1
|
Saha S, Adhikari A, Ghosh PK, Shaw AK, Roy D, Choubey S, Basuli D, Tarafder M, Roy S, Hossain Z. Untying arsenite tolerance mechanisms in contrasting maize genotypes attributed to NIPs-mediated controlled influx and root-to-shoot translocation, redox homeostasis and phytochelatin-mediated detoxification pathway. CHEMOSPHERE 2024; 362:142647. [PMID: 38897322 DOI: 10.1016/j.chemosphere.2024.142647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/04/2024] [Accepted: 06/17/2024] [Indexed: 06/21/2024]
Abstract
Contamination of ground water and soil with toxic metalloids like arsenic (As) poses a serious hazard to the global agricultural food production. One of the best ways to restrict entry of As into the food chain is selection of germplasms which accrue extremely low level of As in grains. Here, we screened diverse maize genotypes under high arsenite (100 μM AsIII) stress and identified PMI-PV-9 and PMI-PV-3 as AsIII-tolerant and -sensitive maize genotype respectively. Expression of genes associated with As uptake, vacuolar sequestration, biosynthesis of phytochelatins, root-to-shoot translocation, in vivo ROS generation, fine tuning of antioxidant defense system, DNA and membrane damage, H2O2 and superoxide anion (O2•-) levels were compared among the selected genotypes. PMI-PV-9 plants performed much better than PMI-PV-3 in terms of plant growth with no visible symptom of As toxicity. Susceptibility of PMI-PV-3 to AsIII stress may be attributed to comparatively low expression of genes involved in phytochelatins (PCs) biosynthesis. Concomitant decrease in ABCC1 expression might be another key factor for futile sequestration of AsIII into root vacuoles. Moreover, up-regulation of ZmNIP3;1 might contribute in high root-to-leaf As translocation. Substantial spike in H2O2, O2•- and MDA levels indicates that PMI-PV-3 plants have experienced more oxidative stress than PMI-PV-9 plants. Appearance of prominent deep brown and dark blue spots/stripes on leaves as revealed after DAB and NBT staining respectively suggest severe oxidative burst in PMI-PV-3 plants. Marked reduction in DHAR and MDAR activity rendered PMI-PV-3 cells to recycle ascorbate pool ineffectively, which might have exacerbated their susceptibility to AsIII stress. In a nutshell, incompetent PCs mediated detoxification system and disruption of cellular redox homeostasis owing to feeble antioxidant defence system resulting oxidative burst might be the prime reasons behind reduced performance of PMI-PV-3 plants under AsIII stress.
Collapse
Affiliation(s)
- Shrabani Saha
- Plant Stress and Molecular Biology Laboratory, Department of Botany, University of Kalyani, Kalyani, 741235, West Bengal, India
| | - Ayan Adhikari
- Plant Stress and Molecular Biology Laboratory, Department of Botany, University of Kalyani, Kalyani, 741235, West Bengal, India
| | - Pratyush Kanti Ghosh
- Plant Stress and Molecular Biology Laboratory, Department of Botany, University of Kalyani, Kalyani, 741235, West Bengal, India
| | - Arun Kumar Shaw
- Plant Stress and Molecular Biology Laboratory, Department of Botany, University of Kalyani, Kalyani, 741235, West Bengal, India
| | - Doyel Roy
- Plant Stress and Molecular Biology Laboratory, Department of Botany, University of Kalyani, Kalyani, 741235, West Bengal, India
| | - Sampad Choubey
- Plant Stress and Molecular Biology Laboratory, Department of Botany, University of Kalyani, Kalyani, 741235, West Bengal, India
| | - Debapriya Basuli
- Plant Stress and Molecular Biology Laboratory, Department of Botany, University of Kalyani, Kalyani, 741235, West Bengal, India
| | - Mrinmay Tarafder
- Plant Stress and Molecular Biology Laboratory, Department of Botany, University of Kalyani, Kalyani, 741235, West Bengal, India
| | - Sankhajit Roy
- Department of Agricultural Chemicals, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, 741252, West Bengal, India
| | - Zahed Hossain
- Plant Stress and Molecular Biology Laboratory, Department of Botany, University of Kalyani, Kalyani, 741235, West Bengal, India.
| |
Collapse
|
2
|
Elsilk SE, El-Shenody RA, Afifi SS, Abo-Shanab WA. Green-synthesized zinc oxide nanoparticles by Enterobacter sp.: unveiling characterization, antimicrobial potency, and alleviation of copper stress in Vicia faba (L.) plants. BMC PLANT BIOLOGY 2024; 24:474. [PMID: 38811913 PMCID: PMC11137959 DOI: 10.1186/s12870-024-05150-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 05/14/2024] [Indexed: 05/31/2024]
Abstract
BACKGROUND The biosynthesis of zinc oxide nanoparticles (ZnO NPs) using Enterobacter sp. and the evaluation of their antimicrobial and copper stress (Cu+ 2)-reducing capabilities in Vicia faba (L.) plants. The green-synthesized ZnO NPs were validated using X-ray powder diffraction (XRD); Fourier transformed infrared (FTIR), Ultraviolet-Visible spectroscopy (UV-Vis), Transmission electron microscope (TEM) and scanning electron microscopy (SEM) techniques. ZnO NPs could serve as an improved bactericidal agent for various biological applications. as well as these nanoparticles used in alleviating the hazardous effects of copper stress on the morphological and physiological traits of 21-day-old Vicia faba (L.) plants. RESULTS The results revealed that different concentrations of ZnO NPs (250, 500, or 1000 mg L-1) significantly alleviated the toxic effects of copper stress (100 mM CuSO4) and increased the growth parameters, photosynthetic efficiency (Fv/Fm), and pigments (Chlorophyll a and b) contents in Cu-stressed Vicia faba (L.) seedlings. Furthermore, applying high concentration of ZnO NPs (1000 mg L-1) was the best dose in maintaining the levels of antioxidant enzymes (CAT, SOD, and POX), total soluble carbohydrates, total soluble proteins, phenolic and flavonoid in all Cu-stressed Vicia faba (L.) seedlings. Additionally, contents of Malondialdehyde (MDA) and hydrogen peroxide (H2O2) were significantly suppressed in response to high concentrations of ZnO NPs (1000 mg L-1) in all Cu-stressed Vicia faba (L.) seedlings. Also, it demonstrates strong antibacterial action (0.9 mg/ml) against various pathogenic microorganisms. CONCLUSIONS The ZnO NPs produced in this study demonstrated the potential to enhance plant detoxification and tolerance mechanisms, enabling plants to better cope with environmental stress. Furthermore, these nanoparticles could serve as an improved bactericidal agent for various biological applications.
Collapse
Affiliation(s)
- Sobhy E Elsilk
- Botany and Microbiology Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| | - Rania A El-Shenody
- Botany and Microbiology Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Salsabil S Afifi
- Botany and Microbiology Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Walaa A Abo-Shanab
- Botany and Microbiology Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| |
Collapse
|
3
|
Kandhol N, Rai P, Mishra V, Pandey S, Kumar S, Deshmukh R, Sharma S, Singh VP, Tripathi DK. Silicon regulates phosphate deficiency through involvement of auxin and nitric oxide in barley roots. PLANTA 2024; 259:144. [PMID: 38709333 DOI: 10.1007/s00425-024-04364-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 02/11/2024] [Indexed: 05/07/2024]
Abstract
MAIN CONCLUSION Silicon application mitigates phosphate deficiency in barley through an interplay with auxin and nitric oxide, enhancing growth, photosynthesis, and redox balance, highlighting the potential of silicon as a fertilizer for overcoming nutritional stresses. Silicon (Si) is reported to attenuate nutritional stresses in plants, but studies on the effect of Si application to plants grown under phosphate (Pi) deficiency are still very scarce, especially in barley. Therefore, the present work was undertaken to investigate the potential role of Si in mitigating the adverse impacts of Pi deficiency in barley Hordeum vulgare L. (var. BH902). Further, the involvement of two key regulatory signaling molecules--auxin and nitric oxide (NO)--in Si-induced tolerance against Pi deficiency in barley was tested. Morphological attributes, photosynthetic parameters, oxidative stress markers (O2·-, H2O2, and MDA), antioxidant system (enzymatic--APX, CAT, SOD, GR, DHAR, MDHAR as well as non-enzymatic--AsA and GSH), NO content, and proline metabolism were the key traits that were assessed under different treatments. The P deficiency distinctly declined growth of barley seedlings, which was due to enhancement in oxidative stress leading to inhibition of photosynthesis. These results were also in parallel with an enhancement in antioxidant activity, particularly SOD and CAT, and endogenous proline level and its biosynthetic enzyme (P5CS). The addition of Si exhibited beneficial effects on barley plants grown in Pi-deficient medium as reflected in increased growth, photosynthetic activity, and redox balance through the regulation of antioxidant machinery particularly ascorbate-glutathione cycle. We noticed that auxin and NO were also found to be independently participating in Si-mediated improvement of growth and other parameters in barley roots under Pi deficiency. Data of gene expression analysis for PHOSPHATE TRANSPORTER1 (HvPHT1) indicate that Si helps in increasing Pi uptake as per the need of Pi-deficient barley seedlings, and also auxin and NO both appear to help Si in accomplishing this task probably by inducing lateral root formation. These results are suggestive of possible application of Si as a fertilizer to correct the negative effects of nutritional stresses in plants. Further research at genetic level to understand Si-induced mechanisms for mitigating Pi deficiency can be helpful in the development of new varieties with improved tolerance against Pi deficiency, especially for cultivation in areas with Pi-deficient soils.
Collapse
Affiliation(s)
- Nidhi Kandhol
- Crop Nanobiology and Molecular Stress Physiology Lab, Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, Sector-125, Noida, 201313, India
| | - Padmaja Rai
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, Uttar Pradesh, 211004, India
| | - Vipul Mishra
- Plant Physiology Laboratory, Department of Botany, C.M.P. Degree College, A Constituent Post Graduate College of University of Allahabad, Prayagraj, 211002, India
| | - Sangeeta Pandey
- Plant and Microbe Interaction Lab, Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, Sector-125, Noida, 201313, India
| | - Santosh Kumar
- Functional Polymer Material Lab, Department of Chemistry, Harcourt Butler Technical University, Kanpur, Uttar Pradesh, 208002, India
| | - Rupesh Deshmukh
- Department of Biotechnology, Central University of Haryana, Mahendragarh, Haryana, India
| | - Shivesh Sharma
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, Uttar Pradesh, 211004, India
| | - Vijay Pratap Singh
- Plant Physiology Laboratory, Department of Botany, C.M.P. Degree College, A Constituent Post Graduate College of University of Allahabad, Prayagraj, 211002, India.
| | - Durgesh Kumar Tripathi
- Crop Nanobiology and Molecular Stress Physiology Lab, Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, Sector-125, Noida, 201313, India.
| |
Collapse
|
4
|
Kandhol N, Srivastava A, Rai P, Sharma S, Pandey S, Singh VP, Tripathi DK. Cytokinin and indole-3-acetic acid crosstalk is indispensable for silicon mediated chromium stress tolerance in roots of wheat seedlings. JOURNAL OF HAZARDOUS MATERIALS 2024; 468:133134. [PMID: 38387171 DOI: 10.1016/j.jhazmat.2023.133134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/31/2023] [Accepted: 11/28/2023] [Indexed: 02/24/2024]
Abstract
The rising heavy metal contamination of soils imposes toxic impacts on plants as well as other life forms. One such highly toxic and carcinogenic heavy metal is hexavalent chromium [Cr(VI)] that has been reported to prominently retard the plant growth. The present study investigated the potential of silicon (Si, 10 µM) to alleviate the toxicity of Cr(VI) (25 µM) on roots of wheat (Triticum aestivum L.) seedlings. Application of Si to Cr(VI)-stressed wheat seedlings improved their overall growth parameters. This study also reveals the involvement of two phytohormones, namely auxin and cytokinin and their crosstalk in Si-mediated mitigation of the toxic impacts of Cr(VI) in wheat seedlings. The application of cytokinin alone to wheat seedlings under Cr(VI) stress reduced the intensity of toxic effects of Cr(VI). In combination with Si, cytokinin application to Cr(VI)-stressed wheat seedlings significantly minimized the decrease induced by Cr(VI) in different parameters such as root-shoot length (10.8% and 13%, respectively), root-shoot fresh mass (11.3% and 10.1%, respectively), and total chlorophyll and carotenoids content (13.4% and 6.8%, respectively) with respect to the control. This treatment also maintained the regulation of proline metabolism (proline content, and P5CS and PDH activities), ascorbate-glutathione (AsA-GSH) cycle and nutrient homeostasis. The protective effect of Si and cytokinin against Cr(VI) stress was minimized upon supplementation of an inhibitor of polar auxin transport- 2,3,5-triiodobenzoic acid (TIBA) which suggested a potential involvement of auxin in Si and cytokinin-mediated mitigation of Cr(VI) toxicity. The exogenous addition of a natural auxin - indole-3-acetic acid (IAA) confirmed auxin is an active member of a signaling cascade along with cytokinin that aids in Si-mediated Cr(VI) toxicity alleviation as IAA application reversed the negative impacts of TIBA on wheat roots treated with Cr(VI), cytokinin and Si. The results of this research are also confirmed by the gene expression analysis conducted for nutrient transporters (Lsi1, CCaMK, MHX, SULT1 and ZIP1) and enzymes involved in the AsA-GSH cycle (APX, GR, DHAR and MDHAR). The overall results of this research indicate towards possible induction of a crosstalk between cytokinin and IAA upon Si supplementation which in turn stimulates physiological, biochemical and molecular changes to exhibit protective effects against Cr(VI) stress. Further, the information obtained suggests probable employment of Si, cytokinin and IAA alone or combined in agriculture to maintain plant productivity under Cr(VI) stress and data regarding expression of key genes can be used to develop new crop varieties with enhanced resistance against Cr(VI) stress together with its reduced load in seedlings.
Collapse
Affiliation(s)
- Nidhi Kandhol
- Crop Nanobiology and Molecular Stress Physiology Lab, Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, Sector-125, Noida 201313, India
| | - Aakriti Srivastava
- Crop Nanobiology and Molecular Stress Physiology Lab, Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, Sector-125, Noida 201313, India
| | - Padmaja Rai
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, Prayagraj, India
| | - Shivesh Sharma
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, Prayagraj, India
| | - Sangeeta Pandey
- Plant Microbe Interaction Lab, Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, Sector-125, Noida 201313, India
| | - Vijay Pratap Singh
- Plant Physiology Laboratory, Department of Botany, C.M.P. Degree College, University of Allahabad, Prayagraj 211002, India
| | - Durgesh Kumar Tripathi
- Crop Nanobiology and Molecular Stress Physiology Lab, Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, Sector-125, Noida 201313, India.
| |
Collapse
|
5
|
Kandhol N, Rai P, Pandey S, Singh S, Sharma S, Corpas FJ, Singh VP, Tripathi DK. Zinc induced regulation of PCR1 gene for cadmium stress resistance in rice roots. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 337:111783. [PMID: 37421983 DOI: 10.1016/j.plantsci.2023.111783] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/28/2023] [Accepted: 06/30/2023] [Indexed: 07/10/2023]
Abstract
In this study, the interaction between zinc (Zn) and cadmium (Cd) was investigated in rice roots to evaluate how Zn can protect the plants from Cd stress. Rice seedlings were treated with Cd (100 μM) and Zn (100 μM) in different combinations (Cd alone, Zn alone, Zn+ Cd, Zn+ Cd+ L-NAME, Zn+ Cd+ L-NAME+ SNP). Rice roots treated with only Zn also displayed similar toxic effects, however when combined with Cd exhibited improved growth. Treating the plant with Zn along with Cd distinctly reduced Cd concentration in roots while increasing its own accumulation due to modulation in expression of Zinc-Regulated Transporter (ZRT)-/IRT-Like Protein (OsZIP1) and Plant Cadmium Resistance1 (OsPCR1). Cd reduced plant biomass, cell viability, pigments, photosynthesis and causing oxidative stress due to inhibition in ascorbate-glutathione cycle. L-NAME (NG-nitro L-arginine methyl ester), prominently suppressed the beneficial impacts of Zn against Cd stress, whereas the presence of a NO donor, sodium nitroprusside (SNP), significantly reversed this effect of L-NAME. Collectively, results point that NO signalling is essential for Zn- mediated cross-tolerance against Cd stress via by modulating uptake of Cd and Zn and expression of OsZIP1 and OsPCR1, and ROS homeostasis due to fine tuning of ascorbate-glutathione cycle which finally lessened oxidative stress in rice roots. The results of this study can be utilized to develop new varieties of rice through genetic modifications which will be of great significance for maintaining crop productivity in Cd-contaminated areas throughout the world.
