1
|
Ohki Y, Mochizuki M. Fundamental theory of current-induced motion of magnetic skyrmions. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2024; 37:023003. [PMID: 39393399 DOI: 10.1088/1361-648x/ad861b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/11/2024] [Indexed: 10/13/2024]
Abstract
Magnetic skyrmions are topological spin textures that appear in magnets with broken spatial inversion symmetry as a consequence of competition between the (anti)ferromagnetic exchange interactions and the Dzyaloshinskii-Moriya interactions in a magnetic field. In the research of spintronics, the current-driven dynamics of skyrmions has been extensively studied aiming at their applications to next-generation spintronic devices. However, current-induced skyrmion motion exhibits diverse behaviors depending on various factors and conditions such as the type of skyrmion, driving mechanism, system geometry, direction of applied current, and type of the magnet. While this variety attracts enormous research interest of fundamental science and enriches their possibilities of technical applications, it is, at the same time, a source of difficulty and complexity that hinders their comprehensive understandings. In this article, we discuss fundamental and systematic theoretical descriptions of current-induced motion of skyrmions driven by the spin-transfer torque and the spin-orbit torque. Specifically, we theoretically describe the behaviors of current-driven skyrmions depending on the factors and conditions mentioned above by means of analyses using the Thiele equation. Furthermore, the results of the analytical theory are visually demonstrated and quantitatively confirmed by micromagnetic simulations using the Landau-Lifshitz-Gilbert-Slonczewski equation. In particular, we discuss dependence of the direction and velocity of motion on the type of skyrmion (Bloch type and Néel type) and its helicity, the system geometry (thin plate and nanotrack), the direction of applied current (length and width direction of the nanotrack) and its spin-polarization orientation, and the type of magnet (ferromagnet and antiferromagnet). The comprehensive theory provided by this article is expected to contribute significantly to research on the manipulation and control of magnetic skyrmions by electric currents for future spintronics applications.
Collapse
Affiliation(s)
- Yuto Ohki
- Department of Applied Physics, Waseda University, Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
- Department of Physics and Mathematics, Aoyama Gakuin University, Sagamihara, Kanagawa 229-8558, Japan
| | - Masahito Mochizuki
- Department of Applied Physics, Waseda University, Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| |
Collapse
|
2
|
Shiratori T, Koga J, Shimojima T, Ishizaka K, Nakamura A. Development of ultrafast four-dimensional precession electron diffraction. Ultramicroscopy 2024; 267:114064. [PMID: 39467400 DOI: 10.1016/j.ultramic.2024.114064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/07/2024] [Accepted: 10/16/2024] [Indexed: 10/30/2024]
Abstract
Ultrafast electron diffraction/microscopy technique enables us to investigate the nonequilibrium dynamics of crystal structures in the femtosecond-nanosecond time domain. However, the electron diffraction intensities are in general extremely sensitive to the excitation errors (i.e., deviation from the Bragg condition) and the dynamical effects, which had prevented us from quantitatively discussing the crystal structure dynamics particularly in thick samples. Here, we develop a four-dimensional precession electron diffraction (4D-PED) system by which time (t) and electron-incident-angle (ϕ) dependences of electron diffraction patterns (qx,qy) are recorded. Nonequilibrium crystal structure refinement on VTe2 demonstrates that the ultrafast change in the crystal structure can be quantitatively determined from 4D-PED. We further perform the analysis of the ϕ dependence, from which we can qualitatively estimate the change in the reciprocal lattice vector parallel to the optical axis. These results show the capability of the 4D-PED method for the quantitative investigation of ultrafast crystal structural dynamics.
Collapse
Affiliation(s)
- Toshiya Shiratori
- Quantum-Phase Electronics Center and Department of Applied Physics, The University of Tokyo, Hongo, Tokyo 113-8656, Japan
| | - Jumpei Koga
- Quantum-Phase Electronics Center and Department of Applied Physics, The University of Tokyo, Hongo, Tokyo 113-8656, Japan
| | - Takahiro Shimojima
- RIKEN Center for Emergent Matter Science (CEMS), Wako, Saitama 351-0198, Japan
| | - Kyoko Ishizaka
- Quantum-Phase Electronics Center and Department of Applied Physics, The University of Tokyo, Hongo, Tokyo 113-8656, Japan; RIKEN Center for Emergent Matter Science (CEMS), Wako, Saitama 351-0198, Japan
| | - Asuka Nakamura
- RIKEN Center for Emergent Matter Science (CEMS), Wako, Saitama 351-0198, Japan.
| |
Collapse
|
3
|
Titze T, Koraltan S, Schmidt T, Suess D, Albrecht M, Mathias S, Steil D. All-Optical Control of Bubble and Skyrmion Breathing. PHYSICAL REVIEW LETTERS 2024; 133:156701. [PMID: 39454155 DOI: 10.1103/physrevlett.133.156701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/25/2024] [Accepted: 08/27/2024] [Indexed: 10/27/2024]
Abstract
Controlling the dynamics of topologically protected spin objects by all-optical means promises enormous potential for future spintronic applications. Excitation of bubbles and skyrmions in ferrimagnetic [Fe(0.35 nm)/Gd(0.40 nm)]_{160} multilayers by ultrashort laser pulses leads to a periodic modulation of the core diameter of these spin objects, the so-called breathing mode. We demonstrate versatile amplitude and phase control of this breathing using a double excitation scheme, where the observed dynamics is controlled by the excitation delay. We gain insight into both the timescale on which the breathing mode is launched and the role of the spin object size on the dynamics. Our results demonstrate that ultrafast optical excitation allows for precise tuning of the spin dynamics of trivial and nontrivial spin objects, showing a possible control strategy in device applications.
Collapse
|
4
|
Zhou Y, Li S, Liang X, Zhou Y. Topological Spin Textures: Basic Physics and Devices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2312935. [PMID: 38861696 DOI: 10.1002/adma.202312935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 05/24/2024] [Indexed: 06/13/2024]
Abstract
In the face of escalating modern data storage demands and the constraints of Moore's Law, exploring spintronic solutions, particularly the devices based on magnetic skyrmions, has emerged as a promising frontier in scientific research. Since the first experimental observation of skyrmions, topological spin textures have been extensively studied for their great potential as efficient information carriers in spintronic devices. However, significant challenges have emerged alongside this progress. This review aims to synthesize recent advances in skyrmion research while addressing the major issues encountered in the field. Additionally, current research on promising topological spin structures in addition to skyrmions is summarized. Beyond 2D structures, exploration also extends to 1D magnetic solitons and 3D spin textures. In addition, a diverse array of emerging magnetic materials is introduced, including antiferromagnets and 2D van der Waals magnets, broadening the scope of potential materials hosting topological spin textures. Through a systematic examination of magnetic principles, topological categorization, and the dynamics of spin textures, a comprehensive overview of experimental and theoretical advances in the research of topological magnetism is provided. Finally, both conventional and unconventional applications are summarized based on spin textures proposed thus far. This review provides an outlook on future development in applied spintronics.
Collapse
Affiliation(s)
- Yuqing Zhou
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| | - Shuang Li
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| | - Xue Liang
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| | - Yan Zhou
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| |
Collapse
|
5
|
Littlehales MT, Moody SH, Turnbull LA, Huddart BM, Brereton BA, Balakrishnan G, Fan R, Steadman P, Hatton PD, Wilson MN. Demonstration of Controlled Skyrmion Injection Across a Thickness Step. NANO LETTERS 2024; 24:6813-6820. [PMID: 38781191 PMCID: PMC11157652 DOI: 10.1021/acs.nanolett.4c01605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/17/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024]
Abstract
Spintronic devices incorporating magnetic skyrmions have attracted significant interest recently. Such devices traditionally focus on controlling magnetic textures in 2D thin films. However, enhanced performance of spintronic properties through the exploitation of higher dimensionalities motivates the investigation of variable-thickness skyrmion devices. We report the demonstration of a skyrmion injection mechanism that utilizes charge currents to drive skyrmions across a thickness step and, consequently, a metastability barrier. Our measurements show that under certain temperature and field conditions skyrmions can be reversibly injected from a thin region of an FeGe lamella, where they exist as an equilibrium state, into a thicker region, where they can only persist as a metastable state. This injection is achieved with a current density of 3 × 108 A m-2, nearly 3 orders of magnitude lower than required to move magnetic domain walls. This highlights the possibility to use such an element as a skyrmion source/drain within future spintronic devices.
Collapse
Affiliation(s)
- Matthew T. Littlehales
- Durham
University, Department of Physics, South Road, Durham, DH1 3LE, United Kingdom
- ISIS
Neutron and Muon Source, Rutherford Appleton
Laboratory, Didcot, OX11 0QX, United Kingdom
| | - Samuel H. Moody
- Durham
University, Department of Physics, South Road, Durham, DH1 3LE, United Kingdom
- Laboratory
for Neutron Scattering and Imaging, Paul
Scherrer Institute, Villigen, CH-5232, Switzerland
| | - Luke A. Turnbull
- Durham
University, Department of Physics, South Road, Durham, DH1 3LE, United Kingdom
- Max
Planck Institute for Chemical Physics of Solids, Noethnitzer Str. 40, 01187 Dresden, Germany
| | - Benjamin M. Huddart
- Durham
University, Department of Physics, South Road, Durham, DH1 3LE, United Kingdom
- Department
of Physics, Clarendon Laboratory, University
of Oxford, Parks Road, Oxford, OX1
3PU, United Kingdom
| | - Ben A. Brereton
- Durham
University, Department of Physics, South Road, Durham, DH1 3LE, United Kingdom
| | - Geetha Balakrishnan
- University
of Warwick, Department of Physics, Coventry, CV4 7AL, United Kingdom
| | - Raymond Fan
- Diamond
Light Source, Didcot, OX11 0DE, United
Kingdom
| | - Paul Steadman
- Diamond
Light Source, Didcot, OX11 0DE, United
Kingdom
| | - Peter D. Hatton
- Durham
University, Department of Physics, South Road, Durham, DH1 3LE, United Kingdom
| | - Murray N. Wilson
- Durham
University, Department of Physics, South Road, Durham, DH1 3LE, United Kingdom
- Memorial
University of Newfoundland, Department of Physics and Physical Oceanography, St John’s, Newfoundland, A1B 3X7, Canada
| |
Collapse
|
6
|
Weber J, Schäfer S. Electron Imaging of Nanoscale Charge Distributions Induced by Femtosecond Light Pulses. NANO LETTERS 2024; 24:5746-5753. [PMID: 38701367 PMCID: PMC11100287 DOI: 10.1021/acs.nanolett.4c00773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/18/2024] [Accepted: 04/18/2024] [Indexed: 05/05/2024]
Abstract
Surface charging is ubiquitously observable during in situ transmission electron microscopy of nonconducting specimens as a result of electron beam/sample interactions or optical stimuli and often limits the achievable image stability and spatial or spectral resolution. Here, we report on the electron-optical imaging of surface charging on a nanostructured surface following femtosecond multiphoton photoemission. By quantitatively extracting the light-induced electrostatic potential and studying the charging dynamics on relevant time scales, we gain insights into the details of the multiphoton photoemission process in the presence of an electrostatic background field. We study the interaction of the charge distribution with the high-energy electron beam and secondary electrons and propose a simple model to describe the interplay of electron- and light-induced processes. In addition, we demonstrate how to mitigate sample charging by simultaneously optically illuminating the sample.
Collapse
Affiliation(s)
- Jonathan
T. Weber
- Institute
of Physics, Carl-von-Ossietzky University
of Oldenburg, 26129 Oldenburg, Germany
- Department
of Physics, University of Regensburg, 93053 Regensburg, Germany
| | - Sascha Schäfer
- Institute
of Physics, Carl-von-Ossietzky University
of Oldenburg, 26129 Oldenburg, Germany
- Department
of Physics, University of Regensburg, 93053 Regensburg, Germany
- Regensburg
Center for Ultrafast Nanoscopy (RUN), University
of Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
7
|
Zhu K, Bi L, Zhang Y, Zheng D, Yang D, Li J, Tian H, Cai J, Yang H, Zhang Y, Li J. Ultrafast switching to zero field topological spin textures in ferrimagnetic TbFeCo films. NANOSCALE 2024; 16:3133-3143. [PMID: 38258484 DOI: 10.1039/d3nr04529c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
The capability of femtosecond (fs) laser pulses to manipulate topological spin textures on a very short time scale is sparking considerable interest. This article presents the creation of high density zero field topological spin textures by fs laser excitation in ferrimagnetic TbFeCo amorphous films. The topological spin textures are demonstrated to emerge under fs laser pulse excitation through a unique ultrafast nucleation mechanism, rather than thermal effects. Notably, large intrinsic uniaxial anisotropy could substitute the external magnetic field for the creation and stabilization of topological spin textures, which is further verified by the corresponding micromagnetic simulation. The ultrafast switching between topological trivial and nontrivial magnetic states is realized at an optimum magnitude of magnetic field and laser fluence. Our results would broaden the options to generate zero-field topological spin textures from versatile magnetic states and provides a new perspective for ultrafast switching of 0/1 magnetic states in spintronic devices.
