1
|
Surber SM, Thien Thao NP, Smith CN, Shomo ZD, Barnes AC, Roston RL. Exploring cotton SFR2's conundrum in response to cold stress. PLANT SIGNALING & BEHAVIOR 2024; 19:2362518. [PMID: 38836385 PMCID: PMC11155703 DOI: 10.1080/15592324.2024.2362518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 05/28/2024] [Indexed: 06/06/2024]
Abstract
Cotton is an important agricultural crop to many regions across the globe but is sensitive to low-temperature exposure. The activity of the enzyme SENSITIVE TO FREEZING 2 (SFR2) improves cold tolerance of plants and produces trigalactosylsyldiacylglycerol (TGDG), but its role in cold sensitive plants, such as cotton remains unknown. Recently, it was reported that cotton SFR2 produced very little TGDG under normal and cold conditions. Here, we investigate cotton SFR2 activation and TGDG production. Using multiple approaches in the native system and transformation into Arabidopsis thaliana, as well as heterologous yeast expression, we provide evidence that cotton SFR2 activates differently than previously found among other plant species. We conclude with the hypothesis that SFR2 in cotton is not activated in a similar manner regarding acidification or freezing like Arabidopsis and that other regions of SFR2 protein are critical for activation of the enzyme than previously reported.
Collapse
Affiliation(s)
- Samantha M. Surber
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, USA
| | | | - Cailin N. Smith
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Zachery D. Shomo
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Allison C. Barnes
- United States Department of Agriculture, North Carolina State University, Raleigh, NC, USA
| | - Rebecca L. Roston
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, USA
| |
Collapse
|
2
|
Li S, Wuyun TN, Wang L, Zhang J, Tian H, Zhang Y, Wang S, Xia Y, Liu X, Wang N, Lv F, Xu J, Tang Z. Genome-wide and functional analysis of late embryogenesis abundant (LEA) genes during dormancy and sprouting periods of kernel consumption apricots (P. armeniaca L. × P. sibirica L.). Int J Biol Macromol 2024; 279:133245. [PMID: 38977045 DOI: 10.1016/j.ijbiomac.2024.133245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 06/05/2024] [Accepted: 06/16/2024] [Indexed: 07/10/2024]
Abstract
Late embryogenesis abundant (LEA) proteins play a crucial role in protecting cells from stress, making them potential contributors to abiotic stress tolerance. This study focuses on apricot (P. armeniaca L. × P. sibirica L.), where a comprehensive genome-wide analysis identified 54 LEA genes, categorized into eight subgroups based on phylogenetic relationships. Synteny analysis revealed 14 collinear blocks containing LEA genes between P. armeniaca × P. sibirica and Arabidopsis thaliana, with an additional 9 collinear blocks identified between P. armeniaca × P. sibirica and poplar. Examination of gene structure and conserved motifs indicated that these subgroups exhibit consistent exon-intron patterns and shared motifs. The expansion and duplication of LEA genes in P. armeniaca × P. sibirica were driven by whole-genome duplication (WGD), segmental duplication, and tandem duplication events. Expression analysis, utilizing RNA-seq data and quantitative real-time RT-PCR (qRT-PCR), indicated induction of PasLEA2-20, PasLEA3-2, PasLEA6-1, Pasdehydrin-3, and Pasdehydrin-5 in flower buds during dormancy and sprouting phases. Coexpression network analysis linked LEA genes with 15 cold-resistance genes. Remarkably, during the four developmental stages of flower buds in P. armeniaca × P. sibirica - physiological dormancy, ecological dormancy, sprouting period, and germination stage - the expression patterns of all PasLEAs coexpressed with cold stress-related genes remained consistent. Protein-protein interaction networks, established using Arabidopsis orthologs, emphasized connections between PasLEA proteins and cold resistance pathways. Overexpression of certain LEA genes in yeast and Arabidopsis conferred advantages under cold stress, including increased pod length, reduced bolting time and flowering time, improved survival and seed setting rates, elevated proline accumulation, and enhanced antioxidative enzymatic activities. Furthermore, these overexpressed plants exhibited upregulation of genes related to flower development and cold resistance. The Y1H assay confirmed that PasGBF4 and PasDOF3.5 act as upstream regulatory factors by binding to the promoter region of PasLEA3-2. PasDOF2.4, PasDnaJ2, and PasAP2 were also found to bind to the promoter of Pasdehydrin-3, regulating the expression levels of downstream genes. This comprehensive study explores the evolutionary relationships among PasLEA genes, protein interactions, and functional analyses during various stages of dormancy and sprouting in P. armeniaca × P. sibirica. It offers potential targets for enhancing cold resistance and manipulating flower bud dormancy in this apricot hybrid.
Collapse
Affiliation(s)
- Shaofeng Li
- State Key Laboratory of Tree Genetics and Breeding, Experimental Center of Forestry in North China, National Permanent Scientific Research Base for Warm Temperate Zone Forestry of Jiulong Mountain in Beijing, Chinese Academy of Forestry, Beijing 100091, PR China.
| | - Ta-Na Wuyun
- State Key Laboratory of Tree Genetics and Breeding, Non-timber Forestry Research and Development Center, Chinese Academy of Forestry, Zhengzhou 450003, PR China.
| | - Lin Wang
- State Key Laboratory of Tree Genetics and Breeding, Non-timber Forestry Research and Development Center, Chinese Academy of Forestry, Zhengzhou 450003, PR China.
| | - Jianhui Zhang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Hua Tian
- State Key Laboratory of Tree Genetics and Breeding, Experimental Center of Forestry in North China, National Permanent Scientific Research Base for Warm Temperate Zone Forestry of Jiulong Mountain in Beijing, Chinese Academy of Forestry, Beijing 100091, PR China.
| | - Yaodan Zhang
- State Key Laboratory of Tree Genetics and Breeding, Experimental Center of Forestry in North China, National Permanent Scientific Research Base for Warm Temperate Zone Forestry of Jiulong Mountain in Beijing, Chinese Academy of Forestry, Beijing 100091, PR China.
| | - Shaoli Wang
- State Key Laboratory of Tree Genetics and Breeding, Experimental Center of Forestry in North China, National Permanent Scientific Research Base for Warm Temperate Zone Forestry of Jiulong Mountain in Beijing, Chinese Academy of Forestry, Beijing 100091, PR China.
| | - Yongxiu Xia
- State Key Laboratory of Tree Genetics and Breeding, Experimental Center of Forestry in North China, National Permanent Scientific Research Base for Warm Temperate Zone Forestry of Jiulong Mountain in Beijing, Chinese Academy of Forestry, Beijing 100091, PR China.
| | - Xue Liu
- State Key Laboratory of Tree Genetics and Breeding, Experimental Center of Forestry in North China, National Permanent Scientific Research Base for Warm Temperate Zone Forestry of Jiulong Mountain in Beijing, Chinese Academy of Forestry, Beijing 100091, PR China.
| | - Ning Wang
- State Key Laboratory of Tree Genetics and Breeding, Experimental Center of Forestry in North China, National Permanent Scientific Research Base for Warm Temperate Zone Forestry of Jiulong Mountain in Beijing, Chinese Academy of Forestry, Beijing 100091, PR China
| | - Fenni Lv
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botany Garden Mem. Sun Yat-Sen), Nanjing 210014, PR China.
| | - Jihuang Xu
- Experimental Center of Tropical Forestry, Chinese Academy of Forestry, Pingxiang 532600, PR China.
| | - Zhimin Tang
- Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing 100093, PR China.
| |
Collapse
|
3
|
Jung WJ, Yoon JS, Seo YW. TaMAPK3 phosphorylates TaCBF and TaICE and plays a negative role in wheat freezing tolerance. JOURNAL OF PLANT PHYSIOLOGY 2024; 296:154233. [PMID: 38554674 DOI: 10.1016/j.jplph.2024.154233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/27/2024] [Accepted: 03/15/2024] [Indexed: 04/02/2024]
Abstract
Freezing temperature during overwintering often kills plants; plants have thus, developed a defense mechanism called 'cold acclimation', in which a number of genes are involved in increasing cell protection and gene expression. Mitogen-activated protein kinase (MAPK) controls proteins' activities by phosphorylation and is involved in numerous metabolic pathways. In this study, we identified the protein interaction between TaMAPK3 and the proteins in the cold response pathway, ICE41, ICE87, and CBFIVd-D9. The subcellular localization and bimolecular fluorescence complement (BiFC) assays revealed that these proteins interact in the nucleus or in the plasma membrane. Furthermore, MAPK3-mediated phosphorylation of ICE41, ICE87, and CBFIVd-D9 was verified using an in vitro phosphorylation assay. TaMAPK3-overexpressing transgenic Brachypodium showed a lower survival rate upon freezing stress and lower proline content during cold acclimation, compared to wild-type plants. Furthermore, cold response gene expression analysis revealed that the expression of these genes was suppressed in the transgenic lines under cold treatment. It was further elucidated that MAPK3 mediates the degradation of ICE and CBF proteins, which implies the negative impact of MAPK3 on the freezing tolerance of plants. This study will help to elucidate the molecular mechanisms of cold tolerance and the activity of MAPK3 in wheat.
Collapse
Affiliation(s)
- Woo Joo Jung
- Institute of Animal Molecular Biotechnology, Korea University, Seoul, 02841, South Korea
| | - Jin Seok Yoon
- Ojeong Plant Breeding Research Center, Korea University, Seoul, 02841, South Korea
| | - Yong Weon Seo
- Ojeong Plant Breeding Research Center, Korea University, Seoul, 02841, South Korea; Department of Plant Biotechnology, Korea University, Seoul, 02841, South Korea.
| |
Collapse
|
4
|
Venzhik Y, Deryabin A, Zhukova K. Au-Based Nanoparticles Enhance Low Temperature Tolerance in Wheat by Regulating Some Physiological Parameters and Gene Expression. PLANTS (BASEL, SWITZERLAND) 2024; 13:1261. [PMID: 38732476 PMCID: PMC11085431 DOI: 10.3390/plants13091261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/16/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024]
Abstract
One of the key problems of biology is how plants adapt to unfavorable conditions, such as low temperatures. A special focus is placed on finding ways to increase tolerance in important agricultural crops like wheat. Au-based nanoparticles (Au-NPs) have been employed extensively in this area in recent years. Au-NPs can be produced fast and easily using low-cost chemical reagents. When employed in microdoses, Au-NPs are often non-toxic to plants, animals, and people. In addition, Au-NPs mainly have favorable impacts on plants. In this study, we investigated the effect of Au-NP seed nanopriming (diameter 15.3 nm, Au concentration 5-50 µg mL-1) on cold tolerance, as well as some physiological, biochemical and molecular parameters, of cold-sustainable wheat (Triticum aestivum L.) genotype Zlata. The treatment with Au-NPs improved tolerance to low temperatures in control conditions and after cold hardening. Au-NPs treatment boosted the intensity of growth processes, the quantity of photosynthetic pigments, sucrose in leaves, and the expressions of encoded RuBisCo and Wcor15 genes. The potential mechanisms of Au-NPs' influence on the cold tolerance of wheat varieties were considered.
Collapse
Affiliation(s)
- Yuliya Venzhik
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia; (A.D.); (K.Z.)
| | | | | |
Collapse
|
5
|
Lv A, Su L, Fan N, Wen W, Wang Z, Zhou P, An Y. Chloroplast-targeted late embryogenesis abundant 1 increases alfalfa tolerance to drought and aluminum. PLANT PHYSIOLOGY 2023; 193:2750-2767. [PMID: 37647543 DOI: 10.1093/plphys/kiad477] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 08/04/2023] [Accepted: 08/08/2023] [Indexed: 09/01/2023]
Abstract
Late embryogenesis-abundant (LEA) proteins are important stress-response proteins that participate in protecting plants against abiotic stresses. Here, we investigated LEA group 3 protein MsLEA1, containing the typically disordered and α-helix structure, via overexpression and RNA interference (RNAi) approaches in alfalfa (Medicago sativa L.) under drought and aluminum (Al) stresses. MsLEA1 was highly expressed in leaves and localized in chloroplasts. Overexpressing MsLEA1 increased alfalfa tolerance to drought and Al stresses, but downregulating MsLEA1 decreased the tolerance. We observed a larger stomatal aperture and a lower water use efficiency in MsLEA1 RNAi lines compared with wild-type plants under drought stress. Photosynthetic rate, Rubisco activity, and superoxide dismutase (SOD) activity increased or decreased in MsLEA1-OE or MsLEA1-RNAi lines, respectively, under drought and Al stress. Copper/zinc SOD (Cu/Zn-SOD), iron SOD (Fe-SOD), and Rubisco large subunit proteins (Ms1770) were identified as binding partners of MsLEA1, which protected chloroplast structure and function under drought and Al stress. These results indicate that MsLEA1 recruits and protects its target proteins (SOD and Ms1770) and increases alfalfa tolerance against drought and Al stresses.
