerontology Research Center and Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Eero Kajantie
- National Institute for Health and Welfare, Public Health Promotion Unit, Helsinki, Oulu, Finland
- PEDEGO Research Unit, MRC Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
- Children's Hospital, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Jari Lahti
- Department of Psychology and Logopedics, University of Helsinki, P.O. Box 63, 00014, Helsinki, Finland
- Turku Institute for Advanced Studies, University of Turku, 20014, Turku, Finland
| | - Johan G Eriksson
- Folkhälsan Research Center, Finbyntie 136 Karjaa, 10300, Helsinki, Finland
- Department of General Practice and Primary Health Care, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Department of Obstetrics and Gynecology and Human Potential Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Niko S Wasenius
- Folkhälsan Research Center, Finbyntie 136 Karjaa, 10300, Helsinki, Finland
- Department of General Practice and Primary Health Care, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
27
|
Batra A, Chen LM, Wang Z, Parent C, Pokhvisneva I, Patel S, Levitan RD, Meaney MJ, Silveira PP. Early Life Adversity and Polygenic Risk for High Fasting Insulin Are Associated With Childhood Impulsivity. Front Neurosci 2021; 15:704785. [PMID: 34539334 PMCID: PMC8441000 DOI: 10.3389/fnins.2021.704785] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 08/03/2021] [Indexed: 01/11/2023] Open
Abstract
While the co-morbidity between metabolic and psychiatric behaviors is well-established, the mechanisms are poorly understood, and exposure to early life adversity (ELA) is a common developmental risk factor. ELA is associated with altered insulin sensitivity and poor behavioral inhibition throughout life, which seems to contribute to the development of metabolic and psychiatric disturbances in the long term. We hypothesize that a genetic background associated with higher fasting insulin interacts with ELA to influence the development of executive functions (e.g., impulsivity in young children). We calculated the polygenic risk scores (PRSs) from the genome-wide association study (GWAS) of fasting insulin at different thresholds and identified the subset of single nucleotide polymorphisms (SNPs) that best predicted peripheral insulin levels in children from the Avon Longitudinal Study of Parents and Children (ALSPAC) cohort [N = 467; pt– initial = 0.24 (10,296 SNPs), pt– refined = 0.05 (57 SNPs)]. We then calculated the refined PRS (rPRS) for fasting insulin at this specific threshold in the children from the Maternal Adversity, Vulnerability and Neurodevelopment (MAVAN) cohort and investigated its interaction effect with adversity on an impulsivity task applied at 36 months. We found a significant effect of interaction between fasting insulin rPRS and adversity exposure predicting impulsivity measured by the Snack Delay Task at 36 months [β = −0.329, p = 0.024], such that higher PRS [β = −0.551, p = 0.009] was linked to more impulsivity in individuals exposed to more adversity. Enrichment analysis (MetaCoreTM) of the SNPs that compose the fasting insulin rPRS at this threshold was significant for certain nervous system development processes including dopamine D2 receptor signaling. Additional enrichment analysis (FUMA) of the genes mapped from the SNPs in the fasting insulin rPRS showed enrichment with the accelerated cognitive decline GWAS. Therefore, the genetic background associated with risk for adult higher fasting insulin moderates the impact of early adversity on childhood impulsivity.
Collapse
Affiliation(s)
- Aashita Batra
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada.,Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | - Lawrence M Chen
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada.,Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | - Zihan Wang
- Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | - Carine Parent
- Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | - Irina Pokhvisneva
- Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | - Sachin Patel
- Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | - Robert D Levitan
- Mood and Anxiety Disorders Program, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Michael J Meaney
- Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada.,Ludmer Centre for Neuroinformatics and Mental Health, Douglas Research Centre, McGill University, Montreal, QC, Canada.,Translational Neuroscience Programme, Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore
| | - Patricia Pelufo Silveira
- Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada.,Ludmer Centre for Neuroinformatics and Mental Health, Douglas Research Centre, McGill University, Montreal, QC, Canada
| |
Collapse
|
28
|
Rivi V, Benatti C, Lukowiak K, Colliva C, Alboni S, Tascedda F, Blom JM. What can we teach Lymnaea and what can Lymnaea teach us? Biol Rev Camb Philos Soc 2021; 96:1590-1602. [PMID: 33821539 PMCID: PMC9545797 DOI: 10.1111/brv.12716] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 03/19/2021] [Accepted: 03/23/2021] [Indexed: 01/20/2023]
Abstract
This review describes the advantages of adopting a molluscan complementary model, the freshwater snail Lymnaea stagnalis, to study the neural basis of learning and memory in appetitive and avoidance classical conditioning; as well as operant conditioning of its aerial respiratory and escape behaviour. We firstly explored 'what we can teach Lymnaea' by discussing a variety of sensitive, solid, easily reproducible and simple behavioural tests that have been used to uncover the memory abilities of this model system. Answering this question will allow us to open new frontiers in neuroscience and behavioural research to enhance our understanding of how the nervous system mediates learning and memory. In fact, from a translational perspective, Lymnaea and its nervous system can help to understand the neural transformation pathways from behavioural output to sensory coding in more complex systems like the mammalian brain. Moving on to the second question: 'what can Lymnaea teach us?', it is now known that Lymnaea shares important associative learning characteristics with vertebrates, including stimulus generalization, generalization of extinction and discriminative learning, opening the possibility to use snails as animal models for neuroscience translational research.
