1
|
Wang P, Li S, Li A. Odor representation and coding by the mitral/tufted cells in the olfactory bulb. J Zhejiang Univ Sci B 2024; 25:824-840. [PMID: 39420520 PMCID: PMC11494158 DOI: 10.1631/jzus.b2400051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 07/14/2024] [Indexed: 10/19/2024]
Abstract
The olfactory bulb (OB) is the first relay station in the olfactory system and functions as a crucial hub. It can represent odor information precisely and accurately in an ever-changing environment. As the only output neurons in the OB, mitral/tufted cells encode information such as odor identity and concentration. Recently, the neural strategies and mechanisms underlying odor representation and encoding in the OB have been investigated extensively. Here we review the main progress on this topic. We first review the neurons and circuits involved in odor representation, including the different cell types in the OB and the neural circuits within and beyond the OB. We will then discuss how two different coding strategies-spatial coding and temporal coding-work in the rodent OB. Finally, we discuss potential future directions for this research topic. Overall, this review provides a comprehensive description of our current understanding of how odor information is represented and encoded by mitral/tufted cells in the OB.
Collapse
Affiliation(s)
- Panke Wang
- School of Biomedical Engineering, Guangdong Medical University, Dongguan 523808, China
| | - Shan Li
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou 221002, China
| | - An'an Li
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou 221002, China.
| |
Collapse
|
2
|
Jing S, Geng C, Liu P, Wang D, Li Q, Li A. Serotonergic input from the dorsal raphe nucleus shapes learning-associated odor responses in the olfactory bulb. Acta Physiol (Oxf) 2024; 240:e14198. [PMID: 38958443 DOI: 10.1111/apha.14198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 05/29/2024] [Accepted: 06/22/2024] [Indexed: 07/04/2024]
Abstract
AIM Neural activity in the olfactory bulb (OB) can represent odor information during different brain and behavioral states. For example, the odor responses of mitral/tufted (M/T) cells in the OB change during learning of odor-discrimination tasks and, at the network level, beta power increases and the high gamma (HG) power decreases during odor presentation in such tasks. However, the neural mechanisms underlying these observations remain poorly understood. Here, we investigate whether serotonergic modulation from the dorsal raphe nucleus (DRN) to the OB is involved in shaping activity during the learning process in a go/no-go task in mice. METHODS Fiber photometry was used to record the population activity of DRN serotonergic neurons during a go/no-go task. In vivo electrophysiology was used to record neural activity (single units and local field potentials) in the OB during the go/no-go task. Real-time place preference (RTPP) and intracranial light administration in a specific subarea (iClass) tests were used to assess the ability of mice to encoding reward information. RESULTS Odor-evoked population activity in serotonergic neurons in the DRN was shaped during the learning process in a go/no-go task. In the OB, neural activity from oscillations to single cells showed complex, learning-associated changes and ability to encode information during an odor discrimination task. However, these properties were not observed after ablation of DRN serotonergic neurons. CONCLUSION The activity of neural networks and single cells in the OB, and their ability to encode information about odor value, are shaped by serotonergic projections from the DRN.
Collapse
Affiliation(s)
- Siqi Jing
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, China
| | - Chi Geng
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, China
| | - Penglai Liu
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, China
| | - Dejuan Wang
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, China
| | - Qun Li
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, China
| | - Anan Li
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
3
|
Fulton KA, Zimmerman D, Samuel A, Vogt K, Datta SR. Common principles for odour coding across vertebrates and invertebrates. Nat Rev Neurosci 2024; 25:453-472. [PMID: 38806946 DOI: 10.1038/s41583-024-00822-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2024] [Indexed: 05/30/2024]
Abstract
The olfactory system is an ideal and tractable system for exploring how the brain transforms sensory inputs into behaviour. The basic tasks of any olfactory system include odour detection, discrimination and categorization. The challenge for the olfactory system is to transform the high-dimensional space of olfactory stimuli into the much smaller space of perceived objects and valence that endows odours with meaning. Our current understanding of how neural circuits address this challenge has come primarily from observations of the mechanisms of the brain for processing other sensory modalities, such as vision and hearing, in which optimized deep hierarchical circuits are used to extract sensory features that vary along continuous physical dimensions. The olfactory system, by contrast, contends with an ill-defined, high-dimensional stimulus space and discrete stimuli using a circuit architecture that is shallow and parallelized. Here, we present recent observations in vertebrate and invertebrate systems that relate the statistical structure and state-dependent modulation of olfactory codes to mechanisms of perception and odour-guided behaviour.
Collapse
Affiliation(s)
- Kara A Fulton
- Department of Neuroscience, Harvard Medical School, Boston, MA, USA
| | - David Zimmerman
- Department of Physics, Harvard University, Cambridge, MA, USA
| | - Aravi Samuel
- Department of Physics, Harvard University, Cambridge, MA, USA
| | - Katrin Vogt
- Department of Physics, Harvard University, Cambridge, MA, USA.
- Department of Biology, University of Konstanz, Konstanz, Germany.
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany.
| | | |
Collapse
|
4
|
Bao S, Romero JM, Belfort BD, Arenkiel BR. Signaling mechanisms underlying activity-dependent integration of adult-born neurons in the mouse olfactory bulb. Genesis 2024; 62:e23595. [PMID: 38553878 PMCID: PMC10987073 DOI: 10.1002/dvg.23595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 04/02/2024]
Abstract
Adult neurogenesis has fascinated the field of neuroscience for decades given the prospects of harnessing mechanisms that facilitate the rewiring and/or replacement of adult brain tissue. The subgranular zone of the hippocampus and the subventricular zone of the lateral ventricle are the two main areas in the brain that exhibit ongoing neurogenesis. Of these, adult-born neurons within the olfactory bulb have proven to be a powerful model for studying circuit plasticity, providing a broad and accessible avenue into neuron development, migration, and continued circuit integration within adult brain tissue. This review focuses on some of the recognized molecular and signaling mechanisms underlying activity-dependent adult-born neuron development. Notably, olfactory activity and behavioral states contribute to adult-born neuron plasticity through sensory and centrifugal inputs, in which calcium-dependent transcriptional programs, local translation, and neuropeptide signaling play important roles. This review also highlights areas of needed continued investigation to better understand the remarkable phenomenon of adult-born neuron integration.
Collapse
Affiliation(s)
- Suyang Bao
- Development, Disease Models, and Therapeutics Graduate Program, Baylor College of Medicine, Houston, Texas 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, Texas 77030, USA
| | - Juan M. Romero
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, Texas 77030, USA
- Medical Scientist Training Program, Baylor College of Medicine, Houston, Texas 77030, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Benjamin D.W. Belfort
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, Texas 77030, USA
- Medical Scientist Training Program, Baylor College of Medicine, Houston, Texas 77030, USA
- Genetics and Genomics Graduate Program, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Benjamin R. Arenkiel
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, Texas 77030, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030, USA
| |
Collapse
|
5
|
Trejo DH, Ciuparu A, da Silva PG, Velasquez CM, Rebouillat B, Gross MD, Davis MB, Muresan RC, Albeanu DF. Fast updating feedback from piriform cortex to the olfactory bulb relays multimodal reward contingency signals during rule-reversal. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.12.557267. [PMID: 37745564 PMCID: PMC10515864 DOI: 10.1101/2023.09.12.557267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
While animals readily adjust their behavior to adapt to relevant changes in the environment, the neural pathways enabling these changes remain largely unknown. Here, using multiphoton imaging, we investigated whether feedback from the piriform cortex to the olfactory bulb supports such behavioral flexibility. To this end, we engaged head-fixed mice in a multimodal rule-reversal task guided by olfactory and auditory cues. Both odor and, surprisingly, the sound cues triggered cortical bulbar feedback responses which preceded the behavioral report. Responses to the same sensory cue were strongly modulated upon changes in stimulus-reward contingency (rule reversals). The re-shaping of individual bouton responses occurred within seconds of the rule-reversal events and was correlated with changes in the behavior. Optogenetic perturbation of cortical feedback within the bulb disrupted the behavioral performance. Our results indicate that the piriform-to-olfactory bulb feedback carries reward contingency signals and is rapidly re-formatted according to changes in the behavioral context.
Collapse
Affiliation(s)
| | - Andrei Ciuparu
- Transylvanian Institute of Neuroscience, Cluj-Napoca, Romania
| | - Pedro Garcia da Silva
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- current address – Champalimaud Neuroscience Program, Lisbon, Portugal
| | - Cristina M. Velasquez
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- current address – University of Oxford, UK
| | - Benjamin Rebouillat
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- current address –École Normale Supérieure, Paris, France
| | | | | | - Raul C. Muresan
- Transylvanian Institute of Neuroscience, Cluj-Napoca, Romania
- STAR-UBB Institute, Babeş-Bolyai University, Cluj-Napoca, Romania
| | - Dinu F. Albeanu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- School for Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| |
Collapse
|
6
|
Venegas JP, Navarrete M, Orellana-Garcia L, Rojas M, Avello-Duarte F, Nunez-Parra A. Basal Forebrain Modulation of Olfactory Coding In Vivo. Int J Psychol Res (Medellin) 2023; 16:62-86. [PMID: 38106956 PMCID: PMC10723750 DOI: 10.21500/20112084.6486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/23/2022] [Accepted: 12/07/2022] [Indexed: 12/19/2023] Open
Abstract
Sensory perception is one of the most fundamental brain functions, allowing individuals to properly interact and adapt to a constantly changing environment. This process requires the integration of bottom-up and topdown neuronal activity, which is centrally mediated by the basal forebrain, a brain region that has been linked to a series of cognitive processes such as attention and alertness. Here, we review the latest research using optogenetic approaches in rodents and in vivo electrophysiological recordings that are shedding light on the role of this region, in regulating olfactory processing and decisionmaking. Moreover, we summarize evidence highlighting the anatomical and physiological differences in the basal forebrain of individuals with autism spectrum disorder, which could underpin the sensory perception abnormalities they exhibit, and propose this research line as a potential opportunity to understand the neurobiological basis of this disorder.