Collapse
Affiliation(s)
- Aimin Lv
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Liantai Su
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Nana Fan
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wuwu Wen
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zheng Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Peng Zhou
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yuan An
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
- Key Laboratory of Urban Agriculture, Ministry of Agriculture, Shanghai 201101, China
| |
Collapse
|
6
|
Szlachtowska Z, Rurek M. Plant dehydrins and dehydrin-like proteins: characterization and participation in abiotic stress response. FRONTIERS IN PLANT SCIENCE 2023; 14:1213188. [PMID: 37484455 PMCID: PMC10358736 DOI: 10.3389/fpls.2023.1213188] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 06/12/2023] [Indexed: 07/25/2023]
Abstract
Abiotic stress has a significant impact on plant growth and development. It causes changes in the subcellular organelles, which, due to their stress sensitivity, can be affected. Cellular components involved in the abiotic stress response include dehydrins, widely distributed proteins forming a class II of late embryogenesis abundant protein family with characteristic properties including the presence of evolutionarily conserved sequence motifs (including lysine-rich K-segment, N-terminal Y-segment, and often phosphorylated S motif) and high hydrophilicity and disordered structure in the unbound state. Selected dehydrins and few poorly characterized dehydrin-like proteins participate in cellular stress acclimation and are also shown to interact with organelles. Through their functioning in stabilizing biological membranes and binding reactive oxygen species, dehydrins and dehydrin-like proteins contribute to the protection of fragile organellar structures under adverse conditions. Our review characterizes the participation of plant dehydrins and dehydrin-like proteins (including some organellar proteins) in plant acclimation to diverse abiotic stress conditions and summarizes recent updates on their structure (the identification of dehydrin less conserved motifs), classification (new proposed subclasses), tissue- and developmentally specific accumulation, and key cellular activities (including organellar protection under stress acclimation). Recent findings on the subcellular localization (with emphasis on the mitochondria and plastids) and prospective applications of dehydrins and dehydrin-like proteins in functional studies to alleviate the harmful stress consequences by means of plant genetic engineering and a genome editing strategy are also discussed.
Collapse
|
7
|
Maushe D, Ogi V, Divakaran K, Verdecia Mogena AM, Himmighofen PA, Machado RAR, Towbin BD, Ehlers RU, Molina C, Parisod C, Maud Robert CA. Stress tolerance in entomopathogenic nematodes: Engineering superior nematodes for precision agriculture. J Invertebr Pathol 2023:107953. [PMID: 37336478 DOI: 10.1016/j.jip.2023.107953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/13/2023] [Accepted: 06/16/2023] [Indexed: 06/21/2023]
Abstract
Entomopathogenic nematodes (EPNs) are soil-dwelling parasitic roundworms commonly used as biocontrol agents of insect pests in agriculture. EPN dauer juveniles locate and infect a host in which they will grow and multiply until resource depletion. During their free-living stage, EPNs face a series of internal and environmental stresses. Their ability to overcome these challenges is crucial to determine their infection success and survival. In this review, we provide a comprehensive overview of EPN response to stresses associated with starvation, low/elevated temperatures, desiccation, osmotic stress, hypoxia, and ultra-violet light. We further report EPN defense strategies to cope with biotic stressors such as viruses, bacteria, fungi, and predatory insects. By comparing the genetic and biochemical basis of these strategies to the nematode model Caenorhabditis elegans, we provide new avenues and targets to select and engineer precision nematodes adapted to specific field conditions.
Collapse
Affiliation(s)
- Dorothy Maushe
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, CH-3013 Bern, Switzerland
| | - Vera Ogi
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, CH-3013 Bern, Switzerland
| | - Keerthi Divakaran
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, CH-3013 Bern, Switzerland
| | | | - Paul Anton Himmighofen
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, CH-3013 Bern, Switzerland
| | - Ricardo A R Machado
- Institute of Biology, University of Neuchâtel, Rue Emile Argand 11, CH-2000 Neuchâtel, Switzerland
| | - Benjamin Daniel Towbin
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, CH-3012 Bern, Switzerland
| | - Ralf-Udo Ehlers
- e- nema GmbH, Klausdorfer Str. 28-36, DE-24223 Schwentinental, Germany
| | - Carlos Molina
- e- nema GmbH, Klausdorfer Str. 28-36, DE-24223 Schwentinental, Germany
| | - Christian Parisod
- Department of Biology, University of Fribourg, Chemin du Musée 10, CH-1700 Fribourg, Switzerland
| | - Christelle Aurélie Maud Robert
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, CH-3013 Bern, Switzerland; Oeschger Centre for Climate Change Research, University of Bern, Hochschulstrasse 4, CH-3012 Bern, Switzerland.
| |
Collapse
|
8
|
Zhang N, Wang S, Zhao S, Chen D, Tian H, Li J, Zhang L, Li S, Liu L, Shi C, Yu X, Ren Y, Chen F. Global crotonylatome and GWAS revealed a TaSRT1- TaPGK model regulating wheat cold tolerance through mediating pyruvate. SCIENCE ADVANCES 2023; 9:eadg1012. [PMID: 37163591 PMCID: PMC10171821 DOI: 10.1126/sciadv.adg1012] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Here, we reported the complete profiling of the crotonylation proteome in common wheat. Through a combination of crotonylation and multi-omics analysis, we identified a TaPGK associated with wheat cold stress. Then, we confirmed the positive role of TaPGK-modulating wheat cold tolerance. Meanwhile, we found that cold stress induced lysine crotonylation of TaPGK. Moreover, we screened a lysine decrotonylase TaSRT1 interacting with TaPGK and found that TaSRT1 negatively regulated wheat cold tolerance. We subsequently demonstrated TaSRT1 inhibiting the accumulation of TaPGK protein, and this inhibition was possibly resulted from decrotonylation of TaPGK by TaSRT1. Transcriptome sequencing indicated that overexpression of TaPGK activated glycolytic key genes and thereby increased pyruvate content. Moreover, we found that exogenous application of pyruvate sharply enhanced wheat cold tolerance. These findings suggest that the TaSRT1-TaPGK model regulating wheat cold tolerance is possibly through mediating pyruvate. This study provided two valuable cold tolerance genes and dissected diverse mechanism of glycolytic pathway involving in wheat cold stress.
Collapse
Affiliation(s)
- Ning Zhang
- National Key Laboratory of Wheat and Maize Crop Science/CIMMYT-China Wheat and Maize Joint Research Center/Agronomy College, Henan Agricultural University, Zhengzhou, China
| | - Sisheng Wang
- National Key Laboratory of Wheat and Maize Crop Science/CIMMYT-China Wheat and Maize Joint Research Center/Agronomy College, Henan Agricultural University, Zhengzhou, China
| | - Simin Zhao
- National Key Laboratory of Wheat and Maize Crop Science/CIMMYT-China Wheat and Maize Joint Research Center/Agronomy College, Henan Agricultural University, Zhengzhou, China
| | - Daiying Chen
- National Key Laboratory of Wheat and Maize Crop Science/CIMMYT-China Wheat and Maize Joint Research Center/Agronomy College, Henan Agricultural University, Zhengzhou, China
| | - Hongyan Tian
- National Key Laboratory of Wheat and Maize Crop Science/CIMMYT-China Wheat and Maize Joint Research Center/Agronomy College, Henan Agricultural University, Zhengzhou, China
| | - Jia Li
- National Key Laboratory of Wheat and Maize Crop Science/CIMMYT-China Wheat and Maize Joint Research Center/Agronomy College, Henan Agricultural University, Zhengzhou, China
| | - Lingran Zhang
- National Key Laboratory of Wheat and Maize Crop Science/CIMMYT-China Wheat and Maize Joint Research Center/Agronomy College, Henan Agricultural University, Zhengzhou, China
| | - Songgang Li
- National Key Laboratory of Wheat and Maize Crop Science/CIMMYT-China Wheat and Maize Joint Research Center/Agronomy College, Henan Agricultural University, Zhengzhou, China
| | - Lu Liu
- National Key Laboratory of Wheat and Maize Crop Science/CIMMYT-China Wheat and Maize Joint Research Center/Agronomy College, Henan Agricultural University, Zhengzhou, China
| | - Chaonan Shi
- National Key Laboratory of Wheat and Maize Crop Science/CIMMYT-China Wheat and Maize Joint Research Center/Agronomy College, Henan Agricultural University, Zhengzhou, China
| | - Xiaodong Yu
- National Key Laboratory of Wheat and Maize Crop Science/CIMMYT-China Wheat and Maize Joint Research Center/Agronomy College, Henan Agricultural University, Zhengzhou, China
| | - Yan Ren
- National Key Laboratory of Wheat and Maize Crop Science/CIMMYT-China Wheat and Maize Joint Research Center/Agronomy College, Henan Agricultural University, Zhengzhou, China
| | - Feng Chen
- National Key Laboratory of Wheat and Maize Crop Science/CIMMYT-China Wheat and Maize Joint Research Center/Agronomy College, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
9
|
Kang P, Yoo YH, Kim DI, Yim JH, Lee H. De Novo Transcriptome Assembly and Comparative Analysis of Differentially Expressed Genes Involved in Cold Acclimation and Freezing Tolerance of the Arctic Moss Aulacomnium turgidum (Wahlenb.) Schwaegr. PLANTS (BASEL, SWITZERLAND) 2023; 12:1250. [PMID: 36986936 PMCID: PMC10054522 DOI: 10.3390/plants12061250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 06/18/2023]
Abstract
Cold acclimation refers to a phenomenon in which plants become more tolerant to freezing after exposure to non-lethal low temperatures. Aulacomnium turgidum (Wahlenb.) Schwaegr is a moss found in the Arctic that can be used to study the freezing tolerance of bryophytes. To improve our understanding of the cold acclimation effect on the freezing tolerance of A. turgidum, we compared the electrolyte leakage of protonema grown at 25 °C (non-acclimation; NA) and at 4 °C (cold acclimation; CA). Freezing damage was significantly lower in CA plants frozen at -12 °C (CA-12) than in NA plants frozen at -12 °C (NA-12). During recovery at 25 °C, CA-12 demonstrated a more rapid and greater level of the maximum photochemical efficiency of photosystem II than NA-12, indicating a greater recovery capacity for CA-12 compared to NA-12. For the comparative analysis of the transcriptome between NA-12 and CA-12, six cDNA libraries were constructed in triplicate, and RNA-seq reads were assembled into 45,796 unigenes. The differential gene expression analysis showed that a significant number of AP2 transcription factor genes and pentatricopeptide repeat protein-coding genes related to abiotic stress and the sugar metabolism pathway were upregulated in CA-12. Furthermore, starch and maltose concentrations increased in CA-12, suggesting that cold acclimation increases freezing tolerance and protects photosynthetic efficiency through the accumulation of starch and maltose in A. turgidum. A de novo assembled transcriptome can be used to explore genetic sources in non-model organisms.
Collapse
Affiliation(s)
- Pilsung Kang
- Division of Life Sciences, Korea Polar Research Institute, Incheon 21990, Republic of Korea; (P.K.); (Y.-H.Y.)
- Department of Biological Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Yo-Han Yoo
- Division of Life Sciences, Korea Polar Research Institute, Incheon 21990, Republic of Korea; (P.K.); (Y.-H.Y.)
| | - Dong-Il Kim
- Department of Biological Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Joung Han Yim
- Division of Life Sciences, Korea Polar Research Institute, Incheon 21990, Republic of Korea; (P.K.); (Y.-H.Y.)
| | - Hyoungseok Lee
- Division of Life Sciences, Korea Polar Research Institute, Incheon 21990, Republic of Korea; (P.K.); (Y.-H.Y.)
- Polar Science, University of Science and Technology, Incheon 21990, Republic of Korea
| |
Collapse
|
10
|
Genome-wide study and functional characterization elucidates the potential association of late embryogenesis abundant (LEA) genes with lotus seed development. Int J Biol Macromol 2023; 226:1-13. [PMID: 36481329 DOI: 10.1016/j.ijbiomac.2022.11.301] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 11/18/2022] [Accepted: 11/25/2022] [Indexed: 12/12/2022]
Abstract
Late embryogenesis abundant (LEA) proteins are extremely hydrophilic proteins imperatively associated with plant growth and development, as well as cell protection from abiotic stress. However, the genome-wide characterization of LEA gene family remains limited, especially in aquatic species such as lotus (Nelumbo spp.). Here, 57 putative LEA genes, including 28 NnLEAs and 29 NlLEAs were identified in the N.nucifera and N.lutea genomes, respectively. A total of 27 homologous LEA gene pairs were identified, indicating high degree of sequence homologies between the two Nelumbo species. Secondary structure prediction indicated high prevalence of alpha (α) helix structure among LEA proteins in the LEA_1, LEA_4, and SMP groups. Screening of putative promoter cis-elements revealed that NnLEA genes were involved in diverse biological processes. Most NnLEA genes were predominantly expressed in the late cotyledons and plumules development stages, suggesting their potential vital roles in lotus seed maturation. In addition, genes co-expressed with NnLEAs were involved in ABA signaling, seed maturation, and development processes. Overall, this study provides new insights for the in-depth understanding of the functions of NnLEA proteins in lotus seed development, and could act as a useful reference for the molecular breeding of seeds with prolonged lifespan.
Collapse
|
11
|
Yao D, Wang J, Peng W, Zhang B, Wen X, Wan X, Wang X, Li X, Ma J, Liu X, Fan Y, Sun G. Transcriptomic profiling of wheat stem during meiosis in response to freezing stress. FRONTIERS IN PLANT SCIENCE 2023; 13:1099677. [PMID: 36714719 PMCID: PMC9878610 DOI: 10.3389/fpls.2022.1099677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 12/19/2022] [Indexed: 06/18/2023]
Abstract
Low temperature injury in spring has seriously destabilized the production and grain quality of common wheat. However, the molecular mechanisms underlying spring frost tolerance remain elusive. In this study, we investigated the response of a frost-tolerant wheat variety Zhongmai8444 to freezing stress at the meiotic stage. Transcriptome profiles over a time course were subsequently generated by high-throughput sequencing. Our results revealed that the prolonged freezing temperature led to the significant reductions in plant height and seed setting rate. Cell wall thickening in the vascular tissue was also observed in the stems. RNA-seq analyses demonstrated the identification of 1010 up-regulated and 230 down-regulated genes shared by all time points of freezing treatment. Enrichment analysis revealed that gene activity related to hormone signal transduction and cell wall biosynthesis was significantly modulated under freezing. In addition, among the identified differentially expressed genes, 111 transcription factors belonging to multiple gene families exhibited dynamic expression pattern. This study provided valuable gene resources beneficial for the breeding of wheat varieties with improved spring frost tolerance.