Collapse
Affiliation(s)
- Veronica Rivi
- Department of Biomedical, Metabolic and Neural SciencesUniversity of Modena and Reggio EmiliaVia CampiModena287‐41125Italy
| | - Cristina Benatti
- Department of Life SciencesUniversity of Modena and Reggio EmiliaVia CampiModena287‐41125Italy
- Centre of Neuroscience and NeurotechnologyUniversity of Modena and Reggio EmiliaVia CampiModena287‐41125Italy
| | - Ken Lukowiak
- Hotchkiss Brain Institute, Cumming School of MedicineUniversity of Calgary3330 Hospital Dr NWCalgaryABT2N 4N1Canada
| | - Chiara Colliva
- Department of Life SciencesUniversity of Modena and Reggio EmiliaVia CampiModena287‐41125Italy
- Centre of Neuroscience and NeurotechnologyUniversity of Modena and Reggio EmiliaVia CampiModena287‐41125Italy
| | - Silvia Alboni
- Department of Life SciencesUniversity of Modena and Reggio EmiliaVia CampiModena287‐41125Italy
- Centre of Neuroscience and NeurotechnologyUniversity of Modena and Reggio EmiliaVia CampiModena287‐41125Italy
| | - Fabio Tascedda
- Department of Life SciencesUniversity of Modena and Reggio EmiliaVia CampiModena287‐41125Italy
- Centre of Neuroscience and NeurotechnologyUniversity of Modena and Reggio EmiliaVia CampiModena287‐41125Italy
- CIB, Consorzio Interuniversitario BiotecnologieTriesteItaly
| | - Johanna M.C. Blom
- Department of Biomedical, Metabolic and Neural SciencesUniversity of Modena and Reggio EmiliaVia CampiModena287‐41125Italy
- Centre of Neuroscience and NeurotechnologyUniversity of Modena and Reggio EmiliaVia CampiModena287‐41125Italy
| |
Collapse
|
29
|
Mor ME, Harvey A, Familari M, St Clair-Glover M, Viventi S, de Iongh RU, Cameron FJ, Dottori M. Neural differentiation medium for human pluripotent stem cells to model physiological glucose levels in human brain. Brain Res Bull 2021; 173:141-149. [PMID: 34022288 DOI: 10.1016/j.brainresbull.2021.05.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 05/05/2021] [Accepted: 05/17/2021] [Indexed: 12/30/2022]
Abstract
Cortical neurospheres (NSPs) derived from human pluripotent stem cells (hPSC), have proven to be a successful platform to investigate human brain development and neuro-related diseases. Currently, many of the standard hPSC neural differentiation media, use concentrations of glucose (approximately 17.5-25 mM) and insulin (approximately 3.2 μM) that are much greater than the physiological concentrations found in the human brain. These culture conditions make it difficult to analyse perturbations of glucose or insulin on neuronal development and differentiation. We established a new hPSC neural differentiation medium that incorporated physiological brain concentrations of glucose (2.5 mM) and significantly reduced insulin levels (0.86 μM). This medium supported hPSC neural induction and formation of cortical NSPs. The revised hPSC neural differentiation medium, may provide an improved platform to model brain development and to investigate neural differentiation signalling pathways impacted by abnormal glucose and insulin levels.
Collapse
Affiliation(s)
- Michal E Mor
- Department of Anatomy & Physiology, University of Melbourne, Australia
| | | | - Mary Familari
- School of BioSciences, University of Melbourne, Australia
| | - Mitchell St Clair-Glover
- Illawarra Health and Medical Research Institute, Molecular Horizons, University of Wollongong, Australia
| | - Serena Viventi
- The Florey Institute of Neuroscience and Mental Health, Australia
| | - Robb U de Iongh
- Department of Anatomy & Physiology, University of Melbourne, Australia
| | - Fergus J Cameron
- Murdoch Children's Research Institute, The Royal Children's Hospital, Australia; Department of Medicine (Royal Melbourne Hospital), University of Melbourne, Australia
| | - Mirella Dottori
- Department of Anatomy & Physiology, University of Melbourne, Australia; Illawarra Health and Medical Research Institute, Molecular Horizons, University of Wollongong, Australia; Department of Biomedical Engineering, University of Melbourne, Australia.
| |
Collapse
|
30
|
Beddows CA, Dodd GT. Insulin on the brain: The role of central insulin signalling in energy and glucose homeostasis. J Neuroendocrinol 2021; 33:e12947. [PMID: 33687120 DOI: 10.1111/jne.12947] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/26/2021] [Accepted: 01/28/2021] [Indexed: 12/26/2022]
Abstract
Insulin signals to the brain where it coordinates multiple physiological processes underlying energy and glucose homeostasis. This review explores where and how insulin interacts within the brain parenchyma, how brain insulin signalling functions to coordinate energy and glucose homeostasis and how this contributes to the pathogenesis of metabolic disease.
Collapse
Affiliation(s)
- Cait A Beddows
- Department of Anatomy and Physiology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC, Australia
| | - Garron T Dodd
- Department of Anatomy and Physiology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
31
|
Binayi F, Zardooz H, Ghasemi R, Hedayati M, Askari S, Pouriran R, Sahraei M. The chemical chaperon 4-phenyl butyric acid restored high-fat diet- induced hippocampal insulin content and insulin receptor level reduction along with spatial learning and memory deficits in male rats. Physiol Behav 2021; 231:113312. [PMID: 33412188 DOI: 10.1016/j.physbeh.2021.113312] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 01/01/2021] [Accepted: 01/02/2021] [Indexed: 12/18/2022]
Abstract
This study assessed the effect of a chronic high-fat diet (HFD) on plasma and hippocampal insulin and corticosterone levels, the hippocampus insulin receptor amount, and spatial learning and memory with or without receiving 4-phenyl butyric acid (4-PBA) in male rats. Rats were divided into high-fat and normal diet groups, then each group was subdivided into dimethyl sulfoxide (DMSO) and 4-PBA groups. After weaning, the rats were fed with HFD for 20 weeks. Then, 4-PBA or DMSO were injected for 3 days. Subsequently, oral glucose tolerance test was done. On the following day, spatial memory tests were performed. Then the hippocampus Bip, Chop, insulin, corticosterone, and insulin receptor levels were determined. HFD increased plasma glucose, leptin and corticosterone concentrations, hippocampus Bip, Chop and corticosterone levels, food intake, abdominal fat weight and body weight along with impaired glucose tolerance. It decreased plasma insulin, and insulin content, and its receptor amount in hippocampus. HFD lengthened escape latency and shortened the duration spent in target zone. 4-PBA administration improved the HFD- induced adverse changes. Chronic HFD possibly through the induction of endoplasmic reticulum (ER) stress and subsequent changes in the levels of hippocampal corticosterone, insulin and insulin receptor along with possible leptin resistance caused spatial learning and memory deficits.
Collapse
Affiliation(s)
- Fateme Binayi
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Homeira Zardooz
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Rasoul Ghasemi
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Hedayati
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sahar Askari
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ramin Pouriran
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Sahraei
- School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
32
|
Beletskiy A, Chesnokova E, Bal N. Insulin-Like Growth Factor 2 As a Possible Neuroprotective Agent and Memory Enhancer-Its Comparative Expression, Processing and Signaling in Mammalian CNS. Int J Mol Sci 2021; 22:ijms22041849. [PMID: 33673334 PMCID: PMC7918606 DOI: 10.3390/ijms22041849] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/04/2021] [Accepted: 02/08/2021] [Indexed: 12/13/2022] Open
Abstract
A number of studies performed on rodents suggest that insulin-like growth factor 2 (IGF-2) or its analogs may possibly be used for treating some conditions like Alzheimer’s disease, Huntington’s disease, autistic spectrum disorders or aging-related cognitive impairment. Still, for translational research a comparative knowledge about the function of IGF-2 and related molecules in model organisms (rats and mice) and humans is necessary. There is a number of important differences in IGF-2 signaling between species. In the present review we emphasize species-specific patterns of IGF-2 expression in rodents, humans and some other mammals, using, among other sources, publicly available transcriptomic data. We provide a detailed description of Igf2 mRNA expression regulation and pre-pro-IGF-2 protein processing in different species. We also summarize the function of IGF-binding proteins. We describe three different receptors able to bind IGF-2 and discuss the role of IGF-2 signaling in learning and memory, as well as in neuroprotection. We hope that comprehensive understanding of similarities and differences in IGF-2 signaling between model organisms and humans will be useful for development of more effective medicines targeting IGF-2 receptors.
