1
|
Lefranc MP, Lefranc G. Using IMGT unique numbering for IG allotypes and Fc-engineered variants of effector properties and half-life of therapeutic antibodies. Immunol Rev 2024. [PMID: 39367563 DOI: 10.1111/imr.13399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2024]
Abstract
Therapeutic monoclonal antibodies (mAb) are usually of the IgG1, IgG2, and IgG4 classes, and their heavy chains may be modified by amino acid (aa) changes involved in antibody-dependent cellular cytotoxicity (ADCC), antibody-dependent cellular phagocytosis (ADCP), complement-dependent cytotoxicity (CDC), and/or half-life. Allotypes and Fc-engineered variants are classified using IMGT/HGNC gene nomenclature (e.g., Homo sapiens IGHG1). Allotype names follow the WHO/IMGT nomenclature. IMGT-engineered variant names use the IMGT nomenclature (e.g., Homsap G1v1), which comprises species and gene name (both abbreviated) followed by the letter v (for variant) and a number. Both allotypes and engineered variants are defined by their aa changes and positions, based on the IMGT unique numbering for C domain, identified in sequence motifs, referred to as IMGT topological motifs, as their limits and length are standardized and correspond to a structural feature (e.g., strand or loop). One hundred twenty-six variants are displayed with their type, IMGT numbering, Eu-IMGT positions, motifs before and after changes, and their property and function (effector and half-life). Three motifs characterize effector variants, CH2 1.6-3, 23-BC-41, and the FG loop, whereas three different motifs characterize half-life variants, two on CH2 13-AB-18 and 89-96 with H93, and one on CH3 the FG loop with H115.
Collapse
Affiliation(s)
- Marie-Paule Lefranc
- IMGT®, the international ImMunoGeneTics information system® (IMGT), Laboratoire d'ImmunoGénétique Moléculaire (LIGM), Institut de Génétique Humaine (IGH), UMR 9002 Centre National de la Recherche Scientifique (CNRS), Université de Montpellier (UM), Montpellier Cedex 5, France
| | - Gérard Lefranc
- IMGT®, the international ImMunoGeneTics information system® (IMGT), Laboratoire d'ImmunoGénétique Moléculaire (LIGM), Institut de Génétique Humaine (IGH), UMR 9002 Centre National de la Recherche Scientifique (CNRS), Université de Montpellier (UM), Montpellier Cedex 5, France
| |
Collapse
|
2
|
Dombrowsky CS, Happel D, Habermann J, Hofmann S, Otmi S, Cohen B, Kolmar H. A Conditionally Activated Cytosol-Penetrating Antibody for TME-Dependent Intracellular Cargo Delivery. Antibodies (Basel) 2024; 13:37. [PMID: 38804305 PMCID: PMC11130931 DOI: 10.3390/antib13020037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/23/2024] [Accepted: 04/28/2024] [Indexed: 05/29/2024] Open
Abstract
Currently, therapeutic and diagnostic applications of antibodies are primarily limited to cell surface-exposed and extracellular proteins. However, research has been conducted on cell-penetrating peptides (CPP), as well as cytosol-penetrating antibodies, to overcome these limitations. In this context, a heparin sulfate proteoglycan (HSPG)-binding antibody was serendipitously discovered, which eventually localizes to the cytosol of target cells. Functional characterization revealed that the tested antibody has beneficial cytosol-penetrating capabilities and can deliver cargo proteins (up to 70 kDa) to the cytosol. To achieve tumor-specific cell targeting and cargo delivery through conditional activation of the cell-penetrating antibody in the tumor microenvironment, a single-chain Fc fragment (scFv) and a VL domain were isolated as masking units. Several in vitro assays demonstrated that fusing the masking protein with a cleavable linker to the cell penetration antibody results in the inactivation of antibody cell binding and internalization. Removal of the mask via MMP-9 protease cleavage, a protease that is frequently overexpressed in the tumor microenvironment (TME), led to complete regeneration of binding and cytosol-penetrating capabilities. Masked and conditionally activated cytosol-penetrating antibodies have the potential to serve as a modular platform for delivering protein cargoes addressing intracellular targets in tumor cells.
Collapse
Affiliation(s)
- Carolin Sophie Dombrowsky
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Peter-Grünberg-Strasse 4, D-64287 Darmstadt, Germany
| | - Dominic Happel
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Peter-Grünberg-Strasse 4, D-64287 Darmstadt, Germany
| | - Jan Habermann
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Peter-Grünberg-Strasse 4, D-64287 Darmstadt, Germany
| | - Sarah Hofmann
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Peter-Grünberg-Strasse 4, D-64287 Darmstadt, Germany
| | - Sasi Otmi
- Inter-Lab, a Subsidiary of Merck KGaA, South Industrial Area, Yavne 8122004, Israel
| | - Benny Cohen
- Inter-Lab, a Subsidiary of Merck KGaA, South Industrial Area, Yavne 8122004, Israel
| | - Harald Kolmar
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Peter-Grünberg-Strasse 4, D-64287 Darmstadt, Germany
- Centre for Synthetic Biology, Technical University of Darmstadt, D-64287 Darmstadt, Germany
| |
Collapse
|
3
|
Marin FI, Marcatili P. Computational Modeling of Antibody and T-Cell Receptor (CDR3 Loops). Methods Mol Biol 2023; 2552:83-100. [PMID: 36346586 DOI: 10.1007/978-1-0716-2609-2_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Antibodies and T-cell receptors have been a subject of much interest due to their central role in the immune system and their potential applications in several biotechnological and medical applications from cancer therapy to vaccine development. A unique feature of these two lymphocyte receptors is their ability to bind a huge variety of different (pathogen) targets. This ability stems from six short loops in the binding domain that have hypervariable sequence due to genetic recombination mechanism. Particularly one of these loops, the third complementarity determining region (CDR3), has the highest sequence variability and a dominant role in binding the target. However, it has also been proven the most difficult to be modeled structurally, which is vitally important for downstream tasks such as binding prediction. This difficulty stems from its variability in sequence that both reduces the possibility of finding homologues and introduces unique structural features in the loop. We present here a general protocol for modeling such loops in antibodies and T-cell receptors. We also discuss the difficulties in loop modeling and the advantages and limitations of different modeling methods.
Collapse
Affiliation(s)
- Frederikke I Marin
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Paolo Marcatili
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark.
| |
Collapse
|
4
|
Lefranc MP, Lefranc G. Antibody Sequence and Structure Analyses Using IMGT ®: 30 Years of Immunoinformatics. Methods Mol Biol 2023; 2552:3-59. [PMID: 36346584 DOI: 10.1007/978-1-0716-2609-2_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
IMGT®, the international ImMunoGeneTics information system®, http://www.imgt.org , the global reference in immunogenetics and immunoinformatics, was created in 1989 by Marie-Paule Lefranc (Université de Montpellier and CNRS) to manage the huge diversity of the antigen receptors, immunoglobulins (IG) or antibodies, and T cell receptors (TR) of the adaptive immune responses. The founding of IMGT® marked the advent of immunoinformatics, which emerged at the interface between immunogenetics and bioinformatics. IMGT® standardized analysis of the IG, TR, and major histocompatibility (MH) genes and proteins bridges the gap between sequences and three-dimensional (3D) structures, for all jawed vertebrates from fish to humans. This is achieved through the IMGT Scientific chart rules, based on the IMGT-ONTOLOGY axioms, and primarily CLASSIFICATION (IMGT gene and allele nomenclature) and NUMEROTATION (IMGT unique numbering and IMGT Colliers de Perles). IMGT® comprises seven databases (IMGT/LIGM-DB for nucleotide sequences, IMGT/GENE-DB for genes and alleles, etc.), 17 tools (IMGT/V-QUEST, IMGT/JunctionAnalysis, IMGT/HighV-QUEST for NGS, etc.), and more than 20,000 Web resources. In this chapter, the focus is on the tools for amino acid sequences per domain (IMGT/DomainGapAlign and IMGT/Collier-de-Perles), and on the databases for receptors (IMGT/2Dstructure-DB and IMGT/3D-structure-DB) described per receptor, chain, and domain and, for 3D, with contact analysis, paratope, and epitope. The IMGT/mAb-DB is the query interface for monoclonal antibodies (mAb), fusion proteins for immune applications (FPIA), composite proteins for clinical applications (CPCA), and related proteins of interest (RPI) with links to IMGT® 2D and 3D databases and to the World Health Organization (WHO) International Nonproprietary Names (INN) program lists. The chapter includes the human IG allotypes and antibody engineered variants for effector properties used in the description of therapeutical mAb.
Collapse
Affiliation(s)
- Marie-Paule Lefranc
- IMGT®, the international ImMunoGeneTics information system®, Laboratoire d'ImmunoGénétique Moléculaire LIGM, Institut de Génétique Humaine IGH, UMR 9002 CNRS, Université de Montpellier, Montpellier cedex 5, France.
| | - Gérard Lefranc
- IMGT®, the international ImMunoGeneTics information system®, Laboratoire d'ImmunoGénétique Moléculaire LIGM, Institut de Génétique Humaine IGH, UMR 9002 CNRS, Université de Montpellier, Montpellier cedex 5, France.
| |
Collapse
|
5
|
Hicks D, Baehr C, Silva-Ortiz P, Khaimraj A, Luengas D, Hamid FA, Pravetoni M. Advancing humanized monoclonal antibody for counteracting fentanyl toxicity towards clinical development. Hum Vaccin Immunother 2022; 18:2122507. [PMID: 36194773 PMCID: PMC9746415 DOI: 10.1080/21645515.2022.2122507] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/19/2022] [Accepted: 09/04/2022] [Indexed: 12/15/2022] Open
Abstract
Innovative therapies to complement current treatments are needed to curb the growing incidence of fatal overdoses related to synthetic opioids. Murine and chimeric monoclonal antibodies (mAb) specific for fentanyl and its analogs have demonstrated pre-clinical efficacy in preventing and reversing drug-induced toxicity in rodent models. However, mAb-based therapeutics require extensive engineering as well as in vitro and in vivo characterization to advance to first-in-human clinical trials. Here, novel murine anti-fentanyl mAbs were selected for development based on affinity for fentanyl, and efficacy in counteracting the pharmacological effects of fentanyl in mice. Humanization and evaluation of mutations designed to eliminate predicted post-translational modifications resulted in two humanized mAbs that were effective at preventing fentanyl-induced pharmacological effects in rats. These humanized mAbs showed favorable biophysical properties with respect to aggregation and hydrophobicity by chromatography-based assays, and thermostability by dynamic scanning fluorimetry. These results collectively support that the humanized anti-fentanyl mAbs developed herein warrant further clinical development for treatment of fentanyl toxicity.
Collapse
Affiliation(s)
- Dustin Hicks
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, USA
| | - Carly Baehr
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, USA
| | - Pedro Silva-Ortiz
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, USA
| | - Aaron Khaimraj
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, USA
| | - Diego Luengas
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, USA
| | - Fatima A. Hamid
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, USA
| | - Marco Pravetoni
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, USA
- Center for Immunology, University of Minnesota, Minneapolis, MN, USA
- School of Medicine, Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA
| |
Collapse
|
6
|
Lefranc MP, Lefranc G. IMGT ® Nomenclature of Engineered IGHG Variants Involved in Antibody Effector Properties and Formats. Antibodies (Basel) 2022; 11:65. [PMID: 36278618 PMCID: PMC9624366 DOI: 10.3390/antib11040065] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 11/16/2022] Open
Abstract
The constant region of the immunoglobulin (IG) or antibody heavy gamma chain is frequently engineered to modify the effector properties of the therapeutic monoclonal antibodies. These variants are classified in regards to their effects on effector functions, antibody-dependent cytotoxicity (ADCC), antibody-dependent phagocytosis (ADCP), complement-dependent cytotoxicity (CDC) enhancement or reduction, B cell inhibition by the coengagement of antigen and FcγR on the same cell, on half-life increase, and/or on structure such as prevention of IgG4 half-IG exchange, hexamerisation, knobs-into-holes and the heteropairing H-H of bispecific antibodies, absence of disulfide bridge inter H-L, absence of glycosylation site, and site-specific drug attachment engineered cysteine. The IMGT engineered variant identifier is comprised of the species and gene name (and eventually allele), the letter 'v' followed by a number (assigned chronologically), and for each concerned domain (e.g, CH1, h, CH2 and CH3), the novel AA (single letter abbreviation) and IMGT position according to the IMGT unique numbering for the C-domain and between parentheses, the Eu numbering. IMGT engineered variants are described with detailed amino acid changes, visualized in motifs based on the IMGT numbering bridging genes, sequences, and structures for higher order description.
