1
|
Hansen ER, Niaouris V, Matthews BE, Zimmermann C, Wang X, Kolodka R, Vines L, Spurgeon SR, Fu KMC. Isolation of Single Donors in ZnO. PHYSICAL REVIEW LETTERS 2024; 133:146902. [PMID: 39423419 DOI: 10.1103/physrevlett.133.146902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 09/03/2024] [Indexed: 10/21/2024]
Abstract
The shallow donor in zinc oxide (ZnO) is a promising semiconductor spin qubit with optical access. Single indium donors are isolated in a commercial ZnO substrate using plasma focused ion beam (PFIB) milling. Quantum emitters are identified optically by spatial and frequency filtering. The indium donor assignment is based on the optical bound exciton transition energy and magnetic dependence. The emission stability of these single donors in terms of both intensity and frequency, alongside their transition linewidths less than twice the lifetime limit, highlight the promise of single In donors as optically accessible spin qubits. The optical stability of single donors after FIB fabrication is promising for optical device integration required for scalable quantum technologies based on single donors in direct band gap semiconductors.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Kai-Mei C Fu
- Department of Physics, University of Washington, Seattle, Washington 98195, USA
- Department of Electrical and Computer Engineering, University of Washington, Seattle, Washington 98195, USA
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, USA
| |
Collapse
|
2
|
Almutlaq J, Liu Y, Mir WJ, Sabatini RP, Englund D, Bakr OM, Sargent EH. Engineering colloidal semiconductor nanocrystals for quantum information processing. NATURE NANOTECHNOLOGY 2024; 19:1091-1100. [PMID: 38514820 DOI: 10.1038/s41565-024-01606-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 01/10/2024] [Indexed: 03/23/2024]
Abstract
Quantum information processing-which relies on spin defects or single-photon emission-has shown quantum advantage in proof-of-principle experiments including microscopic imaging of electromagnetic fields, strain and temperature in applications ranging from battery research to neuroscience. However, critical gaps remain on the path to wider applications, including a need for improved functionalization, deterministic placement, size homogeneity and greater programmability of multifunctional properties. Colloidal semiconductor nanocrystals can close these gaps in numerous application areas, following years of rapid advances in synthesis and functionalization. In this Review, we specifically focus on three key topics: optical interfaces to long-lived spin states, deterministic placement and delivery for sensing beyond the standard quantum limit, and extensions to multifunctional colloidal quantum circuits.
Collapse
Affiliation(s)
- Jawaher Almutlaq
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Yuan Liu
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, Canada
- Department of Electrical and Computer Engineering, Northwestern University, Evanston, IL, USA
| | - Wasim J Mir
- KAUST Catalysis Center, Division of Physical Sciences and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Randy P Sabatini
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, Canada.
| | - Dirk Englund
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Osman M Bakr
- KAUST Catalysis Center, Division of Physical Sciences and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia.
| | - Edward H Sargent
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, Canada.
- Department of Electrical and Computer Engineering, Northwestern University, Evanston, IL, USA.
- Department of Chemistry, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
3
|
Reale S, Hwang J, Oh J, Brune H, Heinrich AJ, Donati F, Bae Y. Electrically driven spin resonance of 4f electrons in a single atom on a surface. Nat Commun 2024; 15:5289. [PMID: 38902242 PMCID: PMC11190280 DOI: 10.1038/s41467-024-49447-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 06/05/2024] [Indexed: 06/22/2024] Open
Abstract
A pivotal challenge in quantum technologies lies in reconciling long coherence times with efficient manipulation of the quantum states of a system. Lanthanide atoms, with their well-localized 4f electrons, emerge as a promising solution to this dilemma if provided with a rational design for manipulation and detection. Here we construct tailored spin structures to perform electron spin resonance on a single lanthanide atom using a scanning tunneling microscope. A magnetically coupled structure made of an erbium and a titanium atom enables us to both drive the erbium's 4f electron spins and indirectly probe them through the titanium's 3d electrons. The erbium spin states exhibit an extended spin relaxation time and a higher driving efficiency compared to 3d atoms with spin ½ in similarly coupled structures. Our work provides a new approach to accessing highly protected spin states, enabling their coherent control in an all-electric fashion.
Collapse
Affiliation(s)
- Stefano Reale
- Center for Quantum Nanoscience (QNS), Institute for Basic Science (IBS), Seoul, Republic of Korea
- Ewha Womans University, Seoul, Republic of Korea
- Department of Energy, Politecnico di Milano, Milano, Italy
| | - Jiyoon Hwang
- Center for Quantum Nanoscience (QNS), Institute for Basic Science (IBS), Seoul, Republic of Korea
- Department of Physics, Ewha Womans University, Seoul, Republic of Korea
| | - Jeongmin Oh
- Center for Quantum Nanoscience (QNS), Institute for Basic Science (IBS), Seoul, Republic of Korea
- Department of Physics, Ewha Womans University, Seoul, Republic of Korea
| | - Harald Brune
- Institute of Physics, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Andreas J Heinrich
- Center for Quantum Nanoscience (QNS), Institute for Basic Science (IBS), Seoul, Republic of Korea
- Department of Physics, Ewha Womans University, Seoul, Republic of Korea
| | - Fabio Donati
- Center for Quantum Nanoscience (QNS), Institute for Basic Science (IBS), Seoul, Republic of Korea.
- Department of Physics, Ewha Womans University, Seoul, Republic of Korea.
| | - Yujeong Bae
- Center for Quantum Nanoscience (QNS), Institute for Basic Science (IBS), Seoul, Republic of Korea.
- Department of Physics, Ewha Womans University, Seoul, Republic of Korea.
- Empa, Swiss Federal Laboratories for Materials Science and Technology, nanotech@surfaces Laboratory, Dübendorf, Switzerland.
| |
Collapse
|
4
|
Zhang Y, Fan W, Yang J, Guan H, Zhang Q, Qin X, Duan C, de Boo GG, Johnson BC, McCallum JC, Sellars MJ, Rogge S, Yin C, Du J. Photoionisation detection of a single Er 3+ ion with sub-100-ns time resolution. Natl Sci Rev 2024; 11:nwad134. [PMID: 38487492 PMCID: PMC10939366 DOI: 10.1093/nsr/nwad134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/04/2023] [Accepted: 05/04/2023] [Indexed: 03/17/2024] Open
Abstract
Efficient detection of single optical centres in solids is essential for quantum information processing, sensing and single-photon generation applications. In this work, we use radio-frequency (RF) reflectometry to electrically detect the photoionisation induced by a single Er3+ ion in Si. The high bandwidth and sensitivity of the RF reflectometry provide sub-100-ns time resolution for the photoionisation detection. With this technique, the optically excited state lifetime of a single Er3+ ion in a Si nano-transistor is measured for the first time to be [Formula: see text]s. Our results demonstrate an efficient approach for detecting a charge state change induced by Er excitation and relaxation. This approach could be used for fast readout of other single optical centres in solids and is attractive for large-scale integrated optical quantum systems thanks to the multi-channel RF reflectometry demonstrated with frequency multiplexing techniques.
Collapse
Affiliation(s)
- Yangbo Zhang
- CAS Key Laboratory of Microscale Magnetic Resonance and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Wenda Fan
- CAS Key Laboratory of Microscale Magnetic Resonance and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Jiliang Yang
- CAS Key Laboratory of Microscale Magnetic Resonance and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Hao Guan
- CAS Key Laboratory of Microscale Magnetic Resonance and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| | - Qi Zhang
- CAS Key Laboratory of Microscale Magnetic Resonance and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Xi Qin
- CAS Key Laboratory of Microscale Magnetic Resonance and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| | - Changkui Duan
- CAS Key Laboratory of Microscale Magnetic Resonance and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Gabriele G de Boo
- Centre of Excellence for Quantum Computation and Communication Technology, School of Physics, University of New South Wales, NSW 2052, Australia
| | - Brett C Johnson
- Centre of Excellence for Quantum Computation and Communication Technology, School of Engineering, RMIT University, Victoria 3001, Australia
- Centre of Excellence for Quantum Computation and Communication Technology, School of Physics, University of Melbourne, Victoria 3010, Australia
| | - Jeffrey C McCallum
- Centre of Excellence for Quantum Computation and Communication Technology, School of Physics, University of Melbourne, Victoria 3010, Australia
| | - Matthew J Sellars
- Centre of Excellence for Quantum Computation and Communication Technology, Research School of Physics and Engineering, Australian National University, ACT 0200, Australia
| | - Sven Rogge
- Centre of Excellence for Quantum Computation and Communication Technology, School of Physics, University of New South Wales, NSW 2052, Australia
| | - Chunming Yin
- CAS Key Laboratory of Microscale Magnetic Resonance and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| | - Jiangfeng Du
- CAS Key Laboratory of Microscale Magnetic Resonance and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| |
Collapse
|
5
|
Islam F, Lee CM, Harper S, Rahaman MH, Zhao Y, Vij NK, Waks E. Cavity-Enhanced Emission from a Silicon T Center. NANO LETTERS 2024; 24:319-325. [PMID: 38147350 DOI: 10.1021/acs.nanolett.3c04056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Silicon T centers present the promising possibility of generating optically active spin qubits in an all-silicon device. However, these color centers exhibit long excited state lifetimes and a low Debye-Waller factor, making them dim emitters with low efficiency into the zero-phonon line. Nanophotonic cavities can solve this problem by enhancing radiative emission into the zero-phonon line through the Purcell effect. In this work, we demonstrate cavity-enhanced emission from a single T center in a nanophotonic cavity. We achieve a 2 order of magnitude increase in the brightness of the zero-phonon line relative to waveguide-coupled emitters, a 23% collection efficiency from emitter to fiber, and an overall emission efficiency into the zero-phonon line of 63.4%. We also observe a lifetime enhancement of 5, corresponding to a Purcell factor exceeding 18 when correcting for the emission to the phonon sideband. These results pave the way toward efficient spin-photon interfaces in silicon photonics.
