1
|
Sowders JM, Jewell JB, Tanaka K. CPK28 is a modulator of purinergic signaling in plant growth and defense. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:1086-1101. [PMID: 38308597 PMCID: PMC11096078 DOI: 10.1111/tpj.16656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 01/11/2024] [Accepted: 01/19/2024] [Indexed: 02/05/2024]
Abstract
Extracellular ATP (eATP) is a key signaling molecule that plays a pivotal role in plant growth and defense responses. The receptor P2K1 is responsible for perceiving eATP and initiating its signaling cascade. However, the signal transduction mechanisms downstream of P2K1 activation remain incompletely understood. We conducted a comprehensive analysis of the P2K1 interactome using co-immunoprecipitation-coupled tandem mass spectrometry, leading to the identification of 121 candidate proteins interacting with P2K1. In silico analysis narrowed down the candidates to 47 proteins, including Ca2+-binding proteins, ion transport-related proteins, and receptor kinases. To investigate their involvement in eATP signaling, we employed a screening strategy based on changes in gene expression in response to eATP in mutants of the identified interactors. This screening revealed several Ca2+-dependent protein kinases (CPKs) that significantly affected the expression of eATP-responsive genes, suggesting their potential roles in eATP signaling. Notably, CPK28 and CPK6 showed physical interactions with P2K1 both in yeast and plant systems. Calcium influx and gene expression studies demonstrated that CPK28 perturbed eATP-induced Ca2+ mobilization and some early transcriptional responses. Overexpression of CPK28 resulted in an antagonistic physiological response to P2K1-mediated eATP signaling during both plant growth and defense responses to the necrotrophic pathogen Botrytis cinerea. Our findings highlight CPK28, among other CPKs, as a modulator of P2K1-mediated eATP signaling, providing valuable insights into the coordination of eATP signaling in plant growth and immunity.
Collapse
Affiliation(s)
- Joel M. Sowders
- Department of Plant Pathology, Washington State University, Pullman, Washington 99164
- Molecular Plant Sciences Program, Washington State University, Pullman, Washington 99164
| | - Jeremy B. Jewell
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164
| | - Kiwamu Tanaka
- Department of Plant Pathology, Washington State University, Pullman, Washington 99164
- Molecular Plant Sciences Program, Washington State University, Pullman, Washington 99164
| |
Collapse
|
2
|
Clark G, Tripathy MK, Roux SJ. Growth regulation by apyrases: Insights from altering their expression level in different organisms. PLANT PHYSIOLOGY 2024; 194:1323-1335. [PMID: 37947023 PMCID: PMC10904326 DOI: 10.1093/plphys/kiad590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/28/2023] [Accepted: 09/28/2023] [Indexed: 11/12/2023]
Abstract
Apyrase (APY) enzymes are nucleoside triphosphate (NTP) diphosphohydrolases that can remove the terminal phosphate from NTPs and nucleoside diphosphates but not from nucleoside monophosphates. They have conserved structures and functions in yeast, plants, and animals. Among the most studied APYs in plants are those in Arabidopsis (Arabidopsis thaliana; AtAPYs) and pea (Pisum sativum; PsAPYs), both of which have been shown to play major roles in regulating plant growth and development. Valuable insights on their functional roles have been gained by transgenically altering their transcript abundance, either by constitutively expressing or suppressing APY genes. This review focuses on recent studies that have provided insights on the mechanisms by which APY activity promotes growth in different organisms. Most of these studies have used transgenic lines that constitutively expressed APY in multiple different plants and in yeast. As APY enzymatic activity can also be changed post-translationally by chemical blockage, this review also briefly covers studies that used inhibitors to suppress APY activity in plants and fungi. It concludes by summarizing some of the main unanswered questions about how APYs regulate plant growth and proposes approaches to answering them.
Collapse
Affiliation(s)
- Greg Clark
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, 100 E 24th Street, TX 78712, USA
| | | | - Stanley J Roux
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, 100 E 24th Street, TX 78712, USA
| |
Collapse
|
3
|
Cho SH, Nguyen CT, Pham AQ, Stacey G. Computational prediction and in vitro analysis of the potential ligand binding site within the extracellular ATP receptor, P2K2. PLANT SIGNALING & BEHAVIOR 2023; 18:2173146. [PMID: 36723515 PMCID: PMC9897758 DOI: 10.1080/15592324.2023.2173146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/08/2023] [Accepted: 01/10/2023] [Indexed: 06/18/2023]
Abstract
The plant extracellular ATP (eATP) receptor, P2K2, binds eATP with strong ligand affinity through its extracellular lectin domain. Ligand binding activates the intracellular kinase domain of P2K2 resulting in a variety of intracellular responses and, ultimately, increased plant immunity to invading fungal and bacterial pathogens. Here, using a computational prediction approach, we developed a tertiary structure model of the P2K2 extracellular lectin domain. In silico target docking of ATP to the P2K2-binding site predicted interaction with several residues through hydrophobic interactions and hydrogen bonding. Our confirmation of the modeling was obtained by showing that H99, R144, and S256 are key residues essential for in vitro binding of ATP by P2K2.