Collapse
Affiliation(s)
- Kaixin Zhu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Linzhu Bi
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongzhao Zhang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dingguo Zheng
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dong Yang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Li
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.
| | - Huanfang Tian
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.
| | - Jianwang Cai
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.
| | - Huaixin Yang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Yangtze River Delta Physics Research Center Co., Ltd., Liyang, Jiangsu, 213300, China
| | - Ying Zhang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, China
| | - Jianqi Li
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, China
| |
Collapse
|
8
|
Li Z, Zhang H, Li G, Guo J, Wang Q, Deng Y, Hu Y, Hu X, Liu C, Qin M, Shen X, Yu R, Gao X, Liao Z, Liu J, Hou Z, Zhu Y, Fu X. Room-temperature sub-100 nm Néel-type skyrmions in non-stoichiometric van der Waals ferromagnet Fe 3-xGaTe 2 with ultrafast laser writability. Nat Commun 2024; 15:1017. [PMID: 38310096 PMCID: PMC10838308 DOI: 10.1038/s41467-024-45310-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 01/19/2024] [Indexed: 02/05/2024] Open
Abstract
Realizing room-temperature magnetic skyrmions in two-dimensional van der Waals ferromagnets offers unparalleled prospects for future spintronic applications. However, due to the intrinsic spin fluctuations that suppress atomic long-range magnetic order and the inherent inversion crystal symmetry that excludes the presence of the Dzyaloshinskii-Moriya interaction, achieving room-temperature skyrmions in 2D magnets remains a formidable challenge. In this study, we target room-temperature 2D magnet Fe3GaTe2 and unveil that the introduction of iron-deficient into this compound enables spatial inversion symmetry breaking, thus inducing a significant Dzyaloshinskii-Moriya interaction that brings about room-temperature Néel-type skyrmions with unprecedentedly small size. To further enhance the practical applications of this finding, we employ a homemade in-situ optical Lorentz transmission electron microscopy to demonstrate ultrafast writing of skyrmions in Fe3-xGaTe2 using a single femtosecond laser pulse. Our results manifest the Fe3-xGaTe2 as a promising building block for realizing skyrmion-based magneto-optical functionalities.
Collapse
Grants
- This work was supported by the National Key Research and Development Program of China at grant No. 2020YFA0309300, Science and Technology Projects in Guangzhou (grant No. 202201000008), the National Natural Science Foundation of China (NSFC) at grant No. 12304146, 11974191, 12127803, 52322108, 52271178, U22A20117 and 12241403, China Postdoctoral Science Foundation (2023M741828), Guangdong Basic and Applied Basic Research Foundation (grant No. 2021B1515120047 and 2023B1515020112), the Natural Science Foundation of Tianjin at grant No. 20JCJQJC00210, the 111 Project at grant No. B23045, and the “Fundamental Research Funds for the Central Universities”, Nankai University (grant No. 63213040, C029211101, C02922101, ZB22000104 and DK2300010207). This work was supported by the Synergetic Extreme Condition User Facility (SECUF).
Collapse
Affiliation(s)
- Zefang Li
- Ultrafast Electron Microscopy Laboratory, The MOE Key Laboratory of Weak-Light Nonlinear Photonics, School of Physics, Nankai University, Tianjin, China
| | - Huai Zhang
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, Institute for Advanced Materials, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, China
| | - Guanqi Li
- School of Integrated Circuits, Guangdong University of Technology, Guangzhou, China
| | - Jiangteng Guo
- Ultrafast Electron Microscopy Laboratory, The MOE Key Laboratory of Weak-Light Nonlinear Photonics, School of Physics, Nankai University, Tianjin, China
| | - Qingping Wang
- School of Physics and Electronic and Electrical Engineering, Aba Teachers University, Wenchuan, China
| | - Ying Deng
- Ultrafast Electron Microscopy Laboratory, The MOE Key Laboratory of Weak-Light Nonlinear Photonics, School of Physics, Nankai University, Tianjin, China
| | - Yue Hu
- Ultrafast Electron Microscopy Laboratory, The MOE Key Laboratory of Weak-Light Nonlinear Photonics, School of Physics, Nankai University, Tianjin, China
| | - Xuange Hu
- Ultrafast Electron Microscopy Laboratory, The MOE Key Laboratory of Weak-Light Nonlinear Photonics, School of Physics, Nankai University, Tianjin, China
| | - Can Liu
- Ultrafast Electron Microscopy Laboratory, The MOE Key Laboratory of Weak-Light Nonlinear Photonics, School of Physics, Nankai University, Tianjin, China
| | - Minghui Qin
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, Institute for Advanced Materials, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, China
| | - Xi Shen
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Richeng Yu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Xingsen Gao
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, Institute for Advanced Materials, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, China
| | - Zhimin Liao
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing, China
| | - Junming Liu
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, Institute for Advanced Materials, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, China
- Laboratory of Solid State Microstructures and Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China
| | - Zhipeng Hou
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, Institute for Advanced Materials, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, China.
| | - Yimei Zhu
- Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York, USA.
| | - Xuewen Fu
- Ultrafast Electron Microscopy Laboratory, The MOE Key Laboratory of Weak-Light Nonlinear Photonics, School of Physics, Nankai University, Tianjin, China.
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin, China.
| |
Collapse
|
9
|
Liu C, Wang J, He W, Zhang C, Zhang S, Yuan S, Hou Z, Qin M, Xu Y, Gao X, Peng Y, Liu K, Qiu ZQ, Liu JM, Zhang X. Strain-Induced Reversible Motion of Skyrmions at Room Temperature. ACS NANO 2024; 18:761-769. [PMID: 38127497 DOI: 10.1021/acsnano.3c09090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Magnetic skyrmions are topologically protected swirling spin textures with great potential for future spintronic applications. The ability to induce skyrmion motion using mechanical strain not only stimulates the exploration of exotic physics but also affords the opportunity to develop energy-efficient spintronic devices. However, the experimental realization of strain-driven skyrmion motion remains a formidable challenge. Herein, we demonstrate that the inhomogeneous uniaxial compressive strain can induce the movement of isolated skyrmions from regions of high strain to regions of low strain at room temperature, which was directly observed using an in situ Lorentz transmission electron microscope with a specially designed nanoindentation holder. We discover that the uniaxial compressive strain can transform skyrmions into a single domain with in-plane magnetization, resulting in the coexistence of skyrmions with a single domain along the direction of the strain gradient. Through comprehensive micromagnetic simulations, we reveal that the repulsive interactions between skyrmions and the single domain serve as the driving force behind the skyrmion motion. The precise control of skyrmion motion through strain provides exciting opportunities for designing advanced spintronic devices that leverage the intricate interplay between strain and magnetism.
Collapse
Affiliation(s)
- Chen Liu
- Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
- Key Laboratory for Magnetism and Magnetic Materials of Ministry of Education, Lanzhou University, Lanzhou 730000, P. R. China
| | - Junlin Wang
- School of Integrated Circuits, Guangdong University of Technology, Guangzhou 510006, China
- School of Physics, Engineering and Technology, University of York, York YO10 5DD, U.K
| | - Wa He
- Key Laboratory for Magnetism and Magnetic Materials of Ministry of Education, Lanzhou University, Lanzhou 730000, P. R. China
| | - Chenhui Zhang
- Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Senfu Zhang
- Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
- Key Laboratory for Magnetism and Magnetic Materials of Ministry of Education, Lanzhou University, Lanzhou 730000, P. R. China
| | - Shuai Yuan
- School of Mechanical and Electrical Engineering, Guilin University of Electronic Technology, Guilin 541004, P. R. China
| | - Zhipeng Hou
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute for Advanced Materials, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, P. R. China
| | - Minghui Qin
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute for Advanced Materials, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, P. R. China
| | - Yongbing Xu
- School of Integrated Circuits, Guangdong University of Technology, Guangzhou 510006, China
- School of Physics, Engineering and Technology, University of York, York YO10 5DD, U.K
| | - Xingsen Gao
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute for Advanced Materials, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, P. R. China
| | - Yong Peng
- Key Laboratory for Magnetism and Magnetic Materials of Ministry of Education, Lanzhou University, Lanzhou 730000, P. R. China
| | - Kai Liu
- Physics Department, Georgetown University, Washington, D.C. 20057, United States
| | - Zi Qiang Qiu
- Department of Physics, University of California at Berkeley, Berkeley, California 94720, United States
| | - Jun-Ming Liu
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute for Advanced Materials, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, P. R. China
- Laboratory of Solid State Microstructures and Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 211102, P. R. China
| | - Xixiang Zhang
- Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
10
|
Moradifar P, Liu Y, Shi J, Siukola Thurston ML, Utzat H, van Driel TB, Lindenberg AM, Dionne JA. Accelerating Quantum Materials Development with Advances in Transmission Electron Microscopy. Chem Rev 2023. [PMID: 37979189 DOI: 10.1021/acs.chemrev.2c00917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2023]
Abstract
Quantum materials are driving a technology revolution in sensing, communication, and computing, while simultaneously testing many core theories of the past century. Materials such as topological insulators, complex oxides, superconductors, quantum dots, color center-hosting semiconductors, and other types of strongly correlated materials can exhibit exotic properties such as edge conductivity, multiferroicity, magnetoresistance, superconductivity, single photon emission, and optical-spin locking. These emergent properties arise and depend strongly on the material's detailed atomic-scale structure, including atomic defects, dopants, and lattice stacking. In this review, we describe how progress in the field of electron microscopy (EM), including in situ and in operando EM, can accelerate advances in quantum materials and quantum excitations. We begin by describing fundamental EM principles and operation modes. We then discuss various EM methods such as (i) EM spectroscopies, including electron energy loss spectroscopy (EELS), cathodoluminescence (CL), and electron energy gain spectroscopy (EEGS); (ii) four-dimensional scanning transmission electron microscopy (4D-STEM); (iii) dynamic and ultrafast EM (UEM); (iv) complementary ultrafast spectroscopies (UED, XFEL); and (v) atomic electron tomography (AET). We describe how these methods could inform structure-function relations in quantum materials down to the picometer scale and femtosecond time resolution, and how they enable precision positioning of atomic defects and high-resolution manipulation of quantum materials. For each method, we also describe existing limitations to solve open quantum mechanical questions, and how they might be addressed to accelerate progress. Among numerous notable results, our review highlights how EM is enabling identification of the 3D structure of quantum defects; measuring reversible and metastable dynamics of quantum excitations; mapping exciton states and single photon emission; measuring nanoscale thermal transport and coupled excitation dynamics; and measuring the internal electric field and charge density distribution of quantum heterointerfaces- all at the quantum materials' intrinsic atomic and near atomic-length scale. We conclude by describing open challenges for the future, including achieving stable sample holders for ultralow temperature (below 10K) atomic-scale spatial resolution, stable spectrometers that enable meV energy resolution, and high-resolution, dynamic mapping of magnetic and spin fields. With atomic manipulation and ultrafast characterization enabled by EM, quantum materials will be poised to integrate into many of the sustainable and energy-efficient technologies needed for the 21st century.
Collapse
Affiliation(s)
- Parivash Moradifar
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Yin Liu
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Jiaojian Shi
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road MS69, Menlo Park, California 94025, United States
| | | | - Hendrik Utzat
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
- Department of Chemistry, University of California Berkeley, Berkeley, California 94720, United States
| | - Tim B van Driel
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| | - Aaron M Lindenberg
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road MS69, Menlo Park, California 94025, United States
| | - Jennifer A Dionne
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
- Department of Radiology, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
11
|
Gao L, Prokhorenko S, Nahas Y, Bellaiche L. Dynamical Multiferroicity and Magnetic Topological Structures Induced by the Orbital Angular Momentum of Light in a Nonmagnetic Material. PHYSICAL REVIEW LETTERS 2023; 131:196801. [PMID: 38000422 DOI: 10.1103/physrevlett.131.196801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 09/19/2023] [Indexed: 11/26/2023]
Abstract
Recent studies have revealed that chiral phonons resonantly excited by ultrafast laser pulses carry magnetic moments and can enhance the magnetization of materials. In this work, using first-principles-based simulations, we present a real-space scenario where circular motions of electric dipoles in ultrathin two-dimensional ferroelectric and nonmagnetic films are driven by orbital angular momentum of light via strong coupling between electric dipoles and optical field. Rotations of these dipoles follow the evolving pattern of the optical field and create strong on-site orbital magnetic moments of ions. By characterizing topology of orbital magnetic moments in each 2D layer, we identify the vortex type of topological texture-magnetic merons with a one-half topological charge and robust stability. Our study thus provides alternative approaches for generating magnetic fields and topological textures from light-matter interaction and dynamical multiferroicity in nonmagnetic materials.