Collapse
Affiliation(s)
- Juan Pablo Venegas
- Physiology Laboratory, Biology Department, Faculty of Science, University of Chile, Chile.Universidad de ChileUniversity of ChileChile
| | - Marcela Navarrete
- Physiology Laboratory, Biology Department, Faculty of Science, University of Chile, Chile.Universidad de ChileUniversity of ChileChile
| | - Laura Orellana-Garcia
- Physiology Laboratory, Biology Department, Faculty of Science, University of Chile, Chile.Universidad de ChileUniversity of ChileChile
| | - Marcelo Rojas
- Physiology Laboratory, Biology Department, Faculty of Science, University of Chile, Chile.Universidad de ChileUniversity of ChileChile
| | - Felipe Avello-Duarte
- Physiology Laboratory, Biology Department, Faculty of Science, University of Chile, Chile.Universidad de ChileUniversity of ChileChile
| | - Alexia Nunez-Parra
- Physiology Laboratory, Biology Department, Faculty of Science, University of Chile, Chile.Universidad de ChileUniversity of ChileChile
| |
Collapse
|
7
|
Lv M, Xu X, Zhang X, Yuwen B, Zhang L. Serotonin/GABA receptors modulate odor input to olfactory receptor neuron in locusts. Front Cell Neurosci 2023; 17:1156144. [PMID: 37187607 PMCID: PMC10175586 DOI: 10.3389/fncel.2023.1156144] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/27/2023] [Indexed: 05/17/2023] Open
Abstract
Introduction Serotonin (5-hydroxytryptamine; 5-HT) and GABA (γ-aminobutyric acid) are involved in the regulation of behaviors in the central nervous system. However, it remains unclear whether they modulate olfaction in the peripheral nervous system, and how they modulate olfaction. Methods and results One 5-HT receptor sequence (Lmig5-HT2) and one GABA receptor sequence (LmigGABAb) were identified in locust antennae by transcriptome analysis and polymerase chain reaction experiments. In situ hybridization localized Lmig5-HT2 to accessory cells, while LmigGABAb was localized to olfactory receptor neurons (ORNs) in locust chemosensilla. Single-unit electrophysiological recordings combined with RNA interference (RNAi) experiments indicated ORNs of locusts with knockdown of Lmig5-HT2 (ds-Lmig5-HT2) and LmigGABAb (ds-LmigGABAb) to some odors had significantly higher responses than wild-type and control locusts in the dose-dependent responses. Moreover, the gaps between the responses of ORNs of RNAi ones and those of wild-type and ds-GFP enlarged with an increase in concentrations of odors. Discussion Taken together, our findings suggest that 5-HT, GABA, and their receptors exist in the insect peripheral nervous system and that they may function as negative feedback to ORNs and contribute to a fine-tuning mechanism for olfaction in the peripheral nervous system.
Collapse
Affiliation(s)
- Mingyue Lv
- Department of Agricultural Insects and Pest Control, China Agricultural University, Beijing, China
| | - Xiao Xu
- Department of Agricultural Insects and Pest Control, China Agricultural University, Beijing, China
| | - Xinyang Zhang
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Bo Yuwen
- Department of Agricultural Insects and Pest Control, China Agricultural University, Beijing, China
| | - Long Zhang
- Department of Agricultural Insects and Pest Control, China Agricultural University, Beijing, China
- Plant Protection Institute, Shandong Provincial Engineering Technology Research Center on Biocontrol for Pests, Jinan, China
| |
Collapse
|
8
|
Hu R, Shankar J, Dong GZ, Villar PS, Araneda RC. α 2-Adrenergic modulation of I h in adult-born granule cells in the olfactory bulb. Front Cell Neurosci 2023; 16:1055569. [PMID: 36687519 PMCID: PMC9853206 DOI: 10.3389/fncel.2022.1055569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/29/2022] [Indexed: 01/09/2023] Open
Abstract
In the olfactory bulb (OB), a large population of axon-less inhibitory interneurons, the granule cells (GCs), coordinate network activity and tune the output of principal neurons, the mitral and tufted cells (MCs), through dendrodendritic interactions. Furthermore, GCs undergo neurogenesis throughout life, providing a source of plasticity to the neural network of the OB. The function and integration of GCs in the OB are regulated by several afferent neuromodulatory signals, including noradrenaline (NA), a state-dependent neuromodulator that plays a crucial role in the regulation of cortical function and task-specific decision processes. However, the mechanisms by which NA regulates GC function are not fully understood. Here, we show that NA modulates hyperpolarization-activated currents (Ih) via the activation of α2-adrenergic receptors (ARs) in adult-born GCs (abGCs), thus directly acting on channels that play essential roles in regulating neuronal excitability and network oscillations in the brain. This modulation affects the dendrodendritic output of GCs leading to an enhancement of lateral inhibition onto the MCs. Furthermore, we show that NA modulates subthreshold resonance in GCs, which could affect the temporal integration of abGCs. Together, these results provide a novel mechanism by which a state-dependent neuromodulator acting on Ih can regulate GC function in the OB.
Collapse
|
9
|
Plasticity in the Olfactory Cortex Is Enabled by Disinhibition of Pyramidal Neuron Apical Dendrites. J Neurosci 2022; 42:6484-6486. [PMID: 36002284 PMCID: PMC9410746 DOI: 10.1523/jneurosci.0892-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/01/2022] [Accepted: 07/12/2022] [Indexed: 11/21/2022] Open
|
10
|
Zhou P, Liu P, Zhang Y, Wang D, Li A. The Response Dynamics and Function of Cholinergic and GABAergic Neurons in the Basal Forebrain During Olfactory Learning. Front Cell Neurosci 2022; 16:911439. [PMID: 35966196 PMCID: PMC9363711 DOI: 10.3389/fncel.2022.911439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 06/23/2022] [Indexed: 11/13/2022] Open
Abstract
Modulation of neural circuits is essential for flexible sensory perception and decision-making in a changing environment. Cholinergic and GABAergic projections to the olfactory system from the horizontal limb of the diagonal band of Broca (HDB) in the basal forebrain are crucial for odor detection and olfactory learning. Although studies have demonstrated that HDB neurons respond during olfactory learning, how cholinergic and GABAergic neurons differ in their response dynamics and roles in olfactory learning remains unclear. In this study, we examined the response profiles of these two subpopulations of neurons during passive odor exposure and associative olfactory learning. We show that the excitatory responses in both cholinergic and GABAergic neurons tended to habituate during repeated passive odor exposure. However, while these habituated responses were also observed in GABAergic neurons during a go-go task, there was no such habituation in cholinergic neurons. Moreover, the responses to S+ and S− trials diverged in cholinergic neurons once mice learned a go/no-go task. Furthermore, the chemogenetic inactivation of cholinergic neurons in the HDB impaired odor discrimination. Together, these findings suggest that cholinergic neurons in the HDB reflect attention to positive reinforcement and may regulate odor discrimination via top–down inputs to the olfactory system.
Collapse
Affiliation(s)
| | | | | | | | - Anan Li
- *Correspondence: Dejuan Wang Anan Li
| |
Collapse
|
11
|
12 months is a pivotal age for olfactory perceptual learning and its underlying neuronal plasticity in aging mice. Neurobiol Aging 2022; 114:73-83. [DOI: 10.1016/j.neurobiolaging.2022.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 03/04/2022] [Accepted: 03/06/2022] [Indexed: 11/23/2022]
|
12
|
Chen F, Liu W, Liu P, Wang Z, Zhou Y, Liu X, Li A. α-Synuclein aggregation in the olfactory bulb induces olfactory deficits by perturbing granule cells and granular-mitral synaptic transmission. NPJ Parkinsons Dis 2021; 7:114. [PMID: 34903719 PMCID: PMC8668919 DOI: 10.1038/s41531-021-00259-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 11/21/2021] [Indexed: 11/10/2022] Open
Abstract
Olfactory dysfunction is an early pre-motor symptom of Parkinson's disease (PD) but the neural mechanisms underlying this dysfunction remain largely unknown. Aggregation of α-synuclein is observed in the olfactory bulb (OB) during the early stages of PD, indicating a relationship between α-synuclein pathology and hyposmia. Here we investigate whether and how α-synuclein aggregates modulate neural activity in the OB at the single-cell and synaptic levels. We induced α-synuclein aggregation specifically in the OB via overexpression of double-mutant human α-synuclein by an adeno-associated viral (AAV) vector. We found that α-synuclein aggregation in the OB decreased the ability of mice to detect odors and to perceive attractive odors. The spontaneous activity and odor-evoked firing rates of single mitral/tufted cells (M/Ts) were increased by α-synuclein aggregates with the amplitude of odor-evoked high-gamma oscillations increased. Furthermore, the decreased activity in granule cells (GCs) and impaired inhibitory synaptic function were responsible for the observed hyperactivity of M/Ts induced by α-synuclein aggregates. These results provide direct evidences of the role of α-synuclein aggregates on PD-related olfactory dysfunction and reveal the neural circuit mechanisms by which olfaction is modulated by α-synuclein pathology.
Collapse
Affiliation(s)
- Fengjiao Chen
- grid.417303.20000 0000 9927 0537Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, China
| | - Wei Liu
- grid.417303.20000 0000 9927 0537Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, China
| | - Penglai Liu
- grid.417303.20000 0000 9927 0537Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, China
| | - Zhen Wang
- grid.417303.20000 0000 9927 0537School of Life Science, Xuzhou Medical University, Xuzhou, China
| | - You Zhou
- grid.417303.20000 0000 9927 0537School of Life Science, Xuzhou Medical University, Xuzhou, China
| | - Xingyu Liu
- grid.417303.20000 0000 9927 0537School of Life Science, Xuzhou Medical University, Xuzhou, China
| | - Anan Li
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, China.
| |
Collapse
|
13
|
Fomin-Thunemann N, Garaschuk O. Role of serotonin in modulating the development and function of adult-born neurons in the olfactory bulb. Neural Regen Res 2021; 17:1253-1254. [PMID: 34782560 PMCID: PMC8643039 DOI: 10.4103/1673-5374.327337] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
| | - Olga Garaschuk
- Institute of Physiology, Department Neurophysiology, Eberhard Karls University of Tübingen, Tübingen, Germany
| |
Collapse
|
14
|
Tavoni G, Kersen DEC, Balasubramanian V. Cortical feedback and gating in odor discrimination and generalization. PLoS Comput Biol 2021; 17:e1009479. [PMID: 34634035 PMCID: PMC8530364 DOI: 10.1371/journal.pcbi.1009479] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 10/21/2021] [Accepted: 09/24/2021] [Indexed: 11/30/2022] Open
Abstract
A central question in neuroscience is how context changes perception. In the olfactory system, for example, experiments show that task demands can drive divergence and convergence of cortical odor responses, likely underpinning olfactory discrimination and generalization. Here, we propose a simple statistical mechanism for this effect based on unstructured feedback from the central brain to the olfactory bulb, which represents the context associated with an odor, and sufficiently selective cortical gating of sensory inputs. Strikingly, the model predicts that both convergence and divergence of cortical odor patterns should increase when odors are initially more similar, an effect reported in recent experiments. The theory in turn predicts reversals of these trends following experimental manipulations and in neurological conditions that increase cortical excitability.
Collapse
Affiliation(s)
- Gaia Tavoni
- Computational Neuroscience Initiative, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Neuroscience, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - David E. Chen Kersen
- Computational Neuroscience Initiative, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Vijay Balasubramanian
- Computational Neuroscience Initiative, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Neuroscience, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
15
|
Abstract
Olfaction is fundamentally distinct from other sensory modalities. Natural odor stimuli are complex mixtures of volatile chemicals that interact in the nose with a receptor array that, in rodents, is built from more than 1,000 unique receptors. These interactions dictate a peripheral olfactory code, which in the brain is transformed and reformatted as it is broadcast across a set of highly interconnected olfactory regions. Here we discuss the problems of characterizing peripheral population codes for olfactory stimuli, of inferring the specific functions of different higher olfactory areas given their extensive recurrence, and of ultimately understanding how odor representations are linked to perception and action. We argue that, despite the differences between olfaction and other sensory modalities, addressing these specific questions will reveal general principles underlying brain function.