Collapse
Affiliation(s)
- Danyu Yao
- National Engineering Laboratory of Crop Molecular Breeding, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Juan Wang
- National Engineering Laboratory of Crop Molecular Breeding, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wentao Peng
- National Engineering Laboratory of Crop Molecular Breeding, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Agricultural Science and Engineering, Liaocheng University, Liaocheng, Shandong, China
| | - Bowen Zhang
- National Engineering Laboratory of Crop Molecular Breeding, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Agronomy, Jilin Agricultural University, Changchun, Jilin, China
| | - Xiaolan Wen
- National Engineering Laboratory of Crop Molecular Breeding, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, Hebei, China
| | - Xiaoneng Wan
- National Engineering Laboratory of Crop Molecular Breeding, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiuyuan Wang
- National Engineering Laboratory of Crop Molecular Breeding, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Agricultural Science and Engineering, Liaocheng University, Liaocheng, Shandong, China
| | - Xinchun Li
- National Engineering Laboratory of Crop Molecular Breeding, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jian Ma
- College of Agronomy, Jilin Agricultural University, Changchun, Jilin, China
| | - Xiaofen Liu
- College of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, Hebei, China
| | - Yinglun Fan
- College of Agricultural Science and Engineering, Liaocheng University, Liaocheng, Shandong, China
| | - Guozhong Sun
- National Engineering Laboratory of Crop Molecular Breeding, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
12
|
Lillis PE, Kennedy IP, Carolan JC, Griffin CT. Low-temperature exposure has immediate and lasting effects on the stress tolerance, chemotaxis and proteome of entomopathogenic nematodes. Parasitology 2022; 150:1-14. [PMID: 36328953 PMCID: PMC10090647 DOI: 10.1017/s0031182022001445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/03/2022] [Accepted: 10/07/2022] [Indexed: 11/07/2022]
Abstract
Temperature is one of the most important factors affecting soil organisms, including the infective stages of parasites and entomopathogenic nematodes, which are important biological control agents. We investigated the response of 2 species of entomopathogenic nematodes to different storage regimes: cold (9°C), culture temperature (20°C) and temperature swapped from 9 to 20°C. For Steinernema carpocapsae, cold storage had profound effects on chemotaxis, stress tolerance and protein expression that were retained in temperature-swapped individuals. These effects included reversal of chemotactic response for 3 (prenol, methyl salicylate and hexanol) of the 4 chemicals tested, and enhanced tolerance to freezing (−10°C) and desiccation (75% RH). Label-free quantitative proteomics showed that cold storage induced widespread changes in S. carpocapsae, including an increase in heat-shock proteins and late embryogenesis abundant proteins. For Heterorhabditis megidis, cold storage had a less dramatic effect on chemotaxis (as previously shown for proteomic expression) and changes were not maintained on return to 20°C. Thus, cold temperature exposure has significant effects on entomopathogenic nematodes, but the nature of the change depends on the species. Steinernema carpocapsae, in particular, displays significant plasticity, and its behaviour and stress tolerance may be manipulated by brief exposure to low temperatures, with implications for its use as a biological control agent.
Collapse
Affiliation(s)
- Peter E. Lillis
- Department of Biology, Maynooth University, Maynooth, County Kildare, Ireland
| | - Ian P. Kennedy
- Department of Biology, Maynooth University, Maynooth, County Kildare, Ireland
| | - James C. Carolan
- Department of Biology, Maynooth University, Maynooth, County Kildare, Ireland
| | | |
Collapse
|
13
|
Wang G, Xu X, Gao Z, Liu T, Li Y, Hou X. Genome-wide identification of LEA gene family and cold response mechanism of BcLEA4-7 and BcLEA4-18 in non-heading Chinese cabbage [Brassica campestris (syn. Brassica rapa) ssp. chinensis]. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 321:111291. [PMID: 35696933 DOI: 10.1016/j.plantsci.2022.111291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 06/15/2023]
Abstract
Cold stress is a key factor limiting the yield and quality of non-heading Chinese cabbage. The hydrophilic protective protein LEA plays an important role in plant abiotic stress. In this study, 72 BcLEAs were identified from non-heading Chinese cabbage and divided into 9 subfamilies by phylogenetic analysis. Gene structure analysis showed that BcLEAs were unevenly distributed on 10 chromosomes, with few introns. Through analyzing the expression of these genes under cold stress by RNA-seq and qRT-PCR, two genes (BcLEA4-7 and BcLEA4-18) highly sensitive to cold stress were identified, whose roles in cold tolerance of non-heading Chinese cabbage were demonstrated by virus-induced gene silencing. The BcLEA promoters were analyzed to study the cold response mechanism of BcLEA4-7 and BcLEA4-18, revealing that both BcLEA4-7 and BcLEA4-18 promoters contained two CRT/DRE elements. Subsequently, it was found that the promoters isolated from non-heading Chinese cabbage could be activated at low temperatures. Further analysis showed BcCBF2 in non-heading Chinese cabbage interacted with two CRT/DRE elements in BcLEA4-7 and BcLEA4-18 promoters to stimulate their activity, indicating that BcCBF2 is an upstream regulator. Meanwhile, the CRT/DRE element located in BcLEA4-7 promoter (-219 bp to -171 bp) and BcLEA4-18 promoter (-234 bp to -186 bp) was more likely to be activated by BcCBF2, which may be attributed to its flanking sequence. These data laid a foundation for further understanding the functional role and regulatory mechanism of BcLEAs in cold stress tolerance.
Collapse
Affiliation(s)
- Guangpeng Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), Ministry of Agriculture and Rural Affairs, PR China; Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education, PR China; Nanjing Suman Plasma Engineering Research Institute, Nanjing Agricultural University, Nanjing 210095, China
| | - Xinfeng Xu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), Ministry of Agriculture and Rural Affairs, PR China; Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education, PR China
| | - Zhanyuan Gao
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), Ministry of Agriculture and Rural Affairs, PR China; Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education, PR China; Nanjing Suman Plasma Engineering Research Institute, Nanjing Agricultural University, Nanjing 210095, China
| | - Tongkun Liu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), Ministry of Agriculture and Rural Affairs, PR China; Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education, PR China
| | - Ying Li
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), Ministry of Agriculture and Rural Affairs, PR China; Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education, PR China; Nanjing Suman Plasma Engineering Research Institute, Nanjing Agricultural University, Nanjing 210095, China
| | - Xilin Hou
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), Ministry of Agriculture and Rural Affairs, PR China; Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education, PR China; Nanjing Suman Plasma Engineering Research Institute, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
14
|
Lillis PE, Griffin CT, Carolan JC. The effect of temperature conditioning (9°C and 20°C) on the proteome of entomopathogenic nematode infective juveniles. PLoS One 2022; 17:e0266164. [PMID: 35390034 PMCID: PMC8989221 DOI: 10.1371/journal.pone.0266164] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 03/15/2022] [Indexed: 11/19/2022] Open
Abstract
Entomopathogenic nematodes (EPN) of the genera Steinernema and Heterorhabditis are parasites which kill and reproduce within insects. While both have life cycles centred around their developmentally arrested, nonfeeding and stress tolerant infective juvenile (IJ) stage, they are relatively distantly related. These IJs are promising biocontrol agents, and their shelf life and stress tolerance may be enhanced by storage at low temperatures. The purpose of this study was to investigate how the proteome of the IJs of two distantly related EPN species is affected by storage at 9°C (for up to 9 weeks) and 20°C (for up to 6 weeks), using label-free quantitative proteomics. Overall, more proteins were detected in S. carpocapsae (2422) than in H. megidis (1582). The S. carpocapsae proteome was strongly affected by temperature, while the H. megidis proteome was affected by both time and temperature. The proteins which increased in abundance to the greatest extent in S. carpocapsae IJs after conditioning at 9°C were chaperone proteins, and proteins related to stress. The proteins which increased in abundance the most after storage at 20°C were proteins related to the cytoskeleton, cell signalling, proteases and their inhibitors, which may have roles in infection. The proteins which decreased in abundance to the greatest extent in S. carpocapsae after both 9°C and 20°C storage were those associated with metabolism, stress and the cytoskeleton. After storage at both temperatures, the proteins increased to the greatest extent in H. megidis IJs were those associated with the cytoskeleton, cell signalling and carbon metabolism, and the proteins decreased in abundance to the greatest extent were heat shock and ribosomal proteins, and those associated with metabolism. As the longest-lived stage of the EPN life cycle, IJs may be affected by proteostatic stress, caused by the accumulation of misfolded proteins and toxic aggregates. The substantial increase of chaperone proteins in S. carpocapsae, and to a greater extent at 9°C, and the general decrease in ribosomal and chaperone proteins in H. megidis may represent species-specific proteostasis mechanisms. Similarly, organisms accumulate reactive oxygen species (ROS) over time and both species exhibited a gradual increase in proteins which enhance ROS tolerance, such as catalase. The species-specific responses of the proteome in response to storage temperature, and over time, may reflect the phylogenetic distance and/or different ecological strategies.
Collapse
Affiliation(s)
- Peter E. Lillis
- Department of Biology, Maynooth University, Maynooth, County Kildare, Ireland
| | | | - James C. Carolan
- Department of Biology, Maynooth University, Maynooth, County Kildare, Ireland
- * E-mail:
| |
Collapse
|
15
|
Pantelić A, Stevanović S, Komić SM, Kilibarda N, Vidović M. In Silico Characterisation of the Late Embryogenesis Abundant (LEA) Protein Families and Their Role in Desiccation Tolerance in Ramonda serbica Panc. Int J Mol Sci 2022; 23:3547. [PMID: 35408906 PMCID: PMC8998581 DOI: 10.3390/ijms23073547] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/11/2022] [Accepted: 03/22/2022] [Indexed: 02/03/2023] Open
Abstract
Ramonda serbica Panc. is an ancient resurrection plant able to survive a long desiccation period and recover metabolic functions upon watering. The accumulation of protective late embryogenesis abundant proteins (LEAPs) is a desiccation tolerance hallmark. To propose their role in R. serbica desiccation tolerance, we structurally characterised LEAPs and evaluated LEA gene expression levels in hydrated and desiccated leaves. By integrating de novo transcriptomics and homologues LEAP domains, 318 R. serbica LEAPs were identified and classified according to their conserved motifs and phylogeny. The in silico analysis revealed that hydrophilic LEA4 proteins exhibited an exceptionally high tendency to form amphipathic α-helices. The most abundant, atypical LEA2 group contained more hydrophobic proteins predicted to fold into the defined globular domains. Within the desiccation-upregulated LEA genes, the majority encoded highly disordered DEH1, LEA1, LEA4.2, and LEA4.3 proteins, while the greatest portion of downregulated genes encoded LEA2.3 and LEA2.5 proteins. While dehydrins might chelate metals and bind DNA under water deficit, other intrinsically disordered LEAPs might participate in forming intracellular proteinaceous condensates or adopt amphipathic α-helical conformation, enabling them to stabilise desiccation-sensitive proteins and membranes. This comprehensive LEAPs structural characterisation is essential to understanding their function and regulation during desiccation aiming at crop drought tolerance improvement.
Collapse
Affiliation(s)
- Ana Pantelić
- Laboratory for Plant Molecular Biology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia; (A.P.); (S.S.)
| | - Strahinja Stevanović
- Laboratory for Plant Molecular Biology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia; (A.P.); (S.S.)
| | - Sonja Milić Komić
- Department of Life Science, Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11000 Belgrade, Serbia;
| | - Nataša Kilibarda
- Department of Pharmacy, Singidunum University, Danijelova 32, 11000 Belgrade, Serbia;
| | - Marija Vidović
- Laboratory for Plant Molecular Biology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia; (A.P.); (S.S.)
| |
Collapse
|
16
|
Fan M, Zhang Y, Li X, Wu S, Yang M, Yin H, Liu W, Fan Z, Li J. Multi-Approach Analysis Reveals Pathways of Cold Tolerance Divergence in Camellia japonica. FRONTIERS IN PLANT SCIENCE 2022; 13:811791. [PMID: 35283896 PMCID: PMC8914472 DOI: 10.3389/fpls.2022.811791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
Understanding the molecular mechanism of the cold response is critical to improve horticultural plant cold tolerance. Here, we documented the physiological, transcriptome, proteome, and hormonal dynamics to cold stress in temperate genotype (Tg) and subtropical genotype (Sg) populations of Camellia japonica. Tg C. japonica suffered minimal osmotic and oxidative damage compared to Sg C. japonica under the same cold treatment. Transcriptional and translational differences increased under the cold treatment, indicating that Tg C. japonica was affected by the environment and displayed both conserved and divergent mechanisms. About 60% of the genes responding to cold had similar dynamics in the two populations, but 1,896 transcripts and 455 proteins differentially accumulated in response to the cold between Tg and Sg C. japonica. Co-expression analysis showed that the ribosomal protein and genes related to photosynthesis were upregulated in Tg C. japonica, and tryptophan, phenylpropanoid, and flavonoid metabolism were regulated differently between the two populations under cold stress. The divergence of these genes reflected a difference in cold responsiveness. In addition, the decrease in the abscisic acid (ABA)/gibberellic acid (GA) ratio regulated by biosynthetic signal transduction pathway enhanced cold resistance in Tg C. japonica, suggesting that hormones may regulate the difference in cold responsiveness. These results provide a new understanding of the molecular mechanism of cold stress and will improve cold tolerance in horticultural plants.