Collapse
Affiliation(s)
- Marie-Paule Lefranc
- IMGT®, The International ImMunoGeneTics Information System®, Laboratoire d’ImmunoGénétique Moléculaire (LIGM), Institut de Génétique Humaine (IGH), Centre National de la Recherche Scientifique (CNRS), Université de Montpellier (UM), UMR 9002 CNRS-UM, CEDEX 5, 34396 Montpellier, France
| | - Gérard Lefranc
- IMGT®, The International ImMunoGeneTics Information System®, Laboratoire d’ImmunoGénétique Moléculaire (LIGM), Institut de Génétique Humaine (IGH), Centre National de la Recherche Scientifique (CNRS), Université de Montpellier (UM), UMR 9002 CNRS-UM, CEDEX 5, 34396 Montpellier, France
| |
Collapse
|
7
|
Tursi NJ, Reeder SM, Flores-Garcia Y, Bah MA, Mathis-Torres S, Salgado-Jimenez B, Esquivel R, Xu Z, Chu JD, Humeau L, Patel A, Zavala F, Weiner DB. Engineered DNA-encoded monoclonal antibodies targeting Plasmodium falciparum circumsporozoite protein confer single dose protection in a murine malaria challenge model. Sci Rep 2022; 12:14313. [PMID: 35995959 PMCID: PMC9395511 DOI: 10.1038/s41598-022-18375-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/06/2022] [Indexed: 12/15/2022] Open
Abstract
Novel approaches for malaria prophylaxis remain important. Synthetic DNA-encoded monoclonal antibodies (DMAbs) are a promising approach to generate rapid, direct in vivo host-generated mAbs with potential benefits in production simplicity and distribution coupled with genetic engineering. Here, we explore this approach in a malaria challenge model. We engineered germline-reverted DMAbs based on human mAb clones CIS43, 317, and L9 which target a junctional epitope, major repeat, and minor repeat of the Plasmodium falciparum circumsporozoite protein (CSP) respectively. DMAb variants were encoded into a plasmid vector backbone and their expression and binding profiles were characterized. We demonstrate long-term serological expression of DMAb constructs resulting in in vivo efficacy of CIS43 GL and 317 GL in a rigorous mosquito bite mouse challenge model. Additionally, we engineered an Fc modified variant of CIS43 and L9-based DMAbs to ablate binding to C1q to test the impact of complement-dependent Fc function on challenge outcomes. Complement knockout variant DMAbs demonstrated similar protection to that of WT Fc DMAbs supporting the notion that direct binding to the parasite is sufficient for the protection observed. Further investigation of DMAbs for malaria prophylaxis appears of importance.
Collapse
Affiliation(s)
- Nicholas J Tursi
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA, 19104, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Sophia M Reeder
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA, 19104, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Yevel Flores-Garcia
- Department of Molecular Microbiology and Immunology, Malaria Research Institute, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Mamadou A Bah
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Shamika Mathis-Torres
- Department of Molecular Microbiology and Immunology, Malaria Research Institute, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Berenice Salgado-Jimenez
- Department of Molecular Microbiology and Immunology, Malaria Research Institute, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Rianne Esquivel
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Ziyang Xu
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA, 19104, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jacqueline D Chu
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Laurent Humeau
- Inovio Pharmaceuticals, Plymouth Meeting, PA, 19462, USA
| | - Ami Patel
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Fidel Zavala
- Department of Molecular Microbiology and Immunology, Malaria Research Institute, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - David B Weiner
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA, 19104, USA.
| |
Collapse
|
8
|
Lefranc MP, Lefranc G. IMGT/3Dstructure-DB: T-Cell Receptor TR Paratope and Peptide/Major Histocompatibility pMH Contact Sites and Epitope. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2453:533-570. [PMID: 35622341 DOI: 10.1007/978-1-0716-2115-8_25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
T-cell receptors (TR), the antigen receptors of T cells, specifically recognize peptides presented by the major histocompatibility (MH) proteins, as peptide/MH (pMH), on the cell surface. The structure characterization of the trimolecular TR/pMH complexes is crucial to the fields of immunology, vaccination, and immunotherapy. IMGT/3Dstructure-DB is the three-dimensional (3-D) structure database of IMGT®, the international ImMunoGenetics information system®. By its creation, IMGT® marks the advent of immunoinformatics, which emerged at the interface between immunogenetics and bioinformatics. The IMGT® immunoglobulin (IG) and TR gene and allele nomenclature (CLASSIFICATION axiom) and the IMGT unique numbering and IMGT/Collier-de-Perles (NUMEROTATION axiom) are the two founding breakthroughs of immunoinformatics. IMGT-ONTOLOGY concepts and IMGT Scientific chart rules generated from these axioms allowed IMGT® bridging genes, structures, and functions. IMGT/3Dstructure-DB contains 3-D structures of IG or antibodies, TR and MH proteins of the adaptive immune responses of jawed vertebrates (gnathostomata), IG or TR complexes with antigens (IG/Ag, TR/pMH), related proteins of the immune system of any species belonging to the IG and MH superfamilies, and fusion proteins for immune applications. The focus of this chapter is on the TR V domains and MH G domains and the contact analysis comparison in TR/pMH interactions. Standardized molecular characterization includes "IMGT pMH contact sites" for peptide and MH groove interactions and "IMGT paratopes and epitopes" for TR/pMH complexes. Data are available in the IMGT/3Dstructure database, at the IMGT Home page http://www.imgt.org .
Collapse
Affiliation(s)
- Marie-Paule Lefranc
- IMGT®, the international ImMunoGenetics information system®, Laboratoire d'ImmunoGénétique Moléculaire LIGM, Institut de Génétique Humaine IGH, UMR 9002, CNRS, Université de Montpellier, Montpellier cedex 5, France.
| | - Gérard Lefranc
- IMGT®, the international ImMunoGenetics information system®, Laboratoire d'ImmunoGénétique Moléculaire LIGM, Institut de Génétique Humaine IGH, UMR 9002, CNRS, Université de Montpellier, Montpellier cedex 5, France.
| |
Collapse
|
9
|
Lefranc MP, Lefranc G. IMGT ®Homo sapiens IG and TR Loci, Gene Order, CNV and Haplotypes: New Concepts as a Paradigm for Jawed Vertebrates Genome Assemblies. Biomolecules 2022; 12:381. [PMID: 35327572 PMCID: PMC8945572 DOI: 10.3390/biom12030381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/21/2022] [Accepted: 02/24/2022] [Indexed: 02/04/2023] Open
Abstract
IMGT®, the international ImMunoGeneTics information system®, created in 1989, by Marie-Paule Lefranc (Université de Montpellier and CNRS), marked the advent of immunoinformatics, a new science which emerged at the interface between immunogenetics and bioinformatics for the study of the adaptive immune responses. IMGT® is based on a standardized nomenclature of the immunoglobulin (IG) and T cell receptor (TR) genes and alleles from fish to humans and on the IMGT unique numbering for the variable (V) and constant (C) domains of the immunoglobulin superfamily (IgSF) of vertebrates and invertebrates, and for the groove (G) domain of the major histocompatibility (MH) and MH superfamily (MhSF) proteins. IMGT® comprises 7 databases, 17 tools and more than 25,000 pages of web resources for sequences, genes and structures, based on the IMGT Scientific chart rules generated from the IMGT-ONTOLOGY axioms and concepts. IMGT® reference directories are used for the analysis of the NGS high-throughput expressed IG and TR repertoires (natural, synthetic and/or bioengineered) and for bridging sequences, two-dimensional (2D) and three-dimensional (3D) structures. This manuscript focuses on the IMGT®Homo sapiens IG and TR loci, gene order, copy number variation (CNV) and haplotypes new concepts, as a paradigm for jawed vertebrates genome assemblies.
Collapse
Affiliation(s)
- Marie-Paule Lefranc
- IMGT®, The International ImMunoGeneTics Information System®, Laboratoire d’Immuno Génétique Moléculaire (LIGM), Institut de Génétique Humaine (IGH), Université de Montpellier (UM), Centre National de la Recherche Scientifique (CNRS), UMR 9002 CNRS-UM, 141 rue de la Cardonille, CEDEX 5, 34396 Montpellier, France
| | - Gérard Lefranc
- IMGT®, The International ImMunoGeneTics Information System®, Laboratoire d’Immuno Génétique Moléculaire (LIGM), Institut de Génétique Humaine (IGH), Université de Montpellier (UM), Centre National de la Recherche Scientifique (CNRS), UMR 9002 CNRS-UM, 141 rue de la Cardonille, CEDEX 5, 34396 Montpellier, France
| |
Collapse
|
10
|
Giudicelli V, Duroux P, Rollin M, Aouinti S, Folch G, Jabado-Michaloud J, Lefranc MP, Kossida S. IMGT ® Immunoinformatics Tools for Standardized V-DOMAIN Analysis. Methods Mol Biol 2022; 2453:477-531. [PMID: 35622340 PMCID: PMC9761511 DOI: 10.1007/978-1-0716-2115-8_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The variable domains (V-DOMAIN) of the antigen receptors, immunoglobulins (IG) or antibodies and T cell receptors (TR), which specifically recognize the antigens show a huge diversity in their sequences. This diversity results from the complex mechanisms involved in the synthesis of these domains at the DNA level (rearrangements of the variable (V), diversity (D), and joining (J) genes; N-diversity; and, for the IG, somatic hypermutations). The recognition of V, D, and J as "genes" and their entry in databases mark the creation of IMGT by Marie-Paule Lefranc, and the origin of immunoinformatics in 1989. For 30 years, IMGT®, the international ImMunoGeneTics information system® http://www.imgt.org , has implemented databases and developed tools for IG and TR immunoinformatics, based on the IMGT Scientific chart rules and IMGT-ONTOLOGY concepts and axioms, and more particularly, the princeps ones: IMGT genes and alleles (CLASSIFICATION axiom) and the IMGT unique numbering and IMGT Collier de Perles (NUMEROTATION axiom). This chapter describes the online tools for the characterization and annotation of the expressed V-DOMAIN sequences: (a) IMGT/V-QUEST analyzes in detail IG and TR rearranged nucleotide sequences, (b) IMGT/HighV-QUEST is its high throughput version, which includes a module for the identification of IMGT clonotypes and generates immunoprofiles of expressed V, D, and J genes and alleles, (c) IMGT/StatClonotype performs the pairwise comparison of IMGT/HighV-QUEST immunoprofiles, (d) IMGT/DomainGapAlign analyzes amino acid sequences and is frequently used in antibody engineering and humanization, and (e) IMGT/Collier-de-Perles provides two-dimensional (2D) graphical representations of V-DOMAIN, bridging the gap between sequences and 3D structures. These IMGT® tools are widely used in repertoire analyses of the adaptive immune responses in normal and pathological situations and in the design of engineered IG and TR for therapeutic applications.
Collapse
Affiliation(s)
- Véronique Giudicelli
- IMGT®, the international ImMunoGenetics information system®, Laboratoire d'ImmunoGénétique Moléculaire LIGM, Institut de Génétique Humaine, (IGH), Centre National de la Recherche Scientifique (CNRS), Université de Montpellier (UM), Montpellier, France.
| | - Patrice Duroux
- IMGT®, the international ImMunoGenetics information system®, Laboratoire d'ImmunoGénétique Moléculaire LIGM, Institut de Génétique Humaine, (IGH), Centre National de la Recherche Scientifique (CNRS), Université de Montpellier (UM), Montpellier, France
| | - Maël Rollin
- IMGT®, the international ImMunoGenetics information system®, Laboratoire d'ImmunoGénétique Moléculaire LIGM, Institut de Génétique Humaine, (IGH), Centre National de la Recherche Scientifique (CNRS), Université de Montpellier (UM), Montpellier, France
| | - Safa Aouinti
- IMGT®, the international ImMunoGenetics information system®, Laboratoire d'ImmunoGénétique Moléculaire LIGM, Institut de Génétique Humaine, (IGH), Centre National de la Recherche Scientifique (CNRS), Université de Montpellier (UM), Montpellier, France
- Clinical Research and Epidemiology Unit, CHU Montpellier, Univ Montpellier, Montpellier, France
| | - Géraldine Folch
- IMGT®, the international ImMunoGenetics information system®, Laboratoire d'ImmunoGénétique Moléculaire LIGM, Institut de Génétique Humaine, (IGH), Centre National de la Recherche Scientifique (CNRS), Université de Montpellier (UM), Montpellier, France
| | - Joumana Jabado-Michaloud
- IMGT®, the international ImMunoGenetics information system®, Laboratoire d'ImmunoGénétique Moléculaire LIGM, Institut de Génétique Humaine, (IGH), Centre National de la Recherche Scientifique (CNRS), Université de Montpellier (UM), Montpellier, France
| | - Marie-Paule Lefranc
- IMGT®, the international ImMunoGenetics information system®, Laboratoire d'ImmunoGénétique Moléculaire LIGM, Institut de Génétique Humaine, (IGH), Centre National de la Recherche Scientifique (CNRS), Université de Montpellier (UM), Montpellier, France.
| | - Sofia Kossida
- IMGT®, the international ImMunoGenetics information system®, Laboratoire d'ImmunoGénétique Moléculaire LIGM, Institut de Génétique Humaine, (IGH), Centre National de la Recherche Scientifique (CNRS), Université de Montpellier (UM), Montpellier, France
| |
Collapse
|
11
|
Bartsch T, Arndt C, Loureiro LR, Kegler A, Puentes-Cala E, Soto JA, Kurien BT, Feldmann A, Berndt N, Bachmann MP. A Small Step, a Giant Leap: Somatic Hypermutation of a Single Amino Acid Leads to Anti-La Autoreactivity. Int J Mol Sci 2021; 22:ijms222112046. [PMID: 34769474 PMCID: PMC8584381 DOI: 10.3390/ijms222112046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/03/2021] [Accepted: 11/05/2021] [Indexed: 11/16/2022] Open
Abstract
The anti-La mab 312B, which was established by hybridoma technology from human-La transgenic mice after adoptive transfer of anti-human La T cells, immunoprecipitates both native eukaryotic human and murine La protein. Therefore, it represents a true anti-La autoantibody. During maturation, the anti-La mab 312B acquired somatic hypermutations (SHMs) which resulted in the replacement of four aa in the complementarity determining regions (CDR) and seven aa in the framework regions. The recombinant derivative of the anti-La mab 312B in which all the SHMs were corrected to the germline sequence failed to recognize the La antigen. We therefore wanted to learn which SHM(s) is (are) responsible for anti-La autoreactivity. Humanization of the 312B ab by grafting its CDR regions to a human Ig backbone confirms that the CDR sequences are mainly responsible for anti-La autoreactivity. Finally, we identified that a single amino acid replacement (D > Y) in the germline sequence of the CDR3 region of the heavy chain of the anti-La mab 312B is sufficient for anti-La autoreactivity.