Collapse
Affiliation(s)
- Lingyuan Gao
- Physics Department and Institute for Nanoscience and Engineering, University of Arkansas, Fayetteville, Arkansas 72701, USA
| | - Sergei Prokhorenko
- Physics Department and Institute for Nanoscience and Engineering, University of Arkansas, Fayetteville, Arkansas 72701, USA
| | - Yousra Nahas
- Physics Department and Institute for Nanoscience and Engineering, University of Arkansas, Fayetteville, Arkansas 72701, USA
| | - Laurent Bellaiche
- Physics Department and Institute for Nanoscience and Engineering, University of Arkansas, Fayetteville, Arkansas 72701, USA
| |
Collapse
|
12
|
Gaida JH, Lourenço-Martins H, Yalunin SV, Feist A, Sivis M, Hohage T, García de Abajo FJ, Ropers C. Lorentz microscopy of optical fields. Nat Commun 2023; 14:6545. [PMID: 37848420 PMCID: PMC10582189 DOI: 10.1038/s41467-023-42054-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 09/25/2023] [Indexed: 10/19/2023] Open
Abstract
In electron microscopy, detailed insights into nanoscale optical properties of materials are gained by spontaneous inelastic scattering leading to electron-energy loss and cathodoluminescence. Stimulated scattering in the presence of external sample excitation allows for mode- and polarization-selective photon-induced near-field electron microscopy (PINEM). This process imprints a spatial phase profile inherited from the optical fields onto the wave function of the probing electrons. Here, we introduce Lorentz-PINEM for the full-field, non-invasive imaging of complex optical near fields at high spatial resolution. We use energy-filtered defocus phase-contrast imaging and iterative phase retrieval to reconstruct the phase distribution of interfering surface-bound modes on a plasmonic nanotip. Our approach is universally applicable to retrieve the spatially varying phase of nanoscale fields and topological modes.
Collapse
Affiliation(s)
- John H Gaida
- Department of Ultrafast Dynamics, Max Planck Institute for Multidisciplinary Sciences, 37077, Göttingen, Germany
- 4th Physical Institute - Solids and Nanostructures, University of Göttingen, 37077, Göttingen, Germany
| | - Hugo Lourenço-Martins
- Department of Ultrafast Dynamics, Max Planck Institute for Multidisciplinary Sciences, 37077, Göttingen, Germany
- 4th Physical Institute - Solids and Nanostructures, University of Göttingen, 37077, Göttingen, Germany
| | - Sergey V Yalunin
- Department of Ultrafast Dynamics, Max Planck Institute for Multidisciplinary Sciences, 37077, Göttingen, Germany
- 4th Physical Institute - Solids and Nanostructures, University of Göttingen, 37077, Göttingen, Germany
| | - Armin Feist
- Department of Ultrafast Dynamics, Max Planck Institute for Multidisciplinary Sciences, 37077, Göttingen, Germany
- 4th Physical Institute - Solids and Nanostructures, University of Göttingen, 37077, Göttingen, Germany
| | - Murat Sivis
- Department of Ultrafast Dynamics, Max Planck Institute for Multidisciplinary Sciences, 37077, Göttingen, Germany
- 4th Physical Institute - Solids and Nanostructures, University of Göttingen, 37077, Göttingen, Germany
| | - Thorsten Hohage
- Institute of Numerical and Applied Mathematics, University of Göttingen, 37083, Göttingen, Germany
| | - F Javier García de Abajo
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860, Castelldefels (Barcelona), Spain
- ICREA-Institució Catalana de Recerca i Estudis Avançats, 08010, Barcelona, Spain
| | - Claus Ropers
- Department of Ultrafast Dynamics, Max Planck Institute for Multidisciplinary Sciences, 37077, Göttingen, Germany.
- 4th Physical Institute - Solids and Nanostructures, University of Göttingen, 37077, Göttingen, Germany.
| |
Collapse
|
13
|
Truc B, Sapozhnik AA, Tengdin P, Viñas Boström E, Schönenberger T, Gargiulo S, Madan I, LaGrange T, Magrez A, Verdozzi C, Rubio A, Rønnow HM, Carbone F. Light-Induced Metastable Hidden Skyrmion Phase in the Mott Insulator Cu 2 OSeO 3. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2304197. [PMID: 37282751 DOI: 10.1002/adma.202304197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Indexed: 06/08/2023]
Abstract
The discovery of a novel long-lived metastable skyrmion phase in the multiferroic insulator Cu2 OSeO3 visualized with Lorentz transmission electron microscopy for magnetic fields below the equilibrium skyrmion pocket is reported. This phase can be accessed by exciting the sample non-adiabatically with near-infrared femtosecond laser pulses and cannot be reached by any conventional field-cooling protocol, referred as a hidden phase. From the strong wavelength dependence of the photocreation process and via spin-dynamics simulations, the magnetoelastic effect is identified as the most likely photocreation mechanism. This effect results in a transient modification of the magnetic free energy landscape extending the equilibrium skyrmion pocket to lower magnetic fields. The evolution of the photoinduced phase is monitored for over 15 min and no decay is found. Because such a time is much longer than the duration of any transient effect induced by a laser pulse in a material, it is assumed that the newly discovered skyrmion state is stable for practical purposes, thus breaking ground for a novel approach to control magnetic state on demand at ultrafast timescales and drastically reducing heat dissipation relevant for next-generation spintronic devices.
Collapse
Affiliation(s)
- Benoit Truc
- Laboratory for Ultrafast Microscopy and Electron Scattering, Institute of Physics, École Polytechnique Fédérale de Lausanne, Lausanne, 1015, Switzerland
| | - Alexey A Sapozhnik
- Laboratory for Ultrafast Microscopy and Electron Scattering, Institute of Physics, École Polytechnique Fédérale de Lausanne, Lausanne, 1015, Switzerland
| | - Phoebe Tengdin
- Laboratory for Ultrafast Microscopy and Electron Scattering, Institute of Physics, École Polytechnique Fédérale de Lausanne, Lausanne, 1015, Switzerland
| | - Emil Viñas Boström
- Max Planck Institute for the Structure and Dynamics of Matter, 22761, Hamburg, Germany
| | - Thomas Schönenberger
- Laboratory for Quantum Magnetism, Institute of Physics, École Polytechnique Fédérale de Lausanne, Lausanne, 1015, Switzerland
| | - Simone Gargiulo
- Laboratory for Ultrafast Microscopy and Electron Scattering, Institute of Physics, École Polytechnique Fédérale de Lausanne, Lausanne, 1015, Switzerland
| | - Ivan Madan
- Laboratory for Ultrafast Microscopy and Electron Scattering, Institute of Physics, École Polytechnique Fédérale de Lausanne, Lausanne, 1015, Switzerland
| | - Thomas LaGrange
- Laboratory for Ultrafast Microscopy and Electron Scattering, Institute of Physics, École Polytechnique Fédérale de Lausanne, Lausanne, 1015, Switzerland
| | - Arnaud Magrez
- Crystal Growth Facility, Institute of Physics, École Polytechnique Fédérale de Lausanne, Lausanne, 1015, Switzerland
| | - Claudio Verdozzi
- Division of Mathematical Physics and ETSF, Lund University, Lund, 223 63, Sweden
| | - Angel Rubio
- Max Planck Institute for the Structure and Dynamics of Matter, 22761, Hamburg, Germany
- Center for Computational Quantum Physics (CCQ), The Flatiron Institute, New York, 10010, USA
| | - Henrik M Rønnow
- Laboratory for Quantum Magnetism, Institute of Physics, École Polytechnique Fédérale de Lausanne, Lausanne, 1015, Switzerland
| | - Fabrizio Carbone
- Laboratory for Ultrafast Microscopy and Electron Scattering, Institute of Physics, École Polytechnique Fédérale de Lausanne, Lausanne, 1015, Switzerland
| |
Collapse
|
14
|
Yannai M, Dahan R, Gorlach A, Adiv Y, Wang K, Madan I, Gargiulo S, Barantani F, Dias EJC, Vanacore GM, Rivera N, Carbone F, García de Abajo FJ, Kaminer I. Ultrafast Electron Microscopy of Nanoscale Charge Dynamics in Semiconductors. ACS NANO 2023; 17:3645-3656. [PMID: 36736033 DOI: 10.1021/acsnano.2c10481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The ultrafast dynamics of charge carriers in solids plays a pivotal role in emerging optoelectronics, photonics, energy harvesting, and quantum technology applications. However, the investigation and direct visualization of such nonequilibrium phenomena remains as a long-standing challenge, owing to the nanometer-femtosecond spatiotemporal scales at which the charge carriers evolve. Here, we propose and demonstrate an interaction mechanism enabling nanoscale imaging of the femtosecond dynamics of charge carriers in solids. This imaging modality, which we name charge dynamics electron microscopy (CDEM), exploits the strong interaction of free-electron pulses with terahertz (THz) near fields produced by the moving charges in an ultrafast scanning transmission electron microscope. The measured free-electron energy at different spatiotemporal coordinates allows us to directly retrieve the THz near-field amplitude and phase, from which we reconstruct movies of the generated charges by comparison to microscopic theory. The CDEM technique thus allows us to investigate previously inaccessible spatiotemporal regimes of charge dynamics in solids, providing insight into the photo-Dember effect and showing oscillations of photogenerated electron-hole distributions inside a semiconductor. Our work facilitates the exploration of a wide range of previously inaccessible charge-transport phenomena in condensed matter using ultrafast electron microscopy.
Collapse
Affiliation(s)
- Michael Yannai
- Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Raphael Dahan
- Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Alexey Gorlach
- Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Yuval Adiv
- Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Kangpeng Wang
- Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Ivan Madan
- Institute of Physics, École Polytechnique Fédérale de Lausanne, Station 6, Lausanne 1015, Switzerland
| | - Simone Gargiulo
- Institute of Physics, École Polytechnique Fédérale de Lausanne, Station 6, Lausanne 1015, Switzerland
| | - Francesco Barantani
- Institute of Physics, École Polytechnique Fédérale de Lausanne, Station 6, Lausanne 1015, Switzerland
- Department of Quantum Matter Physics, University of Geneva, 24 Quai Ernest-Ansermet, 1211 Geneva 4, Switzerland
| | - Eduardo J C Dias
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain
| | - Giovanni Maria Vanacore
- Department of Materials Science, University of Milano-Bicocca, Via Cozzi 55, 20121 Milano, Italy
| | - Nicholas Rivera
- Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Fabrizio Carbone
- Institute of Physics, École Polytechnique Fédérale de Lausanne, Station 6, Lausanne 1015, Switzerland
| | - F Javier García de Abajo
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain
- ICREA-Institució Catalana de Recerca i Estudis Avançats, Passeig Lluís Companys 23, 08010 Barcelona, Spain
| | - Ido Kaminer
- Technion - Israel Institute of Technology, Haifa 3200003, Israel
| |
Collapse
|
15
|
Zhang W, Huang TX, Hehn M, Malinowski G, Verges M, Hohlfeld J, Remy Q, Lacour D, Wang XR, Zhao GP, Vallobra P, Xu Y, Mangin S, Zhao WS. Optical Creation of Skyrmions by Spin Reorientation Transition in Ferrimagnetic CoHo Alloys. ACS APPLIED MATERIALS & INTERFACES 2023; 15:5608-5619. [PMID: 36689950 DOI: 10.1021/acsami.2c19411] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Manipulating magnetic skyrmions by means of a femtosecond (fs) laser pulse has attracted great interest due to their promising applications in efficient information-storage devices with ultralow energy consumption. However, the mechanism underlying the creation of skyrmions induced by an fs laser is still lacking. As a result, a key challenge is to reveal the pathway for the massive reorientation of magnetization from trivial to nontrivial topological states. Here, we studied a series of ferrimagnetic CoHo alloys and investigated the effect of a single laser pulse on the magnetic states. Thanks to the time-resolved magneto-optical Kerr effect and imaging techniques, we demonstrate that the laser-induced phase transitions from single domains into a topological skyrmion phase are mediated by the transient in-plane magnetization state, in real time and space domains, respectively. Combining experiments and micromagnetic simulations, we propose a two-step process for creating skyrmions through laser pulse irradiation: (i) the electron temperature enhancement induces a spin reorientation transition on a picosecond (ps) timescale due to the suppression of perpendicular magnetic anisotropy (PMA) and (ii) the PMA slowly restores, accompanied by out-of-plane magnetization recovery, leading to the generation of skyrmions with the help of spin fluctuations. This work provides a route to control skyrmion patterns using an fs laser, thereby establishing the foundation for further exploration of topological magnetism at ultrafast timescales.
Collapse
Affiliation(s)
- Wei Zhang
- Anhui High Reliability Chips Engineering Laboratory, Hefei Innovation Research Institute, Beihang University, Hefei230013, China
- MIIT Key Laboratory of Spintronics, School of Integrated Circuit Science and Engineering, Beihang University, Beijing100191, China
- CNRS, IJL, Université de Lorraine, NancyF-54000, France
| | | | - Michel Hehn
- CNRS, IJL, Université de Lorraine, NancyF-54000, France
| | | | - Maxime Verges
- CNRS, IJL, Université de Lorraine, NancyF-54000, France
| | | | - Quentin Remy
- CNRS, IJL, Université de Lorraine, NancyF-54000, France
| | - Daniel Lacour
- CNRS, IJL, Université de Lorraine, NancyF-54000, France
| | - Xin Ran Wang
- MIIT Key Laboratory of Spintronics, School of Integrated Circuit Science and Engineering, Beihang University, Beijing100191, China
| | - Guo Ping Zhao
- College of Physics and Electronic Engineering and Institute of Solid State Physics, Sichuan Normal University, Chengdu610066, China
| | - Pierre Vallobra
- Anhui High Reliability Chips Engineering Laboratory, Hefei Innovation Research Institute, Beihang University, Hefei230013, China
| | - Yong Xu
- Anhui High Reliability Chips Engineering Laboratory, Hefei Innovation Research Institute, Beihang University, Hefei230013, China
- MIIT Key Laboratory of Spintronics, School of Integrated Circuit Science and Engineering, Beihang University, Beijing100191, China
| | | | - Wei Sheng Zhao
- Anhui High Reliability Chips Engineering Laboratory, Hefei Innovation Research Institute, Beihang University, Hefei230013, China
- MIIT Key Laboratory of Spintronics, School of Integrated Circuit Science and Engineering, Beihang University, Beijing100191, China
| |
Collapse
|
16
|
Shimojima T, Nakamura A, Ishizaka K. Development of five-dimensional scanning transmission electron microscopy. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2023; 94:023705. [PMID: 36859021 DOI: 10.1063/5.0106517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 01/13/2023] [Indexed: 06/18/2023]
Abstract
By combining the scanning transmission electron microscopy with the ultrafast optical pump-probe technique, we improved the time resolution by a factor of ∼1012 for the differential phase contrast and convergent-beam electron diffraction imaging. These methods provide ultrafast nanoscale movies of physical quantities in nano-materials, such as crystal lattice deformation, magnetization vector, and electric field. We demonstrate the observations of the photo-induced acoustic phonon propagation with an accuracy of 4 ps and 8 nm and the ultrafast demagnetization under zero magnetic field with 10 ns and 400 nm resolution, by utilizing these methods.