Collapse
Affiliation(s)
- Fariba Islam
- Institute for Research in Electronics and Applied Physics and Joint Quantum Institute, University of Maryland, College Park, Maryland 20742, United States
- Department of Electrical and Computer Engineering, University of Maryland, College Park, Maryland 20740, United States
| | - Chang-Min Lee
- Institute for Research in Electronics and Applied Physics and Joint Quantum Institute, University of Maryland, College Park, Maryland 20742, United States
- Department of Electrical and Computer Engineering, University of Maryland, College Park, Maryland 20740, United States
| | - Samuel Harper
- Institute for Research in Electronics and Applied Physics and Joint Quantum Institute, University of Maryland, College Park, Maryland 20742, United States
- Department of Electrical and Computer Engineering, University of Maryland, College Park, Maryland 20740, United States
| | - Mohammad Habibur Rahaman
- Institute for Research in Electronics and Applied Physics and Joint Quantum Institute, University of Maryland, College Park, Maryland 20742, United States
- Department of Electrical and Computer Engineering, University of Maryland, College Park, Maryland 20740, United States
| | - Yuqi Zhao
- Institute for Research in Electronics and Applied Physics and Joint Quantum Institute, University of Maryland, College Park, Maryland 20742, United States
- Department of Electrical and Computer Engineering, University of Maryland, College Park, Maryland 20740, United States
| | - Neelesh Kumar Vij
- Institute for Research in Electronics and Applied Physics and Joint Quantum Institute, University of Maryland, College Park, Maryland 20742, United States
- Department of Electrical and Computer Engineering, University of Maryland, College Park, Maryland 20740, United States
| | - Edo Waks
- Institute for Research in Electronics and Applied Physics and Joint Quantum Institute, University of Maryland, College Park, Maryland 20742, United States
- Department of Electrical and Computer Engineering, University of Maryland, College Park, Maryland 20740, United States
| |
Collapse
|
6
|
Zhu T, Rhensius J, Herb K, Damle V, Puebla-Hellmann G, Degen CL, Janitz E. Multicone Diamond Waveguides for Nanoscale Quantum Sensing. NANO LETTERS 2023; 23:10110-10117. [PMID: 37934929 DOI: 10.1021/acs.nanolett.3c02120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
The long-lived electronic spin of the nitrogen-vacancy (NV) center in diamonds is a promising quantum sensor for detecting nanoscopic magnetic and electric fields in various environments. However, the poor signal-to-noise ratio (SNR) of prevalent optical spin-readout techniques presents a critical challenge in improving measurement sensitivity. Here, we address this limitation by coupling individual NVs to optimized diamond nanopillars, thereby enhancing the collection efficiency of fluorescence. Guided by near-field optical simulations, we predict improved performance for tall (≥5 μm) pillars with tapered sidewalls. This is subsequently verified by fabricating and characterizing a representative set of structures using a newly developed nanofabrication process. We observe increased SNR for optimized devices, owing to improved emission collimation and directionality. Promisingly, these devices are compatible with low-numerical-aperture collection optics and a reduced tip radius, reducing experimental overhead and facilitating improved spatial resolution for scanning applications.
Collapse
Affiliation(s)
- Tianqi Zhu
- Department of Physics, ETH Zürich, Otto-Stern-Weg 1, 8093 Zürich, Switzerland
| | - Jan Rhensius
- QZabre LLC, Regina-Kägi-Strasse 11, 8050 Zürich, Switzerland
| | - Konstantin Herb
- Department of Physics, ETH Zürich, Otto-Stern-Weg 1, 8093 Zürich, Switzerland
| | - Viraj Damle
- QZabre LLC, Regina-Kägi-Strasse 11, 8050 Zürich, Switzerland
| | | | - Christian L Degen
- Department of Physics, ETH Zürich, Otto-Stern-Weg 1, 8093 Zürich, Switzerland
| | - Erika Janitz
- Department of Electrical and Software Engineering, University of Calgary, 2500 University Drive NW, Calgary, AB, Canada T2N 1N4
| |
Collapse
|
7
|
Yu Y, Oser D, Da Prato G, Urbinati E, Ávila JC, Zhang Y, Remy P, Marzban S, Gröblacher S, Tittel W. Frequency Tunable, Cavity-Enhanced Single Erbium Quantum Emitter in the Telecom Band. PHYSICAL REVIEW LETTERS 2023; 131:170801. [PMID: 37955475 DOI: 10.1103/physrevlett.131.170801] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 09/20/2023] [Indexed: 11/14/2023]
Abstract
Single quantum emitters embedded in solid-state hosts are an ideal platform for realizing quantum information processors and quantum network nodes. Among the currently investigated candidates, Er^{3+} ions are particularly appealing due to their 1.5 μm optical transition in the telecom band as well as their long spin coherence times. However, the long lifetimes of the excited state-generally in excess of 1 ms-along with the inhomogeneous broadening of the optical transition result in significant challenges. Photon emission rates are prohibitively small, and different emitters generally create photons with distinct spectra, thereby preventing multiphoton interference-a requirement for building large-scale, multinode quantum networks. Here we solve this challenge by demonstrating for the first time linear Stark tuning of the emission frequency of a single Er^{3+} ion. Our ions are embedded in a lithium niobate crystal and couple evanescently to a silicon nanophotonic crystal cavity that provides a strong increase of the measured decay rate. By applying an electric field along the crystal c axis, we achieve a Stark tuning greater than the ion's linewidth without changing the single-photon emission statistics of the ion. These results are a key step towards rare earth ion-based quantum networks.
Collapse
Affiliation(s)
- Yong Yu
- Kavli Institute of Nanoscience, Department of Quantum Nanoscience, Delft University of Technology, 2628CJ Delft, The Netherlands
| | - Dorian Oser
- QuTech, Delft University of Technology, 2628CJ Delft, The Netherlands
| | - Gaia Da Prato
- Kavli Institute of Nanoscience, Department of Quantum Nanoscience, Delft University of Technology, 2628CJ Delft, The Netherlands
| | - Emanuele Urbinati
- Kavli Institute of Nanoscience, Department of Quantum Nanoscience, Delft University of Technology, 2628CJ Delft, The Netherlands
| | - Javier Carrasco Ávila
- Department of Applied Physics, University of Geneva, 1211 Geneva, Switzerland
- Constructor University Bremen, 28759 Bremen, Germany
| | - Yu Zhang
- Kavli Institute of Nanoscience, Department of Quantum Nanoscience, Delft University of Technology, 2628CJ Delft, The Netherlands
| | - Patrick Remy
- SIMH Consulting, Rue de Genève 18, 1225 Chêne-Bourg, Switzerland
| | - Sara Marzban
- QuTech, Delft University of Technology, 2628CJ Delft, The Netherlands
| | - Simon Gröblacher
- Kavli Institute of Nanoscience, Department of Quantum Nanoscience, Delft University of Technology, 2628CJ Delft, The Netherlands
| | - Wolfgang Tittel
- QuTech, Delft University of Technology, 2628CJ Delft, The Netherlands
- Department of Applied Physics, University of Geneva, 1211 Geneva, Switzerland
- Constructor University Bremen, 28759 Bremen, Germany
| |
Collapse
|
8
|
Wieghold S, Shirato N, Cheng X, Latt KZ, Trainer D, Sottie R, Rosenmann D, Masson E, Rose V, Wai Hla S. X-ray Spectroscopy of a Rare-Earth Molecular System Measured at the Single Atom Limit at Room Temperature. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2023; 127:20064-20071. [PMID: 37850084 PMCID: PMC10577675 DOI: 10.1021/acs.jpcc.3c04806] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/05/2023] [Indexed: 10/19/2023]
Abstract
We investigate the limit of X-ray detection at room temperature on rare-earth molecular films using lanthanum and a pyridine-based dicarboxamide organic linker as a model system. Synchrotron X-ray scanning tunneling microscopy is used to probe the molecules with different coverages on a HOPG substrate. X-ray-induced photocurrent intensities are measured as a function of molecular coverage on the sample, allowing a correlation of the amount of La ions with the photocurrent signal strength. X-ray absorption spectroscopy shows cogent M4,5 absorption edges of the lanthanum ion originated by the transitions from the 3d3/2 and 3d5/2 to 4f orbitals. X-ray absorption spectra measured in the tunneling regime further reveal an X-ray excited tunneling current produced at the M4,5 absorption edge of the La ion down to the ultimate atomic limit at room temperature.
