1
|
Espinoso A, Leguia MG, Rummel C, Schindler K, Andrzejak RG. The part and the whole: how single nodes contribute to large-scale phase-locking in functional EEG networks. Clin Neurophysiol 2024; 168:178-192. [PMID: 39406673 DOI: 10.1016/j.clinph.2024.09.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/12/2024] [Accepted: 09/13/2024] [Indexed: 12/11/2024]
Abstract
OBJECTIVE The application of signal analysis techniques to electroencephalographic (EEG) recordings from epilepsy patients shows that epilepsy involves not only altered neuronal synchronization but also the reorganization of functional EEG networks. This study aims to assess the large-scale phase-locking of such functional networks and how individual network nodes contribute to this collective dynamics. METHODS We analyze the EEG recorded before, during and after seizures from sixteen patients with pharmacoresistant focal-onset epilepsy. The data is filtered to low (4-30 Hz) and high (80-150 Hz) frequencies. We define the multivariate phase-locking measure and the univariate phase-locking contribution measure. Surrogate signals are used to estimate baseline results expected under the null hypothesis that the EEG is a correlated linear stochastic process. RESULTS On average, nodes from inside and outside the seizure onset zone (SOZ) increase and decrease, respectively, the large-scale phase-locking. This difference becomes most evident in a joint analysis of low and high frequencies. CONCLUSIONS Nodes inside and outside the SOZ play opposite roles for the large-scale phase-locking in functional EEG network in epilepsy patients. SIGNIFICANCE The application of the phase-locking contribution measure to EEG recordings from epilepsy patients can potentially help in localizing the SOZ.
Collapse
Affiliation(s)
- Anaïs Espinoso
- Department of Information and Communications Technologies, Universitat Pompeu Fabra, Carrer Roc Boronat 138, Barcelona 08018, Catalonia, Spain.
| | - Marc G Leguia
- Department of Information and Communications Technologies, Universitat Pompeu Fabra, Carrer Roc Boronat 138, Barcelona 08018, Catalonia, Spain
| | - Christian Rummel
- Support Center for Advanced Neuroimaging, University Institute for Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; European Campus Rottal-Inn, Technische Hochschule Deggendorf, Max-Breiherr-Strasse 32, D-84347 Pfarrkirchen, Germany
| | - Kaspar Schindler
- Sleep-Wake-Epilepsy-Center, Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Ralph G Andrzejak
- Department of Information and Communications Technologies, Universitat Pompeu Fabra, Carrer Roc Boronat 138, Barcelona 08018, Catalonia, Spain
| |
Collapse
|
2
|
Rowland JA, Stapleton-Kotloski JR, Godwin DW, Hamilton CA, Martindale SL. The Functional Connectome and Long-Term Symptom Presentation Associated With Mild Traumatic Brain Injury and Blast Exposure in Combat Veterans. J Neurotrauma 2024; 41:2513-2527. [PMID: 39150013 DOI: 10.1089/neu.2023.0315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024] Open
Abstract
Mild traumatic brain injury (TBI) sustained in a deployment environment (deployment TBI) can be associated with increased severity of long-term symptom presentation, despite the general expectation of full recovery from a single mild TBI. The heterogeneity in the effects of deployment TBI on the brain can be difficult for a case-control design to capture. The functional connectome of the brain is an approach robust to heterogeneity that allows global measurement of effects using a common set of outcomes. The present study evaluates how differences in the functional connectome relate to remote symptom presentation following combat deployment and determines if deployment TBI, blast exposure, or post-traumatic stress disorder (PTSD) are associated with these neurological differences. Participants included 181 Iraq and Afghanistan combat-exposed Veterans, approximately 9.4 years since deployment. Structured clinical interviews provided diagnoses and characterizations of TBI, blast exposure, and PTSD. Self-report measures provided characterization of long-term symptoms (psychiatric, behavioral health, and quality of life). Resting-state magnetoencephalography was used to characterize the functional connectome of the brain individually for each participant. Linear regression identified factors contributing to symptom presentation including relevant covariates, connectome metrics, deployment TBI, blast exposure PTSD, and conditional relationships. Results identified unique contributions of aspects of the connectome to symptom presentation. Furthermore, several conditional relationships were identified, demonstrating that the connectome was related to outcomes in the presence of only deployment-related TBI (including blast-related TBI, primary blast TBI, and blast exposure). No conditional relationships were identified for PTSD; however, the main effect of PTSD on symptom presentation was significant for all models. These results demonstrate that the connectome captures aspects of brain function relevant to long-term symptom presentation, highlighting that deployment-related TBI influences symptom outcomes through a neurological pathway. These findings demonstrate that changes in the functional connectome associated with deployment-related TBI are relevant to symptom presentation over a decade past the injury event, providing a clear demonstration of a brain-based mechanism of influence.
Collapse
Affiliation(s)
- Jared A Rowland
- Research and Academic Affairs, W. G. (Bill) Hefner VA Healthcare System, Salisbury, North Carolina, USA
- Mid-Atlantic Mental Illness Research Education and Clinical Center, Durham, North Carolina, USA
- Department of Translational Neuroscience, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Jennifer R Stapleton-Kotloski
- Research and Academic Affairs, W. G. (Bill) Hefner VA Healthcare System, Salisbury, North Carolina, USA
- Department of Translational Neuroscience, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
- Department of Neurology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Dwayne W Godwin
- Department of Translational Neuroscience, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Craig A Hamilton
- Research and Academic Affairs, W. G. (Bill) Hefner VA Healthcare System, Salisbury, North Carolina, USA
- Department of Biomedical Engineering, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Sarah L Martindale
- Research and Academic Affairs, W. G. (Bill) Hefner VA Healthcare System, Salisbury, North Carolina, USA
- Mid-Atlantic Mental Illness Research Education and Clinical Center, Durham, North Carolina, USA
- Department of Translational Neuroscience, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| |
Collapse
|
3
|
Ma H, Prosperino D, Haluszczynski A, Räth C. Linear and nonlinear causality in financial markets. CHAOS (WOODBURY, N.Y.) 2024; 34:113125. [PMID: 39531677 DOI: 10.1063/5.0184267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 10/24/2024] [Indexed: 11/16/2024]
Abstract
Identifying and quantifying co-dependence between financial instruments is a key challenge for researchers and practitioners in the financial industry. Linear measures such as the Pearson correlation are still widely used today, although their limited explanatory power is well known. In this paper, we present a much more general framework for assessing co-dependencies by identifying linear and nonlinear causalities in the complex system of financial markets. To do so, we use two different causal inference methods, transfer entropy and convergent cross-mapping, and employ Fourier transform surrogates to separate their linear and nonlinear contributions. We find that stock indices in Germany and the U.S. exhibit a significant degree of nonlinear causality and that correlation, while a very good proxy for linear causality, disregards nonlinear effects and hence underestimates causality itself. The presented framework enables the measurement of nonlinear causality, the correlation-causality fallacy, and motivates how causality can be used for inferring market signals, pair trading, and risk management of portfolios. Our results suggest that linear and nonlinear causality can be used as early warning indicators of abnormal market behavior, allowing for better trading strategies and risk management.
Collapse
Affiliation(s)
- Haochun Ma
- Department of Physics, Ludwig-Maximilians-Universität München, Schellingstraße 4, Munich 80799, Germany
- Allianz Global Investors, risklab, Seidlstraße 24, Munich 80335, Germany
| | - Davide Prosperino
- Department of Physics, Ludwig-Maximilians-Universität München, Schellingstraße 4, Munich 80799, Germany
- Allianz Global Investors, risklab, Seidlstraße 24, Munich 80335, Germany
| | | | - Christoph Räth
- Deutsches Zentrum für Luft- und Raumfahrt (DLR), Institut für KI Sicherheit, Wilhelm-Runge-Straße 10, Ulm 89081, Germany
| |
Collapse
|
4
|
Xue C, Chen Y, Thompson WF, Liu F, Jiang C. Time-varying similarity of neural responses to musical tension is shaped by physical features and musical themes. Int J Psychophysiol 2024; 202:112387. [PMID: 38909958 DOI: 10.1016/j.ijpsycho.2024.112387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/20/2024] [Accepted: 06/18/2024] [Indexed: 06/25/2024]
Abstract
The similarity of understanding is important for music experience and communication, but little is understood about the sources of this common knowledge. Although neural responses to the same piece of music are known to be similar across listeners, it remains unclear whether this neural response similarity is linked to musical understanding and the role of dynamic musical attributes in shaping it. Our study addresses this gap by investigating the relationship between neural response similarity, musical tension, and dynamic musical attributes. Using electroencephalography-based inter-subject correlation (EEG-ISC), we examined how the neural response similarity among listeners varies throughout the evaluation of musical tension in the first movement of Beethoven's Piano Sonata No. 8. Participants continuously rated the degree of alignment between musical events and their expectations, while neural activity was recorded using electroencephalography (EEG). The results showed that neural response similarity fluctuated in tandem with musical tension, with increased similarity observed during moments of heightened tension. This time-varying neural response similarity was influenced by two dynamic attributes contributing to musical tension: physical features and musical themes. Specifically, its fluctuation was driven by physical features, and the patterns of its variation were modulated by musical themes, with similar time-varying patterns observed across similar thematic materials. These findings offer valuable insight into the role of dynamic musical attributes in shaping neural response similarity, and reveal an important source and mechanism of shared musical understandings.
Collapse
Affiliation(s)
- Chao Xue
- Department of Psychology, Shanghai Normal University, Shanghai 200234, China
| | - Yiran Chen
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | | | - Fang Liu
- School of Psychology and Clinical Language Sciences, University of Reading, Reading RG6 6AL, UK
| | - Cunmei Jiang
- Music College, Shanghai Normal University, Shanghai 200234, China.
| |
Collapse
|
5
|
Wolfson EJ, Fekete T, Loewenstein Y, Shriki O. Multi-scale entropy assessment of magnetoencephalography signals in schizophrenia. Sci Rep 2024; 14:14680. [PMID: 38918430 PMCID: PMC11199523 DOI: 10.1038/s41598-024-64704-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 06/12/2024] [Indexed: 06/27/2024] Open
Abstract
Schizophrenia is a severe disruption in cognition and emotion, affecting fundamental human functions. In this study, we applied Multi-Scale Entropy analysis to resting-state Magnetoencephalography data from 54 schizophrenia patients and 98 healthy controls. This method quantifies the temporal complexity of the signal across different time scales using the concept of sample entropy. Results show significantly higher sample entropy in schizophrenia patients, primarily in central, parietal, and occipital lobes, peaking at time scales equivalent to frequencies between 15 and 24 Hz. To disentangle the contributions of the amplitude and phase components, we applied the same analysis to a phase-shuffled surrogate signal. The analysis revealed that most differences originate from the amplitude component in the δ, α, and β power bands. While the phase component had a smaller magnitude, closer examination reveals clear spatial patterns and significant differences across specific brain regions. We assessed the potential of multi-scale entropy as a schizophrenia biomarker by comparing its classification performance to conventional spectral analysis and a cognitive task (the n-back paradigm). The discriminative power of multi-scale entropy and spectral features was similar, with a slight advantage for multi-scale entropy features. The results of the n-back test were slightly below those obtained from multi-scale entropy and spectral features.
Collapse
Affiliation(s)
- E J Wolfson
- Department of Cognitive and Brain Sciences, Ben Gurion University of the Negev, 1 Ben-Gurion Blvd., Beer-Sheva, Israel
| | - T Fekete
- Department of Cognitive and Brain Sciences, Ben Gurion University of the Negev, 1 Ben-Gurion Blvd., Beer-Sheva, Israel
| | - Y Loewenstein
- The Edmond & Lily Safra Center for Brain Sciences, Department of Cognitive and Brain Sciences,The Alexander Silberman Institute of Life Sciences and The Federmann Center for the Study of Rationality, The Hebrew University, Jerusalem, Israel
| | - O Shriki
- Department of Cognitive and Brain Sciences, Ben Gurion University of the Negev, 1 Ben-Gurion Blvd., Beer-Sheva, Israel.
| |
Collapse
|
6
|
Kaneshiro B, Nguyen DT, Norcia AM, Dmochowski JP, Berger J. Inter-subject correlation of electroencephalographic and behavioural responses reflects time-varying engagement with natural music. Eur J Neurosci 2024; 59:3162-3183. [PMID: 38626924 DOI: 10.1111/ejn.16324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 02/28/2024] [Accepted: 03/07/2024] [Indexed: 06/15/2024]
Abstract
Musical engagement can be conceptualized through various activities, modes of listening and listener states. Recent research has reported that a state of focused engagement can be indexed by the inter-subject correlation (ISC) of audience responses to a shared naturalistic stimulus. While statistically significant ISC has been reported during music listening, we lack insight into the temporal dynamics of engagement over the course of musical works-such as those composed in the Western classical style-which involve the formulation of expectations that are realized or derailed at subsequent points of arrival. Here, we use the ISC of electroencephalographic (EEG) and continuous behavioural (CB) responses to investigate the time-varying dynamics of engagement with functional tonal music. From a sample of adult musicians who listened to a complete cello concerto movement, we found that ISC varied throughout the excerpt for both measures. In particular, significant EEG ISC was observed during periods of musical tension that built to climactic highpoints, while significant CB ISC corresponded more to declarative entrances and points of arrival. Moreover, we found that a control stimulus retaining envelope characteristics of the intact music, but little other temporal structure, also elicited significantly correlated EEG and CB responses, though to lesser extents than the original version. In sum, these findings shed light on the temporal dynamics of engagement during music listening and clarify specific aspects of musical engagement that may be indexed by each measure.
Collapse
Affiliation(s)
- Blair Kaneshiro
- Center for Computer Research in Music and Acoustics, Stanford University, Stanford, California, USA
- Center for the Study of Language and Information, Stanford University, Stanford, California, USA
- Graduate School of Education, Stanford University, Stanford, California, USA
| | - Duc T Nguyen
- Center for Computer Research in Music and Acoustics, Stanford University, Stanford, California, USA
- Center for the Study of Language and Information, Stanford University, Stanford, California, USA
| | - Anthony M Norcia
- Department of Psychology, Stanford University, Stanford, California, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, California, USA
| | - Jacek P Dmochowski
- Department of Biomedical Engineering, City College of New York, New York, New York, USA
| | - Jonathan Berger
- Center for Computer Research in Music and Acoustics, Stanford University, Stanford, California, USA
| |
Collapse
|
7
|
Pinto H, Lazic I, Antonacci Y, Pernice R, Gu D, Barà C, Faes L, Rocha AP. Testing dynamic correlations and nonlinearity in bivariate time series through information measures and surrogate data analysis. FRONTIERS IN NETWORK PHYSIOLOGY 2024; 4:1385421. [PMID: 38835949 PMCID: PMC11148466 DOI: 10.3389/fnetp.2024.1385421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 04/22/2024] [Indexed: 06/06/2024]
Abstract
The increasing availability of time series data depicting the evolution of physical system properties has prompted the development of methods focused on extracting insights into the system behavior over time, discerning whether it stems from deterministic or stochastic dynamical systems. Surrogate data testing plays a crucial role in this process by facilitating robust statistical assessments. This ensures that the observed results are not mere occurrences by chance, but genuinely reflect the inherent characteristics of the underlying system. The initial process involves formulating a null hypothesis, which is tested using surrogate data in cases where assumptions about the underlying distributions are absent. A discriminating statistic is then computed for both the original data and each surrogate data set. Significantly deviating values between the original data and the surrogate data ensemble lead to the rejection of the null hypothesis. In this work, we present various surrogate methods designed to assess specific statistical properties in random processes. Specifically, we introduce methods for evaluating the presence of autodependencies and nonlinear dynamics within individual processes, using Information Storage as a discriminating statistic. Additionally, methods are introduced for detecting coupling and nonlinearities in bivariate processes, employing the Mutual Information Rate for this purpose. The surrogate methods introduced are first tested through simulations involving univariate and bivariate processes exhibiting both linear and nonlinear dynamics. Then, they are applied to physiological time series of Heart Period (RR intervals) and respiratory flow (RESP) variability measured during spontaneous and paced breathing. Simulations demonstrated that the proposed methods effectively identify essential dynamical features of stochastic systems. The real data application showed that paced breathing, at low breathing rate, increases the predictability of the individual dynamics of RR and RESP and dampens nonlinearity in their coupled dynamics.