Collapse
Affiliation(s)
- T Shimojima
- RIKEN Center for Emergent Matter Science (CEMS), Wako 351-0198, Japan
| | - A Nakamura
- RIKEN Center for Emergent Matter Science (CEMS), Wako 351-0198, Japan
| | - K Ishizaka
- RIKEN Center for Emergent Matter Science (CEMS), Wako 351-0198, Japan
| |
Collapse
|
17
|
Żak AM. Light-Induced In Situ Transmission Electron Microscopy─Development, Challenges, and Perspectives. NANO LETTERS 2022; 22:9219-9226. [PMID: 36442075 PMCID: PMC9756336 DOI: 10.1021/acs.nanolett.2c03669] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/16/2022] [Indexed: 06/16/2023]
Abstract
Transmission electron microscopy is a basic technique used for examining matter at the highest magnification scale available. One of its most challenging branches is in situ microscopy, in which dynamic processes are observed in real time. Among the various stimuli, like strain, temperature, and magnetic or electric fields, the light-matter interaction is rarely observed. However, in recent years, a significant increase in the interest in this technique has been observed. Therefore, I present a summary and critical review of all the in situ experiments performed with light, various technical possibilities for bringing radiation inside the transmission electron microscope, and the most important differences between the effects of light and electrons on the studied matter. Finally, I summarize the most promising directions for further research using light excitation.
Collapse
Affiliation(s)
- Andrzej M Żak
- Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370Wrocław, Poland
| |
Collapse
|
18
|
Madan I, Leccese V, Mazur A, Barantani F, LaGrange T, Sapozhnik A, Tengdin PM, Gargiulo S, Rotunno E, Olaya JC, Kaminer I, Grillo V, de Abajo FJG, Carbone F, Vanacore GM. Ultrafast Transverse Modulation of Free Electrons by Interaction with Shaped Optical Fields. ACS PHOTONICS 2022; 9:3215-3224. [PMID: 36281329 PMCID: PMC9585634 DOI: 10.1021/acsphotonics.2c00850] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Indexed: 05/13/2023]
Abstract
Spatiotemporal electron-beam shaping is a bold frontier of electron microscopy. Over the past decade, shaping methods evolved from static phase plates to low-speed electrostatic and magnetostatic displays. Recently, a swift change of paradigm utilizing light to control free electrons has emerged. Here, we experimentally demonstrate arbitrary transverse modulation of electron beams without complicated electron-optics elements or material nanostructures, but rather using shaped light beams. On-demand spatial modulation of electron wavepackets is obtained via inelastic interaction with transversely shaped ultrafast light fields controlled by an external spatial light modulator. We illustrate this method for the cases of Hermite-Gaussian and Laguerre-Gaussian modulation and discuss their use in enhancing microscope sensitivity. Our approach dramatically widens the range of patterns that can be imprinted on the electron profile and greatly facilitates tailored electron-beam shaping.
Collapse
Affiliation(s)
- Ivan Madan
- Institute
of Physics, École Polytechnique Fédérale
de Lausanne, Lausanne, 1015, Switzerland
| | - Veronica Leccese
- Institute
of Physics, École Polytechnique Fédérale
de Lausanne, Lausanne, 1015, Switzerland
| | - Adam Mazur
- HOLOEYE
Photonics AG, Volmerstrasse 1, 12489 Berlin, Germany
| | - Francesco Barantani
- Institute
of Physics, École Polytechnique Fédérale
de Lausanne, Lausanne, 1015, Switzerland
- Department
of Quantum Matter Physics, University of
Geneva, 1211 Geneva, Switzerland
| | - Thomas LaGrange
- Institute
of Physics, École Polytechnique Fédérale
de Lausanne, Lausanne, 1015, Switzerland
| | - Alexey Sapozhnik
- Institute
of Physics, École Polytechnique Fédérale
de Lausanne, Lausanne, 1015, Switzerland
| | - Phoebe M. Tengdin
- Institute
of Physics, École Polytechnique Fédérale
de Lausanne, Lausanne, 1015, Switzerland
| | - Simone Gargiulo
- Institute
of Physics, École Polytechnique Fédérale
de Lausanne, Lausanne, 1015, Switzerland
| | - Enzo Rotunno
- Centro
S3, Istituto di Nanoscienze-CNR, 41125 Modena, Italy
| | | | - Ido Kaminer
- Department
of Electrical and Computer Engineering, Technion, Haifa 32000, Israel
| | | | - F. Javier García de Abajo
- ICFO-Institut
de Ciencies Fotoniques, The Barcelona Institute
of Science and Technology, 08860 Castelldefels (Barcelona), Spain
- ICREA-Institució
Catalana de Recerca i Estudis Avançats, Passeig Lluís Companys 23, 08010 Barcelona, Spain
| | - Fabrizio Carbone
- Institute
of Physics, École Polytechnique Fédérale
de Lausanne, Lausanne, 1015, Switzerland
| | - Giovanni Maria Vanacore
- Department
of Materials Science, University of Milano-Bicocca, Via Cozzi 55, 20126 Milano, Italy
| |
Collapse
|
19
|
Nucleation and manipulation of single skyrmions using spin-polarized currents in antiferromagnetic skyrmion-based racetrack memories. Sci Rep 2022; 12:15225. [PMID: 36076059 PMCID: PMC9458664 DOI: 10.1038/s41598-022-19587-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 08/31/2022] [Indexed: 11/21/2022] Open
Abstract
In this work, an ultrafast nucleation of an isolated anti-ferromagnetic (AFM) skyrmion was reported in an AFM layer with DMi strengths of 0.47\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$-$$\end{document}-0.32 \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathrm{mJ}/{\mathrm{m}}^{2}$$\end{document}mJ/m2 using spin-transfer torque by locally injecting pure spin currents into magnetic tracks. Besides, we revealed the key advantages of AFM skyrmion-based racetrack memories by comparing the motion of AFM and FM skyrmions driven by spin–orbit torques (SOTs) for different skyrmion sizes along racetrack memories with various notch sizes. Our results indicate that for AFM skyrmion, the skyrmion Hall effect does not exist during the skyrmion motion, therefore at small skyrmion sizes, we succeeded to overcome the repulsive forces developed in the notch area for low and large SOTs. The obtained findings were carefully analyzed by computing the variation of energy barriers associated with the notch for different skyrmion sizes using minimum energy path (MEP) calculations. We showed that the larger the skyrmion size, the harder it is to shrink the skyrmion in the notch which produces a high energy barrier (Eb) for large skyrmion sizes. Moreover, as the notch size increases, the skyrmion size shrinks further, and hence Eb increases proportionally. Nevertheless, we proved that AFM skyrmions are more efficient and flexible than FM skyrmions against boundary forces.
Collapse
|
20
|
Chen G, Ophus C, Lo Conte R, Wiesendanger R, Yin G, Schmid AK, Liu K. Ultrasensitive Sub-monolayer Palladium Induced Chirality Switching and Topological Evolution of Skyrmions. NANO LETTERS 2022; 22:6678-6684. [PMID: 35939526 DOI: 10.1021/acs.nanolett.2c02043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Chiral spin textures are fundamentally interesting, with promise for device applications. Stabilizing chirality is conventionally achieved by introducing Dzyaloshinskii-Moriya interaction (DMI) in asymmetric multilayers, where the thickness of each layer is at least a few monolayers. Here we report an ultrasensitive chirality switching in (Ni/Co)n multilayer induced by capping with only 0.22 monolayer of Pd. Using spin-polarized low-energy electron microscopy, we monitor the gradual evolution of domain walls from left-handed to right-handed Néel walls and quantify the DMI induced by the Pd capping layer. We also observe the chiral evolution of a skyrmion during the DMI switching, where no significant topological protection is found as the skyrmion winding number varies. This corresponds to a minimum energy cost of <1 attojoule during the skyrmion chirality switching. Our results demonstrate the detailed chirality evolution within skyrmions during the DMI sign switching, which is relevant to practical applications of skyrmionic devices.
Collapse
Affiliation(s)
- Gong Chen
- Department of Physics, Georgetown University, Washington, D.C. 20057, United States
| | - Colin Ophus
- NCEM, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Roberto Lo Conte
- Department of Materials Science & Engineering, University of California, Berkeley, California 95720, United States
- Department of Physics, University of Hamburg, D-20355 Hamburg, Germany
| | | | - Gen Yin
- Department of Physics, Georgetown University, Washington, D.C. 20057, United States
| | - Andreas K Schmid
- NCEM, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Kai Liu
- Department of Physics, Georgetown University, Washington, D.C. 20057, United States
| |
Collapse
|
21
|
Sekiguchi F, Budzinauskas K, Padmanabhan P, Versteeg RB, Tsurkan V, Kézsmárki I, Foggetti F, Artyukhin S, van Loosdrecht PHM. Slowdown of photoexcited spin dynamics in the non-collinear spin-ordered phases in skyrmion host GaV 4S 8. Nat Commun 2022; 13:3212. [PMID: 35680864 PMCID: PMC9184521 DOI: 10.1038/s41467-022-30829-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 05/20/2022] [Indexed: 11/10/2022] Open
Abstract
Formation of magnetic order alters the character of spin excitations, which then affects transport properties. We investigate the photoexcited ultrafast spin dynamics in different magnetic phases in Néel-type skyrmion host GaV4S8 with time-resolved magneto-optical Kerr effect experiments. The coherent spin precession, whose amplitude is enhanced in the skyrmion-lattice phase, shows a signature of phase coexistence across the magnetic phase transitions. The incoherent spin relaxation dynamics slows down by a factor of two in the skyrmion-lattice/cycloid phases, indicating significant decrease in thermal conductivity triggered by a small change of magnetic field. The slow heat diffusion in the skyrmion-lattice/cycloid phases is attributed to the stronger magnon scattering off the domain walls formed in abundance in the skyrmion-lattice/cycloid phase. These results highlight the impact of spatial spin structure on the ultrafast heat transport in spin systems, providing a useful insight for the step toward ultrafast photocontrol of the magnets with novel spin orders. Skyrmions are a topological magnetic texture that have garnered considerable interest for various technological applications. Here, Sekiguchi et al. investigate the ultrafast optical response of GaV4S6, and find a significant reduction in the thermal conductivity in the skyrmion phase.
Collapse
Affiliation(s)
- Fumiya Sekiguchi
- II. Physikalisches Institut, Universität zu Köln, Zülpicher Str. 77, D-50937, Köln, Germany.
| | - Kestutis Budzinauskas
- II. Physikalisches Institut, Universität zu Köln, Zülpicher Str. 77, D-50937, Köln, Germany
| | - Prashant Padmanabhan
- II. Physikalisches Institut, Universität zu Köln, Zülpicher Str. 77, D-50937, Köln, Germany
| | - Rolf B Versteeg
- II. Physikalisches Institut, Universität zu Köln, Zülpicher Str. 77, D-50937, Köln, Germany
| | - Vladimir Tsurkan
- Experimental Physics V, Center for Electronic Correlations and Magnetism, University of Augsburg, 86159, Augsburg, Germany.,Institute of Applied Physics, MD 2028, Chișinău, Republic of Moldova
| | - István Kézsmárki
- Experimental Physics V, Center for Electronic Correlations and Magnetism, University of Augsburg, 86159, Augsburg, Germany
| | - Francesco Foggetti
- Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genova, Italy.,Dipartimento di Fisica, Università di Genova, Via Dodecaneso, 33, 16146, Genova, Italy
| | - Sergey Artyukhin
- Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genova, Italy
| | - Paul H M van Loosdrecht
- II. Physikalisches Institut, Universität zu Köln, Zülpicher Str. 77, D-50937, Köln, Germany.
| |
Collapse
|
22
|
Nakamura A, Shimojima T, Ishizaka K. Visualizing optically-induced strains by five-dimensional ultrafast electron microscopy. Faraday Discuss 2022; 237:27-39. [PMID: 35661182 DOI: 10.1039/d2fd00062h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ultrafast optical control of strain is crucial for the future development of nanometric acoustic devices. Although ultrafast electron microscopy has played an important role in the visualization of strain dynamics in the GHz frequency region, quantitative strain evaluation with nm × ps spatio-temporal resolution is still challenging. Five-dimensional scanning transmission electron microscopy (5D-STEM) is a powerful technique that measures time-dependent diffraction or deflection of the electron beam at the respective two-dimensional sample positions in real space. In this paper, we demonstrate that convergent beam electron diffraction (CBED) measurements using 5D-STEM are capable of quantitative time-dependent strain mapping in the nm × ps scale. We observe the generation and propagation of acoustic waves in a nanofabricated silicon thin plate of 100 nm thickness. The polarization and amplitude of the acoustic waves propagating in the silicon plate are quantitatively determined from the CBED analysis. Further Fourier-transformation analysis reveals the strain distribution in the momentum-frequency space, which gives the dispersion relation in arbitrary directions along the plate. Versatility of 5D-STEM-CBED analysis enables quantitative strain mapping even in complex nanofabricated samples, as demonstrated in this study.