Collapse
Affiliation(s)
- Sarah Wieghold
- Advanced
Photon Source, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Nozomi Shirato
- Nanoscience
& Technology Division, Argonne National
Laboratory, Lemont, Illinois 60439, United States
| | - Xinyue Cheng
- Department
of Chemistry and Biochemistry, Ohio University, Athens, Ohio 45701, United States
| | - Kyaw Zin Latt
- Nanoscience
& Technology Division, Argonne National
Laboratory, Lemont, Illinois 60439, United States
| | - Daniel Trainer
- Nanoscience
& Technology Division, Argonne National
Laboratory, Lemont, Illinois 60439, United States
| | - Richard Sottie
- Nanoscale
& Quantum Phenomena Institute, and Department of Physics &
Astronomy, Ohio University, Athens, Ohio 45701, United States
| | - Daniel Rosenmann
- Nanoscience
& Technology Division, Argonne National
Laboratory, Lemont, Illinois 60439, United States
| | - Eric Masson
- Department
of Chemistry and Biochemistry, Ohio University, Athens, Ohio 45701, United States
| | - Volker Rose
- Advanced
Photon Source, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Saw Wai Hla
- Nanoscience
& Technology Division, Argonne National
Laboratory, Lemont, Illinois 60439, United States
- Nanoscale
& Quantum Phenomena Institute, and Department of Physics &
Astronomy, Ohio University, Athens, Ohio 45701, United States
| |
Collapse
|
9
|
Ourari S, Dusanowski Ł, Horvath SP, Uysal MT, Phenicie CM, Stevenson P, Raha M, Chen S, Cava RJ, de Leon NP, Thompson JD. Indistinguishable telecom band photons from a single Er ion in the solid state. Nature 2023; 620:977-981. [PMID: 37648759 DOI: 10.1038/s41586-023-06281-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 06/02/2023] [Indexed: 09/01/2023]
Abstract
Atomic defects in the solid state are a key component of quantum repeater networks for long-distance quantum communication1. Recently, there has been significant interest in rare earth ions2-4, in particular Er3+ for its telecom band optical transition5-7 that allows long-distance transmission in optical fibres. However, the development of repeater nodes based on rare earth ions has been hampered by optical spectral diffusion, precluding indistinguishable single-photon generation. Here, we implant Er3+ into CaWO4, a material that combines a non-polar site symmetry, low decoherence from nuclear spins8 and is free of background rare earth ions, to realize significantly reduced optical spectral diffusion. For shallow implanted ions coupled to nanophotonic cavities with large Purcell factor, we observe single-scan optical linewidths of 150 kHz and long-term spectral diffusion of 63 kHz, both close to the Purcell-enhanced radiative linewidth of 21 kHz. This enables the observation of Hong-Ou-Mandel interference9 between successively emitted photons with a visibility of V = 80(4)%, measured after a 36 km delay line. We also observe spin relaxation times T1,s = 3.7 s and T2,s > 200 μs, with the latter limited by paramagnetic impurities in the crystal instead of nuclear spins. This represents a notable step towards the construction of telecom band quantum repeater networks with single Er3+ ions.
Collapse
Affiliation(s)
- Salim Ourari
- Department of Electrical and Computer Engineering, Princeton University, Princeton, NJ, USA
| | - Łukasz Dusanowski
- Department of Electrical and Computer Engineering, Princeton University, Princeton, NJ, USA
| | - Sebastian P Horvath
- Department of Electrical and Computer Engineering, Princeton University, Princeton, NJ, USA
| | - Mehmet T Uysal
- Department of Electrical and Computer Engineering, Princeton University, Princeton, NJ, USA
| | - Christopher M Phenicie
- Department of Electrical and Computer Engineering, Princeton University, Princeton, NJ, USA
| | - Paul Stevenson
- Department of Electrical and Computer Engineering, Princeton University, Princeton, NJ, USA
- Department of Physics, Northeastern University, Boston, MA, USA
| | - Mouktik Raha
- Department of Electrical and Computer Engineering, Princeton University, Princeton, NJ, USA
| | - Songtao Chen
- Department of Electrical and Computer Engineering, Princeton University, Princeton, NJ, USA
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA
| | - Robert J Cava
- Department of Chemistry, Princeton University, Princeton, NJ, USA
| | - Nathalie P de Leon
- Department of Electrical and Computer Engineering, Princeton University, Princeton, NJ, USA
| | - Jeff D Thompson
- Department of Electrical and Computer Engineering, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
10
|
Güsken NA, Fu M, Zapf M, Nielsen MP, Dichtl P, Röder R, Clark AS, Maier SA, Ronning C, Oulton RF. Emission enhancement of erbium in a reverse nanofocusing waveguide. Nat Commun 2023; 14:2719. [PMID: 37169740 PMCID: PMC10175264 DOI: 10.1038/s41467-023-38262-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 04/19/2023] [Indexed: 05/13/2023] Open
Abstract
Since Purcell's seminal report 75 years ago, electromagnetic resonators have been used to control light-matter interactions to make brighter radiation sources and unleash unprecedented control over quantum states of light and matter. Indeed, optical resonators such as microcavities and plasmonic antennas offer excellent control but only over a limited spectral range. Strategies to mutually tune and match emission and resonator frequency are often required, which is intricate and precludes the possibility of enhancing multiple transitions simultaneously. In this letter, we report a strong radiative emission rate enhancement of Er3+-ions across the telecommunications C-band in a single plasmonic waveguide based on the Purcell effect. Our gap waveguide uses a reverse nanofocusing approach to efficiently enhance, extract and guide emission from the nanoscale to a photonic waveguide while keeping plasmonic losses at a minimum. Remarkably, the large and broadband Purcell enhancement allows us to resolve Stark-split electric dipole transitions, which are typically only observed under cryogenic conditions. Simultaneous radiative emission enhancement of multiple quantum states is of great interest for photonic quantum networks and on-chip data communications.
Collapse
Affiliation(s)
- Nicholas A Güsken
- Department of Physics, Imperial College London, Prince Consort Road, London, SW7 2AZ, UK.
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA.
| | - Ming Fu
- Department of Physics, Imperial College London, Prince Consort Road, London, SW7 2AZ, UK
| | - Maximilian Zapf
- Friedrich-Schiller-Universität Jena, Max-Wien-Platz 1, 07743, Jena, Germany
| | - Michael P Nielsen
- Department of Physics, Imperial College London, Prince Consort Road, London, SW7 2AZ, UK
- School of Photovoltaics and Renewable Energy Engineering, UNSW Sydney, Kensington, NSW, 2052, Australia
| | - Paul Dichtl
- Department of Physics, Imperial College London, Prince Consort Road, London, SW7 2AZ, UK
| | - Robert Röder
- Friedrich-Schiller-Universität Jena, Max-Wien-Platz 1, 07743, Jena, Germany
| | - Alex S Clark
- Department of Physics, Imperial College London, Prince Consort Road, London, SW7 2AZ, UK
- Quantum Engineering Technology Labs, University of Bristol, Bristol, BS8 1UB, UK
| | - Stefan A Maier
- Department of Physics, Imperial College London, Prince Consort Road, London, SW7 2AZ, UK
- Monash University School of Physics and Astronomy, Clayton, VIC, 3800, Australia
| | - Carsten Ronning
- Friedrich-Schiller-Universität Jena, Max-Wien-Platz 1, 07743, Jena, Germany
| | - Rupert F Oulton
- Department of Physics, Imperial College London, Prince Consort Road, London, SW7 2AZ, UK.
| |
Collapse
|
11
|
Louchet-Chauvet A, Chanelière T. Strain-mediated ion-ion interaction in rare-earth-doped solids. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2023; 35:305501. [PMID: 37072000 DOI: 10.1088/1361-648x/acce17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/18/2023] [Indexed: 06/19/2023]
Abstract
It was recently shown that the optical excitation of rare-earth ions produces a local change of the host matrix shape, attributed to a change of the rare-earth ion's electronic orbital geometry. In this work we investigate the consequences of this piezo-orbital backaction and show from a macroscopic model how it yields a disregarded ion-ion interaction mediated by mechanical strain. This interaction scales as1/r3, similarly to the other archetypal ion-ion interactions, namely electric and magnetic dipole-dipole interactions. We quantitatively assess and compare the magnitude of these three interactions from the angle of the instantaneous spectral diffusion mechanism, and re-examine the scientific literature in a range of rare-earth doped systems in the light of this generally underestimated contribution.
Collapse
Affiliation(s)
- A Louchet-Chauvet
- ESPCI Paris, Université PSL, CNRS, Institut Langevin, Paris 75005, France
| | - T Chanelière
- Université Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, Grenoble 38000, France
| |
Collapse
|
12
|
DeAbreu A, Bowness C, Alizadeh A, Chartrand C, Brunelle NA, MacQuarrie ER, Lee-Hone NR, Ruether M, Kazemi M, Kurkjian ATK, Roorda S, Abrosimov NV, Pohl HJ, Thewalt MLW, Higginbottom DB, Simmons S. Waveguide-integrated silicon T centres. OPTICS EXPRESS 2023; 31:15045-15057. [PMID: 37157355 DOI: 10.1364/oe.482008] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The performance of modular, networked quantum technologies will be strongly dependent upon the quality of their quantum light-matter interconnects. Solid-state colour centres, and in particular T centres in silicon, offer competitive technological and commercial advantages as the basis for quantum networking technologies and distributed quantum computing. These newly rediscovered silicon defects offer direct telecommunications-band photonic emission, long-lived electron and nuclear spin qubits, and proven native integration into industry-standard, CMOS-compatible, silicon-on-insulator (SOI) photonic chips at scale. Here we demonstrate further levels of integration by characterizing T centre spin ensembles in single-mode waveguides in SOI. In addition to measuring long spin T1 times, we report on the integrated centres' optical properties. We find that the narrow homogeneous linewidth of these waveguide-integrated emitters is already sufficiently low to predict the future success of remote spin-entangling protocols with only modest cavity Purcell enhancements. We show that further improvements may still be possible by measuring nearly lifetime-limited homogeneous linewidths in isotopically pure bulk crystals. In each case the measured linewidths are more than an order of magnitude lower than previously reported and further support the view that high-performance, large-scale distributed quantum technologies based upon T centres in silicon may be attainable in the near term.
