1
|
Tomko JA, Aryana K, Wu Y, Zhou G, Zhang Q, Wongwiset P, Wheeler V, Prezhdo OV, Hopkins PE. Ultrafast Charge Carrier Dynamics in Vanadium Dioxide, VO 2: Nonequilibrium Contributions to the Photoinduced Phase Transitions. J Phys Chem Lett 2025; 16:1312-1319. [PMID: 39873343 PMCID: PMC11808786 DOI: 10.1021/acs.jpclett.4c02951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 01/11/2025] [Accepted: 01/15/2025] [Indexed: 01/30/2025]
Abstract
Vanadium oxide (VO2) is an exotic phase-change material with diverse applications ranging from thermochromic smart windows to thermal sensors, neuromorphic computing, and tunable metasurfaces. Nonetheless, the mechanism responsible for its metal-insulator phase transition remains a subject of vigorous debate. Here, we investigate the ultrafast dynamics of the photoinduced phase transition in VO2 under low perturbation conditions. By experimentally examining carrier relaxation dynamics at energy levels near the VO2 band gap (0.6-0.92 eV), we note that numerous optical features do not correspond to the first-order phase transition. Previous studies indeed induced such a phase transition, but they relied on fluences at least an order of magnitude higher, leading to temperature increases well above the transition threshold (340 K). Instead, for excitation fluences that correspond to lattice temperatures only in slight excess of the phase transition (absolute temperatures < 500 K), we find that the marked changes in optical properties are dominated by a shift in the electronic density of states/Fermi level. We find that this effect is a lattice-driven process and does not occur until sufficient energy has been transferred from the excited electrons into the phonon subsystem.
Collapse
Affiliation(s)
- John A. Tomko
- Department
of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Kiumars Aryana
- Department
of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Yifan Wu
- Department
of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Guoqing Zhou
- Department
of Physics and Astronomy, University of
Southern California, Los Angeles, California 90089, United States
| | - Qiyan Zhang
- Department
of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Pat Wongwiset
- Department
of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Virginia Wheeler
- U.S.
Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Oleg V. Prezhdo
- Department
of Chemistry, University of Southern California, Los Angeles, California 90089, United States
- Department
of Physics and Astronomy, University of
Southern California, Los Angeles, California 90089, United States
| | - Patrick E. Hopkins
- Department
of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, Virginia 22904, United States
- Department
of Materials Science and Engineering, University
of Virginia, Charlottesville, Virginia 22904, United States
- Department
of Physics, University of Virginia, Charlottesville, Virginia 22904, United States
| |
Collapse
|
2
|
Bajaj S, Chiu SJ, Chen JW, Sino PA, Yang CW, Chen CT, Hwang IS, Lin YG, Chu YH, Chueh YL, Wu JM. Quantitative Study of Reversible Nonvolatile VO 2 Thin Films Through Plasma Driven Phase Engineering Process. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2408656. [PMID: 39937549 DOI: 10.1002/smll.202408656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 11/18/2024] [Indexed: 02/13/2025]
Abstract
The nanoscale control of phase transition in correlated materials offers significant insight into phase transition dynamics for the advancement of future nanoelectronics devices. This study explores the phase transition phenomenon in vanadium dioxide (VO2), focusing on the heterogeneous phases evolved after low-pressure plasma irradiation on VO2 thin films, a strong electron-correlated material. The modulation in the Argon (Ar) plasma power reveals the formation of homogeneous and heterogeneous phases with variable resistive states at room temperature. High-resolution transmission electron microscopy (HRTEM) is observed with the change in interplanar spacing revealing monoclinic (M1) at 0W, monoclinic-tetragonal rutile (phase coexistence, M1-R) at 50W, and tetragonal rutile (R) at 90W. Dielectric force microscopy (DFM) shows distinct dielectric responses corresponding to different phases, characterized by potential differences of 3 mV (M1), 5 mV (M1-R), and 7.44 mV (R) phases. The coexistence of M1-R phase is stabilized and examined at room temperature, with variations in the charge carrier density observed relative to M1 and R phases individually. The phase change in VO2 is found to be reversible, enabling stable resistive states even after the plasma is removed. The changes in plasma geometry help find and stabilize unstable phases, which can be useful in nanoelectronics.
Collapse
Affiliation(s)
- Samiksha Bajaj
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 300, Taiwan
| | - Shang-Jui Chiu
- National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu Science Park, Hsinchu, 300092, Taiwan
| | - Jia Wei Chen
- National Yang Ming Chiao Tung University, Hsinchu, 300, Taiwan
| | - Paul Albert Sino
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 300, Taiwan
| | - Chih-Wen Yang
- Institute of Physics, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei, 115201, Taiwan
| | - Chieh-Ting Chen
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 300, Taiwan
| | - Ing-Shouh Hwang
- Institute of Physics, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei, 115201, Taiwan
| | - Yan-Gu Lin
- National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu Science Park, Hsinchu, 300092, Taiwan
| | - Ying Hao Chu
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 300, Taiwan
| | - Yu-Lun Chueh
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 300, Taiwan
| | - Jyh Ming Wu
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 300, Taiwan
| |
Collapse
|
3
|
Sternbach AJ, Slusar T, Ruta FL, Moore S, Chen X, Liu MK, Kim HT, Millis AJ, Averitt RD, Basov DN. Inhomogeneous Photosusceptibility of VO_{2} Films at the Nanoscale. PHYSICAL REVIEW LETTERS 2024; 132:186903. [PMID: 38759203 DOI: 10.1103/physrevlett.132.186903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 04/03/2024] [Indexed: 05/19/2024]
Abstract
Pump-probe nano-optical experiments were used to study the light-induced insulator to metal transition (IMT) in thin films of vanadium dioxide (VO_{2}), a prototypical correlated electron system. We show that inhomogeneous optical contrast is prompted by spatially uniform photoexcitation, indicating an inhomogeneous photosusceptibility of VO_{2}. We locally characterize temperature and time dependent variations of the photoexcitation threshold necessary to induce the IMT on picosecond timescales with hundred nanometer spatial resolution. We separately measure the critical temperature T_{L}, where the IMT onsets and the local transient electronic nano-optical contrast at the nanoscale. Our data reveal variations in the photosusceptibility of VO_{2} within nanoscopic regions characterized by the same critical temperature T_{L} where metallic domains can first nucleate.
Collapse
Affiliation(s)
- A J Sternbach
- Department of Physics, Columbia University, New York, New York 10027, USA
| | - T Slusar
- Electronics and Telecommunications Research Institute, Daejeon, 34129 Republic of Korea
| | - F L Ruta
- Department of Physics, Columbia University, New York, New York 10027, USA
- Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027, USA
| | - S Moore
- Department of Physics, Columbia University, New York, New York 10027, USA
| | - X Chen
- Department of Physics, Columbia University, New York, New York 10027, USA
- Department of Physics, Stony Brook University, Stony Brook, New York 11790, USA
| | - M K Liu
- Department of Physics, Stony Brook University, Stony Brook, New York 11790, USA
| | - H T Kim
- Electronics and Telecommunications Research Institute, Daejeon, 34129 Republic of Korea
| | - A J Millis
- Department of Physics, Columbia University, New York, New York 10027, USA
| | - R D Averitt
- Department of Physics, University of California San Diego, San Diego, California 92093, USA
| | - D N Basov
- Department of Physics, Columbia University, New York, New York 10027, USA
| |
Collapse
|
4
|
Du Z, He C, Xin J, Song Z. Terahertz dynamic multichannel holograms generated by spin-multiplexing reflective metasurface. OPTICS EXPRESS 2024; 32:248-259. [PMID: 38175052 DOI: 10.1364/oe.510046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/07/2023] [Indexed: 01/05/2024]
Abstract
In recent years, metasurfaces have attracted considerable interest for their unprecedented capabilities to manipulate intensity, phase, and polarization of an electromagnetic wave. Although metasurface-based wavefront modulation has achieved numerous successful results, implementation of multifunctional devices in a single metasurface still meet significant challenges. Here, a novel multilayer structure is designed using properties of vanadium dioxide (VO2). Propagation phase and geometric phase are introduced in this structure to achieve multichannel holographic imaging in terahertz band. When the temperature is above 68°C, VO2 becomes a metal and it plays a role in wavefront modulation for terahertz wave. The left-handed channel realizes a hologram letter L and the right-handed channel realizes a hologram letter R. When the temperature is below 68°C, VO2 changes to an insulator, and electromagnetic wave is controlled by gold structures embedded inside a VO2 film. In this case, hologram number 2 is realized in the left-handed channel and hologram number 6 appears in the right-handed channel. Our structure has advantages of low crosstalk, multiple channels, and large bandwidth. This novel design paves a new road for multichannel imaging and information encryption.
Collapse
|
5
|
Inami E, Nishioka K, Kanasaki J. Atomic-scale view of the photoinduced structural transition to form sp 3-like bonded order phase in graphite. Sci Rep 2023; 13:21439. [PMID: 38102145 PMCID: PMC10724284 DOI: 10.1038/s41598-023-47389-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/13/2023] [Indexed: 12/17/2023] Open
Abstract
Photoexcitation of solids often induces structural phase transitions between different ordered phases, some of which are unprecedented and thermodynamically inaccessible. The phenomenon, known as photoinduced structural phase transition (PSPT), is of significant interest to the technological progress of advanced materials processing and the fundamental understanding of material physics. Here, we applied scanning tunnelling microscopy (STM) to directly characterise the primary processes of the PSPT in graphite to form a sp3-like carbon nano-phase called diaphite. The primary challenge was to provide microscopic views of the graphite-to-diaphite transition. On an atomic scale, STM imaging of the photoexcited surface revealed the nucleation and proliferation processes of the diaphite phase; these were governed by the formation of sp3-like interlayer bonds. The growth mode of the diaphite phase depends strongly on the photon energy of excitation laser light. Different dynamical pathways were proposed to explain the formation of a sp3-like interlayer bonding. Potential mechanisms for photon-energy-dependent growth were examined based on the experimental and calculated results. The present results provide insight towards realising optical control of sp2-to-sp3 conversions and the organisation of nanoscale structures in graphene-related materials.
Collapse
Affiliation(s)
- Eiichi Inami
- School of Systems Engineering, Kochi University of Technology, 185 Miyanokuchi, Tosayamada, Kami, Kochi, 782-8502, Japan.
| | - Keita Nishioka
- Math. and Science Education Research Center, Kanazawa Institute of Technology, 7-1 Ohgigaoka, Nonoichi, Ishikawa, 921-8501, Japan
| | - Jun'ichi Kanasaki
- Graduate School of Engineering, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka, 558-8585, Japan
| |
Collapse
|
6
|
Mori S, Tanimura H, Ichitsubo T, Sutou Y. Photoinduced Nonvolatile Displacive Transformation and Optical Switching in MnTe Semiconductors. ACS APPLIED MATERIALS & INTERFACES 2023; 15:42730-42736. [PMID: 37640668 DOI: 10.1021/acsami.3c07537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
MnTe is considered a promising candidate for next-generation phase change materials owing to the reversible and nonvolatile phase transformation between its α and β' phases by irradiation of a nanosecond laser or application of a pulse voltage. In this work, for a faster phase control of MnTe, the response of metastable β-MnTe thin films to femtosecond (fs) laser irradiation was investigated. Using ultrafast optical spectroscopy, we inferred transient phase transformation. Moreover, with an increase in laser-excitation fluence, a nonvolatile structural change from the β to α phase was experimentally observed by Raman spectroscopy and transmission electron microscopy without ablation damage on the sample. The observation results strongly suggest that the fs-laser-induced β → α phase transformation proceeds through the nucleation and growth mode without a large temperature increase.