Collapse
Affiliation(s)
- A Nakamura
- RIKEN Center for Emergent Matter Science, Wako, Saitama 351-0198, Japan.
| | - T Shimojima
- RIKEN Center for Emergent Matter Science, Wako, Saitama 351-0198, Japan.
| | - K Ishizaka
- RIKEN Center for Emergent Matter Science, Wako, Saitama 351-0198, Japan. .,Quantum-Phase Electronics Center and Department of Applied Physics, The University of Tokyo, Bunkyo, Tokyo 113-8656, Japan
| |
Collapse
|
23
|
Reversible writing/deleting of magnetic skyrmions through hydrogen adsorption/desorption. Nat Commun 2022; 13:1350. [PMID: 35292656 PMCID: PMC8924161 DOI: 10.1038/s41467-022-28968-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 02/17/2022] [Indexed: 11/09/2022] Open
Abstract
Magnetic skyrmions are topologically nontrivial spin textures with envisioned applications in energy-efficient magnetic information storage. Toggling the presence of magnetic skyrmions via writing/deleting processes is essential for spintronics applications, which usually require the application of a magnetic field, a gate voltage or an electric current. Here we demonstrate the reversible field-free writing/deleting of skyrmions at room temperature, via hydrogen chemisorption/desorption on the surface of Ni and Co films. Supported by Monte-Carlo simulations, the skyrmion creation/annihilation is attributed to the hydrogen-induced magnetic anisotropy change on ferromagnetic surfaces. We also demonstrate the role of hydrogen and oxygen on magnetic anisotropy and skyrmion deletion on other magnetic surfaces. Our results open up new possibilities for designing skyrmionic and magneto-ionic devices. To use skyrmions to store information, an effective method for writing and deleting them is required. Here, Chen et al demonstrate the writing and deleting of skyrmions at room temperature by using hydrogen adsorption to change the magnetic anisotropy of the metallic multilayer hosting the skyrmions.
Collapse
|
24
|
Zayko S, Kfir O, Heigl M, Lohmann M, Sivis M, Albrecht M, Ropers C. Ultrafast high-harmonic nanoscopy of magnetization dynamics. Nat Commun 2021; 12:6337. [PMID: 34732725 PMCID: PMC8566501 DOI: 10.1038/s41467-021-26594-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 08/10/2021] [Indexed: 11/25/2022] Open
Abstract
Light-induced magnetization changes, such as all-optical switching, skyrmion nucleation, and intersite spin transfer, unfold on temporal and spatial scales down to femtoseconds and nanometers, respectively. Pump-probe spectroscopy and diffraction studies indicate that spatio-temporal dynamics may drastically affect the non-equilibrium magnetic evolution. Yet, direct real-space magnetic imaging on the relevant timescales has remained challenging. Here, we demonstrate ultrafast high-harmonic nanoscopy employing circularly polarized high-harmonic radiation for real-space imaging of femtosecond magnetization dynamics. We map quenched magnetic domains and localized spin structures in Co/Pd multilayers with a sub-wavelength spatial resolution down to 16 nm, and strobosocopically trace the local magnetization dynamics with 40 fs temporal resolution. Our compact experimental setup demonstrates the highest spatio-temporal resolution of magneto-optical imaging to date. Facilitating ultrafast imaging with high sensitivity to chiral and linear dichroism, we envisage a wide range of applications spanning magnetism, phase transitions, and carrier dynamics.
Collapse
Affiliation(s)
- Sergey Zayko
- 4th Physical Institute-Solids and Nanostructures, University of Göttingen, 37077, Göttingen, Germany.
- Max Planck Institute for Biophysical Chemistry, 37077, Göttingen, Germany.
| | - Ofer Kfir
- 4th Physical Institute-Solids and Nanostructures, University of Göttingen, 37077, Göttingen, Germany
- Max Planck Institute for Biophysical Chemistry, 37077, Göttingen, Germany
- School of Electrical Engineering, Tel Aviv University, 69978, Tel Aviv, Israel
| | - Michael Heigl
- Institute of Physics, University of Augsburg, 86159, Augsburg, Germany
| | - Michael Lohmann
- 4th Physical Institute-Solids and Nanostructures, University of Göttingen, 37077, Göttingen, Germany
| | - Murat Sivis
- 4th Physical Institute-Solids and Nanostructures, University of Göttingen, 37077, Göttingen, Germany
- Max Planck Institute for Biophysical Chemistry, 37077, Göttingen, Germany
| | - Manfred Albrecht
- Institute of Physics, University of Augsburg, 86159, Augsburg, Germany
| | - Claus Ropers
- 4th Physical Institute-Solids and Nanostructures, University of Göttingen, 37077, Göttingen, Germany
- Max Planck Institute for Biophysical Chemistry, 37077, Göttingen, Germany
| |
Collapse
|
25
|
Shimojima T, Nakamura A, Yu X, Karube K, Taguchi Y, Tokura Y, Ishizaka K. Nano-to-micro spatiotemporal imaging of magnetic skyrmion's life cycle. SCIENCE ADVANCES 2021; 7:7/25/eabg1322. [PMID: 34134977 PMCID: PMC8208720 DOI: 10.1126/sciadv.abg1322] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 04/30/2021] [Indexed: 05/27/2023]
Abstract
Magnetic skyrmions are self-organized topological spin textures that behave like particles. Because of their fast creation and typically long lifetime, experimental verification of skyrmion's creation/annihilation processes has been challenging. Here, we successfully track skyrmion dynamics in defect-introduced Co9Zn9Mn2 by using pump-probe Lorentz transmission electron microscope. Following the nanosecond photothermal excitation, we resolve 160-nm skyrmion's proliferation at <1 ns, contraction at 5 ns, drift from 10 ns to 4 μs, and coalescence at ~5 μs. These motions relay the multiscale arrangement and relaxation of skyrmion clusters in a repeatable cycle of 20 kHz. Such repeatable dynamics of skyrmions, arising from the weakened but still persistent topological protection around defects, enables us to visualize the whole life of the skyrmions and demonstrates the possible high-frequency manipulations of topological charges brought by skyrmions.
Collapse
Affiliation(s)
| | - Asuka Nakamura
- RIKEN Center for Emergent Matter Science (CEMS), Wako 351-0198, Japan
| | - Xiuzhen Yu
- RIKEN Center for Emergent Matter Science (CEMS), Wako 351-0198, Japan
| | - Kosuke Karube
- RIKEN Center for Emergent Matter Science (CEMS), Wako 351-0198, Japan
| | - Yasujiro Taguchi
- RIKEN Center for Emergent Matter Science (CEMS), Wako 351-0198, Japan
| | - Yoshinori Tokura
- RIKEN Center for Emergent Matter Science (CEMS), Wako 351-0198, Japan
- Quantum-Phase Electronics Center (QPEC) and Department of Applied Physics, The University of Tokyo, Tokyo 113-8656, Japan
- Tokyo College, The University of Tokyo, Tokyo 113-8656, Japan
| | - Kyoko Ishizaka
- RIKEN Center for Emergent Matter Science (CEMS), Wako 351-0198, Japan
- Quantum-Phase Electronics Center (QPEC) and Department of Applied Physics, The University of Tokyo, Tokyo 113-8656, Japan
| |
Collapse
|
26
|
Deinhart V, Kern LM, Kirchhof JN, Juergensen S, Sturm J, Krauss E, Feichtner T, Kovalchuk S, Schneider M, Engel D, Pfau B, Hecht B, Bolotin KI, Reich S, Höflich K. The patterning toolbox FIB-o-mat: Exploiting the full potential of focused helium ions for nanofabrication. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2021; 12:304-318. [PMID: 33889477 PMCID: PMC8042487 DOI: 10.3762/bjnano.12.25] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 03/05/2021] [Indexed: 05/30/2023]
Abstract
Focused beams of helium ions are a powerful tool for high-fidelity machining with spatial precision below 5 nm. Achieving such a high patterning precision over large areas and for different materials in a reproducible manner, however, is not trivial. Here, we introduce the Python toolbox FIB-o-mat for automated pattern creation and optimization, providing full flexibility to accomplish demanding patterning tasks. FIB-o-mat offers high-level pattern creation, enabling high-fidelity large-area patterning and systematic variations in geometry and raster settings. It also offers low-level beam path creation, providing full control over the beam movement and including sophisticated optimization tools. Three applications showcasing the potential of He ion beam nanofabrication for two-dimensional material systems and devices using FIB-o-mat are presented.
Collapse
Affiliation(s)
- Victor Deinhart
- Ferdinand-Braun-Institut gGmbH, Leibniz-Institut für Höchstfrequenztechnik, Gustav-Kirchhoff-Str. 4, 12489 Berlin, Germany
- Corelab Correlative Microscopy and Spectroscopy, Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
| | - Lisa-Marie Kern
- Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy, Max-Born-Straße 2A, 12489 Berlin, Germany
| | - Jan N Kirchhof
- Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | | | - Joris Sturm
- Ferdinand-Braun-Institut gGmbH, Leibniz-Institut für Höchstfrequenztechnik, Gustav-Kirchhoff-Str. 4, 12489 Berlin, Germany
- Corelab Correlative Microscopy and Spectroscopy, Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
| | - Enno Krauss
- Department of Experimental Physics 5, Röntgen Research Center for Complex Material Research (RCCM), Physics Institute, University of Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Thorsten Feichtner
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci, 32 20133 Milano, Italy
| | | | - Michael Schneider
- Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy, Max-Born-Straße 2A, 12489 Berlin, Germany
| | - Dieter Engel
- Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy, Max-Born-Straße 2A, 12489 Berlin, Germany
| | - Bastian Pfau
- Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy, Max-Born-Straße 2A, 12489 Berlin, Germany
| | - Bert Hecht
- Department of Experimental Physics 5, Röntgen Research Center for Complex Material Research (RCCM), Physics Institute, University of Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | | | - Stephanie Reich
- Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Katja Höflich
- Corelab Correlative Microscopy and Spectroscopy, Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
| |
Collapse
|
27
|
Abstract
Skyrmion, a concept originally proposed in particle physics half a century ago, can now find the most fertile field for its applicability, that is, the magnetic skyrmion realized in helimagnetic materials. The spin swirling vortex-like texture of the magnetic skyrmion can define the particle nature by topology; that is, all the constituent spin moments within the two-dimensional sheet wrap the sphere just one time. Such a topological nature of the magnetic skyrmion can lead to extraordinary metastability via topological protection and the driven motion with low electric-current excitation, which may promise future application to spintronics. The skyrmions in the magnetic materials frequently show up as the crystal lattice form, e.g., hexagonal lattice, but sometimes as isolated or independent particles. These skyrmions in magnets were initially found in acentric magnets, such as chiral, polar, and bilayered magnets endowed with antisymmetric spin exchange interaction, while the skyrmion host materials have been explored in a broader family of compounds including centrosymmetric magnets. This review describes the materials science and materials chemistry of magnetic skyrmions using the classification scheme of the skyrmion forming microscopic mechanisms. The emergent phenomena and functions mediated by skyrmions are described, including the generation of emergent magnetic and electric field by statics and dynamics of skrymions and the inherent magnetoelectric effect. The other important magnetic topological defects in two or three dimensions, such as biskyrmions, antiskyrmions, merons, and hedgehogs, are also reviewed in light of their interplay with the skyrmions.
Collapse
Affiliation(s)
- Yoshinori Tokura
- Department of Applied Physics, University of Tokyo, Tokyo 113-8656, Japan.,RIKEN Center for Emergent Matter Science (CEMS), Wako, 351-0198, Japan.,Tokyo College, University of Tokyo, Tokyo 113-8656, Japan
| | - Naoya Kanazawa
- Department of Applied Physics, University of Tokyo, Tokyo 113-8656, Japan
| |
Collapse
|
28
|
Cao G, Jiang S, Åkerman J, Weissenrieder J. Femtosecond laser driven precessing magnetic gratings. NANOSCALE 2021; 13:3746-3756. [PMID: 33555004 DOI: 10.1039/d0nr07962f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Manipulation and detection of spins at the nanoscale is of considerable contemporary interest as it may not only facilitate a description of fundamental physical processes but also plays a critical role in the development of spintronic devices. Here, we describe the application of a novel combination of transient grating excitation with Lorentz ultrafast electron microscopy to control and detect magnetization dynamics with combined nanometer and picosecond resolutions. Excitation of Ni80Fe20 thin film samples results in the formation of transient coherently precessing magnetic gratings. From the time-resolved results, we extract detailed real space information of the magnetic precession, including local magnetization, precession frequency, and relevant decay factors. The Lorentz contrast of the dynamics is sensitive to the alignment of the in-plane components of the applied field. The experimental results are rationalized by a model considering local demagnetization and the phase of the precessing magnetic moments. We envision that this technique can be extended to the study of spin waves and dynamic behavior in ferrimagnetic and antiferromagnetic systems.