Collapse
Affiliation(s)
- Nidhi Kandhol
- Crop Nanobiology and Molecular Biology Lab, Amity Institute of Organic Agriculture (AIOA), Amity University, Noida, Sector 125, Noida, Uttar Pradesh
| | - Padmaja Rai
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211002, India
| | - Sangeeta Pandey
- Plant Microbe Interaction Laboratory, Amity Institute of Organic Agriculture (AIOA), Amity University, Noida, Sector 125, Noida, Uttar Pradesh
| | - Samiksha Singh
- Department of Botany, S.N. Sen B.V. Post Graduate College, Chhatrapati Shahu Ji Maharaj University, Kanpur 208001, India
| | - Shivesh Sharma
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211002, India
| | - Francisco J Corpas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry and Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de InvestigacionesCientíficas (CSIC), Profesor Albareda 1, 18008 Granada, Spain
| | - Vijay Pratap Singh
- Plant Physiology Laboratory, Department of Botany, C.M.P. Degree College, A Constituent Post Graduate College of University of Allahabad, Allahabad 211002, India.
| | - Durgesh Kumar Tripathi
- Crop Nanobiology and Molecular Biology Lab, Amity Institute of Organic Agriculture (AIOA), Amity University, Noida, Sector 125, Noida, Uttar Pradesh.
| |
Collapse
|
6
|
Patel M, Parida AK. Salinity alleviates arsenic stress-induced oxidative damage via antioxidative defense and metabolic adjustment in the root of the halophyte Salvadora persica. PLANTA 2023; 258:109. [PMID: 37907764 DOI: 10.1007/s00425-023-04263-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/08/2023] [Indexed: 11/02/2023]
Abstract
MAIN CONCLUSION Arsenic tolerance in the halophyte Salvadora persica is achieved by enhancing antioxidative defense and modulations of various groups of metabolites like amino acids, organic acids, sugars, sugar alcohols, and phytohormones. Salvadora persica is a facultative halophyte that thrives under high saline and arid regions of the world. In present study, we examine root metabolic responses of S. persica exposed to individual effects of high salinity (750 mM NaCl), arsenic (600 µM As), and combined treatment of salinity and arsenic (250 mM NaCl + 600 µM As) to decipher its As and salinity resistance mechanism. Our results demonstrated that NaCl supplementation reduced the levels of reactive oxygen species (ROS) under As stress. The increased activities of antioxidant enzymes like superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX), and glutathione reductase (GR) maintained appropriate levels of ROS [superoxide (O2•-) and hydrogen peroxide (H2O2)] under salinity and/or As stress. The metabolites like sugars, amino acids, polyphenols, and organic acids exhibited higher accumulations when salt was supplied with As. Furthermore, comparatively higher accumulations of glycine, glutamate, and cystine under combined stress of salt and As may indicate its role in glutathione and phytochelatins (PCs) synthesis in root. The levels of phytohormones such as salicylate, jasmonate, abscisic acid, and auxins were significantly increased under high As with and without salinity stress. The amino acid metabolism, glutathione metabolism, carbohydrate metabolism, tricarboxylic acid cycle (TCA cycle), phenylpropanoid biosynthesis, and phenylalanine metabolism are the most significantly altered metabolic pathways in response to NaCl and/or As stress. Our study decoded the important metabolites and metabolic pathways involved in As and/or salinity tolerance in root of the halophyte S. persica providing clues for development of salinity and As resistance crops.
Collapse
Affiliation(s)
- Monika Patel
- Plant Omics Division, CSIR- Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Gijubhai Badheka Marg, Bhavnagar, 364002, Gujarat, India
- Academy of Scientific and Innovative Research (AcSIR), Gaziabad, 201002, India
| | - Asish Kumar Parida
- Plant Omics Division, CSIR- Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Gijubhai Badheka Marg, Bhavnagar, 364002, Gujarat, India.
- Academy of Scientific and Innovative Research (AcSIR), Gaziabad, 201002, India.
| |
Collapse
|
7
|
Zhang Z, Zhong L, Xiao W, Du Y, Han G, Yan Z, He D, Zheng C. Transcriptomics combined with physiological analysis reveals the mechanism of cadmium uptake and tolerance in Ligusticum chuanxiong Hort. under cadmium treatment. FRONTIERS IN PLANT SCIENCE 2023; 14:1263981. [PMID: 37810396 PMCID: PMC10556529 DOI: 10.3389/fpls.2023.1263981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 08/30/2023] [Indexed: 10/10/2023]
Abstract
Introduction Ligusticum chuanxiong Hort. is a widely used medicinal plant, but its growth and quality can be negatively affected by contamination with the heavy metal cadmium (Cd). Despite the importance of understanding how L. chuanxiong responds to Cd stress, but little is currently known about the underlying mechanisms. Methods To address this gap, we conducted physiological and transcriptomic analyses on L. chuanxiong plants treated with different concentrations of Cd2+ (0 mg·L-1, 5 mg·L-1, 10 mg·L-1, 20 mg·L-1, and 40 mg·L-1). Results Our findings revealed that Cd stress inhibited biomass accumulation and root development while activating the antioxidant system in L. chuanxiong. Root tissues were the primary accumulation site for Cd in this plant species, with Cd being predominantly distributed in the soluble fraction and cell wall. Transcriptomic analysis demonstrated the downregulation of differential genes involved in photosynthetic pathways under Cd stress. Conversely, the plant hormone signaling pathway and the antioxidant system exhibited positive responses to Cd regulation. Additionally, the expression of differential genes related to cell wall modification was upregulated, indicating potential enhancements in the root cell wall's ability to sequester Cd. Several differential genes associated with metal transport proteins were also affected by Cd stress, with ATPases, MSR2, and HAM3 playing significant roles in Cd passage from the apoplast to the cell membrane. Furthermore, ABC transport proteins were found to be key players in the intravesicular compartmentalization and efflux of Cd. Discussion In conclusion, our study provides preliminary insights into the mechanisms underlying Cd accumulation and tolerance in L. chuanxiong, leveraging both physiological and transcriptomic approaches. The decrease in photosynthetic capacity and the regulation of plant hormone levels appear to be major factors contributing to growth inhibition in response to Cd stress. Moreover, the upregulation of differential genes involved in cell wall modification suggests a potential mechanism for enhancing root cell wall capabilities in isolating and sequestering Cd. The involvement of specific metal transport proteins further highlights their importance in Cd movement within the plant.
Collapse
Affiliation(s)
- Zhanling Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Lele Zhong
- Evaluation and Utilization of Strategic Rare Metals and Rare Earth Resource Key Laboratory of Sichuan Province, Chengdu, Sichuan, China
- Chengdu Analytical & Testing Center, Sichuan Bureau of Geology & Mineral Resources, Chengdu, Sichuan, China
| | - Wanting Xiao
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yaping Du
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Guiqi Han
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Zhuyun Yan
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Dongmei He
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Chuan Zheng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
8
|
Čėsnienė I, Miškelytė D, Novickij V, Mildažienė V, Sirgedaitė-Šėžienė V. Seed Treatment with Electromagnetic Field Induces Different Effects on Emergence, Growth and Profiles of Biochemical Compounds in Seven Half-Sib Families of Silver Birch. PLANTS (BASEL, SWITZERLAND) 2023; 12:3048. [PMID: 37687295 PMCID: PMC10490157 DOI: 10.3390/plants12173048] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/10/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023]
Abstract
In the context of climate change, strategies aimed at enhancing trees' resistance to biotic and abiotic stress are particularly relevant. We applied an electromagnetic field (EMF) seed treatment to observe changes in the establishment and content of biochemical compounds in silver birch seedlings induced by a short (1 min) seed exposure to a physical stressor. The impact of EMF treatment was evaluated on seedling emergence and growth of one-year-old and two-year-old seedlings from seven half-sib families of silver birch. The effects on numerous biochemical parameters in seedling leaves, such as total phenolic content (TPC), total flavonoid content (TFC), amounts of photosynthetic pigments, total soluble sugars (TSS), level of lipid peroxidation level, antioxidant activity and activity of antioxidant enzymes, were compared using spectrophotometric methods. The results indicated that, in one-year-old seedlings, two of seven (60th and 73rd) half-sib families exhibited a positive response to seed treatment with EMFs in nearly all analyzed parameters. For example, in the 60th family, seed treatment with EMFs increased the percentage of emergence by 3 times, one-year-old seedling height by 71%, leaf TPC by 47%, antioxidant activity by 2 times and amount of chlorophyll a by 4.6 times. Meanwhile, the other two (86th and 179th) families exhibited a more obvious positive response to EMF in two-year-old seedlings as compared to one-year-old seedling controls. The results revealed that short-term EMF treatment of silver birch seeds can potentially be used to improve seedling emergence and growth and increase the content of secondary metabolites, antioxidant capacity and photosynthetic pigments. Understanding of the impact of EMFs as well as the influence of genetic differences on tree responses can be significant for practical applications in forestry. Genetic selection of plant genotypes that exhibit positive response trends can open the way to improve the quality of forest stands.
Collapse
Affiliation(s)
- Ieva Čėsnienė
- Institute of Forestry, Lithuanian Research Centre for Agriculture and Forestry, Liepų 1, LT-53101 Girionys, Lithuania;
| | - Diana Miškelytė
- Department of Environmental Sciences, Vytautas Magnus University, Universiteto 10, LT-53361 Kaunas, Lithuania;
| | - Vitalij Novickij
- Institute of High Magnetic Fields, Vilnius Gediminas Technical University, Saulėtekio al. 11, LT-10223 Vilnius, Lithuania;
- Department of Immunology, State Research Institute Centre for Innovative Medicien, Santariskiu g. 5, LT-08406 Vilnius, Lithuania
| | - Vida Mildažienė
- Faculty of Natural Sciences, Vytautas Magnus University, Universiteto 10, LT-53361 Kaunas, Lithuania;
| | - Vaida Sirgedaitė-Šėžienė
- Institute of Forestry, Lithuanian Research Centre for Agriculture and Forestry, Liepų 1, LT-53101 Girionys, Lithuania;
| |
Collapse
|
9
|
Liu J, Feng X, Qiu G, Li H, Wang Y, Chen X, Fu Q, Guo B. Inhibition Roles of Calcium in Cadmium Uptake and Translocation in Rice: A Review. Int J Mol Sci 2023; 24:11587. [PMID: 37511349 PMCID: PMC10380254 DOI: 10.3390/ijms241411587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/14/2023] [Accepted: 07/16/2023] [Indexed: 07/30/2023] Open
Abstract
Cadmium (Cd) contamination in rice grains is posing a significant threat to global food security. To restrict the transport of Cd in the soil-rice system, an efficient way is to use the ionomics strategy. Since calcium (Ca) and Cd have similar ionic radii, their uptake and translocation may be linked in multiple aspects in rice. However, the underlying antagonistic mechanisms are still not fully understood. Therefore, we first summarized the current knowledge on the physiological and molecular footprints of Cd translocation in plants and then explored the potential antagonistic points between Ca and Cd in rice, including exchange adsorption on roots, plant cell-wall composition, co-transporter gene expression, and transpiration inhibition. This review provides suggestions for Ca/Cd interaction studies on rice and introduces ionomics research as a means of better controlling the accumulation of Cd in plants.
Collapse
Affiliation(s)
- Junli Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.L.); (X.F.); (G.Q.); (H.L.); (Y.W.); (X.C.); (Q.F.)
| | - Xiaoyu Feng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.L.); (X.F.); (G.Q.); (H.L.); (Y.W.); (X.C.); (Q.F.)
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Gaoyang Qiu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.L.); (X.F.); (G.Q.); (H.L.); (Y.W.); (X.C.); (Q.F.)
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hua Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.L.); (X.F.); (G.Q.); (H.L.); (Y.W.); (X.C.); (Q.F.)
| | - Yuan Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.L.); (X.F.); (G.Q.); (H.L.); (Y.W.); (X.C.); (Q.F.)
| | - Xiaodong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.L.); (X.F.); (G.Q.); (H.L.); (Y.W.); (X.C.); (Q.F.)
| | - Qinglin Fu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.L.); (X.F.); (G.Q.); (H.L.); (Y.W.); (X.C.); (Q.F.)
| | - Bin Guo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.L.); (X.F.); (G.Q.); (H.L.); (Y.W.); (X.C.); (Q.F.)
| |
Collapse
|
10
|
Orfei B, Moretti C, Loreti S, Tatulli G, Onofri A, Scotti L, Aceto A, Buonaurio R. Silver nanoclusters with Ag 2+/3+ oxidative states are a new highly effective tool against phytopathogenic bacteria. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12596-z. [PMID: 37289240 DOI: 10.1007/s00253-023-12596-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/03/2023] [Accepted: 05/09/2023] [Indexed: 06/09/2023]
Abstract
The main measure worldwide adopted to manage plant bacterial diseases is based on the application of copper compounds, which are often partially efficacious for the frequent appearance of copper-resistant bacterial strains and have raised concerns for their toxicity to the environment and humans. Therefore, there is an increasing need to develop new environmentally friendly, efficient, and reliable strategies for controlling plant bacterial diseases, and among them, the use of nanoparticles seems promising. The present study aimed to evaluate the feasibility of protecting plants against attacks of gram-negative and gram-positive phytopathogenic bacteria by using electrochemically synthesized silver ultra nanoclusters (ARGIRIUM‑SUNCs®) with an average size of 1.79 nm and characterized by rare oxidative states (Ag2+/3+). ARGIRIUM‑SUNCs strongly inhibited the in vitro growth (effective concentration, EC50, less than 1 ppm) and biofilm formation of Pseudomonas syringae pv. tomato and of quarantine bacteria Xanthomonas vesicatoria, Xylella fastidiosa subsp. pauca, and Clavibacter michiganensis subsp. michiganensis. In addition, treatments with ARGIRIUM‑SUNCs also provoked the eradication of biofilm for P. syringae pv. tomato, X. vesicatoria, and C. michiganensis subsp. michiganensis. Treatment of tomato plants via root absorption with ARGIRIUM‑SUNCs (10 ppm) is not phytotoxic and protected (80%) the plants against P. syringae pv. tomato attacks. ARGIRIUM‑SUNCs at low doses induced hormetic effects on P. syringae pv. tomato, X. vesicatoria, and C. michiganensis subsp. michiganensis as well as on tomato root growth. The use of ARGIRIUM‑SUNCs in protecting plants against phytopathogenic bacteria is a possible alternative control measure. KEY POINTS: • ARGIRIUM‑SUNC has strong antimicrobial activities against phytopathogenic bacteria; • ARGIRIUM‑SUNC inhibits biofilm formation at low doses; • ARGIRIUM‑SUNC protects tomato plants against bacterial speck disease.
Collapse
Affiliation(s)
- Benedetta Orfei
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia, Italy
| | - Chiaraluce Moretti
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia, Italy.
| | - Stefania Loreti
- Council for Agricultural Research and Economics (CREA), Research Centre for Plant Protection and Certification, Roma, Italy
| | - Giuseppe Tatulli
- Council for Agricultural Research and Economics (CREA), Research Centre for Plant Protection and Certification, Roma, Italy
| | - Andrea Onofri
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia, Italy
| | - Luca Scotti
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy.
| | - Antonio Aceto
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Roberto Buonaurio
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia, Italy
| |
Collapse
|
11
|
Rai GK, Kumar P, Choudhary SM, Singh H, Adab K, Kosser R, Magotra I, Kumar RR, Singh M, Sharma R, Corrado G, Rouphael Y. Antioxidant Potential of Glutathione and Crosstalk with Phytohormones in Enhancing Abiotic Stress Tolerance in Crop Plants. PLANTS (BASEL, SWITZERLAND) 2023; 12:1133. [PMID: 36903992 PMCID: PMC10005112 DOI: 10.3390/plants12051133] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/19/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
Glutathione (GSH) is an abundant tripeptide that can enhance plant tolerance to biotic and abiotic stress. Its main role is to counter free radicals and detoxify reactive oxygen species (ROS) generated in cells under unfavorable conditions. Moreover, along with other second messengers (such as ROS, calcium, nitric oxide, cyclic nucleotides, etc.), GSH also acts as a cellular signal involved in stress signal pathways in plants, directly or along with the glutaredoxin and thioredoxin systems. While associated biochemical activities and roles in cellular stress response have been widely presented, the relationship between phytohormones and GSH has received comparatively less attention. This review, after presenting glutathione as part of plants' feedback to main abiotic stress factors, focuses on the interaction between GSH and phytohormones, and their roles in the modulation of the acclimatation and tolerance to abiotic stress in crops plants.