Collapse
Affiliation(s)
- Shunsuke Mori
- Department of Materials Science, Graduate School of Engineering, Tohoku University, 6-6-11, Aoba-yama, Aoba-ku, Sendai 980-8579, Japan
| | - Hiroshi Tanimura
- Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Tetsu Ichitsubo
- Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Yuji Sutou
- Department of Materials Science, Graduate School of Engineering, Tohoku University, 6-6-11, Aoba-yama, Aoba-ku, Sendai 980-8579, Japan
- WPI-Advanced Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| |
Collapse
|
7
|
Carbin T, Zhang X, Culver AB, Zhao H, Zong A, Acharya R, Abbamonte CJ, Roy R, Cao G, Kogar A. Evidence for Bootstrap Percolation Dynamics in a Photoinduced Phase Transition. PHYSICAL REVIEW LETTERS 2023; 130:186902. [PMID: 37204876 DOI: 10.1103/physrevlett.130.186902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/27/2023] [Accepted: 03/30/2023] [Indexed: 05/21/2023]
Abstract
Upon intense femtosecond photoexcitation, a many-body system can undergo a phase transition through a nonequilibrium route, but understanding these pathways remains an outstanding challenge. Here, we use time-resolved second harmonic generation to investigate a photoinduced phase transition in Ca_{3}Ru_{2}O_{7} and show that mesoscale inhomogeneity profoundly influences the transition dynamics. We observe a marked slowing down of the characteristic time τ that quantifies the transition between two structures. τ evolves nonmonotonically as a function of photoexcitation fluence, rising from below 200 fs to ∼1.4 ps, then falling again to below 200 fs. To account for the observed behavior, we perform a bootstrap percolation simulation that demonstrates how local structural interactions govern the transition kinetics. Our work highlights the importance of percolating mesoscale inhomogeneity in the dynamics of photoinduced phase transitions and provides a model that may be useful for understanding such transitions more broadly.
Collapse
Affiliation(s)
- Tyler Carbin
- Department of Physics and Astronomy, University of California Los Angeles, Los Angeles, California 90095-1547, USA
| | - Xinshu Zhang
- Department of Physics and Astronomy, University of California Los Angeles, Los Angeles, California 90095-1547, USA
| | - Adrian B Culver
- Department of Physics and Astronomy, University of California Los Angeles, Los Angeles, California 90095-1547, USA
- Mani L. Bhaumik Institute for Theoretical Physics, Department of Physics and Astronomy, University of California Los Angeles, Los Angeles, California 90095, USA
| | - Hengdi Zhao
- Department of Physics, University of Colorado at Boulder, Boulder, Colorado 80309, USA
| | - Alfred Zong
- Department of Chemistry, University of California at Berkeley, Berkeley, California, 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, 94720, USA
| | - Rishi Acharya
- Department of Physics and Astronomy, University of California Los Angeles, Los Angeles, California 90095-1547, USA
| | - Cecilia J Abbamonte
- Department of Physics and Astronomy, University of California Los Angeles, Los Angeles, California 90095-1547, USA
| | - Rahul Roy
- Department of Physics and Astronomy, University of California Los Angeles, Los Angeles, California 90095-1547, USA
- Mani L. Bhaumik Institute for Theoretical Physics, Department of Physics and Astronomy, University of California Los Angeles, Los Angeles, California 90095, USA
| | - Gang Cao
- Department of Physics, University of Colorado at Boulder, Boulder, Colorado 80309, USA
| | - Anshul Kogar
- Department of Physics and Astronomy, University of California Los Angeles, Los Angeles, California 90095-1547, USA
| |
Collapse
|
8
|
Xu C, Jin C, Chen Z, Lu Q, Cheng Y, Zhang B, Qi F, Chen J, Yin X, Wang G, Xiang D, Qian D. Transient dynamics of the phase transition in VO 2 revealed by mega-electron-volt ultrafast electron diffraction. Nat Commun 2023; 14:1265. [PMID: 36882433 PMCID: PMC9992676 DOI: 10.1038/s41467-023-37000-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 02/20/2023] [Indexed: 03/09/2023] Open
Abstract
Vanadium dioxide (VO2) exhibits an insulator-to-metal transition accompanied by a structural transition near room temperature. This transition can be triggered by an ultrafast laser pulse. Exotic transient states, such as a metallic state without structural transition, were also proposed. These unique characteristics let VO2 have great potential in thermal switchable devices and photonic applications. Although great efforts have been made, the atomic pathway during the photoinduced phase transition is still not clear. Here, we synthesize freestanding quasi-single-crystal VO2 films and examine their photoinduced structural phase transition with mega-electron-volt ultrafast electron diffraction. Leveraging the high signal-to-noise ratio and high temporal resolution, we observe that the disappearance of vanadium dimers and zigzag chains does not coincide with the transformation of crystal symmetry. After photoexcitation, the initial structure is strongly modified within 200 femtoseconds, resulting in a transient monoclinic structure without vanadium dimers and zigzag chains. Then, it continues to evolve to the final tetragonal structure in approximately 5 picoseconds. In addition, only one laser fluence threshold instead of two thresholds suggested in polycrystalline samples is observed in our quasi-single-crystal samples. Our findings provide essential information for a comprehensive understanding of the photoinduced ultrafast phase transition in VO2.
Collapse
Affiliation(s)
- Chenhang Xu
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Cheng Jin
- Key Laboratory for Laser Plasmas (Ministry of Education), School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, China
- Collaborative Innovation Center of IFSA, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zijing Chen
- Key Laboratory for Laser Plasmas (Ministry of Education), School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, China
- Collaborative Innovation Center of IFSA, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qi Lu
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yun Cheng
- Key Laboratory for Laser Plasmas (Ministry of Education), School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, China
- Collaborative Innovation Center of IFSA, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Bo Zhang
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Fengfeng Qi
- Key Laboratory for Laser Plasmas (Ministry of Education), School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, China
- Collaborative Innovation Center of IFSA, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jiajun Chen
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xunqing Yin
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Guohua Wang
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Dao Xiang
- Key Laboratory for Laser Plasmas (Ministry of Education), School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, China.
- Collaborative Innovation Center of IFSA, Shanghai Jiao Tong University, Shanghai, 200240, China.
- Tsung-Dao Lee Institute, Shanghai Jiao Tong University, Shanghai, 200240, China.
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Dong Qian
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, China.
- Tsung-Dao Lee Institute, Shanghai Jiao Tong University, Shanghai, 200240, China.
- Collaborative Innovation Center of Advanced Microstructures, Nanjing, 210093, China.
| |
Collapse
|
9
|
Zhou W, Jiang M, Hu F, Gong Y, Zhang L, Zeng L, Jiang W, Li D, Wang H, Liu W, Lin S, Hou X. Terahertz phase modulator based on a metal-VO 2 reconfigurable metasurface. APPLIED OPTICS 2023; 62:1103-1108. [PMID: 36821170 DOI: 10.1364/ao.479520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 12/22/2022] [Indexed: 06/18/2023]
Abstract
Actively controlling the phase of a terahertz (THz) wave is of great significance for beaming, tunable focusing, and holography. We present a THz phase modulator based on an electrically triggered vanadium dioxide (V O 2) reconfigurable metasurface. The unit cell of the device consists of two split-ring resonators embedded with a V O 2 ribbon. By electrically triggering the insulator-to-metal transition of V O 2, the resonance mode and resonance intensity of the unit cell can be dynamically controlled. The simulation results show that the structure can achieve a phase shift of about 360° in the range of 1.03-1.13 THz, and the reflection amplitude can reach 80%. The device has potential applications in THz imaging, radar, broadband wireless communications, and array phase control.
Collapse
|
10
|
Dong T, Zhang SJ, Wang NL. Recent Development of Ultrafast Optical Characterizations for Quantum Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022:e2110068. [PMID: 35853841 DOI: 10.1002/adma.202110068] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 06/09/2022] [Indexed: 06/15/2023]
Abstract
The advent of intense ultrashort optical pulses spanning a frequency range from terahertz to the visible has opened a new era in the experimental investigation and manipulation of quantum materials. The generation of strong optical field in an ultrashort time scale enables the steering of quantum materials nonadiabatically, inducing novel phenomenon or creating new phases which may not have an equilibrium counterpart. Ultrafast time-resolved optical techniques have provided rich information and played an important role in characterization of the nonequilibrium and nonlinear properties of solid systems. Here, some of the recent progress of ultrafast optical techniques and their applications to the detection and manipulation of physical properties in selected quantum materials are reviewed. Specifically, the new development in the detection of the Higgs mode and photoinduced nonequilibrium response in the study of superconductors by time-resolved terahertz spectroscopy are discussed.
Collapse
Affiliation(s)
- Tao Dong
- International Center for Quantum Materials, School of Physics, Peking University, Beijing, 100871, China
| | - Si-Jie Zhang
- International Center for Quantum Materials, School of Physics, Peking University, Beijing, 100871, China
| | - Nan-Lin Wang
- International Center for Quantum Materials, School of Physics, Peking University, Beijing, 100871, China
- Collaborative Innovation Center of Quantum Matter, Beijing, 100871, China
- Beijing Academy of Quantum Information Sciences, Beijing, 100913, China
| |
Collapse
|
11
|
Ren Z, Xu J, Liu J, Li B, Zhou C, Sheng Z. Active and Smart Terahertz Electro-Optic Modulator Based on VO 2 Structure. ACS APPLIED MATERIALS & INTERFACES 2022; 14:26923-26930. [PMID: 35652202 DOI: 10.1021/acsami.2c04736] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Modulating terahertz (THz) waves actively and smartly through an external field is highly desired in the development of THz spectroscopic devices. Here, we demonstrate an active and smart electro-optic THz modulator based on a strongly correlated electron oxide vanadium dioxide (VO2). With milliampere current excitation on the VO2 thin film, the transmission, reflection, absorption, and phase of THz waves can be modulated efficiently. In particular, the antireflection condition can be actively achieved and the modulation depth reaches 99.9%, accompanied by a 180° phase switching. Repeated and current scanning experiments confirm the high stability and multibit modulation of this electro-optic modulation. Most strikingly, by utilizing a feedback loop of "THz-electro-THz" geometry, a smart electro-optic THz control is realized. For instance, the antireflection condition can be stabilized precisely no matter what the initial condition is and how the external environment changes. The proposed electro-optic THz modulation method, taking advantage of strongly correlated electron material, opens up avenues for the realization of THz smart devices.
Collapse
Affiliation(s)
- Zhuang Ren
- Anhui Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, HFIPS, Anhui, Chinese Academy of Sciences, Hefei 230031, P. R. China
- University of Science and Technology of China, Hefei 230026, P. R. China
| | - Jinyi Xu
- Anhui University, Hefei 230601, P. R. China
| | | | - Bolin Li
- Anhui Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, HFIPS, Anhui, Chinese Academy of Sciences, Hefei 230031, P. R. China
| | - Chun Zhou
- Anhui Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, HFIPS, Anhui, Chinese Academy of Sciences, Hefei 230031, P. R. China
| | - Zhigao Sheng
- Anhui Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, HFIPS, Anhui, Chinese Academy of Sciences, Hefei 230031, P. R. China
| |
Collapse
|
12
|
Zheng Z, Luo Y, Yang H, Yi Z, Zhang J, Song Q, Yang W, Liu C, Wu X, Wu P. Thermal tuning of terahertz metamaterial absorber properties based on VO 2. Phys Chem Chem Phys 2022; 24:8846-8853. [PMID: 35356962 DOI: 10.1039/d2cp01070d] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We present a novel, structurally simple, multifunctional broadband absorber. It consists of a patterned vanadium dioxide film and a metal plate spaced by a dielectric layer. Temperature control allows flexible adjustment of the absorption intensity from 0 to 0.999. The modulation mechanism of the absorber stems from the thermogenic phase change properties of the vanadium dioxide material. The absorber achieves total reflection properties in the terahertz band when the vanadium dioxide is in the insulated state. When the vanadium dioxide is in its metallic state, the absorber achieves near-perfect absorption in the ultra-broadband range of 3.7 THz-9.7 THz. Impedance matching theory and the analysis of electric field are also used to illustrate the mechanism of operation. Compared to previous reports, our structure utilizes just a single cell structure (3 layers only), and it is easy to process and manufacture. The absorption rate and operating bandwidth of the absorber are also optimised. In addition, the absorber is not only insensitive to polarization, but also very tolerant to the angle of incidence. Such a design would have great potential in wide-ranging applications, including photochemical energy harvesting, stealth devices, thermal emitters, etc.
