1
|
Laso Garcia A, Yang L, Bouffetier V, Appel K, Baehtz C, Hagemann J, Höppner H, Humphries O, Kluge T, Mishchenko M, Nakatsutsumi M, Pelka A, Preston TR, Randolph L, Zastrau U, Cowan TE, Huang L, Toncian T. Cylindrical compression of thin wires by irradiation with a Joule-class short-pulse laser. Nat Commun 2024; 15:7896. [PMID: 39266548 PMCID: PMC11392940 DOI: 10.1038/s41467-024-52232-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 08/30/2024] [Indexed: 09/14/2024] Open
Abstract
Equation of state measurements at Jovian or stellar conditions are currently conducted by dynamic shock compression driven by multi-kilojoule multi-beam nanosecond-duration lasers. These experiments require precise design of the target and specific tailoring of the spatial and temporal laser profiles to reach the highest pressures. At the same time, the studies are limited by the low repetition rate of the lasers. Here, we show that by the irradiation of a thin wire with single-beam Joule-class short-pulse laser, a converging cylindrical shock is generated compressing the wire material to conditions relevant to the above applications. The shockwave was observed using Phase Contrast Imaging employing a hard X-ray Free Electron Laser with unprecedented temporal and spatial sensitivity. The data collected for Cu wires is in agreement with hydrodynamic simulations of an ablative shock launched by highly impulsive and transient resistive heating of the wire surface. The subsequent cylindrical shockwave travels toward the wire axis and is predicted to reach a compression factor of 9 and pressures above 800 Mbar. Simulations for astrophysical relevant materials underline the potential of this compression technique as a new tool for high energy density studies at high repetition rates.
Collapse
Affiliation(s)
- Alejandro Laso Garcia
- Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, Dresden, 01328, Germany
| | - Long Yang
- Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, Dresden, 01328, Germany
| | | | - Karen Appel
- European XFEL, Holzkoppel 4, Schenefeld, 22869, Germany
| | - Carsten Baehtz
- Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, Dresden, 01328, Germany
| | - Johannes Hagemann
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 86, Hamburg, 22607, Germany
| | - Hauke Höppner
- Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, Dresden, 01328, Germany
| | | | - Thomas Kluge
- Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, Dresden, 01328, Germany
| | | | | | - Alexander Pelka
- Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, Dresden, 01328, Germany
| | | | - Lisa Randolph
- European XFEL, Holzkoppel 4, Schenefeld, 22869, Germany
| | - Ulf Zastrau
- European XFEL, Holzkoppel 4, Schenefeld, 22869, Germany
| | - Thomas E Cowan
- Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, Dresden, 01328, Germany
- Technische Universität Dresden, Dresden, 01062, Germany
| | - Lingen Huang
- Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, Dresden, 01328, Germany.
| | - Toma Toncian
- Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, Dresden, 01328, Germany.
| |
Collapse
|
2
|
Lee Y, Oang KY, Kim D, Ihee H. A comparative review of time-resolved x-ray and electron scattering to probe structural dynamics. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2024; 11:031301. [PMID: 38706888 PMCID: PMC11065455 DOI: 10.1063/4.0000249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/10/2024] [Indexed: 05/07/2024]
Abstract
The structure of molecules, particularly the dynamic changes in structure, plays an essential role in understanding physical and chemical phenomena. Time-resolved (TR) scattering techniques serve as crucial experimental tools for studying structural dynamics, offering direct sensitivity to molecular structures through scattering signals. Over the past decade, the advent of x-ray free-electron lasers (XFELs) and mega-electron-volt ultrafast electron diffraction (MeV-UED) facilities has ushered TR scattering experiments into a new era, garnering significant attention. In this review, we delve into the basic principles of TR scattering experiments, especially focusing on those that employ x-rays and electrons. We highlight the variations in experimental conditions when employing x-rays vs electrons and discuss their complementarity. Additionally, cutting-edge XFELs and MeV-UED facilities for TR x-ray and electron scattering experiments and the experiments performed at those facilities are reviewed. As new facilities are constructed and existing ones undergo upgrades, the landscape for TR x-ray and electron scattering experiments is poised for further expansion. Through this review, we aim to facilitate the effective utilization of these emerging opportunities, assisting researchers in delving deeper into the intricate dynamics of molecular structures.
Collapse
Affiliation(s)
| | - Key Young Oang
- Radiation Center for Ultrafast Science, Korea Atomic Energy Research Institute (KAERI), Daejeon 34057, South Korea
| | | | | |
Collapse
|
3
|
Zhang M, Li S, Yang H, Song G, Wu C, Li Z. Structure and Ultrafast X-ray Diffraction of the Hydrated Metaphosphate. J Phys Chem A 2024; 128:3086-3094. [PMID: 38605669 DOI: 10.1021/acs.jpca.4c00346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
We study the pathway of metaphosphate hydration when a metaphosphate anion is dissolved in liquid water with an explicit water model. For this purpose, we propose a sequential Monte Carlo algorithm incorporated with the ab initio quantum mechanics/molecular mechanics (QM/MM) method, which can reduce the amount of ab initio QM/MM sampling while retaining the accuracy of the simulation. We demonstrate the numerical calculation of the standard enthalpy change for the successive addition reaction PO3-·2H2O + H2O ⇌ PO3-·3H2O in the liquid phase, which helps to clarify the hydration pathway of the metaphosphate. With the obtained hydrated structure of the metaphosphate anion, we perform ab initio calculations for its relaxation dynamics upon vibrational excitation and characterize the energy transfer process in solution with simulated ultrafast X-ray diffraction signals, which can be experimentally implemented with X-ray free-electron lasers.
Collapse
Affiliation(s)
- Ming Zhang
- State Key Laboratory for Mesoscopic Physics and Collaborative Innovation Center of Quantum Matter, School of Physics, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Sizhe Li
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Hanwei Yang
- State Key Laboratory for Mesoscopic Physics and Collaborative Innovation Center of Quantum Matter, School of Physics, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Gaoxing Song
- State Key Laboratory for Mesoscopic Physics and Collaborative Innovation Center of Quantum Matter, School of Physics, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Chengyin Wu
- State Key Laboratory for Mesoscopic Physics and Collaborative Innovation Center of Quantum Matter, School of Physics, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, Jiangsu 226010, China
| | - Zheng Li
- State Key Laboratory for Mesoscopic Physics and Collaborative Innovation Center of Quantum Matter, School of Physics, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, Jiangsu 226010, China
| |
Collapse
|
4
|
Renganathan P, Sharma SM, Turneaure SJ, Gupta YM. Real-time (nanoseconds) determination of liquid phase growth during shock-induced melting. SCIENCE ADVANCES 2023; 9:eade5745. [PMID: 36827368 PMCID: PMC9956119 DOI: 10.1126/sciadv.ade5745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
Melting of solids is a fundamental natural phenomenon whose pressure dependence has been of interest for nearly a century. However, the temporal evolution of the molten phase under pressure has eluded measurements because of experimental challenges. By using the shock front as a fiducial, we investigated the time-dependent growth of the molten phase in shock-compressed germanium. In situ x-ray diffraction measurements at different times (1 to 6 nanoseconds) behind the shock front quantified the real-time growth of the liquid phase at several peak stresses. These results show that the characteristic time for melting in shock-compressed germanium decreases from ~7.2 nanoseconds at 35 gigapascals to less than 1 nanosecond at 42 gigapascals. Our melting kinetics results suggest the need to consider heterogeneous nucleation as a mechanism for shock-induced melting and provide an approach to measuring melting kinetics in shock-compressed solids.