Collapse
Affiliation(s)
- Gyanendra Kumar Rai
- School of Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Jammu 180009, India
| | - Pradeep Kumar
- Division of Integrated Farming System, ICAR—Central Arid Zone Research Institute, Jodhpur 342003, India
| | - Sadiya M. Choudhary
- School of Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Jammu 180009, India
| | - Hira Singh
- Department of Vegetable Science, Punjab Agricultural University, Ludhiana 141004, India
| | - Komal Adab
- Department of Biotechnology, BGSB University, Rajouri 185131, India
| | - Rafia Kosser
- School of Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Jammu 180009, India
| | - Isha Magotra
- School of Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Jammu 180009, India
| | - Ranjeet Ranjan Kumar
- Division of Biochemistry, ICAR—Indian Agricultural Research Institute, New Delhi 110001, India
| | - Monika Singh
- GLBajaj Institute of Technology and Management, Greater Noida 201306, India
| | - Rajni Sharma
- Department of Agronomy, Punjab Agricultural University, Ludhiana 141004, India
| | - Giandomenico Corrado
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
| | - Youssef Rouphael
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
| |
Collapse
|
12
|
Dong Q, Tao Q, Li B, Huang R, Xu Q, Li H, Shen J, Chen X, Li Q, Tang X, Kačík F, Kováč J, Ďurkovič J, Wu Y, Wang C. The mechanism of enhanced lignin regulating foliar Cd absorption and yield in rice (Oryza sativa L.). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114481. [PMID: 38321693 DOI: 10.1016/j.ecoenv.2022.114481] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/20/2022] [Accepted: 12/24/2022] [Indexed: 02/08/2024]
Abstract
The impact of atmospheric deposition of cadmium (Cd) in cereal crops has become a global concern. Enhanced lignin content was expected to benefit the plant performance against Cd exposure. To date, however, the underlying mechanisms of lignin regulating foliar Cd absorption in rice (Oryza sativa L.) and its effect on grain yield remains unclear. In present study, the effect and mechanism of rice in response to leaf Cd exposure were investigated using 113Cd stable isotope and a lignin-increased rice mutant. The highest Cd uptake efficiency and uptake amount was observed in wild type (WT) plant grown in the maturity period, which were 3-fold higher than in mutant plant. Compared to WT, the mutant exhibited 14.75% and 25.43% higher contents in G- and S-unit of lignin monomers. Lignin biosynthesis and polymerization related genes (OsPAL/OsCOMT/Os4CL3/OsLAC5/OsLAC15) were significantly up-regulated in mutants. In addition, the enzyme activities involved in the above process were also significantly increased by 1.24-1.49-fold. The increased Cd retention in cell wall and decreased gene expression levels of OsNRAMP5, OsHMA3 and OsIRT1 in mutant indicated that lignin effectively inhibited Cd transportion in plant tissues. Moreover, the antioxidant capacity and photosynthesis efficiency in mutant plant were obviously improved, leading to higher Cd tolerance and increased grain yield. Our results revealed the molecular and physiological mechanisms of enhanced lignin regulating foliar Cd absorption and yield in rice, and provided the valuable rice genotype to ensure food safety.
Collapse
Affiliation(s)
- Qin Dong
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Qi Tao
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Bing Li
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Rong Huang
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Qiang Xu
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Huanxiu Li
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Jie Shen
- China-Croatia "Belt and Road" Joint Laboratory on Biodiversity and Ecosystem Services, CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Xi Chen
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Qiquan Li
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaoyan Tang
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - František Kačík
- Department of Chemistry and Chemical Technologies, Technical University in Zvolen, 96001 Zvolen, Slovakia
| | - Ján Kováč
- Department of Phytology, Technical University in Zvolen, 96001 Zvolen, Slovakia
| | - Jaroslav Ďurkovič
- Department of Phytology, Technical University in Zvolen, 96001 Zvolen, Slovakia
| | - Yingjie Wu
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China.
| | - Changquan Wang
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
13
|
Piacentini D, Della Rovere F, D’Angeli S, Fattorini L, Falasca G, Betti C, Altamura MM. Convergence between Development and Stress: Ectopic Xylem Formation in Arabidopsis Hypocotyl in Response to 24-Epibrassinolide and Cadmium. PLANTS (BASEL, SWITZERLAND) 2022; 11:3278. [PMID: 36501318 PMCID: PMC9739498 DOI: 10.3390/plants11233278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/23/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Ectopic xylary element (EXE) formation in planta is a poorly investigated process, and it is unknown if it occurs as a response to the soil pollutant Cadmium (Cd). The pericycle cells of Arabidopsis thaliana hypocotyl give rise to EXEs under specific hormonal inputs. Cadmium triggers pericycle responses, but its role in EXE formation is unknown. Brassinosteroids (BRs) affect numerous developmental events, including xylogenesis in vitro, and their exogenous application by 24-epibrassinolide (eBL) helps to alleviate Cd-stress by increasing lateral/adventitious rooting. Epibrassinolide's effects on EXEs in planta are unknown, as well as its relationship with Cd in the control of the process. The research aims to establish an eBL role in pericycle EXE formation, a Cd role in the same process, and the possible interaction between the two. Results show that 1 nM eBL causes an identity reversal between the metaxylem and protoxylem within the stele, and its combination with Cd reduces the event. All eBL concentrations increase EXEs, also affecting xylary identity by changing from protoxylem to metaxylem in a concentration-dependent manner. Cadmium does not affect EXE identity but increases EXEs when combined with eBL. The results suggest that eBL produces EXEs to form a mechanical barrier against the pollutant.
Collapse
Affiliation(s)
- Diego Piacentini
- Department of Environmental Biology, Sapienza University of Rome, 00185 Rome, Italy
| | | | - Simone D’Angeli
- Department of Environmental Biology, Sapienza University of Rome, 00185 Rome, Italy
| | - Laura Fattorini
- Department of Environmental Biology, Sapienza University of Rome, 00185 Rome, Italy
| | - Giuseppina Falasca
- Department of Environmental Biology, Sapienza University of Rome, 00185 Rome, Italy
| | - Camilla Betti
- Department of Biosciences, University of Milan, 20133 Milan, Italy
| | | |
Collapse
|
14
|
Kebert M, Kostić S, Vuksanović V, Gavranović Markić A, Kiprovski B, Zorić M, Orlović S. Metal- and Organ-Specific Response to Heavy Metal-Induced Stress Mediated by Antioxidant Enzymes' Activities, Polyamines, and Plant Hormones Levels in Populus deltoides. PLANTS (BASEL, SWITZERLAND) 2022; 11:3246. [PMID: 36501286 PMCID: PMC9741192 DOI: 10.3390/plants11233246] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/20/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Besides anthropogenic factors, climate change causes altered precipitation patterns that indirectly affect the increase of heavy metals in soils due to hydrological effects and enhanced leaching (i.e., Cd and Ni), especially in the vicinity of mines and smelters. Phytoextraction is a well-known, powerful "green" technique for environmental clean-up that uses plants to extract, sequester, and/or detoxify heavy metals, and it makes significant contributions to the removal of persistent inorganic pollutants from soils. Poplar species, due to their growth features, high transpiration rate, large biomass, and feasible reproduction represent great candidates for phytoextraction technology. However, the consequences of concomitant oxidative stress upon plant metabolism and the mechanism of the poplar's tolerance to heavy metal-induced stress are still not completely understood. In this study, cuttings of poplar species (Populus deltoides W. Bartram ex Marshall) were separately exposed to two heavy metals (Cd2+ and Ni2+) that were triple the maximum allowed amount (MAA) (according to national legislation). The aim of the study was to estimate the effects of heavy metals on: (I) the accumulation of free and conjugated polyamines, (II) plant hormones (including abscisic acid-ABA and indole-3-acetic acid-IAA), and (III) the activities of different antioxidant enzymes at root and leaf levels. By using the selected ion monitoring (SIM) mode of gas chromatography with mass spectrometry (GC/MS) coupled with the isotopically labeled technique, amounts of ABA and IAA were quantified, while polyamine amounts were determined by using high-performance liquid chromatography (HPLC) with fluorometric detection after derivatization. The results showed that P. deltoides responded to elevated concentrations of heavy metals in soils by exhibiting metal- and organ-specific tolerance. Knowledge about tolerance mechanisms is of great importance for the development of phytoremediation technology and afforestation programs for polluted soils.
Collapse
Affiliation(s)
- Marko Kebert
- Institute of Lowland Forestry and Environment, University of Novi Sad, Antona Čehova 13d, 21000 Novi Sad, Serbia
| | - Saša Kostić
- Institute of Lowland Forestry and Environment, University of Novi Sad, Antona Čehova 13d, 21000 Novi Sad, Serbia
| | - Vanja Vuksanović
- Faculty of Agriculture, University of Novi Sad, Trg Dositeja Obradovića 8, 21000 Novi Sad, Serbia
| | - Anđelina Gavranović Markić
- Division for Genetics, Forest Tree Breeding and Seed Science, Croatian Forest Research Institute, Cvjetno Naselje 41, HR-10450 Jastrebarsko, Croatia
| | - Biljana Kiprovski
- Institute of Field and Vegetable Crops, National Institute of the Republic of Serbia, Maksima Gorkog 30, 21000 Novi Sad, Serbia
| | - Martina Zorić
- Institute of Lowland Forestry and Environment, University of Novi Sad, Antona Čehova 13d, 21000 Novi Sad, Serbia
| | - Saša Orlović
- Institute of Lowland Forestry and Environment, University of Novi Sad, Antona Čehova 13d, 21000 Novi Sad, Serbia
| |
Collapse
|
15
|
Han X, Zhao Y, Chen Y, Xu J, Jiang C, Wang X, Zhuo R, Lu MZ, Zhang J. Lignin biosynthesis and accumulation in response to abiotic stresses in woody plants. FORESTRY RESEARCH 2022; 2:9. [PMID: 39525415 PMCID: PMC11524291 DOI: 10.48130/fr-2022-0009] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 06/13/2022] [Indexed: 11/16/2024]
Abstract
Woody plants have to experience various abiotic stresses due to their immobility and perennial characteristics. However, woody plants have evolved a series of specific regulation pathways in physiological and molecular mechanisms to deal with adverse environments. Compared with herbaceous plants, perennial woody plants have the advantages of developed roots and hard stems, and increased secondary xylem, which can strengthen the vascular system of the plants. The lignification process involves the lignin deposition on the cell wall by oxidation and polymerization of lignin monomer, which plays an important role in abiotic stress tolerance. This review focuses on recent progress in the biosynthesis, content, and accumulation of lignin in response to various abiotic stresses in plants. The role of transcription factors is also discussed in regulating lignin biosynthesis to enhance abiotic stress tolerance via changing cell wall lignification. Although woody plants shared similar lignin biosynthesis mechanisms with herbaceous plants, the temporal and spatial expression and stress response profiles of lignin biosynthetic genes provide the basis for the differences in stress tolerance of various species. An in-depth understanding of the role of lignin in the abiotic stress tolerance of woody plants will lay the foundation for the next step in tree resistance breeding through genetic engineering.
Collapse
Affiliation(s)
- Xiaojiao Han
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding of Zhejiang Province, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang 311400, China
| | - Yanqiu Zhao
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, Zhejiang 311300, China
| | - Yinjie Chen
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, Zhejiang 311300, China
| | - Jing Xu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding of Zhejiang Province, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang 311400, China
| | - Cheng Jiang
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, Zhejiang 311300, China
| | - Xiaqin Wang
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, Zhejiang 311300, China
| | - Renying Zhuo
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding of Zhejiang Province, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang 311400, China
| | - Meng-Zhu Lu
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, Zhejiang 311300, China
| | - Jin Zhang
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, Zhejiang 311300, China
| |
Collapse
|
16
|
Shee R, Ghosh S, Khan P, Sahid S, Roy C, Shee D, Paul S, Datta R. Glutathione regulates transcriptional activation of iron transporters via S-nitrosylation of bHLH factors to modulate subcellular iron homoeostasis. PLANT, CELL & ENVIRONMENT 2022; 45:2176-2190. [PMID: 35394650 DOI: 10.1111/pce.14331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/17/2022] [Accepted: 03/20/2022] [Indexed: 06/14/2023]
Abstract
Glutathione (GSH) is known to regulate iron (Fe) deficiency response in plants but its involvement in modulating subcellular Fe homoeostasis remains elusive. In this study, we report that the GSH-deficient mutants, cad2-1 and pad2-1 displayed increased sensitivity to Fe deficiency with significant downregulation of the vacuolar Fe exporters, AtNRAMP3 and AtNRAMP4, and the chloroplast Fe importer, AtPIC1. Moreover, the pad2-1 mutant accumulated higher Fe levels in vacuoles but lower Fe levels in chloroplasts compared to wild type (Columbia ecotype [Col-0]) under Fe limited conditions. Exogenous GSH treatment enhanced chloroplast Fe contents in Col-0 but failed to do so in the nramp3nramp4 double mutants demonstrating that GSH plays a role in modulating subcellular Fe homoeostasis. Pharmacological experiments, mutant analysis, and promoter assays revealed that this regulation involves the transcriptional activation of Fe transporter genes by a GSH-S-nitrosoglutathione (GSNO) module. The Fe responsive bHLH transcription factors (TFs), AtbHLH29, AtbHLH38, and AtbHLH101 were found to interact with the promoters of these genes, which were, in turn, activated via S-nitrosylation (SNO). Taken together, the present study highlights the role of the GSH-GSNO module in regulating subcellular Fe homoeostasis by transcriptional activation of the Fe transporters AtNRAMP3, AtNRAMP4, and AtPIC1 via SNO of bHLH TFs during Fe deficiency.
Collapse
Affiliation(s)
- Ranjana Shee
- Department of Botany, Dr. A. P. J. Abdul Kalam Government College, New Town, West Bengal, India
| | - Soumi Ghosh
- Department of Botany, Dr. A. P. J. Abdul Kalam Government College, New Town, West Bengal, India
| | - Pinki Khan
- Department of Botany, Dr. A. P. J. Abdul Kalam Government College, New Town, West Bengal, India
| | - Salman Sahid
- Department of Botany, Dr. A. P. J. Abdul Kalam Government College, New Town, West Bengal, India
- Department of Botany, University of Calcutta, Kolkata, West Bengal, India
| | - Chandan Roy
- Department of Botany, University of Calcutta, Kolkata, West Bengal, India
| | - Dibyendu Shee
- Department of Botany, Dr. A. P. J. Abdul Kalam Government College, New Town, West Bengal, India
- Department of Botany, University of Calcutta, Kolkata, West Bengal, India
| | - Soumitra Paul
- Department of Botany, University of Calcutta, Kolkata, West Bengal, India
| | - Riddhi Datta
- Department of Botany, Dr. A. P. J. Abdul Kalam Government College, New Town, West Bengal, India
| |
Collapse
|
17
|
He L, Huang DY, Liu B, Zhang Q, Zhu HH, Xu C, Zhu QH. Combined exogenous selenium and biochemical fulvic acid reduce Cd accumulation in rice. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:50059-50069. [PMID: 35226268 DOI: 10.1007/s11356-022-19442-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/22/2022] [Indexed: 06/14/2023]
Abstract
Paddy soil Cd contamination and the related accumulation risk in rice grains have attracted global attention. The application of selenium and humic substances is considered to be a cost-effective Cd mitigation measure. However, the effect of a combined application of the two materials remains unclear. Therefore, a 2-season pot experiment was conducted, wherein sodium selenite (Se) and biochemical fulvic acid (BFA) were applied alone and together. Paddy soils with two levels of Cd contamination were used. The results indicate that Se application alone considerably decreased the rice grain Cd content by 36.1-48.7% compared to the control rice grain Cd concentration, which was above the food safety limit (0.2 mg kg-1). Although the application of BFA alone decreased the soil pH, it also increased the soil CaCl2 extractable Cd content by 0.2 to 19.3% and had a limited effect on Cd in the rice grains. The combined application of Se and BFA did not affect the soil pH or the CaCl2 extractable Cd, and more effectively reduced the Cd contents of the rice grains by 50.2 to 57.1%, except for the control rice grain Cd content, which was below the limit. The combined application of Se and BFA also inhibited Se accumulation in rice grains, maintaining the Se content at a safe level (0.33-0.58 mg kg-1) compared to Se application alone. The effects of reducing the Cd content of rice grains while safely increasing their Se contents could persist for at least two seasons. Therefore, the combined application of Se and BFA should be recommended to mitigate Cd contamination risks in Cd-contaminated paddy soil.