Collapse
Affiliation(s)
- Zhipeng Zheng
- Joint Laboratory for Extreme Conditions Matter Properties, Southwest University of Science and Technology, Mianyang 621010, China.
| | - Yao Luo
- Joint Laboratory for Extreme Conditions Matter Properties, Southwest University of Science and Technology, Mianyang 621010, China.
| | - Hua Yang
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China
| | - Zao Yi
- Joint Laboratory for Extreme Conditions Matter Properties, Southwest University of Science and Technology, Mianyang 621010, China.
| | - Jianguo Zhang
- Department of Physics, Jinzhong University, Jinzhong 030619, China.
| | - Qianjv Song
- Joint Laboratory for Extreme Conditions Matter Properties, Southwest University of Science and Technology, Mianyang 621010, China.
| | - Wenxing Yang
- School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou, Hubei 434023, China
| | - Chao Liu
- School of Physics and Electronics Engineering, Northeast Petroleum University, Daqing 163318, P. R. China
| | - Xianwen Wu
- School of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, China
| | - Pinghui Wu
- Fujian Provincial Key Laboratory for Advanced Micro-nano Photonics Technology and Devices, Quanzhou Normal University, Quanzhou 362000, China.
| |
Collapse
|
13
|
Degl’Innocenti R, Lin H, Navarro-Cía M. Recent progress in terahertz metamaterial modulators. NANOPHOTONICS (BERLIN, GERMANY) 2022; 11:1485-1514. [PMID: 39635280 PMCID: PMC11501865 DOI: 10.1515/nanoph-2021-0803] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 03/21/2022] [Indexed: 12/07/2024]
Abstract
The terahertz (0.1-10 THz) range represents a fast-evolving research and industrial field. The great interest for this portion of the electromagnetic spectrum, which lies between the photonics and the electronics ranges, stems from the unique and disruptive sectors where this radiation finds applications in, such as spectroscopy, quantum electronics, sensing and wireless communications beyond 5G. Engineering the propagation of terahertz light has always proved to be an intrinsically difficult task and for a long time it has been the bottleneck hindering the full exploitation of the terahertz spectrum. Amongst the different approaches that have been proposed so far for terahertz signal manipulation, the implementation of metamaterials has proved to be the most successful one, owing to the relative ease of realisation, high efficiency and spectral versatility. In this review, we present the latest developments in terahertz modulators based on metamaterials, while highlighting a few selected key applications in sensing, wireless communications and quantum electronics, which have particularly benefitted from these developments.
Collapse
Affiliation(s)
| | - Hungyen Lin
- Department of Engineering, University of Lancaster, Bailrigigg, LancasterLA1 4YW, UK
| | - Miguel Navarro-Cía
- School of Physics and Astronomy, University of Birmingham, B15 2TTBirmingham, UK
- Department of Electronic, Electrical and Systems Engineering, University of Birmingham, BirminghamB15 2TT, UK
| |
Collapse
|
14
|
Lan Y, Yang G, Li Y, Wang Y, Shi Q, Cheng G. Optical Properties of V 2O 5 Thin Films on Different Substrates and Femtosecond Laser-Induced Phase Transition Studied by Pump-Probe Method. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:330. [PMID: 35159675 PMCID: PMC8839763 DOI: 10.3390/nano12030330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/09/2022] [Accepted: 01/17/2022] [Indexed: 12/07/2022]
Abstract
Vanadium pentoxide can undergo a reversible phase transition by heating above 260 °C; its non-thermal phase transition, as well as ultrafast dynamical processes, is still not known. Here, femtosecond laser-induced phase transition properties in V2O5 thin films were first explored using femtosecond time-resolved pump-probe spectroscopy. The results show that the phase transient processes occur on a 10-15-10-13 temporal scale. The phase transition and recovery properties are dependent on both the substrates and pump laser energy densities. We propose the oxygen vacancies theory to explain the results, and we provide valuable insights into V2O5 films for potential applications.
Collapse
Affiliation(s)
- Yu Lan
- State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics of CAS, Xi’an 710119, China; (Y.L.); (G.Y.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guowen Yang
- State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics of CAS, Xi’an 710119, China; (Y.L.); (G.Y.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yangping Li
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi’an 710072, China;
| | - Yuheng Wang
- Research Center of Semiconductor Lighting and Information Engineering Technology, South China University of Technology, Guangzhou 510641, China;
| | - Qianqian Shi
- School of Electronics and Information, School of Artificial Intelligence, Optics and Electronics (iOPEN), Northwestern Polytechnical University, Xi’an 710012, China;
| | - Guanghua Cheng
- School of Electronics and Information, School of Artificial Intelligence, Optics and Electronics (iOPEN), Northwestern Polytechnical University, Xi’an 710012, China;
| |
Collapse
|
15
|
Sternbach AJ, Ruta FL, Shi Y, Slusar T, Schalch J, Duan G, McLeod AS, Zhang X, Liu M, Millis AJ, Kim HT, Chen LQ, Averitt RD, Basov DN. Nanotextured Dynamics of a Light-Induced Phase Transition in VO 2. NANO LETTERS 2021; 21:9052-9060. [PMID: 34724612 DOI: 10.1021/acs.nanolett.1c02638] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We investigate transient nanotextured heterogeneity in vanadium dioxide (VO2) thin films during a light-induced insulator-to-metal transition (IMT). Time-resolved scanning near-field optical microscopy (Tr-SNOM) is used to study VO2 across a wide parameter space of infrared frequencies, picosecond time scales, and elevated steady-state temperatures with nanoscale spatial resolution. Room temperature, steady-state, phonon enhanced nano-optical contrast reveals preexisting "hidden" disorder. The observed contrast is associated with inequivalent twin domain structures. Upon thermal or optical initiation of the IMT, coexisting metallic and insulating regions are observed. Correlations between the transient and steady-state nano-optical textures reveal that heterogeneous nucleation is partially anchored to twin domain interfaces and grain boundaries. Ultrafast nanoscopic dynamics enable quantification of the growth rate and bound the nucleation rate. Finally, we deterministically anchor photoinduced nucleation to predefined nanoscopic regions by locally enhancing the electric field of pump radiation using nanoantennas and monitor the on-demand emergent metallicity in space and time.
Collapse
Affiliation(s)
- Aaron J Sternbach
- Department of Physics, Columbia University, New York, New York 10027, United States
| | - Francesco L Ruta
- Department of Physics, Columbia University, New York, New York 10027, United States
- Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027, United States
| | - Yin Shi
- Department of Materials Science and Engineering, The Pennsylvania State University, State College, Pennsylvania 16801,United States
| | - Tetiana Slusar
- Electronics and Telecommunications Research Institute, Daejeon 34129, Republic of Korea
| | - Jacob Schalch
- Department of Physics, University of California San Diego, San Diego, California 92093, United States
| | - Guangwu Duan
- Department of Physics, Boston University, Boston, Massachusetts 02215, United States
| | - Alexander S McLeod
- Department of Physics, Columbia University, New York, New York 10027, United States
| | - Xin Zhang
- Department of Physics, Boston University, Boston, Massachusetts 02215, United States
| | - Mengkun Liu
- Department of Physics, Stony Brook University, Stony Brook, New York 11790, United States
| | - Andrew J Millis
- Department of Physics, Columbia University, New York, New York 10027, United States
| | - Hyun-Tak Kim
- Electronics and Telecommunications Research Institute, Daejeon 34129, Republic of Korea
| | - Long-Qing Chen
- Department of Materials Science and Engineering, The Pennsylvania State University, State College, Pennsylvania 16801,United States
| | - Richard D Averitt
- Department of Physics, University of California San Diego, San Diego, California 92093, United States
| | - D N Basov
- Department of Physics, Columbia University, New York, New York 10027, United States
| |
Collapse
|
16
|
Lu C, Lu Q, Gao M, Lin Y. Dynamic Manipulation of THz Waves Enabled by Phase-Transition VO 2 Thin Film. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:E114. [PMID: 33419046 PMCID: PMC7825355 DOI: 10.3390/nano11010114] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 12/27/2020] [Accepted: 12/31/2020] [Indexed: 11/26/2022]
Abstract
The reversible and multi-stimuli responsive insulator-metal transition of VO2, which enables dynamic modulation over the terahertz (THz) regime, has attracted plenty of attention for its potential applications in versatile active THz devices. Moreover, the investigation into the growth mechanism of VO2 films has led to improved film processing, more capable modulation and enhanced device compatibility into diverse THz applications. THz devices with VO2 as the key components exhibit remarkable response to external stimuli, which is not only applicable in THz modulators but also in rewritable optical memories by virtue of the intrinsic hysteresis behaviour of VO2. Depending on the predesigned device structure, the insulator-metal transition (IMT) of VO2 component can be controlled through thermal, electrical or optical methods. Recent research has paid special attention to the ultrafast modulation phenomenon observed in the photoinduced IMT, enabled by an intense femtosecond laser (fs laser) which supports "quasi-simultaneous" IMT within 1 ps. This progress report reviews the current state of the field, focusing on the material nature that gives rise to the modulation-allowed IMT for THz applications. An overview is presented of numerous IMT stimuli approaches with special emphasis on the underlying physical mechanisms. Subsequently, active manipulation of THz waves through pure VO2 film and VO2 hybrid metamaterials is surveyed, highlighting that VO2 can provide active modulation for a wide variety of applications. Finally, the common characteristics and future development directions of VO2-based tuneable THz devices are discussed.
Collapse
Affiliation(s)
- Chang Lu
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China; (C.L.); (Q.L.)
- State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Qingjian Lu
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China; (C.L.); (Q.L.)
- State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Min Gao
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China; (C.L.); (Q.L.)
- State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Yuan Lin
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China; (C.L.); (Q.L.)
- State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, China
- Medico-Engineering Cooperation on Applied Medicine Research Center, University of Electronic Science and Technology of China, Chengdu 610054, China
| |
Collapse
|
17
|
Ren Z, Cheng L, Hu L, Liu C, Jiang C, Yang S, Ma Z, Zhou C, Wang H, Zhu X, Sun Y, Sheng Z. Photoinduced Broad-band Tunable Terahertz Absorber Based on a VO 2 Thin Film. ACS APPLIED MATERIALS & INTERFACES 2020; 12:48811-48819. [PMID: 32975107 DOI: 10.1021/acsami.0c15297] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The demand for terahertz (THz) communication and detection fuels continuous research for high performance of THz absorption materials. In addition to varying the materials and their structure passively, an alternative approach is to modulate a THz wave actively by tuning an external stimulus. Correlated oxides are ideal materials for this because the effects of a small external control parameter can be amplified by inner electronic correlations. Here, by utilizing an unpatterned strongly correlated electron oxide VO2 thin film, a photoinduced broad-band tunable THz absorber is realized first. The absorption, transmission, reflection, and phase of THz waves can all be actively controlled by an external pump laser above room temperature. By varying the laser fluence, the average broad-band absorption can be tuned from 18.9 to 74.7% and the average transmission can be tuned from 9.2 to 69.2%. Meanwhile, a broad-band antireflection is obtained at 5.6 mJ/cm2, and a π-phase shift of a reflected THz wave is achieved when the fluence increases greater than 5.7 mJ/cm2. Apart from other modulators, the photoexcitation-assisted dual-phase competition is identified as the origin of this active THz multifunctional modulation. Our work suggests that advantages of controllable phase separation in strongly correlated electron systems could provide viable routes in the creation of active optical components for THz waves.