Collapse
Affiliation(s)
- David H Brann
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115, USA;
| | - Sandeep Robert Datta
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115, USA;
| |
Collapse
|
16
|
Huang Z, Tatti R, Loeven AM, Landi Conde DR, Fadool DA. Modulation of Neural Microcircuits That Control Complex Dynamics in Olfactory Networks. Front Cell Neurosci 2021; 15:662184. [PMID: 34239417 PMCID: PMC8259627 DOI: 10.3389/fncel.2021.662184] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 05/10/2021] [Indexed: 11/13/2022] Open
Abstract
Neuromodulation influences neuronal processing, conferring neuronal circuits the flexibility to integrate sensory inputs with behavioral states and the ability to adapt to a continuously changing environment. In this original research report, we broadly discuss the basis of neuromodulation that is known to regulate intrinsic firing activity, synaptic communication, and voltage-dependent channels in the olfactory bulb. Because the olfactory system is positioned to integrate sensory inputs with information regarding the internal chemical and behavioral state of an animal, how olfactory information is modulated provides flexibility in coding and behavioral output. Herein we discuss how neuronal microcircuits control complex dynamics of the olfactory networks by homing in on a special class of local interneurons as an example. While receptors for neuromodulation and metabolic peptides are widely expressed in the olfactory circuitry, centrifugal serotonergic and cholinergic inputs modulate glomerular activity and are involved in odor investigation and odor-dependent learning. Little is known about how metabolic peptides and neuromodulators control specific neuronal subpopulations. There is a microcircuit between mitral cells and interneurons that is comprised of deep-short-axon cells in the granule cell layer. These local interneurons express pre-pro-glucagon (PPG) and regulate mitral cell activity, but it is unknown what initiates this type of regulation. Our study investigates the means by which PPG neurons could be recruited by classical neuromodulators and hormonal peptides. We found that two gut hormones, leptin and cholecystokinin, differentially modulate PPG neurons. Cholecystokinin reduces or increases spike frequency, suggesting a heterogeneous signaling pathway in different PPG neurons, while leptin does not affect PPG neuronal firing. Acetylcholine modulates PPG neurons by increasing the spike frequency and eliciting bursts of action potentials, while serotonin does not affect PPG neuron excitability. The mechanisms behind this diverse modulation are not known, however, these results clearly indicate a complex interplay of metabolic signaling molecules and neuromodulators that may fine-tune neuronal microcircuits.
Collapse
Affiliation(s)
- Zhenbo Huang
- Program in Neuroscience, Florida State University, Tallahassee, FL, United States
| | - Roberta Tatti
- Program in Neuroscience, Florida State University, Tallahassee, FL, United States
| | - Ashley M Loeven
- Cell and Molecular Biology Program, Department of Biological Science, Florida State University, Tallahassee, FL, United States
| | - Daniel R Landi Conde
- Program in Neuroscience, Florida State University, Tallahassee, FL, United States
| | - Debra Ann Fadool
- Program in Neuroscience, Florida State University, Tallahassee, FL, United States.,Cell and Molecular Biology Program, Department of Biological Science, Florida State University, Tallahassee, FL, United States.,Institute of Molecular Biophysics, Florida State University, Tallahassee, FL, United States
| |
Collapse
|
17
|
Forest J, Chalençon L, Midroit M, Terrier C, Caillé I, Sacquet J, Benetollo C, Martin K, Richard M, Didier A, Mandairon N. Role of Adult-Born Versus Preexisting Neurons Born at P0 in Olfactory Perception in a Complex Olfactory Environment in Mice. Cereb Cortex 2021; 30:534-549. [PMID: 31216001 DOI: 10.1093/cercor/bhz105] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 03/26/2019] [Accepted: 04/21/2019] [Indexed: 12/11/2022] Open
Abstract
Olfactory perceptual learning is defined as an improvement in the discrimination of perceptually close odorants after passive exposure to these odorants. In mice, simple olfactory perceptual learning involving the discrimination of two odorants depends on an increased number of adult-born neurons in the olfactory bulb, which refines the bulbar output. However, the olfactory environment is complex, raising the question of the adjustment of the bulbar network to multiple discrimination challenges. Perceptual learning of 1 to 6 pairs of similar odorants led to discrimination of all learned odor pairs. Increasing complexity did not increase adult-born neuron survival but enhanced the number of adult-born neurons responding to learned odorants and their spine density. Moreover, only complex learning induced morphological changes in neurons of the granule cell layer born during the first day of life (P0). Selective optogenetic inactivation of either population confirmed functional involvement of adult-born neurons regardless of the enrichment complexity, while preexisting neurons were required for complex discrimination only.
Collapse
Affiliation(s)
- Jérémy Forest
- INSERM, U1028; CNRS, UMR5292; Lyon Neuroscience Research Center, Neuroplasticity and Neuropathology of Olfactory Perception Team, Lyon, F-69000, France.,Claude Bernard University Lyon1 and University of Lyon, Lyon F-69000, France
| | - Laura Chalençon
- INSERM, U1028; CNRS, UMR5292; Lyon Neuroscience Research Center, Neuroplasticity and Neuropathology of Olfactory Perception Team, Lyon, F-69000, France.,Claude Bernard University Lyon1 and University of Lyon, Lyon F-69000, France
| | - Maëllie Midroit
- INSERM, U1028; CNRS, UMR5292; Lyon Neuroscience Research Center, Neuroplasticity and Neuropathology of Olfactory Perception Team, Lyon, F-69000, France.,Claude Bernard University Lyon1 and University of Lyon, Lyon F-69000, France
| | - Claire Terrier
- INSERM, U1028; CNRS, UMR5292; Lyon Neuroscience Research Center, Neuroplasticity and Neuropathology of Olfactory Perception Team, Lyon, F-69000, France.,Claude Bernard University Lyon1 and University of Lyon, Lyon F-69000, France
| | - Isabelle Caillé
- Sorbonne Universités, Université Pierre et Marie Curie-Paris 06, Centre National de la Recherche Scientifique, UMR8246, INSERM U1130, Institut de Biologie Paris Seine, Neuroscience Paris Seine, and Sorbonne Paris Cité, Université Paris Diderot-Paris 7, Paris, France
| | - Joëlle Sacquet
- INSERM, U1028; CNRS, UMR5292; Lyon Neuroscience Research Center, Neuroplasticity and Neuropathology of Olfactory Perception Team, Lyon, F-69000, France.,Claude Bernard University Lyon1 and University of Lyon, Lyon F-69000, France
| | - Claire Benetollo
- INSERM, U1028, CNRS, UMR5292, Lyon Neuroscience Research Center, Neurogenetic and Optogenetic Platform, University Lyon 1 and University of Lyon, Lyon F-69000, France
| | - Killian Martin
- INSERM, U1028; CNRS, UMR5292; Lyon Neuroscience Research Center, Neuroplasticity and Neuropathology of Olfactory Perception Team, Lyon, F-69000, France.,Claude Bernard University Lyon1 and University of Lyon, Lyon F-69000, France
| | - Marion Richard
- INSERM, U1028; CNRS, UMR5292; Lyon Neuroscience Research Center, Neuroplasticity and Neuropathology of Olfactory Perception Team, Lyon, F-69000, France.,Claude Bernard University Lyon1 and University of Lyon, Lyon F-69000, France
| | - Anne Didier
- INSERM, U1028; CNRS, UMR5292; Lyon Neuroscience Research Center, Neuroplasticity and Neuropathology of Olfactory Perception Team, Lyon, F-69000, France.,Claude Bernard University Lyon1 and University of Lyon, Lyon F-69000, France
| | - Nathalie Mandairon
- INSERM, U1028; CNRS, UMR5292; Lyon Neuroscience Research Center, Neuroplasticity and Neuropathology of Olfactory Perception Team, Lyon, F-69000, France.,Claude Bernard University Lyon1 and University of Lyon, Lyon F-69000, France
| |
Collapse
|
18
|
Ghosh A, Massaeli F, Power KD, Omoluabi T, Torraville SE, Pritchett JB, Sepahvand T, Strong VD, Reinhardt C, Chen X, Martin GM, Harley CW, Yuan Q. Locus Coeruleus Activation Patterns Differentially Modulate Odor Discrimination Learning and Odor Valence in Rats. Cereb Cortex Commun 2021; 2:tgab026. [PMID: 34296171 PMCID: PMC8152946 DOI: 10.1093/texcom/tgab026] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/25/2021] [Accepted: 03/30/2021] [Indexed: 12/04/2022] Open
Abstract
The locus coeruleus (LC) produces phasic and tonic firing patterns that are theorized to have distinct functional consequences. However, how different firing modes affect learning and valence encoding of sensory information are unknown. Here, we show bilateral optogenetic activation of rat LC neurons using 10-Hz phasic trains of either 300 ms or 10 s accelerated acquisition of a similar odor discrimination. Similar odor discrimination learning was impaired by noradrenergic blockade in the piriform cortex (PC). However, 10-Hz phasic light-mediated learning facilitation was prevented by a dopaminergic antagonist in the PC, or by ventral tegmental area (VTA) silencing with lidocaine, suggesting a LC–VTA–PC dopamine circuitry involvement. Ten-hertz tonic stimulation did not alter odor discrimination acquisition, and was ineffective in activating VTA DA neurons. For valence encoding, tonic stimulation at 25 Hz induced conditioned odor aversion, whereas 10-Hz phasic stimulations produced an odor preference. Both conditionings were prevented by noradrenergic blockade in the basolateral amygdala (BLA). Cholera Toxin B retro-labeling showed larger engagement of nucleus accumbens-projecting neurons in the BLA with 10-Hz phasic activation, and larger engagement of central amygdala projecting cells with 25-Hz tonic light. These outcomes argue that the LC activation patterns differentially influence both target networks and behavior.