Collapse
|
33
|
Martin H, Bullich S, Guiard BP, Fioramonti X. The impact of insulin on the serotonergic system and consequences on diabetes-associated mood disorders. J Neuroendocrinol 2021; 33:e12928. [PMID: 33506507 DOI: 10.1111/jne.12928] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/20/2020] [Accepted: 12/02/2020] [Indexed: 12/12/2022]
Abstract
The idea that insulin could influence emotional behaviours has long been suggested. However, the underlying mechanisms have yet to be solved and there is no direct and clear-cut evidence demonstrating that such action involves brain serotonergic neurones. Indeed, initial arguments in favour of the association between insulin, serotonin and mood arise from clinical or animal studies showing that impaired insulin action in type 1 or type 2 diabetes causes anxiety- and depressive symptoms along with blunted plasma and brain serotonin levels. The present review synthesises the main mechanistic hypotheses that might explain the comorbidity between diabetes and depression. It also provides a state of knowledge of the direct and indirect experimental evidence that insulin modulates brain serotonergic neurones. Finally, it highlights the literature suggesting that antidiabetic drugs present antidepressant-like effects and, conversely, that serotonergic antidepressants impact glucose homeostasis. Overall, this review provides mechanistic insights into how insulin signalling alters serotonergic neurotransmission and related behaviours bringing new targets for therapeutic options.
Collapse
Affiliation(s)
- Hugo Martin
- NutriNeuro, UMR 1286 INRAE, Bordeaux INP, Bordeaux University, Bordeaux, France
| | - Sébastien Bullich
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), CNRS UMR5169, UPS, Université de Toulouse, Toulouse, France
| | - Bruno P Guiard
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), CNRS UMR5169, UPS, Université de Toulouse, Toulouse, France
| | - Xavier Fioramonti
- NutriNeuro, UMR 1286 INRAE, Bordeaux INP, Bordeaux University, Bordeaux, France
| |
Collapse
|
34
|
de Bem AF, Krolow R, Farias HR, de Rezende VL, Gelain DP, Moreira JCF, Duarte JMDN, de Oliveira J. Animal Models of Metabolic Disorders in the Study of Neurodegenerative Diseases: An Overview. Front Neurosci 2021; 14:604150. [PMID: 33536868 PMCID: PMC7848140 DOI: 10.3389/fnins.2020.604150] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 12/24/2020] [Indexed: 12/21/2022] Open
Abstract
The incidence of metabolic disorders, as well as of neurodegenerative diseases—mainly the sporadic forms of Alzheimer’s and Parkinson’s disease—are increasing worldwide. Notably, obesity, diabetes, and hypercholesterolemia have been indicated as early risk factors for sporadic forms of Alzheimer’s and Parkinson’s disease. These conditions share a range of molecular and cellular features, including protein aggregation, oxidative stress, neuroinflammation, and blood-brain barrier dysfunction, all of which contribute to neuronal death and cognitive impairment. Rodent models of obesity, diabetes, and hypercholesterolemia exhibit all the hallmarks of these degenerative diseases, and represent an interesting approach to the study of the phenotypic features and pathogenic mechanisms of neurodegenerative disorders. We review the main pathological aspects of Alzheimer’s and Parkinson’s disease as summarized in rodent models of obesity, diabetes, and hypercholesterolemia.
Collapse
Affiliation(s)
- Andreza Fabro de Bem
- Department of Physiological Sciences, Institute of Biology, University of Brasilia, Brazilia, Brazil
| | - Rachel Krolow
- Postgraduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Hémelin Resende Farias
- Postgraduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Victória Linden de Rezende
- Postgraduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Daniel Pens Gelain
- Postgraduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - José Cláudio Fonseca Moreira
- Postgraduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - João Miguel das Neves Duarte
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden.,Wallenberg Centre for Molecular Medicine, Faculty of Medicine, Lund University, Lund, Sweden
| | - Jade de Oliveira
- Postgraduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
35
|
Hussein AAA, Baz ES, Mariën J, Tadros MM, El-Shenawy NS, Koene JM. Effect of photoperiod and light intensity on learning ability and memory formation of the pond snail Lymnaea stagnalis. INVERTEBRATE NEUROSCIENCE : IN 2020; 20:18. [PMID: 33078292 PMCID: PMC7572358 DOI: 10.1007/s10158-020-00251-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 10/06/2020] [Indexed: 11/29/2022]
Abstract
Natural light is regarded as a key regulator of biological systems and typically serves as a Zeitgeber for biological rhythms. As a natural abiotic factor, it is recognized to regulate multiple behavioral and physiological processes in animals. Disruption of the natural light regime due to light pollution may result in significant effects on animal learning and memory development. Here, we investigated whether sensitivity to various photoperiods or light intensities had an impact on intermediate-term memory (ITM) and long-term memory (LTM) formation in the pond snail Lymnaea stagnalis. We also investigated the change in the gene expression level of molluscan insulin-related peptide II (MIP II) is response to the given light treatments. The results show that the best light condition for proper LTM formation is exposure to a short day (8 h light) and low light intensity (1 and 10 lx). Moreover, the more extreme light conditions (16 h and 24 h light) prevent the formation of both ITM and LTM. We found no change in MIP II expression in any of the light treatments, which may indicate that MIP II is not directly involved in the operant conditioning used here, even though it is known to be involved in learning. The finding that snails did not learn in complete darkness indicates that light is a necessary factor for proper learning and memory formation. Furthermore, dim light enhances both ITM and LTM formation, which suggests that there is an optimum since both no light and too bright light prevented learning and memory. Our findings suggest that the upsurge of artificial day length and/or night light intensity may also negatively impact memory consolidation in the wild.
Collapse
Affiliation(s)
- Ahmed A A Hussein
- Department of Zoology, Faculty of Science, Suez Canal University, Ismailia, Egypt.
- Department of Ecological Science, Faculty of Science, Vrije Universiteit, Amsterdam, The Netherlands.