Collapse
Affiliation(s)
- Zhuang Ren
- Anhui Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, China
- University of Science and Technology of China, Hefei 230026, China
| | - Long Cheng
- Anhui Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, China
- University of Science and Technology of China, Hefei 230026, China
| | - Ling Hu
- Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, China
| | - Caixing Liu
- Anhui Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, China
- University of Science and Technology of China, Hefei 230026, China
| | - Chengxin Jiang
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
| | - Shige Yang
- Anhui Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, China
- University of Science and Technology of China, Hefei 230026, China
| | - Zongwei Ma
- Anhui Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, China
- Key Laboratory of Photovoltaic and Energy Conservation Materials, Chinese Academy of Sciences, Hefei 230031, China
| | - Chun Zhou
- Anhui Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, China
- Key Laboratory of Photovoltaic and Energy Conservation Materials, Chinese Academy of Sciences, Hefei 230031, China
| | - Haomin Wang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 200031, China
| | - Xuebin Zhu
- Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, China
| | - Yuping Sun
- Anhui Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, China
- Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Zhigao Sheng
- Anhui Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, China
- Key Laboratory of Photovoltaic and Energy Conservation Materials, Chinese Academy of Sciences, Hefei 230031, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| |
Collapse
|
18
|
Yaxin Z, Hongxin Z, Wei K, Lan W, Mittleman DM, Ziqiang Y. Terahertz smart dynamic and active functional electromagnetic metasurfaces and their applications. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2020; 378:20190609. [PMID: 32921231 PMCID: PMC7536021 DOI: 10.1098/rsta.2019.0609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/07/2020] [Indexed: 06/11/2023]
Abstract
The demand for smart and multi-functional applications in the terahertz (THz) frequency band, such as for communication, imaging, spectroscopy, sensing and THz integrated circuits, motivates the development of novel active, controllable and informational devices for manipulating and controlling THz waves. Metasurfaces are planar artificial structures composed of thousands of unit cells or metallic structures, whose size is either comparable to or smaller than the wavelength of the illuminated wave, which can efficiently interact with the THz wave and exhibit additional degrees of freedom to modulate the THz wave. In the past decades, active metasurfaces have been developed by combining diode arrays, two-dimensional active materials, two-dimensional electron gases, phase transition material films and other such elements, which can overcome the limitations of conventional bulk materials and structures for applications in compact THz multi-functional antennas, diffractive devices, high-speed data transmission and high-resolution imaging. In this paper, we provide a brief overview of the development of dynamic and active functional electromagnetic metasurfaces and their applications in the THz band in recent years. Different kinds of active metasurfaces are cited and introduced. We believe that, in the future, active metasurfaces will be combined with digitalization and coding to yield more intelligent metasurfaces, which can be used to realize smart THz wave beam scanning, automatic target recognition imaging, self-adaptive directional high-speed data transmission network, biological intelligent detection and other such applications. This article is part of the theme issue 'Advanced electromagnetic non-destructive evaluation and smart monitoring'.
Collapse
Affiliation(s)
- Zhang Yaxin
- Terahertz Science Cooperative Innovation Center, University of Electronic Science and Technology of China, Chengdu 610054, People's Republic of China
| | - Zeng Hongxin
- Terahertz Science Cooperative Innovation Center, University of Electronic Science and Technology of China, Chengdu 610054, People's Republic of China
| | - Kou Wei
- Terahertz Science Cooperative Innovation Center, University of Electronic Science and Technology of China, Chengdu 610054, People's Republic of China
| | - Wang Lan
- Terahertz Science Cooperative Innovation Center, University of Electronic Science and Technology of China, Chengdu 610054, People's Republic of China
| | | | - Yang Ziqiang
- Terahertz Science Cooperative Innovation Center, University of Electronic Science and Technology of China, Chengdu 610054, People's Republic of China
| |
Collapse
|
19
|
Abreu E, Meyers D, Thorsmølle VK, Zhang J, Liu X, Geng K, Chakhalian J, Averitt RD. Nucleation and Growth Bottleneck in the Conductivity Recovery Dynamics of Nickelate Ultrathin Films. NANO LETTERS 2020; 20:7422-7428. [PMID: 32902285 DOI: 10.1021/acs.nanolett.0c02828] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We investigate THz conductivity dynamics in NdNiO3 and EuNiO3 ultrathin films (15 unit cells, u.c., ∼5.7 nm thick) following a photoinduced thermal quench into the metallic state and reveal a clear contrast between first- and second-order dynamics. While in EuNiO3 the conductivity recovers exponentially, in NdNiO3 the recovery is nonexponential and slower than a simple thermal model. Crucially, it is consistent with first-order dynamics and well-described by a 2d Avrami model, with supercooling leading to metastable phase coexistence on the nano- to mesoscopic scale. This novel observation is a fundamentally dynamic manifestation of the first-order character of the insulator-to-metal transition, which the nanoscale thickness of our films and their fast cooling rate enable us to detect. The large transients seen in our films are promising for fast electronic (and magnetic) switching applications.
Collapse
Affiliation(s)
- E Abreu
- Institute for Quantum Electronics, Department of Physics, ETH Zurich, 8093 Zurich, Switzerland
| | - D Meyers
- Department of Physics, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - V K Thorsmølle
- Department of Physics, Boston University, Boston, Massachusetts 02215, United States
- Department of Physics, UC San Diego, La Jolla, California 92093, United States
| | - J Zhang
- Department of Physics, UC San Diego, La Jolla, California 92093, United States
- Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - X Liu
- Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08854, United States
| | - K Geng
- Department of Physics, Boston University, Boston, Massachusetts 02215, United States
| | - J Chakhalian
- Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08854, United States
| | - R D Averitt
- Department of Physics, UC San Diego, La Jolla, California 92093, United States
| |
Collapse
|
20
|
Jiang N, Bai Y, Yang B, Wang D, Zhao S. Switchable metal-insulator transition in core-shell cluster-assembled nanostructure films. NANOSCALE 2020; 12:18144-18152. [PMID: 32852508 DOI: 10.1039/d0nr04681g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Fe/Fe3O4 core-shell-cluster-assembled nanostructured films were prepared using the low-energy cluster beam deposition technique. The temperature-dependent resistivity behaviors were investigated for the films with changing core-occupation ratio of clusters. Much interestingly and surprisingly, a switchable metal-insulator transition can be observed, featuring the rapid switching from the metal state to the insulation state and then back to the metal state, for films within a specific range of core-occupation ratio. Further, the resistivity change rate used to characterize the metal-insulator transition can reach as high as two orders of magnitude over a very narrow temperature region. The design of Fe/Fe3O4 core-shell clusters plays a decisive role in the mechanism of the switchable metal-insulator transition in these films. The assembled core-shell clusters in the films form current conduction channels that are switchable between the cores and shells of clusters as the temperature changes. The switching of the current conduction channels can be regulated by controlling the core-occupation ratios of clusters, which induce a switchable metal-insulator transition and can be verified by the effective medium theory over a specific core-occupation ratio range.
Collapse
Affiliation(s)
- Ning Jiang
- School of Physical Science and Technology, & Inner Mongolia Key Lab of Nanoscience and Nanotechnology, Inner Mongolia University, Hohhot 010021, PR China.
| | - Yulong Bai
- School of Physical Science and Technology, & Inner Mongolia Key Lab of Nanoscience and Nanotechnology, Inner Mongolia University, Hohhot 010021, PR China.
| | - Bo Yang
- School of Physical Science and Technology, & Inner Mongolia Key Lab of Nanoscience and Nanotechnology, Inner Mongolia University, Hohhot 010021, PR China.
| | - Dezhi Wang
- School of Physical Science and Technology, & Inner Mongolia Key Lab of Nanoscience and Nanotechnology, Inner Mongolia University, Hohhot 010021, PR China.
| | - Shifeng Zhao
- School of Physical Science and Technology, & Inner Mongolia Key Lab of Nanoscience and Nanotechnology, Inner Mongolia University, Hohhot 010021, PR China.
| |
Collapse
|
21
|
Chen L, Cui Y, Luo H, Gao Y. Atomic and electronic structures of charge-doping VO 2: first-principles calculations. RSC Adv 2020; 10:18543-18552. [PMID: 35518301 PMCID: PMC9053707 DOI: 10.1039/d0ra02420a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 05/06/2020] [Indexed: 11/29/2022] Open
Abstract
The atomic and electronic structures of charge-doping VO2 are investigated by using first-principles calculations. Hole doping is more conducive to stabilizing the structure of VO2 than electron doping. The controllable phase transition temperature is coupled with changes in atomic and electronic structures. With the increase in hole density, the V–V chains and twisting angle experience a dramatic change, and the band gap (0.69–0 eV) is rapidly reduced due to orbital switching between the dx2−y2 and dz2/dyz orbitals. However, as the electron density increases, the band gap (0.69–0.502 eV) narrows slightly, while the V–O bond lengths significantly increase. The current results provide up a variable way to tune the VO2 phase transition temperature through charge-doping. The controllable phase transition temperature in charge doping VO2 is coupled with changes in the atomic and electronic structures. The current results provide a variable way to tune the VO2 phase transition temperature through charge doping.![]()
Collapse
Affiliation(s)
- Lanli Chen
- School of Mathematics and Physics, Hubei Polytechnic University Huangshi 435003 China.,School of Materials Science and Engineering, Shanghai University Shanghai 200444 China
| | - Yuanyuan Cui
- School of Materials Science and Engineering, Shanghai University Shanghai 200444 China
| | - Hongjie Luo
- School of Materials Science and Engineering, Shanghai University Shanghai 200444 China
| | - Yanfeng Gao
- School of Materials Science and Engineering, Shanghai University Shanghai 200444 China .,Faculty of Chemical Engineering, Huaiyin Institute of Technology Jiangsu 223003 China
| |
Collapse
|
22
|
Galicia-Hernandez JM, Turkowski V, Hernandez-Cocoletzi G, Rahman TS. Electron correlations and memory effects in ultrafast electron and hole dynamics in VO 2. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2020; 32:20LT01. [PMID: 31978897 DOI: 10.1088/1361-648x/ab6f85] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
By applying an approach based on time-dependent density functional theory and dynamical mean-field theory (TDDFT+DMFT) we examine the role of electron correlations in the ultrafast breakdown of the insulating M1 phase in bulk VO2. We consider the case of a spatially homogeneous ultrafast (femtosecond) laser pulse perturbation and present the dynamics of the melting of the insulating state, in particular the time-dependence of the excited charge density. The time-dependence of the chemical potential of the excited electron and hole subsystems shows that even for such short times the dynamics of the system is significantly affected by memory effects-the time-resolved electron-electron interactions. The results pave the way for obtaining a microscopic understanding of the ultrafast dynamics of strongly-correlated materials.
Collapse
Affiliation(s)
- Jose Mario Galicia-Hernandez
- Department of Physics, University of Central Florida, Orlando, FL 32816, United States of America. Instituto de Fisica Ing. Luis Rivera Terrazas, Benemerita Universidad Autonoma de Puebla, Puebla 72550, Mexico
| | | | | | | |
Collapse
|
23
|
Tian Y, Gao W, Henriksen EA, Chelikowsky JR, Yang L. Optically Driven Magnetic Phase Transition of Monolayer RuCl 3. NANO LETTERS 2019; 19:7673-7680. [PMID: 31637915 DOI: 10.1021/acs.nanolett.9b02523] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Strong light-matter interactions within nanoscale structures offer the possibility of optically controlling material properties. Motivated by the recent discovery of intrinsic long-range magnetic order in two-dimensional materials, which allow for the creation of novel magnetic devices of unprecedented small size, we predict that light can couple with magnetism and efficiently tune magnetic orders of monolayer ruthenium trichloride (RuCl3). First-principles calculations show that both free carriers and optically excited electron-hole pairs can switch monolayer RuCl3 from a proximate spin-liquid phase to a stable ferromagnetic phase. Specifically, a moderate electron-hole pair density (on the order of 1 × 1013 cm-2) can significantly stabilize the ferromagnetic phase by 10 meV/f.u. in comparison to the competing zigzag phase, so that the predicted ferromagnetism can be driven by optical pumping experiments. Analysis shows that this magnetic phase transition is driven by a combined effect of doping-induced lattice strain and itinerant ferromagnetism. According to Ising-model calculations, we find that the Curie temperature of the ferromagnetic phase can be increased significantly by raising carrier or electron-hole pair density. This enhanced optomagnetic effect opens new opportunities to manipulate two-dimensional magnetism through noncontact, optical approaches.