Collapse
Affiliation(s)
- Lei He
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, CAS, Changsha, 410125, Hunan, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dao-You Huang
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, CAS, Changsha, 410125, Hunan, China
| | - Bo Liu
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, CAS, Changsha, 410125, Hunan, China
| | - Quan Zhang
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, CAS, Changsha, 410125, Hunan, China
| | - Han-Hua Zhu
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, CAS, Changsha, 410125, Hunan, China
| | - Chao Xu
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, CAS, Changsha, 410125, Hunan, China
| | - Qi-Hong Zhu
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, CAS, Changsha, 410125, Hunan, China.
| |
Collapse
|
18
|
Arikan B, Ozfidan-Konakci C, Alp FN, Zengin G, Yildiztugay E. Rosmarinic acid and hesperidin regulate gas exchange, chlorophyll fluorescence, antioxidant system and the fatty acid biosynthesis-related gene expression in Arabidopsis thaliana under heat stress. PHYTOCHEMISTRY 2022; 198:113157. [PMID: 35271935 DOI: 10.1016/j.phytochem.2022.113157] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 02/26/2022] [Accepted: 02/27/2022] [Indexed: 06/14/2023]
Abstract
The impacts of exogenous rosmarinic acid (RA, 100 μM) and/or hesperidin (HP, 100 μM) were evaluated in improving tolerance on the gas exchange, chlorophyll fluorescence and efficiencies, phenomenological fluxes of photosystems, antioxidant system and gene expression related to the lipid biosynthesis under heat stress. For this purpose, Arabidopsis thaliana was grown under RA and HP with heat stress (S, 38 °C) for 24 h(h). As shown in gas exchange parameters, heat stress caused mesophyll efficiency and non-stomatal restrictions. Both alone and combined forms of RA and HP to stress-treated A. thaliana alleviated the disturbance of carbon assimilation, transpiration rate and internal CO2 concentrations. Stress impaired the levels of energy flow reaching reaction centers of PSII and the photon capture ability of active reaction centers. RA and/or HP enhanced photosystems' structural/functional characteristics and photosynthetic performance. Histochemical staining and biochemical analyses revealed that heat stress caused the oxidation in A. thaliana. By activating several defensive mechanisms, RA and/or HP could reverse the harm caused by radical production. Both alone and combined forms of RA and HP removed superoxide anion radical (O2•-) accumulation, inducing superoxide dismutase (SOD). The common enzyme that scavenged hydrogen peroxide (H2O2) at all three applications (S + RA, S + HP and S + RA + HP) was POX. Also, only RA could utilize the ascorbate (AsA) regeneration in response to stress, suggesting increased ascorbate peroxidase (APX), monodehydroascorbate (MDHAR) and dehydroascorbate (DHAR) activities. However, the regeneration/redox state of AsA and glutathione (GSH) did not maintain under S + HP and S + RA + HP. While RA had no positive influence on the saturated fatty acids under stress, HP increased the total saturated fatty acids (primarily palmitic acid). Besides, the combined application of RA + HP effectively created the stress response by increasing the expression of genes involved in fatty acid synthesis. The synergetic interactions of RA and HP could explain the increased levels of saturated fatty acids in combining these compounds. The data obtained from the study will contribute to the responses of phenolic compounds in plants to heat stress.
Collapse
Affiliation(s)
- Busra Arikan
- Department of Biotechnology, Faculty of Science, Selcuk University, Selcuklu, 42130, Konya, Turkey.
| | - Ceyda Ozfidan-Konakci
- Department of Molecular Biology and Genetics, Faculty of Science, Necmettin Erbakan University, Meram, 42090, Konya, Turkey.
| | - Fatma Nur Alp
- Department of Biotechnology, Faculty of Science, Selcuk University, Selcuklu, 42130, Konya, Turkey.
| | - Gökhan Zengin
- Department of Biology, Faculty of Science, Selcuk University, Selcuklu, 42130, Konya, Turkey.
| | - Evren Yildiztugay
- Department of Biotechnology, Faculty of Science, Selcuk University, Selcuklu, 42130, Konya, Turkey.
| |
Collapse
|
19
|
Yang Z, Yang F, Liu JL, Wu HT, Yang H, Shi Y, Liu J, Zhang YF, Luo YR, Chen KM. Heavy metal transporters: Functional mechanisms, regulation, and application in phytoremediation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 809:151099. [PMID: 34688763 DOI: 10.1016/j.scitotenv.2021.151099] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 10/15/2021] [Accepted: 10/16/2021] [Indexed: 05/22/2023]
Abstract
Heavy metal pollution in soil is a global problem with serious impacts on human health and ecological security. Phytoextraction in phytoremediation, in which plants uptake and transport heavy metals (HMs) to the tissues of aerial parts, is the most environmentally friendly method to reduce the total amount of HMs in soil and has wide application prospects. However, the molecular mechanism of phytoextraction is still under investigation. The uptake, translocation, and retention of HMs in plants are mainly mediated by a variety of transporter proteins. A better understanding of the accumulation strategy of HMs via transporters in plants is a prerequisite for the improvement of phytoextraction. In this review, the biochemical structure and functions of HM transporter families in plants are systematically summarized, with emphasis on their roles in phytoremediation. The accumulation mechanism and regulatory pathways related to hormones, regulators, and reactive oxygen species (ROS) of HMs concerning these transporters are described in detail. Scientific efforts and practices for phytoremediation carried out in recent years suggest that creation of hyperaccumulators by transgenic or gene editing techniques targeted to these transporters and their regulators is the ultimate powerful path for the phytoremediation of HM contaminated soils.
Collapse
Affiliation(s)
- Zi Yang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Fan Yang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jia-Lan Liu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Hai-Tao Wu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Hao Yang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yi Shi
- Guangdong Kaiyuan Environmental Technology Co., Ltd, Dongguan 523000, China
| | - Jie Liu
- Guangdong Kaiyuan Environmental Technology Co., Ltd, Dongguan 523000, China
| | - Yan-Feng Zhang
- Hybrid Rapeseed Research Center of Shaanxi Province, Yangling 712100, Shaanxi, China
| | - Yan-Rong Luo
- Guangdong Kaiyuan Environmental Technology Co., Ltd, Dongguan 523000, China.
| | - Kun-Ming Chen
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
20
|
Heavy Metal Effects on Biodiversity and Stress Responses of Plants Inhabiting Contaminated Soil in Khulais, Saudi Arabia. BIOLOGY 2022; 11:biology11020164. [PMID: 35205031 PMCID: PMC8869145 DOI: 10.3390/biology11020164] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 02/06/2023]
Abstract
Simple Summary Despite its high organic matter content, sewage sludge contains significant quantities of heavy metals, including those designated as hazardous, such as cadmium, nickel, chromium, mercury, copper, lead, and zinc, which, as a consequence, have a negative impact on living organisms. The current research sought to study the effect of dumping sludge, as one of the sources of pollution with heavy metals, on biodiversity and to assess the bioremediation and stress defense strategies of a tolerant plant species. The obtained results showed that soil pollution by heavy metals has a substantial influence on plant diversity. The selected species, Amaranthus retroflexus L., showed a high biological concentration factor (BCF) and low translocation factor (TF) for Cu, As and Ni. The stress defense strategies of A. retroflexus grown under complex heavy metals contamination are studied and discussed. Abstract Accumulation of heavy metals in soil is becoming an increasingly serious eco-environmental problem. Thus, investigating how plants mitigate heavy metal toxicity is necessary to reduce the associated risks. Here, we aimed to assess the bioremediation and stress defense strategies of tolerant plant species grown under complex heavy metals contamination. To this end, a field study was conducted on the vegetation cover of sites with different soil pollution levels. Forty-two plant species that belong to 38 genera and 21 families were identified. The pollution had a significant impact on plant richness in the polluted sites. Out of several screened plants, Amaranthus retroflexus L. was selected because of its high relative density (16.7) and a high frequency (100%) in the most polluted sites. The selected species showed a high biological concentration factor (BCF) and low translocation factor (TF) for Cu, As and Ni. To control the heavy metal-induced oxidative damage, A. retroflexus invested in detoxification (metallothionein and phytochelatins, glutathione and glutathione-S-transferase (GST). At the organ level, oxidase damage (H2O2, lipid and protein peroxidation) was observed, particularly in the roots. To mitigate heavy metal oxidative stress, antioxidant mechanisms (e.g., tocopherols, glutathione, peroxidases, catalase, peroxide dismutase and ASC-GSH cycle) were upregulated, mainly in the roots. Overall, our results suggested the potentiality of A. retroflexus as a promising bioremediatory and stress-tolerant plant at the same time; moreover, defense and detoxification mechanisms were uncovered.
Collapse
|
21
|
Phytochemicals mitigation of Brassica napus by IAA grown under Cd and Pb toxicity and its impact on growth responses of Anagallis arvensis. J Biotechnol 2022; 343:83-95. [PMID: 34864124 DOI: 10.1016/j.jbiotec.2021.12.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 11/21/2022]
Abstract
Beginning of industrialization accelerates the heavy metal pollution in the biosphere. Plant being the immovable entity utilizes different mechanisms to flee from unfavourable conditions. To alleviate toxic impact of metals like cadmium (Cd) and lead (Pb), phytohormones such as indole acetic acid (IAA) has been applied exogenously. This manuscript aims to evaluate the significant change occurring in biochemical parameters of Indian mustard (Brassica napus) grown under individual and combined treatments of IAA with Cd and Pb. Herbicidal potential of treated Brassica extracts were evaluated on growth and development of Anagallis arvensis. Quantum yield parameters were more sensitive to Cd than Pb stress resulted in reduced photosynthetic pigments. However, exogenously applied IAA together with Cd and Pb considerably improved the level of photosynthetic attributes along with reduced accumulation of Cd and Pb in Brassica plant. Cd and Pb enhanced the activities of reactive oxygen species (ROS) and antioxidant machinery. However, addition of IAA with Cd and Pb mitigated the effect of heavy metals on antioxidant system. Moreover, activity of the phenylalanine ammonia lyase enzyme and the defensive metabolites (phenolic, flavonoid and anthocyanin compounds) were boosted under individual treatments of Cd and Pb responsible for increasing herbicidal potential of Brassica plant. Our results exhibited essentiality of IAA in mitigating Cd and Pb stress in Brassica through up-regulated mechanisms of the antioxidant system for balancing ROS related injuries. Increased metabolites enhancing herbicidal potential of Brassica napus against Anagallis weed were also observed.
Collapse
|
22
|
Zhu T, Liu X, Zhang M, Chen M. Mechanism of cadmium tolerance in Salicornia europaea at optimum levels of NaCl. PLANT BIOLOGY (STUTTGART, GERMANY) 2022; 24:41-51. [PMID: 34748692 DOI: 10.1111/plb.13348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/30/2021] [Accepted: 09/09/2021] [Indexed: 06/13/2023]
Abstract
Many saline-alkali soils around the world are polluted by the heavy metal Cd, restricting the development of agriculture and ecology in those regions. The halophyte Salicornia europaea L. is capable of growing healthily in Cd-contaminated saline-alkali soil, suggesting that the species is tolerant to stress caused by both salt and heavy metals. In this study, the mechanism of Cd tolerance in this species was explored under 200 mM NaCl. Flame spectrophotometric assays for ions content and spectrophotometric for organic soluble substances, antioxidant enzyme activity, phytochelatins (PCs) content and phytochelatin synthase (PCS) activity, the photosynthetic parameters by portable photosynthesis measurement system, genes expression by qRT-PCR analysis were carried out. Cd treatment significantly decreased the dry weight, photosynthetic rate, K+ , Zn2+ , and Fe2+/3+ content, while significantly increasing Na+ and Cd+ , soluble organic matter, and reactive oxygen species (ROS) levels. Compared with Cd treatment at 0 mM NaCl, Cd treatment at 200 mM NaCl significantly increased dry weight and photosynthetic rate while significantly decreasing ROS content through increased antioxidant enzyme activity. When exposed to Cd stress, treatment with 200 mM NaCl significantly increased PCs content and PCS activity and up-regulated the expression of the phytochelatin synthase genes CDA1 and PCS1 were, thereby increasing resistance to Cd. NaCl treatment increases the tolerance of S. europaea to the heavy metal Cd by growing rapidly, reducing the quantity of Cd2+ from entering the plant shoots, increasing the levels of PCs that chelate Cd2+ , thereby reducing its toxicity.
Collapse
Affiliation(s)
- T Zhu
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Shandong, China
| | - X Liu
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Shandong, China
| | - M Zhang
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Shandong, China
| | - M Chen
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Shandong, China
| |
Collapse
|
23
|
Riyazuddin R, Nisha N, Ejaz B, Khan MIR, Kumar M, Ramteke PW, Gupta R. A Comprehensive Review on the Heavy Metal Toxicity and Sequestration in Plants. Biomolecules 2021; 12:43. [PMID: 35053191 PMCID: PMC8774178 DOI: 10.3390/biom12010043] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/14/2021] [Accepted: 12/22/2021] [Indexed: 11/26/2022] Open
Abstract
Heavy metal (HM) toxicity has become a global concern in recent years and is imposing a severe threat to the environment and human health. In the case of plants, a higher concentration of HMs, above a threshold, adversely affects cellular metabolism because of the generation of reactive oxygen species (ROS) which target the key biological molecules. Moreover, some of the HMs such as mercury and arsenic, among others, can directly alter the protein/enzyme activities by targeting their -SH group to further impede the cellular metabolism. Particularly, inhibition of photosynthesis has been reported under HM toxicity because HMs trigger the degradation of chlorophyll molecules by enhancing the chlorophyllase activity and by replacing the central Mg ion in the porphyrin ring which affects overall plant growth and yield. Consequently, plants utilize various strategies to mitigate the negative impact of HM toxicity by limiting the uptake of these HMs and their sequestration into the vacuoles with the help of various molecules including proteins such as phytochelatins, metallothionein, compatible solutes, and secondary metabolites. In this comprehensive review, we provided insights towards a wider aspect of HM toxicity, ranging from their negative impact on plant growth to the mechanisms employed by the plants to alleviate the HM toxicity and presented the molecular mechanism of HMs toxicity and sequestration in plants.
Collapse
Affiliation(s)
- Riyazuddin Riyazuddin
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, Kozep fasor 52, H-6726 Szeged, Hungary;
- Faculty of Science and Informatics, Doctoral School in Biology, University of Szeged, H-6720 Szeged, Hungary
| | - Nisha Nisha
- Department of Integrated Plant Protection, Faculty of Horticultural Science, Plant Protection Institute, Szent István University, 2100 Godollo, Hungary;
| | - Bushra Ejaz
- Department of Botany, Jamia Hamdard, New Delhi 110062, India; (B.E.); (M.I.R.K.)
| | - M. Iqbal R. Khan
- Department of Botany, Jamia Hamdard, New Delhi 110062, India; (B.E.); (M.I.R.K.)
| | - Manu Kumar
- Department of Life Science, Dongguk University, Seoul 10326, Korea;
| | - Pramod W. Ramteke
- Department of Life Sciences, Mandsaur University, Mandsaur 458001, India;
| | - Ravi Gupta
- College of General Education, Kookmin University, Seoul 02707, Korea
| |
Collapse
|
24
|
Chen BJW, Xu J, Wang X. Trophic Transfer without Biomagnification of Cadmium in a Soybean-Dodder Parasitic System. PLANTS 2021; 10:plants10122690. [PMID: 34961161 PMCID: PMC8703755 DOI: 10.3390/plants10122690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/01/2021] [Accepted: 12/05/2021] [Indexed: 11/25/2022]
Abstract
Cadmium (Cd) is among the most available and most toxic heavy metals taken up by plants from soil. Compared to the classic plant-animal food chains, the host-parasitic plant food chains have, thus far, been largely overlooked in the studies of Cd trophic transfer. To investigate the pattern of Cd transfer during the infection of parasitic plants on Cd-contaminated hosts, we conducted a controlled experiment that grew soybeans parasitized by Chinese dodders (Cuscuta chinensis) in soil with different levels of Cd treatment, and examined the concentration, accumulation, allocation and transfer coefficients of Cd within this parasitic system. Results showed that among all components, dodders accounted for more than 40% biomass of the whole system but had the lowest Cd concentration and accumulated the least amount of Cd. The transfer coefficient of Cd between soybean stems and dodders was much lower than 1, and was also significantly lower than that between soybean stems and soybean leaves. All these features were continuously strengthened with the increase of Cd treatment levels. The results suggested no evidence of Cd biomagnification in dodders parasitizing Cd-contaminated hosts, and implied that the Cd transfer from hosts to dodders may be a selective process.
Collapse
|
25
|
Identification of NRAMP4 from Arabis paniculata enhance cadmium tolerance in transgenic Arabidopsis. J Genet 2021. [DOI: 10.1007/s12041-021-01339-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
26
|
Zhou YY, Wang YS, Inyang AI. Ecophysiological differences between five mangrove seedlings under heavy metal stress. MARINE POLLUTION BULLETIN 2021; 172:112900. [PMID: 34526260 DOI: 10.1016/j.marpolbul.2021.112900] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 08/20/2021] [Accepted: 08/21/2021] [Indexed: 05/22/2023]
Abstract
It was studied for the effects of heavy metal stress on the antioxidant activities of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT) and lipid peroxidation (MDA) in the leaves of five mangrove plants. The results showed the protein concentrations were significantly higher in B. gymnorrhiza (7.55 mg prot /mL: Cu2+), K. obovata (11.21 mg prot/mL: Cd2+) and R. stylosa (12.51 mg prot/mL: Cd2+) (p < 0.05). Comparably, MDA contents were remarkably high in A. marina than other species under the same conditions (p < 0.05). The SOD, POD and CAT were observed to be significantly high in A. marina, A. corniculatum and B. gymnorrhiza under the same heavy metal treatment (p < 0.05). The PCA revealed that POD, SOD and MDA of five mangrove species were the major indices for response to heavy metal. And A. marina was more tolerant to heavy metal stress than others.