Collapse
Affiliation(s)
- Tabea Bartsch
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (T.B.); (C.A.); (L.R.L.); (A.K.); (E.P.-C.); (J.A.S.); (A.F.); (N.B.)
| | - Claudia Arndt
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (T.B.); (C.A.); (L.R.L.); (A.K.); (E.P.-C.); (J.A.S.); (A.F.); (N.B.)
| | - Liliana R. Loureiro
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (T.B.); (C.A.); (L.R.L.); (A.K.); (E.P.-C.); (J.A.S.); (A.F.); (N.B.)
| | - Alexandra Kegler
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (T.B.); (C.A.); (L.R.L.); (A.K.); (E.P.-C.); (J.A.S.); (A.F.); (N.B.)
| | - Edinson Puentes-Cala
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (T.B.); (C.A.); (L.R.L.); (A.K.); (E.P.-C.); (J.A.S.); (A.F.); (N.B.)
- Corporación para la Investigación de la Corrosión (CIC), Piedecuesta 681011, Colombia
| | - Javier Andrés Soto
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (T.B.); (C.A.); (L.R.L.); (A.K.); (E.P.-C.); (J.A.S.); (A.F.); (N.B.)
- BIOGEN Research Group, University of Santander, Faculty of Health Sciences, Cúcuta 540001, Colombia
| | - Biji T. Kurien
- The Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
| | - Anja Feldmann
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (T.B.); (C.A.); (L.R.L.); (A.K.); (E.P.-C.); (J.A.S.); (A.F.); (N.B.)
| | - Nicole Berndt
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (T.B.); (C.A.); (L.R.L.); (A.K.); (E.P.-C.); (J.A.S.); (A.F.); (N.B.)
| | - Michael P. Bachmann
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (T.B.); (C.A.); (L.R.L.); (A.K.); (E.P.-C.); (J.A.S.); (A.F.); (N.B.)
- BIOGEN Research Group, University of Santander, Faculty of Health Sciences, Cúcuta 540001, Colombia
- The Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
- Tumor Immunology, University Cancer Center (UCC), University Hospital Carl Gustav Carus Dresden, TU Dresden, 01307 Dresden, Germany
- National Center for Tumor Diseases (NCT), 03128 Dresden, Germany
- Correspondence: ; Tel.: +49-351-260-3223
| |
Collapse
|
12
|
Peng W, Pronker MF, Snijder J. Mass Spectrometry-Based De Novo Sequencing of Monoclonal Antibodies Using Multiple Proteases and a Dual Fragmentation Scheme. J Proteome Res 2021; 20:3559-3566. [PMID: 34121409 PMCID: PMC8256418 DOI: 10.1021/acs.jproteome.1c00169] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Indexed: 12/20/2022]
Abstract
Antibody sequence information is crucial to understanding the structural basis for antigen binding and enables the use of antibodies as therapeutics and research tools. Here, we demonstrate a method for direct de novo sequencing of monoclonal IgG from the purified antibody products. The method uses a panel of multiple complementary proteases to generate suitable peptides for de novo sequencing by liquid chromatography-tandem mass spectrometry (LC-MS/MS) in a bottom-up fashion. Furthermore, we apply a dual fragmentation scheme, using both stepped high-energy collision dissociation (stepped HCD) and electron-transfer high-energy collision dissociation (EThcD), on all peptide precursors. The method achieves full sequence coverage of the monoclonal antibody herceptin, with an accuracy of 99% in the variable regions. We applied the method to sequence the widely used anti-FLAG-M2 mouse monoclonal antibody, which we successfully validated by remodeling a high-resolution crystal structure of the Fab and demonstrating binding to a FLAG-tagged target protein in Western blot analysis. The method thus offers robust and reliable sequences of monoclonal antibodies.
Collapse
Affiliation(s)
| | | | - Joost Snijder
- Biomolecular Mass Spectrometry
and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht
Institute of Pharmaceutical Sciences, Utrecht
University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
13
|
Stravinskiene D, Sliziene A, Baranauskiene L, Petrikaite V, Zvirbliene A. Inhibitory Monoclonal Antibodies and Their Recombinant Derivatives Targeting Surface-Exposed Carbonic Anhydrase XII on Cancer Cells. Int J Mol Sci 2020; 21:ijms21249411. [PMID: 33321910 PMCID: PMC7763246 DOI: 10.3390/ijms21249411] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 12/08/2020] [Indexed: 01/17/2023] Open
Abstract
Monoclonal and recombinant antibodies are widely used for the diagnostics and therapy of cancer. They are generated to interact with cell surface proteins which are usually involved in the development and progression of cancer. Carbonic anhydrase XII (CA XII) contributes to the survival of tumors under hypoxic conditions thus is considered a candidate target for antibody-based therapy. In this study, we have generated a novel collection of monoclonal antibodies (MAbs) against the recombinant extracellular domain of CA XII produced in HEK-293 cells. Eighteen out of 24 MAbs were reactive with cellular CA XII on the surface of live kidney and lung cancer cells as determined by flow cytometry. One MAb 14D6 also inhibited the enzymatic activity of recombinant CA XII as measured by the stopped-flow assay. MAb 14D6 showed the migrastatic effect on human lung carcinoma A549 and renal carcinoma A498 cell lines in a ‘wound healing’ assay. It did not reduce the growth of multicellular lung and renal cancer spheroids but reduced the cell viability by the ATP Bioluminescence assay. Epitope mapping revealed the surface-exposed amino acid sequence (35-FGPDGENS-42) close to the catalytic center of CA XII recognized by the MAb 14D6. The variable regions of the heavy and light chains of MAb 14D6 were sequenced and their complementarity-determining regions were defined. The obtained variable sequences were used to generate recombinant antibodies in two formats: single-chain fragment variable (scFv) expressed in E. coli and scFv fused to human IgG1 Fc fragment (scFv-Fc) expressed in Chinese Hamster Ovary (CHO) cells. Both recombinant antibodies maintained the same specificity for CA XII as the parental MAb 14D6. The novel antibodies may represent promising tools for CA XII-related cancer research and immunotherapy.
Collapse
Affiliation(s)
- Dovile Stravinskiene
- Department of Immunology and Cell Biology, Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio al. 7, LT-10257 Vilnius, Lithuania; (A.S.); (A.Z.)
- Correspondence:
| | - Aiste Sliziene
- Department of Immunology and Cell Biology, Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio al. 7, LT-10257 Vilnius, Lithuania; (A.S.); (A.Z.)
| | - Lina Baranauskiene
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio al. 7, LT-10257 Vilnius, Lithuania; (L.B.); (V.P.)
| | - Vilma Petrikaite
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio al. 7, LT-10257 Vilnius, Lithuania; (L.B.); (V.P.)
- Laboratory of Drug Targets Histopathology, Institute of Cardiology, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50162 Kaunas, Lithuania
| | - Aurelija Zvirbliene
- Department of Immunology and Cell Biology, Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio al. 7, LT-10257 Vilnius, Lithuania; (A.S.); (A.Z.)
| |
Collapse
|
14
|
Lefranc MP, Lefranc G. Immunoglobulins or Antibodies: IMGT ® Bridging Genes, Structures and Functions. Biomedicines 2020; 8:E319. [PMID: 32878258 PMCID: PMC7555362 DOI: 10.3390/biomedicines8090319] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 08/23/2020] [Accepted: 08/25/2020] [Indexed: 12/18/2022] Open
Abstract
IMGT®, the international ImMunoGeneTics® information system founded in 1989 by Marie-Paule Lefranc (Université de Montpellier and CNRS), marked the advent of immunoinformatics, a new science at the interface between immunogenetics and bioinformatics. For the first time, the immunoglobulin (IG) or antibody and T cell receptor (TR) genes were officially recognized as 'genes' as well as were conventional genes. This major breakthrough has allowed the entry, in genomic databases, of the IG and TR variable (V), diversity (D) and joining (J) genes and alleles of Homo sapiens and of other jawed vertebrate species, based on the CLASSIFICATION axiom. The second major breakthrough has been the IMGT unique numbering and the IMGT Collier de Perles for the V and constant (C) domains of the IG and TR and other proteins of the IG superfamily (IgSF), based on the NUMEROTATION axiom. IMGT-ONTOLOGY axioms and concepts bridge genes, sequences, structures and functions, between biological and computational spheres in the IMGT® system (Web resources, databases and tools). They provide the IMGT Scientific chart rules to identify, to describe and to analyse the IG complex molecular data, the huge diversity of repertoires, the genetic (alleles, allotypes, CNV) polymorphisms, the IG dual function (paratope/epitope, effector properties), the antibody humanization and engineering.
Collapse
Affiliation(s)
- Marie-Paule Lefranc
- IMGT, The International ImMunoGeneTics Information System, Laboratoire d’ImmunoGénétique Moléculaire LIGM, Institut de Génétique Humaine IGH, Université de Montpellier UM, Centre National de la Recherche Scientifique CNRS, UMR 9002 CNRS-UM, 141 Rue de la Cardonille, CEDEX 5, 34396 Montpellier, France
| | - Gérard Lefranc
- IMGT, The International ImMunoGeneTics Information System, Laboratoire d’ImmunoGénétique Moléculaire LIGM, Institut de Génétique Humaine IGH, Université de Montpellier UM, Centre National de la Recherche Scientifique CNRS, UMR 9002 CNRS-UM, 141 Rue de la Cardonille, CEDEX 5, 34396 Montpellier, France
| |
Collapse
|
15
|
Bradshaw WJ, Valenzano DR. Extreme genomic volatility characterizes the evolution of the immunoglobulin heavy chain locus in cyprinodontiform fishes. Proc Biol Sci 2020; 287:20200489. [PMID: 32396805 PMCID: PMC7287348 DOI: 10.1098/rspb.2020.0489] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 04/14/2020] [Indexed: 12/30/2022] Open
Abstract
The evolution of the adaptive immune system has provided vertebrates with a uniquely sophisticated immune toolkit, enabling them to mount precise immune responses against a staggeringly diverse range of antigens. Like other vertebrates, teleost fishes possess a complex and functional adaptive immune system; however, our knowledge of the complex antigen-receptor genes underlying its functionality has been restricted to a small number of experimental and agricultural species, preventing systematic investigation into how these crucial gene loci evolve. Here, we analyse the genomic structure of the immunoglobulin heavy chain (IGH) gene loci in the cyprinodontiforms, a diverse and important group of teleosts present in many different habitats across the world. We reconstruct the complete IGH loci of the turquoise killifish (Nothobranchius furzeri) and the southern platyfish (Xiphophorus maculatus) and analyse their in vivo gene expression, revealing the presence of species-specific splice isoforms of transmembrane IGHM. We further characterize the IGH constant regions of 10 additional cyprinodontiform species, including guppy, Amazon molly, mummichog and mangrove killifish. Phylogenetic analysis of these constant regions suggests multiple independent rounds of duplication and deletion of the teleost-specific antibody class IGHZ in the cyprinodontiform lineage, demonstrating the extreme volatility of IGH evolution. Focusing on the cyprinodontiforms as a model taxon for comparative evolutionary immunology, this work provides novel genomic resources for studying adaptive immunity and sheds light on the evolutionary history of the adaptive immune system.
Collapse
Affiliation(s)
- William J. Bradshaw
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Str. 296, 50937 Cologne, Germany
- CECAD Research Center, University of Cologne, Joseph-Stelzmann-Str. 26, 50937 Cologne, Germany
| | - Dario Riccardo Valenzano
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Str. 296, 50937 Cologne, Germany
- CECAD Research Center, University of Cologne, Joseph-Stelzmann-Str. 26, 50937 Cologne, Germany
| |
Collapse
|
16
|
Loxoscelism: Advances and Challenges in the Design of Antibody Fragments with Therapeutic Potential. Toxins (Basel) 2020; 12:toxins12040256. [PMID: 32316084 PMCID: PMC7232456 DOI: 10.3390/toxins12040256] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/12/2020] [Accepted: 04/13/2020] [Indexed: 01/08/2023] Open
Abstract
Envenoming due to Loxosceles spider bites still remains a neglected disease of particular medical concern in the Americas. To date, there is no consensus for the treatment of envenomed patients, yet horse polyclonal antivenoms are usually infused to patients with identified severe medical conditions. It is widely known that venom proteins in the 30–35 kDa range with sphingomyelinase D (SMasesD) activity, reproduce most of the toxic effects observed in loxoscelism. Hence, we believe that monoclonal antibody fragments targeting such toxins might pose an alternative safe and effective treatment. In the present study, starting from the monoclonal antibody LimAb7, previously shown to target SMasesD from the venom of L. intermedia and neutralize its dermonecrotic activity, we designed humanized antibody V-domains, then produced and purified as recombinant single-chain antibody fragments (scFvs). These molecules were characterized in terms of humanness, structural stability, antigen-binding activity, and venom-neutralizing potential. Throughout this process, we identified some blocking points that can impact the Abs antigen-binding activity and neutralizing capacity. In silico analysis of the antigen/antibody amino acid interactions also contributed to a better understanding of the antibody’s neutralization mechanism and led to reformatting the humanized antibody fragment which, ultimately, recovered the functional characteristics for efficient in vitro venom neutralization.