Collapse
Affiliation(s)
- Helder Pinto
- Departamento de Matemática, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
- Centro de Matemática da Universidade do Porto (CMUP), Porto, Portugal
| | - Ivan Lazic
- Faculty of Technical Sciences, University of Novi Sad, Novi Sad, Serbia
| | - Yuri Antonacci
- Department of Engineering, University of Palermo, Palermo, Italy
| | - Riccardo Pernice
- Department of Engineering, University of Palermo, Palermo, Italy
| | - Danlei Gu
- Beijing Jiaotong University, Beijing, China
| | - Chiara Barà
- Department of Engineering, University of Palermo, Palermo, Italy
| | - Luca Faes
- Department of Engineering, University of Palermo, Palermo, Italy
| | - Ana Paula Rocha
- Departamento de Matemática, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
- Centro de Matemática da Universidade do Porto (CMUP), Porto, Portugal
| |
Collapse
|
8
|
Hindriks R, Broeders TAA, Schoonheim MM, Douw L, Santos F, van Wieringen W, Tewarie PKB. Higher-order functional connectivity analysis of resting-state functional magnetic resonance imaging data using multivariate cumulants. Hum Brain Mapp 2024; 45:e26663. [PMID: 38520377 PMCID: PMC10960559 DOI: 10.1002/hbm.26663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 02/12/2024] [Accepted: 03/08/2024] [Indexed: 03/25/2024] Open
Abstract
Blood-level oxygenation-dependent (BOLD) functional magnetic resonance imaging (fMRI) is the most common modality to study functional connectivity in the human brain. Most research to date has focused on connectivity between pairs of brain regions. However, attention has recently turned towards connectivity involving more than two regions, that is, higher-order connectivity. It is not yet clear how higher-order connectivity can best be quantified. The measures that are currently in use cannot distinguish between pairwise (i.e., second-order) and higher-order connectivity. We show that genuine higher-order connectivity can be quantified by using multivariate cumulants. We explore the use of multivariate cumulants for quantifying higher-order connectivity and the performance of block bootstrapping for statistical inference. In particular, we formulate a generative model for fMRI signals exhibiting higher-order connectivity and use it to assess bias, standard errors, and detection probabilities. Application to resting-state fMRI data from the Human Connectome Project demonstrates that spontaneous fMRI signals are organized into higher-order networks that are distinct from second-order resting-state networks. Application to a clinical cohort of patients with multiple sclerosis further demonstrates that cumulants can be used to classify disease groups and explain behavioral variability. Hence, we present a novel framework to reliably estimate genuine higher-order connectivity in fMRI data which can be used for constructing hyperedges, and finally, which can readily be applied to fMRI data from populations with neuropsychiatric disease or cognitive neuroscientific experiments.
Collapse
Affiliation(s)
- Rikkert Hindriks
- Department of Mathematics, Faculty of ScienceVrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Tommy A. A. Broeders
- Department of Anatomy and Neurosciences, Amsterdam NeuroscienceAmsterdam UMC, Vrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Menno M. Schoonheim
- Department of Anatomy and Neurosciences, Amsterdam NeuroscienceAmsterdam UMC, Vrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Linda Douw
- Department of Anatomy and Neurosciences, Amsterdam NeuroscienceAmsterdam UMC, Vrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Fernando Santos
- Dutch Institute for Emergent Phenomena (DIEP)Institute for Advanced Studies, University of AmsterdamAmsterdamThe Netherlands
- Korteweg de Vries Institute for MathematicsUniversity of AmsterdamAmsterdamthe Netherlands
| | - Wessel van Wieringen
- Department of Epidemiology and BiostatisticsAmsterdam UMC, Vrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Prejaas K. B. Tewarie
- Sir Peter Mansfield Imaging CenterSchool of Physics, University of NottinghamNottinghamUnited Kingdom
- Clinical Neurophysiology GroupUniversity of TwenteEnschedeThe Netherlands
| |
Collapse
|
9
|
Krämer C, Stumme J, da Costa Campos L, Dellani P, Rubbert C, Caspers J, Caspers S, Jockwitz C. Prediction of cognitive performance differences in older age from multimodal neuroimaging data. GeroScience 2024; 46:283-308. [PMID: 37308769 PMCID: PMC10828156 DOI: 10.1007/s11357-023-00831-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 05/17/2023] [Indexed: 06/14/2023] Open
Abstract
Differences in brain structure and functional and structural network architecture have been found to partly explain cognitive performance differences in older ages. Thus, they may serve as potential markers for these differences. Initial unimodal studies, however, have reported mixed prediction results of selective cognitive variables based on these brain features using machine learning (ML). Thus, the aim of the current study was to investigate the general validity of cognitive performance prediction from imaging data in healthy older adults. In particular, the focus was with examining whether (1) multimodal information, i.e., region-wise grey matter volume (GMV), resting-state functional connectivity (RSFC), and structural connectivity (SC) estimates, may improve predictability of cognitive targets, (2) predictability differences arise for global cognition and distinct cognitive profiles, and (3) results generalize across different ML approaches in 594 healthy older adults (age range: 55-85 years) from the 1000BRAINS study. Prediction potential was examined for each modality and all multimodal combinations, with and without confound (i.e., age, education, and sex) regression across different analytic options, i.e., variations in algorithms, feature sets, and multimodal approaches (i.e., concatenation vs. stacking). Results showed that prediction performance differed considerably between deconfounding strategies. In the absence of demographic confounder control, successful prediction of cognitive performance could be observed across analytic choices. Combination of different modalities tended to marginally improve predictability of cognitive performance compared to single modalities. Importantly, all previously described effects vanished in the strict confounder control condition. Despite a small trend for a multimodal benefit, developing a biomarker for cognitive aging remains challenging.
Collapse
Affiliation(s)
- Camilla Krämer
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
- Institute for Anatomy I, Medical Faculty & University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Johanna Stumme
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
- Institute for Anatomy I, Medical Faculty & University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Lucas da Costa Campos
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
- Institute for Anatomy I, Medical Faculty & University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Paulo Dellani
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
- Institute for Anatomy I, Medical Faculty & University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Christian Rubbert
- Department of Diagnostic and Interventional Radiology, Medical Faculty & University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Julian Caspers
- Department of Diagnostic and Interventional Radiology, Medical Faculty & University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Svenja Caspers
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
- Institute for Anatomy I, Medical Faculty & University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Christiane Jockwitz
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany.
- Institute for Anatomy I, Medical Faculty & University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
10
|
Aguilar-Hernández AI, Serrano-Solis DM, Ríos-Herrera WA, Zapata-Berruecos JF, Vilaclara G, Martínez-Mekler G, Müller MF. Fourier phase index for extracting signatures of determinism and nonlinear features in time series. CHAOS (WOODBURY, N.Y.) 2024; 34:013103. [PMID: 38190371 DOI: 10.1063/5.0160555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 11/28/2023] [Indexed: 01/10/2024]
Abstract
Detecting determinism and nonlinear properties from empirical time series is highly nontrivial. Traditionally, nonlinear time series analysis is based on an error-prone phase space reconstruction that is only applicable for stationary, largely noise-free data from a low-dimensional system and requires the nontrivial adjustment of various parameters. We present a data-driven index based on Fourier phases that detects determinism at a well-defined significance level, without using Fourier transform surrogate data. It extracts nonlinear features, is robust to noise, provides time-frequency resolution by a double running window approach, and potentially distinguishes regular and chaotic dynamics. We test this method on data derived from dynamical models as well as on real-world data, namely, intracranial recordings of an epileptic patient and a series of density related variations of sediments of a paleolake in Tlaxcala, Mexico.
Collapse
Affiliation(s)
- Alberto Isaac Aguilar-Hernández
- Instituto de Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Avenida Universidad 1001 Edificio 43, Cuernavaca, Morelos 62209, México
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Avenida Universidad S/N, Cuernavaca, Morelos 62210, México
| | - David Michel Serrano-Solis
- Centro de Ciencias de la Complejidad C3, Universidad Nacional Autónoma de México, Ciudad Universitaria S/N, 04510 Ciudad de México, México
| | - Wady A Ríos-Herrera
- Facultad de Psicología, Universidad Nacional Autónoma de México, Circuito Ciudad Universitaria Avenida, C.U., 04510 Ciudad de México, México
| | - José Fernando Zapata-Berruecos
- Unidad de Neurofisiología Clinica, Instituto Neurológico de Colombia, Calle 55 46-36, Medellín 04510, Antioquia, Colombia
- Escuela de Graduados Universidad CES, Calle 10a 22, Medellín 050021, Antioquia, Colombia
| | - Gloria Vilaclara
- Limnología Tropical, División de Investigación y Posgrado, Facultad de Estudios Superiores, Iztacala, Universidad Nacional Autónoma de México, 54090 Ciudad de México, México
| | - Gustavo Martínez-Mekler
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Avenida Universidad S/N, Cuernavaca, Morelos 62210, México
- Centro de Ciencias de la Complejidad C3, Universidad Nacional Autónoma de México, Ciudad Universitaria S/N, 04510 Ciudad de México, México
- Centro Internacional de Ciencias A.C., Avenida Universidad 1001, Cuernavaca, Morelos 62210, México
| | - Markus F Müller
- Centro de Ciencias de la Complejidad C3, Universidad Nacional Autónoma de México, Ciudad Universitaria S/N, 04510 Ciudad de México, México
- Centro Internacional de Ciencias A.C., Avenida Universidad 1001, Cuernavaca, Morelos 62210, México
- Centro de Investigación en Ciencias, Universidad Autónoma del Estado de Morelos, Avenida Universidad 1001, Cuernavaca, Morelos 62209, México
| |
Collapse
|
11
|
Hirsch F, Wohlschlaeger A. Subcortical influences on the topology of cortical networks align with functional processing hierarchies. Neuroimage 2023; 283:120417. [PMID: 37866758 DOI: 10.1016/j.neuroimage.2023.120417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 10/24/2023] Open
Abstract
fMRI of the human brain reveals spatiotemporal patterns of functional connectivity (FC), forming distinct cortical networks. Lately, subcortical contributions to these configurations are receiving renewed interest, but investigations rarely focus explicitly on their effects on cortico-cortical FC. Here, we employ a straightforward multivariable approach and graph-theoretic tools to assess subcortical impact on topological features of cortical networks. Given recent evidence showing that structures like the thalamus and basal ganglia integrate input from multiple networks, we expect increased segregation between cortical networks after removal of subcortical effects on their FC patterns. We analyze resting state data of young and healthy participants (male and female; N = 100) from the human connectome project. We find that overall, the cortical network architecture becomes less segregated, and more integrated, when subcortical influences are accounted for. Underlying these global effects are the following trends: 'Transmodal' systems become more integrated with the rest of the network, while 'unimodal' networks show the opposite effect. For single nodes this hierarchical organization is reflected by a close correspondence with the spatial layout of the principal gradient of FC (Margulies et al., 2016). Lastly, we show that the limbic system is significantly less coherent with subcortical influences removed. The findings are validated in a (split-sample) replication dataset. Our results provide new insight regarding the interplay between subcortex and cortical networks, by putting the integrative impact of subcortex in the context of macroscale patterns of cortical organization.
Collapse
Affiliation(s)
- Fabian Hirsch
- Department of Diagnostic and Interventional Neuroradiology, Klinikum R.d.Isar, Technical University Munich, Ismaninger Str. 22, Munich 81675, Germany.
| | - Afra Wohlschlaeger
- Department of Diagnostic and Interventional Neuroradiology, Klinikum R.d.Isar, Technical University Munich, Ismaninger Str. 22, Munich 81675, Germany
| |
Collapse
|
12
|
Rubinov M. Circular and unified analysis in network neuroscience. eLife 2023; 12:e79559. [PMID: 38014843 PMCID: PMC10684154 DOI: 10.7554/elife.79559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 10/18/2023] [Indexed: 11/29/2023] Open
Abstract
Genuinely new discovery transcends existing knowledge. Despite this, many analyses in systems neuroscience neglect to test new speculative hypotheses against benchmark empirical facts. Some of these analyses inadvertently use circular reasoning to present existing knowledge as new discovery. Here, I discuss that this problem can confound key results and estimate that it has affected more than three thousand studies in network neuroscience over the last decade. I suggest that future studies can reduce this problem by limiting the use of speculative evidence, integrating existing knowledge into benchmark models, and rigorously testing proposed discoveries against these models. I conclude with a summary of practical challenges and recommendations.
Collapse
Affiliation(s)
- Mika Rubinov
- Departments of Biomedical Engineering, Computer Science, and Psychology, Vanderbilt UniversityNashvilleUnited States
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| |
Collapse
|
13
|
Rodríguez-González V, Núñez P, Gómez C, Shigihara Y, Hoshi H, Tola-Arribas MÁ, Cano M, Guerrero Á, García-Azorín D, Hornero R, Poza J. Connectivity-based Meta-Bands: A new approach for automatic frequency band identification in connectivity analyses. Neuroimage 2023; 280:120332. [PMID: 37619796 DOI: 10.1016/j.neuroimage.2023.120332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 07/05/2023] [Accepted: 08/14/2023] [Indexed: 08/26/2023] Open
Abstract
The majority of electroencephalographic (EEG) and magnetoencephalographic (MEG) studies filter and analyse neural signals in specific frequency ranges, known as "canonical" frequency bands. However, this segmentation, is not exempt from limitations, mainly due to the lack of adaptation to the neural idiosyncrasies of each individual. In this study, we introduce a new data-driven method to automatically identify frequency ranges based on the topological similarity of the frequency-dependent functional neural network. The resting-state neural activity of 195 cognitively healthy subjects from three different databases (MEG: 123 subjects; EEG1: 27 subjects; EEG2: 45 subjects) was analysed. In a first step, MEG and EEG signals were filtered with a narrow-band filter bank (1 Hz bandwidth) from 1 to 70 Hz with a 0.5 Hz step. Next, the connectivity in each of these filtered signals was estimated using the orthogonalized version of the amplitude envelope correlation to obtain the frequency-dependent functional neural network. Finally, a community detection algorithm was used to identify communities in the frequency domain showing a similar network topology. We have called this approach the "Connectivity-based Meta-Bands" (CMB) algorithm. Additionally, two types of synthetic signals were used to configure the hyper-parameters of the CMB algorithm. We observed that the classical approaches to band segmentation are partially aligned with the underlying network topologies at group level for the MEG signals, but they are missing individual idiosyncrasies that may be biasing previous studies, as revealed by our methodology. On the other hand, the sensitivity of EEG signals to reflect this underlying frequency-dependent network structure is limited, revealing a simpler frequency parcellation, not aligned with that defined by the "canonical" frequency bands. To the best of our knowledge, this is the first study that proposes an unsupervised band segmentation method based on the topological similarity of functional neural network across frequencies. This methodology fully accounts for subject-specific patterns, providing more robust and personalized analyses, and paving the way for new studies focused on exploring the frequency-dependent structure of brain connectivity.