Collapse
Affiliation(s)
- Pritha Renganathan
- Institute for Shock Physics, Washington State University, Pullman, WA 99164, USA
| | - Surinder M. Sharma
- Institute for Shock Physics, Washington State University, Pullman, WA 99164, USA
| | - Stefan J. Turneaure
- Institute for Shock Physics, Washington State University, Pullman, WA 99164, USA
| | - Yogendra M. Gupta
- Institute for Shock Physics, Washington State University, Pullman, WA 99164, USA
- Department of Physics and Astronomy, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
5
|
Celliers PM, Millot M. Imaging velocity interferometer system for any reflector (VISAR) diagnostics for high energy density sciences. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2023; 94:011101. [PMID: 36725591 DOI: 10.1063/5.0123439] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/28/2022] [Indexed: 06/18/2023]
Abstract
Two variants of optical imaging velocimetry, specifically the one-dimensional streaked line-imaging and the two-dimensional time-resolved area-imaging versions of the Velocity Interferometer System for Any Reflector (VISAR), have become important diagnostics in high energy density sciences, including inertial confinement fusion and dynamic compression of condensed matter. Here, we give a brief review of the historical development of these techniques, then describe the current implementations at major high energy density (HED) facilities worldwide, including the OMEGA Laser Facility and the National Ignition Facility. We illustrate the versatility and power of these techniques by reviewing diverse applications of imaging VISARs for gas-gun and laser-driven dynamic compression experiments for materials science, shock physics, condensed matter physics, chemical physics, plasma physics, planetary science and astronomy, as well as a broad range of HED experiments and laser-driven inertial confinement fusion research.
Collapse
Affiliation(s)
- Peter M Celliers
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - Marius Millot
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| |
Collapse
|
6
|
Singh S, Coleman AL, Zhang S, Coppari F, Gorman MG, Smith RF, Eggert JH, Briggs R, Fratanduono DE. Quantitative analysis of diffraction by liquids using a pink-spectrum X-ray source. JOURNAL OF SYNCHROTRON RADIATION 2022; 29:1033-1042. [PMID: 35787571 PMCID: PMC9255578 DOI: 10.1107/s1600577522004076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 04/15/2022] [Indexed: 06/15/2023]
Abstract
A new approach for performing quantitative structure-factor analysis and density measurements of liquids using X-ray diffraction with a pink-spectrum X-ray source is described. The methodology corrects for the pink beam effect by performing a Taylor series expansion of the diffraction signal. The mean density, background scale factor, peak X-ray energy about which the expansion is performed, and the cutoff radius for density measurement are estimated using the derivative-free optimization scheme. The formalism is demonstrated for a simulated radial distribution function for tin. Finally, the proposed methodology is applied to experimental data on shock compressed tin recorded at the Dynamic Compression Sector at the Advanced Photon Source, with derived densities comparing favorably with other experimental results and the equations of state of tin.
Collapse
Affiliation(s)
- Saransh Singh
- Lawrence Livermore National Laboratory, Computational Engineering Division, Livermore, CA 94511, USA
| | - Amy L. Coleman
- Lawrence Livermore National Laboratory, Computational Engineering Division, Livermore, CA 94511, USA
| | - Shuai Zhang
- Laboratory for Laser Energetics, University of Rochester, Rochester, NY 14623, USA
| | - Federica Coppari
- Lawrence Livermore National Laboratory, Computational Engineering Division, Livermore, CA 94511, USA
| | - Martin G. Gorman
- Lawrence Livermore National Laboratory, Computational Engineering Division, Livermore, CA 94511, USA
| | - Raymond F. Smith
- Lawrence Livermore National Laboratory, Computational Engineering Division, Livermore, CA 94511, USA
| | - Jon H. Eggert
- Lawrence Livermore National Laboratory, Computational Engineering Division, Livermore, CA 94511, USA
| | - Richard Briggs
- Lawrence Livermore National Laboratory, Computational Engineering Division, Livermore, CA 94511, USA
| | - Dayne E. Fratanduono
- Lawrence Livermore National Laboratory, Computational Engineering Division, Livermore, CA 94511, USA
| |
Collapse
|
7
|
Zhu SC, Huang ZB, Hu Q, Xu L. Pressure tuned incommensurability and guest structure transition in compressed scandium from machine learning atomic simulation. Phys Chem Chem Phys 2022; 24:7007-7013. [PMID: 35254347 DOI: 10.1039/d1cp05803g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Scandium (Sc) is the lightest non-main-group element and transforms to a host-guest (H-G) incommensurate structure under gigapascal (GPa) pressures. While the host structure is stable over a wide pressure range, the guest structure may exist in multiple forms, featuring different incommensurate ratios, and mixing up to generate long-range "disordered" guest structures. Here, we employed the recently developed global neural network (g-NN) potential and the stochastic surface walking (SSW) global optimization algorithm to explore the global potential energy surface of Sc under various pressures. We probe the global minima structure in a system made of hundreds of atoms and revealed that the solid-phase transition between Sc-I and H-G Sc-II phases is fully reconstructive in nature. Above 62.5 GPa, the pressure will further destabilize the face-centered tetragonal (fct, Sc-IIa) guest structure to a body-centered tetragonal phase (bct, Sc-IIb), while sustaining the host structure. The structural transition mechanism of this work will shed light on the nature of the complex H-G structural modifications in compressed metals.
Collapse
Affiliation(s)
- Sheng-Cai Zhu
- School of Materials, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China.
| | - Zhen-Bo Huang
- School of Materials, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China.
| | - Qingyang Hu
- Center for High Pressure Science and Technology Advanced Research, Beijing 100094, P. R. China.,CAS Center for Excellence in Deep Earth Science, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, P. R. China
| | - Liang Xu
- National Key Laboratory of Shock Wave and Detonation Physics, Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang 621900, China
| |
Collapse
|
8
|
McMahon MI. Probing extreme states of matter using ultra-intense x-ray radiation. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 34:043001. [PMID: 33725673 DOI: 10.1088/1361-648x/abef26] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 03/16/2021] [Indexed: 06/12/2023]
Abstract
Extreme states of matter, that is, matter at extremes of density (pressure) and temperature, can be created in the laboratory either statically or dynamically. In the former, the pressure-temperature state can be maintained for relatively long periods of time, but the sample volume is necessarily extremely small. When the extreme states are generated dynamically, the sample volumes can be larger, but the pressure-temperature conditions are maintained for only short periods of time (ps toμs). In either case, structural information can be obtained from the extreme states by the use of x-ray scattering techniques, but the x-ray beam must be extremely intense in order to obtain sufficient signal from the extremely-small or short-lived sample. In this article I describe the use of x-ray diffraction at synchrotrons and XFELs to investigate how crystal structures evolve as a function of density and temperature. After a brief historical introduction, I describe the developments made at the Synchrotron Radiation Source in the 1990s which enabled the almost routine determination of crystal structure at high pressures, while also revealing that the structural behaviour of materials was much more complex than previously believed. I will then describe how these techniques are used at the current generation of synchrotron and XFEL sources, and then discuss how they might develop further in the future at the next generation of x-ray lightsources.