Collapse
Affiliation(s)
- Yue-Yue Zhou
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Daya Bay Marine Biology Research Station, Chinese Academy of Sciences, Shenzhen 518121, China; Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - You-Shao Wang
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Daya Bay Marine Biology Research Station, Chinese Academy of Sciences, Shenzhen 518121, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou 510301, China.
| | - Aniefiok Ini Inyang
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Daya Bay Marine Biology Research Station, Chinese Academy of Sciences, Shenzhen 518121, China; Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
27
|
Jain S, Rai P, Singh J, Singh VP, Prasad R, Rana S, Deshmukh R, Tripathi DK, Sharma S. Exogenous addition of silicon alleviates metsulfuron methyl induced stress in wheat seedlings. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 167:705-712. [PMID: 34500195 DOI: 10.1016/j.plaphy.2021.07.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 07/03/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
Uncontrolled application of herbicides in the agricultural field poses a severe risk to crops by affecting their yields. Therefore, methods are required to reduce the toxic effects of herbicides in plants. Studies indicate that silicon (Si) provides tolerance and enhances defence mechanism of the plant against abiotic stress. But its role in alleviating Metsulfuron methyl (Meth) herbicide induced toxicity in wheat seedlings is still not known. This study highlighted the potential of exogenous addition of Si in the alleviation of toxic effect of Meth herbicide in wheat seedlings. The exposure of wheat seedlings to Meth herbicide reduced the growth, photosynthetic pigments, antioxidant enzyme activity and nitric oxide (NO) content. Further, Meth herbicide also increased cell death and decreased cell viability in root tips. However, addition of Si reversed Meth-induced these alterations. Moreover, Si also activates antioxidant system which helps in scavenging of free radicals generated under Meth herbicide stress in wheat seedlings. Application of Si to Meth treated wheat seedlings also up-regulated silicon transporter gene Lsi1 (silicon influx transporter) and some of the antioxidant enzyme genes. All together, the data indicate that Si has capability of alleviating Meth herbicide stress in wheat seedlings but it appears that endogenous NO has a positive role in this endeavour of Si.
Collapse
Affiliation(s)
- Shruti Jain
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, 211004, UP, India
| | - Padmaja Rai
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, 211004, UP, India
| | - Jaspreet Singh
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, 211004, UP, India
| | - Vijay Pratap Singh
- Plant Physiology Laboratory, Department of Botany, C.M.P. Degree College, A Constituent Post Graduate College of University of Allahabad, Prayagraj, 211002, India
| | - Rajendra Prasad
- Department of Horticulture, Kulbhasker Ashram Post Graduate Collage, Prayagraj, Uttar Pradesh, India
| | - Shweta Rana
- Department of Physical and Natural Sciences, FLAME University, Pune, India
| | - Rupesh Deshmukh
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India
| | - Durgesh Kumar Tripathi
- Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, Sector-125, Noida, 201313, India.
| | - Shivesh Sharma
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, 211004, UP, India.
| |
Collapse
|
28
|
Rabêlo FHS, Gaziola SA, Rossi ML, Silveira NM, Wójcik M, Bajguz A, Piotrowska-Niczyporuk A, Lavres J, Linhares FS, Azevedo RA, Vangronsveld J, Alleoni LRF. Unraveling the mechanisms controlling Cd accumulation and Cd-tolerance in Brachiaria decumbens and Panicum maximum under summer and winter weather conditions. PHYSIOLOGIA PLANTARUM 2021; 173:20-44. [PMID: 32602985 DOI: 10.1111/ppl.13160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/24/2020] [Accepted: 06/26/2020] [Indexed: 05/04/2023]
Abstract
We evaluated the mechanisms that control Cd accumulation and distribution, and the mechanisms that protect the photosynthetic apparatus of Brachiaria decumbens Stapf. cv. Basilisk and Panicum maximum Jacq. cv. Massai from Cd-induced oxidative stress, as well as the effects of simulated summer or winter conditions on these mechanisms. Both grasses were grown in unpolluted and Cd-polluted Oxisol (0.63 and 3.6 mg Cd kg-1 soil, respectively) at summer and winter conditions. Grasses grown in the Cd-polluted Oxisol presented higher Cd concentration in their tissues in the winter conditions, but the shoot biomass production of both grasses was not affected by the experimental conditions. Cadmium was more accumulated in the root apoplast than the root symplast, contributing to increase the diameter and cell layers of the cambial region of both grasses. Roots of B. decumbens were more susceptible to disturbed nutrients uptake and nitrogen metabolism than roots of P. maximum. Both grasses translocated high amounts of Cd to their shoots resulting in oxidative stress. Oxidative stress in the leaves of both grasses was higher in summer than winter, but only in P. maximum superoxide dismutase (SOD) and ascorbate peroxidase (APX) activities were increased. However, CO2 assimilation was not affected due to the protection provided by reduced glutathione (GSH) and phytochelatins (PCs) that were more synthesized in shoots than roots. In summary, the root apoplast was not sufficiently effective to prevent Cd translocation from roots to shoot, but GSH and PCs provided good protection for the photosynthetic apparatus of both grasses.
Collapse
Affiliation(s)
- Flávio Henrique Silveira Rabêlo
- College of Agriculture Luiz de Queiroz, University of São Paulo, Piracicaba, Brazil
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | | | - Monica Lanzoni Rossi
- Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, Brazil
| | | | - Małgorzata Wójcik
- Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Lublin, Poland
| | - Andrzej Bajguz
- Faculty of Biology and Chemistry, University of Bialystok, Białystok, Poland
| | | | - José Lavres
- Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, Brazil
| | | | | | - Jaco Vangronsveld
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | | |
Collapse
|
29
|
Gomez Mansur NM, Pena LB, Bossio AE, Lewi DM, Beznec AY, Blumwald E, Arbona V, Gómez-Cadenas A, Benavides MP, Gallego SM. An isopentenyl transferase transgenic wheat isoline exhibits less seminal root growth impairment and a differential metabolite profile under Cd stress. PHYSIOLOGIA PLANTARUM 2021; 173:223-234. [PMID: 33629739 DOI: 10.1111/ppl.13366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 01/05/2021] [Accepted: 02/08/2021] [Indexed: 06/12/2023]
Abstract
Cadmium is one of the most important contaminants and it induces severe plant growth restriction. In this study, we analyzed the metabolic changes associated with root growth restriction caused by cadmium in the early seminal root apex of wheat. Our study included two genotypes: the commercial variety ProINTA Federal (WT) and the PSARK ::IPT (IPT) line which exhibit high-grade yield performance under water deficit. Root tips of seedlings grown for 72 h without or with 10 μM CdCl2 (Cd-WT and Cd-IPT) were compared. Root length reduction was more severe in Cd-WT than Cd-IPT. Cd decreased superoxide dismutase activity in both lines and increased catalase activity only in the WT. In Cd-IPT, ascorbate and guaiacol peroxidase activities raised compared to Cd-WT. The hormonal homeostasis was altered by the metal, with significant decreases in abscisic acid, jasmonic acid, 12-oxophytodienoic acid, gibberellins GA20, and GA7 levels. Increases in flavonoids and phenylamides were also found. Root growth impairment was not associated with a decrease in expansin (EXP) transcripts. On the contrary, TaEXPB8 expression increased in the WT treated by Cd. Our findings suggest that the line expressing the PSARK ::IPT construction increased the homeostatic range to cope with Cd stress, which is visible by a lesser reduction of the root elongation compared to WT plants. The decline of root growth produced by Cd was associated with hormonal imbalance at the root apex level. We hypothesize that activation of phenolic secondary metabolism could enhance antioxidant defenses and contribute to cell wall reinforcement to deal with Cd toxicity.
Collapse
Affiliation(s)
- Nabila M Gomez Mansur
- Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química y Fisicoquímica Biológicas "Profesor Alejandro C. Paladini" (IQUIFIB), Buenos Aires, Argentina
| | - Liliana B Pena
- Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química y Fisicoquímica Biológicas "Profesor Alejandro C. Paladini" (IQUIFIB), Buenos Aires, Argentina
| | - Adrián E Bossio
- Instituto de Genética E. A. Favret, CICVyA, INTA. N. Repetto y de los Reseros s/n, Hurlingham, Argentina
| | - Dalia M Lewi
- Instituto de Genética E. A. Favret, CICVyA, INTA. N. Repetto y de los Reseros s/n, Hurlingham, Argentina
| | - Ailin Y Beznec
- Instituto de Genética E. A. Favret, CICVyA, INTA. N. Repetto y de los Reseros s/n, Hurlingham, Argentina
| | - Eduardo Blumwald
- Department of Plant Sciences, University of California, California, USA
| | - Vicent Arbona
- Departament de Ciències Agràries i del Medi Natural, Ecofisiologia i Biotecnologia. Campus Riu Sec, Universitat Jaume I, Castelló de la Plana, Spain
| | - Aurelio Gómez-Cadenas
- Departament de Ciències Agràries i del Medi Natural, Ecofisiologia i Biotecnologia. Campus Riu Sec, Universitat Jaume I, Castelló de la Plana, Spain
| | - María P Benavides
- Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química y Fisicoquímica Biológicas "Profesor Alejandro C. Paladini" (IQUIFIB), Buenos Aires, Argentina
| | - Susana M Gallego
- Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química y Fisicoquímica Biológicas "Profesor Alejandro C. Paladini" (IQUIFIB), Buenos Aires, Argentina
| |
Collapse
|
30
|
Janeeshma E, Puthur JT, Ahmad P. Silicon distribution in leaves and roots of rice and maize in response to cadmium and zinc toxicity and the associated histological variations. PHYSIOLOGIA PLANTARUM 2021; 173:460-471. [PMID: 33305357 DOI: 10.1111/ppl.13310] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 11/24/2020] [Accepted: 12/03/2020] [Indexed: 06/12/2023]
Abstract
At present, the levels of cadmium (Cd) and zinc (Zn) in arable land are high and affect the growth and development of important food crops, including rice and maize. However, the application of silicon (Si) in contaminated areas increases the metal tolerance potential of these plants. This work aimed to study the variations in the distribution pattern of endogenous Si in various tissue regions in roots and leaves of rice and maize exposed to cadmium (Cd) and zinc (Zn) stresses. For these experiments, 45 day-old rice (var. Varsha) and maize (var. CoHM6) seedlings were treated with 1.95 g Zn and 0.45 g Cd kg-1 soil. Under Cd stress, the distribution of Si was high in the cortical region of the root, but under Zn stress, the highest Si deposition was found in the endodermis. In leaves, Si deposition was high in both the mesodermis and stelar regions of Cd-treated plants but more Si was deposited in the mesodermis tissue of Zn-treated plants. Heavy metal (Cd and Zn) accumulation and Si deposition showed a strong negative correlation in the roots of rice and maize plants. Complexation with metal ions and redistribution of Si were considered the major mechanisms in Si-mediated mitigation of Cd and Zn stress. Cd- and Zn-induced anatomical changes, such as endodermal thickening, deposits in the xylary elements and aerenchyma formation in the roots of rice and maize, were also associated with the Si distribution.
Collapse
Affiliation(s)
- Edappayil Janeeshma
- Plant Physiology and Biochemistry Division, Department of Botany, University of Calicut, Kozhikode, Kerala, India
| | - Jos T Puthur
- Plant Physiology and Biochemistry Division, Department of Botany, University of Calicut, Kozhikode, Kerala, India
| | - Parvaiz Ahmad
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
31
|
A MYB4-MAN3-Mannose-MNB1 signaling cascade regulates cadmium tolerance in Arabidopsis. PLoS Genet 2021; 17:e1009636. [PMID: 34181654 PMCID: PMC8270467 DOI: 10.1371/journal.pgen.1009636] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 07/09/2021] [Accepted: 06/02/2021] [Indexed: 11/25/2022] Open
Abstract
Our previous studies showed that MAN3-mediated mannose plays an important role in plant responses to cadmium (Cd) stress. However, the underlying mechanisms and signaling pathways involved are poorly understood. In this study, we showed that an Arabidopsis MYB4-MAN3-Mannose-MNB1 signaling cascade is involved in the regulation of plant Cd tolerance. Loss-of-function of MNB1 (mannose-binding-lectin 1) led to decreased Cd accumulation and tolerance, whereas overexpression of MNB1 significantly enhanced Cd accumulation and tolerance. Consistently, expression of the genes involved in the GSH-dependent phytochelatin (PC) synthesis pathway (such as GSH1, GSH2, PCS1, and PCS2) was significantly reduced in the mnb1 mutants but markedly increased in the MNB1-OE lines in the absence or presence of Cd stress, which was positively correlated with Cd-activated PC synthesis. Moreover, we found that mannose is able to bind to the GNA-related domain of MNB1, and that mannose binding to the GNA-related domain of MNB1 is required for MAN3-mediated Cd tolerance in Arabidopsis. Further analysis showed that MYB4 directly binds to the promoter of MAN3 to positively regulate the transcript of MAN3 and thus Cd tolerance via the GSH-dependent PC synthesis pathway. Consistent with these findings, overexpression of MAN3 rescued the Cd-sensitive phenotype of the myb4 mutant but not the mnb1 mutant, whereas overexpression of MNB1 rescued the Cd-sensitive phenotype of the myb4 mutant. Taken together, our results provide compelling evidence that a MYB4-MAN3-Mannose-MNB1 signaling cascade regulates cadmium tolerance in Arabidopsis through the GSH-dependent PC synthesis pathway. Cadmium (Cd) pollution in soils is recognized as an environmental problem worldwide, and phytoremediation is one of the important approaches for cleaning Cd-contaminated soils. However, the molecular mechanisms involved in Cd tolerance remains unclear. Here we demonstrated that overexpression of MNB1, which encodes a mannose-binding lectin, manifestly increased Cd tolerance, whereas loss-of-function of MNB1 led to enhanced Cd sensitivity. Further analysis showed that mannose binding to the GNA-related domain of MNB1 is required for MAN3-mediated Cd tolerance. Moreover, under Cd stress, MYB4 directly binds the promoter of MAN3 to positively regulate the expression of MAN3, and thus Cd tolerance via the glutathione (GSH)-dependent phytochelatin (PC) synthesis pathway. Our results demonstrated that a MYB4-MAN3-Mannose-MNB1 signaling cascade regulates Cd tolerance through the GSH-dependent PC synthesis pathway in Arabidopsis.
Collapse
|
32
|
Estimation of carbon dots amelioration of copper toxicity in maize studied by synchrotron radiation-FTIR. Colloids Surf B Biointerfaces 2021; 204:111828. [PMID: 33990022 DOI: 10.1016/j.colsurfb.2021.111828] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/23/2021] [Accepted: 05/04/2021] [Indexed: 11/21/2022]
Abstract
Carbon dots are biocompatible and non-toxic nanoparticles with chemical affinity to some heavy metals. Human activities increase soil pollution with copper. Cu is an essential microelement in plants, but excess can induce a harmful effects. In plant response to Cu, the cell wall plays an important role. This study aims to estimate possible amelioration effects of folic acid based CDs on Cu toxicity by studying the intracellular and cell wall compounds in maize (Zea mays L.) roots and leaves after 7 day-treatment in hydroponics. The sub-cellular compartmentalization and bio-macromolecular changes induced by 5 μM Cu applied alone or with CDs (167 and 500 mg/L) were studied using the Synchrotron-based Fourier transformmicro-spectroscopy (SR-FTIR) combined with X-Ray photoelectron spectroscopy (XPS). Cu induced changes in content of cell wall polysaccharides, proteins, and lipids. The XPS detected CDs transport throughout the plants. The Cu/167CDs treatment reduced Cu concentration in the roots, possibly by complexation/trapping between the functional groups on CDs surface and Cu2+. Principal component analysis of FTIR spectra confirmed that Cu/500CDs treatment increased Cu adverse effects in most tissues but alleviated adverse Cu effects on cell wall polysaccharides in the root xylem, and on polysaccharides and proteins in leaf phloem and mesophyll.