Collapse
Affiliation(s)
- Víctor Rodríguez-González
- Biomedical Engineering Group, University of Valladolid, Valladolid, Spain; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III (CIBER-BBN), Spain.
| | - Pablo Núñez
- Biomedical Engineering Group, University of Valladolid, Valladolid, Spain; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III (CIBER-BBN), Spain; Coma Science Group, GIGA-Consciousness, University of Liège, Liège, Belgium
| | - Carlos Gómez
- Biomedical Engineering Group, University of Valladolid, Valladolid, Spain; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III (CIBER-BBN), Spain
| | | | | | - Miguel Ángel Tola-Arribas
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III (CIBER-BBN), Spain; Servicio de Neurología. Hospital Universitario Río Hortega, Valladolid, Spain
| | - Mónica Cano
- Servicio de Neurología. Hospital Universitario Río Hortega, Valladolid, Spain
| | - Ángel Guerrero
- Hospital Clínico Universitario, Valladolid, Spain; Department of Medicine, University of Valladolid, Spain
| | | | - Roberto Hornero
- Biomedical Engineering Group, University of Valladolid, Valladolid, Spain; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III (CIBER-BBN), Spain; IMUVA, Instituto de Investigación en Matemáticas, University of Valladolid, Spain
| | - Jesús Poza
- Biomedical Engineering Group, University of Valladolid, Valladolid, Spain; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III (CIBER-BBN), Spain; IMUVA, Instituto de Investigación en Matemáticas, University of Valladolid, Spain
| |
Collapse
|
14
|
Kocsis Z, Jenison RL, Taylor PN, Calmus RM, McMurray B, Rhone AE, Sarrett ME, Deifelt Streese C, Kikuchi Y, Gander PE, Berger JI, Kovach CK, Choi I, Greenlee JD, Kawasaki H, Cope TE, Griffiths TD, Howard MA, Petkov CI. Immediate neural impact and incomplete compensation after semantic hub disconnection. Nat Commun 2023; 14:6264. [PMID: 37805497 PMCID: PMC10560235 DOI: 10.1038/s41467-023-42088-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 09/28/2023] [Indexed: 10/09/2023] Open
Abstract
The human brain extracts meaning using an extensive neural system for semantic knowledge. Whether broadly distributed systems depend on or can compensate after losing a highly interconnected hub is controversial. We report intracranial recordings from two patients during a speech prediction task, obtained minutes before and after neurosurgical treatment requiring disconnection of the left anterior temporal lobe (ATL), a candidate semantic knowledge hub. Informed by modern diaschisis and predictive coding frameworks, we tested hypotheses ranging from solely neural network disruption to complete compensation by the indirectly affected language-related and speech-processing sites. Immediately after ATL disconnection, we observed neurophysiological alterations in the recorded frontal and auditory sites, providing direct evidence for the importance of the ATL as a semantic hub. We also obtained evidence for rapid, albeit incomplete, attempts at neural network compensation, with neural impact largely in the forms stipulated by the predictive coding framework, in specificity, and the modern diaschisis framework, more generally. The overall results validate these frameworks and reveal an immediate impact and capability of the human brain to adjust after losing a brain hub.
Collapse
Affiliation(s)
- Zsuzsanna Kocsis
- Department of Neurosurgery, University of Iowa, Iowa City, IA, USA.
- Biosciences Institute, Newcastle University Medical School, Newcastle upon Tyne, UK.
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA.
| | - Rick L Jenison
- Departments of Neuroscience and Psychology, University of Wisconsin, Madison, WI, USA
| | - Peter N Taylor
- CNNP Lab, Interdisciplinary Computing and Complex BioSystems Group, School of Computing, Newcastle University, Newcastle upon Tyne, UK
- UCL Institute of Neurology, Queen Square, London, UK
| | - Ryan M Calmus
- Department of Neurosurgery, University of Iowa, Iowa City, IA, USA
- Biosciences Institute, Newcastle University Medical School, Newcastle upon Tyne, UK
| | - Bob McMurray
- Department of Psychological and Brain Science, University of Iowa, Iowa City, IA, USA
| | - Ariane E Rhone
- Department of Neurosurgery, University of Iowa, Iowa City, IA, USA
| | | | | | - Yukiko Kikuchi
- Biosciences Institute, Newcastle University Medical School, Newcastle upon Tyne, UK
| | - Phillip E Gander
- Department of Neurosurgery, University of Iowa, Iowa City, IA, USA
- Department of Radiology, University of Iowa, Iowa City, IA, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA
| | - Joel I Berger
- Department of Neurosurgery, University of Iowa, Iowa City, IA, USA
| | | | - Inyong Choi
- Department of Communication Sciences and Disorders, University of Iowa, Iowa City, IA, USA
| | | | - Hiroto Kawasaki
- Department of Neurosurgery, University of Iowa, Iowa City, IA, USA
| | - Thomas E Cope
- Department of Clinical Neurosciences, Cambridge University, Cambridge, UK
- MRC Cognition and Brain Sciences Unit, Cambridge University, Cambridge, UK
| | - Timothy D Griffiths
- Biosciences Institute, Newcastle University Medical School, Newcastle upon Tyne, UK
| | - Matthew A Howard
- Department of Neurosurgery, University of Iowa, Iowa City, IA, USA
| | - Christopher I Petkov
- Department of Neurosurgery, University of Iowa, Iowa City, IA, USA.
- Biosciences Institute, Newcastle University Medical School, Newcastle upon Tyne, UK.
| |
Collapse
|
15
|
Azadjou H, Błażkiewicz M, Erwin A, Valero-Cuevas FJ. Dynamical Analyses Show That Professional Archers Exhibit Tighter, Finer and More Fluid Dynamical Control Than Neophytes. ENTROPY (BASEL, SWITZERLAND) 2023; 25:1414. [PMID: 37895535 PMCID: PMC10606362 DOI: 10.3390/e25101414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/23/2023] [Accepted: 09/29/2023] [Indexed: 10/29/2023]
Abstract
Quantifying the dynamical features of discrete tasks is essential to understanding athletic performance for many sports that are not repetitive or cyclical. We compared three dynamical features of the (i) bow hand, (ii) drawing hand, and (iii) center of mass during a single bow-draw movement between professional and neophyte archers: dispersion (convex hull volume of their phase portraits), persistence (tendency to continue a trend as per Hurst exponents), and regularity (sample entropy). Although differences in the two groups are expected due to their differences in skill, our results demonstrate we can quantify these differences. The center of mass of professional athletes exhibits tighter movements compared to neophyte archers (6.3 < 11.2 convex hull volume), which are nevertheless less persistent (0.82 < 0.86 Hurst exponent) and less regular (0.035 > 0.025 sample entropy). In particular, the movements of the bow hand and center of mass differed more between groups in Hurst exponent analysis, and the drawing hand and center of mass were more different in sample entropy analysis. This suggests tighter neuromuscular control over the more fluid dynamics of the movement that exhibits more active corrections that are more individualized. Our work, therefore, provides proof of principle of how well-established dynamical analysis techniques can be used to quantify the nature and features of neuromuscular expertise for discrete movements in elite athletes.
Collapse
Affiliation(s)
- Hesam Azadjou
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA; (H.A.); (A.E.)
| | - Michalina Błażkiewicz
- AWF · Department of Physiotherapy, Józef Piłsudski University of Physical Education in Warsaw, 00-968 Warsaw, Poland;
| | - Andrew Erwin
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA; (H.A.); (A.E.)
- Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, CA 90033, USA
| | - Francisco J. Valero-Cuevas
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA; (H.A.); (A.E.)
- Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
16
|
Miwakeichi F, Galka A. Comparison of Bootstrap Methods for Estimating Causality in Linear Dynamic Systems: A Review. ENTROPY (BASEL, SWITZERLAND) 2023; 25:1070. [PMID: 37510017 PMCID: PMC10378223 DOI: 10.3390/e25071070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/14/2023] [Accepted: 07/16/2023] [Indexed: 07/30/2023]
Abstract
In this study, we present a thorough comparison of the performance of four different bootstrap methods for assessing the significance of causal analysis in time series data. For this purpose, multivariate simulated data are generated by a linear feedback system. The methods investigated are uncorrelated Phase Randomization Bootstrap (uPRB), which generates surrogate data with no cross-correlation between variables by randomizing the phase in the frequency domain; Time Shift Bootstrap (TSB), which generates surrogate data by randomizing the phase in the time domain; Stationary Bootstrap (SB), which calculates standard errors and constructs confidence regions for weakly dependent stationary observations; and AR-Sieve Bootstrap (ARSB), a resampling method based on AutoRegressive (AR) models that approximates the underlying data-generating process. The uPRB method accurately identifies variable interactions but fails to detect self-feedback in some variables. The TSB method, despite performing worse than uPRB, is unable to detect feedback between certain variables. The SB method gives consistent causality results, although its ability to detect self-feedback decreases, as the mean block width increases. The ARSB method shows superior performance, accurately detecting both self-feedback and causality across all variables. Regarding the analysis of the Impulse Response Function (IRF), only the ARSB method succeeds in detecting both self-feedback and causality in all variables, aligning well with the connectivity diagram. Other methods, however, show considerable variations in detection performance, with some detecting false positives and others only detecting self-feedback.
Collapse
Affiliation(s)
- Fumikazu Miwakeichi
- Department of Statistical Modeling, The Institute of Statistical Mathematics, Tokyo 190-8562, Japan
- Statistical Science Program, Graduate Institute for Advanced Studies, SOKENDAI, Tokyo 190-8562, Japan
| | - Andreas Galka
- Clinic for Pediatric and Adolescent Medicine II, University Clinic, University of Kiel, 24105 Kiel, Germany
| |
Collapse
|
17
|
Wang F, Nguyen QTH, Kaneshiro B, Hasak L, Wang AM, Toomarian EY, Norcia AM, McCandliss BD. Lexical and sublexical cortical tuning for print revealed by Steady-State Visual Evoked Potentials (SSVEPs) in early readers. Dev Sci 2023; 26:e13352. [PMID: 36413170 PMCID: PMC10881121 DOI: 10.1111/desc.13352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 10/27/2022] [Accepted: 11/16/2022] [Indexed: 11/23/2022]
Abstract
There are multiple levels of processing relevant to reading that vary in their visual, sublexical, and lexical orthographic processing demands. Segregating distinct cortical sources for each of these levels has been challenging in EEG studies of early readers. To address this challenge, we applied recent advances in analyzing high-density EEG using Steady-State Visual Evoked Potentials (SSVEPs) via data-driven Reliable Components Analysis (RCA) in a group of early readers spanning from kindergarten to second grade. Three controlled stimulus contrasts-familiar words versus unfamiliar pseudofonts, familiar words versus pseudowords, and pseudowords versus nonwords-were used to isolate coarse print tuning, lexical processing, and sublexical orthography-related processing, respectively. First, three overlapping yet distinct neural sources-left vOT, dorsal parietal, and primary visual cortex were revealed underlying coarse print tuning. Second, we segregated distinct cortical sources for the other two levels of processing: lexical fine tuning over occipito-temporal/parietal regions; sublexical orthographic fine tuning over left occipital regions. Finally, exploratory group analyses based on children's reading fluency suggested that coarse print tuning emerges early even in children with limited reading knowledge, while sublexical and higher-level lexical processing emerge only in children with sufficient reading knowledge. RESEARCH HIGHLIGHTS: Cognitive processes underlying coarse print tuning, sublexical, and lexical fine tuning were examined in beginning readers. Three overlapping yet distinct neural sources-left ventral occipito-temporal (vOT), left temporo-parietal, and primary visual cortex-were revealed underlying coarse print tuning. Responses to sublexical orthographic fine tuning were found over left occipital regions, while responses to higher-level linguistic fine tuning were found over occipito-temporal/parietal regions. Exploratory group analyses suggested that coarse print tuning emerges in children with limited reading knowledge, while sublexical and higher-level linguistic fine tuning effects emerge in children with sufficient reading knowledge.
Collapse
Affiliation(s)
- Fang Wang
- Graduate School of Education, Stanford University, Stanford, California, USA
| | | | - Blair Kaneshiro
- Graduate School of Education, Stanford University, Stanford, California, USA
| | - Lindsey Hasak
- Graduate School of Education, Stanford University, Stanford, California, USA
| | - Angie M. Wang
- Graduate School of Education, Stanford University, Stanford, California, USA
| | - Elizabeth Y. Toomarian
- Graduate School of Education, Stanford University, Stanford, California, USA
- Synapse School, Menlo Park, California, USA
| | - Anthony M. Norcia
- Department of Psychology, Stanford University, Stanford, California, USA
- Wu Tsai Neurosciences Institute, Stanford, California, USA
| | - Bruce D. McCandliss
- Graduate School of Education, Stanford University, Stanford, California, USA
| |
Collapse
|
18
|
Nanda A, Rubinov M. Unbiased and efficient sampling of timeseries reveals redundancy of brain network and gradient structure. Neuroimage 2023; 274:120110. [PMID: 37150102 DOI: 10.1016/j.neuroimage.2023.120110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/05/2023] [Accepted: 04/12/2023] [Indexed: 05/09/2023] Open
Abstract
Many studies in human neuroscience seek to understand the structure of brain networks and gradients. Few studies, however, have tested the redundancy between these outwardly distinct features. Here, we developed methods to directly enable such tests. We built on insights from linear algebra to develop methods for unbiased and efficient sampling of timeseries with network or gradient constraints. We used these methods to show considerable redundancy between popular definitions of network and gradient structure in functional MRI data. On the one hand, we found that network constraints largely accounted for the structure of three major gradients. On the other hand, we found that gradient constraints largely accounted for the structure of seven major networks. Our results imply that some networks and gradients may denote discrete and continuous representations of the same aspects of functional MRI data. We suggest that integrated explanations can reduce redundancy by avoiding the attribution of independent existence or function to these features.
Collapse
Affiliation(s)
- Aditya Nanda
- Department of Biomedical Engineering, Vanderbilt University, USA.
| | - Mikail Rubinov
- Department of Biomedical Engineering, Vanderbilt University, USA; Department of Computer Science, Vanderbilt University, USA; Janelia Research Campus, Howard Hughes Medical Institute, USA.
| |
Collapse
|
19
|
Xu Y, Long X, Feng J, Gong P. Interacting spiral wave patterns underlie complex brain dynamics and are related to cognitive processing. Nat Hum Behav 2023:10.1038/s41562-023-01626-5. [PMID: 37322235 DOI: 10.1038/s41562-023-01626-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 05/12/2023] [Indexed: 06/17/2023]
Abstract
The large-scale activity of the human brain exhibits rich and complex patterns, but the spatiotemporal dynamics of these patterns and their functional roles in cognition remain unclear. Here by characterizing moment-by-moment fluctuations of human cortical functional magnetic resonance imaging signals, we show that spiral-like, rotational wave patterns (brain spirals) are widespread during both resting and cognitive task states. These brain spirals propagate across the cortex while rotating around their phase singularity centres, giving rise to spatiotemporal activity dynamics with non-stationary features. The properties of these brain spirals, such as their rotational directions and locations, are task relevant and can be used to classify different cognitive tasks. We also demonstrate that multiple, interacting brain spirals are involved in coordinating the correlated activations and de-activations of distributed functional regions; this mechanism enables flexible reconfiguration of task-driven activity flow between bottom-up and top-down directions during cognitive processing. Our findings suggest that brain spirals organize complex spatiotemporal dynamics of the human brain and have functional correlates to cognitive processing.