Collapse
|
17
|
Characterization of the ferret TRB locus guided by V, D, J, and C gene expression analysis. Immunogenetics 2019; 72:101-108. [PMID: 31797007 PMCID: PMC6971162 DOI: 10.1007/s00251-019-01142-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 10/18/2019] [Indexed: 10/29/2022]
Abstract
The domestic ferret, Mustela putorius furo, is an important mammalian animal model to study human respiratory infection. However, insufficient genomic annotation hampers detailed studies of ferret T cell responses. In this study, we analyzed the published T cell receptor beta (TRB) locus and performed high-throughput sequencing (HTS) of peripheral blood of four healthy adult ferrets to identify expressed V, D, J, and C genes. The HTS data is used as a guide to manually curate the expressed V, D, J, and C genes. The ferret locus appears to be most similar to that of the dog. Like other mammalian TRB loci, the ferret TRB locus contains a library of variable genes located upstream of two D-J-C gene clusters, followed by a (in the ferret non-functional) V gene with an inverted transcriptional orientation. All TRB genes (expressed or not) reported here have been approved by the IMGT/WHO-IUIS nomenclature committee.
Collapse
|
18
|
Cirelli KM, Carnathan DG, Nogal B, Martin JT, Rodriguez OL, Upadhyay AA, Enemuo CA, Gebru EH, Choe Y, Viviano F, Nakao C, Pauthner MG, Reiss S, Cottrell CA, Smith ML, Bastidas R, Gibson W, Wolabaugh AN, Melo MB, Cossette B, Kumar V, Patel NB, Tokatlian T, Menis S, Kulp DW, Burton DR, Murrell B, Schief WR, Bosinger SE, Ward AB, Watson CT, Silvestri G, Irvine DJ, Crotty S. Slow Delivery Immunization Enhances HIV Neutralizing Antibody and Germinal Center Responses via Modulation of Immunodominance. Cell 2019; 177:1153-1171.e28. [PMID: 31080066 PMCID: PMC6619430 DOI: 10.1016/j.cell.2019.04.012] [Citation(s) in RCA: 265] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 02/26/2019] [Accepted: 04/05/2019] [Indexed: 12/14/2022]
Abstract
Conventional immunization strategies will likely be insufficient for the development of a broadly neutralizing antibody (bnAb) vaccine for HIV or other difficult pathogens because of the immunological hurdles posed, including B cell immunodominance and germinal center (GC) quantity and quality. We found that two independent methods of slow delivery immunization of rhesus monkeys (RMs) resulted in more robust T follicular helper (TFH) cell responses and GC B cells with improved Env-binding, tracked by longitudinal fine needle aspirates. Improved GCs correlated with the development of >20-fold higher titers of autologous nAbs. Using a new RM genomic immunoglobulin locus reference, we identified differential IgV gene use between immunization modalities. Ab mapping demonstrated targeting of immunodominant non-neutralizing epitopes by conventional bolus-immunized animals, whereas slow delivery-immunized animals targeted a more diverse set of epitopes. Thus, alternative immunization strategies can enhance nAb development by altering GCs and modulating the immunodominance of non-neutralizing epitopes.
Collapse
Affiliation(s)
- Kimberly M Cirelli
- Division of Vaccine Discovery, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA; Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (Scripps CHAVI-ID), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Diane G Carnathan
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (Scripps CHAVI-ID), The Scripps Research Institute, La Jolla, CA 92037, USA; Yerkes National Primate Research Center, Emory University, Atlanta, GA 30322, USA; Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Bartek Nogal
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (Scripps CHAVI-ID), The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jacob T Martin
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (Scripps CHAVI-ID), The Scripps Research Institute, La Jolla, CA 92037, USA; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Oscar L Rodriguez
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Amit A Upadhyay
- Yerkes National Primate Research Center, Emory University, Atlanta, GA 30322, USA
| | - Chiamaka A Enemuo
- Yerkes National Primate Research Center, Emory University, Atlanta, GA 30322, USA; Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Etse H Gebru
- Yerkes National Primate Research Center, Emory University, Atlanta, GA 30322, USA; Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Yury Choe
- Yerkes National Primate Research Center, Emory University, Atlanta, GA 30322, USA; Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Federico Viviano
- Yerkes National Primate Research Center, Emory University, Atlanta, GA 30322, USA; Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Catherine Nakao
- Division of Vaccine Discovery, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Matthias G Pauthner
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (Scripps CHAVI-ID), The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Samantha Reiss
- Division of Vaccine Discovery, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA; Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (Scripps CHAVI-ID), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Christopher A Cottrell
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (Scripps CHAVI-ID), The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Melissa L Smith
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Raiza Bastidas
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (Scripps CHAVI-ID), The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - William Gibson
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Amber N Wolabaugh
- Yerkes National Primate Research Center, Emory University, Atlanta, GA 30322, USA
| | - Mariane B Melo
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (Scripps CHAVI-ID), The Scripps Research Institute, La Jolla, CA 92037, USA; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Benjamin Cossette
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Venkatesh Kumar
- Department of Medicine, University of California, San Diego, La Jolla, CA 92037, USA
| | - Nirav B Patel
- Yerkes NHP Genomics Core Laboratory, Yerkes National Primate Research Center, Atlanta, GA 30329, USA
| | - Talar Tokatlian
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (Scripps CHAVI-ID), The Scripps Research Institute, La Jolla, CA 92037, USA; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Sergey Menis
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (Scripps CHAVI-ID), The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Daniel W Kulp
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (Scripps CHAVI-ID), The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; Vaccine and Immunotherapy Center, Wistar Institute, Philadelphia, PA 19104, USA
| | - Dennis R Burton
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (Scripps CHAVI-ID), The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA 02139, USA
| | - Ben Murrell
- Department of Medicine, University of California, San Diego, La Jolla, CA 92037, USA; Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - William R Schief
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (Scripps CHAVI-ID), The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA 02139, USA
| | - Steven E Bosinger
- Yerkes National Primate Research Center, Emory University, Atlanta, GA 30322, USA; Yerkes NHP Genomics Core Laboratory, Yerkes National Primate Research Center, Atlanta, GA 30329, USA
| | - Andrew B Ward
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (Scripps CHAVI-ID), The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Corey T Watson
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Guido Silvestri
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (Scripps CHAVI-ID), The Scripps Research Institute, La Jolla, CA 92037, USA; Yerkes National Primate Research Center, Emory University, Atlanta, GA 30322, USA; Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Darrell J Irvine
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (Scripps CHAVI-ID), The Scripps Research Institute, La Jolla, CA 92037, USA; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA 02139, USA; Departments of Biological Engineering and Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Shane Crotty
- Division of Vaccine Discovery, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA; Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (Scripps CHAVI-ID), The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Medicine, University of California, San Diego, La Jolla, CA 92037, USA.
| |
Collapse
|
19
|
Lefranc MP, Lefranc G. IMGT ® and 30 Years of Immunoinformatics Insight in Antibody V and C Domain Structure and Function. Antibodies (Basel) 2019; 8:E29. [PMID: 31544835 PMCID: PMC6640715 DOI: 10.3390/antib8020029] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 03/29/2019] [Accepted: 04/09/2019] [Indexed: 12/24/2022] Open
Abstract
At the 10th Human Genome Mapping (HGM10) Workshop, in New Haven, for the first time, immunoglobulin (IG) or antibody and T cell receptor (TR) variable (V), diversity (D), joining (J), and constant (C) genes were officially recognized as 'genes', as were the conventional genes. Under these HGM auspices, IMGT®, the international ImMunoGeneTics information system®, was created in June 1989 at Montpellier (University of Montpellier and CNRS). The creation of IMGT® marked the birth of immunoinformatics, a new science, at the interface between immunogenetics and bioinformatics. The accuracy and the consistency between genes and alleles, sequences, and three-dimensional (3D) structures are based on the IMGT Scientific chart rules generated from the IMGT-ONTOLOGY axioms and concepts: IMGT standardized keywords (IDENTIFICATION), IMGT gene and allele nomenclature (CLASSIFICATION), IMGT standardized labels (DESCRIPTION), IMGT unique numbering and IMGT Collier de Perles (NUMEROTATION). These concepts provide IMGT® immunoinformatics insights for antibody V and C domain structure and function, used for the standardized description in IMGT® web resources, databases and tools, immune repertoires analysis, single cell and/or high-throughput sequencing (HTS, NGS), antibody humanization, and antibody engineering in relation with effector properties.
Collapse
Affiliation(s)
- Marie-Paule Lefranc
- IMGT®, the international ImMunoGeneTics information system®, University of Montpellier, CNRS, Laboratoire d'ImmunoGénétique Moléculaire LIGM, Institut de Génétique Humaine IGH, UMR 9002 CNRS-UM, 141 rue de la Cardonille, 34396 Montpellier CEDEX 5, France.
| | - Gérard Lefranc
- IMGT®, the international ImMunoGeneTics information system®, University of Montpellier, CNRS, Laboratoire d'ImmunoGénétique Moléculaire LIGM, Institut de Génétique Humaine IGH, UMR 9002 CNRS-UM, 141 rue de la Cardonille, 34396 Montpellier CEDEX 5, France.
| |
Collapse
|
20
|
Patel A, Park DH, Davis CW, Smith TRF, Leung A, Tierney K, Bryan A, Davidson E, Yu X, Racine T, Reed C, Gorman ME, Wise MC, Elliott STC, Esquivel R, Yan J, Chen J, Muthumani K, Doranz BJ, Saphire EO, Crowe JE, Broderick KE, Kobinger GP, He S, Qiu X, Kobasa D, Humeau L, Sardesai NY, Ahmed R, Weiner DB. In Vivo Delivery of Synthetic Human DNA-Encoded Monoclonal Antibodies Protect against Ebolavirus Infection in a Mouse Model. Cell Rep 2018; 25:1982-1993.e4. [PMID: 30428362 PMCID: PMC6319964 DOI: 10.1016/j.celrep.2018.10.062] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 08/27/2018] [Accepted: 10/16/2018] [Indexed: 12/14/2022] Open
Abstract
Synthetically engineered DNA-encoded monoclonal antibodies (DMAbs) are an in vivo platform for evaluation and delivery of human mAb to control against infectious disease. Here, we engineer DMAbs encoding potent anti-Zaire ebolavirus (EBOV) glycoprotein (GP) mAbs isolated from Ebola virus disease survivors. We demonstrate the development of a human IgG1 DMAb platform for in vivo EBOV-GP mAb delivery and evaluation in a mouse model. Using this approach, we show that DMAb-11 and DMAb-34 exhibit functional and molecular profiles comparable to recombinant mAb, have a wide window of expression, and provide rapid protection against lethal mouse-adapted EBOV challenge. The DMAb platform represents a simple, rapid, and reproducible approach for evaluating the activity of mAb during clinical development. DMAbs have the potential to be a mAb delivery system, which may be advantageous for protection against highly pathogenic infectious diseases, like EBOV, in resource-limited and other challenging settings.
Collapse
Affiliation(s)
- Ami Patel
- The Wistar Institute of Anatomy and Biology, Philadelphia, PA 19104, USA
| | - Daniel H Park
- The Wistar Institute of Anatomy and Biology, Philadelphia, PA 19104, USA
| | - Carl W Davis
- Emory Vaccine Center, Emory University, Atlanta, GA 30317, USA
| | | | - Anders Leung
- Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada
| | - Kevin Tierney
- Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada
| | | | | | - Xiaoying Yu
- The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Trina Racine
- Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada; University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Charles Reed
- Inovio Pharmaceuticals, Plymouth Meeting, PA 19462, USA
| | - Marguerite E Gorman
- The Wistar Institute of Anatomy and Biology, Philadelphia, PA 19104, USA; Boston College, Newton, MA 02467, USA
| | - Megan C Wise
- Inovio Pharmaceuticals, Plymouth Meeting, PA 19462, USA
| | - Sarah T C Elliott
- The Wistar Institute of Anatomy and Biology, Philadelphia, PA 19104, USA
| | - Rianne Esquivel
- The Wistar Institute of Anatomy and Biology, Philadelphia, PA 19104, USA
| | - Jian Yan
- Inovio Pharmaceuticals, Plymouth Meeting, PA 19462, USA
| | - Jing Chen
- Inovio Pharmaceuticals, Plymouth Meeting, PA 19462, USA
| | - Kar Muthumani
- The Wistar Institute of Anatomy and Biology, Philadelphia, PA 19104, USA
| | | | | | | | | | | | - Shihua He
- Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada
| | - Xiangguo Qiu
- Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada; University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Darwyn Kobasa
- Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada; University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | | | | | - Rafi Ahmed
- Emory Vaccine Center, Emory University, Atlanta, GA 30317, USA
| | - David B Weiner
- The Wistar Institute of Anatomy and Biology, Philadelphia, PA 19104, USA.
| |
Collapse
|
21
|
Setliff I, McDonnell WJ, Raju N, Bombardi RG, Murji AA, Scheepers C, Ziki R, Mynhardt C, Shepherd BE, Mamchak AA, Garrett N, Karim SA, Mallal SA, Crowe JE, Morris L, Georgiev IS. Multi-Donor Longitudinal Antibody Repertoire Sequencing Reveals the Existence of Public Antibody Clonotypes in HIV-1 Infection. Cell Host Microbe 2018; 23:845-854.e6. [PMID: 29861170 PMCID: PMC6002606 DOI: 10.1016/j.chom.2018.05.001] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 01/27/2018] [Accepted: 04/24/2018] [Indexed: 01/01/2023]
Abstract
Characterization of single antibody lineages within infected individuals has provided insights into the development of Env-specific antibodies. However, a systems-level understanding of the humoral response against HIV-1 is limited. Here, we interrogated the antibody repertoires of multiple HIV-infected donors from an infection-naive state through acute and chronic infection using next-generation sequencing. This analysis revealed the existence of "public" antibody clonotypes that were shared among multiple HIV-infected individuals. The HIV-1 reactivity for representative antibodies from an identified public clonotype shared by three donors was confirmed. Furthermore, a meta-analysis of publicly available antibody repertoire sequencing datasets revealed antibodies with high sequence identity to known HIV-reactive antibodies, even in repertoires that were reported to be HIV naive. The discovery of public antibody clonotypes in HIV-infected individuals represents an avenue of significant potential for better understanding antibody responses to HIV-1 infection, as well as for clonotype-specific vaccine development.