Collapse
Affiliation(s)
- Yingzhen Tian
- Department of Physics and Institute of Materials Science and Engineering , Washington University , St. Louis , Missouri 63130 , United States
| | | | - Erik A Henriksen
- Department of Physics and Institute of Materials Science and Engineering , Washington University , St. Louis , Missouri 63130 , United States
| | | | - Li Yang
- Department of Physics and Institute of Materials Science and Engineering , Washington University , St. Louis , Missouri 63130 , United States
| |
Collapse
|
24
|
Zhai ZH, Chen SC, Du LH, Zhong SC, Huang W, Li ZR, Schneider H, Shi Q, Zhu LG. Giant impact of self-photothermal on light-induced ultrafast insulator-to-metal transition in VO 2 nanofilms at terahertz frequency. OPTICS EXPRESS 2018; 26:28051-28066. [PMID: 30469861 DOI: 10.1364/oe.26.028051] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 09/30/2018] [Indexed: 06/09/2023]
Abstract
Ultrafast detection and switching of light are key processes in high-speed optoelectronic devices. However, the performances of VO2-based optoelectronics are strongly degraded by photothermal. The mechanism of the latter is still unclear. Here, by using femtosecond-laser (fs-laser) driven kinetic terahertz wave absorption, we quantitatively separate slow photothermal response and ultrafast photodoping response (e.g. light-induced insulator-to-metal transition) from second- to picosecond-timescales, and discover the competing interplay between them. With self-photothermal (mainly determined by fs-laser pulse repetition rate and pump fluence), the ultrafast transition time was degraded by 190% from 50 ps to 95 ps, the ultrafast transition threshold was decreased to 82% from 11mJ/cm2 to 9mJ/cm2, while the amplitudes of the two photoresponse are competing. Percolation theory, along with the macroscopic conductivity response, is used to explain the competing interplay. Our findings are relevant for designing and optimizing VO2-based ultrafast optoelectronic devices.
Collapse
|
25
|
Wang W, Ji H, Liu D, Xiong L, Hou Y, Zhang B, Shen J. Active bidirectional electrically-controlled terahertz device based on dimethyl sulfoxide-doped PEDOT:PSS. OPTICS EXPRESS 2018; 26:25849-25857. [PMID: 30469680 DOI: 10.1364/oe.26.025849] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 09/08/2018] [Indexed: 06/09/2023]
Abstract
A high-efficiency active bidirectional electrically-controlled terahertz device based on DMSO-doped PEDOT:PSS with low-power photoexcitation is investigated. Under low-power optical excitation of 30 mW (0.5 W/cm2) and under bias voltages ranging from -0.6 V to 0.5 V, spectrally broadband modulation of THz transmission over a range from -54% to 60% is obtained over the frequency range from 0.2 to 2.6 THz in a MEH-PPV/PEDOT:PSS:DMSO/Si/PEDOT:PSS:DMSO hybrid structure. By considering the combined carrier density characteristics of the proposed device, it is found that the large-scale amplitude modulation can be ascribed to the electrically-controlled carrier density in the silicon layer with the assistance of the p-n junction that consists of the DMSO-doped PEDOT:PSS and silicon. Bidirectional modulation has a larger modulation range and is easier to use in communications applications when compared with unidirectional modulation. These results show great potential for application to the design of active broadband terahertz devices.
Collapse
|
26
|
Imaging the nanoscale phase separation in vanadium dioxide thin films at terahertz frequencies. Nat Commun 2018; 9:3604. [PMID: 30190517 PMCID: PMC6127259 DOI: 10.1038/s41467-018-05998-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 08/07/2018] [Indexed: 11/30/2022] Open
Abstract
Vanadium dioxide (VO2) is a material that undergoes an insulator–metal transition upon heating above 340 K. It remains debated as to whether this electronic transition is driven by a corresponding structural transition or by strong electron–electron correlations. Here, we use apertureless scattering near-field optical microscopy to compare nanoscale images of the transition in VO2 thin films acquired at both mid-infrared and terahertz frequencies, using a home-built terahertz near-field microscope. We observe a much more gradual transition when THz frequencies are utilized as a probe, in contrast to the assumptions of a classical first-order phase transition. We discuss these results in light of dynamical mean-field theory calculations of the dimer Hubbard model recently applied to VO2, which account for a continuous temperature dependence of the optical response of the VO2 in the insulating state. The insulator-to-metal transition in vanadium dioxide still has many unexplored properties. Here the authors use multi-modal THz and mid-IR nano-imaging to examine the phase transition in VO2 thin films, and discuss the unexpectedly smooth transition at THz frequencies in the context of a dimer Hubbard model.
Collapse
|
27
|
Ke Y, Wang S, Liu G, Li M, White TJ, Long Y. Vanadium Dioxide: The Multistimuli Responsive Material and Its Applications. SMALL 2018; 14:e1802025. [PMID: 30085392 DOI: 10.1002/smll.201802025] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Revised: 06/24/2018] [Indexed: 05/12/2023]
Affiliation(s)
- Yujie Ke
- School of Materials Science and Engineering; Nanyang Technological University; 50 Nanyang Avenue Singapore 639798 Singapore
| | - Shancheng Wang
- School of Materials Science and Engineering; Nanyang Technological University; 50 Nanyang Avenue Singapore 639798 Singapore
| | - Guowei Liu
- School of Materials Science and Engineering; Nanyang Technological University; 50 Nanyang Avenue Singapore 639798 Singapore
| | - Ming Li
- School of Materials Science and Engineering; Nanyang Technological University; 50 Nanyang Avenue Singapore 639798 Singapore
- Key Laboratory of Materials Physics; Anhui Key Laboratory of Nanomaterials and Nanotechnology; Institute of Solid State Physics; Chinese Academy of Sciences; Hefei 230031 P. R. China
| | - Timothy J. White
- School of Materials Science and Engineering; Nanyang Technological University; 50 Nanyang Avenue Singapore 639798 Singapore
| | - Yi Long
- School of Materials Science and Engineering; Nanyang Technological University; 50 Nanyang Avenue Singapore 639798 Singapore
- Singapore-HUJ Alliance for Research and Enterprise (SHARE); Nanomaterials for Energy and Energy-Water Nexus (NEW); Campus for Research Excellence and Technological Enterprise (CREATE); 1 Create Way Singapore 138602 Singapore
| |
Collapse
|
28
|
Curtis JA, Burch AD, Barman B, Linn AG, McClintock LM, O'Beirne AL, Stiles MJ, Reno JL, McGill SA, Karaiskaj D, Hilton DJ. Broadband ultrafast terahertz spectroscopy in the 25 T Split Florida-Helix. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2018; 89:073901. [PMID: 30068119 DOI: 10.1063/1.5023384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We describe the development of a broadband (0.3-10 THz) optical pump-terahertz probe spectrometer with an unprecedented combination of temporal resolution (≤200 fs) operating in external magnetic fields as high as 25 T using the new Split Florida-Helix magnet system. Using this new instrument, we measure the transient dynamics in a gallium arsenide four-quantum well sample after photoexcitation at 800 nm.
Collapse
Affiliation(s)
- Jeremy A Curtis
- Department of Physics, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | - Ashlyn D Burch
- Department of Physics, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | - Biplob Barman
- Department of Physics, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | - A Garrison Linn
- Department of Physics, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | - Luke M McClintock
- Department of Physics, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | - Aidan L O'Beirne
- Department of Physics, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | - Matthew J Stiles
- Department of Physics, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | - John L Reno
- Center for Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque, New Mexico 87185, USA
| | - Stephen A McGill
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, USA
| | - Denis Karaiskaj
- Department of Physics, University of South Florida, Tampa, Florida 33620, USA
| | - David J Hilton
- Department of Physics, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| |
Collapse
|
29
|
Hao Q, Li W, Xu H, Wang J, Yin Y, Wang H, Ma L, Ma F, Jiang X, Schmidt OG, Chu PK. VO 2 /TiN Plasmonic Thermochromic Smart Coatings for Room-Temperature Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:1705421. [PMID: 29349814 DOI: 10.1002/adma.201705421] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 11/30/2017] [Indexed: 06/07/2023]
Abstract
Vanadium dioxide/titanium nitride (VO2 /TiN) smart coatings are prepared by hybridizing thermochromic VO2 with plasmonic TiN nanoparticles. The VO2 /TiN coatings can control infrared (IR) radiation dynamically in accordance with the ambient temperature and illumination intensity. It blocks IR light under strong illumination at 28 °C but is IR transparent under weak irradiation conditions or at a low temperature of 20 °C. The VO2 /TiN coatings exhibit a good integral visible transmittance of up to 51% and excellent IR switching efficiency of 48% at 2000 nm. These unique advantages make VO2 /TiN promising as smart energy-saving windows.
Collapse
Affiliation(s)
- Qi Hao
- Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, 999077, Hong Kong, China
- Institute for Integrative Nanosciences, Leibniz IFW Dresden, Helmholtzstraße 20, 01069, Dresden, Germany
| | - Wan Li
- Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, 999077, Hong Kong, China
| | - Huiyan Xu
- Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, 999077, Hong Kong, China
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China
| | - Jiawei Wang
- Institute for Integrative Nanosciences, Leibniz IFW Dresden, Helmholtzstraße 20, 01069, Dresden, Germany
| | - Yin Yin
- Institute for Integrative Nanosciences, Leibniz IFW Dresden, Helmholtzstraße 20, 01069, Dresden, Germany
| | - Huaiyu Wang
- Center for Biomedical Materials and Interfaces, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P.R. China
| | - Libo Ma
- Institute for Integrative Nanosciences, Leibniz IFW Dresden, Helmholtzstraße 20, 01069, Dresden, Germany
| | - Fei Ma
- Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, 999077, Hong Kong, China
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China
| | - Xuchuan Jiang
- Department of Chemical Engineering, Monash University, Clayton, VIC, 3800, Australia
| | - Oliver G Schmidt
- Institute for Integrative Nanosciences, Leibniz IFW Dresden, Helmholtzstraße 20, 01069, Dresden, Germany
- Material Systems for Nanoelectronics, Chemnitz University of Technology, Reichenhainer Str. 70, 09107, Chemnitz, Germany
| | - Paul K Chu
- Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, 999077, Hong Kong, China
| |
Collapse
|
30
|
Chen Y, Wang Z, Chen S, Ren H, Wang L, Zhang G, Lu Y, Jiang J, Zou C, Luo Y. Non-catalytic hydrogenation of VO 2 in acid solution. Nat Commun 2018; 9:818. [PMID: 29483502 PMCID: PMC5827755 DOI: 10.1038/s41467-018-03292-y] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 02/01/2018] [Indexed: 12/15/2022] Open
Abstract
Hydrogenation is an effective way to tune the property of metal oxides. It can conventionally be performed by doping hydrogen into solid materials with noble-metal catalysis, high-temperature/pressure annealing treatment, or high-energy proton implantation in vacuum condition. Acid solution naturally provides a rich proton source, but it should cause corrosion rather than hydrogenation to metal oxides. Here we report a facile approach to hydrogenate monoclinic vanadium dioxide (VO2) in acid solution at ambient condition by placing a small piece of low workfunction metal (Al, Cu, Ag, Zn, or Fe) on VO2 surface. It is found that the attachment of a tiny metal particle (~1.0 mm) can lead to the complete hydrogenation of an entire wafer-size VO2 (>2 inch). Moreover, with the right choice of the metal a two-step insulator–metal–insulator phase modulation can even be achieved. An electron–proton co-doping mechanism has been proposed and verified by the first-principles calculations. Hydrogenation is an effective way to tune the property of metal oxides. Here, the authors report a simple approach to hydrogenate VO2 in acid solution under ambient conditions by placing a small piece of low workfunction metal on VO2 surface.