Collapse
|
33
|
Haider FU, Liqun C, Coulter JA, Cheema SA, Wu J, Zhang R, Wenjun M, Farooq M. Cadmium toxicity in plants: Impacts and remediation strategies. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 211:111887. [PMID: 33450535 DOI: 10.1016/j.ecoenv.2020.111887] [Citation(s) in RCA: 477] [Impact Index Per Article: 159.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 12/21/2020] [Accepted: 12/30/2020] [Indexed: 05/02/2023]
Abstract
Cadmium (Cd) is an unessential trace element in plants that is ubiquitous in the environment. Anthropogenic activities such as disposal of urban refuse, smelting, mining, metal manufacturing, and application of synthetic phosphate fertilizers enhance the concentration of Cd in the environment and are carcinogenic to human health. In this manuscript, we reviewed the sources of Cd contamination to the environment, soil factors affecting the Cd uptake, the dynamics of Cd in the soil rhizosphere, uptake mechanisms, translocation, and toxicity of Cd in plants. In crop plants, the toxicity of Cd reduces uptake and translocation of nutrients and water, increases oxidative damage, disrupts plant metabolism, and inhibits plant morphology and physiology. In addition, the defense mechanism in plants against Cd toxicity and potential remediation strategies, including the use of biochar, minerals nutrients, compost, organic manure, growth regulators, and hormones, and application of phytoremediation, bioremediation, and chemical methods are also highlighted in this review. This manuscript may help to determine the ecological importance of Cd stress in interdisciplinary studies and essential remediation strategies to overcome the contamination of Cd in agricultural soils.
Collapse
Affiliation(s)
- Fasih Ullah Haider
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou 730070, China; Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Cai Liqun
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou 730070, China; Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China.
| | - Jeffrey A Coulter
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN 55108, USA
| | - Sardar Alam Cheema
- Department of Agronomy, University of Agriculture, Faisalabad 38040, Pakistan
| | - Jun Wu
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou 730070, China; Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Renzhi Zhang
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou 730070, China; Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Ma Wenjun
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou 730070, China; Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Muhammad Farooq
- Department of Agronomy, University of Agriculture, Faisalabad 38040, Pakistan; Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khoud 123, Oman.
| |
Collapse
|
34
|
Cadmium (II)-Induced Oxidative Stress Results in Replication Stress and Epigenetic Modifications in Root Meristem Cell Nuclei of Vicia faba. Cells 2021; 10:cells10030640. [PMID: 33805688 PMCID: PMC7999292 DOI: 10.3390/cells10030640] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/09/2021] [Accepted: 03/11/2021] [Indexed: 12/12/2022] Open
Abstract
Among heavy metals, cadmium is considered one of the most toxic and dangerous environmental factors, contributing to stress by disturbing the delicate balance between production and scavenging of reactive oxygen species (ROS). To explore possible relationships and linkages between Cd(II)-induced oxidative stress and the consequent damage at the genomic level (followed by DNA replication stress), root apical meristem (RAM) cells in broad bean (V. faba) seedlings exposed to CdCl2 treatment and to post-cadmium recovery water incubations were tested with respect to H2O2 production, DNA double-strand breaks (γ-phosphorylation of H2AX histones), chromatin morphology, histone H3S10 phosphorylation on serine (a marker of chromatin condensation), mitotic activity, and EdU staining (to quantify cells typical of different stages of nuclear DNA replication). In order to evaluate Cd(II)-mediated epigenetic changes involved in transcription and in the assembly of nucleosomes during the S-phase of the cell cycle, the acetylation of histone H3 on lysine 5 (H3K56Ac) was investigated by immunofluorescence. Cellular responses to cadmium (II) toxicity seem to be composed of a series of interlinked biochemical reactions, which, via generation of ROS and DNA damage-induced replication stress, ultimately activate signal factors engaged in cell cycle control pathways, DNA repair systems, and epigenetic adaptations.
Collapse
|
35
|
Zhang Y, Sa G, Zhang Y, Hou S, Wu X, Zhao N, Zhang Y, Deng S, Deng C, Deng J, Zhang H, Yao J, Zhang Y, Zhao R, Chen S. Populus euphratica annexin1 facilitates cadmium enrichment in transgenic Arabidopsis. JOURNAL OF HAZARDOUS MATERIALS 2021; 405:124063. [PMID: 33092878 DOI: 10.1016/j.jhazmat.2020.124063] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/02/2020] [Accepted: 09/19/2020] [Indexed: 06/11/2023]
Abstract
Phytoremediation offers a great potential for affordable remediation of heavy metal (HM)-polluted soil and water. Screening and identifying candidate genes related to HM uptake and transport is prerequisite for improvement of phytoremediation by genetic engineering. Using the cadmium (Cd)-hypersensitive Populus euphratica, an annexin encoding gene facilitating Cd enrichment was identified in this study. With a 12 h exposure to CdCl2 (50-100 μM), P. euphratica cells down-regulated transcripts of annexin1 (PeANN1). PeANN1 was homologue to Arabidopsis annexin1 (AtANN1) and localized mainly to the plasma membrane (PM) and cytosol. Compared with wild type and Atann1 mutant, PeANN1 overexpression in Arabidopsis resulted in a more pronounced decline in survival rate and root length after a long-term Cd stress (10 d, 50 μM), due to a higher cadmium accumulation in roots. PeANN1-transgenic roots exhibited enhanced influx conductance of Cd2+ under cadmium shock (30 min, 50 μM) and short-term stress (12 h, 50 μM). Noteworthy, the PeANN1-facilitated Cd2+ influx was significantly inhibited by a calcium-permeable channel (CaPC) inhibitor (GdCl3) but was promoted by 1 mM H2O2, indicating that Cd2+ entered root cells via radical-activated CaPCs in the PM. Therefore, PeANN1 can serve as a candidate gene for improvement of phytoremediation by genetic engineering.
Collapse
Affiliation(s)
- Yinan Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology (Box 162), Beijing Forestry University, Beijing 100083, China; Forestry Institute of New Technology, Chinese Academy of Forestry, Beijing 100091, China
| | - Gang Sa
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology (Box 162), Beijing Forestry University, Beijing 100083, China
| | - Ying Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology (Box 162), Beijing Forestry University, Beijing 100083, China
| | - Siyuan Hou
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology (Box 162), Beijing Forestry University, Beijing 100083, China
| | - Xia Wu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology (Box 162), Beijing Forestry University, Beijing 100083, China
| | - Nan Zhao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology (Box 162), Beijing Forestry University, Beijing 100083, China
| | - Yuhong Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology (Box 162), Beijing Forestry University, Beijing 100083, China; State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Shurong Deng
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology (Box 162), Beijing Forestry University, Beijing 100083, China; State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Chen Deng
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology (Box 162), Beijing Forestry University, Beijing 100083, China
| | - Jiayin Deng
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology (Box 162), Beijing Forestry University, Beijing 100083, China
| | - Huilong Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology (Box 162), Beijing Forestry University, Beijing 100083, China
| | - Jun Yao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology (Box 162), Beijing Forestry University, Beijing 100083, China
| | - Yanli Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology (Box 162), Beijing Forestry University, Beijing 100083, China
| | - Rui Zhao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology (Box 162), Beijing Forestry University, Beijing 100083, China
| | - Shaoliang Chen
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology (Box 162), Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
36
|
Dobrikova AG, Apostolova EL, Hanć A, Yotsova E, Borisova P, Sperdouli I, Adamakis IDS, Moustakas M. Cadmium toxicity in Salvia sclarea L.: An integrative response of element uptake, oxidative stress markers, leaf structure and photosynthesis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 209:111851. [PMID: 33421673 DOI: 10.1016/j.ecoenv.2020.111851] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 12/17/2020] [Accepted: 12/21/2020] [Indexed: 05/03/2023]
Abstract
The herbal plant Salvia sclarea L. (clary sage) is classified to cadmium (Cd) accumulators and considered as a potential plant for phytoremediation of heavy metal polluted soil. However, the effect of Cd only treatment on the function of the photosynthetic apparatus of S. sclarea, as well as the mechanisms involved in Cd tolerance have not yet been studied in detail. This study was conducted to examine the integrative responses of S. sclarea plants exposed to a high Cd supply (100 µM) for 3 and 8 days by investigating element nutrient uptake, oxidative stress markers, pigment composition, photosynthetic performance and leaf structure. Measurements of the functional activities of photosystem I (PSI, by P700 photooxidation), photosystem II (PSII, by chlorophyll fluorescence parameters), the oxygen-evolving complex (oxygen evolution by Joliot- and Clark-type electrodes), as well as the leaf pigment and phenolic contents, were used to evaluate the protective mechanisms of the photosynthetic apparatus under Cd stress. Data suggested that the molecular mechanisms included in the photosynthetic tolerance to Cd toxicity involve strongly increased phenolic and anthocyanin contents, as well as an increased non-photochemical quenching and accelerated cyclic electron transport around PSI up to 61%, which protect the function of the photosynthetic apparatus under stress. Furthermore, the tolerance of S. sclarea to Cd stress is also associated with increased accumulation of Fe in leaves by 25%. All the above, clearly suggest that S. sclarea plants employ several different mechanisms to protect the function of the photosynthetic apparatus against Cd stress, which are discussed here.
Collapse
Affiliation(s)
- Anelia G Dobrikova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria.
| | - Emilia L Apostolova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Anetta Hanć
- Department of Trace Analysis, Faculty of Chemistry, Adam Mickiewicz University, Poznan, Poland
| | - Ekaterina Yotsova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Preslava Borisova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Ilektra Sperdouli
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organisation-Demeter, Thermi, 57001 Thessaloniki, Greece
| | | | - Michael Moustakas
- Department of Botany, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
37
|
Patel M, Parida AK. Salinity alleviates the arsenic toxicity in the facultative halophyte Salvadora persica L. by the modulations of physiological, biochemical, and ROS scavenging attributes. JOURNAL OF HAZARDOUS MATERIALS 2021; 401:123368. [PMID: 32653791 DOI: 10.1016/j.jhazmat.2020.123368] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 06/22/2020] [Accepted: 06/30/2020] [Indexed: 06/11/2023]
Abstract
Heavy metal(loid)s contamination in soil is a major environmental concern that limits agricultural yield and threatens human health worldwide. Arsenic (As) is the most toxic non-essential metalloid found in soil which comes from various natural as well as human activities. S. persica is a facultative halophyte found abundantly in dry, semiarid and saline areas. In the present study, growth, mineral nutrient homeostasis, MDA content, phytochelatin levels, and ROS-scavenging attributes were examined in S. persica imposed to solitary treatments of salinity (250 mM and 750 mM NaCl), solitary treatments of arsenic (200 μM and 600 μM As), and combined treatments of As with 250 mM NaCl with an aim to elucidate salinity and As tolerance mechanisms. The results demonstrated that S. persica plants sustained under high levels of As (600 μM As) as well as NaCl (750 mM). The activity of superoxide dismutase, catalase, peroxidase, and glutathione reductase were either elevated or unaffected under salt or As stress. However, ascorbate peroxidase activity declined under both solitary and combination of As with NaCl. Furthermore, the cellular redox status measured in terms of reduced ascorbate/dehydroascorbate, and reduced glutathione/oxidized glutathione ratios also either increased or remained unaffected in seedlings treated with both solitary and combined treatments of As + NaCl. Significant accumulation of various oxidative stress indicators (H2O2 and O2-) were observed under high As stress condition. However, presence of salt with high As significantly reduced the levels of ROS. Furthermore, exogenous salt improved As tolerance index (Ti) under high As stress condition. The values of translocation factor (Tf) and As bioaccumulation factor (BF) were >1 in all the treatments. From this study, it can be concluded that the facultative halophyte S. persica is a potential As accumulator and may find application for phytoextraction of arsenic-contaminated saline soil.
Collapse
Affiliation(s)
- Monika Patel
- Plant Omics Division, CSIR- Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Gijubhai Badheka Marg, Bhavnagar, 364002, Gujarat, India; Academy of Scientific and Innovative Research, CSIR- Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific and Industrial Research (CSIR), Gijubhai Badheka Marg, Bhavnagar, 364002, Gujarat, India
| | - Asish Kumar Parida
- Plant Omics Division, CSIR- Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Gijubhai Badheka Marg, Bhavnagar, 364002, Gujarat, India; Academy of Scientific and Innovative Research, CSIR- Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific and Industrial Research (CSIR), Gijubhai Badheka Marg, Bhavnagar, 364002, Gujarat, India.
| |
Collapse
|
38
|
Li G, Shah AA, Khan WU, Yasin NA, Ahmad A, Abbas M, Ali A, Safdar N. Hydrogen sulfide mitigates cadmium induced toxicity in Brassica rapa by modulating physiochemical attributes, osmolyte metabolism and antioxidative machinery. CHEMOSPHERE 2021; 263:127999. [PMID: 33297036 DOI: 10.1016/j.chemosphere.2020.127999] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 08/07/2020] [Accepted: 08/10/2020] [Indexed: 05/04/2023]
Abstract
Hydrogen sulfide (H2S) is helpful for maintaining plant growth under abiotic stresses. The current study elucidated the physiological and biochemical strategies by which sodium hydrosulfide (NaHS), a donor of H2S, alleviated cadmium (Cd) toxicity in Brassica rapa. B. rapa plants growing under 50 mgkg-1 Cd stress showed reduced leaf relative water contents (LRWC), photosynthetic pigments, total soluble proteins, minerals uptake, antioxidants and growth. Furthermore, enhanced accumulation of Cd contents caused augmentation in levels of electrolyte leakage (EL) and methylglyoxal (MG). Nevertheless, improved physiochemical parameters in B. rapa seedlings obtained from seeds primed with 1.5 mM NaHS resulted better phenotype, growth and biomass production in Cd stressed plants. Protective stimulus of H2S regulated minerals and Cd homeostasis besides increased activity of antioxidants which decreased level of reactive oxygen species (ROS), EL, malondialdehyde (MDA) and MG in Cd regimes. Furthermore, H2S treated seedlings exhibited reduction in Cd content and revealed an active participation in the indole acetic acid (IAA) mediated pathway during stress. The findings of current study propose that H2S improved stress tolerance and mitigated Cd stress in B. rapa by modulating growth biomarkers and antioxidative system.
Collapse
Affiliation(s)
- Guihua Li
- Guangdong Key Laboratory for New Technology Research of Vegetables/Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Anis Ali Shah
- Department of Botany, University of Narowal, Narowal, Pakistan
| | - Waheed Ullah Khan
- College of Earth and Environmental Sciences, University of the Punjab, Lahore, Pakistan
| | - Nasim Ahmad Yasin
- Senior Superintendent Garden, University of the Punjab, Lahore, Pakistan.
| | - Aqeel Ahmad
- Guangdong Key Laboratory for New Technology Research of Vegetables/Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Muhammad Abbas
- Department of Microbiology and Molecular Genetics, University of the Punjab, Lahore, Pakistan
| | - Aamir Ali
- Department of Botany, University of Sargodha, Sargodha, Pakistan
| | - Naeem Safdar
- National Agriculture Research Centre, Islamabad, Pakistan
| |
Collapse
|
39
|
Keyster M, Niekerk LA, Basson G, Carelse M, Bakare O, Ludidi N, Klein A, Mekuto L, Gokul A. Decoding Heavy Metal Stress Signalling in Plants: Towards Improved Food Security and Safety. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1781. [PMID: 33339160 PMCID: PMC7765602 DOI: 10.3390/plants9121781] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/20/2020] [Accepted: 11/30/2020] [Indexed: 12/12/2022]
Abstract
The mining of heavy metals from the environment leads to an increase in soil pollution, leading to the uptake of heavy metals into plant tissue. The build-up of toxic metals in plant cells often leads to cellular damage and senescence. Therefore, it is of utmost importance to produce plants with improved tolerance to heavy metals for food security, as well as to limit heavy metal uptake for improved food safety purposes. To achieve this goal, our understanding of the signaling mechanisms which regulate toxic heavy metal uptake and tolerance in plants requires extensive improvement. In this review, we summarize recent literature and data on heavy metal toxicity (oral reference doses) and the impact of the metals on food safety and food security. Furthermore, we discuss some of the key events (reception, transduction, and response) in the heavy metal signaling cascades in the cell wall, plasma membrane, and cytoplasm. Our future perspectives provide an outlook of the exciting advances that will shape the plant heavy metal signaling field in the near future.
Collapse
Affiliation(s)
- Marshall Keyster
- Environmental Biotechnology Laboratory, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa; (L.-A.N.); (M.C.); (O.B.)