- Malacology Lab, Theodor Bilharz Research Institute (TBRI), Giza, Egypt.
| | - El-Sayed Baz
- Department of Zoology, Faculty of Science, Suez Canal University, Ismailia, Egypt.
| | - Janine Mariën
- Department of Ecological Science, Faculty of Science, Vrije Universiteit, Amsterdam, The Netherlands
| | - Menerva M Tadros
- Malacology Lab, Theodor Bilharz Research Institute (TBRI), Giza, Egypt
| | - Nahla S El-Shenawy
- Department of Zoology, Faculty of Science, Suez Canal University, Ismailia, Egypt
| | - Joris M Koene
- Department of Ecological Science, Faculty of Science, Vrije Universiteit, Amsterdam, The Netherlands
| |
Collapse
|
36
|
Activation of tyrosine phosphatase PTP1B in pyramidal neurons impairs endocannabinoid signaling by tyrosine receptor kinase trkB and causes schizophrenia-like behaviors in mice. Neuropsychopharmacology 2020; 45:1884-1895. [PMID: 32610340 PMCID: PMC7608138 DOI: 10.1038/s41386-020-0755-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/19/2020] [Accepted: 06/24/2020] [Indexed: 12/12/2022]
Abstract
Schizophrenia is a debilitating disorder affecting young adults displaying symptoms of cognitive impairment, anxiety, and early social isolation prior to episodes of auditory hallucinations. Cannabis use has been tied to schizophrenia-like symptoms, indicating that dysregulated endogenous cannabinoid signaling may be causally linked to schizophrenia. Previously, we reported that glutamatergic neuron-selective ablation of Lmo4, an endogenous inhibitor of the tyrosine phosphatase PTP1B, impairs endocannabinoid (eCB) production from the metabotropic glutamate receptor mGluR5. These Lmo4-deficient mice display anxiety-like behaviors that are alleviated by local shRNA knockdown or pharmacological inhibition of PTP1B that restores mGluR5-dependent eCB production in the amygdala. Here, we report that these Lmo4-deficient mice also display schizophrenia-like behaviors: impaired working memory assessed in the Y maze and defective sensory gating by prepulse inhibition of the acoustic startle response. Modulation of inhibitory inputs onto layer 2/3 pyramidal neurons of the prefrontal cortex relies on eCB signaling from the brain-derived neurotrophic factor receptor trkB, rather than mGluR5, and this mechanism was defective in Lmo4-deficient mice. Genetic ablation of PTP1B in the glutamatergic neurons lacking Lmo4 restored tyrosine phosphorylation of trkB, trkB-mediated eCB signaling, and ameliorated schizophrenia-like behaviors. Pharmacological inhibition of PTP1B with trodusquemine also restored trkB phosphorylation and improved schizophrenia-like behaviors by restoring eCB signaling, since the CB1 receptor antagonist 1-(2,4-dichlorophenyl)-5-(4-iodophenyl)-4-methyl-N-1-piperidinyl-1H-pyrazole-3-carboxamide blocked this effect. Thus, activation of PTP1B in pyramidal neurons contributes to schizophrenia-like behaviors in Lmo4-deficient mice and genetic or pharmacological intervention targeting PTP1B ameliorates schizophrenia-related deficits.
Collapse
|
37
|
Bralten J, Widomska J, Witte WD, Yu D, Mathews CA, Scharf JM, Buitelaar J, Crosbie J, Schachar R, Arnold P, Lemire M, Burton CL, Franke B, Poelmans G. Shared genetic etiology between obsessive-compulsive disorder, obsessive-compulsive symptoms in the population, and insulin signaling. Transl Psychiatry 2020; 10:121. [PMID: 32341337 PMCID: PMC7186226 DOI: 10.1038/s41398-020-0793-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 03/11/2020] [Accepted: 03/30/2020] [Indexed: 11/25/2022] Open
Abstract
Obsessive-compulsive symptoms (OCS) in the population have been linked to obsessive-compulsive disorder (OCD) in genetic and epidemiological studies. Insulin signaling has been implicated in OCD. We extend previous work by assessing genetic overlap between OCD, population-based OCS, and central nervous system (CNS) and peripheral insulin signaling. We conducted genome-wide association studies (GWASs) in the population-based Philadelphia Neurodevelopmental Cohort (PNC, 650 children and adolescents) of the total OCS score and six OCS factors from an exploratory factor analysis of 22 questions. Subsequently, we performed polygenic risk score (PRS)-based analysis to assess shared genetic etiologies between clinical OCD (using GWAS data from the Psychiatric Genomics Consortium), the total OCS score and OCS factors. We then performed gene-set analyses with a set of OCD-linked genes centered around CNS insulin-regulated synaptic function and PRS-based analyses for five peripheral insulin signaling-related traits. For validation purposes, we explored data from the independent Spit for Science population cohort (5,047 children and adolescents). In the PNC, we found a significant shared genetic etiology between OCD and 'guilty taboo thoughts'. In the Spit for Science cohort, we additionally observed genetic sharing between 'symmetry/counting/ordering' and 'contamination/cleaning'. The CNS insulin-linked gene-set also associated with 'symmetry/counting/ordering' in the PNC. Further, we identified genetic sharing between peripheral insulin signaling-related traits: type 2 diabetes with 'aggressive taboo thoughts', and levels of fasting insulin and 2 h glucose with OCD. In conclusion, OCD, OCS in the population and insulin-related traits share genetic risk factors, indicating a common etiological mechanism underlying somatic and psychiatric disorders.
Collapse
Affiliation(s)
- Janita Bralten
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Joanna Widomska
- Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
- Department of Cognitive Neuroscience, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ward De Witte
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Dongmei Yu
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Carol A Mathews
- Department of Psychiatry and Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Jeremiah M Scharf
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Jan Buitelaar
- Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
- Department of Cognitive Neuroscience, Radboud University Medical Center, Nijmegen, The Netherlands
- Karakter Child and Adolescent Psychiatry, Nijmegen, The Netherlands
| | - Jennifer Crosbie
- Neurosciences & Mental Health Program, Hospital for Sick Children, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Russell Schachar
- Neurosciences & Mental Health Program, Hospital for Sick Children, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Paul Arnold
- Genetics & Genome Biology, Hospital for Sick Children, Toronto, ON, Canada
- Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, AB, Canada
- Departments of Psychiatry & Medical Genetics; Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Mathieu Lemire
- Neurosciences & Mental Health Program, Hospital for Sick Children, Toronto, ON, Canada
| | - Christie L Burton
- Neurosciences & Mental Health Program, Hospital for Sick Children, Toronto, ON, Canada
| | - Barbara Franke
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
- Department of Psychiatry, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Geert Poelmans
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
38
|
Garcia-Serrano AM, Duarte JMN. Brain Metabolism Alterations in Type 2 Diabetes: What Did We Learn From Diet-Induced Diabetes Models? Front Neurosci 2020; 14:229. [PMID: 32265637 PMCID: PMC7101159 DOI: 10.3389/fnins.2020.00229] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 03/02/2020] [Indexed: 12/27/2022] Open
Abstract
Type 2 diabetes (T2D) is a metabolic disease with impact on brain function through mechanisms that include glucose toxicity, vascular damage and blood–brain barrier (BBB) impairments, mitochondrial dysfunction, oxidative stress, brain insulin resistance, synaptic failure, neuroinflammation, and gliosis. Rodent models have been developed for investigating T2D, and have contributed to our understanding of mechanisms involved in T2D-induced brain dysfunction. Namely, mice or rats exposed to diabetogenic diets that are rich in fat and/or sugar have been widely used since they develop memory impairment, especially in tasks that depend on hippocampal processing. Here we summarize main findings on brain energy metabolism alterations underlying dysfunction of neuronal and glial cells promoted by diet-induced metabolic syndrome that progresses to a T2D phenotype.