Collapse
Affiliation(s)
- Sung-Hwan Cho
- Divisions of Plant Science and Biochemistry, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, Republic of Korea
| | - Cuong the Nguyen
- Divisions of Plant Science and Biochemistry, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
- Center for Applied Biotechnology and Agricultural High-Tech, Cuu Long Delta Rice Research Institute, Can Tho, Vietnam
| | - an Quoc Pham
- Divisions of Plant Science and Biochemistry, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
- Faculty of Biology and Biotechnology, VNUHCM-University of Sciences, Ho Chi Minh City, Vietnam
| | - Gary Stacey
- Divisions of Plant Science and Biochemistry, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| |
Collapse
|
4
|
Cannon AE, Vanegas DC, Sabharwal T, Salmi ML, Wang J, Clark G, McLamore ES, Roux SJ. Polarized distribution of extracellular nucleotides promotes gravity-directed polarization of development in spores of Ceratopteris richardii. FRONTIERS IN PLANT SCIENCE 2023; 14:1265458. [PMID: 37854113 PMCID: PMC10579945 DOI: 10.3389/fpls.2023.1265458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 09/18/2023] [Indexed: 10/20/2023]
Abstract
Gravity directs the polarization of Ceratopteris fern spores. This process begins with the uptake of calcium through channels at the bottom of the spore, a step necessary for the gravity response. Data showing that extracellular ATP (eATP) regulates calcium channels led to the hypothesis that extracellular nucleotides could play a role in the gravity-directed polarization of Ceratopteris spores. In animal and plant cells ATP can be released from mechanosensitive channels. This report tests the hypothesis that the polarized release of ATP from spores could be activated by gravity, preferentially along the bottom of the spore, leading to an asymmetrical accumulation of eATP. In order to carry out this test, an ATP biosensor was used to measure the [eATP] at the bottom and top of germinating spores during gravity-directed polarization. The [eATP] along the bottom of the spore averaged 7-fold higher than the concentration at the top. All treatments that disrupted eATP signaling resulted in a statistically significant decrease in the gravity response. In order to investigate the source of ATP release, spores were treated with Brefeldin A (BFA) and gadolinium trichloride (GdCl3). These treatments resulted in a significant decrease in gravity-directed polarization. An ATP biosensor was also used to measure ATP release after treatment with both BFA and GdCl3. Both of these treatments caused a significant decrease in [ATP] measured around spores. These results support the hypothesis that ATP could be released from mechanosensitive channels and secretory vesicles during the gravity-directed polarization of Ceratopteris spores.
Collapse
Affiliation(s)
- Ashley E. Cannon
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, United States
| | - Diana C. Vanegas
- Agricultural and Biological Engineering Department, The University of Florida, Gainesville, FL, United States
| | - Tanya Sabharwal
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, United States
| | - Mari L. Salmi
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, United States
| | - Jeffrey Wang
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, United States
| | - Greg Clark
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, United States
| | - Eric S. McLamore
- Agricultural and Biological Engineering Department, The University of Florida, Gainesville, FL, United States
| | - Stanley J. Roux
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, United States
| |
Collapse
|
5
|
Sowders JM, Jewell JB, Tripathi D, Tanaka K. The intrinsically disordered C-terminus of purinoceptor P2K1 fine-tunes plant responses to extracellular ATP. FEBS Lett 2023; 597:2059-2071. [PMID: 37465901 PMCID: PMC10530300 DOI: 10.1002/1873-3468.14703] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/22/2023] [Accepted: 07/05/2023] [Indexed: 07/20/2023]
Abstract
P2K1 is a plant-specific purinoceptor that perceives extracellular ATP (eATP), a signaling molecular implicated in various physiological processes. Interestingly, P2K1 harbors a C-terminal intrinsically disordered region (IDR). When we overexpressed a truncated P2K1 (P2K1t ) lacking the IDR, primary root growth completely ceased in response to eATP. We investigated the functional roles of the IDR in P2K1 using a combination of molecular genetics, calcium imaging, gene expression analysis, and histochemical approaches. We found that the P2K1t variant gave rise to an amplified response to eATP, through accumulation of superoxide, altered cell wall integrity, and ultimate cell death in the primary root tip. Together, these observations underscore the significant involvement of the C-terminal tail of P2K1 in root growth regulation.