Collapse
Affiliation(s)
| | | | - XinLei Li
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
| | | | | | | | | | | | | |
Collapse
|
17
|
Cho KH, Kim MY, Kwon H, Yang X, Lee SH. Novel QTL identification and candidate gene analysis for enhancing salt tolerance in soybean (Glycine max (L.) Merr.). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 313:111085. [PMID: 34763870 DOI: 10.1016/j.plantsci.2021.111085] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/05/2021] [Accepted: 10/08/2021] [Indexed: 06/13/2023]
Abstract
Soybean, a glycophyte that is sensitive to salt stress, is greatly affected by salinity at all growth stages. A mapping population derived from a cross between a salt-sensitive Korean cultivar, Cheongja 3, and a salt-tolerant landrace, IT162669, was used to identify quantitative trait loci (QTLs) conferring salt tolerance in soybean. Following treatment with 120 mM NaCl for 2 weeks, phenotypic traits representing physiological damage, leaf Na+ content, and K+/Na+ ratio were characterized. Among the QTLs mapped on a high-density genetic map harboring 2,630 single nucleotide polymorphism markers, we found two novel major loci, qST6, on chromosome 6, and qST10, on chromosome 10, which controlled traits related to ion toxicity and physiology in response to salinity, respectively. These loci were distinct from the previously known salt tolerance allele on chromosome 3. Other QTLs associated with abiotic stress overlapped with the genomic regions of qST6 and qST10, or with their paralogous regions. Based on the functional annotation and parental expression differences, we identified eight putative candidate genes, two in qST6 and six in qST10, which included a phosphoenolpyruvate carboxylase and an ethylene response factor. This study provides additional genetic resources to breed soybean cultivars with enhanced salt tolerance.
Collapse
Affiliation(s)
- Kang-Heum Cho
- Department of Agriculture, Forestry and Bioresources and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Moon Young Kim
- Department of Agriculture, Forestry and Bioresources and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea; Plant Genomics and Breeding Institute, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Hakyung Kwon
- Department of Agriculture, Forestry and Bioresources and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Xuefei Yang
- Key Laboratory of Herbage & Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010000, China.
| | - Suk-Ha Lee
- Department of Agriculture, Forestry and Bioresources and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea; Plant Genomics and Breeding Institute, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
18
|
Subcellular Proteomics to Understand Promotive Effect of Plant-Derived Smoke Solution on Soybean Root. Proteomes 2021; 9:proteomes9040039. [PMID: 34698284 PMCID: PMC8544748 DOI: 10.3390/proteomes9040039] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/27/2021] [Accepted: 09/30/2021] [Indexed: 12/11/2022] Open
Abstract
Plant-derived smoke solution enhances soybean root growth; however, its mechanism is not clearly understood. Subcellular proteomics techniques were used for underlying roles of plant-derived smoke solution on soybean root growth. The fractions of membrane and nucleus were purified and evaluated for purity. ATPase and histone were enriched in the fractions of membrane and nucleus, respectively. Principal component analysis of proteomic results indicated that the plant-derived smoke solution affected the proteins in the membrane and nucleus. The proteins in the membrane and nucleus mainly increased and decreased, respectively, by the treatment of plant-derived smoke solution compared with control. In the proteins in the plasma membrane, ATPase increased, which was confirmed by immunoblot analysis, and ATP contents increased through the treatment of plant-derived smoke solution. Additionally, although the nuclear proteins mainly decreased, the expression of RNA polymerase II was up-regulated through the treatment of plant-derived smoke solution. These results indicate that plant-derived smoke solution enhanced soybean root growth through the transcriptional promotion with RNA polymerase II expression and the energy production with ATPase accumulation.
Collapse
|
19
|
Wąsek I, Dyda M, Gołębiowska G, Tyrka M, Rapacz M, Szechyńska-Hebda M, Wędzony M. Quantitative trait loci and candidate genes associated with freezing tolerance of winter triticale (× Triticosecale Wittmack). J Appl Genet 2021; 63:15-33. [PMID: 34491554 PMCID: PMC8755666 DOI: 10.1007/s13353-021-00660-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/08/2021] [Accepted: 08/24/2021] [Indexed: 11/25/2022]
Abstract
Freezing tolerance of triticale is a major trait contributing to its winter hardiness. The identification of genomic regions — quantitative trait loci (QTL) and molecular markers associated with freezing tolerance in winter hexaploid triticale — was the aim of this study. For that purpose, a new genetic linkage map was developed for the population of 92 doubled haploid lines derived from ‘Hewo’ × ‘Magnat’ F1 hybrid. Those lines, together with parents were subjected to freezing tolerance test three times during two winter seasons. Plants were grown and cold-hardened under natural fall/winter conditions and then subjected to freezing in controlled conditions. Freezing tolerance was assessed as the plants recovery (REC), the electrolyte leakage (EL) from leaves and chlorophyll fluorescence parameters (JIP) after freezing. Three consistent QTL for several fluorescence parameters, electrolyte leakage, and the percentage of the survived plants were identified with composite interval mapping (CIM) and single marker analysis (SMA). The first locus Qfr.hm-7A.1 explained 9% of variation of both electrolyte leakage and plants recovery after freezing. Two QTL explaining up to 12% of variation in plants recovery and shared by selected chlorophyll fluorescence parameters were found on 4R and 5R chromosomes. Finally, main locus Qchl.hm-5A.1 was detected for chlorophyll fluorescence parameters that explained up to 19.6% of phenotypic variation. The co-located QTL on chromosomes 7A.1, 4R and 5R, clearly indicated physiological and genetic relationship of the plant survival after freezing with the ability to maintain optimal photochemical activity of the photosystem II and preservation of the cell membranes integrity. The genes located in silico within the identified QTL include those encoding BTR1-like protein, transmembrane helix proteins like potassium channel, and phosphoric ester hydrolase involved in response to osmotic stress as well as proteins involved in the regulation of the gene expression, chloroplast RNA processing, and pyrimidine salvage pathway. Additionally, our results confirm that the JIP test is a valuable tool to evaluate freezing tolerance of triticale under unstable winter environments.
Collapse
Affiliation(s)
- I Wąsek
- Institute of Biology, Pedagogical University of Cracow, Podchorążych 2, 30-084, Kraków, Poland
| | - M Dyda
- Institute of Biology, Pedagogical University of Cracow, Podchorążych 2, 30-084, Kraków, Poland
| | - G Gołębiowska
- Institute of Biology, Pedagogical University of Cracow, Podchorążych 2, 30-084, Kraków, Poland.
| | - M Tyrka
- Department of Biotechnology and Bioinformatics, Faculty of Chemistry, Rzeszow University of Technology, Powstańców Warszawy 6, 35-959, Rzeszow, Poland
| | - M Rapacz
- Department of Plant Breeding, Physiology and Seed Science, University of Agriculture in Kraków, Podłużna 3, 30-239, Krakow, Poland
| | - M Szechyńska-Hebda
- Plant Breeding and Acclimatization Institute, National Research Institute, 05-870, Radzików, Błonie, Poland.,The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Krakow, Poland
| | - M Wędzony
- Institute of Biology, Pedagogical University of Cracow, Podchorążych 2, 30-084, Kraków, Poland
| |
Collapse
|
20
|
Repkina N, Ignatenko A, Holoptseva E, MiszalskI Z, Kaszycki P, Talanova V. Exogenous Methyl Jasmonate Improves Cold Tolerance with Parallel Induction of Two Cold-Regulated ( COR) Genes Expression in Triticum aestivum L. PLANTS (BASEL, SWITZERLAND) 2021; 10:1421. [PMID: 34371628 PMCID: PMC8309304 DOI: 10.3390/plants10071421] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/28/2021] [Accepted: 07/08/2021] [Indexed: 01/24/2023]
Abstract
Methyl jasmonate (MJ) is an important plant growth regulator that plays a key role in tolerance to biotic and abiotic stresses. In this research, the effects of exogenous MJ on cold tolerance, photosynthesis, activity and gene expression of antioxidant enzymes, proline accumulation, and expression of cold-regulated (COR) genes in wheat seedlings under low temperature (4 °C) were investigated. Exogenous MJ treatment (1 µM) promoted wheat cold tolerance before and during cold exposure. Low temperature significantly decreased photosynthetic parameters, whereas MJ application led to their partial recovery under cold exposure. Hydrogen peroxide (H2O2) and malondialdehyde (MDA) levels increased in response to low temperature, and this was counteracted by MJ application. Exogenous MJ significantly enhanced the activities of antioxidant enzymes and upregulated the expression of MnSOD and CAT during cold exposure. MJ application also led to enhanced proline content before 4 °C exposure, whereas the P5CS gene expression was upregulated by MJ's presence at both normal (22 °C) and low (4 °C) temperatures. It was also shown that MJ tended to upregulate the expression of the COR genes WCS19 and WCS120 genes. We conclude that exogenous MJ can alleviate the negative effect of cold stress thus increasing wheat cold tolerance.
Collapse
Affiliation(s)
- Natalia Repkina
- Institute of Biology of the Karelian Research Centre of the Russian Academy of Sciences, Pushkinskaya St. 11, 185910 Petrozavodsk, Russia; (A.I.); (E.H.); (V.T.)
| | - Anna Ignatenko
- Institute of Biology of the Karelian Research Centre of the Russian Academy of Sciences, Pushkinskaya St. 11, 185910 Petrozavodsk, Russia; (A.I.); (E.H.); (V.T.)
| | - Ekaterina Holoptseva
- Institute of Biology of the Karelian Research Centre of the Russian Academy of Sciences, Pushkinskaya St. 11, 185910 Petrozavodsk, Russia; (A.I.); (E.H.); (V.T.)
| | - Zbigniew MiszalskI
- W. Szafer Institute of Botany, Polish Academy of Sciences, ul. Lubicz 46, 31512 Kraków, Poland;
| | - Paweł Kaszycki
- Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, al. 29 Listopada 54, 31425 Kraków, Poland;
| | - Vera Talanova
- Institute of Biology of the Karelian Research Centre of the Russian Academy of Sciences, Pushkinskaya St. 11, 185910 Petrozavodsk, Russia; (A.I.); (E.H.); (V.T.)
| |
Collapse
|
21
|
Hassan MA, Xiang C, Farooq M, Muhammad N, Yan Z, Hui X, Yuanyuan K, Bruno AK, Lele Z, Jincai L. Cold Stress in Wheat: Plant Acclimation Responses and Management Strategies. FRONTIERS IN PLANT SCIENCE 2021; 12:676884. [PMID: 34305976 PMCID: PMC8299469 DOI: 10.3389/fpls.2021.676884] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 05/28/2021] [Indexed: 05/02/2023]
Abstract
Unpredicted variability in temperature is associated with frequent extreme low-temperature events. Wheat is a leading crop in fulfilling global food requirements. Climate-driven temperature extremes influence the vegetative and reproductive growth of wheat, followed by a decrease in yield. This review describes how low temperature induces a series of modifications in the morphophysiological, biochemical, and molecular makeup of wheat and how it is perceived. To cope with these modifications, crop plants turn on their cold-tolerance mechanisms, characterized by accumulating soluble carbohydrates, signaling molecules, and cold tolerance gene expressions. The review also discusses the integrated management approaches to enhance the performance of wheat plants against cold stress. In this review, we propose strategies for improving the adaptive capacity of wheat besides alleviating risks of cold anticipated with climate change.
Collapse
Affiliation(s)
| | - Chen Xiang
- School of Agronomy, Anhui Agricultural University, Hefei, China
| | - Muhammad Farooq
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Muscat, Oman
| | - Noor Muhammad
- Agronomy (Forage Production) Section, Ayub Agricultural Research Institute, Faisalabad, Pakistan
| | - Zhang Yan
- School of Agronomy, Anhui Agricultural University, Hefei, China
| | - Xu Hui
- School of Agronomy, Anhui Agricultural University, Hefei, China
| | - Ke Yuanyuan
- School of Agronomy, Anhui Agricultural University, Hefei, China
| | | | - Zhang Lele
- School of Agronomy, Anhui Agricultural University, Hefei, China
| | - Li Jincai
- School of Agronomy, Anhui Agricultural University, Hefei, China
- Jiangsu Collaborative Innovation Centre for Modern Crop Production, Nanjing, China
| |
Collapse
|
22
|
Engineering cereal crops for enhanced abiotic stress tolerance. PROCEEDINGS OF THE INDIAN NATIONAL SCIENCE ACADEMY 2021. [DOI: 10.1007/s43538-021-00006-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
23
|
Ding M, Wang L, Zhan W, Sun G, Jia X, Chen S, Ding W, Yang J. Genome-wide identification and expression analysis of late embryogenesis abundant protein-encoding genes in rye (Secale cereale L.). PLoS One 2021; 16:e0249757. [PMID: 33831102 PMCID: PMC8031920 DOI: 10.1371/journal.pone.0249757] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/24/2021] [Indexed: 11/18/2022] Open
Abstract
Late embryogenesis abundant (LEA) proteins are members of a large and highly diverse family that play critical roles in protecting cells from abiotic stresses and maintaining plant growth and development. However, the identification and biological function of genes of Secale cereale LEA (ScLEA) have been rarely reported. In this study, we identified 112 ScLEA genes, which can be divided into eight groups and are evenly distributed on all rye chromosomes. Structure analysis revealed that members of the same group tend to be highly conserved. We identified 12 pairs of tandem duplication genes and 19 pairs of segmental duplication genes, which may be an expansion way of LEA gene family. Expression profiling analysis revealed obvious temporal and spatial specificity of ScLEA gene expression, with the highest expression levels observed in grains. According to the qRT-PCR analysis, selected ScLEA genes were regulated by various abiotic stresses, especially PEG treatment, decreased temperature, and blue light. Taken together, our results provide a reference for further functional analysis and potential utilization of the ScLEA genes in improving stress tolerance of crops.