Collapse
Affiliation(s)
- Alba M Garcia-Serrano
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden.,Wallenberg Centre for Molecular Medicine, Faculty of Medicine, Lund University, Lund, Sweden
| | - João M N Duarte
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden.,Wallenberg Centre for Molecular Medicine, Faculty of Medicine, Lund University, Lund, Sweden
| |
Collapse
|
39
|
Jantrapirom S, Nimlamool W, Chattipakorn N, Chattipakorn S, Temviriyanukul P, Inthachat W, Govitrapong P, Potikanond S. Liraglutide Suppresses Tau Hyperphosphorylation, Amyloid Beta Accumulation through Regulating Neuronal Insulin Signaling and BACE-1 Activity. Int J Mol Sci 2020; 21:ijms21051725. [PMID: 32138327 PMCID: PMC7084306 DOI: 10.3390/ijms21051725] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 02/28/2020] [Accepted: 02/29/2020] [Indexed: 01/18/2023] Open
Abstract
Neuronal insulin resistance is a significant feature of Alzheimer's disease (AD). Accumulated evidence has revealed the possible neuroprotective mechanisms of antidiabetic drugs in AD. Liraglutide, a glucagon-like peptide-1 (GLP-1) analog and an antidiabetic agent, has a benefit in improving a peripheral insulin resistance. However, the neuronal effect of liraglutide on the model of neuronal insulin resistance with Alzheimer's formation has not been thoroughly investigated. The present study discovered that liraglutide alleviated neuronal insulin resistance and reduced beta-amyloid formation and tau hyperphosphorylation in a human neuroblostoma cell line, SH-SY5Y. Liraglutide could effectively reverse deleterious effects of insulin overstimulation. In particular, the drug reversed the phosphorylation status of insulin receptors and its major downstream signaling molecules including insulin receptor substrate 1 (IRS-1), protein kinase B (AKT), and glycogen synthase kinase 3 beta (GSK-3β). Moreover, liraglutide reduced the activity of beta secretase 1 (BACE-1) enzyme, which then decreased the formation of beta-amyloid in insulin-resistant cells. This indicated that liraglutide can reverse the defect of phosphorylation status of insulin signal transduction but also inhibit the formation of pathogenic Alzheimer's proteins like Aβ in neuronal cells. We herein provided the possibility that the liraglutide-based therapy may be able to reduce such deleterious effects caused by insulin resistance. In view of the beneficial effects of liraglutide administration, these findings suggest that the use of liraglutide may be a promising therapy for AD with insulin-resistant condition.
Collapse
Affiliation(s)
- Salinee Jantrapirom
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (S.J.); (W.N.)
| | - Wutigri Nimlamool
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (S.J.); (W.N.)
- Research Center of Pharmaceutical Nanotechnology, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nipon Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (N.C.); (S.C.)
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Siriporn Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (N.C.); (S.C.)
- Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Piya Temviriyanukul
- Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand (W.I.)
| | - Woorawee Inthachat
- Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand (W.I.)
| | - Piyarat Govitrapong
- Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand;
- Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok 10210, Thailand
| | - Saranyapin Potikanond
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (S.J.); (W.N.)
- Research Center of Pharmaceutical Nanotechnology, Chiang Mai University, Chiang Mai 50200, Thailand
- Correspondence: or ; Tel.: +66-53-934-593; Fax: +66-53-935-355
| |
Collapse
|
40
|
Esmaeili MH, Enayati M, Khabbaz Abkenar F, Ebrahimian F, Salari AA. Glibenclamide mitigates cognitive impairment and hippocampal neuroinflammation in rats with type 2 diabetes and sporadic Alzheimer-like disease. Behav Brain Res 2020; 379:112359. [PMID: 31733313 DOI: 10.1016/j.bbr.2019.112359] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 10/23/2019] [Accepted: 11/13/2019] [Indexed: 12/20/2022]
|
41
|
McNay EC, Pearson-Leary J. GluT4: A central player in hippocampal memory and brain insulin resistance. Exp Neurol 2020; 323:113076. [PMID: 31614121 PMCID: PMC6936336 DOI: 10.1016/j.expneurol.2019.113076] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/19/2019] [Accepted: 10/01/2019] [Indexed: 12/24/2022]
Abstract
Insulin is now well-established as playing multiple roles within the brain, and specifically as regulating hippocampal cognitive processes and metabolism. Impairments to insulin signaling, such as those seen in type 2 diabetes and Alzheimer's disease, are associated with brain hypometabolism and cognitive impairment, but the mechanisms of insulin's central effects are not determined. Several lines of research converge to suggest that the insulin-responsive glucose transporter GluT4 plays a central role in hippocampal memory processes, and that reduced activation of this transporter may underpin the cognitive impairments seen as a consequence of insulin resistance.