Collapse
Affiliation(s)
- Abhinaba Ghosh
- Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL A1B 3V6, Canada
| | - Faghihe Massaeli
- Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL A1B 3V6, Canada
| | - Kyron D Power
- Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL A1B 3V6, Canada
| | - Tamunotonye Omoluabi
- Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL A1B 3V6, Canada
| | - Sarah E Torraville
- Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL A1B 3V6, Canada
| | - Julia B Pritchett
- Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL A1B 3V6, Canada.,Psychology Department, Faculty of Science, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada
| | - Tayebeh Sepahvand
- Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL A1B 3V6, Canada
| | - Vanessa D Strong
- Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL A1B 3V6, Canada
| | - Camila Reinhardt
- Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL A1B 3V6, Canada
| | - Xihua Chen
- Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL A1B 3V6, Canada
| | - Gerard M Martin
- Psychology Department, Faculty of Science, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada
| | - Carolyn W Harley
- Psychology Department, Faculty of Science, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada
| | - Qi Yuan
- Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL A1B 3V6, Canada
| |
Collapse
|
19
|
Horie S, Kiyokage E, Hayashi S, Inoue K, Sohn J, Hioki H, Furuta T, Toida K. Structural basis for noradrenergic regulation of neural circuits in the mouse olfactory bulb. J Comp Neurol 2021; 529:2189-2208. [PMID: 33616936 DOI: 10.1002/cne.25085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 11/19/2020] [Accepted: 11/29/2020] [Indexed: 11/09/2022]
Abstract
Olfactory input is processed in the glomerulus of the main olfactory bulb (OB) and relayed to higher centers in the brain by projection neurons. Conversely, centrifugal inputs from other brain regions project to the OB. We have previously analyzed centrifugal inputs into the OB from several brain regions using single-neuron labeling. In this study, we analyzed the centrifugal noradrenergic (NA) fibers derived from the locus coeruleus (LC), because their projection pathways and synaptic connections in the OB have not been clarified in detail. We analyzed the NA centrifugal projections by single-neuron labeling and immunoelectron microscopy. Individual NA neurons labeled by viral infection were three-dimensionally traced using Neurolucida software to visualize the projection pathway from the LC to the OB. Also, centrifugal NA fibers were visualized using an antibody for noradrenaline transporter (NET). NET immunoreactive (-ir) fibers contained many varicosities and synaptic vesicles. Furthermore, electron tomography demonstrated that NET-ir fibers formed asymmetrical synapses of varied morphology. Although these synapses were present at varicosities, the density of synapses was relatively low throughout the OB. The maximal density of synapses was found in the external plexiform layer; about 17% of all observed varicosities contained synapses. These results strongly suggest that NA-containing fibers in the OB release NA from both varicosities and synapses to influence the activities of OB neurons. The present study provides a morphological basis for olfactory modulation by centrifugal NA fibers derived from the LC.
Collapse
Affiliation(s)
- Sawa Horie
- Department of Anatomy, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Emi Kiyokage
- Department of Medical Technology, Faculty of Health Science and Technology, Kawasaki University of Medical Welfare, Kurashiki, Okayama, Japan
| | - Shuichi Hayashi
- Department of Anatomy, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Kanako Inoue
- Research Center for Ultra-High Voltage Electron Microscopy, Osaka University, Osaka, Japan
| | - Jaerin Sohn
- Division of Cerebral Circuitry, National Institute for Physiological Sciences, Okazaki, Aichi, Japan
| | - Hiroyuki Hioki
- Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Takahiro Furuta
- Department of Oral Anatomy and Neurobiology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Kazunori Toida
- Department of Anatomy, Kawasaki Medical School, Kurashiki, Okayama, Japan.,Research Center for Ultra-High Voltage Electron Microscopy, Osaka University, Osaka, Japan
| |
Collapse
|
20
|
Hanson E, Brandel-Ankrapp KL, Arenkiel BR. Dynamic Cholinergic Tone in the Basal Forebrain Reflects Reward-Seeking and Reinforcement During Olfactory Behavior. Front Cell Neurosci 2021; 15:635837. [PMID: 33603646 PMCID: PMC7884767 DOI: 10.3389/fncel.2021.635837] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/11/2021] [Indexed: 11/13/2022] Open
Abstract
Sensory perception underlies how we internalize and interact with the external world. In order to adapt to changing circumstances and interpret signals in a variety of contexts, sensation needs to be reliable, but perception of sensory input needs to be flexible. An important mediator of this flexibility is top-down regulation from the cholinergic basal forebrain. Basal forebrain projection neurons serve as pacemakers and gatekeepers for downstream neural networks, modulating circuit activity across diverse neuronal populations. This top-down control is necessary for sensory cue detection, learning, and memory, and is disproportionately disrupted in neurodegenerative diseases associated with cognitive decline. Intriguingly, cholinergic signaling acts locally within the basal forebrain to sculpt the activity of basal forebrain output neurons. To determine how local cholinergic signaling impacts basal forebrain output pathways that participate in top-down regulation, we sought to define the dynamics of cholinergic signaling within the basal forebrain during motivated behavior and learning. Toward this, we utilized fiber photometry and the genetically encoded acetylcholine indicator GAChR2.0 to define temporal patterns of cholinergic signaling in the basal forebrain during olfactory-guided, motivated behaviors and learning. We show that cholinergic signaling reliably increased during reward seeking behaviors, but was strongly suppressed by reward delivery in a go/no-go olfactory-cued discrimination task. The observed transient reduction in cholinergic tone was mirrored by a suppression in basal forebrain GABAergic neuronal activity. Together, these findings suggest that cholinergic tone in the basal forebrain changes rapidly to reflect reward-seeking behavior and positive reinforcement and may impact downstream circuitry that modulates olfaction.
Collapse
Affiliation(s)
- Elizabeth Hanson
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
| | - Katie L. Brandel-Ankrapp
- Postbaccalaureate Research Education Program, Baylor College of Medicine, Houston, TX, United States
| | - Benjamin R. Arenkiel
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
21
|
Cho C, Linster C. Experience enhances certainty about olfactory stimuli under bulbar cholinergic control. ACTA ACUST UNITED AC 2020; 27:414-417. [PMID: 32934093 PMCID: PMC7497109 DOI: 10.1101/lm.051854.120] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 06/26/2020] [Indexed: 11/25/2022]
Abstract
We present evidence that experience and cholinergic modulation in an early sensory network interact to improve certainty about olfactory stimuli. The data we present are in agreement with existing theoretical ideas about the functional role of acetylcholine but highlight the importance of early sensory networks in addition to cortical networks. We use a simple behavioral paradigm in mice which allows us to measure certainty about a stimulus via the response amplitude to a condition and novel stimuli. We conclude that additional learning increases certainty and that the slope of this relationship can be modulated by activation of muscarinic cholinergic receptors in the olfactory bulb.
Collapse
Affiliation(s)
- Christina Cho
- Computational Physiology Lab, Department of Neurobiology and Behavior, Cornell University, Ithaca, New York 14850, USA
| | - Christiane Linster
- Computational Physiology Lab, Department of Neurobiology and Behavior, Cornell University, Ithaca, New York 14850, USA
| |
Collapse
|
22
|
Nunez-Parra A, Cea-Del Rio CA, Huntsman MM, Restrepo D. The Basal Forebrain Modulates Neuronal Response in an Active Olfactory Discrimination Task. Front Cell Neurosci 2020; 14:141. [PMID: 32581716 PMCID: PMC7289987 DOI: 10.3389/fncel.2020.00141] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 04/27/2020] [Indexed: 02/02/2023] Open
Abstract
Successful completion of sensory decision-making requires focusing on relevant stimuli, adequate signal/noise ratio for stimulus discrimination, and stimulus valence evaluation. Different brain regions are postulated to play a role in these computations; however, evidence suggests that sensory and decision-making circuits are required to interact through a common neuronal pathway to elicit a context-adequate behavioral response. Recently, the basal forebrain (BF) region has emerged as a good candidate, since its heterogeneous projecting neurons innervate most of the cortical mantle and sensory processing circuits modulating different aspects of the sensory decision-making process. Moreover, evidence indicates that the BF plays an important role in attention and in fast modulation of neuronal activity that enhance visual and olfactory sensory perception. Here, we study in awake mice the involvement of BF in initiation and completion of trials in a reward-driven olfactory detection task. Using tetrode recordings, we find that BF neurons (including cholinergics) are recruited during sensory discrimination, reward, and interestingly slightly before trial initiation in successful discrimination trials. The precue neuronal activity was correlated with animal performance, indicating that this circuit could play an important role in adaptive context-dependent behavioral responses.
Collapse
Affiliation(s)
- Alexia Nunez-Parra
- Department of Cell and Developmental Biology, Rocky Mountain Taste and Smell Center and Neuroscience Program, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Department of Biology, Faculty of Science, Universidad de Chile, Santiago, Chile
| | - Christian A. Cea-Del Rio
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Centro de Investigacion Biomedica y Aplicada (CIBAP), Escuela de Medicina, Facultad de Ciencias Medicas, Universidad de Santiago de Chile, Santiago, Chile
| | - Molly M. Huntsman
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Diego Restrepo
- Department of Cell and Developmental Biology, Rocky Mountain Taste and Smell Center and Neuroscience Program, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
23
|
Wu J, Liu P, Chen F, Ge L, Lu Y, Li A. Excitability of Neural Activity is Enhanced, but Neural Discrimination of Odors is Slightly Decreased, in the Olfactory Bulb of Fasted Mice. Genes (Basel) 2020; 11:genes11040433. [PMID: 32316323 PMCID: PMC7230403 DOI: 10.3390/genes11040433] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 04/14/2020] [Indexed: 12/14/2022] Open
Abstract
Olfaction and satiety status influence each other: cues from the olfactory system modulate eating behavior, and satiety affects olfactory abilities. However, the neural mechanisms governing the interactions between olfaction and satiety are unknown. Here, we investigate how an animal’s nutritional state modulates neural activity and odor representation in the mitral/tufted cells of the olfactory bulb, a key olfactory center that plays important roles in odor processing and representation. At the single-cell level, we found that the spontaneous firing rate of mitral/tufted cells and the number of cells showing an excitatory response both increased when mice were in a fasted state. However, the neural discrimination of odors slightly decreased. Although ongoing baseline and odor-evoked beta oscillations in the local field potential in the olfactory bulb were unchanged with fasting, the amplitude of odor-evoked gamma oscillations significantly decreased in a fasted state. These neural changes in the olfactory bulb were independent of the sniffing pattern, since both sniffing frequency and mean inhalation duration did not change with fasting. These results provide new information toward understanding the neural circuit mechanisms by which olfaction is modulated by nutritional status.
Collapse
Affiliation(s)
- Jing Wu
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou 221004, China; (J.W.); (P.L.); (F.C.)
| | - Penglai Liu
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou 221004, China; (J.W.); (P.L.); (F.C.)
| | - Fengjiao Chen
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou 221004, China; (J.W.); (P.L.); (F.C.)
| | - Lingying Ge
- The Second Clinical Medical College, Xuzhou Medical University, Xuzhou 221004, China; (L.G.); (Y.L.)
| | - Yifan Lu
- The Second Clinical Medical College, Xuzhou Medical University, Xuzhou 221004, China; (L.G.); (Y.L.)
| | - Anan Li
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou 221004, China; (J.W.); (P.L.); (F.C.)