Collapse
Affiliation(s)
- Mengyue Ding
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Lijian Wang
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
- Department of Criminal Science and Technology, Henan Police College, Zhengzhou, China
- * E-mail: (JY); (LW)
| | - Weimin Zhan
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Guanghua Sun
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Xiaolin Jia
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Shizhan Chen
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Wusi Ding
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Jianping Yang
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
- * E-mail: (JY); (LW)
| |
Collapse
|
24
|
He C, Liu X, Teixeira da Silva JA, Wang H, Peng T, Zhang M, Si C, Yu Z, Tan J, Zhang J, Luo J, Duan J. Characterization of LEA genes in Dendrobium officinale and one Gene in induction of callus. JOURNAL OF PLANT PHYSIOLOGY 2021; 258-259:153356. [PMID: 33423816 DOI: 10.1016/j.jplph.2020.153356] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 12/21/2020] [Indexed: 06/12/2023]
Abstract
Late embryogenesis abundant (LEA) proteins are widely involved in plant stress responsive, while their involvement in callus formation is largest unknown. In this study, we identified and conducted expression analysis of the LEA genes from Phalaenopsis equestris and Dendrobium officinale, and characterized a LEA gene from D. officinale. A total 57 and 59 LEA genes were identified in P. equestris and D. officinale, respectively. A phylogenetic analysis showed that AtM, LEA_5 and Dehydrin groups were absent in both orchids. LEA_1 group genes were strongly expressed in seeds, significantly down-regulated in flowers, and absent in vegetative organs (leaves, stems and roots) in both orchids. Moreover, LEA_1 and LEA_4 group genes from D. officinale were abundant in the protocorm-like body stage and were dramatically up-regulated in response to abscisic acid and salinity stress. A LEA_1 gene (DoLEA43) was selected for further functional analysis. DoLEA43 protein was localized in the cytoplasm and nucleus, and its promoter contained a WUN-motif that was modulated by wounding. Overexpression of DoLEA43 in Arabidopsis enhanced callus induction, causing changes to callus formation-related genes such as WIND1. Our results indicate the involvement of LEA genes in the induction of callus, which provide insights into plant regeneration.
Collapse
Affiliation(s)
- Chunmei He
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Gene Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Xuncheng Liu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Gene Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Jaime A Teixeira da Silva
- Independent researcher, P. O. Box 7, Miki-cho post office, Ikenobe 3011-2, Kagawa-ken, 761-0799, Japan
| | - Haobin Wang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Gene Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Tao Peng
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Gene Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Mingze Zhang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Gene Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Can Si
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Gene Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhenming Yu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Gene Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Jianwen Tan
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Jianxia Zhang
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Jianping Luo
- School of Food Engineering and Biotechnology, Hefei University of Technology, Hefei, 230009, China
| | - Jun Duan
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Gene Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China.
| |
Collapse
|
25
|
Singh KK, Graether SP. The in vitro structure and functions of the disordered late embryogenesis abundant three proteins. Protein Sci 2021; 30:678-692. [PMID: 33474748 DOI: 10.1002/pro.4028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 01/11/2021] [Accepted: 01/14/2021] [Indexed: 01/01/2023]
Abstract
Late embryogenesis abundant (LEA) proteins are produced during seed embryogenesis and in vegetative tissue in response to various abiotic stressors. A correlation has been established between LEA expression and stress tolerance, yet their precise biochemical mechanism remains elusive. LEA proteins are very rich in hydrophilic amino acids, and they have been found to be intrinsically disordered proteins (IDPs) in vitro. Here, we perform biochemical and structural analyses of the four LEA3 proteins from Arabidopsis thaliana (AtLEA3). We show that the LEA3 proteins are disordered in solution but have regions with propensity for order. All LEA3 proteins were effective cryoprotectants of LDH in the freeze/thaw assays, while only one member, AtLEA3-4, was shown to bind Cu2+ and Fe3+ ions with micromolar affinity. As well, only AtLEA3-4 showed binding and a gain in α-helicity in the presence of the membrane mimic dodecylphosphocholine (DPC). We explored this interaction in greater detail using 15 N-heteronuclear single quantum coherence (HSQC) nuclear magnetic resonance, and demonstrate that two sets of conserved motifs present in AtLEA3-4 are involved in the interaction with the DPC micelles, which themselves gain α-helical structure.
Collapse
Affiliation(s)
- Karamjeet K Singh
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Steffen P Graether
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
26
|
Wang X, Liu Y, Han Z, Chen Y, Huai D, Kang Y, Wang Z, Yan L, Jiang H, Lei Y, Liao B. Integrated Transcriptomics and Metabolomics Analysis Reveal Key Metabolism Pathways Contributing to Cold Tolerance in Peanut. FRONTIERS IN PLANT SCIENCE 2021; 12:752474. [PMID: 34899780 PMCID: PMC8652294 DOI: 10.3389/fpls.2021.752474] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/21/2021] [Indexed: 05/11/2023]
Abstract
Low temperature (non-freezing) is one of the major limiting factors in peanut (Arachis hypogaea L.) growth, yield, and geographic distribution. Due to the complexity of cold-resistance trait in peanut, the molecular mechanism of cold tolerance and related gene networks were largely unknown. In this study, metabolomic analysis of two peanut cultivars subjected to chilling stress obtained a set of cold-responsive metabolites, including several carbohydrates and polyamines. These substances showed a higher accumulation pattern in cold-tolerant variety SLH than cold-susceptible variety ZH12 under cold stress, indicating their importance in protecting peanut from chilling injuries. In addition, 3,620 cold tolerance genes (CTGs) were identified by transcriptome sequencing, and the CTGs were most significantly enriched in the "phenylpropanoid biosynthesis" pathway. Two vital modules and several novel hub genes were obtained by weighted gene co-expression network analysis (WGCNA). Several key genes involved in soluble sugar, polyamine, and G-lignin biosynthetic pathways were substantially higher and/or responded more quickly in SLH (cold tolerant) than ZH12 (cold susceptible) under low temperature, suggesting they might be crucial contributors during the adaptation of peanut to low temperature. These findings will not only provide valuable resources for study of cold resistance in peanut but also lay a foundation for genetic modification of cold regulators to enhance stress tolerance in crops.
Collapse
|
27
|
Singh KK, Graether SP. Conserved sequence motifs in the abiotic stress response protein late embryogenesis abundant 3. PLoS One 2020; 15:e0237177. [PMID: 32760115 PMCID: PMC7410210 DOI: 10.1371/journal.pone.0237177] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 07/21/2020] [Indexed: 01/02/2023] Open
Abstract
LEA3 proteins, a family of abiotic stress proteins, are defined by the presence of a tryptophan-containing motif, which we name the W-motif. We use Pfam LEA3 sequences to search the Phytozome database to create a W-motif definition and a LEA3 sequence dataset. A comprehensive analysis of these sequences revealed four N-terminal motifs, as well as two previously undiscovered C-terminal motifs that contain conserved acidic and hydrophobic residues. The general architecture of the LEA3 sequences consisted of an N-terminal motif with a potential mitochondrial transport signal and the twin-arginine motif cut-site, followed by a W-motif and often a C-terminal motif. Analysis of species distribution of the motifs showed that one architecture was found exclusively in Commelinids, while two were distributed fairly evenly over all species. The physiochemical properties of the different architectures showed clustering in a relatively narrow range compared to the previously studied dehydrins. The evolutionary analysis revealed that the different sequences grouped into clades based on architecture, and that there appear to be at least two distinct groups of LEA3 proteins based on their architectures and physiochemical properties. The presence of LEA3 proteins in non-vascular plants but their absence in algae suggests that LEA3 may have arisen in the evolution of land plants.
Collapse
Affiliation(s)
- Karamjeet K. Singh
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Steffen P. Graether
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
- Graduate Program in Bioinformatics, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
28
|
Bhattacharya S, Dhar S, Banerjee A, Ray S. Structural, functional, and evolutionary analysis of late embryogenesis abundant proteins (LEA) in Triticum aestivum: A detailed molecular level biochemistry using in silico approach. Comput Biol Chem 2019; 82:9-24. [DOI: 10.1016/j.compbiolchem.2019.06.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 06/07/2019] [Accepted: 06/08/2019] [Indexed: 10/26/2022]
|
29
|
Huwaidi A, Pathak N, Syahir A, Ikeno S. Escherichia coli tolerance of ultraviolet radiation by in vivo expression of a short peptide designed from late embryogenesis abundant protein. Biochem Biophys Res Commun 2018; 503:910-914. [PMID: 29928878 DOI: 10.1016/j.bbrc.2018.06.095] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 06/18/2018] [Indexed: 10/28/2022]
Abstract
Ultraviolet (UV) radiation causes damage in all living organisms, including DNA damage that leads to cell death. Herein, we provide a new technique for UV radiation protection through intracellular short peptide expression. The late embryogenesis abundant (LEA) peptide, which functions as a shield that protects macromolecules from various abiotic stress, was obtained from the Polypedilum vanderplanki group 3 LEA protein. Recombinant Escherichia coli BL21 (DE3) expressing functional LEA short peptide in vivo were exposed to UVA and UVC radiation for 4, 6, and 8 h. E. coli transformants expressing the LEA peptide showed higher cell viability under both UVA and UVC treatment at all time points as compared with that of the control. Furthermore, the cells expressing LEA peptide showed a higher number of colony-forming units per dilution under UVA and UVC treatment. These results suggested that expression of the short peptide could be useful for the development of genetically modified organisms and in applications that require resilience of organisms to UV radiation.
Collapse
Affiliation(s)
- Alaa Huwaidi
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Nishit Pathak
- Department of Biological Functions Engineering, Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Kitakyushu Science and Research Park, Kitakyushu, Fukuoka, Japan
| | - Amir Syahir
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Shinya Ikeno
- Department of Biological Functions Engineering, Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Kitakyushu Science and Research Park, Kitakyushu, Fukuoka, Japan.
| |
Collapse
|
30
|
Wang J, Wang J, Wang X, Li R, Chen B. Proteomic response of hybrid wild rice to cold stress at the seedling stage. PLoS One 2018; 13:e0198675. [PMID: 29879216 PMCID: PMC5991693 DOI: 10.1371/journal.pone.0198675] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 05/23/2018] [Indexed: 11/19/2022] Open
Abstract
Low temperature at the seedling stage is a major damaging factor for rice production in southern China. To better understand the cold response of cultivated and wild rice, cold-sensitive cultivar 93–11 (Oryza sativa L. ssp. Indica) and cold-resistant hybrid wild rice DC907 with a 93–11 genetic background were used for a quantitative proteomic analysis with tandem mass tags (TMT) in parallel. Rice seedlings grown for four weeks at a normal temperature (25°C) were treated at 8–10°C for 24, 72 and 120 h. The number of differentially expressed proteins increased gradually over time in the cold-exposed rice in comparison with the untreated rice. A total of 366 unique proteins involved in ATP synthesis, photosystem, reactive oxygen species, stress response, cell growth and integrity were identified as responding to cold stress in DC907. While both DC907 and 93–11 underwent similar alterations in proteomic profiles in response to cold stress, DC907 responded in a prompter manner in terms of expressing cold-responding proteins, maintained a higher level of photosynthesis to power the cells, and possessed a stable and higher level of DIR proteins to prevent the plant from obtaining irreversible cell structure damage. The observations made in this study may lay a new foundation for further investigation of cold sensitivity or tolerance mechanisms in rice.
Collapse
Affiliation(s)
- Jinzi Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
- College of Agriculture, Guangxi University, Nanning, China
| | - Jun Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
- College of Life Science and Technology, Guangxi University, Nanning, China
| | - Xin Wang
- College of Agriculture, Guangxi University, Nanning, China
| | - Rongbai Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
- College of Agriculture, Guangxi University, Nanning, China
- * E-mail: (BC); (RL)
| | - Baoshan Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
- College of Life Science and Technology, Guangxi University, Nanning, China
- * E-mail: (BC); (RL)
| |
Collapse
|
31
|
Li N, Zhang S, Liang Y, Qi Y, Chen J, Zhu W, Zhang L. Label-free quantitative proteomic analysis of drought stress-responsive late embryogenesis abundant proteins in the seedling leaves of two wheat (Triticum aestivum L.) genotypes. J Proteomics 2018; 172:122-142. [DOI: 10.1016/j.jprot.2017.09.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 09/27/2017] [Accepted: 09/29/2017] [Indexed: 10/18/2022]
|
32
|
Li W, Zhang L, Ding Z, Wang G, Zhang Y, Gong H, Chang T, Zhang Y. De novo sequencing and comparative transcriptome analysis of the male and hermaphroditic flowers provide insights into the regulation of flower formation in andromonoecious taihangia rupestris. BMC PLANT BIOLOGY 2017; 17:54. [PMID: 28241786 PMCID: PMC5329940 DOI: 10.1186/s12870-017-0990-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 01/31/2017] [Indexed: 05/29/2023]
Abstract
BACKGROUND Taihangia rupestris, an andromonoecious plant species, bears both male and hermaphroditic flowers within the same individual. However, the establishment and development of male and hermaphroditic flowers in andromonoecious Taihangia remain poorly understood, due to the limited genetic and sequence information. To investigate the potential molecular mechanism in the regulation of Taihangia flower formation, we used de novo RNA sequencing to compare the transcriptome profiles of male and hermaphroditic flowers at early and late developmental stages. RESULTS Four cDNA libraries, including male floral bud, hermaphroditic floral bud, male flower, and hermaphroditic flower, were constructed and sequenced by using the Illumina RNA-Seq method. Totally, 84,596,426 qualified Illumina reads were obtained and then assembled into 59,064 unigenes, of which 24,753 unigenes were annotated in the NCBI non-redundant protein database. In addition, 12,214, 7,153, and 8,115 unigenes were assigned into 53 Gene Ontology (GO) functional groups, 25 Clusters of Orthologous Group (COG) categories, and 126 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, respectively. By pairwise comparison of unigene abundance between the samples, we identified 1,668 differential expressed genes (DEGs), including 176 transcription factors (TFs) between the male and hermaphroditic flowers. At the early developmental stage, we found 263 up-regulated genes and 436 down-regulated genes expressed in hermaphroditic floral buds, while 844 up-regulated genes and 314 down-regulated genes were detected in hermaphroditic flowers at the late developmental stage. GO and KEGG enrichment analyses showed that a large number of DEGs were associated with a wide range of functions, including cell cycle, epigenetic processes, flower development, and biosynthesis of unsaturated fatty acid pathway. Finally, real-time quantitative PCR was conducted to validate the DEGs identified in the present study. CONCLUSION In this study, transcriptome data of this rare andromonoecious Taihangia were reported for the first time. Comparative transcriptome analysis revealed the significant differences in gene expression profiles between male and hermaphroditic flowers at early and late developmental stages. The transcriptome data of Taihangia would be helpful to improve the understanding of the underlying molecular mechanisms in regulation of flower formation and unisexual flower establishment in andromonoecious plants.