Collapse
Affiliation(s)
- Yiben Xu
- School of Physics, University of Sydney, Sydney, New South Wales, Australia
- ARC Centre of Excellence for Integrative Brain Function, University of Sydney, Sydney, New South Wales, Australia
| | - Xian Long
- School of Physics, University of Sydney, Sydney, New South Wales, Australia
- ARC Centre of Excellence for Integrative Brain Function, University of Sydney, Sydney, New South Wales, Australia
| | - Jianfeng Feng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Pulin Gong
- School of Physics, University of Sydney, Sydney, New South Wales, Australia.
- ARC Centre of Excellence for Integrative Brain Function, University of Sydney, Sydney, New South Wales, Australia.
| |
Collapse
|
20
|
Jawata A, Nicolás von E, Jean-Marc L, Giovanni P, Giorgio A, Zhengchen C, Tanguy H, Chifaou A, Hassan K, Birgit F, Jean G, Christophe G. Validating MEG source imaging of resting state oscillatory patterns with an intracranial EEG atlas. Neuroimage 2023; 274:120158. [PMID: 37149236 DOI: 10.1016/j.neuroimage.2023.120158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 03/27/2023] [Accepted: 05/04/2023] [Indexed: 05/08/2023] Open
Abstract
BACKGROUND Magnetoencephalography (MEG) is a widely used non-invasive tool to estimate brain activity with high temporal resolution. However, due to the ill-posed nature of the MEG source imaging (MSI) problem, the ability of MSI to identify accurately underlying brain sources along the cortical surface is still uncertain and requires validation. METHOD We validated the ability of MSI to estimate the background resting state activity of 45 healthy participants by comparing it to the intracranial EEG (iEEG) atlas (https://mni-open-ieegatlas. RESEARCH mcgill.ca/). First, we applied wavelet-based Maximum Entropy on the Mean (wMEM) as an MSI technique. Next, we converted MEG source maps into intracranial space by applying a forward model to the MEG-reconstructed source maps, and estimated virtual iEEG (ViEEG) potentials on each iEEG channel location; we finally quantitatively compared those with actual iEEG signals from the atlas for 38 regions of interest in the canonical frequency bands. RESULTS The MEG spectra were more accurately estimated in the lateral regions compared to the medial regions. The regions with higher amplitude in the ViEEG than in the iEEG were more accurately recovered. In the deep regions, MEG-estimated amplitudes were largely underestimated and the spectra were poorly recovered. Overall, our wMEM results were similar to those obtained with minimum norm or beamformer source localization. Moreover, the MEG largely overestimated oscillatory peaks in the alpha band, especially in the anterior and deep regions. This is possibly due to higher phase synchronization of alpha oscillations over extended regions, exceeding the spatial sensitivity of iEEG but detected by MEG. Importantly, we found that MEG-estimated spectra were more comparable to spectra from the iEEG atlas after the aperiodic components were removed. CONCLUSION This study identifies brain regions and frequencies for which MEG source analysis is likely to be reliable, a promising step towards resolving the uncertainty in recovering intracerebral activity from non-invasive MEG studies.
Collapse
Affiliation(s)
- Afnan Jawata
- Multimodal Functional Imaging Lab, Biomedical Engineering Department, McGill University, Montréal, Québec, H3A 2B4, Canada; Integrated Program in Neuroscience, McGill University, Montréal, Québec H3A 1A1, Canada; Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montréal, Québec H3A 2B4, Canada.
| | - Ellenrieder Nicolás von
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montréal, Québec H3A 2B4, Canada
| | - Lina Jean-Marc
- Centre De Recherches En Mathématiques, Montréal, Québec H3C 3J7, Canada; Electrical Engineering Department, École De Technologie Supérieure, Montréal, Québec H3C 1K3, Canada
| | - Pellegrino Giovanni
- Brain Imaging and Neural Dynamics Research Group, IRCCS San Camillo Hospital, Venice, Italy
| | - Arcara Giorgio
- Brain Imaging and Neural Dynamics Research Group, IRCCS San Camillo Hospital, Venice, Italy
| | - Cai Zhengchen
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montréal, Québec H3A 2B4, Canada
| | - Hedrich Tanguy
- Multimodal Functional Imaging Lab, Biomedical Engineering Department, McGill University, Montréal, Québec, H3A 2B4, Canada
| | - Abdallah Chifaou
- Multimodal Functional Imaging Lab, Biomedical Engineering Department, McGill University, Montréal, Québec, H3A 2B4, Canada
| | - Khajehpour Hassan
- Physics Department and PERFORM Centre, Concordia University, Montréal, Québec H4B 1R6, Canada
| | - Frauscher Birgit
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montréal, Québec H3A 2B4, Canada
| | - Gotman Jean
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montréal, Québec H3A 2B4, Canada
| | - Grova Christophe
- Multimodal Functional Imaging Lab, Biomedical Engineering Department, McGill University, Montréal, Québec, H3A 2B4, Canada; Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montréal, Québec H3A 2B4, Canada; Centre De Recherches En Mathématiques, Montréal, Québec H3C 3J7, Canada; Physics Department and PERFORM Centre, Concordia University, Montréal, Québec H4B 1R6, Canada.
| |
Collapse
|
21
|
Nanda A, Johnson GW, Mu Y, Ahrens MB, Chang C, Englot DJ, Breakspear M, Rubinov M. Time-resolved correlation of distributed brain activity tracks E-I balance and accounts for diverse scale-free phenomena. Cell Rep 2023; 42:112254. [PMID: 36966391 PMCID: PMC10518034 DOI: 10.1016/j.celrep.2023.112254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 12/22/2022] [Accepted: 02/28/2023] [Indexed: 03/27/2023] Open
Abstract
Much of systems neuroscience posits the functional importance of brain activity patterns that lack natural scales of sizes, durations, or frequencies. The field has developed prominent, and sometimes competing, explanations for the nature of this scale-free activity. Here, we reconcile these explanations across species and modalities. First, we link estimates of excitation-inhibition (E-I) balance with time-resolved correlation of distributed brain activity. Second, we develop an unbiased method for sampling time series constrained by this time-resolved correlation. Third, we use this method to show that estimates of E-I balance account for diverse scale-free phenomena without need to attribute additional function or importance to these phenomena. Collectively, our results simplify existing explanations of scale-free brain activity and provide stringent tests on future theories that seek to transcend these explanations.
Collapse
Affiliation(s)
- Aditya Nanda
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA.
| | - Graham W Johnson
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Yu Mu
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Misha B Ahrens
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Catie Chang
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA; Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN 37235, USA; Department of Computer Science, Vanderbilt University, Nashville, TN 37235, USA
| | - Dario J Englot
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA; Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Michael Breakspear
- School of Psychology, University of Newcastle, Callaghan, NSW 2308, Australia; School of Medicine and Public Health, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Mikail Rubinov
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA; Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA; Department of Computer Science, Vanderbilt University, Nashville, TN 37235, USA.
| |
Collapse
|
22
|
Shahabi H, Nair DR, Leahy RM. Multilayer brain networks can identify the epileptogenic zone and seizure dynamics. eLife 2023; 12:e68531. [PMID: 36929752 PMCID: PMC10065796 DOI: 10.7554/elife.68531] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 03/16/2023] [Indexed: 03/18/2023] Open
Abstract
Seizure generation, propagation, and termination occur through spatiotemporal brain networks. In this paper, we demonstrate the significance of large-scale brain interactions in high-frequency (80-200Hz) for the identification of the epileptogenic zone (EZ) and seizure evolution. To incorporate the continuity of neural dynamics, here we have modeled brain connectivity constructed from stereoelectroencephalography (SEEG) data during seizures using multilayer networks. After introducing a new measure of brain connectivity for temporal networks, named multilayer eigenvector centrality (mlEVC), we applied a consensus hierarchical clustering on the developed model to identify the EZ as a cluster of nodes with distinctive brain connectivity in the ictal period. Our algorithm could successfully predict electrodes inside the resected volume as EZ for 88% of participants, who all were seizure-free for at least 12 months after surgery. Our findings illustrated significant and unique desynchronization between EZ and the rest of the brain in the early to mid-seizure. We showed that aging and the duration of epilepsy intensify this desynchronization, which can be the outcome of abnormal neuroplasticity. Additionally, we illustrated that seizures evolve with various network topologies, confirming the existence of different epileptogenic networks in each patient. Our findings suggest not only the importance of early intervention in epilepsy but possible factors that correlate with disease severity. Moreover, by analyzing the propagation patterns of different seizures, we demonstrate the necessity of collecting sufficient data for identifying epileptogenic networks.
Collapse
Affiliation(s)
- Hossein Shahabi
- Signal and Image Processing Institute, University of Southern CaliforniaLos AngelesUnited States
| | - Dileep R Nair
- Epilepsy Center, Cleveland Clinic Neurological InstituteClevelandUnited States
| | - Richard M Leahy
- Signal and Image Processing Institute, University of Southern CaliforniaLos AngelesUnited States
| |
Collapse
|
23
|
Chiarion G, Sparacino L, Antonacci Y, Faes L, Mesin L. Connectivity Analysis in EEG Data: A Tutorial Review of the State of the Art and Emerging Trends. Bioengineering (Basel) 2023; 10:bioengineering10030372. [PMID: 36978763 PMCID: PMC10044923 DOI: 10.3390/bioengineering10030372] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/10/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
Understanding how different areas of the human brain communicate with each other is a crucial issue in neuroscience. The concepts of structural, functional and effective connectivity have been widely exploited to describe the human connectome, consisting of brain networks, their structural connections and functional interactions. Despite high-spatial-resolution imaging techniques such as functional magnetic resonance imaging (fMRI) being widely used to map this complex network of multiple interactions, electroencephalographic (EEG) recordings claim high temporal resolution and are thus perfectly suitable to describe either spatially distributed and temporally dynamic patterns of neural activation and connectivity. In this work, we provide a technical account and a categorization of the most-used data-driven approaches to assess brain-functional connectivity, intended as the study of the statistical dependencies between the recorded EEG signals. Different pairwise and multivariate, as well as directed and non-directed connectivity metrics are discussed with a pros-cons approach, in the time, frequency, and information-theoretic domains. The establishment of conceptual and mathematical relationships between metrics from these three frameworks, and the discussion of novel methodological approaches, will allow the reader to go deep into the problem of inferring functional connectivity in complex networks. Furthermore, emerging trends for the description of extended forms of connectivity (e.g., high-order interactions) are also discussed, along with graph-theory tools exploring the topological properties of the network of connections provided by the proposed metrics. Applications to EEG data are reviewed. In addition, the importance of source localization, and the impacts of signal acquisition and pre-processing techniques (e.g., filtering, source localization, and artifact rejection) on the connectivity estimates are recognized and discussed. By going through this review, the reader could delve deeply into the entire process of EEG pre-processing and analysis for the study of brain functional connectivity and learning, thereby exploiting novel methodologies and approaches to the problem of inferring connectivity within complex networks.
Collapse
Affiliation(s)
- Giovanni Chiarion
- Mathematical Biology and Physiology, Department Electronics and Telecommunications, Politecnico di Torino, 10129 Turin, Italy
| | - Laura Sparacino
- Department of Engineering, University of Palermo, 90128 Palermo, Italy
| | - Yuri Antonacci
- Department of Engineering, University of Palermo, 90128 Palermo, Italy
| | - Luca Faes
- Department of Engineering, University of Palermo, 90128 Palermo, Italy
| | - Luca Mesin
- Mathematical Biology and Physiology, Department Electronics and Telecommunications, Politecnico di Torino, 10129 Turin, Italy
| |
Collapse
|
24
|
Rupawala M, Bucsea O, Laudiano-Dray MP, Whitehead K, Meek J, Fitzgerald M, Olhede S, Jones L, Fabrizi L. A developmental shift in habituation to pain in human neonates. Curr Biol 2023; 33:1397-1406.e5. [PMID: 36931271 DOI: 10.1016/j.cub.2023.02.071] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 11/22/2022] [Accepted: 02/23/2023] [Indexed: 03/18/2023]
Abstract
Habituation to recurrent non-threatening or unavoidable noxious stimuli is an important aspect of adaptation to pain. Neonates, especially if preterm, are exposed to repeated noxious procedures during their clinical care. They can mount strong behavioral, autonomic, spinal, and cortical responses to a single noxious stimulus; however, it is not known whether the developing nervous system can adapt to the recurrence of these inputs. Here, we used electroencephalography to investigate changes in cortical microstates (representing the complex sequential processing of noxious inputs) following two consecutive clinically required heel lances in term and preterm infants. We show that stimulus repetition dampens the engagement of initial microstates and associated behavioral and autonomic responses in term infants, while preterm infants do not show signs of habituation. Nevertheless, both groups engage different longer-latency cortical microstates to each lance, which is likely to reflect changes in higher-level stimulus processing with repeated stimulation. These data suggest that while both age groups are capable of encoding contextual differences in pain, the preterm brain does not regulate the initial cortical, behavioral, and autonomic responses to repeated noxious stimuli. Habituation mechanisms to pain are already in place at term age but mature over the equivalent of the last trimester of gestation and are not fully functional in preterm neonates.
Collapse
Affiliation(s)
- Mohammed Rupawala
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| | - Oana Bucsea
- Faculty of Health, Department of Psychology, York University, Toronto, ON M3J 1P3, Canada
| | | | - Kimberley Whitehead
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| | - Judith Meek
- Elizabeth Garrett Anderson Obstetric Wing, University College London Hospitals, London WC1E 6DB, UK
| | - Maria Fitzgerald
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| | - Sofia Olhede
- Department of Statistical Science, University College London, London WC1E 6BT, UK; Institute of Mathematics, École Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Laura Jones
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| | - Lorenzo Fabrizi
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK.
| |
Collapse
|
25
|
Strik M, Eijlers AJC, Dekker I, Broeders TAA, Douw L, Killestein J, Kolbe SC, Geurts JJG, Schoonheim MM. Sensorimotor network dynamics predict decline in upper and lower limb function in people with multiple sclerosis. Mult Scler 2023; 29:81-91. [PMID: 36177896 PMCID: PMC9896264 DOI: 10.1177/13524585221125372] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Upper and lower limb disabilities are hypothesized to have partially independent underlying (network) disturbances in multiple sclerosis (MS). OBJECTIVE This study investigated functional network predictors and longitudinal network changes related to upper and lower limb progression in MS. METHODS Two-hundred fourteen MS patients and 58 controls underwent functional magnetic resonance imaging (fMRI), dexterity (9-Hole Peg Test) and mobility (Timed 25-Foot Walk) measurements (baseline and 5 years). Patients were stratified into progressors (>20% decline) or non-progressors. Functional network efficiency was calculated using static (over entire scan) and dynamic (fluctuations during scan) approaches. Baseline measurements were used to predict progression; significant predictors were explored over time. RESULTS In both limbs, progression was related to supplementary motor area and caudate efficiency (dynamic and static, respectively). Upper limb progression showed additional specific predictors; cortical grey matter volume, putamen static efficiency and posterior associative sensory (PAS) cortex, putamen, primary somatosensory cortex and thalamus dynamic efficiency. Additional lower limb predictors included motor network grey matter volume, caudate (dynamic) and PAS (static). Only the caudate showed a decline in efficiency over time in one group (non-progressors). CONCLUSION Disability progression can be predicted using sensorimotor network measures. Upper and lower limb progression showed unique predictors, possibly indicating different network disturbances underlying these types of progression in MS.