- DST-NRF Centre of Excellence in Food Security, University of the Western Cape, Bellville 7530, South Africa;
| | - Lee-Ann Niekerk
- Environmental Biotechnology Laboratory, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa; (L.-A.N.); (M.C.); (O.B.)
| | - Gerhard Basson
- Plant Biotechnology Research Group, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa;
| | - Mogamat Carelse
- Environmental Biotechnology Laboratory, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa; (L.-A.N.); (M.C.); (O.B.)
| | - Olalekan Bakare
- Environmental Biotechnology Laboratory, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa; (L.-A.N.); (M.C.); (O.B.)
| | - Ndiko Ludidi
- DST-NRF Centre of Excellence in Food Security, University of the Western Cape, Bellville 7530, South Africa;
- Plant Biotechnology Research Group, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa;
| | - Ashwil Klein
- Plant Omics Laboratory, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa;
| | - Lukhanyo Mekuto
- Department of Chemical Engineering, University of Johannesburg, Johannesburg 2028, South Africa;
| | - Arun Gokul
- Department of Chemical Engineering, University of Johannesburg, Johannesburg 2028, South Africa;
| |
Collapse
|
40
|
Dai F, Luo G, Li Z, Wei X, Wang Z, Lin S, Tang C. Physiological and transcriptomic analyses of mulberry (Morus atropurpurea) response to cadmium stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 205:111298. [PMID: 32950806 DOI: 10.1016/j.ecoenv.2020.111298] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/02/2020] [Accepted: 09/04/2020] [Indexed: 06/11/2023]
Abstract
Mulberry (Morus atropurpurea) is an economically important woody tree and has great potential for the remediation of heavy metals. To investigate how cadmium accumulates and its detoxification in mulberry, we assessed the physiological and transcriptomic effects of cadmium contamination and as well as its chemical forms and subcellular distribution. Cadmium significantly inhibited mulberry plant growth and primarily accumulated in mulberry roots. Antioxidant enzymes were induced by cadmium in all tissues of mulberry. Subcellular fractionation analyses of cadmium indicated that the majority was compartmentalized in soluble fraction in roots while it mainly located in cell wall in leaves and stems. The greatest amount of the cadmium was integrated with proteins and pectates in all mulberry tissues. RNA-seq transcriptomic analyses of mulberry roots revealed that various metabolic pathways involved in cadmium stress response such as RNA regulation, hormone metabolism, and response to stress, secondary metabolism, as well as signaling, protein metabolism, transport, and cell-wall metabolism. These results will increase our understanding of the molecular mechanisms of cadmium detoxification in mulberry and provide new insights into engineering woody plants for phytoremediation.
Collapse
Affiliation(s)
- Fanwei Dai
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences, Guangzhou, China; Key Laboratory of Urban Agriculture in South China, Ministry of Agriculture, Guangzhou, China
| | - Guoqing Luo
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences, Guangzhou, China; Key Laboratory of Urban Agriculture in South China, Ministry of Agriculture, Guangzhou, China
| | - Zhiyi Li
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Xu Wei
- University of Florida, Citrus Research and Education Center, 700 Experiment Station Road, Lake Alfred, FL, 33850, USA
| | - Zhenjiang Wang
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences, Guangzhou, China; Key Laboratory of Urban Agriculture in South China, Ministry of Agriculture, Guangzhou, China
| | - Sen Lin
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Cuiming Tang
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences, Guangzhou, China; Key Laboratory of Urban Agriculture in South China, Ministry of Agriculture, Guangzhou, China.
| |
Collapse
|
41
|
Dai F, Luo G, Li Z, Wei X, Wang Z, Lin S, Tang C. Physiological and transcriptomic analyses of mulberry (Morus atropurpurea) response to cadmium stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020. [PMID: 32950806 DOI: 10.artn11129810.1016/j.ecoenv.2020.111298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Mulberry (Morus atropurpurea) is an economically important woody tree and has great potential for the remediation of heavy metals. To investigate how cadmium accumulates and its detoxification in mulberry, we assessed the physiological and transcriptomic effects of cadmium contamination and as well as its chemical forms and subcellular distribution. Cadmium significantly inhibited mulberry plant growth and primarily accumulated in mulberry roots. Antioxidant enzymes were induced by cadmium in all tissues of mulberry. Subcellular fractionation analyses of cadmium indicated that the majority was compartmentalized in soluble fraction in roots while it mainly located in cell wall in leaves and stems. The greatest amount of the cadmium was integrated with proteins and pectates in all mulberry tissues. RNA-seq transcriptomic analyses of mulberry roots revealed that various metabolic pathways involved in cadmium stress response such as RNA regulation, hormone metabolism, and response to stress, secondary metabolism, as well as signaling, protein metabolism, transport, and cell-wall metabolism. These results will increase our understanding of the molecular mechanisms of cadmium detoxification in mulberry and provide new insights into engineering woody plants for phytoremediation.
Collapse
Affiliation(s)
- Fanwei Dai
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences, Guangzhou, China; Key Laboratory of Urban Agriculture in South China, Ministry of Agriculture, Guangzhou, China
| | - Guoqing Luo
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences, Guangzhou, China; Key Laboratory of Urban Agriculture in South China, Ministry of Agriculture, Guangzhou, China
| | - Zhiyi Li
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Xu Wei
- University of Florida, Citrus Research and Education Center, 700 Experiment Station Road, Lake Alfred, FL, 33850, USA
| | - Zhenjiang Wang
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences, Guangzhou, China; Key Laboratory of Urban Agriculture in South China, Ministry of Agriculture, Guangzhou, China
| | - Sen Lin
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Cuiming Tang
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences, Guangzhou, China; Key Laboratory of Urban Agriculture in South China, Ministry of Agriculture, Guangzhou, China.
| |
Collapse
|
42
|
Tabrizi L, Lakzaei M, Motesharezadeh B. The yield potential and growth responses of licorice ( Glycyrrhiza glabra L.) to mycorrhization under Pb and Cd stress. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2020; 23:316-327. [PMID: 32898452 DOI: 10.1080/15226514.2020.1813076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The effects of mycorrhization (inoculation and non-inoculation) on growth and quality of two ecotypes (Baft and Ramjerd) of Glycyrrhiza glabra L. under heavy metals stress (0, 300 Pb + 20 Cd (H1) and 600 Pb + 40 Cd (H2) (mg kg-1) was investigated. Higher concentration of heavy metals decreased shoot dry weight in Baft (7.05%) and Ramjerd (43.34%) than control. Root dry weight increased in mycorrhizal Baft (28.23%) and Ramjerd (31.84%) ecotypes under H2 than non-mycorrhizal plants. In mycorrhizal plants, root colonization percentage decreased 37.07% in H2 than control. Increasing heavy metals concentration led to increase of total antioxidant activity and total phenol content. Mycorrhizal Ramjerd showed the lowest shoot Pb concentration in both heavy metals concentrations and the highest root Pb concentration (107.25% higher than non-mycoorhizal one) in H2. For both ecotypes, the lowest shoot Cd concentration observed in mycorrhizal plants under H1 and mycorrhizal plants had more root Cd concentration (33.83 mg kg-1 dry matter) than non-mycorrhizal ones. In both concentrations of heavy metals, the lowest Pb (0.026) and Cd (0.153) translocation factor (TF) observed in mycorrhizal plants. Based on the results, licorice with TF< 1 is not a hyperaccumulator plant but stabilizes Cd and Pb in root. Novelty statement: Licorice is a well-known medicinal plant that its root and rhizome contains diverse applications in pharmaceutical and food industries. The main source of licorice supply is through harvesting from natural habitats of Iran (one of the first exporters of licorice in the world), which during the last years have been exposed to heavy metals contamination. Therefore, the growth response of the plant in polluted habitats and most importantly, the concentration of heavy metals especially in belowground parts of the plant need more consideration. Hence, this research was carried out with an objective to investigate growth and yield potential response of two ecotypes of licorice to mycorhization under heavy metal stress (Cd and Pb) and the mechanism of heavy metal management in above and belowground parts of licorice in order to achieve its potential for further sustainable phytoremediation programs and most importantly considering the heavy metal accumulation in rhizomes and roots in accordance with world standards for medicinal and edible consumption.
Collapse
Affiliation(s)
- Leila Tabrizi
- Department of Horticultural Science and Landscape Engineering, Faculty of Agricultural Science and Engineering, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Mahdiyeh Lakzaei
- Department of Horticultural Science and Landscape Engineering, Faculty of Agricultural Science and Engineering, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Babak Motesharezadeh
- Department of Soil Science Engineering, Faculty of Agricultural Engineering and Technology, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| |
Collapse
|
43
|
Molnár Á, Rónavári A, Bélteky P, Szőllősi R, Valyon E, Oláh D, Rázga Z, Ördög A, Kónya Z, Kolbert Z. ZnO nanoparticles induce cell wall remodeling and modify ROS/ RNS signalling in roots of Brassica seedlings. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 206:111158. [PMID: 32866892 DOI: 10.1016/j.ecoenv.2020.111158] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 08/06/2020] [Accepted: 08/08/2020] [Indexed: 01/19/2023]
Abstract
Cell wall-associated defence against zinc oxide nanoparticles (ZnO NPs) as well as nitro-oxidative signalling and its consequences in plants are poorly examined. Therefore, this study compares the effect of chemically synthetized ZnO NPs (~45 nm, 25 or 100 mg/L) on Brassica napus and Brassica juncea seedlings. The effects on root biomass and viability suggest that B. napus is more tolerant to ZnO NP exposure relative to B. juncea. This may be due to the lack of Zn ion accumulation in the roots, which is related to the increase in the amount of lignin, suberin, pectin and in peroxidase activity in the roots of B. napus. TEM results indicate that root cell walls of 25 mg/L ZnO NP-treated B. napus may bind Zn ions. Additionally, callose accumulation possibly contribute to root shortening in both Brassica species as the effect of 100 mg/L ZnO NPs. Further results suggest that in the roots of the relatively sensitive B. juncea the levels of superoxide radical, hydrogen peroxide, hydrogen sulfide, nitric oxide, peroxinitrite and S-nitrosoglutathione increased as the effect of high ZnO NP concentration meaning that ZnO NP intensifies nitro-oxidative signalling. In B. napus; however, reactive oxygen species signalling was intensified, but reactive nitrogen species signalling wasn't activated by ZnO NPs. Collectively, these results indicate that ZnO NPs induce cell wall remodeling which may be associated with ZnO NP tolerance. Furthermore, plant tolerance against ZnO NPs is associated rather with nitrosative signalling than oxidative modifications.
Collapse
Affiliation(s)
- Árpád Molnár
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, H-6726, Szeged, Közép fasor 52., Hungary.
| | - Andrea Rónavári
- Department of Applied and Environmental Chemistry, Faculty of Science and Informatics, University of Szeged, H-6720, Szeged, Rerrich Bela ter 1., Hungary.
| | - Péter Bélteky
- Department of Applied and Environmental Chemistry, Faculty of Science and Informatics, University of Szeged, H-6720, Szeged, Rerrich Bela ter 1., Hungary.
| | - Réka Szőllősi
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, H-6726, Szeged, Közép fasor 52., Hungary.
| | - Emil Valyon
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, H-6726, Szeged, Közép fasor 52., Hungary.
| | - Dóra Oláh
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, H-6726, Szeged, Közép fasor 52., Hungary.
| | - Zsolt Rázga
- Department of Pathology, Faculty of Medicine, University of Szeged, H-6725, Szeged, Állomás u. 2., Hungary.
| | - Attila Ördög
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, H-6726, Szeged, Közép fasor 52., Hungary.
| | - Zoltán Kónya
- Department of Applied and Environmental Chemistry, Faculty of Science and Informatics, University of Szeged, H-6720, Szeged, Rerrich Bela ter 1., Hungary.
| | - Zsuzsanna Kolbert
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, H-6726, Szeged, Közép fasor 52., Hungary.
| |
Collapse
|
44
|
Tripthi DK, Varma RK, Singh S, Sachan M, Guerriero G, Kushwaha BK, Bhardwaj S, Ramawat N, Sharma S, Singh VP, Prasad SM, Chauhan DK, Dubey NK, Sahi S. Silicon tackles butachlor toxicity in rice seedlings by regulating anatomical characteristics, ascorbate-glutathione cycle, proline metabolism and levels of nutrients. Sci Rep 2020; 10:14078. [PMID: 32826929 PMCID: PMC7442639 DOI: 10.1038/s41598-020-65124-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 01/22/2020] [Indexed: 01/11/2023] Open
Abstract
Reckless use of herbicides like butachlor (Buta) in the fields represents a serious threat to crop plants, and hence to their productivity. Silicon (Si) is well known for its implication in the alleviation of the effects of abiotic stresses; however, its role in mitigating Buta toxicity is not yet known. Therefore, this study was carried out to explore the role of Si (10 µM) in regulating Buta (4 µM) toxicity in rice seedlings. Buta reduced growth and photosynthesis, altered nitric oxide (NO) level and leaf and root anatomy, inhibited enzyme activities of the ascorbate-glutathione cycle (while transcripts of associated enzymes, increased except OsMDHAR), as well as its metabolites (ascorbate and glutathione) and uptake of nutrients (Mg, P, K, S, Ca, Fe, etc. except Na), while addition of Si reversed Buta-induced alterations. Buta stimulated the expression of Si channel and efflux transporter genes- Lsi1 and Lsi2 while the addition of Si further greatly induced their expression under Buta toxicity. Buta increased free proline accumulation by inducing the activity of Δ1-pyrroline-5-carboxylate synthetase (P5CS) and decreasing proline dehydrogenase (PDH) activity, while Si reversed these effects caused by Buta. Our results suggest that Si-governed mitigation of Buta toxicity is linked with favorable modifications in energy flux parameters of photosynthesis and leaf and root anatomy, up-regulation of Si channel and transporter genes, ascorbate-glutathione cycle and nutrient uptake, and lowering in oxidative stress. We additionally demonstrate that NO might have a crucial role in these responses.
Collapse
Affiliation(s)
- Durgesh Kumar Tripthi
- Amity Institute of Organic Agriculture (AIOA), Amity University Uttar Pradesh, Noida, 201313, India.,Center of Advanced Study in Botany, Banaras Hindu University, Varanasi, 221005, India
| | - Rishi Kumar Varma
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, 211004, India
| | - Swati Singh
- D D Pant Interdisciplinary Research Laboratory, Department of Botany, University of Allahabad, Allahabad, 211002, India
| | - Manisha Sachan
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, 211004, India
| | - Gea Guerriero
- Environmental Research and Innovation Department, Luxembourg Institute of Science and Technology, Hautcharage, Luxembourg
| | - Bishwajit Kumar Kushwaha
- Department of Botany, C.M.P. Degree College, A Constituent Post Graduate College of University of Allahabad, Allahabad, 211002, India
| | - Shruti Bhardwaj
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, 211004, India
| | - Naleeni Ramawat
- Amity Institute of Organic Agriculture (AIOA), Amity University Uttar Pradesh, Noida, 201313, India
| | - Shivesh Sharma
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, 211004, India.
| | - Vijay Pratap Singh
- Department of Botany, C.M.P. Degree College, A Constituent Post Graduate College of University of Allahabad, Allahabad, 211002, India
| | - Sheo Mohan Prasad
- Ranjan Plant Physiology and Biochemistry Laboratory, Department of Botany, University of Allahabad, Allahabad, India, 211002.
| | - Devendra Kumar Chauhan
- D D Pant Interdisciplinary Research Laboratory, Department of Botany, University of Allahabad, Allahabad, 211002, India.
| | - Nawal Kishore Dubey
- Center of Advanced Study in Botany, Banaras Hindu University, Varanasi, 221005, India
| | - Shivendra Sahi
- University of the Sciences in Philadelphia (USP), Philadelphia, Pennsylvania, USA
| |
Collapse
|
45
|
Piscitelli C, Lavorgna M, De Prisco R, Coppola E, Grilli E, Russo C, Isidori M. Tomato plants (Solanum lycopersicum L.) grown in experimental contaminated soil: Bioconcentration of potentially toxic elements and free radical scavenging evaluation. PLoS One 2020; 15:e0237031. [PMID: 32790698 PMCID: PMC7425901 DOI: 10.1371/journal.pone.0237031] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 07/17/2020] [Indexed: 11/19/2022] Open
Abstract
Tomato is the most widespread vegetable crop in the world. In Italy, tomatoes are mainly cultivated in the South and in the Campania region, precisely in the area called Agro Nocerino-Sarnese. This flatland is affected by an extreme level of environmental degradation, especially related to the Sarno River, where concentrations of Potential Toxic Elements (PTEs) have been found to be higher than the maximum permitted level. The aim of this study was to determine the PTEs uptake by roots and their translocation to the aerial parts of the plants of two cultivars of tomatoes (Pomodoro Giallo and San Marzano Cirio 3). To the purpose, samples of the two cultivars were grown both in pots with experimentally contaminated soil containing: Cr or Cd or Pb at extremely high concentrations and in pots with uncontaminated soils (control). Additionally, the antioxidant properties of the cultivars selected grown on uncontaminated/contaminated soils were assessed. The results showed that Cd was the contaminant that most significantly interfered with the growth of both cultivars of tomato plants, whereas Pb caused lower phenotypical damage. Cd translocation from root to the organs of tomato plants was observed in both cultivars. Specifically, the total amount of Cd found in stems and leaves was higher in the Pomodoro Giallo (254.4 mg/kg dry weight) than in the San Marzano Cirio 3 (165.8 mg/kg dry weight). Cd was the only PTE found in the fruits of both cultivars, with values of 6.1 and 3.9 mg/kg dry weight of Pomodoro Giallo and San Marzano Cirio 3, respectively. The fruits of tomato plants grown in PTEs-contaminated soil showed inhibition or stimulations of the radical scavenging activity compared to the fruits grown in uncontaminated soil. This study highlighted that, despite the relatively high experimental concentrations of PTEs, their translocation to the edible part was comparatively low or absent.