Collapse
|
13
|
Yang L, Wang S, Shen M, Xie J, Tang HX. Controlling single rare earth ion emission in an electro-optical nanocavity. Nat Commun 2023; 14:1718. [PMID: 36977681 PMCID: PMC10049985 DOI: 10.1038/s41467-023-37513-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Rare earth emitters enable critical quantum resources including spin qubits, single photon sources, and quantum memories. Yet, probing of single ions remains challenging due to low emission rate of their intra-4f optical transitions. One feasible approach is through Purcell-enhanced emission in optical cavities. The ability to modulate cavity-ion coupling in real-time will further elevate the capacity of such systems. Here, we demonstrate direct control of single ion emission by embedding erbium dopants in an electro-optically active photonic crystal cavity patterned from thin-film lithium niobate. Purcell factor over 170 enables single ion detection, which is verified by second-order autocorrelation measurement. Dynamic control of emission rate is realized by leveraging electro-optic tuning of resonance frequency. Using this feature, storage, and retrieval of single ion excitation is further demonstrated, without perturbing the emission characteristics. These results promise new opportunities for controllable single-photon sources and efficient spin-photon interfaces.
Collapse
Affiliation(s)
- Likai Yang
- Department of Electrical Engineering, Yale University, New Haven, CT, 06511, USA
| | - Sihao Wang
- Department of Electrical Engineering, Yale University, New Haven, CT, 06511, USA
| | - Mohan Shen
- Department of Electrical Engineering, Yale University, New Haven, CT, 06511, USA
| | - Jiacheng Xie
- Department of Electrical Engineering, Yale University, New Haven, CT, 06511, USA
| | - Hong X Tang
- Department of Electrical Engineering, Yale University, New Haven, CT, 06511, USA.
| |
Collapse
|
14
|
Laorenza DW, Freedman DE. Could the Quantum Internet Be Comprised of Molecular Spins with Tunable Optical Interfaces? J Am Chem Soc 2022; 144:21810-21825. [DOI: 10.1021/jacs.2c07775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Daniel W. Laorenza
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Danna E. Freedman
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| |
Collapse
|
15
|
Ulanowski A, Merkel B, Reiserer A. Spectral multiplexing of telecom emitters with stable transition frequency. SCIENCE ADVANCES 2022; 8:eabo4538. [PMID: 36288302 PMCID: PMC9604527 DOI: 10.1126/sciadv.abo4538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 09/08/2022] [Indexed: 06/16/2023]
Abstract
In a quantum network, coherent emitters can be entangled over large distances using photonic channels. In solid-state devices, the required efficient light-emitter interface can be implemented by confining the light in nanophotonic structures. However, fluctuating charges and magnetic moments at the nearby interface then lead to spectral instability of the emitters. Here, we avoid this limitation when enhancing the photon emission up to 70(12)-fold using a Fabry-Perot resonator with an embedded 19-micrometer-thin crystalline membrane, in which we observe around 100 individual erbium emitters. In long-term measurements, they exhibit an exceptional spectral stability of <0.2 megahertz that is limited by the coupling to surrounding nuclear spins. We further implement spectrally multiplexed coherent control and find an optical coherence time of 0.11(1) milliseconds, approaching the lifetime limit of 0.3 milliseconds for the strongest-coupled emitters. Our results constitute an important step toward frequency-multiplexed quantum-network nodes operating directly at a telecommunication wavelength.
Collapse
Affiliation(s)
- Alexander Ulanowski
- Max-Planck-Institut für Quantenoptik, Quantum Networks Group, Hans-Kopfermann-Strasse 1, D-85748 Garching, Germany
| | - Benjamin Merkel
- Max-Planck-Institut für Quantenoptik, Quantum Networks Group, Hans-Kopfermann-Strasse 1, D-85748 Garching, Germany
| | - Andreas Reiserer
- Max-Planck-Institut für Quantenoptik, Quantum Networks Group, Hans-Kopfermann-Strasse 1, D-85748 Garching, Germany
- Technical University of Munich, TUM School of Natural Sciences and Munich Center for Quantum Science and Technology (MCQST), James-Franck-Str. 1, D-85748 Garching, Germany
| |
Collapse
|
16
|
Abstract
The global quantum internet will require long-lived, telecommunications-band photon-matter interfaces manufactured at scale1. Preliminary quantum networks based on photon-matter interfaces that meet a subset of these demands are encouraging efforts to identify new high-performance alternatives2. Silicon is an ideal host for commercial-scale solid-state quantum technologies. It is already an advanced platform within the global integrated photonics and microelectronics industries, as well as host to record-setting long-lived spin qubits3. Despite the overwhelming potential of the silicon quantum platform, the optical detection of individually addressable photon-spin interfaces in silicon has remained elusive. In this work, we integrate individually addressable 'T centre' photon-spin qubits in silicon photonic structures and characterize their spin-dependent telecommunications-band optical transitions. These results unlock immediate opportunities to construct silicon-integrated, telecommunications-band quantum information networks.
Collapse
|
17
|
Li P, Guo Y, Liu A, Yue X, Yuan T, Zhu J, Zhang Y, Li F. Deterministic Relation between Optical Polarization and Lattice Symmetry Revealed in Ion-Doped Single Microcrystals. ACS NANO 2022; 16:9535-9545. [PMID: 35579446 DOI: 10.1021/acsnano.2c02756] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Rare-earth ion doped crystals are of great significance for microsensing and quantum information, while the ions in the crystals emit light with spontaneous partial polarization, which is, though believed to be originated from the crystal lattice structure, still lacking a deterministic explanation that can be tested with quantitative accuracy. We report experimental evidence showing the profound physical relation between the polarization degree of light emitted by the doped ion and the lattice symmetry by demonstrating, with high precision, that the lattice constant ratio c/a directly quantifies the macroscopic effective polar angle of the electric and magnetic dipoles, which essentially determines the linear polarization degree of the emission. Based on this result, we further propose a pure optical technology to identify the three-dimensional orientation of a rod-shaped single microcrystal using the polarization-resolved microspectroscopy. Our results, demonstrating the physical origin of light polarization in ion-doped crystals, allow work toward on-demand polarization control with crystallography and provide a versatile platform for polarization-based microscale sensing in dynamical systems.
Collapse
Affiliation(s)
- Peng Li
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education, School of Electronic Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an 710049, P.R. China
| | - Yaxin Guo
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education, School of Electronic Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an 710049, P.R. China
| | - Ao Liu
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education, School of Electronic Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an 710049, P.R. China
| | - Xin Yue
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education, School of Electronic Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an 710049, P.R. China
| | - Taoli Yuan
- School of Electronic Information and Artificial Intelligence, Shaanxi University of Science and Technology, Xi'an 710021, P.R. China
| | - Jingping Zhu
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education, School of Electronic Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an 710049, P.R. China
| | - Yanpeng Zhang
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education, School of Electronic Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an 710049, P.R. China
| | - Feng Li
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education, School of Electronic Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an 710049, P.R. China
| |
Collapse
|
18
|
Levonian DS, Riedinger R, Machielse B, Knall EN, Bhaskar MK, Knaut CM, Bekenstein R, Park H, Lončar M, Lukin MD. Optical Entanglement of Distinguishable Quantum Emitters. PHYSICAL REVIEW LETTERS 2022; 128:213602. [PMID: 35687460 DOI: 10.1103/physrevlett.128.213602] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 03/21/2022] [Indexed: 06/15/2023]
Abstract
Solid-state quantum emitters are promising candidates for the realization of quantum networks, owing to their long-lived spin memories, high-fidelity local operations, and optical connectivity for long-range entanglement. However, due to differences in local environment, solid-state emitters typically feature a range of distinct transition frequencies, which makes it challenging to create optically mediated entanglement between arbitrary emitter pairs. We propose and demonstrate an efficient method for entangling emitters with optical transitions separated by many linewidths. In our approach, electro-optic modulators enable a single photon to herald a parity measurement on a pair of spin qubits. We experimentally demonstrate the protocol using two silicon-vacancy centers in a diamond nanophotonic cavity, with optical transitions separated by 7.4 GHz. Working with distinguishable emitters allows for individual qubit addressing and readout, enabling parallel control and entanglement of both colocated and spatially separated emitters, a key step toward scaling up quantum information processing systems.
Collapse
Affiliation(s)
- D S Levonian
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
- AWS Center for Quantum Computing, Pasadena, California 91125, USA
| | - R Riedinger
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
- Institut für Laserphysik und Zentrum für Optische Quantentechnologien, Universität Hamburg, 22761 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, 22761 Hamburg, Germany
| | - B Machielse
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
- AWS Center for Quantum Computing, Pasadena, California 91125, USA
| | - E N Knall
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
| | - M K Bhaskar
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
- AWS Center for Quantum Computing, Pasadena, California 91125, USA
| | - C M Knaut
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
| | - R Bekenstein
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
- Racah Institute of Physics, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - H Park
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - M Lončar
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
| | - M D Lukin
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
| |
Collapse
|
19
|
Zhu TX, Liu C, Jin M, Su MX, Liu YP, Li WJ, Ye Y, Zhou ZQ, Li CF, Guo GC. On-Demand Integrated Quantum Memory for Polarization Qubits. PHYSICAL REVIEW LETTERS 2022; 128:180501. [PMID: 35594095 DOI: 10.1103/physrevlett.128.180501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 03/28/2022] [Indexed: 06/15/2023]
Abstract
Photonic polarization qubits are widely used in quantum computation and quantum communication due to the robustness in transmission and the easy qubit manipulation. An integrated quantum memory for polarization qubits is a useful building block for large-scale integrated quantum networks. However, on-demand storing polarization qubits in an integrated quantum memory is a long-standing challenge due to the anisotropic absorption of solids and the polarization-dependent features of microstructures. Here we demonstrate a reliable on-demand quantum memory for polarization qubits, using a depressed-cladding waveguide fabricated in a ^{151}Eu^{3+}:Y_{2}SiO_{5} crystal. The site-2 ^{151}Eu^{3+} ions in Y_{2}SiO_{5} crystal provides a near-uniform absorption for arbitrary polarization states and a new pump sequence is developed to prepare a wideband and enhanced absorption profile. A fidelity of 99.4±0.6% is obtained for the qubit storage process with an input of 0.32 photons per pulse, together with a storage bandwidth of 10 MHz. This reliable integrated quantum memory for polarization qubits reveals the potential for use in the construction of integrated quantum networks.