Collapse
Affiliation(s)
- Weiguo Li
- College of Life Science, Changchun Normal University, Changchun, 130032 Jilin China
- College of Resource and Environment, Henan Polytechnic University, Jiaozuo, 454000 Henan China
| | - Lihui Zhang
- College of Life Science, Changchun Normal University, Changchun, 130032 Jilin China
| | - Zhan Ding
- College of Resource and Environment, Henan Polytechnic University, Jiaozuo, 454000 Henan China
| | - Guodong Wang
- College of Resource and Environment, Henan Polytechnic University, Jiaozuo, 454000 Henan China
| | - Yandi Zhang
- College of Resource and Environment, Henan Polytechnic University, Jiaozuo, 454000 Henan China
| | - Hongmei Gong
- College of Resource and Environment, Henan Polytechnic University, Jiaozuo, 454000 Henan China
| | - Tianjun Chang
- College of Resource and Environment, Henan Polytechnic University, Jiaozuo, 454000 Henan China
| | - Yanwen Zhang
- College of Life Science, Changchun Normal University, Changchun, 130032 Jilin China
| |
Collapse
|
33
|
Wang X, Zhang L, Zhang Y, Bai Z, Liu H, Zhang D. Triticum aestivum WRAB18 functions in plastids and confers abiotic stress tolerance when overexpressed in Escherichia coli and Nicotiania benthamiana. PLoS One 2017; 12:e0171340. [PMID: 28207772 PMCID: PMC5313140 DOI: 10.1371/journal.pone.0171340] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 01/19/2017] [Indexed: 01/08/2023] Open
Abstract
WRAB18, an ABA-inducible protein belongs to the third family of late embryogenesis abundant (LEA) proteins which can be induced by different biotic or abiotic stresses. In the present study, WRAB18 was cloned from the Zhengyin 1 cultivar of Triticum aestivum and overexpressed in Escherichia coli to explore its effects on the growth of E. coli under different abiotic stresses. Results suggested the enhanced exhibition of tolerance of E. coli to these stresses. Meanwhile, the WRAB18-transgenic tobacco plants were obtained to analyze the stress-related enzymatic activities of ascorbate peroxidase (APX), peroxidase (POD) and superoxide dismutase (SOD), and to quantify the content of malonaldehyde (MDA) under osmotic stress, high salinity, and low and high temperature stress. The activities of APX, POD and SOD in the transgenic tobacco lines were higher while the content of MDA was lower than those of WT lines. Moreover, plastid localization of WRAB18 in Nicotiana benthamiana plasma cells were found fusing with GFP. In addition, purified WRAB18 protein protected LDH (Lactate dehydrogenase) enzyme activity in vitro from various stress conditions. In brief, WRAB18 protein shows protective action behaving as a "molecular shield" in both prokaryotic and eukaryotic cells under various abiotic stresses, not only during ABA stress.
Collapse
Affiliation(s)
- Xiaoyu Wang
- College of Life Sciences/State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A & F University, Yangling, China
| | - Linsheng Zhang
- College of Life Sciences/State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A & F University, Yangling, China
| | - Yane Zhang
- College of Life Sciences/State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A & F University, Yangling, China
| | - Zhenqing Bai
- College of Life Sciences/State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A & F University, Yangling, China
| | - Hao Liu
- College of Life Sciences/State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A & F University, Yangling, China
| | - Dapeng Zhang
- College of Life Sciences/State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A & F University, Yangling, China
| |
Collapse
|
34
|
Fu J, Wu Y, Miao Y, Xu Y, Zhao E, Wang J, Sun H, Liu Q, Xue Y, Xu Y, Hu T. Improved cold tolerance in Elymus nutans by exogenous application of melatonin may involve ABA-dependent and ABA-independent pathways. Sci Rep 2017. [PMID: 28045095 DOI: 10.3906/tar-0407-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023] Open
Abstract
Melatonin is an important secondary messenger that plays a central role in plant growth, as well as abiotic and biotic stress tolerance. However, the underlying physiological and molecular mechanisms of melatonin-mediated cold tolerance, especially interactions between melatonin and other key molecules in the plant stress response, remain unknown. Here, the interrelation between melatonin and abscisic acid (ABA) was investigated in two genotypes of Elymus nutans Griseb., the cold-tolerant Damxung (DX) and the cold-sensitive Gannan (GN) under cold stress. Pre-treatment with exogenous melatonin or ABA alleviated oxidative injury via scavenging ROS, while enhancing both antioxidant enzyme activities and non-enzymatic antioxidant contents. Treatment of fluridone, an ABA biosynthesis inhibitor caused membrane lipid peroxidation and lowered melatonin-induced antioxidant defense responses. It is worth noting that cold stress significantly induced both endogenous melatonin and ABA levels in both genotypes. Application of melatonin increased ABA production, while fluridone significantly suppressed melatonin-induced ABA accumulation. ABA and fluridone pre-treatments failed to affect the endogenous melatonin concentration. Moreover, exogenous melatonin up-regulated the expression of cold-responsive genes in an ABA-independent manner. These results indicate that both ABA-dependent and ABA-independent pathways may contribute to melatonin-induced cold tolerance in E. nutans.
Collapse
Affiliation(s)
- Juanjuan Fu
- Department of grassland science, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Ye Wu
- Department of grassland science, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yanjun Miao
- College of Plant Science, Tibet Agriculture and Animal Husbandry College, Linzhi, Tibet, 860000, China
| | - Yamei Xu
- College of Plant Science, Tibet Agriculture and Animal Husbandry College, Linzhi, Tibet, 860000, China
| | - Enhua Zhao
- Department of grassland science, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jin Wang
- Department of grassland science, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Huaien Sun
- Department of grassland science, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Qian Liu
- Department of grassland science, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yongwei Xue
- Department of grassland ecology, College of Desertification Prevention Engineering, Ningxia Technical College of Wine and Desertification Prevention,Yongning, Yinchuan, 750001, China
| | - Yuefei Xu
- Department of grassland science, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Tianming Hu
- Department of grassland science, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
35
|
Improved cold tolerance in Elymus nutans by exogenous application of melatonin may involve ABA-dependent and ABA-independent pathways. Sci Rep 2017; 7:39865. [PMID: 28045095 PMCID: PMC5206618 DOI: 10.1038/srep39865] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 11/28/2016] [Indexed: 11/08/2022] Open
Abstract
Melatonin is an important secondary messenger that plays a central role in plant growth, as well as abiotic and biotic stress tolerance. However, the underlying physiological and molecular mechanisms of melatonin-mediated cold tolerance, especially interactions between melatonin and other key molecules in the plant stress response, remain unknown. Here, the interrelation between melatonin and abscisic acid (ABA) was investigated in two genotypes of Elymus nutans Griseb., the cold-tolerant Damxung (DX) and the cold-sensitive Gannan (GN) under cold stress. Pre-treatment with exogenous melatonin or ABA alleviated oxidative injury via scavenging ROS, while enhancing both antioxidant enzyme activities and non-enzymatic antioxidant contents. Treatment of fluridone, an ABA biosynthesis inhibitor caused membrane lipid peroxidation and lowered melatonin-induced antioxidant defense responses. It is worth noting that cold stress significantly induced both endogenous melatonin and ABA levels in both genotypes. Application of melatonin increased ABA production, while fluridone significantly suppressed melatonin-induced ABA accumulation. ABA and fluridone pre-treatments failed to affect the endogenous melatonin concentration. Moreover, exogenous melatonin up-regulated the expression of cold-responsive genes in an ABA-independent manner. These results indicate that both ABA-dependent and ABA-independent pathways may contribute to melatonin-induced cold tolerance in E. nutans.
Collapse
|
36
|
Agarwal T, Upadhyaya G, Halder T, Mukherjee A, Majumder AL, Ray S. Different dehydrins perform separate functions in Physcomitrella patens. PLANTA 2017; 245:101-118. [PMID: 27638172 DOI: 10.1007/s00425-016-2596-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 09/08/2016] [Indexed: 05/06/2023]
Abstract
Dehydrins, PpDHNA and PpDHNB from Physcomitrella patens provide drought and cold tolerance while PpDHNC shows antimicrobial property suggesting different dehydrins perform separate functions in P. patens. The moss Physcomitrella patens can withstand extremes of environmental condition including abiotic stress such as dehydration, salinity, low temperature and biotic stress such as pathogen attack. Osmotic stress is inflicted under both cold and drought stress conditions where dehydrins have been found to play a significant protective role. In this study, a comparative analysis was drawn for the three dehydrins PpDHNA, PpDHNB and PpDHNC from P. patens. Our data shows that PpDHNA and PpDHNB play a major role in cellular protection during osmotic stress. PpDHNB showed several fold upregulation of the gene when P. patens was subjected to cold and osmotic stress in combination. PpDHNA and PpDHNB provide protection to enzyme lactate dehydrogenase under osmotic as well as freezing conditions. PpDHNC possesses antibacterial activity and thus may have a role in biotic stress response. Overexpression of PpDHNA, PpDHNB and PpDHNC in transgenic tobacco showed a better performance for PpDHNB with respect to cold and osmotic stress. These results suggest that specific dehydrins contribute to tolerance of mosses under different stress conditions.
Collapse
Affiliation(s)
- Tanushree Agarwal
- Department of Botany, Centre of Advanced Study, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, India
| | - Gouranga Upadhyaya
- Department of Botany, Centre of Advanced Study, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, India
| | - Tanmoy Halder
- Department of Botany, Centre of Advanced Study, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, India
| | - Abhishek Mukherjee
- Division of Plant Biology, Bose Institute, P1/12 CIT Scheme VII M, Kolkata, 700054, India
| | - Arun Lahiri Majumder
- Division of Plant Biology, Bose Institute, P1/12 CIT Scheme VII M, Kolkata, 700054, India
| | - Sudipta Ray
- Department of Botany, Centre of Advanced Study, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, India.
| |
Collapse
|
37
|
Hüner NPA, Dahal K, Bode R, Kurepin LV, Ivanov AG. Photosynthetic acclimation, vernalization, crop productivity and 'the grand design of photosynthesis'. JOURNAL OF PLANT PHYSIOLOGY 2016; 203:29-43. [PMID: 27185597 DOI: 10.1016/j.jplph.2016.04.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 04/22/2016] [Accepted: 04/22/2016] [Indexed: 05/23/2023]
Abstract
Daniel Arnon first proposed the notion of a 'grand design of photosynthesis' in 1982 to illustrate the central role of photosynthesis as the primary energy transformer for all life on Earth. However, we suggest that this concept can be extended to the broad impact of photosynthesis not only in global energy transformation but also in the regulation of plant growth, development, survival and crop productivity through chloroplast redox signalling. We compare and contrast the role of chloroplast redox imbalance, measured as excitation pressure, in governing acclimation to abiotic stress and phenotypic plasticity. Although all photoautrophs sense excessive excitation energy through changes in excitation pressure, the response to this chloroplast redox signal is species dependent. Due to a limited capacity to adjust metabolic sinks, cyanobacteria and green algae induce photoprotective mechanisms which dissipate excess excitation energy at a cost of decreased photosynthetic performance. In contrast, terrestrial, cold tolerant plants such as wheat enhance metabolic sink capacity which leads to enhanced photosynthetic performance and biomass accumulation with minimal dependence on photoprotection. We suggest that the family of nuclear C-repeat binding transcription factors (CBFs) associated with the frost resistance locus, FR2, contiguous with the vernalization locus,VRN1, and mapped to chromosome 5A of wheat, may be critical components that link leaf chloroplast redox regulation to enhanced photosynthetic performance, the accumulation of growth-active gibberellins and the dwarf phenotype during cold acclimation prior to the vegetative to reproductive transition controlled by vernalization in winter cereals. Further genetic, molecular and biochemical research to confirm these links and to elucidate the molecular mechanism by which chloroplast redox modulation of CBF expression leads to enhanced photosynthetic performance is required. Because of the superior abiotic stress tolerance of cold tolerant winter wheat and seed yields that historically exceed those of spring wheat by 30-40%, we discuss the potential to exploit winter cereals for the maintenance or perhaps even the enhancement of cereal productivity under future climate change scenarios that will be required to feed a growing human population.
Collapse
Affiliation(s)
- Norman P A Hüner
- Department of Biology and The Biotron Centre for Experimental Climate Change Research, University of Western Ontario, London N6A 5B7, Canada.
| | - Keshav Dahal
- Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto M1C 1A4, Canada
| | - Rainer Bode
- Institute of Biology, Freie Universitat, Königin-Luise-Straße 12-16, 14195 Berlin, Germany
| | - Leonid V Kurepin
- Department of Biology and The Biotron Centre for Experimental Climate Change Research, University of Western Ontario, London N6A 5B7, Canada
| | - Alexander G Ivanov
- Department of Biology and The Biotron Centre for Experimental Climate Change Research, University of Western Ontario, London N6A 5B7, Canada
| |
Collapse
|
38
|
Liu F, Si H, Wang C, Sun G, Zhou E, Chen C, Ma C. Molecular evolution of Wcor15 gene enhanced our understanding of the origin of A, B and D genomes in Triticum aestivum. Sci Rep 2016; 6:31706. [PMID: 27526862 PMCID: PMC4985644 DOI: 10.1038/srep31706] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 07/25/2016] [Indexed: 11/29/2022] Open
Abstract
The allohexaploid bread wheat originally derived from three closely related species with A, B and D genome. Although numerous studies were performed to elucidate its origin and phylogeny, no consensus conclusion has reached. In this study, we cloned and sequenced the genes Wcor15-2A, Wcor15-2B and Wcor15-2D in 23 diploid, 10 tetraploid and 106 hexaploid wheat varieties and analyzed their molecular evolution to reveal the origin of the A, B and D genome in Triticum aestivum. Comparative analyses of sequences in diploid, tetraploid and hexaploid wheats suggest that T. urartu, Ae. speltoides and Ae. tauschii subsp. strangulata are most likely the donors of the Wcor15-2A, Wcor15-2B and Wcor15-2D locus in common wheat, respectively. The Wcor15 genes from subgenomes A and D were very conservative without insertion and deletion of bases during evolution of diploid, tetraploid and hexaploid. Non-coding region of Wcor15-2B gene from B genome might mutate during the first polyploidization from Ae. speltoides to tetraploid wheat, however, no change has occurred for this gene during the second allopolyploidization from tetraploid to hexaploid. Comparison of the Wcor15 gene shed light on understanding of the origin of the A, B and D genome of common wheat.