Collapse
Affiliation(s)
- Ian Setliff
- Program in Chemical & Physical Biology, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Wyatt J McDonnell
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA; Center for Translational Immunology and Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Nagarajan Raju
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Robin G Bombardi
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Amyn A Murji
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Cathrine Scheepers
- Center for HIV and STIs, National Institute for Communicable Diseases, Johannesburg, South Africa; Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Rutendo Ziki
- Center for HIV and STIs, National Institute for Communicable Diseases, Johannesburg, South Africa
| | - Charissa Mynhardt
- Center for HIV and STIs, National Institute for Communicable Diseases, Johannesburg, South Africa
| | - Bryan E Shepherd
- Department of Biostatistics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | | | - Nigel Garrett
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
| | - Salim Abdool Karim
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa; Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Simon A Mallal
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA; Center for Translational Immunology and Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, USA; Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, USA; Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, WA, Australia
| | - James E Crowe
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Lynn Morris
- Center for HIV and STIs, National Institute for Communicable Diseases, Johannesburg, South Africa; Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa; Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
| | - Ivelin S Georgiev
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
22
|
Fournier N, Jacque E, Fontayne A, Derache D, Dupont G, Verhaeghe L, Baptista L, Dehenne A, Dezetter AS, Terrier A, Longue A, Pochet-Beghin V, Beghin C, Chtourou S, de Romeuf C. Improved in vitro and in vivo activity against CD303-expressing targets of the chimeric 122A2 antibody selected for specific glycosylation pattern. MAbs 2018; 10:651-663. [PMID: 29553870 PMCID: PMC5973763 DOI: 10.1080/19420862.2018.1451283] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Plasmacytoid dendritic cells (pDCs) play a central role for both innate and adaptive antiviral responses, as they direct immune responses through their unique ability to produce substantial concentrations of type I interferon (IFNs) upon viral encounter while also activating multiple immune cells, including macrophages, DCs, B, natural killer and T cells. Recent evidence clearly indicates that pDCs also play a crucial role in some cancers and several auto-immune diseases. Although treatments are currently available to patients with such pathologies, many are not fully efficient. We are proposing here, as a new targeted-based therapy, a novel chimeric monoclonal antibody (mAb) that mediates a strong cellular cytotoxicity directed against a specific human pDC marker, CD303. This antibody, ch122A2 mAb, is characterized by low fucose content in its human IgG1 constant (Fc) region, which induces strong in vitro and in vivo activity against human pDCs. We demonstrated that this effect relates in part to its specific Fc region glycosylation pattern, which increased affinity for CD16/FcγRIIIa. Importantly, ch122A2 mAb induces the down-modulation of CpG-induced IFN-α secretion by pDCs. Additionally, ch122A2 mAb shows in vitro high pDC depletion mediated by antibody-dependent cell-mediated cytotoxicity and antibody-dependent cellular phagocytosis. Remarkably, in vivo ch122A2 mAb efficacy is also demonstrated in humanized mice, resulting in significant pDC depletion in bloodstream and secondary lymphoid organs such as spleen. Together, our data indicates that ch122A2 mAb could represent a promising cytotoxic mAb candidate for pathologies in which decreasing type I IFNs or pDCs depleting may improve patient prognosis.
Collapse
Affiliation(s)
- Nathalie Fournier
- a Therapeutic Innovation Department , LFB Biotechnologies , Lille Cedex , Nord Pas de calais , France
| | - Emilie Jacque
- a Therapeutic Innovation Department , LFB Biotechnologies , Lille Cedex , Nord Pas de calais , France
| | - Alexandre Fontayne
- b Therapeutic Innovation Department , LFB Biotechnologies , Lille Cedex , Nord Pas de calais , France
| | - Delphine Derache
- b Therapeutic Innovation Department , LFB Biotechnologies , Lille Cedex , Nord Pas de calais , France
| | - Gilles Dupont
- b Therapeutic Innovation Department , LFB Biotechnologies , Lille Cedex , Nord Pas de calais , France
| | - Lucie Verhaeghe
- a Therapeutic Innovation Department , LFB Biotechnologies , Lille Cedex , Nord Pas de calais , France
| | - Linda Baptista
- a Therapeutic Innovation Department , LFB Biotechnologies , Lille Cedex , Nord Pas de calais , France
| | - Aurélie Dehenne
- b Therapeutic Innovation Department , LFB Biotechnologies , Lille Cedex , Nord Pas de calais , France
| | - Anne-Sophie Dezetter
- b Therapeutic Innovation Department , LFB Biotechnologies , Lille Cedex , Nord Pas de calais , France
| | - Aurélie Terrier
- b Therapeutic Innovation Department , LFB Biotechnologies , Lille Cedex , Nord Pas de calais , France
| | - Alain Longue
- b Therapeutic Innovation Department , LFB Biotechnologies , Lille Cedex , Nord Pas de calais , France
| | - Virginie Pochet-Beghin
- b Therapeutic Innovation Department , LFB Biotechnologies , Lille Cedex , Nord Pas de calais , France
| | - Cecile Beghin
- b Therapeutic Innovation Department , LFB Biotechnologies , Lille Cedex , Nord Pas de calais , France
| | - Sami Chtourou
- b Therapeutic Innovation Department , LFB Biotechnologies , Lille Cedex , Nord Pas de calais , France
| | - Christophe de Romeuf
- c Therapeutic Innovation Department , LFB Biotechnologies , Lille Cedex , Nord Pas de calais , France
| |
Collapse
|
23
|
Abstract
IMGT®, the international ImMunoGeneTics information system® ( http://www.imgt.org ), was created in 1989 by Marie-Paule Lefranc (Université de Montpellier and CNRS) to manage the huge diversity of the antigen receptors, immunoglobulins (IG) or antibodies, and T cell receptors (TR). The founding of IMGT® marked the advent of immunoinformatics, which emerged at the interface between immunogenetics and bioinformatics. Standardized sequence and structure analysis of antibody using IMGT® databases and tools allow one to bridge, for the first time, the gap between antibody sequences and three-dimensional (3D) structures. This is achieved through the IMGT Scientific chart rules, based on the IMGT-ONTOLOGY concepts of classification (IMGT gene and allele nomenclature), description (IMGT standardized labels), and numerotation (IMGT unique numbering and IMGT Collier de Perles). IMGT® is acknowledged as the global reference for immunogenetics and immunoinformatics, and its standards are particularly useful for antibody engineering and humanization. IMGT® databases for antibody nucleotide sequences and genes include IMGT/LIGM-DB and IMGT/GENE-DB, respectively, and nucleotide sequence analysis is performed by the IMGT/V-QUEST and IMGT/JunctionAnalysis tools and for NGS by IMGT/HighV-QUEST. In this chapter, we focus on IMGT® databases and tools for amino acid sequences, two-dimensional (2D) and three-dimensional (3D) structures: the IMGT/DomainGapAlign and IMGT Collier de Perles tools and the IMGT/2Dstructure-DB and IMGT/3Dstructure-DB database. IMGT/mAb-DB provides the query interface for monoclonal antibodies (mAb), fusion proteins for immune applications (FPIA), and composite proteins for clinical applications (CPCA) and related proteins of interest (RPI) and links to the proposed and recommended lists of the World Health Organization International Nonproprietary Name (WHO INN) programme, to IMGT/2Dstructure-DB for amino acid sequences, and to IMGT/3Dstructure-DB and its associated tools (IMGT/StructuralQuery, IMGT/DomainSuperimpose) for crystallized antibodies.
Collapse
|
24
|
Giudicelli V, Duroux P, Kossida S, Lefranc MP. IG and TR single chain fragment variable (scFv) sequence analysis: a new advanced functionality of IMGT/V-QUEST and IMGT/HighV-QUEST. BMC Immunol 2017; 18:35. [PMID: 28651553 PMCID: PMC5485737 DOI: 10.1186/s12865-017-0218-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 06/16/2017] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND IMGT®, the international ImMunoGeneTics information system® ( http://www.imgt.org ), was created in 1989 in Montpellier, France (CNRS and Montpellier University) to manage the huge and complex diversity of the antigen receptors, and is at the origin of immunoinformatics, a science at the interface between immunogenetics and bioinformatics. Immunoglobulins (IG) or antibodies and T cell receptors (TR) are managed and described in the IMGT® databases and tools at the level of receptor, chain and domain. The analysis of the IG and TR variable (V) domain rearranged nucleotide sequences is performed by IMGT/V-QUEST (online since 1997, 50 sequences per batch) and, for next generation sequencing (NGS), by IMGT/HighV-QUEST, the high throughput version of IMGT/V-QUEST (portal begun in 2010, 500,000 sequences per batch). In vitro combinatorial libraries of engineered antibody single chain Fragment variable (scFv) which mimic the in vivo natural diversity of the immune adaptive responses are extensively screened for the discovery of novel antigen binding specificities. However the analysis of NGS full length scFv (~850 bp) represents a challenge as they contain two V domains connected by a linker and there is no tool for the analysis of two V domains in a single chain. METHODS The functionality "Analyis of single chain Fragment variable (scFv)" has been implemented in IMGT/V-QUEST and, for NGS, in IMGT/HighV-QUEST for the analysis of the two V domains of IG and TR scFv. It proceeds in five steps: search for a first closest V-REGION, full characterization of the first V-(D)-J-REGION, then search for a second V-REGION and full characterization of the second V-(D)-J-REGION, and finally linker delimitation. RESULTS For each sequence or NGS read, positions of the 5'V-DOMAIN, linker and 3'V-DOMAIN in the scFv are provided in the 'V-orientated' sense. Each V-DOMAIN is fully characterized (gene identification, sequence description, junction analysis, characterization of mutations and amino changes). The functionality is generic and can analyse any IG or TR single chain nucleotide sequence containing two V domains, provided that the corresponding species IMGT reference directory is available. CONCLUSION The "Analysis of single chain Fragment variable (scFv)" implemented in IMGT/V-QUEST and, for NGS, in IMGT/HighV-QUEST provides the identification and full characterization of the two V domains of full-length scFv (~850 bp) nucleotide sequences from combinatorial libraries. The analysis can also be performed on concatenated paired chains of expressed antigen receptor IG or TR repertoires.
Collapse
Affiliation(s)
- Véronique Giudicelli
- IMGT®, the international ImMunoGeneTics information system®, Laboratoire d'ImmunoGénétique Moléculaire LIGM, Institut de Génétique Humaine IGH, UMR 9002, CNRS, Montpellier University, Montpellier, France.
| | - Patrice Duroux
- IMGT®, the international ImMunoGeneTics information system®, Laboratoire d'ImmunoGénétique Moléculaire LIGM, Institut de Génétique Humaine IGH, UMR 9002, CNRS, Montpellier University, Montpellier, France.
| | - Sofia Kossida
- IMGT®, the international ImMunoGeneTics information system®, Laboratoire d'ImmunoGénétique Moléculaire LIGM, Institut de Génétique Humaine IGH, UMR 9002, CNRS, Montpellier University, Montpellier, France.
| | - Marie-Paule Lefranc
- IMGT®, the international ImMunoGeneTics information system®, Laboratoire d'ImmunoGénétique Moléculaire LIGM, Institut de Génétique Humaine IGH, UMR 9002, CNRS, Montpellier University, Montpellier, France.
| |
Collapse
|
25
|
Parren PWHI, Carter PJ, Plückthun A. Changes to International Nonproprietary Names for antibody therapeutics 2017 and beyond: of mice, men and more. MAbs 2017; 9:898-906. [PMID: 28621572 PMCID: PMC5590622 DOI: 10.1080/19420862.2017.1341029] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 06/07/2017] [Indexed: 11/08/2022] Open
Abstract
Active pharmaceutical substances require an International Nonproprietary Name (INN) assigned by the World Health Organization (WHO) to obtain market authorization as a medicinal product. INNs are selected to represent a unique, generic name for a drug enabling unambiguous identification by stakeholders worldwide. INNs may be requested after initiating clinical development of an investigational drug. Pharmaceutical classes are indicated by a common stem or suffix. Currently, INNs for monoclonal antibody-based drugs are recognized by the suffix, -mab, preceded by a source infix such as -xi- (chimeric), -zu- (humanized) or -u- (human) designating the species from which the antibody was derived. However, many technological advances have made it increasingly difficult to accurately capture an antibody's source in its name. In 2014, the WHO and the United States Adopted Names (USAN) Council approached this challenge by implementing changes to antibody source infix definitions. Unfortunately, gaps and ambiguities in the definitions and procedures resulted in inconsistent source category assignments and widespread confusion. The Antibody Society, extensively supported by academic and industry scientists, voiced concerns leading to constructive dialog during scheduled consultations with WHO and USAN Council representatives. In June 2017, the WHO announced that use of the source infix will be discontinued for new antibody INNs effective immediately. We fully support this change as it better aligns antibody INNs with current and foreseeable future innovations in antibody therapeutics. Here we review the changes implemented. Additionally, we analyzed antibody INNs recently assigned under the previous 2014 definitions and provide recommendations for further alignment.