Collapse
Affiliation(s)
- Tian-Xiang Zhu
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, 230026, China
- Hefei National Laboratory, Hefei 230088, China
| | - Chao Liu
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, 230026, China
- Hefei National Laboratory, Hefei 230088, China
| | - Ming Jin
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, 230026, China
- Hefei National Laboratory, Hefei 230088, China
| | - Ming-Xu Su
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, 230026, China
- Hefei National Laboratory, Hefei 230088, China
| | - Yu-Ping Liu
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, 230026, China
- Hefei National Laboratory, Hefei 230088, China
| | - Wen-Juan Li
- Center for Micro and Nanoscale Research and Fabrication, University of Science and Technology of China, Hefei 230026, China
| | - Yang Ye
- Center for Micro and Nanoscale Research and Fabrication, University of Science and Technology of China, Hefei 230026, China
| | - Zong-Quan Zhou
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, 230026, China
- Hefei National Laboratory, Hefei 230088, China
| | - Chuan-Feng Li
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, 230026, China
- Hefei National Laboratory, Hefei 230088, China
| | - Guang-Can Guo
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, 230026, China
- Hefei National Laboratory, Hefei 230088, China
| |
Collapse
|
20
|
Serrano D, Kuppusamy SK, Heinrich B, Fuhr O, Hunger D, Ruben M, Goldner P. Ultra-narrow optical linewidths in rare-earth molecular crystals. Nature 2022; 603:241-246. [PMID: 35264757 DOI: 10.1038/s41586-021-04316-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 12/07/2021] [Indexed: 11/09/2022]
Abstract
Rare-earth ions (REIs) are promising solid-state systems for building light-matter interfaces at the quantum level1,2. This relies on their potential to show narrow optical and spin homogeneous linewidths, or, equivalently, long-lived quantum states. This enables the use of REIs for photonic quantum technologies such as memories for light, optical-microwave transduction and computing3-5. However, so far, few crystalline materials have shown an environment quiet enough to fully exploit REI properties. This hinders further progress, in particular towards REI-containing integrated nanophotonics devices6,7. Molecular systems can provide such capability but generally lack spin states. If, however, molecular systems do have spin states, they show broad optical lines that severely limit optical-to-spin coherent interfacing8-10. Here we report on europium molecular crystals that exhibit linewidths in the tens of kilohertz range, orders of magnitude narrower than those of other molecular systems. We harness this property to demonstrate efficient optical spin initialization, coherent storage of light using an atomic frequency comb, and optical control of ion-ion interactions towards implementation of quantum gates. These results illustrate the utility of rare-earth molecular crystals as a new platform for photonic quantum technologies that combines highly coherent emitters with the unmatched versatility in composition, structure and integration capability of molecular materials.
Collapse
Affiliation(s)
- Diana Serrano
- Chimie ParisTech, PSL University, CNRS, Institut de Recherche de Chimie Paris, Paris, France.
| | - Senthil Kumar Kuppusamy
- Institute for Quantum Materials and Technologies (IQMT), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany. .,Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.
| | - Benoît Heinrich
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), CNRS-Université de Strasbourg, Strasbourg, France
| | - Olaf Fuhr
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.,Karlsruhe Nano Micro Facility (KNMF), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - David Hunger
- Institute for Quantum Materials and Technologies (IQMT), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.,Physikalisches Institut, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Mario Ruben
- Institute for Quantum Materials and Technologies (IQMT), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany. .,Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany. .,Centre Européen de Sciences Quantiques (CESQ), Institut de Science et d'Ingénierie Supramoléculaire (ISIS), Université de Strasbourg, Strasbourg, France.
| | - Philippe Goldner
- Chimie ParisTech, PSL University, CNRS, Institut de Recherche de Chimie Paris, Paris, France.
| |
Collapse
|
21
|
Ruskuc A, Wu CJ, Rochman J, Choi J, Faraon A. Nuclear spin-wave quantum register for a solid-state qubit. Nature 2022; 602:408-413. [PMID: 35173343 DOI: 10.1038/s41586-021-04293-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 11/29/2021] [Indexed: 11/09/2022]
Abstract
Solid-state nuclear spins surrounding individual, optically addressable qubits1,2 are a crucial resource for quantum networks3-6, computation7-11 and simulation12. Although hosts with sparse nuclear spin baths are typically chosen to mitigate qubit decoherence13, developing coherent quantum systems in nuclear-spin-rich hosts enables exploration of a much broader range of materials for quantum information applications. The collective modes of these dense nuclear spin ensembles provide a natural basis for quantum storage14; however, using them as a resource for single-spin qubits has thus far remained elusive. Here, by using a highly coherent, optically addressed 171Yb3+ qubit doped into a nuclear-spin-rich yttrium orthovanadate crystal15, we develop a robust quantum control protocol to manipulate the multi-level nuclear spin states of neighbouring 51V5+ lattice ions. Via a dynamically engineered spin-exchange interaction, we polarize this nuclear spin ensemble, generate collective spin excitations, and subsequently use them to implement a quantum memory. We additionally demonstrate preparation and measurement of maximally entangled 171Yb-51V Bell states. Unlike conventional, disordered nuclear-spin-based quantum memories16-24, our platform is deterministic and reproducible, ensuring identical quantum registers for all 171Yb3+ qubits. Our approach provides a framework for utilizing the complex structure of dense nuclear spin baths, paving the way towards building large-scale quantum networks using single rare-earth ion qubits15,25-28.
Collapse
Affiliation(s)
- Andrei Ruskuc
- Thomas J. Watson, Sr., Laboratory of Applied Physics, California Institute of Technology, Pasadena, CA, USA.,Kavli Nanoscience Institute, California Institute of Technology, Pasadena, CA, USA.,Institute for Quantum Information and Matter, California Institute of Technology, Pasadena, CA, USA
| | - Chun-Ju Wu
- Thomas J. Watson, Sr., Laboratory of Applied Physics, California Institute of Technology, Pasadena, CA, USA.,Kavli Nanoscience Institute, California Institute of Technology, Pasadena, CA, USA.,Institute for Quantum Information and Matter, California Institute of Technology, Pasadena, CA, USA.,Division of Physics, Mathematics and Astronomy, California Institute of Technology, Pasadena, CA, USA
| | - Jake Rochman
- Thomas J. Watson, Sr., Laboratory of Applied Physics, California Institute of Technology, Pasadena, CA, USA.,Kavli Nanoscience Institute, California Institute of Technology, Pasadena, CA, USA.,Institute for Quantum Information and Matter, California Institute of Technology, Pasadena, CA, USA
| | - Joonhee Choi
- Institute for Quantum Information and Matter, California Institute of Technology, Pasadena, CA, USA. .,Division of Physics, Mathematics and Astronomy, California Institute of Technology, Pasadena, CA, USA.
| | - Andrei Faraon
- Thomas J. Watson, Sr., Laboratory of Applied Physics, California Institute of Technology, Pasadena, CA, USA. .,Kavli Nanoscience Institute, California Institute of Technology, Pasadena, CA, USA. .,Institute for Quantum Information and Matter, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
22
|
Hu G, de Boo GG, Johnson BC, McCallum JC, Sellars MJ, Yin C, Rogge S. Time-Resolved Photoionization Detection of a Single Er 3+ Ion in Silicon. NANO LETTERS 2022; 22:396-401. [PMID: 34978822 DOI: 10.1021/acs.nanolett.1c04072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The detection of charge trap ionization induced by resonant excitation enables spectroscopy on single Er3+ ions in silicon nanotransistors. In this work, a time-resolved detection method is developed to investigate the resonant excitation and relaxation of a single Er3+ ion in silicon. The time-resolved detection is based on a long-lived current signal with a tunable reset and allows the measurement under stronger and shorter resonant excitation in comparison to time-averaged detection. Specifically, the short-pulse study gives an upper bound of 23.7 μs on the decay time of the 4I13/2 state of the Er3+ ion. The fast decay and the tunable reset allow faster repetition of the single-ion detection, which is attractive for implementing this method in large-scale quantum systems of single optical centers. The findings on the detection mechanism and dynamics also provide an important basis for applying this technique to detect other single optical centers in solids.