Collapse
Affiliation(s)
- Gaolong Cao
- Materials and Nano Physics, Department of Applied Physics, KTH Royal Institute of Technology, Kista, Sweden. and Department of Physics, University of Gothenburg, Gothenburg, Sweden.
| | - Sheng Jiang
- Department of Physics, University of Gothenburg, Gothenburg, Sweden.
| | - Johan Åkerman
- Materials and Nano Physics, Department of Applied Physics, KTH Royal Institute of Technology, Kista, Sweden. and Department of Physics, University of Gothenburg, Gothenburg, Sweden.
| | - Jonas Weissenrieder
- Materials and Nano Physics, Department of Applied Physics, KTH Royal Institute of Technology, Kista, Sweden.
| |
Collapse
|
29
|
Büttner F, Pfau B, Böttcher M, Schneider M, Mercurio G, Günther CM, Hessing P, Klose C, Wittmann A, Gerlinger K, Kern LM, Strüber C, von Korff Schmising C, Fuchs J, Engel D, Churikova A, Huang S, Suzuki D, Lemesh I, Huang M, Caretta L, Weder D, Gaida JH, Möller M, Harvey TR, Zayko S, Bagschik K, Carley R, Mercadier L, Schlappa J, Yaroslavtsev A, Le Guyarder L, Gerasimova N, Scherz A, Deiter C, Gort R, Hickin D, Zhu J, Turcato M, Lomidze D, Erdinger F, Castoldi A, Maffessanti S, Porro M, Samartsev A, Sinova J, Ropers C, Mentink JH, Dupé B, Beach GSD, Eisebitt S. Observation of fluctuation-mediated picosecond nucleation of a topological phase. NATURE MATERIALS 2021; 20:30-37. [PMID: 33020615 DOI: 10.1038/s41563-020-00807-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 08/20/2020] [Indexed: 06/11/2023]
Abstract
Topological states of matter exhibit fascinating physics combined with an intrinsic stability. A key challenge is the fast creation of topological phases, which requires massive reorientation of charge or spin degrees of freedom. Here we report the picosecond emergence of an extended topological phase that comprises many magnetic skyrmions. The nucleation of this phase, followed in real time via single-shot soft X-ray scattering after infrared laser excitation, is mediated by a transient topological fluctuation state. This state is enabled by the presence of a time-reversal symmetry-breaking perpendicular magnetic field and exists for less than 300 ps. Atomistic simulations indicate that the fluctuation state largely reduces the topological energy barrier and thereby enables the observed rapid and homogeneous nucleation of the skyrmion phase. These observations provide fundamental insights into the nature of topological phase transitions, and suggest a path towards ultrafast topological switching in a wide variety of materials through intermediate fluctuating states.
Collapse
Affiliation(s)
- Felix Büttner
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Helmholtz-Zentrum für Materialien und Energie GmbH, Berlin, Germany.
| | | | - Marie Böttcher
- Institut für Physik, Johannes Gutenberg Universität Mainz, Mainz, Germany
| | | | | | - Christian M Günther
- Zentraleinrichtung Elektronenmikroskopie (ZELMI), Technische Universität Berlin, Berlin, Germany
- Institut für Optik und Atomare Physik, Technische Universität Berlin, Berlin, Germany
| | | | | | - Angela Wittmann
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | | | | | | | | | | | - Alexandra Churikova
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Siying Huang
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Daniel Suzuki
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ivan Lemesh
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Mantao Huang
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Lucas Caretta
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - John H Gaida
- 4th Physical Institute, University of Göttingen, Göttingen, Germany
| | - Marcel Möller
- 4th Physical Institute, University of Göttingen, Göttingen, Germany
| | - Tyler R Harvey
- 4th Physical Institute, University of Göttingen, Göttingen, Germany
| | - Sergey Zayko
- 4th Physical Institute, University of Göttingen, Göttingen, Germany
| | - Kai Bagschik
- Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany
| | | | | | | | | | | | | | | | | | | | | | - Jun Zhu
- European XFEL, Schenefeld, Germany
| | | | | | - Florian Erdinger
- Institute of Computer Engineering, Heidelberg University, Heidelberg, Germany
| | - Andrea Castoldi
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milano, Italy
- Istituto Nazionale di Fisica Nucleare, Sezione di Milano, Milano, Italy
| | | | | | | | - Jairo Sinova
- Institut für Physik, Johannes Gutenberg Universität Mainz, Mainz, Germany
| | - Claus Ropers
- 4th Physical Institute, University of Göttingen, Göttingen, Germany
| | - Johan H Mentink
- Institute for Molecules and Materials, Radboud University, Nijmegen, the Netherlands
| | - Bertrand Dupé
- Institut für Physik, Johannes Gutenberg Universität Mainz, Mainz, Germany
- Nanomat/Q-mat/CESAM, Université de Liège, Belgium and Fonds de la Recherche Scientifique (FNRS), Bruxelles, Belgium
| | - Geoffrey S D Beach
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Stefan Eisebitt
- Max-Born-Institut, Berlin, Germany
- Institut für Optik und Atomare Physik, Technische Universität Berlin, Berlin, Germany
| |
Collapse
|
30
|
Capic D, Garanin DA, Chudnovsky EM. Skyrmion-skyrmion interaction in a magnetic film. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2020; 32:415803. [PMID: 32526724 DOI: 10.1088/1361-648x/ab9bc8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 06/11/2020] [Indexed: 06/11/2023]
Abstract
Interaction of two skyrmions stabilized by the ferromagnetic exchange, Dzyaloshinskii-Moriya interaction (DMI), and external magnetic field has been studied numerically on a 2D lattice of size large compared to the separation,d, between the skyrmions. We show that two skyrmions of the same chirality (determined by the symmetry of the crystal) repel. In accordance with earlier analytical results, their long-range pair interaction falls out with the separation as exp(-d/δH), whereδHis the magnetic screening length, independent of the DMI. The prefactor in this expression depends on the DMI that drives the repulsion. The latter results in the spiral motion of the two skyrmions around each other, with the separation between them growing logarithmically with time. When two skyrmions of the total topological chargeQ= 2 are pushed close to each other, the discreteness of the atomic lattice makes them collapse into one skyrmion of chargeQ= 1 below a critical separation. Experiment is proposed that would allow one to measure the interaction between two skyrmions by holding them in positions with two magnetic tips. Our findings should be of value for designing topologically protected magnetic memory based upon skyrmions.
Collapse
Affiliation(s)
- D Capic
- Physics Department, Herbert H. Lehman College and Graduate School, The City University of New York, 250 Bedford Park Boulevard West, Bronx, New York 10468-1589, United States of America
| | - D A Garanin
- Physics Department, Herbert H. Lehman College and Graduate School, The City University of New York, 250 Bedford Park Boulevard West, Bronx, New York 10468-1589, United States of America
| | - E M Chudnovsky
- Physics Department, Herbert H. Lehman College and Graduate School, The City University of New York, 250 Bedford Park Boulevard West, Bronx, New York 10468-1589, United States of America
| |
Collapse
|
31
|
Chai K, Li ZA, Liu R, Zou B, Farle M, Li J. Dynamics of chiral state transitions and relaxations in an FeGe thin plate via in situ Lorentz microscopy. NANOSCALE 2020; 12:14919-14925. [PMID: 32638795 DOI: 10.1039/d0nr03278f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Studying the magnetic transition between different topological spin textures in noncentrosymmetric magnets under external stimuli is an important topic in chiral magnetism. Here, using in situ Lorentz transmission electron microscopy (LTEM) we directly visualize the thermal-driven magnetic transitions and dynamic characteristics in FeGe thin plates. A novel protocol-dependent phase diagram of FeGe thin plates was obtained via pulsed laser excitation. Moreover, by setting the appropriate specimen temperature, the relaxation of chiral magnetic states in FeGe specimens was recorded and analyzed with an Arrhenius-type relaxation mechanism. We present the field-dependent activation energy barriers for chiral state transitions and the magnetic transition pathways of these spin textures for FeGe thin plates. Our results unveil the effects of thermal excitation on the topological spin texture transitions and provide useful information about magnetic dynamics of chiral magnetic state relaxation.
Collapse
Affiliation(s)
- Ke Chai
- Beijing Key Laboratory of Nanophotonics and Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, Beijing 100081, China. and Beijing National Laboratory for Condensed Matter Physics and Institute of Physics Chinese Academy of Sciences, Beijing 100190, China
| | - Zi-An Li
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics Chinese Academy of Sciences, Beijing 100190, China
| | - Ruibin Liu
- Beijing Key Laboratory of Nanophotonics and Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, Beijing 100081, China.
| | - Bingsuo Zou
- Beijing Key Laboratory of Nanophotonics and Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, Beijing 100081, China. and Center on Nano-energy Research, School of Physical Science and Technology, Guangxi University, Nanning, 530004, China
| | - Michael Farle
- Faculty of Physics and Center for Nanointegration (CENIDE), University of Duisburg-Essen, 47057 Duisburg, Germany
| | - Jianqi Li
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics Chinese Academy of Sciences, Beijing 100190, China and Yangtze River Delta Physics Research Center Co., Ltd. - Liyang, Jiangsu, 213300, China and Songshan Lake Materials Laboratory - Dongguan, Guangdong, 523808, China
| |
Collapse
|
32
|
Goodge BH, Bianco E, Schnitzer N, Zandbergen HW, Kourkoutis LF. Atomic-Resolution Cryo-STEM Across Continuously Variable Temperatures. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2020; 26:439-446. [PMID: 32501193 DOI: 10.1017/s1431927620001427] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Atomic-resolution cryogenic scanning transmission electron microscopy (cryo-STEM) has provided a path to probing the microscopic nature of select low-temperature phases in quantum materials. Expanding cryo-STEM techniques to broadly tunable temperatures will give access to the rich temperature-dependent phase diagrams of these materials. With existing cryo-holders, however, variations in sample temperature significantly disrupt the thermal equilibrium of the system, resulting in large-scale sample drift. The ability to tune the temperature without negative impact on the overall instrument stability is crucial, particularly for high-resolution experiments. Here, we test a new side-entry continuously variable temperature dual-tilt cryo-holder which integrates liquid nitrogen cooling with a 6-pin micro-electromechanical system (MEMS) sample heater to overcome some of these experimental challenges. We measure consistently low drift rates of 0.3-0.4 Å/s and demonstrate atomic-resolution cryo-STEM imaging across a continuously variable temperature range from ~100 K to well above room temperature. We conduct additional drift stability measurements across several commercial sample stages and discuss implications for further developments of ultra-stable, flexible cryo-stages.
Collapse
Affiliation(s)
- Berit H Goodge
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY14853, USA
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY14853, USA
| | - Elisabeth Bianco
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY14853, USA
| | - Noah Schnitzer
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY14853, USA
| | - Henny W Zandbergen
- Kavli Institute of Nanoscience, Delft University of Technology, 2600 GA Delft, The Netherlands
- HennyZ, 2223 GL Katwijk, The Netherlands
| | - Lena F Kourkoutis
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY14853, USA
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY14853, USA
| |
Collapse
|
33
|
Davis TJ, Janoschka D, Dreher P, Frank B, Meyer Zu Heringdorf FJ, Giessen H. Ultrafast vector imaging of plasmonic skyrmion dynamics with deep subwavelength resolution. Science 2020; 368:368/6489/eaba6415. [PMID: 32327571 DOI: 10.1126/science.aba6415] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 03/12/2020] [Indexed: 12/20/2022]
Abstract
Plasmonic skyrmions are an optical manifestation of topological defects in a continuous vector field. Identifying them requires characterization of the vector structure of the electromagnetic near field on thin metal films. Here we introduce time-resolved vector microscopy that creates movies of the electric field vectors of surface plasmons with subfemtosecond time steps and a 10-nanometer spatial scale. We image complete time sequences of propagating surface plasmons as well as plasmonic skyrmions, resolving all vector components of the electric field and their time dynamics, thus demonstrating dynamic spin-momentum coupling as well as the time-varying skyrmion number. The ability to image linear optical effects in the spin and phase structures of light in the single-nanometer range will allow for entirely novel microscopy and metrology applications.