Collapse
Affiliation(s)
- Joel M. Sowders
- Department of Plant Pathology, Washington State University, Pullman, Washington 99164
- Molecular Plant Sciences Program, Washington State University, Pullman, Washington 99164
| | - Jeremy B. Jewell
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164
| | - Diwaker Tripathi
- Department of Biology, University of Washington, Seattle, Washington 98195
| | - Kiwamu Tanaka
- Department of Plant Pathology, Washington State University, Pullman, Washington 99164
- Molecular Plant Sciences Program, Washington State University, Pullman, Washington 99164
| |
Collapse
|
6
|
Shi Z, Zhang Y, Wang X, Pang H, Jia L, Sun K, Zhang J, Du J, Feng H. Extracellular ATP sensing in living plant tissues with a genetically encoded, ratiometric fluorescent sensor. THE NEW PHYTOLOGIST 2023; 238:1343-1350. [PMID: 36891672 DOI: 10.1111/nph.18868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Affiliation(s)
- Zhenzhen Shi
- College of Life Science, Northwest Normal University, Lanzhou, Gansu, 730070, China
| | - Yuejing Zhang
- College of Life Science, Northwest Normal University, Lanzhou, Gansu, 730070, China
| | - Xin Wang
- College of Life Science, Northwest Normal University, Lanzhou, Gansu, 730070, China
| | - Hailong Pang
- College of Life Science, Northwest Normal University, Lanzhou, Gansu, 730070, China
| | - Lingyun Jia
- College of Life Science, Northwest Normal University, Lanzhou, Gansu, 730070, China
| | - Kun Sun
- College of Life Science, Northwest Normal University, Lanzhou, Gansu, 730070, China
| | - Ji Zhang
- College of Life Science, Northwest Normal University, Lanzhou, Gansu, 730070, China
- New Rural Development Research Institute, Northwest Normal University, Lanzhou, Gansu, 730070, China
| | - Jie Du
- College of Life Science, Northwest Normal University, Lanzhou, Gansu, 730070, China
| | - Hanqing Feng
- College of Life Science, Northwest Normal University, Lanzhou, Gansu, 730070, China
- New Rural Development Research Institute, Northwest Normal University, Lanzhou, Gansu, 730070, China
| |
Collapse
|
7
|
Kim D, Chen D, Ahsan N, Jorge GL, Thelen JJ, Stacey G. The Raf-like MAPKKK INTEGRIN-LINKED KINASE 5 regulates purinergic receptor-mediated innate immunity in Arabidopsis. THE PLANT CELL 2023; 35:1572-1592. [PMID: 36762404 PMCID: PMC10118279 DOI: 10.1093/plcell/koad029] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 01/31/2023] [Indexed: 06/17/2023]
Abstract
Mitogen-activated protein (MAP) kinase signaling cascades play important roles in eukaryotic defense against various pathogens. Activation of the extracellular ATP (eATP) receptor P2K1 triggers MAP kinase 3 and 6 (MPK3/6) phosphorylation, which leads to an elevated plant defense response. However, the mechanism by which P2K1 activates the MAPK cascade is unclear. In this study, we show that in Arabidopsis thaliana, P2K1 phosphorylates the Raf-like MAP kinase kinase kinase (MAPKKK) INTEGRIN-LINKED KINASE 5 (ILK5) on serine 192 in the presence of eATP. The interaction between P2K1 and ILK5 was confirmed both in vitro and in planta and their interaction was enhanced by ATP treatment. Similar to P2K1 expression, ILK5 expression levels were highly induced by treatment with ATP, flg22, Pseudomonas syringae pv. tomato DC3000, and various abiotic stresses. ILK5 interacts with and phosphorylates the MAP kinase MKK5. Moreover, phosphorylation of MPK3/6 was significantly reduced upon ATP treatment in ilk5 mutant plants, relative to wild-type (WT). The ilk5 mutant plants showed higher susceptibility to P. syringae pathogen infection relative to WT plants. Plants expressing only the mutant ILK5S192A protein, with decreased kinase activity, did not activate the MAPK cascade upon ATP addition. These results suggest that eATP activation of P2K1 results in transphosphorylation of the Raf-like MAPKKK ILK5, which subsequently triggers the MAPK cascade, culminating in activation of MPK3/6 associated with an elevated innate immune response.
Collapse
Affiliation(s)
- Daewon Kim
- Division of Plant Science and Technology, C.S. Bond Life Science Center, University of Missouri, Columbia, MO 65211, USA
| | - Dongqin Chen
- Division of Plant Science and Technology, C.S. Bond Life Science Center, University of Missouri, Columbia, MO 65211, USA
| | - Nagib Ahsan
- Division of Biochemistry, C.S. Bond Life Science Center, University of Missouri, Columbia, MO 65211, USA
| | - Gabriel Lemes Jorge
- Division of Biochemistry, C.S. Bond Life Science Center, University of Missouri, Columbia, MO 65211, USA
| | - Jay J Thelen
- Division of Biochemistry, C.S. Bond Life Science Center, University of Missouri, Columbia, MO 65211, USA
| | - Gary Stacey
- Division of Plant Science and Technology, C.S. Bond Life Science Center, University of Missouri, Columbia, MO 65211, USA
- Division of Biochemistry, C.S. Bond Life Science Center, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
8
|
Xu J, Han L, Xia S, Zhu R, Kang E, Shang Z. ATANN3 Is Involved in Extracellular ATP-Regulated Auxin Distribution in Arabidopsis thaliana Seedlings. PLANTS (BASEL, SWITZERLAND) 2023; 12:330. [PMID: 36679043 PMCID: PMC9867528 DOI: 10.3390/plants12020330] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/07/2023] [Accepted: 01/07/2023] [Indexed: 06/17/2023]
Abstract
Extracellular ATP (eATP) plays multiple roles in plant growth and development, and stress responses. It has been revealed that eATP suppresses growth and alters the growth orientation of the root and hypocotyl of Arabidopsis thaliana by affecting auxin transport and localization in these organs. However, the mechanism of the eATP-stimulated auxin distribution remains elusive. Annexins are involved in multiple aspects of plant cellular metabolism, while their role in response to apoplastic signals remains unclear. Here, by using the loss-of-function mutations, we investigated the role of AtANN3 in the eATP-regulated root and hypocotyl growth. Firstly, the inhibitory effects of eATP on root and hypocotyl elongation were weakened or impaired in the AtANN3 null mutants (atann3-1 and atann3-2). Meanwhile, the distribution of DR5-GUS and DR5-GFP indicated that the eATP-induced asymmetric distribution of auxin in the root tips or hypocotyl cells occurred in wild-type control plants, while in atann3-1 mutant seedlings, it was not observed. Further, the eATP-induced asymmetric distribution of PIN2-GFP in root-tip cells or that of PIN3-GFP in hypocotyl cells was reduced in atann3-1 seedlings. Finally, the eATP-induced asymmetric distribution of cytoplasmic vesicles in root-tip cells was impaired in atann3-1 seedlings. Based on these results, we suggest that AtANN3 may be involved in eATP-regulated seedling growth by regulating the distribution of auxin and auxin transporters in vegetative organs.