Collapse
Affiliation(s)
- Yuliang Chen
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, China
| | - Zhaowu Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials, CAS Center for Excellence in Nanoscience, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, China.,School of Physics and Engineering, Henan University of Science and Technology, Henan Key Laboratory of Photoelectric Energy Storage Materials and Applications, Luoyang, 471023, Henan, China
| | - Shi Chen
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, China
| | - Hui Ren
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, China
| | - Liangxin Wang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, China
| | - Guobin Zhang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, China
| | - Yalin Lu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, China
| | - Jun Jiang
- Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials, CAS Center for Excellence in Nanoscience, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, China.
| | - Chongwen Zou
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, China.
| | - Yi Luo
- Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials, CAS Center for Excellence in Nanoscience, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
31
|
Liu H, Lu J, Wang XR. Metamaterials based on the phase transition of VO 2. NANOTECHNOLOGY 2018; 29:024002. [PMID: 29231183 DOI: 10.1088/1361-6528/aa9cb1] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In this article, we present a comprehensive review on recent research progress in design and fabrication of active tunable metamaterials and devices based on phase transition of VO2. Firstly, we introduce mechanisms of the metal-to-insulator phase transition (MIPT) in VO2 investigated by ultrafast THz spectroscopies. By analyzing the THz spectra, the evolutions of MIPT in VO2 induced by different external excitations are described. The superiorities of using VO2 as building blocks to construct highly tunable metamaterials are discussed. Subsequently, the recently demonstrated metamaterial devices based on VO2 are reviewed. These metamaterials devices are summarized and described in the categories of working frequency. In each working frequency range, representative metamaterials based on VO2 with different architectures and functionalities are reviewed and the contributions of the MIPT of VO2 are emphasized. Finally, we conclude the recent reports and provide a prospect on the strategies of developing future tunable metamaterials based on VO2.
Collapse
Affiliation(s)
- Hongwei Liu
- Jiangsu Key Lab on Opto-Electronic Technology, School of Physics and Technology, Nanjing Normal University, Nanjing 210023, People's Republic of China
| | | | | |
Collapse
|
32
|
Hou Y, Xiao R, Tong X, Dhuey S, Yu D. In Situ Visualization of Fast Surface Ion Diffusion in Vanadium Dioxide Nanowires. NANO LETTERS 2017; 17:7702-7709. [PMID: 29131965 DOI: 10.1021/acs.nanolett.7b03832] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
We investigate in situ ion diffusion in vanadium dioxide (VO2) nanowires (NWs) by using photocurrent imaging. Alkali metal ions are injected into a NW segment via ionic liquid gating and are shown to diffuse along the NW axis. The visualization of ion diffusion is realized by spatially resolved photocurrent measurements, which detect the charge carrier density change associated with the ion incorporation. Diffusion constants are determined to be on the order of 10-10 cm2/s for both Li+ and Na+ ions at room temperature, while H+ diffuses much slower. The ion diffusion is also found to occur mainly at the surface of the NWs, as metal contacts can effectively block the ion diffusion. This novel method of visualizing ion distribution is expected to be applied to study ion diffusion in a broad range of materials, providing key insights on phase transition electronics and energy storage applications.
Collapse
Affiliation(s)
- Yasen Hou
- Department of Physics, University of California , Davis, California 95616, United States
| | - Rui Xiao
- Department of Physics, University of California , Davis, California 95616, United States
| | - Xin Tong
- School of Physics, Peking University , Beijing 100871, People's Republic of China
| | - Scott Dhuey
- The Molecular Foundry, Lawrence Berkeley National Laboratory , Berkeley, California 94720, United States
| | - Dong Yu
- Department of Physics, University of California , Davis, California 95616, United States
| |
Collapse
|
33
|
Mott transition in chain structure of strained VO 2 films revealed by coherent phonons. Sci Rep 2017; 7:16038. [PMID: 29167488 PMCID: PMC5700180 DOI: 10.1038/s41598-017-16188-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 11/08/2017] [Indexed: 11/11/2022] Open
Abstract
The characteristic of strongly correlated materials is the Mott transition between metal and insulator (MIT or IMT) in the same crystalline structure, indicating the presence of a gap formed by the Coulomb interaction between carriers. The physics of the transition needs to be revealed. Using VO2, as a model material, we observe the emergence of a metallic chain in the intermediate insulating monoclinic structure (M2 phase) of epitaxial strained films, proving the Mott transition involving the breakdown of the critical Coulomb interaction. It is revealed by measuring the temperature dynamics of coherent optical phonons with separated vibrational modes originated from two substructures in M2: one is the charge-density-wave, formed by electron-phonon (e-ph) interaction, and the other is the equally spaced insulator-chain with electron-electron (e-e) correlations.
Collapse
|
34
|
Photoinduced Strain Release and Phase Transition Dynamics of Solid-Supported Ultrathin Vanadium Dioxide. Sci Rep 2017; 7:10045. [PMID: 28855670 PMCID: PMC5577108 DOI: 10.1038/s41598-017-10217-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 08/04/2017] [Indexed: 11/22/2022] Open
Abstract
The complex phase transitions of vanadium dioxide (VO2) have drawn continual attention for more than five decades. Dynamically, ultrafast electron diffraction (UED) with atomic-scale spatiotemporal resolution has been employed to study the reaction pathway in the photoinduced transition of VO2, using bulk and strain-free specimens. Here, we report the UED results from 10-nm-thick crystalline VO2 supported on Al2O3(0001) and examine the influence of surface stress on the photoinduced structural transformation. An ultrafast release of the compressive strain along the surface-normal direction is observed at early times following the photoexcitation, accompanied by faster motions of vanadium dimers that are more complex than simple dilation or bond tilting. Diffraction simulations indicate that the reaction intermediate involved on picosecond times may not be a single state, which implies non-concerted atomic motions on a multidimensional energy landscape. At longer times, a laser fluence multiple times higher than the thermodynamic enthalpy threshold is required for complete conversion from the initial monoclinic structure to the tetragonal lattice. For certain crystalline domains, the structural transformation is not seen even on nanosecond times following an intense photoexcitation. These results signify a time-dependent energy distribution among various degrees of freedom and reveal the nature of and the impact of strain on the photoinduced transition of VO2.
Collapse
|
35
|
Modulated scattering technique in the terahertz domain enabled by current actuated vanadium dioxide switches. Sci Rep 2017; 7:41546. [PMID: 28145523 PMCID: PMC5286402 DOI: 10.1038/srep41546] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 12/22/2016] [Indexed: 01/30/2023] Open
Abstract
The modulated scattering technique is based on the use of reconfigurable electromagnetic scatterers, structures able to scatter and modulate an impinging electromagnetic field in function of a control signal. The modulated scattering technique is used in a wide range of frequencies up to millimeter waves for various applications, such as field mapping of circuits or antennas, radio-frequency identification devices and imaging applications. However, its implementation in the terahertz domain remains challenging. Here, we describe the design and experimental demonstration of the modulated scattering technique at terahertz frequencies. We characterize a modulated scatterer consisting in a bowtie antenna loaded with a vanadium dioxide switch, actuated using a continuous current. The modulated scatterer behavior is demonstrated using a time domain terahertz spectroscopy setup and shows significant signal strength well above 0.5 THz, which makes this device a promising candidate for the development of fast and energy-efficient THz communication devices and imaging systems. Moreover, our experiments allowed us to verify the operation of a single micro-meter sized VO2 switch at terahertz frequencies, thanks to the coupling provided by the antenna.
Collapse
|
36
|
Liu M, Sternbach AJ, Basov DN. Nanoscale electrodynamics of strongly correlated quantum materials. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2017; 80:014501. [PMID: 27811387 DOI: 10.1088/0034-4885/80/1/014501] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Electronic, magnetic, and structural phase inhomogeneities are ubiquitous in strongly correlated quantum materials. The characteristic length scales of the phase inhomogeneities can range from atomic to mesoscopic, depending on their microscopic origins as well as various sample dependent factors. Therefore, progress with the understanding of correlated phenomena critically depends on the experimental techniques suitable to provide appropriate spatial resolution. This requirement is difficult to meet for some of the most informative methods in condensed matter physics, including infrared and optical spectroscopy. Yet, recent developments in near-field optics and imaging enabled a detailed characterization of the electromagnetic response with a spatial resolution down to 10 nm. Thus it is now feasible to exploit at the nanoscale well-established capabilities of optical methods for characterization of electronic processes and lattice dynamics in diverse classes of correlated quantum systems. This review offers a concise description of the state-of-the-art near-field techniques applied to prototypical correlated quantum materials. We also discuss complementary microscopic and spectroscopic methods which reveal important mesoscopic dynamics of quantum materials at different energy scales.
Collapse
Affiliation(s)
- Mengkun Liu
- Department of Physics, Stony Brook University, Stony Brook, NY 11794, USA
| | | | | |
Collapse
|
37
|
Tao Z, Zhou F, Han TRT, Torres D, Wang T, Sepulveda N, Chang K, Young M, Lunt RR, Ruan CY. The nature of photoinduced phase transition and metastable states in vanadium dioxide. Sci Rep 2016; 6:38514. [PMID: 27982066 PMCID: PMC5159834 DOI: 10.1038/srep38514] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 11/10/2016] [Indexed: 11/30/2022] Open
Abstract
Photoinduced threshold switching processes that lead to bistability and the formation of metastable phases in photoinduced phase transition of VO2 are elucidated through ultrafast electron diffraction and diffusive scattering techniques with varying excitation wavelengths. We uncover two distinct regimes of the dynamical phase change: a nearly instantaneous crossover into an intermediate state and its decay led by lattice instabilities over 10 ps timescales. The structure of this intermediate state is identified to be monoclinic, but more akin to M2 rather than M1 based on structure refinements. The extinction of all major monoclinic features within just a few picoseconds at the above-threshold-level (~20%) photoexcitations and the distinct dynamics in diffusive scattering that represents medium-range atomic fluctuations at two photon wavelengths strongly suggest a density-driven and nonthermal pathway for the initial process of the photoinduced phase transition. These results highlight the critical roles of electron correlations and lattice instabilities in driving and controlling phase transformations far from equilibrium.
Collapse
Affiliation(s)
- Zhensheng Tao
- Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824 USA
| | - Faran Zhou
- Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824 USA
| | - Tzong-Ru T Han
- Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824 USA
| | - David Torres
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, Michigan 48824 USA
| | - Tongyu Wang
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, Michigan 48824 USA
| | - Nelson Sepulveda
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, Michigan 48824 USA
| | - Kiseok Chang
- Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824 USA
| | - Margaret Young
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, Michigan 48824 USA
| | - Richard R Lunt
- Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824 USA.,Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, Michigan 48824 USA
| | - Chong-Yu Ruan
- Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824 USA
| |
Collapse
|
38
|
Baldini E, Mann A, Borroni S, Arrell C, van Mourik F, Carbone F. A versatile setup for ultrafast broadband optical spectroscopy of coherent collective modes in strongly correlated quantum systems. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2016; 3:064301. [PMID: 27990455 PMCID: PMC5135716 DOI: 10.1063/1.4971182] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 11/16/2016] [Indexed: 06/06/2023]
Abstract
A femtosecond pump-probe setup is described that is optimised for broadband transient reflectivity experiments on solid samples over a wide temperature range. By combining high temporal resolution and a broad detection window, this apparatus can investigate the interplay between coherent collective modes and high-energy electronic excitations, which is a distinctive characteristic of correlated electron systems. Using a single-shot readout array detector at frame rates of 10 kHz allows resolving coherent oscillations with amplitudes <10-4. We demonstrate its operation on the charge-transfer insulator La2CuO4, revealing coherent phonons with frequencies up to 13 THz and providing access into their Raman matrix elements.