- Correspondence: ; Tel.: +86-516-83262621
| |
Collapse
|
24
|
Wang L, Zhang Z, Chen J, Manyande A, Haddad R, Liu Q, Xu F. Cell-Type-Specific Whole-Brain Direct Inputs to the Anterior and Posterior Piriform Cortex. Front Neural Circuits 2020; 14:4. [PMID: 32116571 PMCID: PMC7019026 DOI: 10.3389/fncir.2020.00004] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 01/21/2020] [Indexed: 12/20/2022] Open
Abstract
The piriform cortex (PC) is a key brain area involved in both processing and coding of olfactory information. It is implicated in various brain disorders, such as epilepsy, Alzheimer’s disease, and autism. The PC consists of the anterior (APC) and posterior (PPC) parts, which are different anatomically and functionally. However, the direct input networks to specific neuronal populations within the APC and PPC remain poorly understood. Here, we mapped the whole-brain direct inputs to the two major neuronal populations, the excitatory glutamatergic principal neurons and inhibitory γ-aminobutyric acid (GABA)-ergic interneurons within the APC and PPC using the rabies virus (RV)-mediated retrograde trans-synaptic tracing system. We found that for both types of neurons, APC and PPC share some similarities in input networks, with dominant inputs originating from the olfactory region (OLF), followed by the cortical subplate (CTXsp), isocortex, cerebral nuclei (CNU), hippocampal formation (HPF) and interbrain (IB), whereas the midbrain (MB) and hindbrain (HB) were rarely labeled. However, APC and PPC also show distinct features in their input distribution patterns. For both types of neurons, the input proportion from the OLF to the APC was higher than that to the PPC; while the PPC received higher proportions of inputs from the HPF and CNU than the APC did. Overall, our results revealed the direct input networks of both excitatory and inhibitory neuronal populations of different PC subareas, providing a structural basis to analyze the diverse PC functions.
Collapse
Affiliation(s)
- Li Wang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China.,Center for Brain Science, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, China
| | - Zhijian Zhang
- Center for Brain Science, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, China
| | - Jiacheng Chen
- College of Life Sciences, Wuhan University, Wuhan, China
| | - Anne Manyande
- School of Human and Social Sciences, University of West London, Middlesex, United Kingdom
| | - Rafi Haddad
- The Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel
| | - Qing Liu
- Center for Brain Science, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, China.,University of the Chinese Academy of Sciences, Beijing, China
| | - Fuqiang Xu
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China.,Center for Brain Science, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, China.,University of the Chinese Academy of Sciences, Beijing, China.,Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.,Shenzhen Key Lab of Neuropsychiatric Modulation and Collaborative Innovation Center for Brain Science, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
| |
Collapse
|
25
|
Liu P, Cao T, Xu J, Mao X, Wang D, Li A. Plasticity of Sniffing Pattern and Neural Activity in the Olfactory Bulb of Behaving Mice During Odor Sampling, Anticipation, and Reward. Neurosci Bull 2020; 36:598-610. [PMID: 31989425 DOI: 10.1007/s12264-019-00463-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 10/15/2019] [Indexed: 12/20/2022] Open
Abstract
The olfactory bulb (OB) is the first relay station in the olfactory system. In the OB, mitral/tufted cells (M/Ts), which are the main output neurons, play important roles in the processing and representation of odor information. Recent studies focusing on the function of M/Ts at the single-cell level in awake behaving mice have demonstrated that odor-evoked firing of single M/Ts displays transient/long-term plasticity during learning. Here, we tested whether the neural activity of M/Ts and sniffing patterns are dependent on anticipation and reward in awake behaving mice. We used an odor discrimination task combined with in vivo electrophysiological recordings in awake, head-fixed mice, and found that, while learning induced plasticity of spikes and beta oscillations during odor sampling, we also found plasticity of spikes, beta oscillation, sniffing pattern, and coherence between sniffing and theta oscillations during the periods of anticipation and/or reward. These results indicate that the activity of M/Ts plays important roles not only in odor representation but also in salience-related events such as anticipation and reward.
Collapse
Affiliation(s)
- Penglai Liu
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, 221004, China
| | - Tiantian Cao
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, 221004, China
| | - Jinshan Xu
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, 221004, China
| | - Xingfeng Mao
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, 221004, China
| | - Dejuan Wang
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, 221004, China
| | - Anan Li
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, 221004, China.
| |
Collapse
|
26
|
A Computational Model of Oxytocin Modulation of Olfactory Recognition Memory. eNeuro 2019; 6:ENEURO.0201-19.2019. [PMID: 31399493 PMCID: PMC6727149 DOI: 10.1523/eneuro.0201-19.2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/14/2019] [Accepted: 07/31/2019] [Indexed: 11/21/2022] Open
Abstract
Social recognition in mammals depends on complex interactions between sensory and other brain areas as well as modulatory inputs by specific neuropeptides such as oxytocin (OXT). Social recognition memory specifically has been shown to depend among others on olfactory processing, and can be probed using methods similar to those used when probing non-social odor memory. We here use a computational model of two interconnected olfactory networks in the mouse, the olfactory bulb (OB) and anterior olfactory nucleus, to propose a mechanism for olfactory short-term recognition memory and its modulation in social situations. Based on previous experiments, we propose one early locus for memory to be the OB. During social encounters in mice, pyramidal cells in the anterior olfactory nucleus, themselves driven by olfactory input, are rendered more excitable by OXT release, resulting in stronger feedback to OB local interneurons. This additional input to the OB creates stronger dynamics and improves signal-to-noise ratio of odor responses in the OB proper. As a consequence, mouse social olfactory memories are more strongly encoded and their duration is modulated.
Collapse
|
27
|
Ross JM, Bendahmane M, Fletcher ML. Olfactory Bulb Muscarinic Acetylcholine Type 1 Receptors Are Required for Acquisition of Olfactory Fear Learning. Front Behav Neurosci 2019; 13:164. [PMID: 31379534 PMCID: PMC6659260 DOI: 10.3389/fnbeh.2019.00164] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 07/08/2019] [Indexed: 11/13/2022] Open
Abstract
The olfactory bulb (OB) receives significant cholinergic innervation and widely expresses cholinergic receptors. While acetylcholine (ACh) is essential for olfactory learning, the exact mechanisms by which ACh modulates olfactory learning and whether it is specifically required in the OB remains unknown. Using behavioral pharmacology and optogenetics, we investigated the role of OB ACh in a simple olfactory fear learning paradigm. We find that antagonizing muscarinic ACh receptors (mAChRs) in the OB during fear conditioning but not testing significantly reduces freezing to the conditioned odor, without altering olfactory abilities. Additionally, we demonstrate that m1 mAChRs, rather than m2, are required for acquisition of olfactory fear. Finally, using mice expressing channelrhodopsin in cholinergic neurons, we show that stimulating ACh release specifically in the OB during odor-shock pairing can strengthen olfactory fear learning. Together these results define a role for ACh in olfactory associative learning and OB glomerular plasticity.
Collapse
Affiliation(s)
- Jordan M. Ross
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center (UTHSC), Memphis, TN, United States
| | - Mounir Bendahmane
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, United States
| | - Max L. Fletcher
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center (UTHSC), Memphis, TN, United States
| |
Collapse
|
28
|
Wen P, Rao X, Xu L, Zhang Z, Jia F, He X, Xu F. Cortical Organization of Centrifugal Afferents to the Olfactory Bulb: Mono- and Trans-synaptic Tracing with Recombinant Neurotropic Viral Tracers. Neurosci Bull 2019; 35:709-723. [PMID: 31069620 DOI: 10.1007/s12264-019-00385-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 09/14/2018] [Indexed: 01/14/2023] Open
Abstract
Sensory processing is strongly modulated by different brain and behavioral states, and this is based on the top-down modulation. In the olfactory system, local neural circuits in the olfactory bulb (OB) are innervated by centrifugal afferents in order to regulate the processing of olfactory information in the OB under different behavioral states. The purpose of the present study was to explore the organization of neural networks in olfactory-related cortices and modulatory nuclei that give rise to direct and indirect innervations to the glomerular layer (GL) of the OB at the whole-brain scale. Injection of different recombinant attenuated neurotropic viruses into the GL showed that it received direct inputs from each layer in the OB, centrifugal inputs from the ipsilateralanterior olfactory nucleus (AON), anterior piriform cortex (Pir), and horizontal limb of diagonal band of Broca (HDB), and various indirect inputs from bilateral cortical neurons in the AON, Pir, amygdala, entorhinal cortex, hippocampus, HDB, dorsal raphe, median raphe and locus coeruleus. These results provide a circuitry basis that will help further understand the mechanism by which olfactory information-processing in the OB is regulated.
Collapse
Affiliation(s)
- Pengjie Wen
- Center of Brain Science, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Center for Excellence in Brain Science and Intelligent Technology, Chinese Academy of Sciences, Wuhan, 430071, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoping Rao
- Center of Brain Science, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Center for Excellence in Brain Science and Intelligent Technology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Liuying Xu
- College of Life Science, Wuhan University, Wuhan, 430072, China
| | - Zhijian Zhang
- Center of Brain Science, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Center for Excellence in Brain Science and Intelligent Technology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Fan Jia
- Center of Brain Science, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Center for Excellence in Brain Science and Intelligent Technology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Xiaobin He
- Center of Brain Science, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Center for Excellence in Brain Science and Intelligent Technology, Chinese Academy of Sciences, Wuhan, 430071, China.
| | - Fuqiang Xu
- Center of Brain Science, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Center for Excellence in Brain Science and Intelligent Technology, Chinese Academy of Sciences, Wuhan, 430071, China.
- Divisions of Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Wuhan, 430074, China.
| |
Collapse
|
29
|
Centrifugal Innervation of the Olfactory Bulb: A Reappraisal. eNeuro 2019; 6:eN-NRS-0390-18. [PMID: 30740517 PMCID: PMC6366934 DOI: 10.1523/eneuro.0390-18.2019] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 01/14/2019] [Accepted: 01/19/2019] [Indexed: 12/11/2022] Open
Abstract
The inter-regional connectivity of sensory structures in the brain allows for the modulation of sensory processing in manners important for perception. In the olfactory system, odor representations in the olfactory bulb (OB) are modulated by feedback centrifugal innervation from several olfactory cortices, including the piriform cortex (PCX) and anterior olfactory nucleus (AON). Previous studies reported that an additional olfactory cortex, the olfactory tubercle (OT), also centrifugally innervates the OB and may even shape the activity of OB output neurons. In an attempt to identify the cell types of this centrifugal innervation, we performed retrograde tracing experiments in mice utilizing three unique strategies, including retrobeads, retrograde adeno-associated virus (AAV) driving a fluorescent reporter, and retrograde AAV driving Cre-expression in the Ai9-floxed transgenic reporter line. Our results replicated the standing literature and uncovered robustly labeled neurons in the ipsilateral PCX, AON, and numerous other structures known to innervate the OB. Surprisingly, consistent throughout all of our approaches, no labeled soma were observed in the OT. These findings indicate that the OT is unique among other olfactory cortices in that it does not innervate the OB, which refines our understanding of the centrifugal modulation of the OB.