Collapse
Affiliation(s)
| | | | | | | | - Erfang Kang
- Correspondence: (E.K.); (Z.S.); Tel.: +86-(311)-8078-7565 (E.K.); +86-(311)-8078-7570 (Z.S.)
| | - Zhonglin Shang
- Correspondence: (E.K.); (Z.S.); Tel.: +86-(311)-8078-7565 (E.K.); +86-(311)-8078-7570 (Z.S.)
| |
Collapse
|
9
|
Chowdhury AT, Hasan MN, Bhuiyan FH, Islam MQ, Nayon MRW, Rahaman MM, Hoque H, Jewel NA, Ashrafuzzaman M, Prodhan SH. Identification, characterization of Apyrase (APY) gene family in rice (Oryza sativa) and analysis of the expression pattern under various stress conditions. PLoS One 2023; 18:e0273592. [PMID: 37163561 PMCID: PMC10171694 DOI: 10.1371/journal.pone.0273592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 02/27/2023] [Indexed: 05/12/2023] Open
Abstract
Apyrase (APY) is a nucleoside triphosphate (NTP) diphosphohydrolase (NTPDase) which is a member of the superfamily of guanosine diphosphatase 1 (GDA1)-cluster of differentiation 39 (CD39) nucleoside phosphatase. Under various circumstances like stress, cell growth, the extracellular adenosine triphosphate (eATP) level increases, causing a detrimental influence on cells such as cell growth retardation, ROS production, NO burst, and apoptosis. Apyrase hydrolyses eATP accumulated in the extracellular membrane during stress, wounds, into adenosine diphosphate (ADP) and adenosine monophosphate (AMP) and regulates the stress-responsive pathway in plants. This study was designed for the identification, characterization, and for analysis of APY gene expression in Oryza sativa. This investigation discovered nine APYs in rice, including both endo- and ecto-apyrase. According to duplication event analysis, in the evolution of OsAPYs, a significant role is performed by segmental duplication. Their role in stress control, hormonal responsiveness, and the development of cells is supported by the corresponding cis-elements present in their promoter regions. According to expression profiling by RNA-seq data, the genes were expressed in various tissues. Upon exposure to a variety of biotic as well as abiotic stimuli, including anoxia, drought, submergence, alkali, heat, dehydration, salt, and cold, they showed a differential expression pattern. The expression analysis from the RT-qPCR data also showed expression under various abiotic stress conditions, comprising cold, salinity, cadmium, drought, submergence, and especially heat stress. This finding will pave the way for future in-vivo analysis, unveil the molecular mechanisms of APY genes in stress response, and contribute to the development of stress-tolerant rice varieties.
Collapse
Affiliation(s)
- Aniqua Tasnim Chowdhury
- Department of Genetic Engineering and Biotechnology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Md Nazmul Hasan
- Department of Genetic Engineering and Biotechnology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Fahmid H Bhuiyan
- Plant Biotechnology Division, National Institute of Biotechnology, Ganakbari, Ashulia, Savar, Dhaka, Bangladesh
| | - Md Qamrul Islam
- Department of Genetic Engineering and Biotechnology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Md Rakib Wazed Nayon
- Department of Genetic Engineering and Biotechnology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Md Mashiur Rahaman
- Department of Genetic Engineering and Biotechnology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, Bangladesh
- Institute of Epidemiology, Disease Control and Research (IEDCR), Dhaka, Bangladesh
| | - Hammadul Hoque
- Department of Genetic Engineering and Biotechnology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Nurnabi Azad Jewel
- Department of Genetic Engineering and Biotechnology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Md Ashrafuzzaman
- Department of Genetic Engineering and Biotechnology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Shamsul H Prodhan
- Department of Genetic Engineering and Biotechnology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| |
Collapse
|
10
|
Aguilera A, Distéfano A, Jauzein C, Correa-Aragunde N, Martinez D, Martin MV, Sueldo DJ. Do photosynthetic cells communicate with each other during cell death? From cyanobacteria to vascular plants. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:7219-7242. [PMID: 36179088 DOI: 10.1093/jxb/erac363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
As in metazoans, life in oxygenic photosynthetic organisms relies on the accurate regulation of cell death. During development and in response to the environment, photosynthetic cells activate and execute cell death pathways that culminate in the death of a specific group of cells, a process known as regulated cell death (RCD). RCD control is instrumental, as its misregulation can lead to growth penalties and even the death of the entire organism. Intracellular molecules released during cell demise may act as 'survival' or 'death' signals and control the propagation of cell death to surrounding cells, even in unicellular organisms. This review explores different signals involved in cell-cell communication and systemic signalling in photosynthetic organisms, in particular Ca2+, reactive oxygen species, lipid derivates, nitric oxide, and eATP. We discuss their possible mode-of-action as either 'survival' or 'death' molecules and their potential role in determining cell fate in neighbouring cells. By comparing the knowledge available across the taxonomic spectrum of this coherent phylogenetic group, from cyanobacteria to vascular plants, we aim at contributing to the identification of conserved mechanisms that control cell death propagation in oxygenic photosynthetic organisms.