Collapse
Affiliation(s)
- M I McMahon
- SUPA, School of Physics and Astronomy, and Centre for Science at Extreme Conditions, The University of Edinburgh, Peter Guthrie Tait Road, Edinburgh, EH9 3FD, United Kingdom
| |
Collapse
|
9
|
Denoeud A, Hernandez JA, Vinci T, Benuzzi-Mounaix A, Brygoo S, Berlioux A, Lefevre F, Sollier A, Videau L, Ravasio A, Guarguaglini M, Duthoit L, Loison D, Brambrink E. X-ray powder diffraction in reflection geometry on multi-beam kJ-type laser facilities. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2021; 92:013902. [PMID: 33514214 DOI: 10.1063/5.0020261] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 12/16/2020] [Indexed: 06/12/2023]
Abstract
An ultrafast x-ray powder diffraction setup for laser-driven dynamic compression has been developed at the LULI2000 laser facility. X-ray diffraction is performed in reflection geometry from a quasi-monochromatic laser-generated plasma x-ray source. In comparison to a transmission geometry setup, this configuration allows us to probe only a small portion of the compressed sample, as well as to shield the detectors against the x-rays generated by the laser-plasma interaction on the front side of the target. Thus, this new platform facilitates probing of spatially and temporarily uniform thermodynamic conditions and enables us to study samples of a large range of atomic numbers, thicknesses, and compression dynamics. As a proof-of-concept, we report direct structural measurements of the bcc-hcp transition both in shock and ramp-compressed polycrystalline iron with diffraction signals recorded between 2θ ∼ 30° and ∼150°. In parallel, the pressure and temperature history of probed samples is measured by rear-side visible diagnostics (velocimetry and pyrometry).
Collapse
Affiliation(s)
- A Denoeud
- CEA, DAM, DIF, F-91297 Arpajon, France
| | - J-A Hernandez
- LULI, CNRS, CEA, Sorbonne Université, École Polytechnique, Institut Polytechnique de Paris, F-91128 Palaiseau, France
| | - T Vinci
- LULI, CNRS, CEA, Sorbonne Université, École Polytechnique, Institut Polytechnique de Paris, F-91128 Palaiseau, France
| | - A Benuzzi-Mounaix
- LULI, CNRS, CEA, Sorbonne Université, École Polytechnique, Institut Polytechnique de Paris, F-91128 Palaiseau, France
| | - S Brygoo
- CEA, DAM, DIF, F-91297 Arpajon, France
| | - A Berlioux
- LULI, CNRS, CEA, Sorbonne Université, École Polytechnique, Institut Polytechnique de Paris, F-91128 Palaiseau, France
| | - F Lefevre
- LULI, CNRS, CEA, Sorbonne Université, École Polytechnique, Institut Polytechnique de Paris, F-91128 Palaiseau, France
| | - A Sollier
- CEA, DAM, DIF, F-91297 Arpajon, France
| | - L Videau
- CEA, DAM, DIF, F-91297 Arpajon, France
| | - A Ravasio
- LULI, CNRS, CEA, Sorbonne Université, École Polytechnique, Institut Polytechnique de Paris, F-91128 Palaiseau, France
| | - M Guarguaglini
- LULI, CNRS, CEA, Sorbonne Université, École Polytechnique, Institut Polytechnique de Paris, F-91128 Palaiseau, France
| | - L Duthoit
- CEA, DAM, DIF, F-91297 Arpajon, France
| | - D Loison
- Univ Rennes, CNRS, IPR (Institut de Physique de Rennes)-UMR 6251, F-35000 Rennes, France
| | - E Brambrink
- LULI, CNRS, CEA, Sorbonne Université, École Polytechnique, Institut Polytechnique de Paris, F-91128 Palaiseau, France
| |
Collapse
|
10
|
Descamps A, Ofori-Okai BK, Appel K, Cerantola V, Comley A, Eggert JH, Fletcher LB, Gericke DO, Göde S, Humphries O, Karnbach O, Lazicki A, Loetzsch R, McGonegle D, Palmer CAJ, Plueckthun C, Preston TR, Redmer R, Senesky DG, Strohm C, Uschmann I, White TG, Wollenweber L, Monaco G, Wark JS, Hastings JB, Zastrau U, Gregori G, Glenzer SH, McBride EE. An approach for the measurement of the bulk temperature of single crystal diamond using an X-ray free electron laser. Sci Rep 2020; 10:14564. [PMID: 32884061 PMCID: PMC7471281 DOI: 10.1038/s41598-020-71350-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 08/06/2020] [Indexed: 11/25/2022] Open
Abstract
We present a method to determine the bulk temperature of a single crystal diamond sample at an X-Ray free electron laser using inelastic X-ray scattering. The experiment was performed at the high energy density instrument at the European XFEL GmbH, Germany. The technique, based on inelastic X-ray scattering and the principle of detailed balance, was demonstrated to give accurate temperature measurements, within [Formula: see text] for both room temperature diamond and heated diamond to 500 K. Here, the temperature was increased in a controlled way using a resistive heater to test theoretical predictions of the scaling of the signal with temperature. The method was tested by validating the energy of the phonon modes with previous measurements made at room temperature using inelastic X-ray scattering and neutron scattering techniques. This technique could be used to determine the bulk temperature in transient systems with a temporal resolution of 50 fs and for which accurate measurements of thermodynamic properties are vital to build accurate equation of state and transport models.
Collapse
Affiliation(s)
- A Descamps
- SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA.
- Aeronautics and Astronautics Department, Stanford University, Stanford, CA, 94305, USA.