Collapse
Affiliation(s)
- Guangchong Hu
- Centre of Excellence for Quantum Computation and Communication Technology, School of Physics, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Gabriele G de Boo
- Centre of Excellence for Quantum Computation and Communication Technology, School of Physics, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Brett Cameron Johnson
- Centre of Excellence for Quantum Computation and Communication Technology, School of Physics, University of Melbourne, Parkville, Victoria 3010, Australia
- Centre of Excellence for Quantum Computation and Communication Technology, School of Engineering, RMIT University, Melbourne, Victoria 3001, Australia
| | - Jeffrey Colin McCallum
- Centre of Excellence for Quantum Computation and Communication Technology, School of Physics, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Matthew J Sellars
- Centre of Excellence for Quantum Computation and Communication Technology, Research School of Physics and Engineering, Australian National University, Canberra, Australian Central Territory 0200, Australia
| | - Chunming Yin
- Centre of Excellence for Quantum Computation and Communication Technology, School of Physics, University of New South Wales, Sydney, New South Wales 2052, Australia
- CAS Key Laboratory of Microscale Magnetic Resonance, School of Physical Sciences and CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230 026, People's Republic of China
| | - Sven Rogge
- Centre of Excellence for Quantum Computation and Communication Technology, School of Physics, University of New South Wales, Sydney, New South Wales 2052, Australia
| |
Collapse
|
23
|
Timmerman D, Iwaya T, Fujiwara Y. High-Q 1D rod-based nanocavities. OPTICS LETTERS 2021; 46:4260-4263. [PMID: 34469989 DOI: 10.1364/ol.434904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
We report an analysis of one-dimensional rod-based photonic crystal nanocavities. These cavities offer opportunities for dielectric materials which lack a matching low-refractive index substrate or are limited in under-etching possibilities to create slab-based PhC cavities. They offer high theoretical Q-values exceeding 106 for transverse magnetic polarized modes with modal volumes below 2.5(λ/n)3. For practical implementations, we propose embedding these structures in a low-refractive index polymer. An analysis of intentionally introduced variations in a rod diameter reveals which design directions should be followed in order to create cavities that are most robust for fabrication-induced variations.
Collapse
|
24
|
Casabone B, Deshmukh C, Liu S, Serrano D, Ferrier A, Hümmer T, Goldner P, Hunger D, de Riedmatten H. Dynamic control of Purcell enhanced emission of erbium ions in nanoparticles. Nat Commun 2021; 12:3570. [PMID: 34117226 PMCID: PMC8196009 DOI: 10.1038/s41467-021-23632-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 04/28/2021] [Indexed: 11/07/2022] Open
Abstract
The interaction of single quantum emitters with an optical cavity enables the realization of efficient spin-photon interfaces, an essential resource for quantum networks. The dynamical control of the spontaneous emission rate of quantum emitters in cavities has important implications in quantum technologies, e.g., for shaping the emitted photons’ waveform or for driving coherently the optical transition while preventing photon emission. Here we demonstrate the dynamical control of the Purcell enhanced emission of a small ensemble of erbium ions doped into a nanoparticle. By embedding the nanoparticles into a fully tunable high finesse fiber based optical microcavity, we demonstrate a median Purcell factor of 15 for the ensemble of ions. We also show that we can dynamically control the Purcell enhanced emission by tuning the cavity on and out of resonance, by controlling its length with sub-nanometer precision on a time scale more than two orders of magnitude faster than the natural lifetime of the erbium ions. This capability opens prospects for the realization of efficient nanoscale quantum interfaces between solid-state spins and single telecom photons with controllable waveform, for non-destructive detection of photonic qubits, and for the realization of quantum gates between rare-earth ion qubits coupled to an optical cavity. Control of quantum emitters is needed in order to enable many applications. Here, the authors demonstrate enhancement and dynamical control of the Purcell emission from erbium ions doped in a nanoparticle within a fiber-based microcavity.
Collapse
Affiliation(s)
- Bernardo Casabone
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Chetan Deshmukh
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Shuping Liu
- Chimie ParisTech, PSL University, CNRS, Institut de Recherche de Chimie Paris, Paris, France.,Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Diana Serrano
- Chimie ParisTech, PSL University, CNRS, Institut de Recherche de Chimie Paris, Paris, France
| | - Alban Ferrier
- Chimie ParisTech, PSL University, CNRS, Institut de Recherche de Chimie Paris, Paris, France.,Faculté des Sciences et Ingénierie, Sorbonne Université, Paris, France
| | - Thomas Hümmer
- Fakultät für Physik, Ludwig-Maximilians-Universität, München, Germany
| | - Philippe Goldner
- Chimie ParisTech, PSL University, CNRS, Institut de Recherche de Chimie Paris, Paris, France
| | - David Hunger
- Karlsruher Institut für Technologie, Physikalisches Institut, Karlsruhe, Germany.,Karlsruhe Insitute for Technology, Institute for Quantum Materials and Technologies (IQMT), Eggenstein-Leopoldshafen, Germany
| | - Hugues de Riedmatten
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Barcelona, Spain. .,ICREA-Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain.
| |
Collapse
|
25
|
Sharifi Z, Dobinson M, Hajisalem G, Shariatdoust MS, Frencken AL, van Veggel FCJM, Gordon R. Isolating and enhancing single-photon emitters for 1550 nm quantum light sources using double nanohole optical tweezers. J Chem Phys 2021; 154:184204. [PMID: 34241038 DOI: 10.1063/5.0048728] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Single-photon sources are required for quantum technologies and can be created from individual atoms and atom-like defects. Erbium ions produce single photons at low-loss fiber optic wavelengths, but they have low emission rates, making them challenging to isolate reliably. Here, we tune the size of gold double nanoholes (DNHs) to enhance the emission of single erbium emitters, achieving 50× enhancement over rectangular apertures previously demonstrated. This produces enough enhancement to show emission from single nanocrystals at wavelengths not seen in our previous work, i.e., 400 and 1550 nm. We observe discrete levels of emission for nanocrystals with low numbers of emitters and demonstrate isolating single emitters. We describe how the trapping time is proportional to the enhancement factor for a given DNH structure, giving us an independent way to measure the enhancement. This shows a promising path to achieving single emitter sources at 1550 nm.
Collapse
Affiliation(s)
- Zohreh Sharifi
- Department of Electrical and Computer Engineering, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - Michael Dobinson
- Department of Electrical and Computer Engineering, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - Ghazal Hajisalem
- Department of Electrical and Computer Engineering, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - Mirali Seyed Shariatdoust
- Department of Electrical and Computer Engineering, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - Adriaan L Frencken
- Centre for Advanced Materials & Related Technologies (CAMTEC), University of Victoria, Victoria, British Columbia V8W 2Y2, Canada
| | - Frank C J M van Veggel
- Centre for Advanced Materials & Related Technologies (CAMTEC), University of Victoria, Victoria, British Columbia V8W 2Y2, Canada
| | - Reuven Gordon
- Department of Electrical and Computer Engineering, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| |
Collapse
|
26
|
Chen S, Ourari S, Raha M, Phenicie CM, Uysal MT, Thompson JD. Hybrid microwave-optical scanning probe for addressing solid-state spins in nanophotonic cavities. OPTICS EXPRESS 2021; 29:4902-4911. [PMID: 33726036 DOI: 10.1364/oe.417528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 01/23/2021] [Indexed: 06/12/2023]
Abstract
Spin-photon interfaces based on solid-state atomic defects have enabled a variety of key applications in quantum information processing. To maximize the light-matter coupling strength, defects are often placed inside nanoscale devices. Efficiently coupling light and microwave radiation into these structures is an experimental challenge, especially in cryogenic or high vacuum environments with limited sample access. In this work, we demonstrate a fiber-based scanning probe that simultaneously couples light into a planar photonic circuit and delivers high power microwaves for driving electron spin transitions. The optical portion achieves 46% one-way coupling efficiency, while the microwave portion supplies an AC magnetic field with strength up to 9 Gauss at 10 Watts of input microwave power. The entire probe can be scanned across a large number of devices inside a 3He cryostat without free-space optical access. We demonstrate this technique with silicon nanophotonic circuits coupled to single Er3+ ions.
Collapse
|
27
|
Kagan CR, Bassett LC, Murray CB, Thompson SM. Colloidal Quantum Dots as Platforms for Quantum Information Science. Chem Rev 2020; 121:3186-3233. [DOI: 10.1021/acs.chemrev.0c00831] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
28
|
Chen S, Raha M, Phenicie CM, Ourari S, Thompson JD. Parallel single-shot measurement and coherent control of solid-state spins below the diffraction limit. Science 2020; 370:592-595. [DOI: 10.1126/science.abc7821] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 09/11/2020] [Indexed: 11/02/2022]
Affiliation(s)
- Songtao Chen
- Department of Electrical Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Mouktik Raha
- Department of Electrical Engineering, Princeton University, Princeton, NJ 08544, USA
| | | | - Salim Ourari
- Department of Electrical Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Jeff D. Thompson
- Department of Electrical Engineering, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
29
|
Wan NH, Lu TJ, Chen KC, Walsh MP, Trusheim ME, De Santis L, Bersin EA, Harris IB, Mouradian SL, Christen IR, Bielejec ES, Englund D. Large-scale integration of artificial atoms in hybrid photonic circuits. Nature 2020; 583:226-231. [DOI: 10.1038/s41586-020-2441-3] [Citation(s) in RCA: 130] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 04/02/2020] [Indexed: 12/24/2022]
|
30
|
Kornher T, Xiao DW, Xia K, Sardi F, Zhao N, Kolesov R, Wrachtrup J. Sensing Individual Nuclear Spins with a Single Rare-Earth Electron Spin. PHYSICAL REVIEW LETTERS 2020; 124:170402. [PMID: 32412264 DOI: 10.1103/physrevlett.124.170402] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 03/26/2020] [Indexed: 05/24/2023]
Abstract
Rare-earth related electron spins in crystalline hosts are unique material systems, as they can potentially provide a direct interface between telecom band photons and long-lived spin quantum bits. Specifically, their optically accessible electron spins in solids interacting with nuclear spins in their environment are valuable quantum memory resources. Detection of nearby individual nuclear spins, so far exclusively shown for few dilute nuclear spin bath host systems such as the nitrogen-vacancy center in diamond or the silicon vacancy in silicon carbide, remained an open challenge for rare earths in their host materials, which typically exhibit dense nuclear spin baths. Here, we present the electron spin spectroscopy of single Ce^{3+} ions in a yttrium orthosilicate host, featuring a coherence time of T_{2}=124 μs. This coherent interaction time is sufficiently long to isolate proximal ^{89}Y nuclear spins from the nuclear spin bath of ^{89}Y. Furthermore, it allows for the detection of a single nearby ^{29}Si nuclear spin, native to the host material with ∼5% abundance. This study opens the door to quantum memory applications in rare-earth ion related systems based on coupled environmental nuclear spins, potentially useful for quantum error correction schemes.