Collapse
Affiliation(s)
- Ewan C McNay
- Behavioral Neuroscience, University at Albany, Albany, NY, USA.
| | - Jiah Pearson-Leary
- Department of Anesthesiology, Abramson Research Center, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| |
Collapse
|
42
|
Rivi V, Benatti C, Colliva C, Radighieri G, Brunello N, Tascedda F, Blom JMC. Lymnaea stagnalis as model for translational neuroscience research: From pond to bench. Neurosci Biobehav Rev 2019; 108:602-616. [PMID: 31786320 DOI: 10.1016/j.neubiorev.2019.11.020] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 09/24/2019] [Accepted: 11/25/2019] [Indexed: 12/18/2022]
Abstract
The purpose of this review is to illustrate how a reductionistic, but sophisticated, approach based on the use of a simple model system such as the pond snail Lymnaea stagnalis (L. stagnalis), might be useful to address fundamental questions in learning and memory. L. stagnalis, as a model, provides an interesting platform to investigate the dialog between the synapse and the nucleus and vice versa during memory and learning. More importantly, the "molecular actors" of the memory dialogue are well-conserved both across phylogenetic groups and learning paradigms, involving single- or multi-trials, aversion or reward, operant or classical conditioning. At the same time, this model could help to study how, where and when the memory dialog is impaired in stressful conditions and during aging and neurodegeneration in humans and thus offers new insights and targets in order to develop innovative therapies and technology for the treatment of a range of neurological and neurodegenerative disorders.
Collapse
Affiliation(s)
- V Rivi
- Dept. of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - C Benatti
- Dept. of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy; Centre of Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
| | - C Colliva
- Dept. of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy; Centre of Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
| | - G Radighieri
- Dept. of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - N Brunello
- Dept. of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - F Tascedda
- Dept. of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy; Centre of Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
| | - J M C Blom
- Dept. of Education and Human Sciences, University of Modena and Reggio Emilia, Modena, Italy; Centre of Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy.
| |
Collapse
|
43
|
Converging evidence points towards a role of insulin signaling in regulating compulsive behavior. Transl Psychiatry 2019; 9:225. [PMID: 31515486 PMCID: PMC6742634 DOI: 10.1038/s41398-019-0559-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Revised: 02/28/2018] [Accepted: 07/24/2018] [Indexed: 01/04/2023] Open
Abstract
Obsessive-compulsive disorder (OCD) is a neuropsychiatric disorder with childhood onset, and is characterized by intrusive thoughts and fears (obsessions) that lead to repetitive behaviors (compulsions). Previously, we identified insulin signaling being associated with OCD and here, we aim to further investigate this link in vivo. We studied TALLYHO/JngJ (TH) mice, a model of type 2 diabetes mellitus, to (1) assess compulsive and anxious behaviors, (2) determine neuro-metabolite levels by 1 H magnetic resonance spectroscopy (MRS) and brain structural connectivity by diffusion tensor imaging (DTI), and (3) investigate plasma and brain protein levels for molecules previously associated with OCD (insulin, Igf1, Kcnq1, and Bdnf) in these subjects. TH mice showed increased compulsivity-like behavior (reduced spontaneous alternation in the Y-maze) and more anxiety (less time spent in the open arms of the elevated plus maze). In parallel, their brains differed in the white matter microstructure measures fractional anisotropy (FA) and mean diffusivity (MD) in the midline corpus callosum (increased FA and decreased MD), in myelinated fibers of the dorsomedial striatum (decreased FA and MD), and superior cerebellar peduncles (decreased FA and MD). MRS revealed increased glucose levels in the dorsomedial striatum and increased glutathione levels in the anterior cingulate cortex in the TH mice relative to their controls. Igf1 expression was reduced in the cerebellum of TH mice but increased in the plasma. In conclusion, our data indicates a role of (abnormal) insulin signaling in compulsivity-like behavior.
Collapse
|
44
|
Kaminari A, Tsilibary EC, Tzinia A. A New Perspective in Utilizing MMP-9 as a Therapeutic Target for Alzheimer's Disease and Type 2 Diabetes Mellitus. J Alzheimers Dis 2019; 64:1-16. [PMID: 29865065 DOI: 10.3233/jad-180035] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Matrix metalloprotease 9 (MMP-9) is a 92 kDa type IV collagenase and a member of the family of endopeptidases. MMP-9 is involved in the degradation of extracellular matrix components, tissue remodeling, cellular receptor stripping, and processing of various signaling molecules. In the CNS, the effects of MMP-9 are quite complex, since it exerts beneficial effects including neurogenesis, angiogenesis, myelogenesis, axonal growth, and inhibition of apoptosis, or destructive effects including apoptosis, blood-brain barrier disorder, and demyelination. Likewise, in the periphery, physiological events, as the involvement of MMP-9 in angiogenesis, for instance in wound healing, can be turned into pathological, such as in tumor metastasis, depending on the state of the organism. Alzheimer's disease is a neurodegenerative disorder, characterized by amyloid accumulation and deposition in the brain. Amyloidogenesis, however, also occurs in diseases of the periphery, such as type II diabetes mellitus, where an analogous type of amyloid, is deposited in the pancreas. Interestingly, both diseases exhibit similar pathology and disease progression, with insulin resistance being a major common denominator. Hence, combinatorial strategies searching new or existing molecules to apply for therapeutic use for both diseases are gaining momentum. MMP-9 is extensively studied due to its association with a variety of physiological and pathological processes. Consequently, meticulous design could render MMP-9 into a potential therapeutic target for Alzheimer's disease and type 2 diabetes mellitus; two seemingly unrelated diseases.
Collapse
Affiliation(s)
- Archontia Kaminari
- Institute of Biosciences and Applications, National Center for Scientific Research "Demokritos", Agia Paraskevi, Athens, Greece
| | - Effie C Tsilibary
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
| | - Athina Tzinia
- Institute of Biosciences and Applications, National Center for Scientific Research "Demokritos", Agia Paraskevi, Athens, Greece
| |
Collapse
|
45
|
Frangou S, Shirali M, Adams MJ, Howard DM, Gibson J, Hall LS, Smith BH, Padmanabhan S, Murray AD, Porteous DJ, Haley CS, Deary IJ, Clarke TK, McIntosh AM. Insulin resistance: Genetic associations with depression and cognition in population based cohorts. Exp Neurol 2019; 316:20-26. [PMID: 30965038 PMCID: PMC6503941 DOI: 10.1016/j.expneurol.2019.04.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 03/26/2019] [Accepted: 04/03/2019] [Indexed: 01/07/2023]
Abstract
Insulin resistance, broadly defined as the reduced ability of insulin to exert its biological action, has been associated with depression and cognitive dysfunction in observational studies. However, it is unclear whether these associations are causal and whether they might be underpinned by other shared factors. To address this knowledge gap, we capitalized on the stability of genetic biomarkers through the lifetime, and on their unidirectional relationship with depression and cognition. Specifically, we determined the association between quantitative measures of cognitive function and depression and genetic instruments of insulin resistance traits in two large-scale population samples, the Generation Scotland: Scottish Family Health Study (GS: SFHS; N = 19,994) and in the UK Biobank (N = 331,374). In the GS:SFHS, the polygenic risk score (PRS) for fasting insulin was associated with verbal intelligence and depression while the PRS for the homeostasis model assessment of insulin resistance was associated with verbal intelligence. Despite this overlap in genetic architecture, Mendelian randomization analyses in the GS:SFHS and in the UK Biobank samples did not yield evidence for causal associations from insulin resistance traits to either depression or cognition. These findings may be due to weak genetic instruments, limited cognitive measures and insufficient power but they may also indicate the need to identify other biological mechanisms that may mediate the relationship from insulin resistance to depression and cognition.