Collapse
Affiliation(s)
| | - Andreas Mann
- Laboratory for Ultrafast Microscopy and Electron Scattering and the Lausanne Centre for Ultrafast Science , IPHYS, Station 6, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Simone Borroni
- Laboratory for Ultrafast Microscopy and Electron Scattering and the Lausanne Centre for Ultrafast Science , IPHYS, Station 6, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Christopher Arrell
- Laboratory of Ultrafast Spectroscopy and the Lausanne Centre for Ultrafast Science , ISIC, Station 6, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Frank van Mourik
- Laboratory of Ultrafast Spectroscopy and the Lausanne Centre for Ultrafast Science , ISIC, Station 6, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Fabrizio Carbone
- Laboratory for Ultrafast Microscopy and Electron Scattering and the Lausanne Centre for Ultrafast Science , IPHYS, Station 6, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| |
Collapse
|
39
|
Muskens OL, Bergamini L, Wang Y, Gaskell JM, Zabala N, de Groot CH, Sheel DW, Aizpurua J. Antenna-assisted picosecond control of nanoscale phase transition in vanadium dioxide. LIGHT, SCIENCE & APPLICATIONS 2016; 5:e16173. [PMID: 30167127 PMCID: PMC6059831 DOI: 10.1038/lsa.2016.173] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Revised: 05/31/2016] [Accepted: 06/02/2016] [Indexed: 05/26/2023]
Abstract
Nanoscale devices in which the interaction with light can be configured using external control signals hold great interest for next-generation optoelectronic circuits. Materials exhibiting a structural or electronic phase transition offer a large modulation contrast with multi-level optical switching and memory functionalities. In addition, plasmonic nanoantennas can provide an efficient enhancement mechanism for both the optically induced excitation and the readout of materials strategically positioned in their local environment. Here, we demonstrate picosecond all-optical switching of the local phase transition in plasmonic antenna-vanadium dioxide (VO2) hybrids, exploiting strong resonant field enhancement and selective optical pumping in plasmonic hotspots. Polarization- and wavelength-dependent pump-probe spectroscopy of multifrequency crossed antenna arrays shows that nanoscale optical switching in plasmonic hotspots does not affect neighboring antennas placed within 100 nm of the excited antennas. The antenna-assisted pumping mechanism is confirmed by numerical model calculations of the resonant, antenna-mediated local heating on a picosecond time scale. The hybrid, nanoscale excitation mechanism results in 20 times reduced switching energies and 5 times faster recovery times than a VO2 film without antennas, enabling fully reversible switching at over two million cycles per second and at local switching energies in the picojoule range. The hybrid solution of antennas and VO2 provides a conceptual framework to merge the field localization and phase-transition response, enabling precise, nanoscale optical memory functionalities.
Collapse
Affiliation(s)
- Otto L Muskens
- Physics and Astronomy, Faculty of Physical Sciences and Engineering, University of Southampton, Southampton SO17 1BJ, UK
| | - Luca Bergamini
- Department of Electricity and Electronics, FCT-ZTF, UPV-EHU, Bilbao 48080, Spain
- Materials Physics Center, CSIC-UPV/EHU and DIPC, San Sebastian 20018, Spain
| | - Yudong Wang
- Physics and Astronomy, Faculty of Physical Sciences and Engineering, University of Southampton, Southampton SO17 1BJ, UK
- Nano Group, Faculty of Physical Sciences and Engineering, University of Southampton, Southampton SO17 1BJ, UK
| | - Jeffrey M Gaskell
- Materials and Physics Research Centre, University of Salford, Manchester M5 4WT, UK
| | - Nerea Zabala
- Department of Electricity and Electronics, FCT-ZTF, UPV-EHU, Bilbao 48080, Spain
- Materials Physics Center, CSIC-UPV/EHU and DIPC, San Sebastian 20018, Spain
| | - CH de Groot
- Nano Group, Faculty of Physical Sciences and Engineering, University of Southampton, Southampton SO17 1BJ, UK
| | - David W Sheel
- Materials and Physics Research Centre, University of Salford, Manchester M5 4WT, UK
| | - Javier Aizpurua
- Materials Physics Center, CSIC-UPV/EHU and DIPC, San Sebastian 20018, Spain
| |
Collapse
|
40
|
Evidence for Photoinduced Insulator-to-Metal transition in B-phase vanadium dioxide. Sci Rep 2016; 6:25538. [PMID: 27157532 PMCID: PMC4860617 DOI: 10.1038/srep25538] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 04/19/2016] [Indexed: 11/08/2022] Open
Abstract
Ultrafast optical studies have been performed on epitaxial films of the novel B-phase of vanadium dioxide using temperature-dependent optical pump-probe technique. Signature of temperature-driven metal-to-insulator transition was distinctly observed in the ultrafast dynamics - the insulating phase showed two characteristic electronic relaxation times while the metallic phase showed only one. Beyond a threshold value of the pump fluence, the insulating state collapses into a 'metallic-like' phase which can be further subdivided into two regimes according to the lengths of the fast characteristic time. The first regime can be explained by lattice heating due to the optical pump; the other cannot be accounted by simple lattice heating effects alone, and thus offers evidence for a true photoinduced phase transition.
Collapse
|
41
|
Yang DS, Baum P, Zewail AH. Ultrafast electron crystallography of the cooperative reaction path in vanadium dioxide. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2016; 3:034304. [PMID: 27376103 PMCID: PMC4902825 DOI: 10.1063/1.4953370] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 05/23/2016] [Indexed: 05/06/2023]
Abstract
Time-resolved electron diffraction with atomic-scale spatial and temporal resolution was used to unravel the transformation pathway in the photoinduced structural phase transition of vanadium dioxide. Results from bulk crystals and single-crystalline thin-films reveal a common, stepwise mechanism: First, there is a femtosecond V-V bond dilation within 300 fs, second, an intracell adjustment in picoseconds and, third, a nanoscale shear motion within tens of picoseconds. Experiments at different ambient temperatures and pump laser fluences reveal a temperature-dependent excitation threshold required to trigger the transitional reaction path of the atomic motions.
Collapse
Affiliation(s)
- Ding-Shyue Yang
- Department of Chemistry, University of Houston , Houston, Texas 77204, USA
| | - Peter Baum
- Ludwig-Maximilians-Universität München , Am Coulombwall 1, 85748 Garching, Germany
| | - Ahmed H Zewail
- Physical Biology Center for Ultrafast Science and Technology, Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology , Pasadena, California 91125, USA
| |
Collapse
|
42
|
Brady NF, Appavoo K, Seo M, Nag J, Prasankumar RP, Haglund RF, Hilton DJ. Heterogeneous nucleation and growth dynamics in the light-induced phase transition in vanadium dioxide. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2016; 28:125603. [PMID: 26932975 DOI: 10.1088/0953-8984/28/12/125603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We report on ultrafast optical investigations of the light-induced insulator-to-metal phase transition in vanadium dioxide with controlled disorder generated by substrate mismatch. These results reveal common dynamics of this optically-induced phase transition that are independent of this disorder. Above the fluence threshold for completing the transition to the rutile crystalline phase, we find a common time scale, independent of sample morphology, of 40.5 ± 2 ps that is consistent with nucleation and growth dynamics of the R phase from the parent M1 ground state.
Collapse
Affiliation(s)
- Nathaniel F Brady
- Department of Physics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Zhu Y, Cai Z, Chen P, Zhang Q, Highland MJ, Jung IW, Walko DA, Dufresne EM, Jeong J, Samant MG, Parkin SSP, Freeland JW, Evans PG, Wen H. Mesoscopic structural phase progression in photo-excited VO2 revealed by time-resolved x-ray diffraction microscopy. Sci Rep 2016; 6:21999. [PMID: 26915398 PMCID: PMC4768076 DOI: 10.1038/srep21999] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 02/04/2016] [Indexed: 11/30/2022] Open
Abstract
Dynamical phase separation during a solid-solid phase transition poses a challenge for understanding the fundamental processes in correlated materials. Critical information underlying a phase transition, such as localized phase competition, is difficult to reveal by measurements that are spatially averaged over many phase separated regions. The ability to simultaneously track the spatial and temporal evolution of such systems is essential to understanding mesoscopic processes during a phase transition. Using state-of-the-art time-resolved hard x-ray diffraction microscopy, we directly visualize the structural phase progression in a VO2 film upon photoexcitation. Following a homogenous in-plane optical excitation, the phase transformation is initiated at discrete sites and completed by the growth of one lattice structure into the other, instead of a simultaneous isotropic lattice symmetry change. The time-dependent x-ray diffraction spatial maps show that the in-plane phase progression in laser-superheated VO2 is via a displacive lattice transformation as a result of relaxation from an excited monoclinic phase into a rutile phase. The speed of the phase front progression is quantitatively measured, and is faster than the process driven by in-plane thermal diffusion but slower than the sound speed in VO2. The direct visualization of localized structural changes in the time domain opens a new avenue to study mesoscopic processes in driven systems.
Collapse
Affiliation(s)
- Yi Zhu
- Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - Zhonghou Cai
- Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - Pice Chen
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Qingteng Zhang
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Matthew J Highland
- Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - Il Woong Jung
- Center for Nanoscale Materials, Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - Donald A Walko
- Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - Eric M Dufresne
- Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - Jaewoo Jeong
- IBM Almaden Research Center, San Jose, California 95120, USA
| | - Mahesh G Samant
- IBM Almaden Research Center, San Jose, California 95120, USA
| | - Stuart S P Parkin
- IBM Almaden Research Center, San Jose, California 95120, USA.,Max Planck Institute for Microstructure Physics, Halle 06120, Germany
| | - John W Freeland
- Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - Paul G Evans
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Haidan Wen
- Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, USA
| |
Collapse
|
44
|
Semimetallization of dielectrics in strong optical fields. Sci Rep 2016; 6:21272. [PMID: 26888147 PMCID: PMC4758039 DOI: 10.1038/srep21272] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 01/15/2016] [Indexed: 11/21/2022] Open
Abstract
At the heart of ever growing demands for faster signal processing is ultrafast charge transport and control by electromagnetic fields in semiconductors. Intense optical fields have opened fascinating avenues for new phenomena and applications in solids. Because the period of optical fields is on the order of a femtosecond, the current switching and its control by an optical field may pave a way to petahertz optoelectronic devices. Lately, a reversible semimetallization in fused silica on a femtosecond time scale by using a few-cycle strong field (~1 V/Å) is manifested. The strong Wannier-Stark localization and Zener-type tunneling were expected to drive this ultrafast semimetallization. Wider spread of this technology demands better understanding of whether the strong field behavior is universally similar for different dielectrics. Here we employ a carrier-envelope-phase stabilized, few-cycle strong optical field to drive the semimetallization in sapphire, calcium fluoride and quartz and to compare this phenomenon and show its remarkable similarity between them. The similarity in response of these materials, despite the distinguishable differences in their physical properties, suggests the universality of the physical picture explained by the localization of Wannier-Stark states. Our results may blaze a trail to PHz-rate optoelectronics.