Collapse
Affiliation(s)
- Thomas Kornher
- 3rd Institute of Physics, University of Stuttgart, 70569 Stuttgart, Germany
| | - Da-Wu Xiao
- Beijing Computational Science Research Center, Haidian District, Beijing 100193, China
| | - Kangwei Xia
- 3rd Institute of Physics, University of Stuttgart, 70569 Stuttgart, Germany
| | - Fiammetta Sardi
- 3rd Institute of Physics, University of Stuttgart, 70569 Stuttgart, Germany
| | - Nan Zhao
- Beijing Computational Science Research Center, Haidian District, Beijing 100193, China
| | - Roman Kolesov
- 3rd Institute of Physics, University of Stuttgart, 70569 Stuttgart, Germany
| | - Jörg Wrachtrup
- 3rd Institute of Physics, University of Stuttgart, 70569 Stuttgart, Germany
| |
Collapse
|
31
|
Control and single-shot readout of an ion embedded in a nanophotonic cavity. Nature 2020; 580:201-204. [PMID: 32269343 DOI: 10.1038/s41586-020-2160-9] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 01/20/2020] [Indexed: 11/08/2022]
Abstract
Distributing entanglement over long distances using optical networks is an intriguing macroscopic quantum phenomenon with applications in quantum systems for advanced computing and secure communication1,2. Building quantum networks requires scalable quantum light-matter interfaces1 based on atoms3, ions4 or other optically addressable qubits. Solid-state emitters5, such as quantum dots and defects in diamond or silicon carbide6-10, have emerged as promising candidates for such interfaces. So far, it has not been possible to scale up these systems, motivating the development of alternative platforms. A central challenge is identifying emitters that exhibit coherent optical and spin transitions while coupled to photonic cavities that enhance the light-matter interaction and channel emission into optical fibres. Rare-earth ions in crystals are known to have highly coherent 4f-4f optical and spin transitions suited to quantum storage and transduction11-15, but only recently have single rare-earth ions been isolated16,17 and coupled to nanocavities18,19. The crucial next steps towards using single rare-earth ions for quantum networks are realizing long spin coherence and single-shot readout in photonic resonators. Here we demonstrate spin initialization, coherent optical and spin manipulation, and high-fidelity single-shot optical readout of the hyperfine spin state of single 171Yb3+ ions coupled to a nanophotonic cavity fabricated in an yttrium orthovanadate host crystal. These ions have optical and spin transitions that are first-order insensitive to magnetic field fluctuations, enabling optical linewidths of less than one megahertz and spin coherence times exceeding thirty milliseconds for cavity-coupled ions, even at temperatures greater than one kelvin. The cavity-enhanced optical emission rate facilitates efficient spin initialization and single-shot readout with conditional fidelity greater than 95 per cent. These results showcase a solid-state platform based on single coherent rare-earth ions for the future quantum internet.
Collapse
|
32
|
Raha M, Chen S, Phenicie CM, Ourari S, Dibos AM, Thompson JD. Optical quantum nondemolition measurement of a single rare earth ion qubit. Nat Commun 2020; 11:1605. [PMID: 32231204 PMCID: PMC7105499 DOI: 10.1038/s41467-020-15138-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 02/13/2020] [Indexed: 11/30/2022] Open
Abstract
Optically-interfaced spins in the solid state are a promising platform for quantum technologies. A crucial component of these systems is high-fidelity, projective measurement of the spin state. Here, we demonstrate single-shot spin readout of a single rare earth ion qubit, Er3+, which is attractive for its telecom-wavelength optical transition and compatibility with silicon nanophotonic circuits. In previous work with laser-cooled atoms and ions, and solid-state defects, spin readout is accomplished using fluorescence on an optical cycling transition; however, Er3+ and other rare earth ions generally lack strong cycling transitions. We demonstrate that modifying the electromagnetic environment around the ion can increase the strength and cyclicity of the optical transition by several orders of magnitude, enabling single-shot quantum nondemolition readout of the ion's spin with 94.6% fidelity. We use this readout to probe coherent dynamics and relaxation of the spin.
Collapse
Affiliation(s)
- Mouktik Raha
- Department of Electrical Engineering, Princeton University, Princeton, NJ, 08544, USA
| | - Songtao Chen
- Department of Electrical Engineering, Princeton University, Princeton, NJ, 08544, USA
| | | | - Salim Ourari
- Department of Electrical Engineering, Princeton University, Princeton, NJ, 08544, USA
| | - Alan M Dibos
- Department of Electrical Engineering, Princeton University, Princeton, NJ, 08544, USA
- Nanoscience and Technology Division, Argonne National Laboratory, Argonne, IL, 60439, USA
| | - Jeff D Thompson
- Department of Electrical Engineering, Princeton University, Princeton, NJ, 08544, USA.
| |
Collapse
|
33
|
Alizadehkhaledi A, Frencken AL, van Veggel FCJM, Gordon R. Isolating Nanocrystals with an Individual Erbium Emitter: A Route to a Stable Single-Photon Source at 1550 nm Wavelength. NANO LETTERS 2020; 20:1018-1022. [PMID: 31891509 DOI: 10.1021/acs.nanolett.9b04165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Single-photon emitters based on individual atoms or individual atomic-like defects are highly sought-after components for future quantum technologies. A key challenge in this field is how to isolate just one such emitter; the best approaches still have an active emitter yield of only 50% so that deterministic integration of single active emitters is not yet possible. Here, we demonstrate the ability to isolate individual erbium emitters embedded in 20 nm nanocrystals of NaYF4 using plasmonic aperture optical tweezers. The optical tweezers capture the nanocrystal, whereas the plasmonic aperture enhances the emission of the Er and allows the measurement of discrete emission rate values corresponding to different numbers of erbium ions. Three separate synthesis runs show near-Poissonian distribution in the discrete levels of emission yield that correspond to the expected ion concentrations, indicating that the yield of active emitters is approximately 80%. Fortunately, the trap allows for selecting the nanocrystals with only a single emitter, and so this gives a route to isolating and integrating single emitters in a deterministic way. This demonstration is a promising step toward single-photon quantum information technologies that utilize single ions in a solid-state medium, particularly because Er emits in the low-loss fiber-optic 1550 nm telecom band.
Collapse
Affiliation(s)
- Amirhossein Alizadehkhaledi
- Department Electrical and Computer Engineering , University of Victoria , Victoria , British Columbia V8W 2Y2 , Canada
- Centre for Advanced Materials & Related Technologies (CAMTEC) , University of Victoria , Victoria , British Columbia V8W 2Y2 , Canada
| | - Adriaan L Frencken
- Department of Chemistry , University of Victoria , Victoria , British Colombia V8W 2Y2 , Canada
- Centre for Advanced Materials & Related Technologies (CAMTEC) , University of Victoria , Victoria , British Columbia V8W 2Y2 , Canada
| | - Frank C J M van Veggel
- Department of Chemistry , University of Victoria , Victoria , British Colombia V8W 2Y2 , Canada
- Centre for Advanced Materials & Related Technologies (CAMTEC) , University of Victoria , Victoria , British Columbia V8W 2Y2 , Canada
| | - Reuven Gordon
- Department Electrical and Computer Engineering , University of Victoria , Victoria , British Columbia V8W 2Y2 , Canada
- Centre for Advanced Materials & Related Technologies (CAMTEC) , University of Victoria , Victoria , British Columbia V8W 2Y2 , Canada
| |
Collapse
|
34
|
Businger M, Tiranov A, Kaczmarek KT, Welinski S, Zhang Z, Ferrier A, Goldner P, Afzelius M. Optical Spin-Wave Storage in a Solid-State Hybridized Electron-Nuclear Spin Ensemble. PHYSICAL REVIEW LETTERS 2020; 124:053606. [PMID: 32083938 DOI: 10.1103/physrevlett.124.053606] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 01/09/2020] [Indexed: 06/10/2023]
Abstract
Solid-state impurity spins with optical control are currently investigated for quantum networks and repeaters. Among these, rare-earth-ion doped crystals are promising as quantum memories for light, with potentially long storage time, high multimode capacity, and high bandwidth. However, with spins there is often a tradeoff between bandwidth, which favors electronic spin, and memory time, which favors nuclear spins. Here, we present optical storage experiments using highly hybridized electron-nuclear hyperfine states in ^{171}Yb^{3+}:Y_{2}SiO_{5}, where the hybridization can potentially offer both long storage time and high bandwidth. We reach a storage time of 1.2 ms and an optical storage bandwidth of 10 MHz that is currently only limited by the Rabi frequency of the optical control pulses. The memory efficiency in this proof-of-principle demonstration was about 3%. The experiment constitutes the first optical storage using spin states in any rare-earth ion with electronic spin. These results pave the way for rare-earth based quantum memories with high bandwidth, long storage time, and high multimode capacity, a key resource for quantum repeaters.