Collapse
Affiliation(s)
- Timothy J Davis
- School of Physics, University of Melbourne, Parkville, Victoria 3010 Australia. .,Faculty of Physics and Center for Nanointegration, Duisburg-Essen (CENIDE), University of Duisburg-Essen, 47048 Duisburg, Germany.,4th Physics Institute, Research Center SCoPE, and Integrated Quantum Science and Technology Center, University of Stuttgart, 70569 Stuttgart, Germany
| | - David Janoschka
- Faculty of Physics and Center for Nanointegration, Duisburg-Essen (CENIDE), University of Duisburg-Essen, 47048 Duisburg, Germany
| | - Pascal Dreher
- Faculty of Physics and Center for Nanointegration, Duisburg-Essen (CENIDE), University of Duisburg-Essen, 47048 Duisburg, Germany
| | - Bettina Frank
- 4th Physics Institute, Research Center SCoPE, and Integrated Quantum Science and Technology Center, University of Stuttgart, 70569 Stuttgart, Germany
| | - Frank-J Meyer Zu Heringdorf
- Faculty of Physics and Center for Nanointegration, Duisburg-Essen (CENIDE), University of Duisburg-Essen, 47048 Duisburg, Germany.
| | - Harald Giessen
- 4th Physics Institute, Research Center SCoPE, and Integrated Quantum Science and Technology Center, University of Stuttgart, 70569 Stuttgart, Germany.
| |
Collapse
|
34
|
Zhang X, Zhou Y, Mee Song K, Park TE, Xia J, Ezawa M, Liu X, Zhao W, Zhao G, Woo S. Skyrmion-electronics: writing, deleting, reading and processing magnetic skyrmions toward spintronic applications. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2020; 32:143001. [PMID: 31689688 DOI: 10.1088/1361-648x/ab5488] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The field of magnetic skyrmions has been actively investigated across a wide range of topics during the last decades. In this topical review, we mainly review and discuss key results and findings in skyrmion research since the first experimental observation of magnetic skyrmions in 2009. We particularly focus on the theoretical, computational and experimental findings and advances that are directly relevant to the spintronic applications based on magnetic skyrmions, i.e. their writing, deleting, reading and processing driven by magnetic field, electric current and thermal energy. We then review several potential applications including information storage, logic computing gates and non-conventional devices such as neuromorphic computing devices. Finally, we discuss possible future research directions on magnetic skyrmions, which also cover rich topics on other topological textures such as antiskyrmions and bimerons in antiferromagnets and frustrated magnets.
Collapse
Affiliation(s)
- Xichao Zhang
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Creating zero-field skyrmions in exchange-biased multilayers through X-ray illumination. Nat Commun 2020; 11:949. [PMID: 32075968 PMCID: PMC7031520 DOI: 10.1038/s41467-020-14769-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 01/29/2020] [Indexed: 11/15/2022] Open
Abstract
Skyrmions, magnetic textures with topological stability, hold promises for high-density and energy-efficient information storage devices owing to their small size and low driving-current density. Precise creation of a single nanoscale skyrmion is a prerequisite to further understand the skyrmion physics and tailor skyrmion-based applications. Here, we demonstrate the creation of individual skyrmions at zero-field in an exchange-biased magnetic multilayer with exposure to soft X-rays. In particular, a single skyrmion with 100-nm size can be created at the desired position using a focused X-ray spot of sub-50-nm size. This single skyrmion creation is driven by the X-ray-induced modification of the antiferromagnetic order and the corresponding exchange bias. Furthermore, artificial skyrmion lattices with various arrangements can be patterned using X-ray. These results demonstrate the potential of accurate optical control of single skyrmion at sub-100 nm scale. We envision that X-ray could serve as a versatile tool for local manipulation of magnetic orders. Skyrmions are objects with whirled magnetization protected by their topology that can be created by different means, however, without control of their position. Here, the authors present a method exploiting x-rays to create skyrmions at the beam position allowing for creation of artificial skyrmion lattices.
Collapse
|
36
|
Schönenberger N, Mittelbach A, Yousefi P, McNeur J, Niedermayer U, Hommelhoff P. Generation and Characterization of Attosecond Microbunched Electron Pulse Trains via Dielectric Laser Acceleration. PHYSICAL REVIEW LETTERS 2019; 123:264803. [PMID: 31951447 DOI: 10.1103/physrevlett.123.264803] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 10/28/2019] [Indexed: 06/10/2023]
Abstract
Dielectric laser acceleration is a versatile scheme to accelerate and control electrons with the help of femtosecond laser pulses in nanophotonic structures. We demonstrate here the generation of a train of electron pulses with individual pulse durations as short as 270±80 attoseconds (FWHM), measured in an indirect fashion, based on two subsequent dielectric laser interaction regions connected by a free-space electron drift section, all on a single photonic chip. In the first interaction region (the modulator), an energy modulation is imprinted on the electron pulse. During free propagation, this energy modulation evolves into a charge density modulation, which we probe in the second interaction region (the analyzer). These results will lead to new ways of probing ultrafast dynamics in matter and are essential for future laser-based particle accelerators on a photonic chip.
Collapse
Affiliation(s)
- Norbert Schönenberger
- Department of Physics, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Staudtstraße 1, 91058 Erlangen, Germany
| | - Anna Mittelbach
- Department of Physics, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Staudtstraße 1, 91058 Erlangen, Germany
| | - Peyman Yousefi
- Department of Physics, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Staudtstraße 1, 91058 Erlangen, Germany
| | - Joshua McNeur
- Department of Physics, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Staudtstraße 1, 91058 Erlangen, Germany
| | - Uwe Niedermayer
- Technische Universität Darmstadt, Institut für Teilchenbeschleunigung und Elektromagnetische Felder (TEMF) Schlossgartenstraße 8, 64289 Darmstadt, Germany
| | - Peter Hommelhoff
- Department of Physics, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Staudtstraße 1, 91058 Erlangen, Germany
| |
Collapse
|
37
|
Zhu C, Zheng D, Wang H, Zhang M, Li Z, Sun S, Xu P, Tian H, Li Z, Yang H, Li J. Development of analytical ultrafast transmission electron microscopy based on laser-driven Schottky field emission. Ultramicroscopy 2019; 209:112887. [PMID: 31739190 DOI: 10.1016/j.ultramic.2019.112887] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 10/29/2019] [Accepted: 11/09/2019] [Indexed: 10/25/2022]
Abstract
A new design scheme for ultrafast transmission electron microscopy (UTEM) has been developed based on a Schottky-type field emission gun (FEG) at the Institute of Physics, Chinese Academy of Sciences (IOP CAS). In this UTEM setup, electron pulse emission is achieved by integrating a laser port between the electron gun and the column and the resulting microscope can operate in either continuous or pulsed mode. In pulsed mode, the optimized electron beam properties are an energy width of ~0.65 eV, micrometer-scale coherence lengths and sub-picosecond pulse durations. The potential applications of this UTEM, which include electron diffraction, high-resolution imaging, electron energy loss spectroscopy, and photon-induced near-field electron microscopy, are demonstrated using ultrafast electron pulses. Furthermore, we use a nanosecond laser (~10 ns) to show that the laser-driven FEG can support high-quality TEM imaging and electron holography when using a stroboscopic configuration. Our results also indicate that FEG-based ultrafast electron sources may enable high-performance analytical UTEM.
Collapse
Affiliation(s)
- Chunhui Zhu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Dingguo Zheng
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China; School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Hong Wang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China; School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Ming Zhang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Zhongwen Li
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Shuaishuai Sun
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Peng Xu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Huanfang Tian
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Zian Li
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Huaixin Yang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China; School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100190, China; Yangtze River Delta Physics Research Center Co., Ltd., Liyang, Jiangsu, 213300, China; Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, China
| | - Jianqi Li
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China; School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100190, China; Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, China.
| |
Collapse
|
38
|
Verhoeven W, van Rens JFM, Kemper AH, Rietman EH, van Doorn HA, Koole I, Kieft ER, Mutsaers PHA, Luiten OJ. Design and characterization of dielectric filled TM 110 microwave cavities for ultrafast electron microscopy. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2019; 90:083703. [PMID: 31472630 DOI: 10.1063/1.5080003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 08/04/2019] [Indexed: 06/10/2023]
Abstract
Microwave cavities oscillating in the TM110 mode can be used as dynamic electron-optical elements inside an electron microscope. By filling the cavity with a dielectric material, it becomes more compact and power efficient, facilitating the implementation in an electron microscope. However, the incorporation of the dielectric material makes the manufacturing process more difficult. Presented here are the steps taken to characterize the dielectric material and to reproducibly fabricate dielectric filled cavities. Also presented are two versions with improved capabilities. The first, called a dual-mode cavity, is designed to support two modes simultaneously. The second has been optimized for low power consumption. With this optimized cavity, a magnetic field strength of 2.84 ± 0.07 mT was generated at an input power of 14.2 ± 0.2 W. Due to the low input powers and small dimensions, these dielectric cavities are ideal as electron-optical elements for electron microscopy setups.
Collapse
Affiliation(s)
- W Verhoeven
- Department of Applied Physics, Coherence and Quantum Technology Group, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - J F M van Rens
- Department of Applied Physics, Coherence and Quantum Technology Group, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - A H Kemper
- Department of Applied Physics, Coherence and Quantum Technology Group, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - E H Rietman
- Department of Applied Physics, Coherence and Quantum Technology Group, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - H A van Doorn
- Department of Applied Physics, Coherence and Quantum Technology Group, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - I Koole
- Department of Applied Physics, Coherence and Quantum Technology Group, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - E R Kieft
- Thermo Fisher Scientific, Achtseweg Noord 5, 5651 GG Eindhoven, The Netherlands
| | - P H A Mutsaers
- Department of Applied Physics, Coherence and Quantum Technology Group, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - O J Luiten
- Department of Applied Physics, Coherence and Quantum Technology Group, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
39
|
Madan I, Vanacore GM, Pomarico E, Berruto G, Lamb RJ, McGrouther D, Lummen TTA, Latychevskaia T, García de Abajo FJ, Carbone F. Holographic imaging of electromagnetic fields via electron-light quantum interference. SCIENCE ADVANCES 2019; 5:eaav8358. [PMID: 31058225 PMCID: PMC6499551 DOI: 10.1126/sciadv.aav8358] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 03/15/2019] [Indexed: 05/22/2023]
Abstract
Holography relies on the interference between a known reference and a signal of interest to reconstruct both the amplitude and the phase of that signal. With electrons, the extension of holography to the ultrafast time domain remains a challenge, although it would yield the highest possible combined spatiotemporal resolution. Here, we show that holograms of local electromagnetic fields can be obtained with combined attosecond/nanometer resolution in an ultrafast transmission electron microscope (UEM). Unlike conventional holography, where signal and reference are spatially separated and then recombined to interfere, our method relies on electromagnetic fields to split an electron wave function in a quantum coherent superposition of different energy states. In the image plane, spatial modulation of the electron energy distribution reflects the phase relation between reference and signal fields. Beyond imaging applications, this approach allows implementing quantum measurements in parallel, providing an efficient and versatile tool for electron quantum optics.
Collapse
Affiliation(s)
- I. Madan
- Institute of Physics, Laboratory for Ultrafast Microscopy and Electron Scattering (LUMES), École Polytechnique Fédérale de Lausanne, Station 6, CH-1015 Lausanne, Switzerland
| | - G. M. Vanacore
- Institute of Physics, Laboratory for Ultrafast Microscopy and Electron Scattering (LUMES), École Polytechnique Fédérale de Lausanne, Station 6, CH-1015 Lausanne, Switzerland
| | - E. Pomarico
- Institute of Physics, Laboratory for Ultrafast Microscopy and Electron Scattering (LUMES), École Polytechnique Fédérale de Lausanne, Station 6, CH-1015 Lausanne, Switzerland
| | - G. Berruto
- Institute of Physics, Laboratory for Ultrafast Microscopy and Electron Scattering (LUMES), École Polytechnique Fédérale de Lausanne, Station 6, CH-1015 Lausanne, Switzerland
| | - R. J. Lamb
- SUPA, School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ, UK
| | - D. McGrouther
- SUPA, School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ, UK
| | - T. T. A. Lummen
- Institute of Physics, Laboratory for Ultrafast Microscopy and Electron Scattering (LUMES), École Polytechnique Fédérale de Lausanne, Station 6, CH-1015 Lausanne, Switzerland
| | - T. Latychevskaia
- Institute of Physics, Laboratory for Ultrafast Microscopy and Electron Scattering (LUMES), École Polytechnique Fédérale de Lausanne, Station 6, CH-1015 Lausanne, Switzerland
| | - F. J. García de Abajo
- ICFO–Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain
- ICREA–Institució Catalana de Recerca i Estudis Avançats, Passeig Lluís Companys 23, 08010 Barcelona, Spain
| | - F. Carbone
- Institute of Physics, Laboratory for Ultrafast Microscopy and Electron Scattering (LUMES), École Polytechnique Fédérale de Lausanne, Station 6, CH-1015 Lausanne, Switzerland
- Corresponding author.
| |
Collapse
|
40
|
Padmanabhan P, Sekiguchi F, Versteeg RB, Slivina E, Tsurkan V, Bordács S, Kézsmárki I, van Loosdrecht PHM. Optically Driven Collective Spin Excitations and Magnetization Dynamics in the Néel-type Skyrmion Host GaV_{4}S_{8}. PHYSICAL REVIEW LETTERS 2019; 122:107203. [PMID: 30932635 DOI: 10.1103/physrevlett.122.107203] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 02/08/2019] [Indexed: 06/09/2023]
Abstract
GaV_{4}S_{8} is a multiferroic semiconductor hosting magnetic cycloid (Cyc) and Néel-type skyrmion lattice (SkL) phases with a broad region of thermal and magnetic stability. Here, we use time-resolved magneto-optical Kerr spectroscopy to show the coherent generation of collective spin excitations in the Cyc and SkL phases. Our micromagnetic simulations reveal that these are driven by an optically induced modulation of uniaxial anisotropy. Our results shed light on spin dynamics in anisotropic materials hosting skyrmions and pave a new pathway for the optical manipulation of their magnetic order.