Collapse
Affiliation(s)
- Anabella Aguilera
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, 39231 Kalmar, Sweden
| | - Ayelén Distéfano
- Instituto de Investigaciones Biológicas-CONICET, Universidad Nacional de Mar del Plata, 7600 Mar del Plata, Argentina
| | - Cécile Jauzein
- Ifremer, Centre de Brest, DYNECO-Pelagos, F-29280 Plouzané, France
| | - Natalia Correa-Aragunde
- Instituto de Investigaciones Biológicas-CONICET, Universidad Nacional de Mar del Plata, 7600 Mar del Plata, Argentina
| | - Dana Martinez
- Instituto de Fisiología Vegetal (INFIVE-CONICET), Universidad Nacional de La Plata, 1900 La Plata, Argentina
| | - María Victoria Martin
- Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC-CONICET), Fundación para Investigaciones Biológicas Aplicadas (FIBA), Universidad Nacional de Mar del Plata,7600 Mar del Plata, Argentina
| | - Daniela J Sueldo
- Norwegian University of Science and Technology, 7491 Trondheim, Norway
| |
Collapse
|
11
|
Shan Y, Zhang D, Luo Z, Li T, Qu H, Duan X, Jiang Y. Advances in chilling injury of postharvest fruit and vegetable: Extracellular ATP aspects. Compr Rev Food Sci Food Saf 2022; 21:4251-4273. [PMID: 35876655 DOI: 10.1111/1541-4337.13003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/03/2022] [Accepted: 06/16/2022] [Indexed: 01/28/2023]
Abstract
Due to the global use of cold chain, the development of postharvest technology to reduce chilling injury (CI) in postharvest fruits and vegetables during storage and transport is needed urgently. Considerable evidence shows that maintaining intracellular adenosine triphosphate (iATP) in harvested fruits and vegetables is beneficial to inhibiting CI occurrence. Extracellular ATP (eATP) is a damage-associated signal molecule and plays an important role in CI of postharvest fruits and vegetables through its receptor and subsequent signal transduction under low-temperature stress. The development of new aptasensors for the simultaneous determination of eATP level allows for better understanding of the roles of eATP in a myriad of responses mediated by low-temperature stress in relation to the chilling tolerance of postharvest fruits and vegetables. The multiple biological functions of eATP and its receptors in postharvest fruits and vegetables were attributed to interactions with reactive oxygen species (ROS) and nitric oxide (NO) in coordination with phytohormones and other signaling molecules via downstream physiological activities. The complicated interconnection among eATP in relation to its receptors, eATP/iATP homeostasis, ROS, NO, and heat shock proteins triggered by eATP recognition has been emphasized. This paper reviews recent advances in the beneficial effects of energy handling, outlines the production and homeostasis of eATP, discusses the possible mechanism of eATP and its receptors in chilling tolerance, and provides future research directions for CI in postharvest fruits and vegetables during low-temperature storage.