Collapse
Affiliation(s)
- Paul W. H. I. Parren
- The Antibody Society, Framingham, MA, USA
- Genmab, Utrecht, the Netherlands
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, the Netherlands
| | - Paul J. Carter
- The Antibody Society, Framingham, MA, USA
- Department of Antibody Engineering, Genentech Inc., South San Francisco, CA, USA
| | - Andreas Plückthun
- The Antibody Society, Framingham, MA, USA
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| |
Collapse
|
26
|
Lebozec K, Jandrot-Perrus M, Avenard G, Favre-Bulle O, Billiald P. Design, development and characterization of ACT017, a humanized Fab that blocks platelet's glycoprotein VI function without causing bleeding risks. MAbs 2017; 9:945-958. [PMID: 28598281 PMCID: PMC5540112 DOI: 10.1080/19420862.2017.1336592] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Glycoprotein VI is a platelet-specific collagen receptor critical for in vivo formation of arterial thrombosis. It is also considered as an attractive target for the development of anti-thrombotic drugs because blocking glycoprotein (GP)VI inhibits platelet aggregation without inducing detrimental effects on physiologic hemostasis. Here, we present data on the identification, in vitro and ex vivo pharmacology of a humanized Fab fragment designated as ACT017. ACT017 was selected out of 15 humanized variants based upon structural and functional properties. It was produced under GMP-like conditions followed by detailed physico-chemical analysis and functional characterization indicating high antigen-binding specificity and affinity. In addition, we demonstrate, in a dose-escalation study, that ACT017 has a high capacity to specifically inhibit collagen-induced platelet aggregation ex vivo after injection to the macaque without inducing thrombocytopenia, GPVI depletion or bleeding side effects as is the case for conventional anti-platelets. Therefore, ACT017 is a promising therapeutic candidate for the development of a new generation of safe and efficient anti-thrombotic drugs.
Collapse
Affiliation(s)
- Kristell Lebozec
- a Acticor Biotech SAS, Hôpital Bichat - Inserm U1148 , 46 rue Henri Huchard, F75018 Paris , France
| | - Martine Jandrot-Perrus
- a Acticor Biotech SAS, Hôpital Bichat - Inserm U1148 , 46 rue Henri Huchard, F75018 Paris , France.,b Inserm-University Paris Diderot UMR S1148, Hôpital Bichat , 46 rue Henri Huchard, F75018 Paris , France
| | - Gilles Avenard
- a Acticor Biotech SAS, Hôpital Bichat - Inserm U1148 , 46 rue Henri Huchard, F75018 Paris , France
| | - Olivier Favre-Bulle
- a Acticor Biotech SAS, Hôpital Bichat - Inserm U1148 , 46 rue Henri Huchard, F75018 Paris , France.,c 3Biotech , 4 place Louis Armand, F75012 Paris , France
| | - Philippe Billiald
- a Acticor Biotech SAS, Hôpital Bichat - Inserm U1148 , 46 rue Henri Huchard, F75018 Paris , France.,d University Paris-Sud, University Paris-Saclay , School of Pharmacy, IPSIT , 5 rue J.-B. Clément, F92296 Châtenay-Malabry , France
| |
Collapse
|
27
|
Selection and characterization of the novel anti-human PD-1 FV78 antibody from a targeted epitope mammalian cell-displayed antibody library. Cell Mol Immunol 2016; 15:146-157. [PMID: 27499043 DOI: 10.1038/cmi.2016.38] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 05/20/2016] [Accepted: 05/20/2016] [Indexed: 01/22/2023] Open
Abstract
Currently, display-based methods are well established and widely used in antibody engineering for affinity maturation and structural stability improvement. We obtained a novel anti-human programmed death 1 (PD-1) antibody using computer-aided design and a mammalian cell display technology platform. We used computer-aided modeling and distance geometry methods to predict and assign the key residues that contributed to the binding of human PD-L1 to PD-1. Then, we analyzed the sequence of nivolumab (an anti-human PD-1 antibody, referred to as MIL75 in the article) to determine the template for antibody design and library construction. We identified a series of potential substitutions on the obtained template and constructed a virtual epitope-targeted antibody library based on the physicochemical properties and each possible location of the assigned key residues. The virtual antibody libraries were displayed on the surface of mammalian cells as the antigen-binding fragments of full-length immunoglobulin G. Then, we used flow cytometry and sequencing approaches to sort and screen the candidates. Finally, we obtained a novel anti-human PD-1 antibody named FV78. FV78 competitively recognized the PD-1 epitopes that interacted with MIL75 and possessed an affinity comparable to MIL75. Our results implied that FV78 possessed equivalent bioactivity in vitro and in vivo compared with MIL75, which highlighted the probability and prospect of FV78 becoming a new potential antibody therapy.
Collapse
|
28
|
Beerli RR, Bauer M, Fritzer A, Rosen LB, Buser RB, Hanner M, Maudrich M, Nebenfuehr M, Toepfer JAS, Mangold S, Bauer A, Holland SM, Browne SK, Meinke A. Mining the human autoantibody repertoire: isolation of potent IL17A-neutralizing monoclonal antibodies from a patient with thymoma. MAbs 2015; 6:1608-20. [PMID: 25484038 DOI: 10.4161/mabs.36292] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Anti-cytokine autoantibodies have been widely reported to be present in human plasma, both in healthy subjects and in patients with underlying autoimmune conditions, such as autoimmune polyendocrinopathy candidiasis ectodermal dystrophy (APECED) or thymic epithelial neoplasms. While often asymptomatic, they can cause or facilitate a wide range of diseases including opportunistic infections. The potential therapeutic value of specific neutralizing anti-cytokine autoantibodies has not been thoroughly investigated. Here we used mammalian cell display to isolate IL17A-specific antibodies from a thymoma patient with proven high-titer autoantibodies against the same. We identified 3 distinct clonotypes that efficiently neutralized IL17A in a cell-based in vitro assay. Their potencies were comparable to those of known neutralizing antibodies, including 2, AIN457 (secukinumab) and ixekizumab that are currently in clinical development for the treatment of various inflammatory disorders. These data clearly demonstrate that the human autoantibody repertoire can be mined for antibodies with high therapeutic potential for clinical development.
Collapse
Key Words
- AIN457
- APECED, autoimmune polyendocrinopathy candidiasis ectodermal dystrophy
- CDR, complementary-determining region
- CMC, Chronic mucocutaneous candidiasis
- FACS, fluorescence-activated cell sorting
- HFF-1, Human Foreskin Fibroblasts
- IL17
- IL17A, Interleukin 17A
- PBMCs, peripheral blood mononuclear cells
- RT-PCR, Reverse transcription polymerase chain reaction
- Sindbis virus
- huFc-γ1, human Fc-gamma 1
- human autoantibodies
- ixekizumab
- mAb, monoclonal antibody
- mammalian cell display
- monoclonal antibodies
- scFv-Fc
- scFvs, single chain variable fragments
- secukinumab
Collapse
Affiliation(s)
- Roger R Beerli
- a Valneva Austria GmbH ; Campus Vienna Biocenter 3; Vienna , Austria
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Lefranc MP, Giudicelli V, Duroux P, Jabado-Michaloud J, Folch G, Aouinti S, Carillon E, Duvergey H, Houles A, Paysan-Lafosse T, Hadi-Saljoqi S, Sasorith S, Lefranc G, Kossida S. IMGT®, the international ImMunoGeneTics information system® 25 years on. Nucleic Acids Res 2015; 43:D413-22. [PMID: 25378316 PMCID: PMC4383898 DOI: 10.1093/nar/gku1056] [Citation(s) in RCA: 389] [Impact Index Per Article: 43.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 10/13/2014] [Indexed: 12/20/2022] Open
Abstract
IMGT(®), the international ImMunoGeneTics information system(®)(http://www.imgt.org) is the global reference in immunogenetics and immunoinformatics. By its creation in 1989 by Marie-Paule Lefranc (Université de Montpellier and CNRS), IMGT(®) marked the advent of immunoinformatics, which emerged at the interface between immunogenetics and bioinformatics. IMGT(®) is specialized in the immunoglobulins (IG) or antibodies, T cell receptors (TR), major histocompatibility (MH) and proteins of the IgSF and MhSF superfamilies. IMGT(®) is built on the IMGT-ONTOLOGY axioms and concepts, which bridged the gap between genes, sequences and 3D structures. The concepts include the IMGT(®) standardized keywords (identification), IMGT(®) standardized labels (description), IMGT(®) standardized nomenclature (classification), IMGT unique numbering and IMGT Colliers de Perles (numerotation). IMGT(®) comprises 7 databases, 17 online tools and 15,000 pages of web resources, and provides a high-quality and integrated system for analysis of the genomic and expressed IG and TR repertoire of the adaptive immune responses, including NGS high-throughput data. Tools and databases are used in basic, veterinary and medical research, in clinical applications (mutation analysis in leukemia and lymphoma) and in antibody engineering and humanization. The IMGT/mAb-DB interface was developed for therapeutic antibodies and fusion proteins for immunological applications (FPIA). IMGT(®) is freely available at http://www.imgt.org.
Collapse
Affiliation(s)
- Marie-Paule Lefranc
- IMGT, the international ImMunoGeneTics information system, Université de Montpellier, Laboratoire d'ImmunoGénétique Moléculaire LIGM, UPR CNRS 1142, Institut de Génétique Humaine IGH, 141 rue de la Cardonille, Montpellier, 34396 cedex 5, France
| | - Véronique Giudicelli
- IMGT, the international ImMunoGeneTics information system, Université de Montpellier, Laboratoire d'ImmunoGénétique Moléculaire LIGM, UPR CNRS 1142, Institut de Génétique Humaine IGH, 141 rue de la Cardonille, Montpellier, 34396 cedex 5, France
| | - Patrice Duroux
- IMGT, the international ImMunoGeneTics information system, Université de Montpellier, Laboratoire d'ImmunoGénétique Moléculaire LIGM, UPR CNRS 1142, Institut de Génétique Humaine IGH, 141 rue de la Cardonille, Montpellier, 34396 cedex 5, France
| | - Joumana Jabado-Michaloud
- IMGT, the international ImMunoGeneTics information system, Université de Montpellier, Laboratoire d'ImmunoGénétique Moléculaire LIGM, UPR CNRS 1142, Institut de Génétique Humaine IGH, 141 rue de la Cardonille, Montpellier, 34396 cedex 5, France
| | - Géraldine Folch
- IMGT, the international ImMunoGeneTics information system, Université de Montpellier, Laboratoire d'ImmunoGénétique Moléculaire LIGM, UPR CNRS 1142, Institut de Génétique Humaine IGH, 141 rue de la Cardonille, Montpellier, 34396 cedex 5, France
| | - Safa Aouinti
- IMGT, the international ImMunoGeneTics information system, Université de Montpellier, Laboratoire d'ImmunoGénétique Moléculaire LIGM, UPR CNRS 1142, Institut de Génétique Humaine IGH, 141 rue de la Cardonille, Montpellier, 34396 cedex 5, France
| | - Emilie Carillon
- IMGT, the international ImMunoGeneTics information system, Université de Montpellier, Laboratoire d'ImmunoGénétique Moléculaire LIGM, UPR CNRS 1142, Institut de Génétique Humaine IGH, 141 rue de la Cardonille, Montpellier, 34396 cedex 5, France
| | - Hugo Duvergey
- IMGT, the international ImMunoGeneTics information system, Université de Montpellier, Laboratoire d'ImmunoGénétique Moléculaire LIGM, UPR CNRS 1142, Institut de Génétique Humaine IGH, 141 rue de la Cardonille, Montpellier, 34396 cedex 5, France
| | - Amélie Houles
- IMGT, the international ImMunoGeneTics information system, Université de Montpellier, Laboratoire d'ImmunoGénétique Moléculaire LIGM, UPR CNRS 1142, Institut de Génétique Humaine IGH, 141 rue de la Cardonille, Montpellier, 34396 cedex 5, France
| | - Typhaine Paysan-Lafosse
- IMGT, the international ImMunoGeneTics information system, Université de Montpellier, Laboratoire d'ImmunoGénétique Moléculaire LIGM, UPR CNRS 1142, Institut de Génétique Humaine IGH, 141 rue de la Cardonille, Montpellier, 34396 cedex 5, France
| | - Saida Hadi-Saljoqi
- IMGT, the international ImMunoGeneTics information system, Université de Montpellier, Laboratoire d'ImmunoGénétique Moléculaire LIGM, UPR CNRS 1142, Institut de Génétique Humaine IGH, 141 rue de la Cardonille, Montpellier, 34396 cedex 5, France
| | - Souphatta Sasorith
- IMGT, the international ImMunoGeneTics information system, Université de Montpellier, Laboratoire d'ImmunoGénétique Moléculaire LIGM, UPR CNRS 1142, Institut de Génétique Humaine IGH, 141 rue de la Cardonille, Montpellier, 34396 cedex 5, France
| | - Gérard Lefranc
- IMGT, the international ImMunoGeneTics information system, Université de Montpellier, Laboratoire d'ImmunoGénétique Moléculaire LIGM, UPR CNRS 1142, Institut de Génétique Humaine IGH, 141 rue de la Cardonille, Montpellier, 34396 cedex 5, France
| | - Sofia Kossida
- IMGT, the international ImMunoGeneTics information system, Université de Montpellier, Laboratoire d'ImmunoGénétique Moléculaire LIGM, UPR CNRS 1142, Institut de Génétique Humaine IGH, 141 rue de la Cardonille, Montpellier, 34396 cedex 5, France
| |
Collapse
|
30
|
Lefranc MP. Immunoglobulins: 25 years of immunoinformatics and IMGT-ONTOLOGY. Biomolecules 2014; 4:1102-39. [PMID: 25521638 PMCID: PMC4279172 DOI: 10.3390/biom4041102] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 12/02/2014] [Accepted: 12/03/2014] [Indexed: 11/17/2022] Open
Abstract
IMGT®, the international ImMunoGeneTics information system® (CNRS and Montpellier University) is the global reference in immunogenetics and immunoinformatics. By its creation in 1989, IMGT® marked the advent of immunoinformatics, which emerged at the interface between immunogenetics and bioinformatics. IMGT® is specialized in the immunoglobulins (IG) or antibodies, T cell receptors (TR), major histocompatibility (MH), and IgSF and MhSF superfamilies. IMGT® has been built on the IMGT-ONTOLOGY axioms and concepts, which bridged the gap between genes, sequences and three-dimensional (3D) structures. The concepts include the IMGT® standardized keywords (identification), IMGT® standardized labels (description), IMGT® standardized nomenclature (classification), IMGT unique numbering and IMGT Colliers de Perles (numerotation). IMGT® comprises seven databases, 15,000 pages of web resources and 17 tools. IMGT® tools and databases provide a high-quality analysis of the IG from fish to humans, for basic, veterinary and medical research, and for antibody engineering and humanization. They include, as examples: IMGT/V-QUEST and IMGT/JunctionAnalysis for nucleotide sequence analysis and their high-throughput version IMGT/HighV-QUEST for next generation sequencing, IMGT/DomainGapAlign for amino acid sequence analysis of IG domains, IMGT/3Dstructure-DB for 3D structures, contact analysis and paratope/epitope interactions of IG/antigen complexes, and the IMGT/mAb-DB interface for therapeutic antibodies and fusion proteins for immunological applications (FPIA).