| | - B K Ofori-Okai
- SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - K Appel
- European X-Ray Free-Electron Laser Facility GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - V Cerantola
- European X-Ray Free-Electron Laser Facility GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - A Comley
- Atomic Weapons Establishment, Aldermaston, Reading, RG7 4PR, UK
| | - J H Eggert
- Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | - L B Fletcher
- SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - D O Gericke
- Centre for Fusion, Space and Astrophysics, Department of Physics, University of Warwick, Coventry, CV4 7AL, UK
| | - S Göde
- European X-Ray Free-Electron Laser Facility GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - O Humphries
- Department of Physics, Clarendon Laboratory, University of Oxford, Parks Road, Oxford, OX1 3PU, UK
| | - O Karnbach
- Department of Physics, Clarendon Laboratory, University of Oxford, Parks Road, Oxford, OX1 3PU, UK
| | - A Lazicki
- Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | - R Loetzsch
- Institut für Optik und Quantenelektronik, Friedrich-Schiller-Universität Jena, Max-Wien-Platz 1, 07743, Jena, Germany
- Helmholtz-Institut Jena, Fröbelstieg 3, 07743, Jena, Germany
| | - D McGonegle
- Atomic Weapons Establishment, Aldermaston, Reading, RG7 4PR, UK
- Department of Physics, Clarendon Laboratory, University of Oxford, Parks Road, Oxford, OX1 3PU, UK
| | - C A J Palmer
- School of Mathematics and Physics, Queen's University, University Road BT7 1NN, Belfast, UK
| | - C Plueckthun
- European X-Ray Free-Electron Laser Facility GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - T R Preston
- European X-Ray Free-Electron Laser Facility GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - R Redmer
- Institut für Physik, Universität Rostock, A.-Einstein-Str. 23-24, 18059, Rostock, Germany
| | - D G Senesky
- Aeronautics and Astronautics Department, Stanford University, Stanford, CA, 94305, USA
| | - C Strohm
- European X-Ray Free-Electron Laser Facility GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
- Deutsches Elektronen Synchrotron, Notkestrasse 85, 22607, Hamburg, Germany
| | - I Uschmann
- Institut für Optik und Quantenelektronik, Friedrich-Schiller-Universität Jena, Max-Wien-Platz 1, 07743, Jena, Germany
- Helmholtz-Institut Jena, Fröbelstieg 3, 07743, Jena, Germany
| | - T G White
- University of Nevada, Reno, NV, 89557, USA
| | - L Wollenweber
- European X-Ray Free-Electron Laser Facility GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - G Monaco
- Dipartimento di Fisica, Università di Trento, Via Sommarive 14, 38123, Povo, TN, Italy
| | - J S Wark
- Department of Physics, Clarendon Laboratory, University of Oxford, Parks Road, Oxford, OX1 3PU, UK
| | - J B Hastings
- SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - U Zastrau
- European X-Ray Free-Electron Laser Facility GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - G Gregori
- Department of Physics, Clarendon Laboratory, University of Oxford, Parks Road, Oxford, OX1 3PU, UK
| | - S H Glenzer
- SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - E E McBride
- SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| |
Collapse
|
11
|
Investigating off-Hugoniot states using multi-layer ring-up targets. Sci Rep 2020; 10:13172. [PMID: 32764631 PMCID: PMC7413406 DOI: 10.1038/s41598-020-68544-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 05/29/2020] [Indexed: 12/04/2022] Open
Abstract
Laser compression has long been used as a method to study solids at high pressure. This is commonly achieved by sandwiching a sample between two diamond anvils and using a ramped laser pulse to slowly compress the sample, while keeping it cool enough to stay below the melt curve. We demonstrate a different approach, using a multilayer ‘ring-up’ target whereby laser-ablation pressure compresses Pb up to 150 GPa while keeping it solid, over two times as high in pressure than where it would shock melt on the Hugoniot. We find that the efficiency of this approach compares favourably with the commonly used diamond sandwich technique and could be important for new facilities located at XFELs and synchrotrons which often have higher repetition rate, lower energy lasers which limits the achievable pressures that can be reached.
Collapse
|
12
|
Pace EJ, Coleman AL, Husband RJ, Hwang H, Choi J, Kim T, Hwang G, Chun SH, Nam D, Kim S, Ball OB, Liermann HP, McMahon MI, Lee Y, McWilliams RS. Intense Reactivity in Sulfur-Hydrogen Mixtures at High Pressure under X-ray Irradiation. J Phys Chem Lett 2020; 11:1828-1834. [PMID: 32048851 DOI: 10.1021/acs.jpclett.9b03797] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Superconductivity near room temperature in the sulfur-hydrogen system arises from a sequence of reactions at high pressures, with X-ray diffraction experiments playing a central role in understanding these chemical-structural transformations and the corresponding S:H stoichiometry. Here we document X-ray irradiation acting as both a probe and as a driver of chemical reaction in this dense hydride system. We observe a reaction between molecular hydrogen (H2) and elemental sulfur (S8) under high pressure, induced directly by X-ray illumination, at photon energies of 12 keV using a free electron laser. The rapid synthesis of hydrogen sulfide (H2S) at 0.3 GPa was confirmed by optical observations, spectroscopic measurements, and microstructural changes detected by X-ray diffraction. These results document X-ray induced chemical synthesis of superconductor-forming dense hydrides, revealing an alternative production strategy and confirming the disruptive nature of X-ray exposure in studies on high-pressure hydrogen chalcogenides, from water to high-temperature superconductors.
Collapse
Affiliation(s)
- Edward J Pace
- SUPA, School of Physics and Astronomy & Centre for Science at Extreme Conditions, The University of Edinburgh, Edinburgh EH9 3FD, United Kingdom
| | - Amy L Coleman
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94500, United States
| | - Rachel J Husband
- Photon Sciences, Deutsches Elektronen-Synchrotron (DESY), Notkestraße 85, 22607 Hamburg, Germany
| | - Huijeong Hwang
- Institute for High-Pressure Mineral Physics & Chemistry, Yonsei University, Seoul 120749, Republic of Korea
| | - Jinhyuk Choi
- Institute for High-Pressure Mineral Physics & Chemistry, Yonsei University, Seoul 120749, Republic of Korea
| | - Taehyun Kim
- Institute for High-Pressure Mineral Physics & Chemistry, Yonsei University, Seoul 120749, Republic of Korea
| | - Gilchan Hwang
- Institute for High-Pressure Mineral Physics & Chemistry, Yonsei University, Seoul 120749, Republic of Korea
| | - Sae Hwan Chun
- Pohang Accelerator Laboratory, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Daewoong Nam
- Pohang Accelerator Laboratory, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Sangsoo Kim
- Pohang Accelerator Laboratory, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Orianna B Ball
- SUPA, School of Physics and Astronomy & Centre for Science at Extreme Conditions, The University of Edinburgh, Edinburgh EH9 3FD, United Kingdom
| | - Hanns-Peter Liermann
- Photon Sciences, Deutsches Elektronen-Synchrotron (DESY), Notkestraße 85, 22607 Hamburg, Germany
| | - Malcolm I McMahon
- SUPA, School of Physics and Astronomy & Centre for Science at Extreme Conditions, The University of Edinburgh, Edinburgh EH9 3FD, United Kingdom
| | - Yongjae Lee
- Institute for High-Pressure Mineral Physics & Chemistry, Yonsei University, Seoul 120749, Republic of Korea
- Center for High Pressure Science & Technology Advanced Research, Shanghai 201203, China
| | - R Stewart McWilliams
- SUPA, School of Physics and Astronomy & Centre for Science at Extreme Conditions, The University of Edinburgh, Edinburgh EH9 3FD, United Kingdom
| |
Collapse
|
13
|
Takagi S, Ichiyanagi K, Kyono A, Nozawa S, Kawai N, Fukaya R, Funamori N, Adachi SI. Development of shock-dynamics study with synchrotron-based time-resolved X-ray diffraction using an Nd:glass laser system. JOURNAL OF SYNCHROTRON RADIATION 2020; 27:371-377. [PMID: 32153275 DOI: 10.1107/s1600577519016084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 11/29/2019] [Indexed: 06/10/2023]
Abstract
The combination of high-power laser and synchrotron X-ray pulses allows us to observe material responses under shock compression and release states at the crystal structure on a nanosecond time scale. A higher-power Nd:glass laser system for laser shock experiments was installed as a shock driving source at the NW14A beamline of PF-AR, KEK, Japan. It had a maximum pulse energy of 16 J, a pulse duration of 12 ns and a flat-top intensity profile on the target position. The shock-induced deformation dynamics of polycrystalline aluminium was investigated using synchrotron-based time-resolved X-ray diffraction (XRD) under laser-induced shock. The shock pressure reached up to about 17 GPa with a strain rate of at least 4.6 × 107 s-1 and remained there for nanoseconds. The plastic deformation caused by the shock-wave loading led to crystallite fragmentation. The preferred orientation of the polycrystalline aluminium remained essentially unchanged during the shock compression and release processes in this strain rate. The newly established time-resolved XRD experimental system can provide useful information for understanding the complex dynamic compression and release behaviors.