Collapse
Affiliation(s)
- Myrte Strik
- M Strik Melbourne Brain Centre Imaging Unit, Department of Radiology, University of Melbourne, Melbourne Medical School, Level 1, Kenneth Myer building, 30 Royal Parade, Melbourne, VIC 3010 Australia.
| | - Anand JC Eijlers
- MS Center Amsterdam, Anatomy and Neurosciences, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC location VUmc, Amsterdam, the Netherlands
| | - Iris Dekker
- MS Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC location VUmc, Amsterdam, the Netherlands
| | - Tommy AA Broeders
- MS Center Amsterdam, Anatomy and Neurosciences, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC location VUmc, Amsterdam, the Netherlands
| | - Linda Douw
- MS Center Amsterdam, Anatomy and Neurosciences, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC location VUmc, Amsterdam, the Netherlands
| | - Joep Killestein
- MS Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC location VUmc, Amsterdam, the Netherlands
| | - Scott C Kolbe
- Department of Neurosciences, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Jeroen JG Geurts
- MS Center Amsterdam, Anatomy and Neurosciences, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC location VUmc, Amsterdam, the Netherlands
| | - Menno M Schoonheim
- MS Center Amsterdam, Anatomy and Neurosciences, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC location VUmc, Amsterdam, the Netherlands
| |
Collapse
|
26
|
von Schwanenflug N, Koch SP, Krohn S, Broeders TAA, Lydon-Staley DM, Bassett DS, Schoonheim MM, Paul F, Finke C. Increased flexibility of brain dynamics in patients with multiple sclerosis. Brain Commun 2023; 5:fcad143. [PMID: 37188221 PMCID: PMC10176242 DOI: 10.1093/braincomms/fcad143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 03/08/2023] [Accepted: 04/28/2023] [Indexed: 05/17/2023] Open
Abstract
Patients with multiple sclerosis consistently show widespread changes in functional connectivity. Yet, alterations are heterogeneous across studies, underscoring the complexity of functional reorganization in multiple sclerosis. Here, we aim to provide new insights by applying a time-resolved graph-analytical framework to identify a clinically relevant pattern of dynamic functional connectivity reconfigurations in multiple sclerosis. Resting-state data from 75 patients with multiple sclerosis (N = 75, female:male ratio of 3:2, median age: 42.0 ± 11.0 years, median disease duration: 6 ± 11.4 years) and 75 age- and sex-matched controls (N = 75, female:male ratio of 3:2, median age: 40.2 ± 11.8 years) were analysed using multilayer community detection. Local, resting-state functional system and global levels of dynamic functional connectivity reconfiguration were characterized using graph-theoretical measures including flexibility, promiscuity, cohesion, disjointedness and entropy. Moreover, we quantified hypo- and hyper-flexibility of brain regions and derived the flexibility reorganization index as a summary measure of whole-brain reorganization. Lastly, we explored the relationship between clinical disability and altered functional dynamics. Significant increases in global flexibility (t = 2.38, PFDR = 0.024), promiscuity (t = 1.94, PFDR = 0.038), entropy (t = 2.17, PFDR = 0.027) and cohesion (t = 2.45, PFDR = 0.024) were observed in patients and were driven by pericentral, limbic and subcortical regions. Importantly, these graph metrics were correlated with clinical disability such that greater reconfiguration dynamics tracked greater disability. Moreover, patients demonstrate a systematic shift in flexibility from sensorimotor areas to transmodal areas, with the most pronounced increases located in regions with generally low dynamics in controls. Together, these findings reveal a hyperflexible reorganization of brain activity in multiple sclerosis that clusters in pericentral, subcortical and limbic areas. This functional reorganization was linked to clinical disability, providing new evidence that alterations of multilayer temporal dynamics play a role in the manifestation of multiple sclerosis.
Collapse
Affiliation(s)
- Nina von Schwanenflug
- Department of Neurology and Experimental Neurology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin 10098, Germany
- Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin 10117, Germany
| | - Stefan P Koch
- Department of Experimental Neurology, Center for Stroke Research Berlin, Berlin 10117, Germany
- NeuroCure Cluster of Excellence and Charité Core Facility 7T Experimental MRIs, Charité - Universitätsmedizin Berlin, Berlin 10117, Germany
| | - Stephan Krohn
- Department of Neurology and Experimental Neurology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin 10098, Germany
- Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin 10117, Germany
| | - Tommy A A Broeders
- Department of Anatomy and Neurosciences, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam 1007 MB, The Netherlands
| | - David M Lydon-Staley
- Annenberg School for Communication, University of Pennsylvania, Philadelphia 19104, PA, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia 19104, PA, USA
- Leonard Davis Institute of Health Economics, University of Pennsylvania, Philadelphia 19104, PA, USA
| | - Dani S Bassett
- Department of Biological Engineering, School of Engineering & Applied Science, University of Pennsylvania, Philadelphia 19104, PA, USA
- Department of Physics & Astronomy, College of Arts & Sciences, University of Pennsylvania, Philadelphia 19104, PA, USA
- Department of Electrical & Systems Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia 19104, PA, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia 19104, PA, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia 19104, PA, USA
- Santa Fe Institute, Santa Fe 87501, NM, USA
| | - Menno M Schoonheim
- Department of Anatomy and Neurosciences, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam 1007 MB, The Netherlands
| | - Friedemann Paul
- Department of Neurology and Experimental Neurology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin 10098, Germany
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine and Charité—Universitätsmedizin Berlin, Berlin 10117, Germany
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin 10017, Germany
| | - Carsten Finke
- Correspondence to: Carsten Finke Charité - Universitätsklinikum Berlin Department of Neurology and Experimental Neurology Campus Mitte, Bonhoeffer Weg 3, 10098 Berlin, Germany E-mail:
| |
Collapse
|
27
|
Dimitriadis SI. Assessing the Repeatability of Multi-Frequency Multi-Layer Brain Network Topologies Across Alternative Researcher's Choice Paths. Neuroinformatics 2023; 21:71-88. [PMID: 36372844 DOI: 10.1007/s12021-022-09610-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/05/2022] [Indexed: 11/15/2022]
Abstract
There is a growing interest in the neuroscience community on the advantages of multilayer functional brain networks. Researchers usually treated different frequencies separately at distinct functional brain networks. However, there is strong evidence that these networks share complementary information while their interdependencies could reveal novel findings. For this purpose, neuroscientists adopt multilayer networks, which can be described mathematically as an extension of trivial single-layer networks. Multilayer networks have become popular in neuroscience due to their advantage to integrate different sources of information. Here, Ι will focus on the multi-frequency multilayer functional connectivity analysis on resting-state fMRI (rs-fMRI) recordings. However, constructing a multilayer network depends on selecting multiple pre-processing steps that can affect the final network topology. Here, I analyzed the rs-fMRI dataset from a single human performing scanning over a period of 18 months (84 scans in total), and the rs-fMRI dataset containing 25 subjects with 3 repeat scans. I focused on assessing the reproducibility of multi-frequency multilayer topologies exploring the effect of two filtering methods for extracting frequencies from BOLD activity, three connectivity estimators, with or without a topological filtering scheme, and two spatial scales. Finally, I untangled specific combinations of researchers' choices that yield consistently brain networks with repeatable topologies, giving me the chance to recommend best practices over consistent topologies.
Collapse
Affiliation(s)
- Stavros I Dimitriadis
- Department of Clinical Psychology and Psychobiology, Faculty of Psychology, University of Barcelona, Passeig de la Vall d'Hebron, 171, 08035, Barcelona, Spain.
- Institut de Neurociències, University of Barcelona, Campus Mundet, Edifici de PonentPasseig de la Vall d'Hebron, 171, 08035, Barcelona, Spain.
- Integrative Neuroimaging Lab, 55133, Thessaloniki, Greece.
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, College of Biomedical and Life Sciences, Cardiff University, Wales, CF24 4HQ, Cardiff, UK.
- Neuroinformatics Group, School of Psychology, College of Biomedical and Life Sciences, Cardiff University Brain Research Imaging Centre (CUBRIC), CF24 4HQ, Cardiff, Wales, UK.
- Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, College of Biomedical and Life Sciences, Cardiff University, Cardiff, CF24 4HQ, Wales, UK.
- Neuroscience and Mental Health Research Institute, School of Medicine, College of Biomedical and Life Sciences, Cardiff University, CF24 4HQ, Cardiff, Wales, UK.
- MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, College of Biomedical and Life Sciences, Cardiff University, Cardiff, CF24 4HQ, Wales, UK.
| |
Collapse
|
28
|
Stylianou O, Kaposzta Z, Czoch A, Stefanovski L, Yabluchanskiy A, Racz FS, Ritter P, Eke A, Mukli P. Scale-Free Functional Brain Networks Exhibit Increased Connectivity, Are More Integrated and Less Segregated in Patients with Parkinson's Disease following Dopaminergic Treatment. FRACTAL AND FRACTIONAL 2022; 6:737. [PMID: 38106971 PMCID: PMC10723163 DOI: 10.3390/fractalfract6120737] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Dopaminergic treatment (DT), the standard therapy for Parkinson's disease (PD), alters the dynamics of functional brain networks at specific time scales. Here, we explore the scale-free functional connectivity (FC) in the PD population and how it is affected by DT. We analyzed the electroencephalogram of: (i) 15 PD patients during DT (ON) and after DT washout (OFF) and (ii) 16 healthy control individuals (HC). We estimated FC using bivariate focus-based multifractal analysis, which evaluated the long-term memory ( H ( 2 ) ) and multifractal strength ( Δ H 15 ) of the connections. Subsequent analysis yielded network metrics (node degree, clustering coefficient and path length) based on FC estimated by H ( 2 ) or Δ H 15 . Cognitive performance was assessed by the Mini Mental State Examination (MMSE) and the North American Adult Reading Test (NAART). The node degrees of the Δ H 15 networks were significantly higher in ON, compared to OFF and HC, while clustering coefficient and path length significantly decreased. No alterations were observed in the H ( 2 ) networks. Significant positive correlations were also found between the metrics of H ( 2 ) networks and NAART scores in the HC group. These results demonstrate that DT alters the multifractal coupled dynamics in the brain, warranting the investigation of scale-free FC in clinical and pharmacological studies.
Collapse
Affiliation(s)
- Orestis Stylianou
- Department of Physiology, Semmelweis University, 1094 Budapest, Hungary
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary
- Berlin Institute of Health at Charité, University Hospital Berlin, Charitéplatz 1, 10117 Berlin, Germany
- Department of Neurology with Experimental Neurology, Charité-University Hospital Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Zalan Kaposzta
- Department of Physiology, Semmelweis University, 1094 Budapest, Hungary
| | - Akos Czoch
- Department of Physiology, Semmelweis University, 1094 Budapest, Hungary
| | - Leon Stefanovski
- Berlin Institute of Health at Charité, University Hospital Berlin, Charitéplatz 1, 10117 Berlin, Germany
- Department of Neurology with Experimental Neurology, Charité-University Hospital Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC, Oklahoma City, OK 73104, USA
| | - Frigyes Samuel Racz
- Department of Physiology, Semmelweis University, 1094 Budapest, Hungary
- Department of Neurology, Dell Medical School, University of Texas at Austin, Austin, TX 78712, USA
| | - Petra Ritter
- Berlin Institute of Health at Charité, University Hospital Berlin, Charitéplatz 1, 10117 Berlin, Germany
- Department of Neurology with Experimental Neurology, Charité-University Hospital Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
- Bernstein Focus State Dependencies of Learning and Bernstein Center for Computational Neuroscience Berlin, 10115 Berlin, Germany
- Einstein Center for Neuroscience Berlin, Charitéplatz 1, 10117 Berlin, Germany
- Einstein Center Digital Future, Wilhelmstraße 67, 10117 Berlin, Germany
| | - Andras Eke
- Department of Physiology, Semmelweis University, 1094 Budapest, Hungary
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, 300 Cedar Street, New Haven, CT 06520, USA
| | - Peter Mukli
- Department of Physiology, Semmelweis University, 1094 Budapest, Hungary
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC, Oklahoma City, OK 73104, USA
| |
Collapse
|
29
|
Pidnebesna A, Sanda P, Kalina A, Hammer J, Marusic P, Vlcek K, Hlinka J. Tackling the challenges of group network inference from intracranial EEG data. Front Neurosci 2022; 16:1061867. [PMID: 36532288 PMCID: PMC9752888 DOI: 10.3389/fnins.2022.1061867] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 11/15/2022] [Indexed: 09/11/2023] Open
Abstract
INTRODUCTION Intracranial EEG (iEEG) data is a powerful way to map brain function, characterized by high temporal and spatial resolution, allowing the study of interactions among neuronal populations that orchestrate cognitive processing. However, the statistical inference and analysis of brain networks using iEEG data faces many challenges related to its sparse brain coverage, and its inhomogeneity across patients. METHODS We review these challenges and develop a methodological pipeline for estimation of network structure not obtainable from any single patient, illustrated on the inference of the interaction among visual streams using a dataset of 27 human iEEG recordings from a visual experiment employing visual scene stimuli. 100 ms sliding window and multiple band-pass filtered signals are used to provide temporal and spectral resolution. For the connectivity analysis we showcase two connectivity measures reflecting different types of interaction between regions of interest (ROI): Phase Locking Value as a symmetric measure of synchrony, and Directed Transfer Function-asymmetric measure describing causal interaction. For each two channels, initial uncorrected significance testing at p < 0.05 for every time-frequency point is carried out by comparison of the data-derived connectivity to a baseline surrogate-based null distribution, providing a binary time-frequency connectivity map. For each ROI pair, a connectivity density map is obtained by averaging across all pairs of channels spanning them, effectively agglomerating data across relevant channels and subjects. Finally, the difference of the mean map value after and before the stimulation is compared to the same statistic in surrogate data to assess link significance. RESULTS The analysis confirmed the function of the parieto-medial temporal pathway, mediating visuospatial information between dorsal and ventral visual streams during visual scene analysis. Moreover, we observed the anterior hippocampal connectivity with more posterior areas in the medial temporal lobe, and found the reciprocal information flow between early processing areas and medial place area. DISCUSSION To summarize, we developed an approach for estimating network connectivity, dealing with the challenge of sparse individual coverage of intracranial EEG electrodes. Its application provided new insights into the interaction between the dorsal and ventral visual streams, one of the iconic dualities in human cognition.
Collapse
Affiliation(s)
- Anna Pidnebesna
- Department of Complex Systems, Institute of Computer Science of the Czech Academy of Sciences, Prague, Czechia
- National Institute of Mental Health, Prague, Czechia
| | - Pavel Sanda
- Department of Complex Systems, Institute of Computer Science of the Czech Academy of Sciences, Prague, Czechia
| | - Adam Kalina
- Department of Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czechia
| | - Jiri Hammer
- Department of Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czechia
| | - Petr Marusic
- Department of Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czechia
| | - Kamil Vlcek
- Department of Neurophysiology of Memory, Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia
| | - Jaroslav Hlinka
- Department of Complex Systems, Institute of Computer Science of the Czech Academy of Sciences, Prague, Czechia
- National Institute of Mental Health, Prague, Czechia
| |
Collapse
|
30
|
Ma H, Haluszczynski A, Prosperino D, Räth C. Identifying causality drivers and deriving governing equations of nonlinear complex systems. CHAOS (WOODBURY, N.Y.) 2022; 32:103128. [PMID: 36319303 DOI: 10.1063/5.0102250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 10/01/2022] [Indexed: 06/16/2023]
Abstract
Identifying and describing the dynamics of complex systems is a central challenge in various areas of science, such as physics, finance, or climatology. While machine learning algorithms are increasingly overtaking traditional approaches, their inner workings and, thus, the drivers of causality remain elusive. In this paper, we analyze the causal structure of chaotic systems using Fourier transform surrogates and three different inference techniques: While we confirm that Granger causality is exclusively able to detect linear causality, transfer entropy and convergent cross-mapping indicate that causality is determined to a significant extent by nonlinear properties. For the Lorenz and Halvorsen systems, we find that their contribution is independent of the strength of the nonlinear coupling. Furthermore, we show that a simple rationale and calibration algorithm are sufficient to extract the governing equations directly from the causal structure of the data. Finally, we illustrate the applicability of the framework to real-world dynamical systems using financial data before and after the COVID-19 outbreak. It turns out that the pandemic triggered a fundamental rupture in the world economy, which is reflected in the causal structure and the resulting equations.