Collapse
Affiliation(s)
- Concetta Piscitelli
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università della Campania "Luigi Vanvitelli", Caserta, Italy
| | - Margherita Lavorgna
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università della Campania "Luigi Vanvitelli", Caserta, Italy
| | - Rocco De Prisco
- Consiglio Nazionale delle Ricerche, Istituto di Chimica Biomolecolare, Pozzuoli, Italy
| | - Elio Coppola
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università della Campania "Luigi Vanvitelli", Caserta, Italy
| | - Eleonora Grilli
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università della Campania "Luigi Vanvitelli", Caserta, Italy
| | - Chiara Russo
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università della Campania "Luigi Vanvitelli", Caserta, Italy
| | - Marina Isidori
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università della Campania "Luigi Vanvitelli", Caserta, Italy
| |
Collapse
|
46
|
Victório CP, Dos Santos MS, de Mello MC, Bento JPSP, da Costa Souza M, Simas NK, do Carmo de Oliveira Arruda R. The presence of heavy metals in Avicennia schaueriana Stapf & Leechman ex Moldenke leaf and epicuticular wax from different mangroves around Sepetiba Bay, Rio de Janeiro, Brazil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:23714-23729. [PMID: 32301084 DOI: 10.1007/s11356-020-08606-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 03/26/2020] [Indexed: 06/11/2023]
Abstract
This study aimed to investigate the leaf epicuticular wax and the presence of heavy metals in leaves of Avicennia shaueriana, a halophyte found in Brazilian mangroves. We evaluated plants collected in mangroves located around Sepetiba Bay, Rio de Janeiro State. Heavy metals were analyzed by energy dispersive X-ray spectroscopy (EDS or EDX) and inductively coupled plasma optical emission spectrometry (ICP-OES). Chemical analysis of epicuticular wax was made by gas chromatography-mass spectrometry (GC-MS). We also evaluated the micromorphology of leaf surface using scanning electronic and light microscopy. The leaves from each mangrove presented alterations in wax layer. Fagarasterol (lupeol) in high quantity was the main triterpene identified in the leaf wax from plants collected in all mangroves: Coroa Grande (76.43%), Pedra de Guaratiba (38.91%), and Marambaia (62.56%). Al, Fe, Mn, and Zn were the main heavy metals detected in leaves from the three mangroves by ICP-OES. Thus, we show that that plants able to survive in the mangrove swamp can adapt to the exposure of heavy metals, accumulate them in their leaves, and be used in coastal area recovery projects as a phytoremediator.
Collapse
Affiliation(s)
- Cristiane Pimentel Victório
- Laboratório de Pesquisa em Biotecnologia Ambiental, Universidade Estadual da Zona Oeste do Rio de Janeiro (UEZO), Campo Grande, Av. Manuel Caldeira de Alvarenga 1.203, Rio de Janeiro, RJ, 23070-200, Brazil.
| | - Mayara Silva Dos Santos
- Laboratório de Pesquisa em Biotecnologia Ambiental, Universidade Estadual da Zona Oeste do Rio de Janeiro (UEZO), Campo Grande, Av. Manuel Caldeira de Alvarenga 1.203, Rio de Janeiro, RJ, 23070-200, Brazil
| | - Marise Costa de Mello
- Laboratório de Pesquisa em Biotecnologia Ambiental, Universidade Estadual da Zona Oeste do Rio de Janeiro (UEZO), Campo Grande, Av. Manuel Caldeira de Alvarenga 1.203, Rio de Janeiro, RJ, 23070-200, Brazil
| | - João Pedro Silvério Pena Bento
- Laboratório de Anatomia Vegetal, Instituto de Biociências, Universidade Federal do Mato Grosso do Sul (UFMS), Campo Grande, MS, 79070-900, Brazil
| | - Marcelo da Costa Souza
- Herbário da Universidade Federal Rural do Rio de Janeiro (RBR), Instituto de Ciências Biológicas e da Saúde, Universidade Federal Rural do Rio de Janeiro (UFRRJ), Seropédica, RJ, 23897-000, Brazil
| | - Naomi Kato Simas
- Laboratório de Fitoquímica, Departamento de Produtos Naturais e Alimentos, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro (UFRJ), Av. Carlos Chagas Filho, s/n, CCS, Bloco A, sala A2-16, Cidade Universitária, Rio de Janeiro, RJ, 21941-590, Brazil
| | - Rosani do Carmo de Oliveira Arruda
- Laboratório de Anatomia Vegetal, Instituto de Biociências, Universidade Federal do Mato Grosso do Sul (UFMS), Campo Grande, MS, 79070-900, Brazil.
| |
Collapse
|
47
|
Safdar LB, Almas F, Sarfraz S, Ejaz M, Ali Z, Mahmood Z, Yang L, Tehseen MM, Ikram M, Liu S, Quraishi UM. Genome-wide association study identifies five new cadmium uptake loci in wheat. THE PLANT GENOME 2020; 13:e20030. [PMID: 33016603 DOI: 10.1002/tpg2.20030] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 04/26/2020] [Accepted: 04/28/2020] [Indexed: 05/28/2023]
Abstract
Cadmium (Cd) toxicity is a serious threat to future food security and health safety. To identify genetic factors contributing to Cd uptake in wheat, we conducted a genome-wide association study with genotyping from 90K SNP array. A spring wheat diversity panel was planted under normal conditions and Cd stress (50 mg Cd/kg soil). The impact of Cd stress on agronomic traits ranged from a reduction of 16% in plant height to 93% in grain iron content. Individual genotypes showed a considerable variation for Cd uptake and translocation subdividing the panel into three groups: (1) hyper-accumulators (i.e. high Leaf_Cd and low Seed_Cd ), (2) hyper-translocators (i.e. low Leaf_Cd and high Seed_Cd ), and (3) moderate lines (i.e. low Leaf_Cd and low Seed_Cd ). Two lines (SKD-1 and TD-1) maintained an optimum grain yield under Cd stress and were therefore considered as Cd resistant lines. Genome-wide association identified 179 SNP-trait associations for various traits including 16 for Cd uptake at a significance level of P < .001. However, only five SNPs were significant after applying multiple testing correction. These loci were associated with seed-cadmium, grain-iron, and grain-zinc: qSCd-1A, qSCd-1D, qZn-2B1, qZn-2B2, and qFe-6D. These five loci had not been identified in the previously reported studies for Cd uptake in wheat. These loci and the underlying genes should be further investigated using molecular biology techniques to identify Cd resistant genes in wheat.
Collapse
Affiliation(s)
- Luqman Bin Safdar
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Wuhan, 430062, China
| | - Fakhrah Almas
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Sidra Sarfraz
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Muhammad Ejaz
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Zeshan Ali
- Plant Physiology Program, Crop Sciences Institute, National Agricultural Research Centre, Park Road, Islamabad, PO 45500, Pakistan
| | - Zahid Mahmood
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
- Wheat Programme, Crop Sciences Institute, National Agricultural Research Centre, Park Road, Islamabad, PO 45500, Pakistan
| | - Li Yang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Wuhan, 430062, China
| | | | - Muhammad Ikram
- Statistical Genomics Lab, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shengyi Liu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Wuhan, 430062, China
| | - Umar Masood Quraishi
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| |
Collapse
|
48
|
Vuković A, Schulz W, Čamagajevac IŠ, Gaur A, Walther C, Gupta DK. Mycoremediation affects antioxidative status in winter rye plants grown at Chernobyl exclusion zone site in Ukraine. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:25818-25827. [PMID: 32399885 DOI: 10.1007/s11356-020-09137-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 04/29/2020] [Indexed: 06/11/2023]
Abstract
Soil contaminated with heavy metals in general and radionuclides in particular represents an escalating problem for all living organisms. Since, Chernobyl nuclear power plant accident in 1986 in Ukraine, an exclusion zone of 30 km around the former power plant is uninhabitable land due to severe contamination. Two most notable beta emitters contributing to dose hazards for decades is radioactive 137Cs/90Sr. However, large parts of the zone are also highly contaminated with uranium particles (hot particles) bearing trace amounts of highly alpha-emitting radionuclides. We established an experiment at exclusion zone with the aim to investigate the influence of two macro fungi (Schizophyllum commune (S.C.) and Leucoagaricus naucinus (L.N.)) on oxidative status and antioxidative responses in winter rye plants; from this, we wanted to test the radionuclide/heavy metals retention capacity of both fungi, and probe their further potential for mycoremediation.Result shows some differences in the concentrations of radionuclides/heavy metals and micro/macronutrients uptake in plants. As a biomarker of oxidative status, lipid peroxidation (LPO) levels and other antioxidative parameters were determined, i.e., superoxide-dismutase (SOD) isoenzymes, cysteine (CYS), and ascorbic acid (AA) concentrations as well as catalase (CAT) and glutathione reductase (GR) activities in winter rye shoots. LPO showed no significant differences between controls and plants cultivated with macro fungi. However, CAT activities were elevated in the presence of S.C/L.N compared with control, while GR activity was significantly higher only in presence of S.C. In contrast, isozyme of SOD (Cu,Zn-SOD) was the most prominent in control. Likewise, CYS content was lower in plants grown with both fungi, while AA concentration was only lower in the presence of L.N. The results showed that presence of fungi in radionuclide contaminated soil caused induction of antioxidative response in shoots of winter rye and that the response depended on the type of fungi used.
Collapse
Affiliation(s)
- Ana Vuković
- Department of Biology, Josip Juraj Strossmayer University, Cara Hadrijana 8/A, 31000, Osijek, Croatia
| | - Wolfgang Schulz
- Institut für Radioökologie und Strahlenschutz (IRS), Gottfried Wilhelm Leibniz Universität Hannover, Herrenhäuser Str. 2, 30419, Hannover, Germany
| | - Ivna Štolfa Čamagajevac
- Department of Biology, Josip Juraj Strossmayer University, Cara Hadrijana 8/A, 31000, Osijek, Croatia
| | - Apoorva Gaur
- Ministry of Environment, Forest and Climate Change, Indira Paryavaran Bhavan, Aliganj, Jorbagh Road, New Delhi, 110003, India
| | - Clemens Walther
- Institut für Radioökologie und Strahlenschutz (IRS), Gottfried Wilhelm Leibniz Universität Hannover, Herrenhäuser Str. 2, 30419, Hannover, Germany
| | - Dharmendra K Gupta
- Ministry of Environment, Forest and Climate Change, Indira Paryavaran Bhavan, Aliganj, Jorbagh Road, New Delhi, 110003, India.
| |
Collapse
|
49
|
Alves LR, Prado ER, de Oliveira R, Santos EF, Lemos de Souza I, Dos Reis AR, Azevedo RA, Gratão PL. Mechanisms of cadmium-stress avoidance by selenium in tomato plants. ECOTOXICOLOGY (LONDON, ENGLAND) 2020; 29:594-606. [PMID: 32333252 DOI: 10.1007/s10646-020-02208-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/31/2020] [Indexed: 05/12/2023]
Abstract
Cadmium (Cd) is probably the most damaging metal to plant species; with a long biological half-life, it can be taken up by plants, disrupting the cell homeostasis and triggering several metabolic pathways. Selenium (Se) improves plant defence systems against stressful conditions, but the biochemical antioxidant responses to Cd stress in tomato plants is poorly understood. To further address the relationship of Cd-stress responses with Se mineral uptake, Cd and Se concentration, proline content, MDA and H2O2 production, and the activity of SOD, APX, CAT and GR enzymes were analyzed in Micro-Tom (MT) plants submitted to 0.5 mM Cd. The results revealed different responses according to Se combination and Cd application. For instance, roots and leaves of MT plants treated with Se exhibited an increase in dry mass and nutritional status, exhibited lower proline content and higher APX and GR activities when compared with plants with no Se application. Plants submitted to 0.5 mM Cd, irrespective of Se exposure, exhibited lower proline, MDA and H2O2 content and higher SOD, CAT and GR activities. Selenium may improve tolerance against Cd, which allowed MT plants exhibited less oxidative damage to the cell, even under elevated Cd accumulation in their tissues. The results suggest that Se application is an efficient management technique to alleviate the deleterious effects of Cd-stress, enhancing the nutritional value and activity of ROS-scavenging enzymes in tomato plants.
Collapse
Affiliation(s)
- Leticia Rodrigues Alves
- Universidade Estadual Paulista (UNESP), Faculdade de Ciências Agrárias e Veterinárias (FCAV), Departamento de Biologia Aplicada à Agropecuária, Jaboticabal, SP, CEP 14884-900, Brazil
| | - Emilaine Rocha Prado
- Universidade Estadual Paulista (UNESP), Faculdade de Ciências Agrárias e Veterinárias (FCAV), Departamento de Biologia Aplicada à Agropecuária, Jaboticabal, SP, CEP 14884-900, Brazil
| | - Reginaldo de Oliveira
- Universidade Estadual Paulista (UNESP), Faculdade de Ciências Agrárias e Veterinárias (FCAV), Departamento de Biologia Aplicada à Agropecuária, Jaboticabal, SP, CEP 14884-900, Brazil
| | - Elcio Ferreira Santos
- Universidade de São Paulo (USP), Centro de Energia Nuclear na Agricultura (CENA), Laboratório de Nutrição Mineral de Plantas, Piracicaba, SP, CEP 13418-900, Brazil
| | - Ivana Lemos de Souza
- Universidade Estadual Paulista (UNESP), Faculdade de Ciências Agrárias e Veterinárias (FCAV), Departamento de Fitossanidade, Jaboticabal, SP, CEP 14884-900, Brazil
| | - André Rodrigues Dos Reis
- Universidade Estadual Paulista (UNESP), Faculdade de Ciências e Engenharia, Laboratório de Biologia, Tupã, SP, CEP 17602-496, Brazil
| | - Ricardo Antunes Azevedo
- Universidade de São Paulo (USP), Escola Superior de Agricultura Luiz de Queiroz (ESALQ), Depto. de Genética, Piracicaba, SP, 13418-900, Brazil
| | - Priscila Lupino Gratão
- Universidade Estadual Paulista (UNESP), Faculdade de Ciências Agrárias e Veterinárias (FCAV), Departamento de Biologia Aplicada à Agropecuária, Jaboticabal, SP, CEP 14884-900, Brazil.
| |
Collapse
|
50
|
Han M, Wang B, Song G, Shi S. Comparative study of alleviation effects of DMTU and PCIB on root growth inhibition in two tall fescue varieties under cadmium stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 196:110528. [PMID: 32240865 DOI: 10.1016/j.ecoenv.2020.110528] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 03/10/2020] [Accepted: 03/19/2020] [Indexed: 06/11/2023]
Abstract
In plants, tolerance to cadmium (Cd) stress is closely related to indole-3-acetic acid (IAA) and hydrogen peroxide (H2O2). However, it is unclear whether Cd-resistant and -sensitive varieties respond differently to Cd stress. In this study, the effects of dimethylthiourea (DMTU, a H2O2 scavenger) and p-chlorophenoxy isobutyric acid (PCIB, an IAA signaling inhibitor) on root growth, endogenous hormones and antioxidant system were investigated to decipher how DMTU and PCIB treatments alleviate the inhibition of root elongation in Cd-resistant (Commander) and -sensitive (Crossfire III) tall fescue varieties under Cd stress. Both varieties subjected to 10 μM Cd treatments for 12 h presented a substantial decrease in root elongation coupled with a reduction in brassinosteroid (BR) and zeatin riboside (ZR) contents, but the changes in IAA and abscisic acid (ABA) contents under Cd stress were opposite in the two varieties. In addition, the H2O2 content and antioxidant enzyme activities significantly increased in both varieties. However, pretreatment with PCIB or DMTU mitigated the inhibition of root elongation caused by Cd, accompanied by the significant changes of aforementioned physiological parameters. PCIB significantly reduced the IAA content in 'Commander', while DMTU significantly increased the IAA content in 'Crossfire III' and effectively relieved the inhibition of root elongation. But both treatments decreased the Cd-induced H2O2 accumulation. These results indicated that DMTU or PCIB can alleviate the Cd-inhibited root elongation in two varieties whose resistance differed under Cd stress, but they presented differences in the response of hormones, especially IAA, which may be due to the different adaptation mechanisms of two varieties in response to Cd stress.
Collapse
Affiliation(s)
- Mengmeng Han
- College of Grassland Science, Beijing Forestry University, Beijing, 100083, China
| | - Baoyuan Wang
- College of Grassland Science, Beijing Forestry University, Beijing, 100083, China
| | - Guilong Song
- College of Grassland Science, Beijing Forestry University, Beijing, 100083, China.
| | - Shengqing Shi
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry Research, Chinese Academy of Forestry, Box 1958, Beijing, 100091, China.
| |
Collapse
|