Collapse
Affiliation(s)
- Youxia Shan
- Guangdong Provincial Key Laboratory of Applied Botany, Core Botanical Gardens, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Dandan Zhang
- Guangdong Provincial Key Laboratory of Applied Botany, Core Botanical Gardens, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Zisheng Luo
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Taotao Li
- Guangdong Provincial Key Laboratory of Applied Botany, Core Botanical Gardens, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Hongxia Qu
- Guangdong Provincial Key Laboratory of Applied Botany, Core Botanical Gardens, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Xuewu Duan
- Guangdong Provincial Key Laboratory of Applied Botany, Core Botanical Gardens, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Yueming Jiang
- Guangdong Provincial Key Laboratory of Applied Botany, Core Botanical Gardens, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
12
|
Xia H, Hong Y, Li X, Fan R, Li Q, Ouyang Z, Yao X, Lu S, Guo L, Tang S. BnaNTT2 regulates ATP homeostasis in plastid to sustain lipid metabolism and plant growth in Brassica napus. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2022; 42:54. [PMID: 37313423 PMCID: PMC10248631 DOI: 10.1007/s11032-022-01322-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
The plastid inner envelope membrane-bond nucleotide triphosphate transporter (NTT) transports cytosolic adenosine triphosphate (ATP) into plastid, which is necessary for the biochemical activities in plastid. We identified a chloroplast-localized BnaC08.NTT2 and obtained the overexpressed lines of BnaC08.NTT2 and CRISPR/Cas9 edited double mutant lines of BnaC08.NTT2 and BnaA08.NTT2 in B. napus. Further studies certified that overexpression (OE) of BnaC08.NTT2 could help transport ATP into chloroplast and exchange adenosine diphosphate (ADP) and this process was inhibited in BnaNTT2 mutants. Additional results showed that the thylakoid was abnormal in a8 c8 double mutants, which also had lower photosynthetic efficiency, leading to retarded plant growth. The BnaC08.NTT2 OE plants had higher photosynthetic efficiency and better growth compared to WT. OE of BnaC08.NTT2 could improve carbon flowing into protein and oil synthesis from glycolysis both in leaves and seeds. Lipid profile analysis showed that the contents of main chloroplast membrane lipids, including monogalactosyldiacylglycerol (MGDG), digalactosyldiacylglycerol (DGDG), and phosphatidylglycerol (PG), were significantly reduced in mutants, while there were no differences in OE lines compared to WT. These results suggest that BnaNTT2 is involved in the regulation of ATP/ADP homeostasis in plastid to impact plant growth and seed oil accumulation in B. napus. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-022-01322-8.
Collapse
Affiliation(s)
- Hui Xia
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 China
- Hubei Hongshan Laboratory, Wuhan, 430070 China
| | - Yue Hong
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 China
- Hubei Hongshan Laboratory, Wuhan, 430070 China
| | - Xiao Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 China
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032 China
| | - Ruyi Fan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 China
- Hubei Hongshan Laboratory, Wuhan, 430070 China
| | - Qing Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 China
- Hubei Hongshan Laboratory, Wuhan, 430070 China
| | - Zhewen Ouyang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 China
- Hubei Hongshan Laboratory, Wuhan, 430070 China
| | - Xuan Yao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 China
- Hubei Hongshan Laboratory, Wuhan, 430070 China
| | - Shaoping Lu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 China
- Hubei Hongshan Laboratory, Wuhan, 430070 China
| | - Liang Guo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 China
- Hubei Hongshan Laboratory, Wuhan, 430070 China
| | - Shan Tang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 China
- Hubei Hongshan Laboratory, Wuhan, 430070 China
| |
Collapse
|
13
|
Goodman HL, Kroon JTM, Tomé DFA, Hamilton JMU, Alqarni AO, Chivasa S. Extracellular ATP targets Arabidopsis RIBONUCLEASE 1 to suppress mycotoxin stress-induced cell death. THE NEW PHYTOLOGIST 2022; 235:1531-1542. [PMID: 35524456 PMCID: PMC9545236 DOI: 10.1111/nph.18211] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 04/29/2022] [Indexed: 06/14/2023]
Abstract
Extracellular ATP is a purinergic signal with important functions in regulating plant growth and stress-adaptive responses, including programmed cell death. While signalling events proximate to receptor activation at the plasma membrane have been characterised, downstream protein targets and the mechanism of cell death activation/regulation are unknown. We designed a proteomic screen to identify ATP-responsive proteins in Arabidopsis cell cultures exposed to mycotoxin stress via fumonisin B1 (FB1) application. Arabidopsis RIBONUCLEASE 1 (RNS1) was identified by the screen, and transgenic plants overexpressing native RNS1 showed greater susceptibility to FB1, while a gene knockout rns1 mutant and antisense RNS1 transgenic plants were resistant to FB1-induced cell death. Native RNS1 complemented rns1 mutants and restored the cell death response to FB1, while a catalytically inactive version of the ribonuclease could not. The FB1 resistance of salicylic acid (SA)-depleted nahG-expressing plants was abolished by transformation with native RNS1, but not the catalytically dead version. The mechanism of FB1-induced cell death is activation of RNS1-dependent RNA cleavage, which is blocked by ATP via RNS1 suppression, or enhanced by SA through induction of RNS1 expression. Our study reveals RNS1 as a previously unknown convergence point of ATP and SA signalling in the regulation of stress-induced cell death.
Collapse
Affiliation(s)
| | | | | | | | - Ali O. Alqarni
- Department of BiosciencesDurham UniversitySouth RoadDurhamDH1 3LEUK
| | - Stephen Chivasa
- Department of BiosciencesDurham UniversitySouth RoadDurhamDH1 3LEUK
| |
Collapse
|
14
|
Bello-Bello E, López-Arredondo D, Rico-Chambrón TY, Herrera-Estrella L. Conquering compacted soils: uncovering the molecular components of root soil penetration. TRENDS IN PLANT SCIENCE 2022; 27:814-827. [PMID: 35525799 DOI: 10.1016/j.tplants.2022.04.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 03/28/2022] [Accepted: 04/04/2022] [Indexed: 06/14/2023]
Abstract
Global agriculture and food security face paramount challenges due to climate change and land degradation. Human-induced soil compaction severely affects soil fertility, impairing root system development and crop yield. There is a need to design compaction-resilient crops that can thrive in degraded soils and maintain high yields. To address plausible solutions to this challenging scenario, we discuss current knowledge on plant root penetration ability and delineate potential approaches based on root-targeted genetic engineering (RGE) and genomics-assisted breeding (GAB) for developing crops with enhanced root system penetrability (RSP) into compacted soils. Such approaches could lead to crops with improved resilience to climate change and marginal soils, which can help to boost CO2 sequestration and storage in deeper soil strata.