Collapse
Affiliation(s)
- Fangfang Liu
- School of Agronomy, Anhui Agricultural University, Hefei 230036, China.,Key Laboratory of Wheat Biology and Genetic Improvement on South Yellow &Huai River Valley, Ministry of Agriculture, Hefei 230036, China
| | - Hongqi Si
- School of Agronomy, Anhui Agricultural University, Hefei 230036, China.,Key Laboratory of Wheat Biology and Genetic Improvement on South Yellow &Huai River Valley, Ministry of Agriculture, Hefei 230036, China
| | - Chengcheng Wang
- School of Agronomy, Anhui Agricultural University, Hefei 230036, China.,Key Laboratory of Wheat Biology and Genetic Improvement on South Yellow &Huai River Valley, Ministry of Agriculture, Hefei 230036, China
| | - Genlou Sun
- School of Agronomy, Anhui Agricultural University, Hefei 230036, China.,Biology Department, Saint Mary's University, Halifax, NS, B3H 3C3 Canada
| | - Erting Zhou
- School of Agronomy, Anhui Agricultural University, Hefei 230036, China
| | - Can Chen
- School of Agronomy, Anhui Agricultural University, Hefei 230036, China
| | - Chuanxi Ma
- School of Agronomy, Anhui Agricultural University, Hefei 230036, China.,Key Laboratory of Wheat Biology and Genetic Improvement on South Yellow &Huai River Valley, Ministry of Agriculture, Hefei 230036, China.,National United Engineering Laboratory for Crop Stress Resistance Breeding, Hefei 230036, China.,Anhui Key Laboratory of Crop Biology, Hefei 230036, China
| |
Collapse
|
39
|
Sharma A, Kumar D, Kumar S, Rampuria S, Reddy AR, Kirti PB. Ectopic Expression of an Atypical Hydrophobic Group 5 LEA Protein from Wild Peanut, Arachis diogoi Confers Abiotic Stress Tolerance in Tobacco. PLoS One 2016; 11:e0150609. [PMID: 26938884 PMCID: PMC4777422 DOI: 10.1371/journal.pone.0150609] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 02/16/2016] [Indexed: 11/23/2022] Open
Abstract
Late embryogenesis abundant (LEA) proteins are a group of hydrophilic proteins, which accumulate in plants under varied stress conditions like drought, salinity, extreme temperatures and oxidative stress suggesting their role in the protection of plants against these stresses. A transcript derived fragment (TDF) corresponding to LEA gene, which got differentially expressed in wild peanut, Arachis diogoi against the late leaf spot pathogen, Phaeoisariopsis personata was used in this study. We have cloned its full length cDNA by RACE-PCR, which was designated as AdLEA. AdLEA belongs to the atypical Group 5C of LEA protein family as confirmed by sequence analysis. Group 5C LEA protein subfamily contains Pfam LEA_2 domain and is highly hydrophobic. In native conditions, expression of AdLEA was upregulated considerably upon hormonal and abiotic stress treatments emphasizing its role in abiotic stress tolerance. Subcellular localization studies showed that AdLEA protein is distributed in both nucleus and cytosol. Ectopic expression of AdLEA in tobacco resulted in enhanced tolerance of plants to dehydration, salinity and oxidative stress with the transgenic plants showing higher chlorophyll content and reduced lipid peroxidation as compared to wild type plants. Overexpressed AdLEA tobacco plants maintained better photosynthetic efficiency under drought conditions as demonstrated by chlorophyll fluorescence measurements. These plants showed enhanced transcript accumulation of some stress-responsive genes. Our study also elucidates that ROS levels were significantly reduced in leaves and stomatal guard cells of transgenic plants upon stress treatments. These results suggest that AdLEA confers multiple stress tolerance to plants, which make it a potential gene for genetic modification in plants.
Collapse
Affiliation(s)
- Akanksha Sharma
- Department of Plant Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Dilip Kumar
- Department of Plant Sciences, University of Hyderabad, Hyderabad, 500046, India
- Department of Postharvest Science of Fresh Produce, ARO, The Volcani Center, Bet Dagan, 50250, Israel
| | - Sumit Kumar
- Department of Plant Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Sakshi Rampuria
- Department of Plant Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Attipalli R. Reddy
- Department of Plant Sciences, University of Hyderabad, Hyderabad, 500046, India
| | | |
Collapse
|
40
|
He W, Zhuang H, Fu Y, Guo L, Guo B, Guo L, Zhang X, Wei Y. De novo Transcriptome Assembly of a Chinese Locoweed (Oxytropis ochrocephala) Species Provides Insights into Genes Associated with Drought, Salinity, and Cold Tolerance. FRONTIERS IN PLANT SCIENCE 2015; 6:1086. [PMID: 26697040 PMCID: PMC4667070 DOI: 10.3389/fpls.2015.01086] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 11/19/2015] [Indexed: 05/29/2023]
Abstract
BACKGROUND Locoweeds (toxic Oxytropis and Astraglus species), containing the toxic agent swainsonine, pose serious threats to animal husbandry on grasslands in both China and the US. Some locoweeds have evolved adaptations in order to resist various stress conditions such as drought, salt and cold. As a result they replace other plants in their communities and become an ecological problem. Currently very limited genetic information of locoweeds is available and this hinders our understanding in the molecular basis of their environmental plasticity, and the interaction between locoweeds and their symbiotic swainsonine producing endophytes. Next-generation sequencing provides a means of obtaining transcriptomic sequences in a timely manner, which is particularly useful for non-model plants. In this study, we performed transcriptome sequencing of Oxytropis ochrocephala plants followed by a de nove assembly. Our primary aim was to provide an enriched pool of genetic sequences of an Oxytropis sp. for further locoweed research. RESULTS Transcriptomes of four different O. ochrocephala samples, from control (CK) plants, and those that had experienced either drought (20% PEG), salt (150 mM NaCl) or cold (4°C) stress were sequenced using an Illumina Hiseq 2000 platform. From 232,209,506 clean reads 23,220,950,600 (~23 G nucleotides), 182,430 transcripts and 88,942 unigenes were retrieved, with an N50 value of 1237. Differential expression analysis revealed putative genes encoding heat shock proteins (HSPs) and late embryogenesis abundant (LEA) proteins, enzymes in secondary metabolite and plant hormone biosyntheses, and transcription factors which are involved in stress tolerance in O. ochrocephala. In order to validate our sequencing results, we further analyzed the expression profiles of nine genes by quantitative real-time PCR. Finally, we discuss the possible mechanism of O. ochrocephala's adaptations to stress environment. CONCLUSION Our transcriptome sequencing data present useful genetic information of a locoweed species. This genetic information will underpin further research in elucidating the environmental acclimation mechanism in locoweeds and the endophyte-plant association.
Collapse
Affiliation(s)
- Wei He
- Department of Biology, Northwest UniversityXian, China
| | - Huihui Zhuang
- Department of Biology, Northwest UniversityXian, China
| | - Yanping Fu
- Department of Biology, Northwest UniversityXian, China
| | - Linwei Guo
- Department of Biology, Northwest UniversityXian, China
| | - Bin Guo
- Department of Biology, Northwest UniversityXian, China
| | - Lizhu Guo
- Department of Biology, Northwest UniversityXian, China
| | - Xiuhong Zhang
- Grassland Station, Agriculture and Animal Husbandry BureauZhongwei, China
| | - Yahui Wei
- Department of Biology, Northwest UniversityXian, China
| |
Collapse
|
41
|
Yu X, Pijut PM, Byrne S, Asp T, Bai G, Jiang Y. Candidate gene association mapping for winter survival and spring regrowth in perennial ryegrass. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 235:37-45. [PMID: 25900564 DOI: 10.1016/j.plantsci.2015.03.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 02/12/2015] [Accepted: 03/04/2015] [Indexed: 05/05/2023]
Abstract
Perennial ryegrass (Lolium perenne L.) is a widely cultivated cool-season grass species because of its high quality for forage and turf. Susceptibility to freezing damage limits its further use in temperate zones. The objective of this study was to identify candidate genes significantly associated with winter survival and spring regrowth in a global collection of 192 perennial ryegrass accessions. Significant differences in winter survival (WS), percentage of canopy green cover (CGC), chlorophyll index (Chl), and normalized difference vegetation index (NDVI) were found among accessions. After controlling population structure, LpLEA3 encoding a late embryogenesis abundant group 3 protein and LpCAT encoding a catalase were associated with CGC and Chl, while LpMnSOD encoding a magnesium superoxide dismutase and LpChl Cu-ZnSOD encoding a chlorophyll copper-zinc superoxide dismutase were associated with NDVI or Chl. Significant association was also discovered between C-repeat binding factor LpCBF1b and WS. Three sequence variations identified in LpCAT, LpMnSOD, and LpChl Cu-ZnSOD were synonymous substitutions, whereas one pair of adjacent single nucleotide polymorphisms (SNPs) in LpLEA3 and one SNP in LpCBF1b resulted in amino acid change. The results demonstrated that allelic variation in LpLEA3 and LpCBF1b was closely related to winter survival and spring regrowth in perennial ryegrass.
Collapse
Affiliation(s)
- Xiaoqing Yu
- Department of Agronomy, Iowa State University, Ames, IA 50011, USA
| | - Paula M Pijut
- USDA-Forest Service, Northern Research Station, Hardwood Tree Improvement and Regeneration Center, West Lafayette, IN 47907, USA
| | - Stephen Byrne
- Department of Molecular Biology and Genetics, Faculty of Science and Technology, Research Centre Flakkebjerg, Aarhus University, Forsøgsvej 1, Slagelse 4200, Denmark
| | - Torben Asp
- Department of Molecular Biology and Genetics, Faculty of Science and Technology, Research Centre Flakkebjerg, Aarhus University, Forsøgsvej 1, Slagelse 4200, Denmark
| | - Guihua Bai
- USDA-ARS Hard Winter Wheat Genetics Research Unit, Manhattan, KS 66506, USA
| | - Yiwei Jiang
- Department of Agronomy, Purdue University, West Lafayette, IN 47907-2054, USA.
| |
Collapse
|
42
|
Hu YX, Yang X, Li XL, Yu XD, Li QL. The SlASR gene cloned from the extreme halophyte Suaeda liaotungensis K. enhances abiotic stress tolerance in transgenic Arabidopsis thaliana. Gene 2014; 549:243-51. [DOI: 10.1016/j.gene.2014.07.071] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 06/16/2014] [Accepted: 07/30/2014] [Indexed: 10/25/2022]
|
43
|
Dang NX, Popova AV, Hundertmark M, Hincha DK. Functional characterization of selected LEA proteins from Arabidopsis thaliana in yeast and in vitro. PLANTA 2014; 240:325-36. [PMID: 24841476 DOI: 10.1007/s00425-014-2089-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 04/25/2014] [Indexed: 05/10/2023]
Abstract
Expression of eight LEA genes enhanced desiccation tolerance in yeast, including two LEA_2 genes encoding atypical, stably folded proteins. The recombinant proteins showed enzyme, but not membrane protection during drying. To screen for possible functions of late embryogenesis abundant (LEA) proteins in cellular stress tolerance, 15 candidate genes from six Arabidopsis thaliana LEA protein families were expressed in Saccharomyces cerevisiae as a genetically amenable eukaryotic model organism. Desiccation stress experiments showed that eight of the 15 LEA proteins significantly enhanced yeast survival. While none of the proteins belonging to the LEA_1, LEA_5 or AtM families provided protection to yeast cells, two of three LEA_2 proteins, all three LEA_4 proteins and three of four dehydrins were effective. However, no significantly enhanced tolerance toward freezing, salt, osmotic or oxidative stress was observed. While most LEA proteins are highly hydrophilic and intrinsically disordered, LEA_2 proteins are "atypical", since they are more hydrophobic and possess a stable folded structure in solution. Because nothing was known about the functional properties of LEA_2 proteins, we expressed the three Arabidopsis proteins LEA1, LEA26 and LEA27 in Escherichia coli. The bacteria expressed all three proteins in inclusion bodies from which they could be purified and refolded. Correct folding was ascertained by Fourier transform Infrared (FTIR) spectroscopy. None of the proteins was able to stabilize liposomes during freezing or drying, but they were all able to protect the enzyme lactate dehydrogenase (LDH) from inactivation during freezing. Significantly, only LEA1 and LEA27, which also protected yeast cells during drying, were able to stabilize LDH during desiccation and subsequent rehydration.