Collapse
Affiliation(s)
- Sophia Frangou
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Masoud Shirali
- Division of Psychiatry, Royal Edinburgh Hospital, University of Edinburgh, Edinburgh, UK
| | - Mark J Adams
- Division of Psychiatry, Royal Edinburgh Hospital, University of Edinburgh, Edinburgh, UK
| | - David M Howard
- Division of Psychiatry, Royal Edinburgh Hospital, University of Edinburgh, Edinburgh, UK
| | - Jude Gibson
- Division of Psychiatry, Royal Edinburgh Hospital, University of Edinburgh, Edinburgh, UK
| | - Lynsey S Hall
- Division of Psychiatry, Royal Edinburgh Hospital, University of Edinburgh, Edinburgh, UK
| | - Blair H Smith
- Division of Population Health Sciences, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Sandosh Padmanabhan
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Alison D Murray
- Aberdeen Biomedical Imaging Centre, University of Aberdeen, Aberdeen, UK
| | - David J Porteous
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK; Generation Scotland, Medical Genetics Section, Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Chris S Haley
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Ian J Deary
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK; Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Toni-Kim Clarke
- Division of Psychiatry, Royal Edinburgh Hospital, University of Edinburgh, Edinburgh, UK
| | - Andrew M McIntosh
- Division of Psychiatry, Royal Edinburgh Hospital, University of Edinburgh, Edinburgh, UK; Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK; Department of Psychology, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
46
|
Yuan J, Li Q, Niu R, Wang J. Fluoride exposure decreased learning ability and the expressions of the insulin receptor in male mouse hippocampus and olfactory bulb. CHEMOSPHERE 2019; 224:71-76. [PMID: 30818196 DOI: 10.1016/j.chemosphere.2019.02.113] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 02/15/2019] [Accepted: 02/17/2019] [Indexed: 06/09/2023]
Abstract
Fluoride is one of the common environmental pollutants. Internal exposure to fluoride is related to the lowered cognitive function and intelligence, particularly for children. Determination of protein content in brain tissue is a means to reflect the functional development of the central nervous system. Insulin and insulin receptor (IR) signaling systems are associated with cognitive ability. The present research focused on the assessment of the expressions of IR protein and mRNA in hippocampus and olfactory bulb (OB), as well as learning and memory ability of male Kunming mice. Mice were exposed to 50, 100, and 150 mg/L NaF for 90 continuous days. The results showed that learning and memory abilities as well as protein content of male mice brain was significantly decreased by fluoride. Fluoride could inhibit the protein and mRNA expressions of the IR in the hippocampus and OB of mice. IRs mainly distributed in the olfactory nerve layer of the outermost layer of the OB, and most distributed in the hippocampal cornu ammon 3 (CA3) region, followed by the dentate gyrus (DG) and cornu ammon 1 (CA1) regions. These findings suggested that inhibition of the IR protein and mRNA expressions in the hippocampus and OB by fluoride might in part affect learning and memory ability in male mice.
Collapse
Affiliation(s)
- Jianqin Yuan
- Department of Biotechnology, College of Life Science, Shanxi Agricultural University, Taigu, Shanxi 030801, China; Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Qi Li
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Ruiyan Niu
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Jundong Wang
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, China.
| |
Collapse
|
47
|
Coll-Tané M, Krebbers A, Castells-Nobau A, Zweier C, Schenck A. Intellectual disability and autism spectrum disorders 'on the fly': insights from Drosophila. Dis Model Mech 2019; 12:dmm039180. [PMID: 31088981 PMCID: PMC6550041 DOI: 10.1242/dmm.039180] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Intellectual disability (ID) and autism spectrum disorders (ASD) are frequently co-occurring neurodevelopmental disorders and affect 2-3% of the population. Rapid advances in exome and genome sequencing have increased the number of known implicated genes by threefold, to more than a thousand. The main challenges in the field are now to understand the various pathomechanisms associated with this bewildering number of genetic disorders, to identify new genes and to establish causality of variants in still-undiagnosed cases, and to work towards causal treatment options that so far are available only for a few metabolic conditions. To meet these challenges, the research community needs highly efficient model systems. With an increasing number of relevant assays and rapidly developing novel methodologies, the fruit fly Drosophila melanogaster is ideally positioned to change gear in ID and ASD research. The aim of this Review is to summarize some of the exciting work that already has drawn attention to Drosophila as a model for these disorders. We highlight well-established ID- and ASD-relevant fly phenotypes at the (sub)cellular, brain and behavioral levels, and discuss strategies of how this extraordinarily efficient and versatile model can contribute to 'next generation' medical genomics and to a better understanding of these disorders.
Collapse
Affiliation(s)
- Mireia Coll-Tané
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Alina Krebbers
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Anna Castells-Nobau
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Christiane Zweier
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Annette Schenck
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| |
Collapse
|
48
|
Byun MS, Kim HJ, Yi D, Choi HJ, Baek H, Lee JH, Choe YM, Lee SH, Ko K, Sohn BK, Lee JY, Lee Y, Kim YK, Lee YS, Lee DY. Region-specific association between basal blood insulin and cerebral glucose metabolism in older adults. NEUROIMAGE-CLINICAL 2019; 22:101765. [PMID: 30904824 PMCID: PMC6434096 DOI: 10.1016/j.nicl.2019.101765] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 12/31/2018] [Accepted: 03/10/2019] [Indexed: 01/30/2023]
Abstract
Background Although previous studies have suggested that insulin plays a role in brain function, it still remains unclear whether or not insulin has a region-specific association with neuronal and synaptic activity in the living human brain. We investigated the regional pattern of association between basal blood insulin and resting-state cerebral glucose metabolism (CMglu), a proxy for neuronal and synaptic activity, in older adults. Method A total of 234 nondiabetic, cognitively normal (CN) older adults underwent comprehensive clinical assessment, resting-state 18F-fluodeoxyglucose (FDG)-positron emission tomography (PET) and blood sampling to determine overnight fasting blood insulin and glucose levels, as well as apolipoprotein E (APOE) genotyping. Results An exploratory voxel-wise analysis of FDG-PET without a priori hypothesis demonstrated a positive association between basal blood insulin levels and resting-state CMglu in specific cerebral cortices and hippocampus, rather than in non-specific overall cerebral regions, even after controlling for the effects of APOE e4 carrier status, vascular risk factor score, body mass index, fasting blood glucose, and demographic variables. Particularly, a positive association of basal blood insulin with CMglu in the right posterior hippocampus and adjacent parahippocampal region as well as in the right inferior parietal region remained significant after multiple comparison correction. Conversely, no region showed negative association between basal blood insulin and CMglu. Conclusions Our finding suggests that basal fasting blood insulin may have association with neuronal and synaptic activity in specific cerebral regions, particularly in the hippocampal/parahippocampal and inferior parietal regions. We investigated regional pattern of association between basal blood insulin and resting-state cerebral glucose metabolism. Significant clusters with positive associations were found mainly in the hippocampal and inferior parietal regions. Our finding suggests a region-specific association of basal blood insulin with resting-state cerebral glucose metabolism. Further studies to elucidate underlying mechanism and implication of this region-specific association will be necessary.