Collapse
|
30
|
Aversive learning-induced plasticity throughout the adult mammalian olfactory system: insights across development. J Bioenerg Biomembr 2018; 51:15-27. [PMID: 30171506 DOI: 10.1007/s10863-018-9770-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 08/27/2018] [Indexed: 10/28/2022]
Abstract
Experiences, such as sensory learning, are known to induce plasticity in mammalian sensory systems. In recent years aversive olfactory learning-induced plasticity has been identified at all stages of the adult olfactory pathway; however, the underlying mechanisms have yet to be identified. Much of the work regarding mechanisms of olfactory associative learning comes from neonates, a time point before which the brain or olfactory system is fully developed. In addition, pups and adults often express different behavioral outcomes when subjected to the same olfactory aversive conditioning paradigm, making it difficult to directly attribute pup mechanisms of plasticity to adults. Despite the differences, there is evidence of similarities between pups and adults in terms of learning-induced changes in the olfactory system, suggesting at least some conserved mechanisms. Identifying these conserved mechanisms of plasticity would dramatically increase our understanding of how the brain is able to alter encoding and consolidation of salient olfactory information even at the earliest stages following aversive learning. The focus of this review is to systematically examine literature regarding olfactory associative learning across developmental stages and search for similarities in order to build testable hypotheses that will inform future studies of aversive learning-induced sensory plasticity in adults.
Collapse
|
31
|
Olfactory bulb acetylcholine release dishabituates odor responses and reinstates odor investigation. Nat Commun 2018; 9:1868. [PMID: 29760390 PMCID: PMC5951802 DOI: 10.1038/s41467-018-04371-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 04/25/2018] [Indexed: 11/08/2022] Open
Abstract
Habituation and dishabituation modulate the neural resources and behavioral significance allocated to incoming stimuli across the sensory systems. We characterize these processes in the mouse olfactory bulb (OB) and uncover a role for OB acetylcholine (ACh) in physiological and behavioral olfactory dishabituation. We use calcium imaging in both awake and anesthetized mice to determine the time course and magnitude of OB glomerular habituation during a prolonged odor presentation. In addition, we develop a novel behavioral investigation paradigm to determine how prolonged odor input affects odor salience. We find that manipulating OB ACh release during prolonged odor presentations using electrical or optogenetic stimulation rapidly modulates habituated glomerular odor responses and odor salience, causing mice to suddenly investigate a previously ignored odor. To demonstrate the ethological validity of this effect, we show that changing the visual context can lead to dishabituation of odor investigation behavior, which is blocked by cholinergic antagonists in the OB.
Collapse
|
32
|
Learning-Dependent and -Independent Enhancement of Mitral/Tufted Cell Glomerular Odor Responses Following Olfactory Fear Conditioning in Awake Mice. J Neurosci 2018; 38:4623-4640. [PMID: 29669746 DOI: 10.1523/jneurosci.3559-17.2018] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 03/02/2018] [Accepted: 04/10/2018] [Indexed: 01/25/2023] Open
Abstract
Associative fear learning produces fear toward the conditioned stimulus (CS) and often generalization, the expansion of fear from the CS to similar, unlearned stimuli. However, how fear learning affects early sensory processing of learned and unlearned stimuli in relation to behavioral fear responses to these stimuli remains unclear. We subjected male and female mice expressing the fluorescent calcium indicator GCaMP3 in olfactory bulb mitral and tufted cells to a classical olfactory fear conditioning paradigm. We then used awake, in vivo calcium imaging to quantify learning-induced changes in glomerular odor responses, which constitute the first site of olfactory processing in the brain. The results demonstrate that odor-shock pairing nonspecifically enhances glomerular odor representations in a learning-dependent manner and increases representational similarity between the CS and nonconditioned odors, potentially priming the system toward generalization of learned fear. Additionally, CS-specific glomerular enhancements remain even when associative learning is blocked, suggesting two separate mechanisms lead to enhanced glomerular responses following odor-shock pairings.SIGNIFICANCE STATEMENT In the olfactory bulb (OB), odors are uniquely coded in a spatial map that represents odor identity, making the OB a unique model system for investigating how learned fear alters sensory processing. Classical fear conditioning causes fear of the conditioned stimulus (CS) and of neutral stimuli, known as generalization. Combining fear conditioning with fluorescent calcium imaging of OB glomeruli, we found enhanced glomerular responses of the CS as well as neutral stimuli in awake mice, which mirrors fear generalization. We report that CS and neutral stimuli enhancements are, respectively, learning-independent and learning-dependent. Together, these results reveal distinct mechanisms leading to enhanced OB processing of fear-inducing stimuli and provide important implications for altered sensory processing in fear generalization.
Collapse
|
33
|
Sinakevitch I, Bjorklund GR, Newbern JM, Gerkin RC, Smith BH. Comparative study of chemical neuroanatomy of the olfactory neuropil in mouse, honey bee, and human. BIOLOGICAL CYBERNETICS 2018; 112:127-140. [PMID: 28852854 PMCID: PMC5832527 DOI: 10.1007/s00422-017-0728-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Accepted: 08/14/2017] [Indexed: 06/07/2023]
Abstract
Despite divergent evolutionary origins, the organization of olfactory systems is remarkably similar across phyla. In both insects and mammals, sensory input from receptor cells is initially processed in synaptically dense regions of neuropil called glomeruli, where neural activity is shaped by local inhibition and centrifugal neuromodulation prior to being sent to higher-order brain areas by projection neurons. Here we review both similarities and several key differences in the neuroanatomy of the olfactory system in honey bees, mice, and humans, using a combination of literature review and new primary data. We have focused on the chemical identity and the innervation patterns of neuromodulatory inputs in the primary olfactory system. Our findings show that serotonergic fibers are similarly distributed across glomeruli in all three species. Octopaminergic/tyraminergic fibers in the honey bee also have a similar distribution, and possibly a similar function, to noradrenergic fibers in the mammalian OBs. However, preliminary evidence suggests that human OB may be relatively less organized than its counterparts in honey bee and mouse.
Collapse
Affiliation(s)
- Irina Sinakevitch
- School of Life Sciences, Arizona State University, PO Box 874501, Tempe, AZ, 85287-4501, USA.
| | - George R Bjorklund
- School of Life Sciences, Arizona State University, PO Box 874501, Tempe, AZ, 85287-4501, USA
| | - Jason M Newbern
- School of Life Sciences, Arizona State University, PO Box 874501, Tempe, AZ, 85287-4501, USA
| | - Richard C Gerkin
- School of Life Sciences, Arizona State University, PO Box 874501, Tempe, AZ, 85287-4501, USA
| | - Brian H Smith
- School of Life Sciences, Arizona State University, PO Box 874501, Tempe, AZ, 85287-4501, USA.
| |
Collapse
|
34
|
Gaudry Q. Serotonergic Modulation of Olfaction in Rodents and Insects. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2018; 91:23-32. [PMID: 29599654 PMCID: PMC5872637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Recent advances in genetic tools and optical imaging technology have allowed rodent and Drosophila researchers to explore the relationship between serotonergic modulation and olfactory processing at a mechanistic level previously unfeasible. Here, I review the basic organization of olfactory and serotonergic systems in both rodents and Drosophila and draw comparisons where similarities exist. I discuss circuit level models that explain many of serotonin's effects on olfactory responses in the olfactory system's inputs and outputs. Finally, I discuss models of integration within wide-field centrifugal neurons to emphasize the importance of studying serotonergic neurons directly to build more realistic models of olfactory and modulatory interactions.
Collapse
Affiliation(s)
- Quentin Gaudry
- Department of Biology, University of Maryland, College Park, MD
| |
Collapse
|
35
|
Abstract
Top-down processes conveying contextual information play a major role in shaping odor representations within the olfactory system, yet the underlying mechanisms are poorly understood. The hippocampus (HPC) is a major source of olfactory top-down modulation, providing direct excitatory inputs to the anterior olfactory nucleus (AON). However, HPC-AON projections remain uncharacterized. In an effort to understand how hippocampal inputs are distributed within the AON, we systematically outlined their organization using anterograde and retrograde tracing methods. We found that AON-projecting hippocampal pyramidal neurons are located mostly in the ventral two-thirds of the HPC and are organized topographically such that cells with a ventral to intermediate hippocampal point of origin terminate, respectively, at the medial to lateral AON. Our neuroanatomical findings suggest a potential role for the HPC in the early processing and contextualization of odors which merits further investigation.
Collapse
Affiliation(s)
- Afif J Aqrabawi
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Jun Chul Kim
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON, Canada.,Department of Psychology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
36
|
Lizbinski KM, Dacks AM. Intrinsic and Extrinsic Neuromodulation of Olfactory Processing. Front Cell Neurosci 2018; 11:424. [PMID: 29375314 PMCID: PMC5767172 DOI: 10.3389/fncel.2017.00424] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 12/18/2017] [Indexed: 12/03/2022] Open
Abstract
Neuromodulation is a ubiquitous feature of neural systems, allowing flexible, context specific control over network dynamics. Neuromodulation was first described in invertebrate motor systems and early work established a basic dichotomy for neuromodulation as having either an intrinsic origin (i.e., neurons that participate in network coding) or an extrinsic origin (i.e., neurons from independent networks). In this conceptual dichotomy, intrinsic sources of neuromodulation provide a “memory” by adjusting network dynamics based upon previous and ongoing activation of the network itself, while extrinsic neuromodulators provide the context of ongoing activity of other neural networks. Although this dichotomy has been thoroughly considered in motor systems, it has received far less attention in sensory systems. In this review, we discuss intrinsic and extrinsic modulation in the context of olfactory processing in invertebrate and vertebrate model systems. We begin by discussing presynaptic modulation of olfactory sensory neurons by local interneurons (LNs) as a mechanism for gain control based on ongoing network activation. We then discuss the cell-class specific effects of serotonergic centrifugal neurons on olfactory processing. Finally, we briefly discuss the integration of intrinsic and extrinsic neuromodulation (metamodulation) as an effective mechanism for exerting global control over olfactory network dynamics. The heterogeneous nature of neuromodulation is a recurring theme throughout this review as the effects of both intrinsic and extrinsic modulation are generally non-uniform.