Collapse
Affiliation(s)
- Nghiem X Dang
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Germany
| | | | | | | |
Collapse
|
44
|
Expression profiles of 12 late embryogenesis abundant protein genes from Tamarix hispida in response to abiotic stress. ScientificWorldJournal 2014; 2014:868391. [PMID: 25133264 PMCID: PMC4121221 DOI: 10.1155/2014/868391] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Revised: 06/21/2014] [Accepted: 06/21/2014] [Indexed: 11/18/2022] Open
Abstract
Twelve embryogenesis abundant protein (LEA) genes (named ThLEA-1 to -12) were cloned from Tamarix hispida. The expression profiles of these genes in response to NaCl, PEG, and abscisic acid (ABA) in roots, stems, and leaves of T. hispida were assessed using real-time reverse transcriptase-polymerase chain reaction (RT-PCR). These ThLEAs all showed tissue-specific expression patterns in roots, stems, and leaves under normal growth conditions. However, they shared a high similar expression patterns in the roots, stems, and leaves when exposed to NaCl and PEG stress. Furthermore, ThLEA-1, -2, -3, -4, and -11 were induced by NaCl and PEG, but ThLEA-5, -6, -8, -10, and -12 were downregulated by salt and drought stresses. Under ABA treatment, some ThLEA genes, such as ThLEA-1, -2, and -3, were only slightly differentially expressed in roots, stems, and leaves, indicating that they may be involved in the ABA-independent signaling pathway. These findings provide a basis for the elucidation of the function of LEA genes in future work.
Collapse
|
45
|
Zhu W, Chen X, Li H, Zhu F, Hong Y, Varshney RK, Liang X. Comparative transcriptome analysis of aerial and subterranean pods development provides insights into seed abortion in peanut. PLANT MOLECULAR BIOLOGY 2014; 85:395-409. [PMID: 24793121 PMCID: PMC4152868 DOI: 10.1007/s11103-014-0193-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 04/11/2014] [Indexed: 05/17/2023]
Abstract
The peanut is a special plant for its aerial flowering but subterranean fructification. The failure of peg penetration into the soil leads to form aerial pod and finally seed abortion. However, the mechanism of seed abortion during aerial pod development remains obscure. Here, a comparative transcriptome analysis between aerial and subterranean pods at different developmental stages was produced using a customized NimbleGen microarray representing 36,158 unigenes. By comparing 4 consecutive time-points, totally 6,203 differentially expressed genes, 4,732 stage-specific expressed genes and 2,401 specific expressed genes only in aerial or subterranean pods were identified in this study. Functional annotation showed their mainly involvement in biosynthesis, metabolism, transcription regulation, transporting, stress response, photosynthesis, signal transduction, cell division, apoptosis, embryonic development, hormone response and light signaling, etc. Emphasis was focused on hormone response, cell apoptosis, embryonic development and light signaling relative genes. These genes might function as potential candidates to provide insights into seed abortion during aerial pod development. Ten candidate genes were validated by Real-time RT-PCR. Additionally, consistent with up-regulation of auxin response relative genes in aerial pods, endogenous IAA content was also significantly increased by HPLC analysis. This study will further provide new molecular insight that auxin and auxin response genes potentially contribute to peanut seed and pod development.
Collapse
Affiliation(s)
- Wei Zhu
- Crops Research Institute, Guangdong Academy of Agricultural Sciences (GAAS), Guangzhou, China
| | - Xiaoping Chen
- Crops Research Institute, Guangdong Academy of Agricultural Sciences (GAAS), Guangzhou, China
| | - Haifen Li
- Crops Research Institute, Guangdong Academy of Agricultural Sciences (GAAS), Guangzhou, China
| | - Fanghe Zhu
- Crops Research Institute, Guangdong Academy of Agricultural Sciences (GAAS), Guangzhou, China
| | - Yanbin Hong
- Crops Research Institute, Guangdong Academy of Agricultural Sciences (GAAS), Guangzhou, China
| | - Rajeev K. Varshney
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, 502324 India
| | - Xuanqiang Liang
- Crops Research Institute, Guangdong Academy of Agricultural Sciences (GAAS), Guangzhou, China
| |
Collapse
|
46
|
Candat A, Paszkiewicz G, Neveu M, Gautier R, Logan DC, Avelange-Macherel MH, Macherel D. The ubiquitous distribution of late embryogenesis abundant proteins across cell compartments in Arabidopsis offers tailored protection against abiotic stress. THE PLANT CELL 2014; 26:3148-66. [PMID: 25005920 PMCID: PMC4145138 DOI: 10.1105/tpc.114.127316] [Citation(s) in RCA: 134] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Late embryogenesis abundant (LEA) proteins are hydrophilic, mostly intrinsically disordered proteins, which play major roles in desiccation tolerance. In Arabidopsis thaliana, 51 genes encoding LEA proteins clustered into nine families have been inventoried. To increase our understanding of the yet enigmatic functions of these gene families, we report the subcellular location of each protein. Experimental data highlight the limits of in silico predictions for analysis of subcellular localization. Thirty-six LEA proteins localized to the cytosol, with most being able to diffuse into the nucleus. Three proteins were exclusively localized in plastids or mitochondria, while two others were found dually targeted to these organelles. Targeting cleavage sites could be determined for five of these proteins. Three proteins were found to be endoplasmic reticulum (ER) residents, two were vacuolar, and two were secreted. A single protein was identified in pexophagosomes. While most LEA protein families have a unique subcellular localization, members of the LEA_4 family are widely distributed (cytosol, mitochondria, plastid, ER, and pexophagosome) but share the presence of the class A α-helix motif. They are thus expected to establish interactions with various cellular membranes under stress conditions. The broad subcellular distribution of LEA proteins highlights the requirement for each cellular compartment to be provided with protective mechanisms to cope with desiccation or cold stress.
Collapse
Affiliation(s)
- Adrien Candat
- Université d'Angers, UMR 1345 Institut de Recherche en Horticulture et Semences, F-49045 Angers, France INRA, UMR 1345 Institut de Recherche en Horticulture et Semences, F-49045 Angers, France
| | - Gaël Paszkiewicz
- Université d'Angers, UMR 1345 Institut de Recherche en Horticulture et Semences, F-49045 Angers, France
| | - Martine Neveu
- INRA, UMR 1345 Institut de Recherche en Horticulture et Semences, F-49045 Angers, France
| | - Romain Gautier
- Institut de Pharmacologie Moléculaire et Cellulaire, Université de Nice Sophia-Antipolis and Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7275, F-06560 Valbonne, France
| | - David C Logan
- Université d'Angers, UMR 1345 Institut de Recherche en Horticulture et Semences, F-49045 Angers, France
| | | | - David Macherel
- Université d'Angers, UMR 1345 Institut de Recherche en Horticulture et Semences, F-49045 Angers, France
| |
Collapse
|
47
|
Colton-Gagnon K, Ali-Benali MA, Mayer BF, Dionne R, Bertrand A, Do Carmo S, Charron JB. Comparative analysis of the cold acclimation and freezing tolerance capacities of seven diploid Brachypodium distachyon accessions. ANNALS OF BOTANY 2014; 113:681-93. [PMID: 24323247 PMCID: PMC3936580 DOI: 10.1093/aob/mct283] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
BACKGROUND AND AIMS Cold is a major constraint for cereal cultivation under temperate climates. Winter-hardy plants interpret seasonal changes and can acquire the ability to resist sub-zero temperatures. This cold acclimation process is associated with physiological, biochemical and molecular alterations in cereals. Brachypodium distachyon is considered a powerful model system to study the response of temperate cereals to adverse environmental conditions. To date, little is known about the cold acclimation and freezing tolerance capacities of Brachypodium. The main objective of this study was to evaluate the cold hardiness of seven diploid Brachypodium accessions. METHODS An integrated approach, involving monitoring of phenological indicators along with expression profiling of the major vernalization regulator VRN1 orthologue, was followed. In parallel, soluble sugars and proline contents were determined along with expression profiles of two COR genes in plants exposed to low temperatures. Finally, whole-plant freezing tests were performed to evaluate the freezing tolerance capacity of Brachypodium. KEY RESULTS Cold treatment accelerated the transition from the vegetative to the reproductive phase in all diploid Brachypodium accessions tested. In addition, low temperature exposure triggered the gradual accumulation of BradiVRN1 transcripts in all accessions tested. These accessions exhibited a clear cold acclimation response by progressively accumulating proline, sugars and COR gene transcripts. However, whole-plant freezing tests revealed that these seven diploid accessions only have a limited capacity to develop freezing tolerance when compared with winter varieties of temperate cereals such as wheat and barley. Furthermore, little difference in terms of survival was observed among the accessions tested despite their previous classification as either spring or winter genotypes. CONCLUSIONS This study is the first to characterize the freezing tolerance capacities of B. distachyon and provides strong evidence that some diploid accessions such as Bd21 have a facultative growth habit.
Collapse
Affiliation(s)
- Katia Colton-Gagnon
- McGill University, Department of Plant Science, 21,111 Lakeshore, Sainte-Anne-de-Bellevue, Canada
| | - Mohamed Ali Ali-Benali
- McGill University, Department of Plant Science, 21,111 Lakeshore, Sainte-Anne-de-Bellevue, Canada
| | - Boris F. Mayer
- McGill University, Department of Plant Science, 21,111 Lakeshore, Sainte-Anne-de-Bellevue, Canada
| | - Rachel Dionne
- McGill University, Department of Plant Science, 21,111 Lakeshore, Sainte-Anne-de-Bellevue, Canada
| | - Annick Bertrand
- Agriculture and Agri-food Canada, Soil and Crops Research and Development Centre, 2560 Hochelaga Blvd, Quebec, Canada
| | - Sonia Do Carmo
- McGill University, Department of Pharmacology and Therapeutics, 3655 Promenade Sir-William-Osler, Montreal, Canada
| | - Jean-Benoit Charron
- McGill University, Department of Plant Science, 21,111 Lakeshore, Sainte-Anne-de-Bellevue, Canada
- For correspondence. E-mail
| |
Collapse
|
48
|
Gharechahi J, Alizadeh H, Naghavi MR, Sharifi G. A proteomic analysis to identify cold acclimation associated proteins in wild wheat (Triticum urartu L.). Mol Biol Rep 2014; 41:3897-905. [PMID: 24535272 DOI: 10.1007/s11033-014-3257-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Accepted: 02/08/2014] [Indexed: 01/19/2023]
Abstract
To gain a better understanding of cold acclimation process in wheat, we applied a 2-DE based proteomic approach to discover changes in proteome profile of a diploid wild wheat (Triticum urartu L.) during prolonged cold stress treatment. To this end, plants were grown in pots and the growing seedlings (4-leaf stage) were exposed to cold stress. After 4 weeks of cold acclimation (4-6 °C) and subsequent treatment for 12 h at -2 °C, samples were collected from control and stressed plants and were subjected to proteome pattern analysis. Among approximately 450 reproducible protein spots displayed in each given 2-DE gels, 34 proteins changed significantly in abundance in response to cold stress. Among them, 25 and 9 proteins were up and down-regulated under stress condition, respectively. Analysis by matrix-assisted laser desorption ionization time of flight/time of flight mass spectrometry coupled with non-redundant protein database search allowed the identification of 20 cold-induced proteins. Integrated proteomic and database survey resulted in identification of several cold stress related proteins such as pathogenesis related protein, cold regulated protein, cold-responsive LEA/RAB-related COR protein, oxygen-evolving enhancer protein and oxalate oxidase. The presumed functions of the identified proteins were mostly related to cold acclimation, oxidative stress and photosynthesis. The possible implications of differentially accumulated proteins in acquiring systemic tolerance to freezing stress following exposure to prolonged low temperature will be discussed.
Collapse
Affiliation(s)
- Javad Gharechahi
- Chemical Injures Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran,
| | | | | | | |
Collapse
|
49
|
Amara I, Zaidi I, Masmoudi K, Ludevid MD, Pagès M, Goday A, Brini F. Insights into Late Embryogenesis Abundant (LEA) Proteins in Plants: From Structure to the Functions. ACTA ACUST UNITED AC 2014. [DOI: 10.4236/ajps.2014.522360] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
50
|
Sasaki K, Christov NK, Tsuda S, Imai R. Identification of a novel LEA protein involved in freezing tolerance in wheat. PLANT & CELL PHYSIOLOGY 2014; 55:136-47. [PMID: 24265272 DOI: 10.1093/pcp/pct164] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Late embryogenesis abundant (LEA) proteins are a family of hyper-hydrophilic proteins that accumulate in response to cellular dehydration. Originally identified as plant proteins associated with seed desiccation tolerance, LEA proteins have been identified in a wide range of organisms such as invertebrates and microorganisms. LEA proteins are thought to protect proteins and biomembranes under water-deficit conditions. Here, we characterized WCI16, a wheat (Triticum aestivum) protein that belongs to a class of plant proteins of unknown function, and provide evidence that WCI16 shares common features with LEA proteins. WCI16 was induced during cold acclimation in winter wheat. Based on its amino acid sequence, WCI16 is highly hydrophilic, like LEA proteins, despite having no significant sequence similarity to any of the known classes of LEA proteins. Recombinant WCI16 protein was soluble after boiling, and (1)H-nuclear magnetic resonance (NMR) spectroscopy revealed that the structure of WCI16 is random and has no hydrophobic regions. WCI16 exhibited in vitro cryoprotection of the freeze-labile enzyme l-lactate dehydrogenase as well as double-stranded DNA binding activity, suggesting that WCI16 may protect both proteins and DNA during environmental stresses. The biological relevance of these activities was supported by the subcellular localization of a green fluorescent protein (GFP)-fused WCI16 protein in the nucleus and cytoplasm. Heterologous expression of WCI16 in Arabidopsis (Arabidopsis thaliana) plants conferred enhanced freezing tolerance. Taken together, our results indicate that WCI16 represents a novel class of LEA proteins and is involved in freezing tolerance.
Collapse
Affiliation(s)
- Kentaro Sasaki
- Hokkaido Agricultural Research Center, National Agriculture and Food Research Organization, Hitsujigaoka 1, Toyohira-ku, Sapporo, 062-8555 Japan
| | | | | | | |
Collapse
|