Collapse
Affiliation(s)
- P Padmanabhan
- Physics Institute II, University of Cologne, 50937 Cologne, Germany
| | - F Sekiguchi
- Physics Institute II, University of Cologne, 50937 Cologne, Germany
| | - R B Versteeg
- Physics Institute II, University of Cologne, 50937 Cologne, Germany
| | - E Slivina
- Physics Institute II, University of Cologne, 50937 Cologne, Germany
| | - V Tsurkan
- Institute of Applied Physics, MD 2028, Chisinau, Republic of Moldova
- Experimental Physics V, Center for Electronic Correlations and Magnetism, University of Augsburg, 86159 Augsburg, Germany
| | - S Bordács
- Department of Physics, Budapest University of Technology and Economics and MTA-BME Lendület Magneto-optical Spectroscopy Research Group, 1111 Budapest, Hungary
- Hungarian Academy of Sciences, Premium Postdoctoral Program, 1051 Budapest, Hungary
| | - I Kézsmárki
- Experimental Physics V, Center for Electronic Correlations and Magnetism, University of Augsburg, 86159 Augsburg, Germany
- Department of Physics, Budapest University of Technology and Economics and MTA-BME Lendület Magneto-optical Spectroscopy Research Group, 1111 Budapest, Hungary
| | | |
Collapse
|
41
|
Skyrmionium - high velocity without the skyrmion Hall effect. Sci Rep 2018; 8:16966. [PMID: 30446670 PMCID: PMC6240074 DOI: 10.1038/s41598-018-34934-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 10/27/2018] [Indexed: 11/09/2022] Open
Abstract
The lateral motion of a magnetic skyrmion, arising because of the skyrmion Hall effect, imposes a number of restrictions on the use of this spin state in the racetrack memory. A skyrmionium is a more promising spin texture for memory applications, since it has zero total topological charge and propagates strictly along a nanotrack. Here, the stability of the skyrmionium, as well as the dependence of its size on the magnetic parameters, such as the Dzyaloshinskii-Moriya interaction and perpendicular magnetic anisotropy, are studied by means of micromagnetic simulations. We propose an advanced method for the skyrmionium nucleation due to a local enhancement of the spin Hall effect. The stability of the skyrmionium being in motion under the action of the spin polarized current is analyzed.
Collapse
|
42
|
Je SG, Vallobra P, Srivastava T, Rojas-Sánchez JC, Pham TH, Hehn M, Malinowski G, Baraduc C, Auffret S, Gaudin G, Mangin S, Béa H, Boulle O. Creation of Magnetic Skyrmion Bubble Lattices by Ultrafast Laser in Ultrathin Films. NANO LETTERS 2018; 18:7362-7371. [PMID: 30295499 DOI: 10.1021/acs.nanolett.8b03653] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Magnetic skyrmions are topologically nontrivial spin textures which hold great promise as stable information carriers in spintronic devices at the nanoscale. One of the major challenges for developing novel skyrmion-based memory and logic devices is fast and controlled creation of magnetic skyrmions at ambient conditions. Here we demonstrate controlled generation of skyrmion bubbles and skyrmion bubble lattices from a ferromagnetic state in sputtered ultrathin magnetic films at room temperature by a single ultrafast (35 fs) laser pulse. The skyrmion bubble density increases with the laser fluence, and it finally becomes saturated, forming disordered hexagonal lattices. Moreover, we present that the skyrmion bubble lattice configuration leads to enhanced topological stability as compared to isolated skyrmions, suggesting its promising use in data storage. Our findings shed light on the optical approach to the skyrmion bubble lattice in commonly accessible materials, paving the road toward the emerging skyrmion-based memory and synaptic devices.
Collapse
Affiliation(s)
- Soong-Geun Je
- INAC-SPINTEC, CNRS, CEA, Grenoble INP , Université Grenoble Alpes , 38000 Grenoble , France
- Institut Jean Lamour, CNRS UMR 7198 , Université de Lorraine , Nancy F-54500 , France
| | - Pierre Vallobra
- Institut Jean Lamour, CNRS UMR 7198 , Université de Lorraine , Nancy F-54500 , France
| | - Titiksha Srivastava
- INAC-SPINTEC, CNRS, CEA, Grenoble INP , Université Grenoble Alpes , 38000 Grenoble , France
| | | | - Thai Ha Pham
- Institut Jean Lamour, CNRS UMR 7198 , Université de Lorraine , Nancy F-54500 , France
| | - Michel Hehn
- Institut Jean Lamour, CNRS UMR 7198 , Université de Lorraine , Nancy F-54500 , France
| | - Gregory Malinowski
- Institut Jean Lamour, CNRS UMR 7198 , Université de Lorraine , Nancy F-54500 , France
| | - Claire Baraduc
- INAC-SPINTEC, CNRS, CEA, Grenoble INP , Université Grenoble Alpes , 38000 Grenoble , France
| | - Stéphane Auffret
- INAC-SPINTEC, CNRS, CEA, Grenoble INP , Université Grenoble Alpes , 38000 Grenoble , France
| | - Gilles Gaudin
- INAC-SPINTEC, CNRS, CEA, Grenoble INP , Université Grenoble Alpes , 38000 Grenoble , France
| | - Stéphane Mangin
- Institut Jean Lamour, CNRS UMR 7198 , Université de Lorraine , Nancy F-54500 , France
| | - Hélène Béa
- INAC-SPINTEC, CNRS, CEA, Grenoble INP , Université Grenoble Alpes , 38000 Grenoble , France
| | - Olivier Boulle
- INAC-SPINTEC, CNRS, CEA, Grenoble INP , Université Grenoble Alpes , 38000 Grenoble , France
| |
Collapse
|
43
|
Oike H, Kamitani M, Tokura Y, Kagawa F. Kinetic approach to superconductivity hidden behind a competing order. SCIENCE ADVANCES 2018; 4:eaau3489. [PMID: 30310870 PMCID: PMC6173526 DOI: 10.1126/sciadv.aau3489] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 08/31/2018] [Indexed: 06/08/2023]
Abstract
Exploration for superconductivity is one of the research frontiers in condensed matter physics. In strongly correlated electron systems, the emergence of superconductivity is often inhibited by the formation of a thermodynamically more stable magnetic/charge order. Thus, to develop the superconductivity as the thermodynamically most stable state, the free-energy balance between the superconductivity and the competing order has been controlled mainly by changing thermodynamic parameters, such as the physical/chemical pressure and carrier density. However, such a thermodynamic approach may not be the only way to materialize the superconductivity. We present a new kinetic approach to avoiding the competing order and thereby inducing persistent superconductivity. In the transition-metal dichalcogenide IrTe2 as an example, by using current pulse-based rapid cooling of up to ~107 K s-1, we successfully kinetically avoid a first-order phase transition to a competing charge order and uncover metastable superconductivity hidden behind. Because the electronic states at low temperatures depend on the history of thermal quenching, electric pulse applications enable nonvolatile and reversible switching of the metastable superconductivity, a unique advantage of the kinetic approach. Thus, our findings provide a new approach to developing and manipulating superconductivity beyond the framework of thermodynamics.
Collapse
Affiliation(s)
- Hiroshi Oike
- RIKEN Center for Emergent Matter Science, Wako 351-0198, Japan
- Department of Applied Physics, The University of Tokyo, Tokyo 113-8656, Japan
| | - Manabu Kamitani
- RIKEN Center for Emergent Matter Science, Wako 351-0198, Japan
| | - Yoshinori Tokura
- RIKEN Center for Emergent Matter Science, Wako 351-0198, Japan
- Department of Applied Physics, The University of Tokyo, Tokyo 113-8656, Japan
| | - Fumitaka Kagawa
- RIKEN Center for Emergent Matter Science, Wako 351-0198, Japan
- Department of Applied Physics, The University of Tokyo, Tokyo 113-8656, Japan
| |
Collapse
|
44
|
Huang P, Cantoni M, Kruchkov A, Rajeswari J, Magrez A, Carbone F, Rønnow HM. In Situ Electric Field Skyrmion Creation in Magnetoelectric Cu 2OSeO 3. NANO LETTERS 2018; 18:5167-5171. [PMID: 30040904 DOI: 10.1021/acs.nanolett.8b02097] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Exploiting additional degrees of freedom in solid-state materials may be the most-promising solution when approaching the quantum limit of Moore's law for the conventional electronic industry. Recently discovered topologically nontrivial spin textures, skyrmions, are outstanding among such possibilities. However, the controlled creation of skyrmions, especially by electric means, remains a pivotal challenge in technological applications. Here, we report that skyrmions can be created locally via electric field in the magnetoelectric helimagnet Cu2OSeO3. Using Lorentz transmission electron microscopy, we successfully write skyrmions in situ from a helical-spin background. Our discovery is highly coveted because it implies that skyrmionics can be integrated into modern field effect transistor based electronic technology, in which very low energy dissipation can be achieved and, hence, realize a large step forward toward its practical applications.
Collapse
Affiliation(s)
| | - Marco Cantoni
- Centre Interdisciplinaire de Microscopie Électronique (CIME) , École Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne , Switzerland
| | | | | | | | | | | |
Collapse
|
45
|
Tsesses S, Ostrovsky E, Cohen K, Gjonaj B, Lindner NH, Bartal G. Optical skyrmion lattice in evanescent electromagnetic fields. Science 2018; 361:993-996. [PMID: 30026318 DOI: 10.1126/science.aau0227] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Accepted: 07/03/2018] [Indexed: 01/21/2023]
Abstract
Topological defects play a key role in a variety of physical systems, ranging from high-energy to solid-state physics. A skyrmion is a type of topological defect that has shown promise for applications in the fields of magnetic storage and spintronics. We show that optical skyrmion lattices can be generated using evanescent electromagnetic fields and demonstrate this using surface plasmon polaritons, imaged by phase-resolved near-field optical microscopy. We show how the optical skyrmion lattice exhibits robustness to imperfections while the topological domain walls in the lattice can be continuously tuned, changing the spatial structure of the skyrmions from bubble type to Néel type. Extending the generation of skyrmions to photonic systems provides various possibilities for applications in optical information processing, transfer, and storage.
Collapse
Affiliation(s)
- S Tsesses
- Andrew and Erna Viterbi Department of Electrical Engineering, Technion-Israel Institute of Technology, 3200003 Haifa, Israel
| | - E Ostrovsky
- Andrew and Erna Viterbi Department of Electrical Engineering, Technion-Israel Institute of Technology, 3200003 Haifa, Israel
| | - K Cohen
- Andrew and Erna Viterbi Department of Electrical Engineering, Technion-Israel Institute of Technology, 3200003 Haifa, Israel
| | - B Gjonaj
- Faculty of Medical Sciences, Albanian University, Durrës Street, Tirana 1000, Albania
| | - N H Lindner
- Physics Department, Technion-Israel Institute of Technology, 3200003 Haifa, Israel
| | - G Bartal
- Andrew and Erna Viterbi Department of Electrical Engineering, Technion-Israel Institute of Technology, 3200003 Haifa, Israel.
| |
Collapse
|
46
|
Fu X, Pollard SD, Chen B, Yoo BK, Yang H, Zhu Y. Optical manipulation of magnetic vortices visualized in situ by Lorentz electron microscopy. SCIENCE ADVANCES 2018; 4:eaat3077. [PMID: 30035226 PMCID: PMC6054509 DOI: 10.1126/sciadv.aat3077] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 06/04/2018] [Indexed: 05/03/2023]
Abstract
Understanding the fundamental dynamics of topological vortex and antivortex naturally formed in microscale/nanoscale ferromagnetic building blocks under external perturbations is crucial to magnetic vortex-based information processing and spintronic devices. All previous studies have focused on magnetic vortex-core switching via external magnetic fields, spin-polarized currents, or spin waves, which have largely prohibited the investigation of novel spin configurations that could emerge from the ground states in ferromagnetic disks and their underlying dynamics. We report in situ visualization of femtosecond laser quenching-induced magnetic vortex changes in various symmetric ferromagnetic Permalloy disks by using Lorentz phase imaging of four-dimensional electron microscopy that enables in situ laser excitation. Besides the switching of magnetic vortex chirality and polarity, we observed with distinct occurrence frequencies a plenitude of complex magnetic structures that have never been observed by magnetic field- or current-assisted switching. These complex magnetic structures consist of a number of newly created topological magnetic defects (vortex and antivortex) strictly conserving the topological winding number, demonstrating the direct impact of topological invariants on magnetization dynamics in ferromagnetic disks. Their spin configurations show mirror or rotation symmetry due to the geometrical confinement of the disks. Combined micromagnetic simulations with the experimental observations reveal the underlying magnetization dynamics and formation mechanism of the optical quenching-induced complex magnetic structures. Their distinct occurrence rates are pertinent to their formation-growth energetics and pinning effects at the disk edge. On the basis of these findings, we propose a paradigm of optical quenching-assisted fast switching of vortex cores for the control of magnetic vortex-based information recording and spintronic devices.
Collapse
Affiliation(s)
- Xuewen Fu
- Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Shawn D. Pollard
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576, Singapore
| | - Bin Chen
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of IFSA, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Byung-Kuk Yoo
- Physical Biology Center for Ultrafast Science and Technology, Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, CA 91125, USA
| | - Hyunsoo Yang
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576, Singapore
| | - Yimei Zhu
- Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| |
Collapse
|