Collapse
Affiliation(s)
- Haochun Ma
- Ludwig-Maximilians-Universität München, Department of Physics, Schellingstraße 4, 80799 Munich, Germany
| | | | - Davide Prosperino
- Allianz Global Investors, risklab, Seidlstraße 24, 80335 Munich, Germany
| | - Christoph Räth
- Deutsches Zentrum für Luft- und Raumfahrt (DLR), Institut für KI Sicherheit, Wilhelm-Runge-Straße 10, 89081 Ulm, Germany
| |
Collapse
|
31
|
Coulson S, Dangendorf S, Mitrovica JX, Tamisiea ME, Pan L, Sandwell DT. A detection of the sea level fingerprint of Greenland Ice Sheet melt. Science 2022; 377:1550-1554. [PMID: 36173832 DOI: 10.1126/science.abo0926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Rapid melting of ice sheets and glaciers drives a unique geometry, or fingerprint, of sea level change. However, the detection of individual fingerprints has been challenging because of sparse observations at high latitudes and the difficulty of disentangling ocean dynamic variability from the signal. We predict the fingerprint of Greenland Ice Sheet (GrIS) melt using recent ice mass loss estimates from radar altimetry data and model reconstructions of nearby glaciers and compare this prediction to an independent, altimetry-derived sea surface height trend corrected for ocean dynamic variability in the region adjacent to the ice sheet. A statistically significant correlation between the two fields (P < 0.001) provides an unambiguous observational detection of the near-field sea level fingerprint of recent GrIS melting in our warming world.
Collapse
Affiliation(s)
- Sophie Coulson
- Fluid Dynamics and Solid Mechanics Group, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Sönke Dangendorf
- Department of River-Coastal Science and Engineering, Tulane University, New Orleans, LA, USA
| | - Jerry X Mitrovica
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA, USA
| | - Mark E Tamisiea
- Center for Space Research, University of Texas, Austin, TX, USA
| | - Linda Pan
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA, USA
| | - David T Sandwell
- Institute of Geophysics and Planetary Physics, University of California, San Diego, CA, USA
| |
Collapse
|
32
|
Ashourvan A, Pequito S, Bertolero M, Kim JZ, Bassett DS, Litt B. External drivers of BOLD signal's non-stationarity. PLoS One 2022; 17:e0257580. [PMID: 36121808 PMCID: PMC9484685 DOI: 10.1371/journal.pone.0257580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 09/01/2022] [Indexed: 11/19/2022] Open
Abstract
A fundamental challenge in neuroscience is to uncover the principles governing how the brain interacts with the external environment. However, assumptions about external stimuli fundamentally constrain current computational models. We show in silico that unknown external stimulation can produce error in the estimated linear time-invariant dynamical system. To address these limitations, we propose an approach to retrieve the external (unknown) input parameters and demonstrate that the estimated system parameters during external input quiescence uncover spatiotemporal profiles of external inputs over external stimulation periods more accurately. Finally, we unveil the expected (and unexpected) sensory and task-related extra-cortical input profiles using functional magnetic resonance imaging data acquired from 96 subjects (Human Connectome Project) during the resting-state and task scans. This dynamical systems model of the brain offers information on the structure and dimensionality of the BOLD signal's external drivers and shines a light on the likely external sources contributing to the BOLD signal's non-stationarity. Our findings show the role of exogenous inputs in the BOLD dynamics and highlight the importance of accounting for external inputs to unravel the brain's time-varying functional dynamics.
Collapse
Affiliation(s)
- Arian Ashourvan
- Department of Psychology, University of Kansas, Lawrence, KS, United States of America
| | - Sérgio Pequito
- Delft Center for Systems and Control, Delft University of Technology, Delft, Netherlands
| | - Maxwell Bertolero
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Jason Z. Kim
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Danielle S. Bassett
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States of America
- Penn Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA, United States of America
- Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, PA, United States of America
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
- Department of Electrical & Systems Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States of America
- Department of Physics & Astronomy, College of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Brian Litt
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States of America
- Penn Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA, United States of America
- Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, PA, United States of America
| |
Collapse
|
33
|
Omidvarnia A, Liégeois R, Amico E, Preti MG, Zalesky A, Van De Ville D. On the Spatial Distribution of Temporal Complexity in Resting State and Task Functional MRI. ENTROPY (BASEL, SWITZERLAND) 2022; 24:1148. [PMID: 36010812 PMCID: PMC9407401 DOI: 10.3390/e24081148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 06/15/2023]
Abstract
Measuring the temporal complexity of functional MRI (fMRI) time series is one approach to assess how brain activity changes over time. In fact, hemodynamic response of the brain is known to exhibit critical behaviour at the edge between order and disorder. In this study, we aimed to revisit the spatial distribution of temporal complexity in resting state and task fMRI of 100 unrelated subjects from the Human Connectome Project (HCP). First, we compared two common choices of complexity measures, i.e., Hurst exponent and multiscale entropy, and observed a high spatial similarity between them. Second, we considered four tasks in the HCP dataset (Language, Motor, Social, and Working Memory) and found high task-specific complexity, even when the task design was regressed out. For the significance thresholding of brain complexity maps, we used a statistical framework based on graph signal processing that incorporates the structural connectome to develop the null distributions of fMRI complexity. The results suggest that the frontoparietal, dorsal attention, visual, and default mode networks represent stronger complex behaviour than the rest of the brain, irrespective of the task engagement. In sum, the findings support the hypothesis of fMRI temporal complexity as a marker of cognition.
Collapse
Affiliation(s)
- Amir Omidvarnia
- Applied Machine Learning Group, Institute of Neuroscience and Medicine, Forschungszentrum Juelich, 52428 Juelich, Germany
- Institute of Systems Neuroscience, Heinrich Heine University Duesseldorf, 40225 Duesseldorf, Germany
- Neuro-X Institute, École Polytechnique Fédérale de Lausanne, 1202 Geneva, Switzerland
- Department of Radiology and Medical Informatics, University of Geneva, 1211 Geneva, Switzerland
| | - Raphaël Liégeois
- Neuro-X Institute, École Polytechnique Fédérale de Lausanne, 1202 Geneva, Switzerland
- Department of Radiology and Medical Informatics, University of Geneva, 1211 Geneva, Switzerland
| | - Enrico Amico
- Neuro-X Institute, École Polytechnique Fédérale de Lausanne, 1202 Geneva, Switzerland
- Department of Radiology and Medical Informatics, University of Geneva, 1211 Geneva, Switzerland
| | - Maria Giulia Preti
- Neuro-X Institute, École Polytechnique Fédérale de Lausanne, 1202 Geneva, Switzerland
- Department of Radiology and Medical Informatics, University of Geneva, 1211 Geneva, Switzerland
- CIBM Center for Biomedical Imaging, 1015 Lausanne, Switzerland
| | - Andrew Zalesky
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Melbourne, VIC 3010, Australia
- Department of Biomedical Engineering, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Dimitri Van De Ville
- Neuro-X Institute, École Polytechnique Fédérale de Lausanne, 1202 Geneva, Switzerland
- Department of Radiology and Medical Informatics, University of Geneva, 1211 Geneva, Switzerland
| |
Collapse
|
34
|
Saggar M, Shine JM, Liégeois R, Dosenbach NUF, Fair D. Precision dynamical mapping using topological data analysis reveals a hub-like transition state at rest. Nat Commun 2022; 13:4791. [PMID: 35970984 PMCID: PMC9378660 DOI: 10.1038/s41467-022-32381-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 07/27/2022] [Indexed: 01/01/2023] Open
Abstract
In the absence of external stimuli, neural activity continuously evolves from one configuration to another. Whether these transitions or explorations follow some underlying arrangement or lack a predictable ordered plan remains to be determined. Here, using fMRI data from highly sampled individuals (~5 hours of resting-state data per individual), we aimed to reveal the rules that govern transitions in brain activity at rest. Our Topological Data Analysis based Mapper approach characterized a highly visited transition state of the brain that acts as a switch between different neural configurations to organize the spontaneous brain activity. Further, while the transition state was characterized by a uniform representation of canonical resting-state networks (RSNs), the periphery of the landscape was dominated by a subject-specific combination of RSNs. Altogether, we revealed rules or principles that organize spontaneous brain activity using a precision dynamics approach.
Collapse
Affiliation(s)
- Manish Saggar
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA.
| | - James M Shine
- Brain and Mind Center, The University of Sydney, Sydney, NSW, Australia
| | - Raphaël Liégeois
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Department of Radiology and Medical Informatics, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Nico U F Dosenbach
- Departments of Neurology, Radiology, Pediatrics and Biomedical Engineering, Washington University School of Medicine, St. Louis, MO, USA
| | - Damien Fair
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN, USA
| |
Collapse
|
35
|
Contextual Effects of Traumatic Brain Injury on the Connectome: Differential Effects of Deployment- and Non-Deployment-Acquired Injuries. J Head Trauma Rehabil 2022; 37:E449-E457. [PMID: 35862901 DOI: 10.1097/htr.0000000000000803] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To identify differential effects of mild traumatic brain injury (TBI) occurring in a deployment or nondeployment setting on the functional brain connectome. SETTING Veterans Affairs Medical Center. PARTICIPANTS In total, 181 combat-exposed veterans of the wars in Iraq and Afghanistan (n = 74 with deployment-related mild TBI, average time since injury = 11.0 years, SD = 4.1). DESIGN Cross-sectional observational study. MAIN MEASURES Mid-Atlantic MIRECC (Mid-Atlantic Mental Illness Research, Education, and Clinical Center) Assessment of TBI, Clinician-Administered PTSD Scale, connectome metrics. RESULTS Linear regression adjusting for relevant covariates demonstrates a significant (P < .05 corrected) association between deployment mild TBI with reduced global efficiency (nonstandardized β = -.011) and degree of the K-core (nonstandardized β = -.79). Nondeployment mild TBI was significantly associated with a reduced number of modules within the connectome (nonstandardized β = -2.32). Finally, the interaction between deployment and nondeployment mild TBIs was significantly (P < .05 corrected) associated with increased mean (nonstandardized β = 9.92) and mode (nonstandardized β = 14.02) frequency at which connections occur. CONCLUSIONS These results demonstrate distinct effects of mild TBI on the functional brain connectome when sustained in a deployment versus nondeployment context. This is consistent with findings demonstrating differential effects in other areas such as psychiatric diagnoses and severity, pain, sleep, and cognitive function. Furthermore, participants were an average of 11 years postinjury, suggesting these represent chronic effects of the injury. Overall, these findings add to the growing body of evidence, suggesting the effects of mild TBI acquired during deployment are different and potentially longer lasting than those of mild TBI acquired in a nondeployment context.
Collapse
|
36
|
Luijendijk MJ, Bekele BM, Schagen SB, Douw L, de Ruiter MB. Temporal Dynamics of Resting-state Functional Networks and Cognitive Functioning following Systemic Treatment for Breast Cancer. Brain Imaging Behav 2022; 16:1927-1937. [PMID: 35705764 PMCID: PMC9581823 DOI: 10.1007/s11682-022-00651-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/03/2022] [Indexed: 11/13/2022]
Abstract
Many women with breast cancer suffer from a decline in memory and executive function, particularly after treatment with chemotherapy. Recent neuroimaging studies suggest that changes in network dynamics are fundamental in decline in these cognitive functions. This has, however, not yet been investigated in breast cancer patients. Using resting state functional magnetic resonance imaging, we prospectively investigated whether changes in dynamic functional connectivity were associated with changes in memory and executive function. We examined 34 breast cancer patients that received chemotherapy, 32 patients that did not receive chemotherapy, and 35 no-cancer controls. All participants were assessed prior to treatment and six months after completion of chemotherapy, or at similar intervals for the other groups. To assess memory and executive function, we used the Hopkins Verbal Learning Test – Immediate Recall and the Trail Making Test B, respectively. Using a sliding window approach, we then evaluated dynamic functional connectivity of resting state networks supporting memory and executive function, i.e. the default mode network and frontoparietal network, respectively. Next, we directly investigated the association between cognitive performance and dynamic functional connectivity. We found no group differences in cognitive performance or connectivity measures. The association between dynamic functional connectivity of the default mode network and memory differed significantly across groups. This was not the case for the frontoparietal network and executive function. This suggests that cancer and chemotherapy alter the role of dynamic functional connectivity in memory function. Further implications of these findings are discussed.
Collapse
Affiliation(s)
- Maryse J Luijendijk
- Department of Psychosocial Research and Epidemiology, Netherlands Cancer Institute, Antoni Van Leeuwenhoek Hospital, Amsterdam, The Netherlands.,Brain and Cognition Group, Department of Psychology, University of Amsterdam, Amsterdam, The Netherlands
| | - Biniam M Bekele
- Department of Psychosocial Research and Epidemiology, Netherlands Cancer Institute, Antoni Van Leeuwenhoek Hospital, Amsterdam, The Netherlands.,Department of Anatomy and Neurosciences, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Sanne B Schagen
- Department of Psychosocial Research and Epidemiology, Netherlands Cancer Institute, Antoni Van Leeuwenhoek Hospital, Amsterdam, The Netherlands. .,Brain and Cognition Group, Department of Psychology, University of Amsterdam, Amsterdam, The Netherlands.
| | - Linda Douw
- Department of Anatomy and Neurosciences, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Michiel B de Ruiter
- Department of Psychosocial Research and Epidemiology, Netherlands Cancer Institute, Antoni Van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| |
Collapse
|
37
|
Tewarie P, Prasse B, Meier J, Mandke K, Warrington S, Stam CJ, Brookes MJ, Van Mieghem P, Sotiropoulos SN, Hillebrand A. Predicting time-resolved electrophysiological brain networks from structural eigenmodes. Hum Brain Mapp 2022; 43:4475-4491. [PMID: 35642600 PMCID: PMC9435022 DOI: 10.1002/hbm.25967] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/25/2022] [Accepted: 05/16/2022] [Indexed: 01/20/2023] Open
Abstract
How temporal modulations in functional interactions are shaped by the underlying anatomical connections remains an open question. Here, we analyse the role of structural eigenmodes, in the formation and dissolution of temporally evolving functional brain networks using resting-state magnetoencephalography and diffusion magnetic resonance imaging data at the individual subject level. Our results show that even at short timescales, phase and amplitude connectivity can partly be expressed by structural eigenmodes, but hardly by direct structural connections. Albeit a stronger relationship was found between structural eigenmodes and time-resolved amplitude connectivity. Time-resolved connectivity for both phase and amplitude was mostly characterised by a stationary process, superimposed with very brief periods that showed deviations from this stationary process. For these brief periods, dynamic network states were extracted that showed different expressions of eigenmodes. Furthermore, the eigenmode expression was related to overall cognitive performance and co-occurred with fluctuations in community structure of functional networks. These results implicate that ongoing time-resolved resting-state networks, even at short timescales, can to some extent be understood in terms of activation and deactivation of structural eigenmodes and that these eigenmodes play a role in the dynamic integration and segregation of information across the cortex, subserving cognitive functions.