Collapse
Affiliation(s)
- Marie-Paule Lefranc
- IMGT®, the international ImMunoGenetics information system®, Laboratoire d'ImmunoGénétique Moléculaire LIGM, Institut de Génétique Humaine IGH, UPR CNRS 1142, Montpellier University, 141 rue de la Cardonille, 34396 Montpellier cedex 5, France.
| |
Collapse
|
31
|
Alamyar E, Giudicelli V, Duroux P, Lefranc MP. Antibody V and C domain sequence, structure, and interaction analysis with special reference to IMGT®. Methods Mol Biol 2014; 1131:337-81. [PMID: 24515476 DOI: 10.1007/978-1-62703-992-5_21] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
IMGT(®), the international ImMunoGeneTics information system(®) (http://www.imgt.org), created in 1989 (Centre National de la Recherche Scientifique, Montpellier University), is acknowledged as the global reference in immunogenetics and immunoinformatics. The accuracy and the consistency of the IMGT(®) data are based on IMGT-ONTOLOGY which bridges the gap between genes, sequences, and three-dimensional (3D) structures. Thus, receptors, chains, and domains are characterized with the same IMGT(®) rules and standards (IMGT standardized labels, IMGT gene and allele nomenclature, IMGT unique numbering, IMGT Collier de Perles), independently from the molecule type (genomic DNA, complementary DNA, transcript, or protein) or from the species. More particularly, IMGT(®) tools and databases provide a highly standardized analysis of the immunoglobulin (IG) or antibody and T cell receptor (TR) V and C domains. IMGT/V-QUEST analyzes the V domains of IG or TR rearranged nucleotide sequences, integrates the IMGT/JunctionAnalysis and IMGT/Automat tools, and provides IMGT Collier de Perles. IMGT/HighV-QUEST analyzes sequences from high-throughput sequencing (HTS) (up to 150,000 sequences per batch) and performs statistical analysis on up to 450,000 results, with the same resolution and high quality as IMGT/V-QUEST online. IMGT/DomainGapAlign analyzes amino acid sequences of V and C domains and IMGT/3Dstructure-DB and associated tools provide information on 3D structures, contact analysis, and paratope/epitope interactions. These IMGT(®) tools and databases, and the IMGT/mAb-DB interface with access to therapeutical antibody data, provide an invaluable help for antibody engineering and antibody humanization.
Collapse
Affiliation(s)
- Eltaf Alamyar
- The International ImMunoGenetics information system, Laboratoire d'ImmunoGénétique Moléculaire, Institut de Génétique Humaine IGH, Université Montpellier 2, Montpellier, France
| | | | | | | |
Collapse
|
32
|
Abstract
ABSTRACT
Antibody informatics, a part of immunoinformatics, refers to the concepts, databases, and tools developed and used to explore and to analyze the particular properties of the immunoglobulins (IG) or antibodies, compared with conventional genes and proteins. Antibody informatics is based on a unique ontology, IMGT-ONTOLOGY, created in 1989 by IMGT, the international ImMunoGeneTics information system (
http://www.imgt.org
). IMGT-ONTOLOGY defined, for the first time, the concept of ‘genes’ for the IG and the T cell receptors (TR), which led to their gene and allele nomenclature and allowed their entry in databases and tools. A second IMGT-ONTOLOGY revolutionizing and definitive concept was the IMGT unique numbering that bridged the gap between sequences and structures for the variable (V) and constant (C) domains of the IG and TR, and for the groove (G) domains of the major histocompatibility (MH). These breakthroughs contributed to the development of IMGT databases and tools for antibody informatics and its diverse applications, such as repertoire analysis in infectious diseases, antibody engineering and humanization, and study of antibody/antigen interactions. Nucleotide sequences of antibody V domains from deep sequencing (Next Generation Sequencing or High Throughput Sequencing) are analyzed with IMGT/HighV-QUEST, the high-throughput version of IMGT/V-QUEST and IMGT/JunctionAnalysis. Amino acid sequences of V and C domains are represented with the IMGT/Collier-de-Perles tool and analyzed with IMGT/DomainGapAlign. Three-dimensional (3D) structures (including contact analysis and paratope/epitope) are described in IMGT/3Dstructure-DB. Based on a friendly interface, IMGT/mAb-DB contains therapeutic monoclonal antibodies (INN suffix–mab) that can be queried on their specificity, for example, in infectious diseases, on bacterial or viral targets.
Collapse
|
33
|
Lefranc MP. Immunoglobulin and T Cell Receptor Genes: IMGT(®) and the Birth and Rise of Immunoinformatics. Front Immunol 2014; 5:22. [PMID: 24600447 PMCID: PMC3913909 DOI: 10.3389/fimmu.2014.00022] [Citation(s) in RCA: 176] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 01/15/2014] [Indexed: 11/13/2022] Open
Abstract
IMGT(®), the international ImMunoGeneTics information system(®) (1), (CNRS and Université Montpellier 2) is the global reference in immunogenetics and immunoinformatics. By its creation in 1989, IMGT(®) marked the advent of immunoinformatics, which emerged at the interface between immunogenetics and bioinformatics. IMGT(®) is specialized in the immunoglobulins (IG) or antibodies, T cell receptors (TR), major histocompatibility (MH), and proteins of the IgSF and MhSF superfamilies. IMGT(®) has been built on the IMGT-ONTOLOGY axioms and concepts, which bridged the gap between genes, sequences, and three-dimensional (3D) structures. The concepts include the IMGT(®) standardized keywords (concepts of identification), IMGT(®) standardized labels (concepts of description), IMGT(®) standardized nomenclature (concepts of classification), IMGT unique numbering, and IMGT Colliers de Perles (concepts of numerotation). IMGT(®) comprises seven databases, 15,000 pages of web resources, and 17 tools, and provides a high-quality and integrated system for the analysis of the genomic and expressed IG and TR repertoire of the adaptive immune responses. Tools and databases are used in basic, veterinary, and medical research, in clinical applications (mutation analysis in leukemia and lymphoma) and in antibody engineering and humanization. They include, for example IMGT/V-QUEST and IMGT/JunctionAnalysis for nucleotide sequence analysis and their high-throughput version IMGT/HighV-QUEST for next-generation sequencing (500,000 sequences per batch), IMGT/DomainGapAlign for amino acid sequence analysis of IG and TR variable and constant domains and of MH groove domains, IMGT/3Dstructure-DB for 3D structures, contact analysis and paratope/epitope interactions of IG/antigen and TR/peptide-MH complexes and IMGT/mAb-DB interface for therapeutic antibodies and fusion proteins for immune applications (FPIA).
Collapse
Affiliation(s)
- Marie-Paule Lefranc
- The International ImMunoGenetics Information System (IMGT), Laboratoire d’ImmunoGénétique Moléculaire (LIGM), Institut de Génétique Humaine, UPR CNRS, Université Montpellier 2, Montpellier, France
| |
Collapse
|
34
|
Pantazes RJ, Maranas CD. MAPs: a database of modular antibody parts for predicting tertiary structures and designing affinity matured antibodies. BMC Bioinformatics 2013; 14:168. [PMID: 23718826 PMCID: PMC3687570 DOI: 10.1186/1471-2105-14-168] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 05/24/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The de novo design of a novel protein with a particular function remains a formidable challenge with only isolated and hard-to-repeat successes to date. Due to their many structurally conserved features, antibodies are a family of proteins amenable to predictable rational design. Design algorithms must consider the structural diversity of possible naturally occurring antibodies. The human immune system samples this design space (2 1012) by randomly combining variable, diversity, and joining genes in a process known as V-(D)-J recombination. DESCRIPTION By analyzing structural features found in affinity matured antibodies, a database of Modular Antibody Parts (MAPs) analogous to the variable, diversity, and joining genes has been constructed for the prediction of antibody tertiary structures. The database contains 929 parts constructed from an analysis of 1168 human, humanized, chimeric, and mouse antibody structures and encompasses all currently observed structural diversity of antibodies. CONCLUSIONS The generation of 260 antibody structures shows that the MAPs database can be used to reliably predict antibody tertiary structures with an average all-atom RMSD of 1.9 Å. Using the broadly neutralizing anti-influenza antibody CH65 and anti-HIV antibody 4E10 as examples, promising starting antibodies for affinity maturation are identified and amino acid changes are traced as antibody affinity maturation occurs.
Collapse
|
35
|
Walther S, Czerny CP, Diesterbeck US. Exceptionally long CDR3H are not isotype restricted in bovine immunoglobulins. PLoS One 2013; 8:e64234. [PMID: 23717573 PMCID: PMC3661452 DOI: 10.1371/journal.pone.0064234] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 04/13/2013] [Indexed: 11/30/2022] Open
Abstract
Exceptionally long third complementarity determining regions of the heavy chain (CDR3H) were previously described as a specificity of bovine IgG and IgM immunoglobulins. In addition, the genomic organization of the immunoglobulin heavy chain locus remains to be elucidated with a special focus on the number of variable segments (IGHV). By analyzing the variable regions according to the isotype-specific PCR using cDNA-PCR, we were able to prove the existence of exceptional long CDR3H in all bovine isotypes. The corresponding sequences of three distinct amplicons were grouped according to the length of the CDR3H. Sequences of CDR3H possessed 5 to 10, 12 to 31 or at least 48 amino acid residues. Long and mid-length CDR3H were composed of mainly hydrophilic amino acid residues, while short CDR3H also contained hydrophobic amino acid residues. All sequences with long CDR3H were related to the germline variable segment 10. Using the current genome assembly, Bos taurus NCBI build 6.1, the genomic organization of the bovine immunoglobulin heavy-chain locus was analyzed. A main locus was investigated on BTA21. Exons coding for variable, diversity, and joining segments, as well as for the constant regions of different isotypes, were also localized on BTA7, BTA8, and BTA20. Together with the information from unplaced contigs, 36 IGHV were detected of which 13 are putatively functional. Phylogenetic analysis revealed two bovine IGHV families (boVH1, boVH2). Thus, the existence of the two bovine families suggested was demonstrated, where boVH1 comprises all functional segments. This study substantially improves the understanding of the generation of immunoglobulin diversity in cattle.
Collapse
Affiliation(s)
- Stefanie Walther
- Division of Microbiology and Animal Hygiene, Department of Animal Sciences, Faculty of Agricultural Sciences, Institute of Veterinary Medicine, Georg-August University Göttingen, Göttingen, Germany
| | - Claus-Peter Czerny
- Division of Microbiology and Animal Hygiene, Department of Animal Sciences, Faculty of Agricultural Sciences, Institute of Veterinary Medicine, Georg-August University Göttingen, Göttingen, Germany
| | - Ulrike S. Diesterbeck
- Division of Microbiology and Animal Hygiene, Department of Animal Sciences, Faculty of Agricultural Sciences, Institute of Veterinary Medicine, Georg-August University Göttingen, Göttingen, Germany
- * E-mail:
| |
Collapse
|
36
|
Haggart R, Perera J, Huang H. Cloning of a hamster anti-mouse CD79B antibody sequences and identification of a new hamster immunoglobulin lambda constant IGLC gene region. Immunogenetics 2013; 65:473-8. [PMID: 23558558 DOI: 10.1007/s00251-013-0698-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2013] [Accepted: 03/13/2013] [Indexed: 11/24/2022]
Abstract
Anti-CD79 antibodies have been effective at targeting B cell lymphoma cells and depleting B cells in animal models. In order to engineer recombinant antibodies with additional effector functions in mice, we cloned and sequenced the full-length cDNAs of the heavy and light chain of a hamster anti-mouse CD79B antibody. Although hamster antibodies represent a unique source of monoclonal antibodies against mouse, rat, and human antigens, sequence information of hamster immunoglobulins (IG) is sparse. Here, we report a new hamster (Cricetulus migratorius) IG lambda constant (IGLC) gene region that is most homologous to mouse IGLC2 and IGLC3.
Collapse
Affiliation(s)
- Ryan Haggart
- Department of Medicine, Section of Rheumatology, Knapp Center for Lupus and Immunology Research, University of Chicago, Chicago, IL 60637, USA
| | | | | |
Collapse
|
37
|
Vlachakis D, Feidakis C, Megalooikonomou V, Kossida S. IMGT/Collier-de-Perles: a two-dimensional visualization tool for amino acid domain sequences. Theor Biol Med Model 2013; 10:14. [PMID: 23432825 PMCID: PMC3621776 DOI: 10.1186/1742-4682-10-14] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 02/16/2013] [Indexed: 11/23/2022] Open
Abstract
IMGT/Collier-de-Perles is a tool that allows the user to analyze and draw two-dimensional graphical representations (or IMGT Collier de Perles) of protein domains (e.g., hydropathy plots). The IMGT/Collier-de-Perles specializes in the area of immunoglobulins (IG) or antibodies, T cell receptors (TR) and major histocompatibility (MH) of human and other vertebrate species as well as other proteins of the immunoglobulin superfamily (IgSF) and of the major histocompatibility superfamily (MhSF) and related proteins of the immune system of vertebrates and invertebrates.