Collapse
Affiliation(s)
- Elohim Bello-Bello
- Unidad de Genómica Avanzada/LANGEBIO, Centro de Investigación y de Estudios Avanzados, Irapuato, México
| | - Damar López-Arredondo
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79409, USA
| | - Thelma Y Rico-Chambrón
- Unidad de Genómica Avanzada/LANGEBIO, Centro de Investigación y de Estudios Avanzados, Irapuato, México
| | - Luis Herrera-Estrella
- Unidad de Genómica Avanzada/LANGEBIO, Centro de Investigación y de Estudios Avanzados, Irapuato, México; Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79409, USA.
| |
Collapse
|
15
|
Sabharwal T, Lu Z, Slocum RD, Kang S, Wang H, Jiang HW, Veerappa R, Romanovicz D, Nam JC, Birk S, Clark G, Roux SJ. Constitutive expression of a pea apyrase, psNTP9, increases seed yield in field-grown soybean. Sci Rep 2022; 12:10870. [PMID: 35760854 PMCID: PMC9237067 DOI: 10.1038/s41598-022-14821-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 06/13/2022] [Indexed: 12/02/2022] Open
Abstract
To address the demand for food by a rapidly growing human population, agricultural scientists have carried out both plant breeding and genetic engineering research. Previously, we reported that the constitutive expression of a pea apyrase (Nucleoside triphosphate, diphosphohydrolase) gene, psNTP9, under the control of the CaMV35S promoter, resulted in soybean plants with an expanded root system architecture, enhanced drought resistance and increased seed yield when they are grown in greenhouses under controlled conditions. Here, we report that psNTP9-expressing soybean lines also show significantly enhanced seed yields when grown in multiple different field conditions at multiple field sites, including when the gene is introgressed into elite germplasm. The transgenic lines have higher leaf chlorophyll and soluble protein contents and decreased stomatal density and cuticle permeability, traits that increase water use efficiency and likely contribute to the increased seed yields of field-grown plants. These altered properties are explained, in part, by genome-wide gene expression changes induced by the transgene.
Collapse
Affiliation(s)
- Tanya Sabharwal
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA
| | | | - Robert D Slocum
- Program in Biological Sciences, Goucher College, Towson, MD, 21204, USA
| | - Seongjoon Kang
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Huan Wang
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Han-Wei Jiang
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Roopadarshini Veerappa
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Dwight Romanovicz
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Ji Chul Nam
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Simon Birk
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Greg Clark
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Stanley J Roux
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA.
| |
Collapse
|
16
|
Duong HN, Cho SH, Wang L, Pham AQ, Davies JM, Stacey G. Cyclic nucleotide-gated ion channel 6 is involved in extracellular ATP signaling and plant immunity. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:1386-1396. [PMID: 34919778 PMCID: PMC9206762 DOI: 10.1111/tpj.15636] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 12/05/2021] [Accepted: 12/09/2021] [Indexed: 06/02/2023]
Abstract
Extracellular ATP (eATP) is known to act as a danger signal in both plants and animals. In plants, eATP is recognized by the plasma membrane (PM)-localized receptor P2K1 (LecRK-I.9). Among the first measurable responses to eATP addition is a rapid rise in cytoplasmic free calcium levels ([Ca2+ ]cyt ), which requires P2K1. However, the specific transporter/channel proteins that mediate this rise in [Ca2+ ]cyt are unknown. Through a forward genetic screen, we identified an Arabidopsis ethylmethanesulfonate (EMS) mutant impaired in the [Ca2+ ]cyt response to eATP. Positional cloning revealed that the mutation resided in the cngc6 gene, which encodes cyclic nucleotide-gated ion channel 6 (CNGC6). Mutation of the CNGC6 gene led to a notable decrease in the PM inward Ca2+ current in response to eATP. eATP-induced mitogen-activated protein kinase activation and gene expression were also significantly lower in cngc6 mutant plants. In addition, cngc6 mutant plants were also more susceptible to the bacterial pathogen Pseudomonas syringae. Taken together, our results indicate that CNGC6 plays a crucial role in mediating eATP-induced [Ca2+ ]cyt signaling, as well as plant immunity.