Collapse
|
45
|
Huber MA, Plankl M, Eisele M, Marvel RE, Sandner F, Korn T, Schüller C, Haglund RF, Huber R, Cocker TL. Ultrafast Mid-Infrared Nanoscopy of Strained Vanadium Dioxide Nanobeams. NANO LETTERS 2016; 16:1421-7. [PMID: 26771106 DOI: 10.1021/acs.nanolett.5b04988] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Long regarded as a model system for studying insulator-to-metal phase transitions, the correlated electron material vanadium dioxide (VO2) is now finding novel uses in device applications. Two of its most appealing aspects are its accessible transition temperature (∼341 K) and its rich phase diagram. Strain can be used to selectively stabilize different VO2 insulating phases by tuning the competition between electron and lattice degrees of freedom. It can even break the mesoscopic spatial symmetry of the transition, leading to a quasiperiodic ordering of insulating and metallic nanodomains. Nanostructuring of strained VO2 could potentially yield unique components for future devices. However, the most spectacular property of VO2--its ultrafast transition--has not yet been studied on the length scale of its phase heterogeneity. Here, we use ultrafast near-field microscopy in the mid-infrared to study individual, strained VO2 nanobeams on the 10 nm scale. We reveal a previously unseen correlation between the local steady-state switching susceptibility and the local ultrafast response to below-threshold photoexcitation. These results suggest that it may be possible to tailor the local photoresponse of VO2 using strain and thereby realize new types of ultrafast nano-optical devices.
Collapse
Affiliation(s)
- M A Huber
- Department of Physics, University of Regensburg , 93040 Regensburg, Germany
| | - M Plankl
- Department of Physics, University of Regensburg , 93040 Regensburg, Germany
| | - M Eisele
- Department of Physics, University of Regensburg , 93040 Regensburg, Germany
| | - R E Marvel
- Department of Physics and Astronomy and Interdisciplinary Materials Science Program, Vanderbilt University , Nashville, Tennessee 37235-1807, United States
| | - F Sandner
- Department of Physics, University of Regensburg , 93040 Regensburg, Germany
| | - T Korn
- Department of Physics, University of Regensburg , 93040 Regensburg, Germany
| | - C Schüller
- Department of Physics, University of Regensburg , 93040 Regensburg, Germany
| | - R F Haglund
- Department of Physics and Astronomy and Interdisciplinary Materials Science Program, Vanderbilt University , Nashville, Tennessee 37235-1807, United States
| | - R Huber
- Department of Physics, University of Regensburg , 93040 Regensburg, Germany
| | - T L Cocker
- Department of Physics, University of Regensburg , 93040 Regensburg, Germany
| |
Collapse
|
46
|
Jeong YG, Han S, Rhie J, Kyoung JS, Choi JW, Park N, Hong S, Kim BJ, Kim HT, Kim DS. A Vanadium Dioxide Metamaterial Disengaged from Insulator-to-Metal Transition. NANO LETTERS 2015; 15:6318-6323. [PMID: 26352780 DOI: 10.1021/acs.nanolett.5b02361] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We report that vanadium dioxide films patterned with λ/100000 nanogaps exhibit an anomalous transition behavior at millimeter wavelengths. Most of the hybrid structure's switching actions occur well below the insulator to metal transition temperature, starting from 25 °C, so that the hysteresis curves completely separate themselves from their bare film counterparts. It is found that thermally excited intrinsic carriers are responsible for this behavior by introducing enough loss in the context of the radically modified electromagnetic environment in the vicinity of the nanogaps. This phenomenon newly extends the versatility of insulator to metal transition devices to encompass their semiconductor properties.
Collapse
Affiliation(s)
- Young-Gyun Jeong
- Department of Physics and Astronomy and Center for Atom Scale Electromagnetism, Seoul National University , Seoul 151-747, Republic of Korea
| | - Sanghoon Han
- Photonic Systems Laboratory, School of EECS, Seoul National University , Seoul 151-744, Republic of Korea
| | - Jiyeah Rhie
- Department of Physics and Astronomy and Center for Atom Scale Electromagnetism, Seoul National University , Seoul 151-747, Republic of Korea
| | - Ji-Soo Kyoung
- Department of Physics and Astronomy and Center for Atom Scale Electromagnetism, Seoul National University , Seoul 151-747, Republic of Korea
| | - Jae-Wook Choi
- Department of Physics and Astronomy and Center for Atom Scale Electromagnetism, Seoul National University , Seoul 151-747, Republic of Korea
| | - Namkyoo Park
- Photonic Systems Laboratory, School of EECS, Seoul National University , Seoul 151-744, Republic of Korea
| | - Seunghun Hong
- Department of Physics and Astronomy, Department of Biophysics and Chemical Biology, and Institute of Applied Physics, Seoul National University , Seoul 151-747, Republic of Korea
| | - Bong-Jun Kim
- Creative Research Center of Metal-Insulator Transition, Electronics and Telecommunications Research Institute , Daejeon 305-700, Republic of Korea
| | - Hyun-Tak Kim
- Creative Research Center of Metal-Insulator Transition, Electronics and Telecommunications Research Institute , Daejeon 305-700, Republic of Korea
- School of Advanced Device Technology, University of Science and Technology , Daejeon 305-333, Republic of Korea
| | - Dai-Sik Kim
- Department of Physics and Astronomy and Center for Atom Scale Electromagnetism, Seoul National University , Seoul 151-747, Republic of Korea
| |
Collapse
|
47
|
Thompson ZJ, Stickel A, Jeong YG, Han S, Son BH, Paul MJ, Lee B, Mousavian A, Seo G, Kim HT, Lee YS, Kim DS. Terahertz-Triggered Phase Transition and Hysteresis Narrowing in a Nanoantenna Patterned Vanadium Dioxide Film. NANO LETTERS 2015; 15:5893-5898. [PMID: 26301339 DOI: 10.1021/acs.nanolett.5b01970] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We demonstrate that high-field terahertz (THz) pulses trigger transient insulator-to-metal transition in a nanoantenna patterned vanadium dioxide thin film. THz transmission of vanadium dioxide instantaneously decreases in the presence of strong THz fields. The transient THz absorption indicates that strong THz fields induce electronic insulator-to-metal transition without causing a structural transformation. The transient phase transition is activated on the subcycle time scale during which the THz pulse drives the electron distribution of vanadium dioxide far from equilibrium and disturb the electron correlation. The strong THz fields lower the activation energy in the insulating phase. The THz-triggered insulator-to-metal transition gives rise to hysteresis loop narrowing, while lowering the transition temperature both for heating and cooling sequences. THz nanoantennas enhance the field-induced phase transition by intensifying the field strength and improve the detection sensitivity via antenna resonance. The experimental results demonstrate a potential that plasmonic nanostructures incorporating vanadium dioxide can be the basis for ultrafast, energy-efficient electronic and photonic devices.
Collapse
Affiliation(s)
- Zachary J Thompson
- Department of Physics, Oregon State University , Corvallis, Oregon 97331-6507, United States
| | - Andrew Stickel
- Department of Physics, Oregon State University , Corvallis, Oregon 97331-6507, United States
| | - Young-Gyun Jeong
- Department of Physics and Astronomy and Center for Atomic Scale Electromagnetism, Seoul National University , Seoul 151-747, Republic of Korea
| | - Sanghoon Han
- Photonic Systems Laboratory, School of EECS, Seoul National University , Seoul 151-744, Republic of Korea
| | - Byung Hee Son
- Department of Physics and Department of Energy Systems Research, Ajou University , Suwon 443-749, Republic of Korea
| | - Michael J Paul
- Department of Physics, Oregon State University , Corvallis, Oregon 97331-6507, United States
| | - Byounghwak Lee
- Department of Physics, Oregon State University , Corvallis, Oregon 97331-6507, United States
| | - Ali Mousavian
- Department of Physics, Oregon State University , Corvallis, Oregon 97331-6507, United States
| | - Giwan Seo
- Creative Research Center of Metal-Insulator Transition, Electronics and Telecommunications Research Institute , Daejeon 305-700, Republic of Korea
- School of Advanced Device Technology, University of Science & Technology , Daejeon 305-333, Republic of Korea
| | - Hyun-Tak Kim
- Creative Research Center of Metal-Insulator Transition, Electronics and Telecommunications Research Institute , Daejeon 305-700, Republic of Korea
- School of Advanced Device Technology, University of Science & Technology , Daejeon 305-333, Republic of Korea
| | - Yun-Shik Lee
- Department of Physics, Oregon State University , Corvallis, Oregon 97331-6507, United States
| | - Dai-Sik Kim
- Department of Physics and Astronomy and Center for Atomic Scale Electromagnetism, Seoul National University , Seoul 151-747, Republic of Korea
| |
Collapse
|
48
|
Fractal Nature of Metallic and Insulating Domain Configurations in a VO2 Thin Film Revealed by Kelvin Probe Force Microscopy. Sci Rep 2015; 5:10417. [PMID: 25982229 PMCID: PMC4434847 DOI: 10.1038/srep10417] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 04/09/2015] [Indexed: 01/27/2023] Open
Abstract
We investigated the surface work function (WS) and its spatial distribution for epitaxial VO2/TiO2 thin films using Kelvin probe force microscopy (KPFM). Nearly grain-boundary-free samples allowed observation of metallic and insulating domains with distinct WS values, throughout the metal–insulator transition. The metallic fraction, estimated from WS maps, describes the evolution of the resistance based on a two-dimensional percolation model. The KPFM measurements also revealed the fractal nature of the domain configuration.
Collapse
|
49
|
Lourembam J, Srivastava A, La-o-vorakiat C, Rotella H, Venkatesan T, Chia EEM. New insights into the diverse electronic phases of a novel vanadium dioxide polymorph: a terahertz spectroscopy study. Sci Rep 2015; 5:9182. [PMID: 25777320 PMCID: PMC4361872 DOI: 10.1038/srep09182] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 02/23/2015] [Indexed: 11/08/2022] Open
Abstract
A remarkable feature of vanadium dioxide is that it can be synthesized in a number of polymorphs. The conductivity mechanism in the metastable layered polymorph VO2(B) thin films has been investigated by terahertz time-domain spectroscopy (THz-TDS). In VO2(B), a critical temperature of 240 K marks the appearance of a non-zero Drude term in the observed complex conductivity, indicating the evolution from a pure insulating state towards a metallic state. In contrast, the THz conductivity of the well-known VO2(M1) is well fitted only by a modification of the Drude model to include backscattering. We also identified two different THz conductivity regimes separated by temperature in these two polymorphs. The electronic phase diagram is constructed, revealing that the width and onset of the metal-insulator transition in the B phase develop differently from the M1 phase.
Collapse
Affiliation(s)
- James Lourembam
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Amar Srivastava
- NUSNNI-Nanocore, National University of Singapore, Singapore 117411, Singapore
- Department of Physics, National University of Singapore, Singapore 117542, Singapore
| | - Chan La-o-vorakiat
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - H. Rotella
- NUSNNI-Nanocore, National University of Singapore, Singapore 117411, Singapore
- Singapore Synchrotron Light Source, National University of Singapore, 5 Research Link, Singapore 117603
| | - T. Venkatesan
- NUSNNI-Nanocore, National University of Singapore, Singapore 117411, Singapore
- Department of Physics, National University of Singapore, Singapore 117542, Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576, Singapore
| | - Elbert E. M. Chia
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| |
Collapse
|
50
|
Lysenko S, Fernández F, Rúa A, Sepúlveda N, Aparicio J. Photoinduced insulator-to-metal transition and surface statistics of VO2 monitored by elastic light scattering. APPLIED OPTICS 2015; 54:2141-2150. [PMID: 25968395 DOI: 10.1364/ao.54.002141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 12/05/2014] [Indexed: 06/04/2023]
Abstract
Measurements of ultrafast light scattering within a hemisphere are performed for statistical analysis of nonequilibrium processes in VO2 epitaxial film. A Gerchberg-Saxton error reduction algorithm is applied for accurate calculation of a surface autocorrelation function from light scattering data and for partial reconstruction of a power spectral density function. Upon ultrafast photoinduced phase transition of VO2, the elastic light scattering reveals anisotropic grain-size-dependent dynamics. It was found that the transition rate depends on the optical absorption and orientation of VO2 grains with respect to polarization of the pump pulse. An observed stepwise evolution of surface autocorrelation length and transient anisotropy of the scattering field presumably originates from complex multistage transformation of VO2 lattice on a subpicosecond time scale.
Collapse
|