Collapse
Affiliation(s)
- Sota Takagi
- Division of Earth Evolution Sciences, Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Kouhei Ichiyanagi
- Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| | - Atsushi Kyono
- Division of Earth Evolution Sciences, Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Shunsuke Nozawa
- Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| | - Nobuaki Kawai
- Institute of Pulsed Power Science, Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555, Japan
| | - Ryo Fukaya
- Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| | - Nobumasa Funamori
- Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| | - Shin Ichi Adachi
- Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| |
Collapse
|
14
|
Briggs R, Coppari F, Gorman MG, Smith RF, Tracy SJ, Coleman AL, Fernandez-Pañella A, Millot M, Eggert JH, Fratanduono DE. Measurement of Body-Centered Cubic Gold and Melting under Shock Compression. PHYSICAL REVIEW LETTERS 2019; 123:045701. [PMID: 31491279 DOI: 10.1103/physrevlett.123.045701] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Indexed: 06/10/2023]
Abstract
We combined laser shock compression with in situ x-ray diffraction to probe the crystallographic state of gold (Au) on its principal shock Hugoniot. Au has long been recognized as an important calibration standard in diamond anvil cell experiments due to the stability of its face-centered cubic (fcc) structure to extremely high pressures (P >600 GPa at 300 K). This is in contrast to density functional theory and first principles calculations of the high-pressure phases of Au that predict a variety of fcc-like structures with different stacking arrangements at intermediate pressures. In this Letter, we probe high-pressure and high-temperature conditions on the shock Hugoniot and observe fcc Au at 169 GPa and the first evidence of body-centered cubic (bcc) Au at 223 GPa. Upon further compression, the bcc phase is observed in coexistence with liquid scattering as the Hugoniot crosses the Au melt curve before 322 GPa. The results suggest a triple point on the Au phase diagram that lies very close to the principal shock Hugoniot near ∼220 GPa.
Collapse
Affiliation(s)
- R Briggs
- Lawrence Livermore National Laboratory, Livermore, California 94500, USA
| | - F Coppari
- Lawrence Livermore National Laboratory, Livermore, California 94500, USA
| | - M G Gorman
- Lawrence Livermore National Laboratory, Livermore, California 94500, USA
| | - R F Smith
- Lawrence Livermore National Laboratory, Livermore, California 94500, USA
| | - S J Tracy
- Geophysical Laboratory, Carnegie Institution of Washington, Washington, D.C. 20015, USA
| | - A L Coleman
- Lawrence Livermore National Laboratory, Livermore, California 94500, USA
| | | | - M Millot
- Lawrence Livermore National Laboratory, Livermore, California 94500, USA
| | - J H Eggert
- Lawrence Livermore National Laboratory, Livermore, California 94500, USA
| | - D E Fratanduono
- Lawrence Livermore National Laboratory, Livermore, California 94500, USA
| |
Collapse
|
15
|
Coleman AL, Gorman MG, Briggs R, McWilliams RS, McGonegle D, Bolme CA, Gleason AE, Fratanduono DE, Smith RF, Galtier E, Lee HJ, Nagler B, Granados E, Collins GW, Eggert JH, Wark JS, McMahon MI. Identification of Phase Transitions and Metastability in Dynamically Compressed Antimony Using Ultrafast X-Ray Diffraction. PHYSICAL REVIEW LETTERS 2019; 122:255704. [PMID: 31347883 DOI: 10.1103/physrevlett.122.255704] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Indexed: 06/10/2023]
Abstract
Ultrafast x-ray diffraction at the LCLS x-ray free electron laser has been used to resolve the structural behavior of antimony under shock compression to 59 GPa. Antimony is seen to transform to the incommensurate, host-guest phase Sb-II at ∼11 GPa, which forms on nanosecond timescales with ordered guest-atom chains. The high-pressure bcc phase Sb-III is observed above ∼15 GPa, some 8 GPa lower than in static compression studies, and mixed Sb-III/liquid diffraction are obtained between 38 and 59 GPa. An additional phase which does not exist under static compression, Sb-I^{'}, is also observed between 8 and 12 GPa, beyond the normal stability field of Sb-I, and resembles Sb-I with a resolved Peierls distortion. The incommensurate Sb-II high-pressure phase can be recovered metastably on release to ambient pressure, where it is stable for more than 10 ns.
Collapse
Affiliation(s)
- A L Coleman
- SUPA, School of Physics and Astronomy, and Centre for Science at Extreme Conditions, The University of Edinburgh, Edinburgh EH9 3FD, United Kingdom
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94500, USA
| | - M G Gorman
- SUPA, School of Physics and Astronomy, and Centre for Science at Extreme Conditions, The University of Edinburgh, Edinburgh EH9 3FD, United Kingdom
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94500, USA
| | - R Briggs
- SUPA, School of Physics and Astronomy, and Centre for Science at Extreme Conditions, The University of Edinburgh, Edinburgh EH9 3FD, United Kingdom
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94500, USA
| | - R S McWilliams
- SUPA, School of Physics and Astronomy, and Centre for Science at Extreme Conditions, The University of Edinburgh, Edinburgh EH9 3FD, United Kingdom
| | - D McGonegle
- Department of Physics, Clarendon Laboratory, Parks Road, University of Oxford, Oxford OX1 3PU, United Kingdom
| | - C A Bolme
- Shock and Detonation Physics, Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, New Mexico 87545, USA
| | - A E Gleason
- Shock and Detonation Physics, Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, New Mexico 87545, USA
- Department of Geological and Environmental Sciences, Stanford University, Stanford, California 94305, USA
| | - D E Fratanduono
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94500, USA
| | - R F Smith
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94500, USA
| | - E Galtier
- Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - H J Lee
- Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - B Nagler
- Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - E Granados
- Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - G W Collins
- Department of Mechanical of Engineering, University of Rochester, 235 Hopeman Building, P.O. Box 270132, Rochester, New York 12647, USA
| | - J H Eggert
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94500, USA
| | - J S Wark
- Department of Physics, Clarendon Laboratory, Parks Road, University of Oxford, Oxford OX1 3PU, United Kingdom
| | - M I McMahon
- SUPA, School of Physics and Astronomy, and Centre for Science at Extreme Conditions, The University of Edinburgh, Edinburgh EH9 3FD, United Kingdom
| |
Collapse
|
16
|
Abstract
Various single elements form incommensurate crystal structures under pressure, where a zeolite-type "host" sublattice surrounds a "guest" sublattice comprising 1D chains of atoms. On "chain melting," diffraction peaks from the guest sublattice vanish, while those from the host remain. Diffusion of the guest atoms is expected to be confined to the channels in the host sublattice, which suggests 1D melting. Here, we present atomistic simulations of potassium to investigate this phenomenon and demonstrate that the chain-melted phase has no long-ranged order either along or between the chains. This 3D disorder provides the extensive entropy necessary to make the chain melt a true thermodynamic phase of matter, yet with the unique property that diffusion remains confined to 1D only. Calculations necessitated the development of an interatomic forcefield using machine learning, which we show fully reproduces potassium's phase diagram, including the chain-melted state and 14 known phase transitions.