Collapse
Affiliation(s)
- Prejaas Tewarie
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | - Bastian Prasse
- Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, Delft, The Netherlands
| | - Jil Meier
- Department of Neurology, Brain Simulation Section, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Kanad Mandke
- Centre for Neuroscience in Education, Department of Psychology, University of Cambridge, Cambridge, UK
| | - Shaun Warrington
- Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, Nottingham, UK
| | - Cornelis J Stam
- Department of Clinical Neurophysiology and MEG Center, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Matthew J Brookes
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | - Piet Van Mieghem
- Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, Delft, The Netherlands
| | - Stamatios N Sotiropoulos
- Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, Nottingham, UK.,Wellcome Centre for Integrative Neuroimaging (WIN-FMRIB), University of Oxford, Oxford, UK.,NIHR Biomedical Research Centre, University of Nottingham, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Arjan Hillebrand
- Department of Clinical Neurophysiology and MEG Center, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| |
Collapse
|
38
|
Abstract
Recent advances in imaging and tracing technology provide increasingly detailed reconstructions of brain connectomes. Concomitant analytic advances enable rigorous identification and quantification of functionally important features of brain network architecture. Null models are a flexible tool to statistically benchmark the presence or magnitude of features of interest, by selectively preserving specific architectural properties of brain networks while systematically randomizing others. Here we describe the logic, implementation and interpretation of null models of connectomes. We introduce randomization and generative approaches to constructing null networks, and outline a taxonomy of network methods for statistical inference. We highlight the spectrum of null models - from liberal models that control few network properties, to conservative models that recapitulate multiple properties of empirical networks - that allow us to operationalize and test detailed hypotheses about the structure and function of brain networks. We review emerging scenarios for the application of null models in network neuroscience, including for spatially embedded networks, annotated networks and correlation-derived networks. Finally, we consider the limits of null models, as well as outstanding questions for the field.
Collapse
|
39
|
Broeders TA, Douw L, Eijlers AJ, Dekker I, Uitdehaag BM, Barkhof F, Hulst HE, Vinkers CH, Geurts JJ, Schoonheim MM. A more unstable resting-state functional network in cognitively declining multiple sclerosis. Brain Commun 2022; 4:fcac095. [PMID: 35620116 PMCID: PMC9128379 DOI: 10.1093/braincomms/fcac095] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 02/14/2022] [Accepted: 04/11/2022] [Indexed: 11/24/2022] Open
Abstract
Cognitive impairment is common in people with multiple sclerosis and strongly
affects their daily functioning. Reports have linked disturbed cognitive
functioning in multiple sclerosis to changes in the organization of the
functional network. In a healthy brain, communication between brain regions and
which network a region belongs to is continuously and dynamically adapted to
enable adequate cognitive function. However, this dynamic network adaptation has
not been investigated in multiple sclerosis, and longitudinal network data
remain particularly rare. Therefore, the aim of this study was to longitudinally
identify patterns of dynamic network reconfigurations that are related to the
worsening of cognitive decline in multiple sclerosis. Resting-state functional
MRI and cognitive scores (expanded Brief Repeatable Battery of
Neuropsychological tests) were acquired in 230 patients with multiple sclerosis
and 59 matched healthy controls, at baseline (mean disease duration: 15 years)
and at 5-year follow-up. A sliding-window approach was used for functional MRI
analyses, where brain regions were dynamically assigned to one of seven
literature-based subnetworks. Dynamic reconfigurations of subnetworks were
characterized using measures of promiscuity (number of subnetworks switched to),
flexibility (number of switches), cohesion (mutual switches) and disjointedness
(independent switches). Cross-sectional differences between cognitive groups and
longitudinal changes were assessed, as well as relations with structural damage
and performance on specific cognitive domains. At baseline, 23% of
patients were cognitively impaired (≥2/7 domains
Z < −2) and 18% were mildly
impaired (≥2/7 domains
Z < −1.5). Longitudinally,
28% of patients declined over time (0.25 yearly change on ≥2/7
domains based on reliable change index). Cognitively impaired patients displayed
more dynamic network reconfigurations across the whole brain compared with
cognitively preserved patients and controls, i.e. showing higher promiscuity
(P = 0.047), flexibility
(P = 0.008) and cohesion
(P = 0.008). Over time, cognitively
declining patients showed a further increase in cohesion
(P = 0.004), which was not seen in stable
patients (P = 0.544). More cohesion was
related to more severe structural damage (average
r = 0.166,
P = 0.015) and worse verbal memory
(r = −0.156,
P = 0.022), information processing speed
(r = −0.202,
P = 0.003) and working memory
(r = −0.163,
P = 0.017). Cognitively impaired multiple
sclerosis patients exhibited a more unstable network reconfiguration compared to
preserved patients, i.e. brain regions switched between subnetworks more often,
which was related to structural damage. This shift to more unstable network
reconfigurations was also demonstrated longitudinally in patients that showed
cognitive decline only. These results indicate the potential relevance of a
progressive destabilization of network topology for understanding cognitive
decline in multiple sclerosis.
Collapse
Affiliation(s)
- Tommy A.A. Broeders
- Departments of Anatomy and Neurosciences, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Linda Douw
- Departments of Anatomy and Neurosciences, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Anand J.C. Eijlers
- Departments of Anatomy and Neurosciences, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Iris Dekker
- Departments of Neurology, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Bernard M.J. Uitdehaag
- Departments of Neurology, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Frederik Barkhof
- Departments of Radiology and Nuclear Medicine, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Queen Square Institute of Neurology and Centre for Medical Image Computing, University College London, UK
| | - Hanneke E. Hulst
- Departments of Anatomy and Neurosciences, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Christiaan H. Vinkers
- Departments of Anatomy and Neurosciences, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Departments of Psychiatry, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Jeroen J.G. Geurts
- Departments of Anatomy and Neurosciences, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Menno M. Schoonheim
- Departments of Anatomy and Neurosciences, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
40
|
Racz FS, Czoch A, Kaposzta Z, Stylianou O, Mukli P, Eke A. Multiple-Resampling Cross-Spectral Analysis: An Unbiased Tool for Estimating Fractal Connectivity With an Application to Neurophysiological Signals. Front Physiol 2022; 13:817239. [PMID: 35321422 PMCID: PMC8936508 DOI: 10.3389/fphys.2022.817239] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 01/17/2022] [Indexed: 11/16/2022] Open
Abstract
Investigating scale-free (i.e., fractal) functional connectivity in the brain has recently attracted increasing attention. Although numerous methods have been developed to assess the fractal nature of functional coupling, these typically ignore that neurophysiological signals are assemblies of broadband, arrhythmic activities as well as oscillatory activities at characteristic frequencies such as the alpha waves. While contribution of such rhythmic components may bias estimates of fractal connectivity, they are also likely to represent neural activity and coupling emerging from distinct mechanisms. Irregular-resampling auto-spectral analysis (IRASA) was recently introduced as a tool to separate fractal and oscillatory components in the power spectrum of neurophysiological signals by statistically summarizing the power spectra obtained when resampling the original signal by several non-integer factors. Here we introduce multiple-resampling cross-spectral analysis (MRCSA) as an extension of IRASA from the univariate to the bivariate case, namely, to separate the fractal component of the cross-spectrum between two simultaneously recorded neural signals by applying the same principle. MRCSA does not only provide a theoretically unbiased estimate of the fractal cross-spectrum (and thus its spectral exponent) but also allows for computing the proportion of scale-free coupling between brain regions. As a demonstration, we apply MRCSA to human electroencephalographic recordings obtained in a word generation paradigm. We show that the cross-spectral exponent as well as the proportion of fractal coupling increases almost uniformly over the cortex during the rest-task transition, likely reflecting neural desynchronization. Our results indicate that MRCSA can be a valuable tool for scale-free connectivity studies in characterizing various cognitive states, while it also can be generalized to other applications outside the field of neuroscience.
Collapse
Affiliation(s)
- Frigyes Samuel Racz
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- Department of Neurology, Dell Medical School, The University of Texas at Austin, Austin, TX, United States
- *Correspondence: Frigyes Samuel Racz,
| | - Akos Czoch
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Zalan Kaposzta
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Orestis Stylianou
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Peter Mukli
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry & Molecular Biology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Andras Eke
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- Department of Radiology & Biomedical Imaging, School of Medicine, Yale University, New Haven, CT, United States
| |
Collapse
|
41
|
Zhang R, Tam SKTS, Wong NML, Wu J, Tao J, Chen L, Lin K, Lee TMC. Aberrant functional metastability and structural connectivity are associated with rumination in individuals with major depressive disorder. Neuroimage Clin 2022; 33:102916. [PMID: 34923200 PMCID: PMC8693354 DOI: 10.1016/j.nicl.2021.102916] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 11/30/2021] [Accepted: 12/13/2021] [Indexed: 11/23/2022]
Abstract
Higher synchrony and lower metastability in adults with higher levels of rumination. Prefrontal white matter integrity deficits are also associated with rumination. Most prominent aberrations were found in the genu of the corpus callosum. Structural connectivity as the basis between dynamic connectivity and rumination. New outlook on altered structural integrity and metastability subserving rumination.
Rumination is a repetitive and compulsive thinking focusing on oneself, and the nature and consequences of distress. It is a core characteristic in psychiatric disorders characterized by affective dysregulation, and emerging evidence suggests that rumination is associated with aberrant dynamic functional connectivity and structural connectivity. However, the underlying neural mechanisms remain poorly understood. Here, we adopted a multimodal approach and tested the hypothesis that white matter connectivity forms the basis of the implications of temporal dynamics of functional connectivity in the rumination trait. Fifty-three depressed and ruminative individuals and a control group of 47 age- and gender-matched individuals with low levels of rumination underwent resting-state fMRI and diffusion tensor imaging. We found that lower global metastability and higher global synchrony of the dynamic functional connectivity were associated with higher levels of rumination. Specifically, the altered global synchrony and global metastability mediated the association between white matter integrity of the genu of the corpus callosum to rumination. Hence, our findings offered the first line of evidence for the intricate role of (sub)optimal transition of functional brain states in the connection of structural brain connectivity in ruminative thinking.
Collapse
Affiliation(s)
- Ruibin Zhang
- Laboratory of Cognitive Control and Brain Healthy, Department of Psychology, School of Public Health, Southern Medical University, Department of Psychiatry, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Sammi-Kenzie T S Tam
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China; Laboratory of Neuropsychology and Human Neuroscience, The University of Hong Kong, Hong Kong, China
| | - Nichol M L Wong
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China; Laboratory of Neuropsychology and Human Neuroscience, The University of Hong Kong, Hong Kong, China.
| | - Jingsong Wu
- Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Jing Tao
- Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Lidian Chen
- Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Kangguang Lin
- Department of Affective Disorders, Guangzhou Huiai Hospital, The Affiliated Brain Hospital of Guangzhou Medical University, China.
| | - Tatia M C Lee
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China; Laboratory of Neuropsychology and Human Neuroscience, The University of Hong Kong, Hong Kong, China; Institute of Clinical Neuropsychology, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
42
|
Espinoso A, Andrzejak RG. Phase irregularity: A conceptually simple and efficient approach to characterize electroencephalographic recordings from epilepsy patients. Phys Rev E 2022; 105:034212. [PMID: 35428047 DOI: 10.1103/physreve.105.034212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 03/06/2022] [Indexed: 06/14/2023]
Abstract
The severe neurological disorder epilepsy affects almost 1% of the world population. For patients who suffer from pharmacoresistant focal-onset epilepsy, electroencephalographic (EEG) recordings are essential for the localization of the brain area where seizures start. Apart from the visual inspection of the recordings, quantitative EEG signal analysis techniques proved to be useful for this purpose. Among other features, regularity versus irregularity and phase coherence versus phase independence allowed characterizing brain dynamics from the measured EEG signals. Can phase irregularities also characterize brain dynamics? To address this question, we use the univariate coefficient of phase velocity variation, defined as the ratio of phase velocity standard deviation and the mean phase velocity. Beyond that, as a bivariate measure we use the classical mean phase coherence to quantify the degree of phase locking. All phase-based measures are combined with surrogates to test null hypotheses about the dynamics underlying the signals. In the first part of our analysis, we use the Rössler model system to study our approach under controlled conditions. In the second part, we use the Bern-Barcelona EEG database which consists of focal and nonfocal signals extracted from seizure-free recordings. Focal signals are recorded from brain areas where the first seizure EEG signal changes can be detected, and nonfocal signals are recorded from areas that are not involved in the seizure at its onset. Our results show that focal signals have less phase variability and more phase coherence than nonfocal signals. Once combined with surrogates, the mean phase velocity proved to have the highest discriminative power between focal and nonfocal signals. In conclusion, conceptually simple and easy to compute phase-based measures can help to detect features induced by epilepsy from EEG signals. This holds not only for the classical mean phase coherence but even more so for univariate measures of phase irregularity.
Collapse
Affiliation(s)
- Anaïs Espinoso
- Department of Information and Communication Technologies, Universitat Pompeu Fabra, Carrer Roc Boronat 138, 08018 Barcelona, Catalonia, Spain and Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Carrer Baldiri Reixac 10-12, 08028 Barcelona, Catalonia, Spain
| | - Ralph G Andrzejak
- Department of Information and Communication Technologies, Universitat Pompeu Fabra, Carrer Roc Boronat 138, 08018 Barcelona, Catalonia, Spain
| |
Collapse
|
43
|
Xu L, Feng J, Yu L. Avalanche criticality in individuals, fluid intelligence, and working memory. Hum Brain Mapp 2022; 43:2534-2553. [PMID: 35146831 PMCID: PMC9057106 DOI: 10.1002/hbm.25802] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 01/23/2022] [Indexed: 02/06/2023] Open
Abstract
The critical brain hypothesis suggests that efficient neural computation can be achieved through critical brain dynamics. However, the relationship between human cognitive performance and scale‐free brain dynamics remains unclear. In this study, we investigated the whole‐brain avalanche activity and its individual variability in the human resting‐state functional magnetic resonance imaging (fMRI) data. We showed that though the group‐level analysis was inaccurate because of individual variability, the subject wise scale‐free avalanche activity was significantly associated with maximal synchronization entropy of their brain activity. Meanwhile, the complexity of functional connectivity, as well as structure–function coupling, is maximized in subjects with maximal synchronization entropy. We also observed order–disorder phase transitions in resting‐state brain dynamics and found that there were longer times spent in the subcritical regime. These results imply that large‐scale brain dynamics favor the slightly subcritical regime of phase transition. Finally, we showed evidence that the neural dynamics of human participants with higher fluid intelligence and working memory scores are closer to criticality. We identified brain regions whose critical dynamics showed significant positive correlations with fluid intelligence performance and found that these regions were located in the prefrontal cortex and inferior parietal cortex, which were believed to be important nodes of brain networks underlying human intelligence. Our results reveal the possible role that avalanche criticality plays in cognitive performance and provide a simple method to identify the critical point and map cortical states on a spectrum of neural dynamics, ranging from subcriticality to supercriticality.
Collapse
Affiliation(s)
- Longzhou Xu
- School of Physical Science and Technology, Lanzhou University, Lanzhou, China
| | - Jianfeng Feng
- Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai, China.,Department of Computer Science, University of Warwick, Coventry, UK.,School of Mathematical Sciences, School of Life Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Lianchun Yu
- School of Physical Science and Technology, Lanzhou University, Lanzhou, China.,Lanzhou Center for Theoretical Physics, Key Laboratory of Theoretical Physics of Gansu Province, Lanzhou University, Lanzhou, China.,The School of Nationalities' Educators, Qinghai Normal University, Xining, China
| |
Collapse
|
44
|
Kraft D, Fiebach CJ. Probing the association between resting-state brain network dynamics and psychological resilience. Netw Neurosci 2022; 6:175-195. [PMID: 36605891 PMCID: PMC9810279 DOI: 10.1162/netn_a_00216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 11/08/2021] [Indexed: 01/07/2023] Open
Abstract
This study aimed at replicating a previously reported negative correlation between node flexibility and psychological resilience, that is, the ability to retain mental health in the face of stress and adversity. To this end, we used multiband resting-state BOLD fMRI (TR = .675 sec) from 52 participants who had filled out three psychological questionnaires assessing resilience. Time-resolved functional connectivity was calculated by performing a sliding window approach on averaged time series parcellated according to different established atlases. Multilayer modularity detection was performed to track network reconfigurations over time, and node flexibility was calculated as the number of times a node changes community assignment. In addition, node promiscuity (the fraction of communities a node participates in) and node degree (as proxy for time-varying connectivity) were calculated to extend previous work. We found no substantial correlations between resilience and node flexibility. We observed a small number of correlations between the two other brain measures and resilience scores that were, however, very inconsistently distributed across brain measures, differences in temporal sampling, and parcellation schemes. This heterogeneity calls into question the existence of previously postulated associations between resilience and brain network flexibility and highlights how results may be influenced by specific analysis choices.