Collapse
Affiliation(s)
- Kristyn M Lizbinski
- Department of Biology, West Virginia University, Morgantown, WV, United States
| | - Andrew M Dacks
- Department of Biology, West Virginia University, Morgantown, WV, United States
| |
Collapse
|
37
|
Albers AD, Amato I, Albers MW. Olanzapine Improved Symptoms and Olfactory Function in an Olfactory Reference Syndrome Patient. J Neuropsychiatry Clin Neurosci 2017; 30:164-167. [PMID: 29132274 PMCID: PMC7015176 DOI: 10.1176/appi.neuropsych.17050096] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Alefiya Dhilla Albers
- From the Department of Neurology, Massachusetts General Hospital, Boston (ADA, IA, MWA); and the Department of Psychology, Endicott College, Beverly, Mass. (ADA)
| | - Ilaria Amato
- From the Department of Neurology, Massachusetts General Hospital, Boston (ADA, IA, MWA); and the Department of Psychology, Endicott College, Beverly, Mass. (ADA)
| | - Mark W Albers
- From the Department of Neurology, Massachusetts General Hospital, Boston (ADA, IA, MWA); and the Department of Psychology, Endicott College, Beverly, Mass. (ADA)
| |
Collapse
|
38
|
Schellinck H. Measuring Olfactory Processes in Mus musculus. Behav Processes 2017; 155:19-25. [PMID: 28882652 DOI: 10.1016/j.beproc.2017.08.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Revised: 08/13/2017] [Accepted: 08/13/2017] [Indexed: 01/05/2023]
Abstract
This paper briefly reviews the literature that describes olfactory acuity and odour discrimination learning. The results of current studies that examined the role of the neurotransmitters noradrenalin and acetylcholine in odour discrimination learning are discussed as are those that investigated pattern recognition and models of human disease. The methodology associated with such work is also described and its role in creating disparate results assessed. Recommendations for increasing the reliability and validity of experiments so as to further our understanding of olfactory processes in both healthy mice and those modelling human disease are made throughout the paper.
Collapse
Affiliation(s)
- Heather Schellinck
- Dept. of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada.
| |
Collapse
|
39
|
Jia Y, Gu H, Luo Q. Sample entropy reveals an age-related reduction in the complexity of dynamic brain. Sci Rep 2017; 7:7990. [PMID: 28801672 PMCID: PMC5554148 DOI: 10.1038/s41598-017-08565-y] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 07/13/2017] [Indexed: 12/16/2022] Open
Abstract
Dynamic reconfiguration of the human brain is characterized by the nature of complexity. The purpose of this study was to measure such complexity and also analyze its association with age. We modeled the dynamic reconfiguration process by dynamic functional connectivity, which was established by resting-state functional magnetic resonance imaging (fMRI) data, and we measured complexity within the dynamic functional connectivity by sample entropy (SampEn). A brainwide map of SampEn in healthy subjects shows larger values in the caudate, the olfactory gyrus, the amygdala, and the hippocampus, and lower values in primary sensorimotor and visual areas. Association analysis in healthy subjects indicated that SampEn of the amygdala-cortical connectivity decreases with advancing age. Such age-related loss of SampEn, however, disappears in patients with schizophrenia. These findings suggest that SampEn of the dynamic functional connectivity is a promising indicator of normal aging.
Collapse
Affiliation(s)
- Yanbing Jia
- School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai, 200092, P. R. China
| | - Huaguang Gu
- School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai, 200092, P. R. China.
| | - Qiang Luo
- School of Life Sciences, Fudan University, Shanghai, 200433, P. R. China. .,Institute of Science and Technology of Brain-Inspired Intelligence, Fudan University, Shanghai, 200433, P. R. China.
| |
Collapse
|
40
|
Hamodat H, Cash MK, Fisk JD, Darvesh S. Cholinesterases in normal and Alzheimer's disease primary olfactory gyrus. Neuropathol Appl Neurobiol 2017. [PMID: 28644906 DOI: 10.1111/nan.12423] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
AIMS Alzheimer's disease (AD) is characterized by cholinergic dysfunction and deposition of β-amyloid (Aβ) plaques and tau neurofibrillary tangles (NFTs) in the brain. Olfactory abnormalities often precede cognitive symptoms in AD, indicating early involvement of pathology in olfactory structures. The cholinergic system is important not only in cognition but also in modulation of the olfactory system. The primary olfactory gyrus (POG) is comprised of the olfactory tract, anterior olfactory nucleus (AON) and olfactory area (OA). Because of the importance of the olfactory and cholinergic systems, we examined the anatomical and cholinergic organization of the POG in normal human brain and neuropathology in AD. METHODS Cytoarchitecture of the POG was studied using Nissl staining in normal (n = 8) and AD (n = 6) brains. Distributions of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) were determined using histochemical methods. Aβ plaques and tau NFTs were detected using immunohistochemistry. Abundance of AD pathology was assessed using a semi-quantitative approach. RESULT Nissl staining showed pyramidal cells in the AON and paleocortical organization of the OA. AChE stained neurons and neuropil in the AON and OA, while BChE activity was noted in the olfactory tract and in AON and OA neurons. Pathology was frequent in the AD POG and the abundance of BChE-associated AD pathology was greater than that associated with AChE. CONCLUSIONS AChE and BChE activities in normal POG recapitulated their distributions in other cortical regions. Greater abundance of BChE-associated, in comparison to AChE-associated, AD pathology in the POG suggests preferential involvement of BChE in olfactory dysfunction in AD.
Collapse
Affiliation(s)
- H Hamodat
- Department of Medical Neuroscience, Dalhousie University, Halifax, NS, Canada
| | - M K Cash
- Department of Medical Neuroscience, Dalhousie University, Halifax, NS, Canada
| | - J D Fisk
- Division of Geriatric Medicine, Department of Medicine, Dalhousie University, Halifax, NS, Canada.,Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
| | - S Darvesh
- Department of Medical Neuroscience, Dalhousie University, Halifax, NS, Canada.,Division of Geriatric Medicine, Department of Medicine, Dalhousie University, Halifax, NS, Canada.,Division of Neurology, Department of Medicine, Dalhousie University, Halifax, NS, Canada.,Department of Chemistry and Physics, Mount St. Vincent University, Halifax, NS, Canada
| |
Collapse
|
41
|
Ford NC, Griff ER. Steady-state centrifugal input via the lateral olfactory tract modulates spontaneous activity in the rat main olfactory bulb. Neuroscience 2017; 348:165-179. [PMID: 28215749 DOI: 10.1016/j.neuroscience.2017.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 01/19/2017] [Accepted: 02/08/2017] [Indexed: 12/01/2022]
Abstract
Mitral and tufted cells in the main olfactory bulb (MOB) of anesthetized rats exhibit vigorous spontaneous activity, action potentials produced in the absence of odor stimuli. The central hypothesis of this paper is that tonic activity of centrifugal input to the MOB modulates the spontaneous activity of MOB neurons. The spontaneous activity of centrifugal fibers causes a baseline of steady-state neurotransmitter release, and odor stimulation produces transient changes in the resulting spontaneous activity. This study evaluated the effect of blocking centrifugal axon conduction in the lateral olfactory tract (LOT) by topically applying 2% lidocaine. Mean spontaneous activity of single bulbar neurons was recorded in each MOB layer before and after lidocaine application. While the spontaneous activity of most MOB neurons reversibly decreased after blockade of the LOT, the spontaneous activity of some neurons in the mitral, tufted and granule cell layers increased. The possible mechanisms producing such changes in spontaneous activity are discussed in terms of the tonic, steady-state release of excitatory and/or inhibitory signals from centrifugal inputs to the MOB. The data show for the first time that tonic centrifugal input to the MOB modulates the spontaneous activity of MOB interneurons and projection neurons. The present study is one of the few that focuses on steady-state spontaneous activity. The modulation of spontaneous activity demonstrated in this study implies a behaviorally relevant, state-dependent regulation of the MOB by the CNS.
Collapse
Affiliation(s)
- Neil C Ford
- Department of Biological Sciences, University of Cincinnati, P.O. Box 210006, Cincinnati, OH 45221, USA.
| | - Edwin R Griff
- Department of Biological Sciences, University of Cincinnati, P.O. Box 210006, Cincinnati, OH 45221, USA
| |
Collapse
|
42
|
Chan W, Singh S, Keshav T, Dewan R, Eberly C, Maurer R, Nunez-Parra A, Araneda RC. Mice Lacking M1 and M3 Muscarinic Acetylcholine Receptors Have Impaired Odor Discrimination and Learning. Front Synaptic Neurosci 2017; 9:4. [PMID: 28210219 PMCID: PMC5288360 DOI: 10.3389/fnsyn.2017.00004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 01/18/2017] [Indexed: 01/27/2023] Open
Abstract
The cholinergic system has extensive projections to the olfactory bulb (OB) where it produces a state-dependent regulation of sensory gating. Previous work has shown a prominent role of muscarinic acetylcholine (ACh) receptors (mAChRs) in regulating the excitability of OB neurons, in particular the M1 receptor. Here, we examined the contribution of M1 and M3 mAChR subtypes to olfactory processing using mice with a genetic deletion of these receptors, the M1−/− and the M1/M3−/− knockout (KO) mice. Genetic ablation of the M1 and M3 mAChRs resulted in a significant deficit in odor discrimination of closely related molecules, including stereoisomers. However, the discrimination of dissimilar molecules, social odors (e.g., urine) and novel object recognition was not affected. In addition the KO mice showed impaired learning in an associative odor-learning task, learning to discriminate odors at a slower rate, indicating that both short and long-term memory is disrupted by mAChR dysfunction. Interestingly, the KO mice exhibited decreased olfactory neurogenesis at younger ages, a deficit that was not maintained in older animals. In older animals, the olfactory deficit could be restored by increasing the number of new born neurons integrated into the OB after exposing them to an olfactory enriched environment, suggesting that muscarinic modulation and adult neurogenesis could be two different mechanism used by the olfactory system to improve olfactory processing.