Collapse
|
17
|
Brown SB, Gleason AE, Galtier E, Higginbotham A, Arnold B, Fry A, Granados E, Hashim A, Schroer CG, Schropp A, Seiboth F, Tavella F, Xing Z, Mao W, Lee HJ, Nagler B. Direct imaging of ultrafast lattice dynamics. SCIENCE ADVANCES 2019; 5:eaau8044. [PMID: 30873430 PMCID: PMC6408150 DOI: 10.1126/sciadv.aau8044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 01/28/2019] [Indexed: 06/09/2023]
Abstract
Under rapid high-temperature, high-pressure loading, lattices exhibit complex elastic-inelastic responses. The dynamics of these responses are challenging to measure experimentally because of high sample density and extremely small relevant spatial and temporal scales. Here, we use an x-ray free-electron laser providing simultaneous in situ direct imaging and x-ray diffraction to spatially resolve lattice dynamics of silicon under high-strain rate conditions. We present the first imaging of a new intermediate elastic feature modulating compression along the axis of applied stress, and we identify the structure, compression, and density behind each observed wave. The ultrafast probe x-rays enabled time-resolved characterization of the intermediate elastic feature, which is leveraged to constrain kinetic inhibition of the phase transformation between 2 and 4 ns. These results not only address long-standing questions about the response of silicon under extreme environments but also demonstrate the potential for ultrafast direct measurements to illuminate new lattice dynamics.
Collapse
Affiliation(s)
- S. Brennan Brown
- Department of Mechanical Engineering, Stanford University, Building 530, 440 Escondido Mall, Stanford, CA 94305, USA
| | - A. E. Gleason
- Shock and Detonation Physics, Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545, USA
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, CA 94025, USA
| | - E. Galtier
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, CA 94025, USA
| | - A. Higginbotham
- York Plasma Institute, Department of Physics, University of York, Heslington, YO10 5DD, UK
| | - B. Arnold
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, CA 94025, USA
| | - A. Fry
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, CA 94025, USA
| | - E. Granados
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, CA 94025, USA
| | - A. Hashim
- Department of Physics, University of California, Berkeley, Berkeley, CA 94720, USA
| | - C. G. Schroer
- Photon Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, D-22607 Hamburg, Germany
- Department Physik, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - A. Schropp
- Photon Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, D-22607 Hamburg, Germany
| | - F. Seiboth
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, CA 94025, USA
- Photon Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, D-22607 Hamburg, Germany
| | - F. Tavella
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, CA 94025, USA
| | - Z. Xing
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, CA 94025, USA
| | - W. Mao
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, CA 94025, USA
- Department of Geological Sciences, Stanford University, 367 Panama St., Stanford, CA 94305-2220, USA
| | - H. J. Lee
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, CA 94025, USA
| | - B. Nagler
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, CA 94025, USA
| |
Collapse
|
18
|
Zhang YY, Tang MX, Cai Y, E JC, Luo SN. Deducing density and strength of nanocrystalline Ta and diamond under extreme conditions from X-ray diffraction. JOURNAL OF SYNCHROTRON RADIATION 2019; 26:413-421. [PMID: 30855250 DOI: 10.1107/s1600577518017216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 12/04/2018] [Indexed: 06/09/2023]
Abstract
In situ X-ray diffraction with advanced X-ray sources offers unique opportunities for investigating materials properties under extreme conditions such as shock-wave loading. Here, Singh's theory for deducing high-pressure density and strength from two-dimensional (2D) diffraction patterns is rigorously examined with large-scale molecular dynamics simulations of isothermal compression and shock-wave compression. Two representative solids are explored: nanocrystalline Ta and diamond. Analysis of simulated 2D X-ray diffraction patterns is compared against direct molecular dynamics simulation results. Singh's method is highly accurate for density measurement (within 1%) and reasonable for strength measurement (within 10%), and can be used for such measurements on nanocrystalline and polycrystalline solids under extreme conditions (e.g. in the megabar regime).
Collapse
Affiliation(s)
- Y Y Zhang
- The Peac Institute of Multiscale Sciences, Chengdu, Sichuan 610031, People's Republic of China
| | - M X Tang
- The Peac Institute of Multiscale Sciences, Chengdu, Sichuan 610031, People's Republic of China
| | - Y Cai
- The Peac Institute of Multiscale Sciences, Chengdu, Sichuan 610031, People's Republic of China
| | - J C E
- The Peac Institute of Multiscale Sciences, Chengdu, Sichuan 610031, People's Republic of China
| | - S N Luo
- The Peac Institute of Multiscale Sciences, Chengdu, Sichuan 610031, People's Republic of China
| |
Collapse
|
19
|
Briggs R, Torchio R, Sollier A, Occelli F, Videau L, Kretzschmar N, Wulff M. Observation of the shock-induced β-Sn to b.c.t.-Sn transition using time-resolved X-ray diffraction. JOURNAL OF SYNCHROTRON RADIATION 2019; 26:96-101. [PMID: 30655473 DOI: 10.1107/s1600577518015059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 10/24/2018] [Indexed: 06/09/2023]
Abstract
Time-resolved X-ray diffraction measurements have been carried out on dynamically compressed Sn up to a maximum pressure of ∼13 GPa at the European Synchrotron Radiation Facility. The phase transition from β-Sn to body-centered tetragonal (b.c.t.) Sn has been observed using synchrotron X-ray diffraction for the first time undergoing shock compression and release. Following maximum compression, the sample releases to lower pressures for several nanoseconds until the reverse transition occurs. The data are in good agreement with previous shock boundaries that indicate that the β-Sn phase is stable ∼2 GPa higher than the static boundary upon compression and the b.c.t.-Sn phase is stable ∼1 GPa lower upon release. The transition to the high-pressure phase reveals a loss of texture in the X-ray diffraction data from the `quasi' single-crystal β-Sn structure to a more powder-like Debye-Scherrer ring.
Collapse
Affiliation(s)
- R Briggs
- European Synchrotron Radiation Facility, BP 220, F-38043 Grenoble Cedex, France
| | - R Torchio
- European Synchrotron Radiation Facility, BP 220, F-38043 Grenoble Cedex, France
| | - A Sollier
- CEA, DAM, DIF, F-91297 Arpajon, France
| | - F Occelli
- CEA, DAM, DIF, F-91297 Arpajon, France
| | - L Videau
- CEA, DAM, DIF, F-91297 Arpajon, France
| | - N Kretzschmar
- European Synchrotron Radiation Facility, BP 220, F-38043 Grenoble Cedex, France
| | - M Wulff
- European Synchrotron Radiation Facility, BP 220, F-38043 Grenoble Cedex, France
| |
Collapse
|
20
|
Gorman MG, Coleman AL, Briggs R, McWilliams RS, McGonegle D, Bolme CA, Gleason AE, Galtier E, Lee HJ, Granados E, Śliwa M, Sanloup C, Rothman S, Fratanduono DE, Smith RF, Collins GW, Eggert JH, Wark JS, McMahon MI. Femtosecond diffraction studies of solid and liquid phase changes in shock-compressed bismuth. Sci Rep 2018; 8:16927. [PMID: 30446720 PMCID: PMC6240068 DOI: 10.1038/s41598-018-35260-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 10/28/2018] [Indexed: 11/09/2022] Open
Abstract
Bismuth has long been a prototypical system for investigating phase transformations and melting at high pressure. Despite decades of experimental study, however, the lattice-level response of Bi to rapid (shock) compression and the relationship between structures occurring dynamically and those observed during slow (static) compression, are still not clearly understood. We have determined the structural response of shock-compressed Bi to 68 GPa using femtosecond X-ray diffraction, thereby revealing the phase transition sequence and equation-of-state in unprecedented detail for the first time. We show that shocked-Bi exhibits a marked departure from equilibrium behavior - the incommensurate Bi-III phase is not observed, but rather a new metastable phase, and the Bi-V phase is formed at significantly lower pressures compared to static compression studies. We also directly measure structural changes in a shocked liquid for the first time. These observations reveal new behaviour in the solid and liquid phases of a shocked material and give important insights into the validity of comparing static and dynamic datasets.