Collapse
Affiliation(s)
- M Businger
- Department of Applied Physics, University of Geneva, CH-1211 Genève, Switzerland
| | - A Tiranov
- Department of Applied Physics, University of Geneva, CH-1211 Genève, Switzerland
| | - K T Kaczmarek
- Department of Applied Physics, University of Geneva, CH-1211 Genève, Switzerland
| | - S Welinski
- Chimie ParisTech, PSL University, CNRS, Institut de Recherche de Chimie Paris, 75005 Paris, France
| | - Z Zhang
- Chimie ParisTech, PSL University, CNRS, Institut de Recherche de Chimie Paris, 75005 Paris, France
| | - A Ferrier
- Chimie ParisTech, PSL University, CNRS, Institut de Recherche de Chimie Paris, 75005 Paris, France
- Faculté des Sciences et Ingnierie, Sorbonne Université, UFR 933, 75005 Paris, France
| | - P Goldner
- Chimie ParisTech, PSL University, CNRS, Institut de Recherche de Chimie Paris, 75005 Paris, France
| | - M Afzelius
- Department of Applied Physics, University of Geneva, CH-1211 Genève, Switzerland
| |
Collapse
|
35
|
Dutta S, Goldschmidt EA, Barik S, Saha U, Waks E. Integrated Photonic Platform for Rare-Earth Ions in Thin Film Lithium Niobate. NANO LETTERS 2020; 20:741-747. [PMID: 31855433 DOI: 10.1021/acs.nanolett.9b04679] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Rare-earth ion ensembles doped in single crystals are a promising materials system with widespread applications in optical signal processing, lasing, and quantum information processing. Incorporating rare-earth ions into integrated photonic devices could enable compact lasers and modulators, as well as on-chip optical quantum memories for classical and quantum optical applications. To this end, a thin film single crystalline wafer structure that is compatible with planar fabrication of integrated photonic devices would be highly desirable. However, incorporating rare-earth ions into a thin film form-factor while preserving their optical properties has proven challenging. We demonstrate an integrated photonic platform for rare-earth ions doped in a single crystalline thin film lithium niobate on insulator. The thin film is composed of lithium niobate doped with Tm3+. The ions in the thin film exhibit optical lifetimes identical to those measured in bulk crystals. We show narrow spectral holes in a thin film waveguide that require up to 2 orders of magnitude lower power to generate than previously reported bulk waveguides. Our results pave the way for scalable on-chip lasers, optical signal processing devices, and integrated optical quantum memories.
Collapse
Affiliation(s)
- Subhojit Dutta
- Department of Electrical and Computer Engineering, Institute for Research in Electronics and Applied Physics, and Joint Quantum Institute , University of Maryland , College Park , Maryland 20742 , United States
| | - Elizabeth A Goldschmidt
- Department of Physics , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Sabyasachi Barik
- Department of Electrical and Computer Engineering, Institute for Research in Electronics and Applied Physics, and Joint Quantum Institute , University of Maryland , College Park , Maryland 20742 , United States
| | - Uday Saha
- Department of Electrical and Computer Engineering, Institute for Research in Electronics and Applied Physics, and Joint Quantum Institute , University of Maryland , College Park , Maryland 20742 , United States
| | - Edo Waks
- Department of Electrical and Computer Engineering, Institute for Research in Electronics and Applied Physics, and Joint Quantum Institute , University of Maryland , College Park , Maryland 20742 , United States
| |
Collapse
|
36
|
Phenicie CM, Stevenson P, Welinski S, Rose BC, Asfaw AT, Cava RJ, Lyon SA, de Leon NP, Thompson JD. Narrow Optical Line Widths in Erbium Implanted in TiO 2. NANO LETTERS 2019; 19:8928-8933. [PMID: 31765161 DOI: 10.1021/acs.nanolett.9b03831] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Atomic and atomlike defects in the solid state are widely explored for quantum computers, networks, and sensors. Rare earth ions are an attractive class of atomic defects that feature narrow spin and optical transitions that are isolated from the host crystal, allowing incorporation into a wide range of materials. However, the realization of long electronic spin coherence times is hampered by magnetic noise from abundant nuclear spins in the most widely studied host crystals. Here, we demonstrate that Er3+ ions can be introduced via ion implantation into TiO2, a host crystal that has not been studied extensively for rare earth ions and has a low natural abundance of nuclear spins. We observe efficient incorporation of the implanted Er3+ into the Ti4+ site (>50% yield) and measure narrow inhomogeneous spin and optical line widths (20 and 460 MHz, respectively) that are comparable to bulk-doped crystalline hosts for Er3+. This work demonstrates that ion implantation is a viable path to studying rare earth ions in new hosts and is a significant step toward realizing individually addressed rare earth ions with long spin coherence times for quantum technologies.
Collapse
|
37
|
Hiraishi M, IJspeert M, Tawara T, Adachi S, Kaji R, Omi H, Gotoh H. Optical coherent transients in 167Er 3+ at telecom-band wavelength. OPTICS LETTERS 2019; 44:4933-4936. [PMID: 31613232 DOI: 10.1364/ol.44.004933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 09/09/2019] [Indexed: 06/10/2023]
Abstract
We demonstrate optical coherent transients in a Λ-like hyperfine energy-level system of Er1673+ in yttrium orthosilicate (Y2SiO5) with telecom-band photons at a zero magnetic field. Spectral hole burning was used to study the temperature dependence of the induced spectral antihole. We find that temperatures below 3.0 K suppress population dissipation induced by electron-phonon interactions sufficiently to enable population initialization in the Λ-like system. Further, the pulse area dependence of photoluminescence (PL) from the Λ-like system was measured at 2.2 K. An optical pump power dependence of PL intensity shows Rabi oscillations that contain two full Rabi cycles at the frequency of 2π×810 kHz. A two-pulse photon echo measurement reveals an optical coherence time of 12 μs. To date, this measured optical coherence time is the longest observed for Er3+ in solids at zero magnetic field. These findings will facilitate optical coherent manipulation of Λ-like Er1673+ electronic states as a quantum memories operating at telecom-band wavelengths.
Collapse
|
38
|
Urmancheev R, Gerasimov K, Minnegaliev M, Chanelière T, Louchet-Chauvet A, Moiseev S. Two-pulse photon echo area theorem in an optically dense medium. OPTICS EXPRESS 2019; 27:28983-28997. [PMID: 31684641 DOI: 10.1364/oe.27.028983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 03/14/2019] [Indexed: 06/10/2023]
Abstract
We perform a theoretical and experimental study of the two-pulse photon echo area conservation law in an optically dense medium. The experimental properties of the echo signal are studied at 4K on the optical transition 3H 6(1)→3H 4(1) (793 nm) of Tm 3+ in a YAG crystal for a wide range of pulse areas of the two incoming light pulses, up to θ 1 r o x4π and θ 2≈7π respectively, with optical depth 1.5. We analyze the experimental data by using the analytic solution of the photon echo area theorem for plane waves. We find that the transverse Gaussian spatial profile of the beam leads to an attenuation of the echo area nutation as function of θ1 and θ2. Additional spatial filtering of the photon echo beam allows to recover this nutation. The experimental data are in good agreement with the solution of photon echo pulse area theorem for weak incoming pulse areas θ 1,2≲π. However at higher pulse areas, the observations diverge from the analytic solution requiring further theoretical and experimental studies.
Collapse
|
39
|
Groot-Berning K, Kornher T, Jacob G, Stopp F, Dawkins ST, Kolesov R, Wrachtrup J, Singer K, Schmidt-Kaler F. Deterministic Single-Ion Implantation of Rare-Earth Ions for Nanometer-Resolution Color-Center Generation. PHYSICAL REVIEW LETTERS 2019; 123:106802. [PMID: 31573288 DOI: 10.1103/physrevlett.123.106802] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Indexed: 05/24/2023]
Abstract
Single dopant atoms or dopant-related defect centers in a solid state matrix are of particular importance among the physical systems proposed for quantum computing and communication, due to their potential to realize a scalable architecture compatible with electronic and photonic integrated circuits. Here, using a deterministic source of single laser-cooled Pr^{+} ions, we present the fabrication of arrays of praseodymium color centers in yttrium-aluminum-garnet substrates. The beam of single Pr^{+} ions is extracted from a Paul trap and focused down to 30(9) nm. Using a confocal microscope, we determine a conversion yield into active color centers of up to 50% and realize a placement precision of 34 nm.
Collapse
Affiliation(s)
- Karin Groot-Berning
- QUANTUM, Institut für Physik, Universität Mainz, Staudingerweg 7, 55128 Mainz, Germany
| | - Thomas Kornher
- Physikalisches Institut, Universität Stuttgart, 70569 Stuttgart, Germany
| | - Georg Jacob
- QUANTUM, Institut für Physik, Universität Mainz, Staudingerweg 7, 55128 Mainz, Germany
| | - Felix Stopp
- QUANTUM, Institut für Physik, Universität Mainz, Staudingerweg 7, 55128 Mainz, Germany
| | - Samuel T Dawkins
- Experimentalphysik I, Institut für Physik, Universität Kassel, Heinrich-Plett-Straße 40, 34132 Kassel, Germany
| | - Roman Kolesov
- Physikalisches Institut, Universität Stuttgart, 70569 Stuttgart, Germany
| | - Jörg Wrachtrup
- Physikalisches Institut, Universität Stuttgart, 70569 Stuttgart, Germany
| | - Kilian Singer
- Experimentalphysik I, Institut für Physik, Universität Kassel, Heinrich-Plett-Straße 40, 34132 Kassel, Germany
| | | |
Collapse
|