Collapse
Affiliation(s)
- Dominik Kraft
- Department of Psychology, Goethe University Frankfurt, Frankfurt, Germany,* Corresponding Author:
| | - Christian J. Fiebach
- Department of Psychology, Goethe University Frankfurt, Frankfurt, Germany,Brain Imaging Center, Goethe University Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|
45
|
Dauer T, Nguyen DT, Gang N, Dmochowski JP, Berger J, Kaneshiro B. Inter-subject Correlation While Listening to Minimalist Music: A Study of Electrophysiological and Behavioral Responses to Steve Reich's Piano Phase. Front Neurosci 2021; 15:702067. [PMID: 34955706 PMCID: PMC8695499 DOI: 10.3389/fnins.2021.702067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 11/18/2021] [Indexed: 12/03/2022] Open
Abstract
Musical minimalism utilizes the temporal manipulation of restricted collections of rhythmic, melodic, and/or harmonic materials. One example, Steve Reich's Piano Phase, offers listeners readily audible formal structure with unpredictable events at the local level. For example, pattern recurrences may generate strong expectations which are violated by small temporal and pitch deviations. A hyper-detailed listening strategy prompted by these minute deviations stands in contrast to the type of listening engagement typically cultivated around functional tonal Western music. Recent research has suggested that the inter-subject correlation (ISC) of electroencephalographic (EEG) responses to natural audio-visual stimuli objectively indexes a state of "engagement," demonstrating the potential of this approach for analyzing music listening. But can ISCs capture engagement with minimalist music, which features less obvious expectation formation and has historically received a wide range of reactions? To approach this question, we collected EEG and continuous behavioral (CB) data while 30 adults listened to an excerpt from Steve Reich's Piano Phase, as well as three controlled manipulations and a popular-music remix of the work. Our analyses reveal that EEG and CB ISC are highest for the remix stimulus and lowest for our most repetitive manipulation, no statistical differences in overall EEG ISC between our most musically meaningful manipulations and Reich's original piece, and evidence that compositional features drove engagement in time-resolved ISC analyses. We also found that aesthetic evaluations corresponded well with overall EEG ISC. Finally we highlight co-occurrences between stimulus events and time-resolved EEG and CB ISC. We offer the CB paradigm as a useful analysis measure and note the value of minimalist compositions as a limit case for the neuroscientific study of music listening. Overall, our participants' neural, continuous behavioral, and question responses showed strong similarities that may help refine our understanding of the type of engagement indexed by ISC for musical stimuli.
Collapse
Affiliation(s)
- Tysen Dauer
- Center for Computer Research in Music and Acoustics, Stanford University, Stanford, CA, United States
- Rotman Research Institute, Baycrest Centre, Toronto, ON, Canada
| | - Duc T. Nguyen
- Center for Computer Research in Music and Acoustics, Stanford University, Stanford, CA, United States
- Center for the Study of Language and Information, Stanford University, Stanford, CA, United States
| | - Nick Gang
- Center for Computer Research in Music and Acoustics, Stanford University, Stanford, CA, United States
| | - Jacek P. Dmochowski
- Department of Biomedical Engineering, City College of New York, New York, NY, United States
| | - Jonathan Berger
- Center for Computer Research in Music and Acoustics, Stanford University, Stanford, CA, United States
| | - Blair Kaneshiro
- Center for Computer Research in Music and Acoustics, Stanford University, Stanford, CA, United States
- Center for the Study of Language and Information, Stanford University, Stanford, CA, United States
| |
Collapse
|
46
|
Savolainen OW. The significance of neural inter-frequency power correlations. Sci Rep 2021; 11:23190. [PMID: 34848759 PMCID: PMC8633012 DOI: 10.1038/s41598-021-02277-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 10/26/2021] [Indexed: 11/29/2022] Open
Abstract
It is of great interest in neuroscience to determine what frequency bands in the brain have covarying power. This would help us robustly identify the frequency signatures of neural processes. However to date, to the best of the author's knowledge, a comprehensive statistical approach to this question that accounts for intra-frequency autocorrelation, frequency-domain oversampling, and multiple testing under dependency has not been undertaken. As such, this work presents a novel statistical significance test for correlated power across frequency bands for a broad class of non-stationary time series. It is validated on synthetic data. It is then used to test all of the inter-frequency power correlations between 0.2 and 8500 Hz in continuous intracortical extracellular neural recordings in Macaque M1, using a very large, publicly available dataset. The recordings were Current Source Density referenced and were recorded with a Utah array. The results support previous results in the literature that show that neural processes in M1 have power signatures across a very broad range of frequency bands. In particular, the power in LFP frequency bands as low as 20 Hz was found to almost always be statistically significantly correlated to the power in kHz frequency ranges. It is proposed that this test can also be used to discover the superimposed frequency domain signatures of all the neural processes in a neural signal, allowing us to identify every interesting neural frequency band.
Collapse
Affiliation(s)
- Oscar W Savolainen
- Centre for Bio-Inspired Technology, Imperial College London, London, UK.
| |
Collapse
|
47
|
Pope M, Fukushima M, Betzel RF, Sporns O. Modular origins of high-amplitude cofluctuations in fine-scale functional connectivity dynamics. Proc Natl Acad Sci U S A 2021; 118:e2109380118. [PMID: 34750261 PMCID: PMC8609635 DOI: 10.1073/pnas.2109380118] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2021] [Indexed: 11/22/2022] Open
Abstract
The topology of structural brain networks shapes brain dynamics, including the correlation structure of brain activity (functional connectivity) as estimated from functional neuroimaging data. Empirical studies have shown that functional connectivity fluctuates over time, exhibiting patterns that vary in the spatial arrangement of correlations among segregated functional systems. Recently, an exact decomposition of functional connectivity into frame-wise contributions has revealed fine-scale dynamics that are punctuated by brief and intermittent episodes (events) of high-amplitude cofluctuations involving large sets of brain regions. Their origin is currently unclear. Here, we demonstrate that similar episodes readily appear in silico using computational simulations of whole-brain dynamics. As in empirical data, simulated events contribute disproportionately to long-time functional connectivity, involve recurrence of patterned cofluctuations, and can be clustered into distinct families. Importantly, comparison of event-related patterns of cofluctuations to underlying patterns of structural connectivity reveals that modular organization present in the coupling matrix shapes patterns of event-related cofluctuations. Our work suggests that brief, intermittent events in functional dynamics are partly shaped by modular organization of structural connectivity.
Collapse
Affiliation(s)
- Maria Pope
- Program in Neuroscience, Indiana University, Bloomington, IN 47405
- School of Informatics, Computing and Engineering, Indiana University, Bloomington, IN 47405
| | - Makoto Fukushima
- Division of Information Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara 630-0192, Japan
- Data Science Center, Nara Institute of Science and Technology, Nara 630-0192, Japan
- Center for Information and Neural Networks, National Institute of Information and Communications Technology, Osaka 565-0871, Japan
| | - Richard F Betzel
- Program in Neuroscience, Indiana University, Bloomington, IN 47405
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405
- Cognitive Science Program, Indiana University, Bloomington, IN 47405
- Network Science Institute, Indiana University, Bloomington, IN 47405
| | - Olaf Sporns
- Program in Neuroscience, Indiana University, Bloomington, IN 47405;
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405
- Cognitive Science Program, Indiana University, Bloomington, IN 47405
- Network Science Institute, Indiana University, Bloomington, IN 47405
| |
Collapse
|
48
|
Rowland JA, Stapleton-Kotloski JR, Martindale SL, Rogers EE, Ord AS, Godwin DW, Taber KH. Alterations in the Topology of Functional Connectomes Are Associated with Post-Traumatic Stress Disorder and Blast-Related Mild Traumatic Brain Injury in Combat Veterans. J Neurotrauma 2021; 38:3086-3096. [PMID: 34435885 DOI: 10.1089/neu.2020.7450] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Post-traumatic stress disorder (PTSD) is a common condition in post-deployment service members (SM). SMs of the conflicts in Iraq and Afghanistan also frequently experience traumatic brain injury (TBI) and exposure to blasts during deployments. This study evaluated the effect of these conditions and experiences on functional brain connectomes in post-deployment, combat-exposed veterans. Functional brain connectomes were created using 5-min resting-state magnetoencephalography data. Well-established clinical interviews determined current PTSD diagnosis, as well as deployment-acquired mild TBI and history of exposure to blast. Linear regression examined the effect of these conditions on functional brain connectomes beyond covariates. There were significant interactions between blast-related mild TBI and PTSD after correction for multiple comparisons including number of nodes (non-standardized parameter estimate [PE] = -12.47), average degree (PE = 0.05), and connection strength (PE = 0.05). A main effect of blast-related mild TBI was observed on the threshold level. These results demonstrate a distinct functional connectome presentation associated with the presence of both blast-related mild TBI and PTSD. These findings suggest the possibility that blast-related mild TBI alterations in functional brain connectomes affect the presentation or progression of recovery from PTSD. The current results offer mixed support for hyper-connectivity in the chronic phase of deployment TBI.
Collapse
Affiliation(s)
- Jared A Rowland
- W. G. (Bill) Hefner VA Healthcare System, Research and Academic Affairs, Salisbury, North Carolina, USA.,Mid-Atlantic Mental Illness Research Education and Clinical Center, Durham, North Carolina, USA.,Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Jennifer R Stapleton-Kotloski
- W. G. (Bill) Hefner VA Healthcare System, Research and Academic Affairs, Salisbury, North Carolina, USA.,Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA.,Department of Neurology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Sarah L Martindale
- W. G. (Bill) Hefner VA Healthcare System, Research and Academic Affairs, Salisbury, North Carolina, USA.,Mid-Atlantic Mental Illness Research Education and Clinical Center, Durham, North Carolina, USA.,Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Emily E Rogers
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Anna S Ord
- W. G. (Bill) Hefner VA Healthcare System, Research and Academic Affairs, Salisbury, North Carolina, USA.,Mid-Atlantic Mental Illness Research Education and Clinical Center, Durham, North Carolina, USA.,Department of Neurology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Dwayne W Godwin
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Katherine H Taber
- W. G. (Bill) Hefner VA Healthcare System, Research and Academic Affairs, Salisbury, North Carolina, USA.,Mid-Atlantic Mental Illness Research Education and Clinical Center, Durham, North Carolina, USA.,Division of Biomedical Sciences, Edward Via College of Osteopathic Medicine, Blacksburg, Virginia, USA
| |
Collapse
|
49
|
Spadone S, Perrucci MG, Di Cosmo G, Costantini M, Della Penna S, Ferri F. Frontal and parietal background connectivity and their dynamic changes account for individual differences in the multisensory representation of peripersonal space. Sci Rep 2021; 11:20533. [PMID: 34654814 PMCID: PMC8520015 DOI: 10.1038/s41598-021-00048-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 10/05/2021] [Indexed: 11/22/2022] Open
Abstract
Functional connectivity (FC) of brain networks dynamically fluctuates during both rest and task execution. Individual differences in dynamic FC have been associated with several cognitive and behavioral traits. However, whether dynamic FC also contributes to sensorimotor representations guiding body-environment interactions, such as the representation of peripersonal space (PPS), is currently unknown. PPS is the space immediately surrounding the body and acts as a multisensory interface between the individual and the environment. We used an audio-tactile task with approaching sounds to map the individual PPS extension, and fMRI to estimate the background FC. Specifically, we analyzed FC values for each stimulus type (near and far space) and its across-trial variability. FC was evaluated between task-relevant nodes of two fronto-parietal networks (the Dorsal Attention Network, DAN, and the Fronto-Parietal Network, FPN) and a key PPS region in the premotor cortex (PM). PM was significantly connected to specific task-relevant nodes of the DAN and the FPN during the audio-tactile task, and FC was stronger while processing near space, as compared to far space. At the individual level, less PPS extension was associated with stronger premotor-parietal FC during processing of near space, while the across-trial variability of premotor-parietal and premotor-frontal FC was higher during the processing of far space. Notably, only across-trial FC variability captured the near-far modulation of space processing. Our findings indicate that PM connectivity with task-relevant frontal and parietal regions and its dynamic changes participate in the mechanisms that enable PPS representation, in agreement with the idea that neural variability plays a crucial role in plastic and dynamic sensorimotor representations.
Collapse
Affiliation(s)
- Sara Spadone
- Department of Neuroscience, Imaging and Clinical Sciences - and ITAB, Institute for Advanced Biomedical Technologies, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy.
| | - Mauro Gianni Perrucci
- Department of Neuroscience, Imaging and Clinical Sciences - and ITAB, Institute for Advanced Biomedical Technologies, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Giulio Di Cosmo
- Department of Neuroscience, Imaging and Clinical Sciences - and ITAB, Institute for Advanced Biomedical Technologies, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Marcello Costantini
- Department of Psychological, Health and Territorial Sciences - and ITAB, Institute for Advanced Biomedical Technologies, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Stefania Della Penna
- Department of Neuroscience, Imaging and Clinical Sciences - and ITAB, Institute for Advanced Biomedical Technologies, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Francesca Ferri
- Department of Neuroscience, Imaging and Clinical Sciences - and ITAB, Institute for Advanced Biomedical Technologies, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
50
|
Mediano PAM, Rosas FE, Barrett AB, Bor D. Decomposing Spectral and Phasic Differences in Nonlinear Features between Datasets. PHYSICAL REVIEW LETTERS 2021; 127:124101. [PMID: 34597101 DOI: 10.1103/physrevlett.127.124101] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 05/17/2021] [Accepted: 07/15/2021] [Indexed: 06/13/2023]
Abstract
When employing nonlinear methods to characterize complex systems, it is important to determine to what extent they are capturing genuine nonlinear phenomena that could not be assessed by simpler spectral methods. Specifically, we are concerned with the problem of quantifying spectral and phasic effects on an observed difference in a nonlinear feature between two systems (or two states of the same system). Here we derive, from a sequence of null models, a decomposition of the difference in an observable into spectral, phasic, and spectrum-phase interaction components. Our approach makes no assumptions about the structure of the data and adds nuance to a wide range of time series analyses.
Collapse
Affiliation(s)
- Pedro A M Mediano
- Department of Psychology, University of Cambridge, Cambridge CB2 3EB, United Kingdom
| | - Fernando E Rosas
- Centre for Psychedelic Research, Department of Medicine, Imperial College London, London SW7 2DD, United Kingdom
- Data Science Institute, Imperial College London, London SW7 2AZ, United Kingdom
- Centre for Complexity Science, Imperial College London, London SW7 2AZ, United Kingdom
| | - Adam B Barrett
- Sackler Centre for Consciousness Science, Department of Informatics, University of Sussex, Brighton BN1 9RH, United Kingdom
| | - Daniel Bor
- Department of Psychology, University of Cambridge, Cambridge CB2 3EB, United Kingdom
| |
Collapse
|