Collapse
Affiliation(s)
- M G Gorman
- SUPA, School of Physics & Astronomy, and Centre for Science at Extreme Conditions, The University of Edinburgh, Edinburgh, EH9 3FD, UK.
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA, 94500, USA.
| | - A L Coleman
- SUPA, School of Physics & Astronomy, and Centre for Science at Extreme Conditions, The University of Edinburgh, Edinburgh, EH9 3FD, UK
| | - R Briggs
- SUPA, School of Physics & Astronomy, and Centre for Science at Extreme Conditions, The University of Edinburgh, Edinburgh, EH9 3FD, UK
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA, 94500, USA
| | - R S McWilliams
- SUPA, School of Physics & Astronomy, and Centre for Science at Extreme Conditions, The University of Edinburgh, Edinburgh, EH9 3FD, UK
| | - D McGonegle
- Department of Physics, Clarendon Laboratory, University of Oxford, Parks Road, Oxford, OX1 3PU, UK
| | - C A Bolme
- Shock and Detonation Physics, Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, New Mexico, 87545, USA
| | - A E Gleason
- Shock and Detonation Physics, Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, New Mexico, 87545, USA
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California, 94025, USA
| | - E Galtier
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - H J Lee
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - E Granados
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - M Śliwa
- Department of Physics, Clarendon Laboratory, University of Oxford, Parks Road, Oxford, OX1 3PU, UK
| | - C Sanloup
- Sorbonne Université, CNRS-INSU, Institut des Sciences de la Terre Paris, F-75005, Paris, France
| | - S Rothman
- Atomic Weapons Establishment, Aldermaston, Reading, RG7 4PR, United Kingdom
| | - D E Fratanduono
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA, 94500, USA
| | - R F Smith
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA, 94500, USA
| | - G W Collins
- Departments of Mechanical Engineering, Physics and Astronomy, and Laboratory for Laser Energetics, University of Rochester, Rochester, NY, 14627, USA
| | - J H Eggert
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA, 94500, USA
| | - J S Wark
- Department of Physics, Clarendon Laboratory, University of Oxford, Parks Road, Oxford, OX1 3PU, UK
| | - M I McMahon
- SUPA, School of Physics & Astronomy, and Centre for Science at Extreme Conditions, The University of Edinburgh, Edinburgh, EH9 3FD, UK
| |
Collapse
|
21
|
Turneaure SJ, Sharma SM, Gupta YM. Nanosecond Melting and Recrystallization in Shock-Compressed Silicon. PHYSICAL REVIEW LETTERS 2018; 121:135701. [PMID: 30312076 DOI: 10.1103/physrevlett.121.135701] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 07/10/2018] [Indexed: 06/08/2023]
Abstract
In situ, time-resolved, x-ray diffraction and simultaneous continuum measurements were used to examine structural changes in Si shock compressed to 54 GPa. Shock melting was unambiguously established above ∼31-33 GPa, through the vanishing of all sharp crystalline diffraction peaks and the emergence of a single broad diffraction ring. Reshock from the melt boundary results in rapid (nanosecond) recrystallization to the hexagonal-close-packed Si phase and further supports melting. Our results also provide new constraints on the high-temperature, high-pressure Si phase diagram.
Collapse
Affiliation(s)
- Stefan J Turneaure
- Institute for Shock Physics, Washington State University, Pullman, Washington 99164, USA
| | - Surinder M Sharma
- Institute for Shock Physics, Washington State University, Pullman, Washington 99164, USA
| | - Y M Gupta
- Institute for Shock Physics, Washington State University, Pullman, Washington 99164, USA
- Department of Physics and Astronomy, Washington State University, Pullman, Washington 99164, USA
| |
Collapse
|
22
|
Sliwa M, McGonegle D, Wehrenberg C, Bolme CA, Heighway PG, Higginbotham A, Lazicki A, Lee HJ, Nagler B, Park HS, Rudd RE, Suggit MJ, Swift D, Tavella F, Zepeda-Ruiz L, Remington BA, Wark JS. Femtosecond X-Ray Diffraction Studies of the Reversal of the Microstructural Effects of Plastic Deformation during Shock Release of Tantalum. PHYSICAL REVIEW LETTERS 2018; 120:265502. [PMID: 30004719 DOI: 10.1103/physrevlett.120.265502] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Indexed: 06/08/2023]
Abstract
We have used femtosecond x-ray diffraction to study laser-shocked fiber-textured polycrystalline tantalum targets as the 37-253 GPa shock waves break out from the free surface. We extract the time and depth-dependent strain profiles within the Ta target as the rarefaction wave travels back into the bulk of the sample. In agreement with molecular dynamics simulations, the lattice rotation and the twins that are formed under shock compression are observed to be almost fully eliminated by the rarefaction process.
Collapse
Affiliation(s)
- M Sliwa
- Department of Physics, Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
| | - D McGonegle
- Department of Physics, Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
| | - C Wehrenberg
- Lawrence Livermore National Laboratory, PO Box 808, Livermore, California 94550, USA
| | - C A Bolme
- Los Alamos National Laboratory, Bikini Atoll Road, SM-30, Los Alamos, New Mexico 87545, USA
| | - P G Heighway
- Department of Physics, Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
| | - A Higginbotham
- York Plasma Institute, Department of Physics, University of York, Heslington, York YO10 5DD, United Kingdom
| | - A Lazicki
- Lawrence Livermore National Laboratory, PO Box 808, Livermore, California 94550, USA
| | - H J Lee
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| | - B Nagler
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| | - H S Park
- Lawrence Livermore National Laboratory, PO Box 808, Livermore, California 94550, USA
| | - R E Rudd
- Lawrence Livermore National Laboratory, PO Box 808, Livermore, California 94550, USA
| | - M J Suggit
- Department of Physics, Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
| | - D Swift
- Lawrence Livermore National Laboratory, PO Box 808, Livermore, California 94550, USA
| | - F Tavella
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| | - L Zepeda-Ruiz
- Lawrence Livermore National Laboratory, PO Box 808, Livermore, California 94550, USA
| | - B A Remington
- Lawrence Livermore National Laboratory, PO Box 808, Livermore, California 94550, USA
| | - J S Wark
- Department of Physics, Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
| |
Collapse
|
23
|
Sun Y, Decker FJ, Turner J, Song S, Robert A, Zhu D. Pulse intensity characterization of the LCLS nanosecond double-bunch mode of operation. JOURNAL OF SYNCHROTRON RADIATION 2018; 25:642-649. [PMID: 29714175 PMCID: PMC5929352 DOI: 10.1107/s160057751800348x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 02/28/2018] [Indexed: 05/29/2023]
Abstract
The recent demonstration of the `nanosecond double-bunch' operation mode, i.e. two X-ray pulses separated in time between 0.35 and hundreds of nanoseconds and by increments of 0.35 ns, offers new opportunities to investigate ultrafast dynamics in diverse systems of interest. However, in order to reach its full potential, this mode of operation requires the precise characterization of the intensity of each X-ray pulse within each pulse pair for any time separation. Here, a transmissive single-shot diagnostic that achieves this goal for time separations larger than 0.7 ns with a precision better than 5% is presented. It also provides real-time monitoring feedback to help tune the accelerator parameters to deliver double pulse intensity distributions optimized for specific experimental goals.