Collapse
Affiliation(s)
- Wilson Chan
- Department of Biology, University of Maryland College Park, MD, USA
| | - Sanmeet Singh
- Department of Biology, University of Maryland College Park, MD, USA
| | - Taj Keshav
- Department of Biology, University of Maryland College Park, MD, USA
| | - Ramita Dewan
- Department of Biology, University of Maryland College Park, MD, USA
| | - Christian Eberly
- Department of Biology, University of Maryland College Park, MD, USA
| | - Robert Maurer
- Department of Biology, University of Maryland College Park, MD, USA
| | - Alexia Nunez-Parra
- Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile Santiago, Chile
| | | |
Collapse
|
43
|
Hamamoto M, Kiyokage E, Sohn J, Hioki H, Harada T, Toida K. Structural basis for cholinergic regulation of neural circuits in the mouse olfactory bulb. J Comp Neurol 2016; 525:574-591. [PMID: 27491021 DOI: 10.1002/cne.24088] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 06/30/2016] [Accepted: 07/08/2016] [Indexed: 01/10/2023]
Abstract
Odor information is regulated by olfactory inputs, bulbar interneurons, and centrifugal inputs in the olfactory bulb (OB). Cholinergic neurons projecting from the nucleus of the horizontal limb of the diagonal band of Broca and the magnocellular preoptic nucleus are one of the primary centrifugal inputs to the OB. In this study, we focused on cholinergic regulation of the OB and analyzed neural morphology with a particular emphasis on the projection pathways of cholinergic neurons. Single-cell imaging of a specific neuron within dense fibers is critical to evaluate the structure and function of the neural circuits. We labeled cholinergic neurons by infection with virus vector and then reconstructed them three-dimensionally. We also examined the ultramicrostructure of synapses by electron microscopy tomography. To further clarify the function of cholinergic neurons, we performed confocal laser scanning microscopy to investigate whether other neurotransmitters are present within cholinergic axons in the OB. Our results showed the first visualization of complete cholinergic neurons, including axons projecting to the OB, and also revealed frequent axonal branching within the OB where it innervated multiple glomeruli in different areas. Furthermore, electron tomography demonstrated that cholinergic axons formed asymmetrical synapses with a morphological variety of thicknesses of the postsynaptic density. Although we have not yet detected the presence of other neurotransmitters, the range of synaptic morphology suggests multiple modes of transmission. The present study elucidates the ways that cholinergic neurons could contribute to the elaborate mechanisms involved in olfactory processing in the OB. J. Comp. Neurol. 525:574-591, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Masakazu Hamamoto
- Department of Anatomy, Kawasaki Medical School, Okayama, 701-0192, Japan.,Department of Otolaryngology, Kawasaki Medical School, Okayama, 701-0192, Japan
| | - Emi Kiyokage
- Department of Anatomy, Kawasaki Medical School, Okayama, 701-0192, Japan
| | - Jaerin Sohn
- Department of Morphological Brain Science, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan.,Division of Cerebral Circuitry, National Institute for Physiological Sciences, Aichi, 444-8787, Japan
| | - Hiroyuki Hioki
- Department of Morphological Brain Science, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan
| | - Tamotsu Harada
- Department of Otolaryngology, Kawasaki Medical School, Okayama, 701-0192, Japan
| | - Kazunori Toida
- Department of Anatomy, Kawasaki Medical School, Okayama, 701-0192, Japan.,Research Center for Ultra-High Voltage Electron Microscopy, Osaka University, Osaka, 567-0047, Japan
| |
Collapse
|
44
|
Neuromodulation of olfactory transformations. Curr Opin Neurobiol 2016; 40:170-177. [PMID: 27564660 DOI: 10.1016/j.conb.2016.07.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 07/12/2016] [Accepted: 07/13/2016] [Indexed: 12/26/2022]
Abstract
The olfactory bulb and piriform cortex are the best studied structures of the mammalian olfactory system and are heavily innervated by extrinsic neuromodulatory inputs. The state-dependent release of acetylcholine, norepinephrine, serotonin, and other neuromodulators into these olfactory structures alters a constellation of physiological parameters in neurons and synapses that together modify the computations performed on sensory signals. These modifications affect the specificity, detectability, discriminability, and other properties of odor representations and thereby govern perceptual performance. Whereas different neuromodulators have distinct cellular effects, and tend to be associated with nominally different functions, it also is clear that these purported functions overlap substantially, and that ad hoc hypotheses regarding the roles of particular neuromodulators may have reached the limits of their usefulness.
Collapse
|
45
|
Zhang J, Cheng W, Liu Z, Zhang K, Lei X, Yao Y, Becker B, Liu Y, Kendrick KM, Lu G, Feng J. Neural, electrophysiological and anatomical basis of brain-network variability and its characteristic changes in mental disorders. Brain 2016; 139:2307-21. [DOI: 10.1093/brain/aww143] [Citation(s) in RCA: 215] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 04/26/2016] [Indexed: 12/15/2022] Open
|
46
|
Templé N, Richard FJ. Intra-cellular bacterial infections affect learning and memory capacities of an invertebrate. Front Zool 2015; 12:36. [PMID: 26675213 PMCID: PMC4678612 DOI: 10.1186/s12983-015-0129-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 12/08/2015] [Indexed: 11/10/2022] Open
Abstract
Background How host manipulation by parasites evolves is fascinating but challenging evolutionary question remains. Many parasites share the capacity to manipulate host behavior increasing their transmission success. However, little is known about the learning and memory impact of parasites on their host. Wolbachia are widespread endosymbionts and infect most insect species. These bacteria are maternally transmitted and mainly alter the reproduction of hosts with weak virulence. We tested the impact of parasites (Wolbachia) on their host learning and memory capacities. To address this question we trained individuals to one direction with positive reinforcement. We compared performances between individual Wolbachia-free, Wolbachia naturally and Wolbachia artificially infected individuals. Results We report that in the host parasite interaction (Armadillidium vulgare/Wolbachia) naturally infected individuals Wolbachia or transinfected adult with Wolbachia are less likely to learn and memorize the correct direction with social reinforcement compared to Wolbachia-free individuals. Conclusions Our results imply that Wolbachia impact in the central nervous system of their host altering the memory formation and maintenance. We conclude that host manipulation can affect cognitive processes decreasing host adaptation capacities.
Collapse
Affiliation(s)
- Noémie Templé
- Laboratoire Ecologie et Biologie des interactions UMR CNRS 7267, Université de Poitiers, Bat. B8-B35; 6, rue Michel Brunet, TSA 51106, F-86022 Poitiers Cedex 9, France
| | - Freddie-Jeanne Richard
- Laboratoire Ecologie et Biologie des interactions UMR CNRS 7267, Université de Poitiers, Bat. B8-B35; 6, rue Michel Brunet, TSA 51106, F-86022 Poitiers Cedex 9, France
| |
Collapse
|
47
|
Competing Mechanisms of Gamma and Beta Oscillations in the Olfactory Bulb Based on Multimodal Inhibition of Mitral Cells Over a Respiratory Cycle. eNeuro 2015; 2:eN-TNC-0018-15. [PMID: 26665163 PMCID: PMC4672204 DOI: 10.1523/eneuro.0018-15.2015] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 10/28/2015] [Accepted: 10/29/2015] [Indexed: 11/21/2022] Open
Abstract
Gamma (∼40-90 Hz) and beta (∼15-40 Hz) oscillations and their associated neuronal assemblies are key features of neuronal sensory processing. However, the mechanisms involved in either their interaction and/or the switch between these different regimes in most sensory systems remain misunderstood. Based on in vivo recordings and biophysical modeling of the mammalian olfactory bulb (OB), we propose a general scheme where OB internal dynamics can sustain two distinct dynamic states, each dominated by either a gamma or a beta regime. The occurrence of each regime depends on the excitability level of granule cells, the main OB interneurons. Using this model framework, we demonstrate how the balance between sensory and centrifugal input can control the switch between the two oscillatory dynamic states. In parallel, we experimentally observed that sensory and centrifugal inputs to the rat OB could both be modulated by the respiration of the animal (2-12 Hz) and each one phase shifted with the other. Implementing this phase shift in our model resulted in the appearance of the alternation between gamma and beta rhythms within a single respiratory cycle, as in our experimental results under urethane anesthesia. Our theoretical framework can also account for the oscillatory frequency response, depending on the odor intensity, the odor valence, and the animal sniffing strategy observed under various conditions including animal freely-moving. Importantly, the results of the present model can form a basis to understand how fast rhythms could be controlled by the slower sensory and centrifugal modulations linked to the respiration. Visual Abstract: See Abstract.
Collapse
|
48
|
Affiliation(s)
- Anne Tromelin
- CNRS; UMR6265 Centre des Sciences du Goût et de l'Alimentation; F-21000 Dijon France
- INRA; UMR1324 Centre des Sciences du Goût et de l'Alimentation; F-21000 Dijon France
- Université de Bourgogne; UMR Centre des Sciences du Goût et de l'Alimentation; F-21000 Dijon France
| |
Collapse
|
49
|
Devore S, Pender-Morris N, Dean O, Smith D, Linster C. Basal forebrain dynamics during nonassociative and associative olfactory learning. J Neurophysiol 2015; 115:423-33. [PMID: 26561601 DOI: 10.1152/jn.00572.2015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 11/10/2015] [Indexed: 12/28/2022] Open
Abstract
Cholinergic and GABAergic projections from the horizontal diagonal band (HDB) and medial preoptic area (MCPO) of the basal forebrain to the olfactory system are associated with odor discrimination and odor learning, as well as modulation of neural responses in olfactory structures. Whereas pharmacological and lesion studies give insights into the functional role of these modulatory inputs on a slow timescale, the response dynamics of neurons in the HDB/MCPO during olfactory behaviors have not been investigated. In this study we examined how these neurons respond during two olfactory behaviors: spontaneous investigation of odorants and odor-reward association learning. We observe rich heterogeneity in the response dynamics of individual HDB/MCPO neurons, with a substantial fraction of neurons exhibiting task-related modulation. HDB/MCPO neurons show both rapid and transient responses during bouts of odor investigation and slow, long-lasting modulation of overall response rate based on behavioral demands. Specifically, baseline rates were higher during the acquisition phase of an odor-reward association than during spontaneous investigation or the recall phase of an odor reward association. Our results suggest that modulatory projections from the HDB/MCPO are poised to influence olfactory processing on multiple timescales, from hundreds of milliseconds to minutes, and are therefore capable of rapidly setting olfactory network dynamics during odor processing and learning.
Collapse
Affiliation(s)
- Sasha Devore
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York; and
| | | | - Owen Dean
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York; and
| | - David Smith
- Department of Psychology, Cornell University, Ithaca, New York
| | - Christiane Linster
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York; and
| |
Collapse
|
50
|
Zhao F, Wang X, Zariwala HA, Uslaner JM, Houghton AK, Evelhoch JL, Williams DS, Winkelmann CT. fMRI study of olfaction in the olfactory bulb and high olfactory structures of rats: Insight into their roles in habituation. Neuroimage 2015; 127:445-455. [PMID: 26522425 DOI: 10.1016/j.neuroimage.2015.10.080] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Revised: 10/24/2015] [Accepted: 10/27/2015] [Indexed: 01/09/2023] Open
Abstract
Cerebral blood volume (CBV) fMRI with ultrasmall superparamagnetic iron oxide particles (USPIO) as a contrast agent was used to investigate olfactory processing in rats. fMRI data were acquired in sixteen 0.75-mm coronal slices covering the olfactory bulb (OB) and higher olfactory regions (HOR), including the anterior olfactory nucleus and piriform cortex. For each animal, multiple consecutive fMRI measurements were made during a 3-h experiment session, with each measurement consisting of a baseline period, an odorant stimulation period, and a recovery period. Two different stimulation paradigms with a stimulation period of 40s or 80s, respectively, were used to study olfactory processing. Odorant-induced CBV increases were robustly observed in the OB and HOR of each individual animal. Olfactory adaptation, which is characterized by an attenuation of responses to continuous exposure or repeated stimulations, has different characteristics in the OB and HOR. For adaptation to repeated stimuli, while it was observed in both the OB and HOR, CBV responses in the HOR were attenuated more significantly than responses in the OB. In contrast, within each continuous 40-s or 80-s odor exposure, CBV responses in the OB were stable and did not show adaptation, but the CBV responses in the HOR were state dependent, with no adaptation during initial exposures, but significant adaptation during following exposures. These results support previous reports that HOR plays a more significant role than OB in olfactory habituation. The technical approach presented in this study should enable more extensive fMRI studies of olfactory processing in rats.
Collapse
|