Collapse
Affiliation(s)
- Min Soo Byun
- Institute of Human Behavioral Medicine, Medical Research Center Seoul National University, Seoul, Republic of Korea
| | - Hyun Jung Kim
- Department of Psychiatry, Changsan Convalescent Hospital, Changwon, Republic of Korea
| | - Dahyun Yi
- Institute of Human Behavioral Medicine, Medical Research Center Seoul National University, Seoul, Republic of Korea
| | - Hyo Jung Choi
- Department of Psychiatry, SMG-SNU Boramae Medical Center, Seoul, Republic of Korea
| | - Hyewon Baek
- Department of Neuropsychiatry, Kyunggi Provincial Hospital for the Elderly, Yongin, Republic of Korea
| | - Jun Ho Lee
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea
| | - Young Min Choe
- Department of Neuropsychiatry, Hallym University Dongtan Sacred Heart Hospital, Hwaseong, Republic of Korea
| | - Seung Hoon Lee
- Department of Neuropsychiatry, Bucheon Geriatric Medical Center, Bucheon, Republic of Korea
| | - Kang Ko
- Department of Neuropsychiatry, National Center for Mental Health, Seoul, Republic of Korea
| | - Bo Kyung Sohn
- Department of Psychiatry, Sanggye Paik Hospital, Inje University College of Medicine, Seoul, Republic of Korea
| | - Jun-Young Lee
- Department of Psychiatry, SMG-SNU Boramae Medical Center, Seoul, Republic of Korea; Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Younghwa Lee
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea
| | - Yu Kyeong Kim
- Department of Nuclear Medicine, SMG-SNU Boramae Medical Center, Seoul, Republic of Korea
| | - Yun-Sang Lee
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Dong Young Lee
- Institute of Human Behavioral Medicine, Medical Research Center Seoul National University, Seoul, Republic of Korea; Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea; Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea.
| | | |
Collapse
|
49
|
Frazier HN, Ghoweri AO, Anderson KL, Lin RL, Porter NM, Thibault O. Broadening the definition of brain insulin resistance in aging and Alzheimer's disease. Exp Neurol 2019; 313:79-87. [PMID: 30576640 PMCID: PMC6370304 DOI: 10.1016/j.expneurol.2018.12.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 12/05/2018] [Accepted: 12/17/2018] [Indexed: 12/17/2022]
Abstract
It has been >20 years since studies first revealed that the brain is insulin sensitive, highlighted by the expression of insulin receptors in neurons and glia, the presence of circulating brain insulin, and even localized insulin production. Following these discoveries, evidence of decreased brain insulin receptor number and function was reported in both clinical samples and animal models of aging and Alzheimer's disease, setting the stage for the hypothesis that neuronal insulin resistance may underlie memory loss in these conditions. The development of therapeutic insulin delivery to the brain using intranasal insulin administration has been shown to improve aspects of memory or learning in both humans and animal models. However, whether this approach functions by compensating for poorly signaling insulin receptors, for reduced insulin levels in the brain, or for reduced trafficking of insulin into the brain remains unclear. Direct measures of insulin's impact on cellular physiology and metabolism in the brain have been sparse in models of Alzheimer's disease, and even fewer studies have analyzed these processes in the aged brain. Nevertheless, recent evidence supports the role of brain insulin as a mediator of glucose metabolism through several means, including altering glucose transporters. Here, we provide a review of contemporary literature on brain insulin resistance, highlight the rationale for improving memory function using intranasal insulin, and describe initial results from experiments using a molecular approach to more directly measure the impact of insulin receptor activation and signaling on glucose uptake in neurons.
Collapse
Affiliation(s)
- Hilaree N Frazier
- University of Kentucky, Department of Pharmacology and Nutritional Sciences, 800 Rose St., Lexington, KY 40536, United States.
| | - Adam O Ghoweri
- University of Kentucky, Department of Pharmacology and Nutritional Sciences, 800 Rose St., Lexington, KY 40536, United States.
| | - Katie L Anderson
- University of Kentucky, Department of Pharmacology and Nutritional Sciences, 800 Rose St., Lexington, KY 40536, United States.
| | - Ruei-Lung Lin
- University of Kentucky, Department of Pharmacology and Nutritional Sciences, 800 Rose St., Lexington, KY 40536, United States.
| | - Nada M Porter
- University of Kentucky, Department of Pharmacology and Nutritional Sciences, 800 Rose St., Lexington, KY 40536, United States.
| | - Olivier Thibault
- University of Kentucky, Department of Pharmacology and Nutritional Sciences, 800 Rose St., Lexington, KY 40536, United States.
| |
Collapse
|
50
|
Carvalho C, Cardoso SM, Correia SC, Moreira PI. Tortuous Paths of Insulin Signaling and Mitochondria in Alzheimer's Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1128:161-183. [PMID: 31062330 DOI: 10.1007/978-981-13-3540-2_9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Due to the exponential growth of aging population worldwide, neurodegenerative diseases became a major public health concern. Among them, Alzheimer's disease (AD) prevails as the most common in the elderly, rendering it a research priority. After several decades considering the brain as an insulin-insensitive organ, recent advances proved a central role for this hormone in learning and memory processes and showed that AD shares a high number of features with systemic conditions characterized by insulin resistance. Mitochondrial dysfunction has also been widely demonstrated to play a major role in AD development supporting the idea that this neurodegenerative disease is characterized by a pronounced metabolic dysregulation. This chapter is intended to discuss evidence demonstrating the key role of insulin signaling and mitochondrial anomalies in AD.
Collapse
Affiliation(s)
- Cristina Carvalho
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Susana M Cardoso
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Sónia C Correia
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Paula I Moreira
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal. .,Laboratory of Physiology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|