Collapse
Affiliation(s)
- Yanwen Sun
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
- Physics Department, Stanford University, CA 94305, USA
| | - Franz-Josef Decker
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - James Turner
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Sanghoon Song
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Aymeric Robert
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Diling Zhu
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| |
Collapse
|
24
|
E JC, Wang L, Chen S, Zhang YY, Luo SN. GAPD: a GPU-accelerated atom-based polychromatic diffraction simulation code. JOURNAL OF SYNCHROTRON RADIATION 2018; 25:604-611. [PMID: 29488942 DOI: 10.1107/s1600577517016733] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 11/20/2017] [Indexed: 06/08/2023]
Abstract
GAPD, a graphics-processing-unit (GPU)-accelerated atom-based polychromatic diffraction simulation code for direct, kinematics-based, simulations of X-ray/electron diffraction of large-scale atomic systems with mono-/polychromatic beams and arbitrary plane detector geometries, is presented. This code implements GPU parallel computation via both real- and reciprocal-space decompositions. With GAPD, direct simulations are performed of the reciprocal lattice node of ultralarge systems (∼5 billion atoms) and diffraction patterns of single-crystal and polycrystalline configurations with mono- and polychromatic X-ray beams (including synchrotron undulator sources), and validation, benchmark and application cases are presented.
Collapse
Affiliation(s)
- J C E
- The Peac Institute of Multiscale Sciences, Chengdu, Sichuan 610031, People's Republic of China
| | - L Wang
- College of Science, Hunan Agricultural University, Changsha, Hunan 410128, People's Republic of China
| | - S Chen
- The Peac Institute of Multiscale Sciences, Chengdu, Sichuan 610031, People's Republic of China
| | - Y Y Zhang
- The Peac Institute of Multiscale Sciences, Chengdu, Sichuan 610031, People's Republic of China
| | - S N Luo
- The Peac Institute of Multiscale Sciences, Chengdu, Sichuan 610031, People's Republic of China
| |
Collapse
|
25
|
E JC, Cai Y, Zhong ZY, Tang MX, Zhu XR, Wang L, Luo SN. Texture of nanocrystalline solids: atomic scale characterization and applications. J Appl Crystallogr 2018. [DOI: 10.1107/s1600576717018040] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
A methodology is presented to characterize the crystallographic texture of atomic configurations on the basis of Euler angles. Texture information characterized by orientation map, orientation distribution function, texture index, pole figure and inverse pole figure is obtained. The paper reports the construction and characterization of the texture of nanocrystalline configurations with different grain numbers, grain sizes and percentages of preferred orientation. The minimum grain number for texture-free configurations is ∼2500. The effect of texture on deducing grain size from simulated X-ray diffraction curves is also explored as an application case of texture analysis. In addition, molecular dynamics simulations are performed on initially texture-free nanocrystalline Ta under shock-wave loading, which shows a 〈001〉 + 〈111〉 double fiber texture after shock-wave compression.
Collapse
|
26
|
Seddon EA, Clarke JA, Dunning DJ, Masciovecchio C, Milne CJ, Parmigiani F, Rugg D, Spence JCH, Thompson NR, Ueda K, Vinko SM, Wark JS, Wurth W. Short-wavelength free-electron laser sources and science: a review. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2017; 80:115901. [PMID: 29059048 DOI: 10.1088/1361-6633/aa7cca] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
This review is focused on free-electron lasers (FELs) in the hard to soft x-ray regime. The aim is to provide newcomers to the area with insights into: the basic physics of FELs, the qualities of the radiation they produce, the challenges of transmitting that radiation to end users and the diversity of current scientific applications. Initial consideration is given to FEL theory in order to provide the foundation for discussion of FEL output properties and the technical challenges of short-wavelength FELs. This is followed by an overview of existing x-ray FEL facilities, future facilities and FEL frontiers. To provide a context for information in the above sections, a detailed comparison of the photon pulse characteristics of FEL sources with those of other sources of high brightness x-rays is made. A brief summary of FEL beamline design and photon diagnostics then precedes an overview of FEL scientific applications. Recent highlights are covered in sections on structural biology, atomic and molecular physics, photochemistry, non-linear spectroscopy, shock physics, solid density plasmas. A short industrial perspective is also included to emphasise potential in this area.
Collapse
Affiliation(s)
- E A Seddon
- ASTeC, STFC Daresbury Laboratory, Sci-Tech Daresbury, Keckwick Lane, Daresbury, Cheshire, WA4 4AD, United Kingdom. The School of Physics and Astronomy and Photon Science Institute, The University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom. The Cockcroft Institute, Sci-Tech Daresbury, Keckwick Lane, Daresbury, Cheshire, WA4 4AD, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
The Linac Coherent Light Source: Recent Developments and Future Plans. APPLIED SCIENCES-BASEL 2017. [DOI: 10.3390/app7080850] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The development of X-ray free-electron lasers (XFELs) has launched a new era in X-ray science by providing ultrafast coherent X-ray pulses with a peak brightness that is approximately one billion times higher than previous X-ray sources. The Linac Coherent Light Source (LCLS) facility at the SLAC National Accelerator Laboratory, the world’s first hard X-ray FEL, has already demonstrated a tremendous scientific impact across broad areas of science. Here, a few of the more recent representative highlights from LCLS are presented in the areas of atomic, molecular, and optical science; chemistry; condensed matter physics; matter in extreme conditions; and biology. This paper also outlines the near term upgrade (LCLS-II) and motivating science opportunities for ultrafast X-rays in the 0.25–5 keV range at repetition rates up to 1 MHz. Future plans to extend the X-ray energy reach to beyond 13 keV (<1 Å) at high repetition rate (LCLS-II-HE) are envisioned, motivated by compelling new science of structural dynamics at the atomic scale.
Collapse
|
28
|
Abstract
How does a crystal melt? How long does it take for melt nuclei to grow? The melting mechanisms have been addressed by several theoretical and experimental works, covering a subnanosecond time window with sample sizes of tens of nanometers and thus suitable to determine the onset of the process but unable to unveil the following dynamics. On the other hand, macroscopic observations of phase transitions, with millisecond or longer time resolution, account for processes occurring at surfaces and time limited by thermal contact with the environment. Here, we fill the gap between these two extremes, investigating the melting of ice in the entire mesoscopic regime. A bulk ice I h or ice VI sample is homogeneously heated by a picosecond infrared pulse, which delivers all of the energy necessary for complete melting. The evolution of melt/ice interfaces thereafter is monitored by Mie scattering with nanosecond resolution, for all of the time needed for the sample to reequilibrate. The growth of the liquid domains, over distances of micrometers, takes hundreds of nanoseconds, a time orders of magnitude larger than expected from simple H-bond dynamics.
Collapse
|