Collapse
Affiliation(s)
- Dimitrios Vlachakis
- Bioinformatics & Medical Informatics Team, Biomedical Research Foundation, Academy of Athens, Soranou Efessiou 4, Athens 11527, Greece
| | | | | | | |
Collapse
|
38
|
Use of IMGT(®) databases and tools for antibody engineering and humanization. Methods Mol Biol 2012; 907:3-37. [PMID: 22907343 DOI: 10.1007/978-1-61779-974-7_1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
IMGT(®), the international ImMunoGeneTics information system(®) (http://www.imgt.org), was created in 1989 to manage the huge diversity of the antigen receptors, immunoglobulins (IG) or antibodies, and T cell receptors (TR). Standardized sequence and structure analysis of antibody using IMGT(®) databases and tools allows one to bridge, for the first time, the gap between antibody sequences and three-dimensional (3D) structures. This is achieved through the IMGT Scientific chart rules, based on the IMGT-ONTOLOGY concepts of classification (IMGT gene and allele nomenclature), description (IMGT standardized labels), and numerotation (IMGT unique numbering and IMGT Colliers de Perles). IMGT(®) is the international reference for immunogenetics and immunoinformatics and its standards are particularly useful for antibody humanization and evaluation of immunogenicity. IMGT(®) databases for antibody nucleotide sequences and genes include IMGT/LIGM-DB and IMGT/GENE-DB, respectively, whereas nucleotide sequence analysis is performed by the IMGT/V-QUEST, IMGT/HighV-QUEST, and IMGT/JunctionAnalysis tools. In this chapter, we focus on IMGT(®) databases and tools for amino acid sequences, two-dimensional (2D) and three-dimensional (3D) structures: the IMGT/DomainGapAlign and IMGT/Collier-de-Perles tools, the IMGT/2Dstructure-DB database for amino acid sequences of monoclonal antibodies (mAb, suffix -mab) and fusion proteins for immune applications (FPIA, suffix -cept) of the World Health Organization/International Nonproprietary Name (WHO/INN) programme and other proteins of interest, and the IMGT/3Dstructure-DB database for crystallized antibodies and its associated tools (IMGT/StructuralQuery, IMGT/DomainSuperimpose).
Collapse
|
39
|
Abstract
Immunogenetics is the science that studies the genetics of the immune system and immune responses. Owing to the complexity and diversity of the immune repertoire, immunogenetics represents one of the greatest challenges for data interpretation: a large biological expertise, a considerable effort of standardization and the elaboration of an efficient system for the management of the related knowledge were required. IMGT®, the international ImMunoGeneTics information system® (http://www.imgt.org) has reached that goal through the building of a unique ontology, IMGT-ONTOLOGY, which represents the first ontology for the formal representation of knowledge in immunogenetics and immunoinformatics. IMGT-ONTOLOGY manages the immunogenetics knowledge through diverse facets that rely on the seven axioms of the Formal IMGT-ONTOLOGY or IMGT-Kaleidoscope: “IDENTIFICATION,” “DESCRIPTION,” “CLASSIFICATION,” “NUMEROTATION,” “LOCALIZATION,” “ORIENTATION,” and “OBTENTION.” The concepts of identification, description, classification, and numerotation generated from the axioms led to the elaboration of the IMGT® standards that constitute the IMGT Scientific chart: IMGT® standardized keywords (concepts of identification), IMGT® standardized labels (concepts of description), IMGT® standardized gene and allele nomenclature (concepts of classification) and IMGT unique numbering and IMGT Collier de Perles (concepts of numerotation). IMGT-ONTOLOGY has become the global reference in immunogenetics and immunoinformatics for the knowledge representation of immunoglobulins (IG) or antibodies, T cell receptors (TR), and major histocompatibility (MH) proteins of humans and other vertebrates, proteins of the immunoglobulin superfamily (IgSF) and MH superfamily (MhSF), related proteins of the immune system (RPI) of vertebrates and invertebrates, therapeutic monoclonal antibodies (mAbs), fusion proteins for immune applications (FPIA), and composite proteins for clinical applications (CPCA).
Collapse
Affiliation(s)
- Véronique Giudicelli
- IMGT® the international ImMunoGenetics information system® Université Montpellier 2, Laboratoire d'ImmunoGénétique Moléculaire, Institut de Génétique Humaine, UPR CNRS Montpellier, France
| | | |
Collapse
|
40
|
Giudicelli V, Lefranc MP. IMGT/junctionanalysis: IMGT standardized analysis of the V-J and V-D-J junctions of the rearranged immunoglobulins (IG) and T cell receptors (TR). Cold Spring Harb Protoc 2011; 2011:716-725. [PMID: 21632777 DOI: 10.1101/pdb.prot5634] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
INTRODUCTIONIMGT/JunctionAnalysis is the online IMGT tool for the detailed and standardized analysis of the junctions between the variable (V), diversity (D), and joining (J) genes (V-J and V-D-J junctions) of the rearranged immunoglobulin (IG) or antibody and T cell receptor (TR) variable domains. The V-(D)-J junctions comprise the rearranged CDR3-IMGT and its anchors 2nd-CYS 104 and J-PHE or J-TRP 118. The diversity of the junctions that determines the antigen receptor specificity results from complex molecular mechanisms that occur at the DNA level during the IG and TR synthesis and create combinatorial diversity, N-diversity and, for IG, somatic hypermutations. The annotation of V-J or V-D-J junctions in rearranged IG and TR sequences represents a huge challenge due to its uniqueness and complexity. IMGT/JunctionAnalysis has been a major breakthrough by providing, for the first time, a very detailed and accurate analysis of the junctions. The tool, whose use is described here, identifies the D genes in the IGH, TRB, and TRD junctions, the trimmed nucleotides (nt) at the end of the genes which recombine, and the palindromic P regions in the absence of gene trimming. It delimits the N regions that result from the N-diversity, calculates the ratio of G+C nucleotides in the N regions, and evaluates the number of somatic hypermutations for each gene within the junction.
Collapse
Affiliation(s)
- Véronique Giudicelli
- IMGT, international ImMunoGeneTics information system, Laboratoire d'ImmunoGénétique Moléculaire LIGM, Université Montpellier 2, Institut de Génétique Humaine IGH, UPR CNRS 1142, 34396 Montpellier cedex 5, France
| | | |
Collapse
|
41
|
Lefranc MP. IMGT Collier de Perles for the variable (V), constant (C), and groove (G) domains of IG, TR, MH, IgSF, and MhSF. Cold Spring Harb Protoc 2011; 2011:643-651. [PMID: 21632788 DOI: 10.1101/pdb.ip86] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
INTRODUCTIONThe “IMGT Collier de Perles” (or “IMGT_Collier_de_Perles”) concept is a major concept of numerotation (generated from the NUMEROTATION axiom) of IMGT-ONTOLOGY, the global reference in immunogenetics and immunoinformatics, built by IMGT, the international ImMunoGeneTics information system. The “IMGT Collier de Perles” concept, described here, allows standardized two-dimensional (2D) graphical representations of the domains, based on the IMGT unique numbering. Three leafconcepts (a leafconcept is a concept that corresponds to the finest level of granularity) have been defined: for the variable (V) domain and constant (C) domain of the immunoglobulin superfamily (IgSF) and for the groove (G) domain of the major histocompatibility (MH) superfamily (MhSF). IMGT Colliers de Perles are obtained, starting from V, C, or G domain amino acid sequences, using IMGT/DomainGapAlign and IMGT/Collier de Perles tools. In IMGT/3Dstructure-DB, IMGT Colliers de Perles of V and C domains are provided with hydrogen bonds and those of G domains with IMGT pMH contact analysis. IMGT Colliers de Perles allows one to bridge the gap between sequences and three-dimensional (3D) structures, whatever the species, the IgSF or MhSF protein, or the chain type. They are particularly useful for antibody engineering, sequence-structure analysis, visualization and comparison of positions for mutations, polymorphisms and contact analysis of immunoglobulins (IG), T cell receptors (TR), MH, and related proteins of the immune system (RPI) belonging to the IgSF and MhSF.
Collapse
Affiliation(s)
- Marie-Paule Lefranc
- IMGT, international ImMunoGeneTics information system, Laboratoire d'ImmunoGénétique Moléculaire LIGM, Université Montpellier 2, Institut de Génétique Humaine IGH, UPR CNRS 1142, 34396 Montpellier cedex 5, France.
| |
Collapse
|
42
|
Lefranc MP. IMGT, the International ImMunoGeneTics Information System. Cold Spring Harb Protoc 2011; 2011:595-603. [PMID: 21632786 DOI: 10.1101/pdb.top115] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Marie-Paule Lefranc
- IMGT, international ImMunoGeneTics information system, Laboratoire d'ImmunoGénétique Moléculaire LIGM, Université Montpellier 2, Institut de Génétique Humaine IGH, UPR CNRS 1142, 34396 Montpellier cedex 5, France.
| |
Collapse
|
43
|
Lefranc MP. From IMGT-ONTOLOGY DESCRIPTION axiom to IMGT standardized labels: for immunoglobulin (IG) and T cell receptor (TR) sequences and structures. Cold Spring Harb Protoc 2011; 2011:614-26. [PMID: 21632791 DOI: 10.1101/pdb.ip83] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Marie-Paule Lefranc
- IMGT, international ImMunoGeneTics information system, Laboratoire d'ImmunoGénétique Moléculaire LIGM, Université Montpellier 2, Institut de Génétique Humaine IGH, UPR CNRS 1142, 34396 Montpellier cedex 5, France.
| |
Collapse
|
44
|
Giudicelli V, Brochet X, Lefranc MP. IMGT/V-QUEST: IMGT standardized analysis of the immunoglobulin (IG) and T cell receptor (TR) nucleotide sequences. Cold Spring Harb Protoc 2011; 2011:695-715. [PMID: 21632778 DOI: 10.1101/pdb.prot5633] [Citation(s) in RCA: 203] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Véronique Giudicelli
- IMGT, international ImMunoGeneTics information system, Laboratoire d'ImmunoGénétique Moléculaire LIGM, Université Montpellier 2, Institut de Génétique Humaine IGH, UPR CNRS 1142, 34396 Montpellier cedex 5, France
| | | | | |
Collapse
|
45
|
Ehrenmann F, Lefranc MP. IMGT/3Dstructure-DB: querying the IMGT database for 3D structures in immunology and immunoinformatics (IG or antibodies, TR, MH, RPI, and FPIA). Cold Spring Harb Protoc 2011; 2011:750-61. [PMID: 21632774 DOI: 10.1101/pdb.prot5637] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- François Ehrenmann
- IMGT, international ImMunoGeneTics information system, Laboratoire d'ImmunoGénétique Moléculaire LIGM, Université Montpellier 2, Institut de Génétique Humaine IGH, UPR CNRS 1142, 34396 Montpellier cedex 5, France
| | | |
Collapse
|
46
|
Lefranc MP. From IMGT-ONTOLOGY IDENTIFICATION axiom to IMGT standardized keywords: for immunoglobulins (IG), T cell receptors (TR), and conventional genes. Cold Spring Harb Protoc 2011; 2011:604-13. [PMID: 21632792 DOI: 10.1101/pdb.ip82] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Marie-Paule Lefranc
- IMGT, international ImMunoGeneTics information system, Laboratoire d'ImmunoGénétique Moléculaire LIGM, Université Montpellier 2, Institut de Génétique Humaine IGH, UPR CNRS 1142, 34396 Montpellier cedex 5, France.
| |
Collapse
|
47
|
Ehrenmann F, Giudicelli V, Duroux P, Lefranc MP. IMGT/Collier de Perles: IMGT standardized representation of domains (IG, TR, and IgSF variable and constant domains, MH and MhSF groove domains). Cold Spring Harb Protoc 2011; 2011:726-36. [PMID: 21632776 DOI: 10.1101/pdb.prot5635] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- François Ehrenmann
- IMGT, international ImMunoGeneTics information system, Laboratoire d'ImmunoGénétique Moléculaire LIGM, Université Montpellier 2, Institut de Génétique Humaine IGH, UPR CNRS 1142, 34396 Montpellier cedex 5, France
| | | | | | | |
Collapse
|
48
|
Lefranc MP. From IMGT-ONTOLOGY CLASSIFICATION Axiom to IMGT standardized gene and allele nomenclature: for immunoglobulins (IG) and T cell receptors (TR). Cold Spring Harb Protoc 2011; 2011:627-32. [PMID: 21632790 DOI: 10.1101/pdb.ip84] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Marie-Paule Lefranc
- IMGT, international ImMunoGeneTics information system, Laboratoire d'ImmunoGénétique Moléculaire LIGM, Université Montpellier 2, Institut de Génétique Humaine IGH, UPR CNRS 1142, 34396 Montpellier cedex 5, France
| |
Collapse
|
49
|
Lefranc MP. IMGT unique numbering for the variable (V), constant (C), and groove (G) domains of IG, TR, MH, IgSF, and MhSF. Cold Spring Harb Protoc 2011; 2011:633-42. [PMID: 21632789 DOI: 10.1101/pdb.ip85] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Marie-Paule Lefranc
- IMGT, international ImMunoGeneTics information system, Laboratoire d'ImmunoGénétique Moléculaire LIGM, Université Montpellier 2, Institut de Génétique Humaine IGH, UPR CNRS 1142, 34396 Montpellier cedex 5, France.
| |
Collapse
|