Collapse
Affiliation(s)
- Ha N. Duong
- Divisions of Plant Sciences and Technology and Biochemistry, National Center for Soybean Biotechnology, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Sung-Hwan Cho
- Divisions of Plant Sciences and Technology and Biochemistry, National Center for Soybean Biotechnology, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Limin Wang
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
| | - An Q. Pham
- Divisions of Plant Sciences and Technology and Biochemistry, National Center for Soybean Biotechnology, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Julia M. Davies
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
| | - Gary Stacey
- Divisions of Plant Sciences and Technology and Biochemistry, National Center for Soybean Biotechnology, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
17
|
Wang D, Chen F, Wang CY, Han X, Dai CC. Early stem growth mutation alters metabolic flux changes enhance sesquiterpenoids biosynthesis in Atractylodes lancea (Thunb.) DC. PLANT CELL, TISSUE AND ORGAN CULTURE 2022; 149:467-483. [PMID: 35125570 PMCID: PMC8806136 DOI: 10.1007/s11240-022-02240-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/21/2022] [Indexed: 06/14/2023]
Abstract
Atractylodes lancea (Thunb.) DC. is a well-known medicinal herb in China, containing abundant active components, including a variety of sesquiterpenoids. Owing to a shortage of wild resources, artificial cultivation has become the main breeding mode, leading to the germplasm degradation. In preliminary research, our research group found that a mutant tissue culture seedling of A. lancea is an excellent germplasm resource, characterized by early stem growth and higher sesquiterpenoid content than that of the wild type. In this study, the physiological and biochemical mechanisms underlying efficient sesquiterpenoids synthesis by this mutant A. lancea were systematically evaluated. The results showed that the photosynthetic efficiency, central carbon metabolism efficiency, and energy metabolism efficiency were significantly improved in mutant A. lancea compared with the wild type, and the content of endogenous hormones, such as gibberellin and jasmonic acid, changed significantly. In addition, levels of key metabolites and the expression level of key genes in the mevalonate and 2-C-methyl-d-erythritol-4-phosphate pathways were significantly higher in mutant type than in wild type, resulting in elevated sesquiterpenoid synthesis in the mutant. These physiological and biochemical properties explain the rapid growth and high sesquiterpenoid content of mutant A. lancea. Supplementary Information The online version contains supplementary material available at 10.1007/s11240-022-02240-5.
Collapse
Affiliation(s)
- Di Wang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, School of Life Sciences, Nanjing Normal University, Nanjing, 210023 China
- Nanjing Engineering Research Center for Functional Components Development of Featured Biological Resources, School of Life Sciences, Nanjing Normal University, Nanjing, 210023 China
| | - Fei Chen
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, School of Life Sciences, Nanjing Normal University, Nanjing, 210023 China
- Nanjing Engineering Research Center for Functional Components Development of Featured Biological Resources, School of Life Sciences, Nanjing Normal University, Nanjing, 210023 China
| | - Chun-Yan Wang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, School of Life Sciences, Nanjing Normal University, Nanjing, 210023 China
- Nanjing Engineering Research Center for Functional Components Development of Featured Biological Resources, School of Life Sciences, Nanjing Normal University, Nanjing, 210023 China
| | - Xu Han
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, School of Life Sciences, Nanjing Normal University, Nanjing, 210023 China
- Nanjing Engineering Research Center for Functional Components Development of Featured Biological Resources, School of Life Sciences, Nanjing Normal University, Nanjing, 210023 China
| | - Chuan-Chao Dai
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, School of Life Sciences, Nanjing Normal University, Nanjing, 210023 China
| |
Collapse
|
18
|
Smith SJ, Goodman H, Kroon JTM, Brown AP, Simon WJ, Chivasa S. Isolation of Arabidopsis extracellular ATP binding proteins by affinity proteomics and identification of PHOSPHOLIPASE C-LIKE 1 as an extracellular protein essential for fumonisin B1 toxicity. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:1387-1400. [PMID: 33735457 DOI: 10.1111/tpj.15243] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 02/18/2021] [Accepted: 03/08/2021] [Indexed: 05/21/2023]
Abstract
ATP is secreted to the extracellular matrix, where it activates plasma membrane receptors for controlling plant growth and stress-adaptive processes. DOES NOT RESPOND TO NUCLEOTIDES 1 (DORN1), was the first plant ATP receptor to be identified but key downstream proteins remain sought after. Here, we identified 120 proteins secreted by Arabidopsis cell cultures and screened them for putative stress-responsive proteins using ATP-affinity purification. We report three Arabidopsis proteins isolated by ATP-affinity: PEROXIDASE 52, SUBTILASE-LIKE SERINE PROTEASE 1.7 and PHOSPHOLIPASE C-LIKE 1. In wild-type Arabidopsis, the expression of genes encoding all three proteins responded to fumonisin B1, a cell death-activating mycotoxin. The expression of PEROXIDASE 52 and PHOSPHOLIPASE C-LIKE 1 was altered in fumonisin B1-resistant salicylic acid induction-deficient (sid2) mutants. Exposure to fumonisin B1 suppressed PHOSPHOLIPASE C-LIKE 1 expression in sid2 mutants, suggesting that the inactivation of this gene might provide mycotoxin tolerance. Accordingly, gene knockout mutants of PHOSPHOLIPASE C-LIKE 1 were resistant to fumonisin B1-induced death. The activation of PHOSPHOLIPASE C-LIKE 1 gene expression by exogenous ATP was not blocked in dorn1 loss-of-function mutants, indicating that DORN1 is not required. Furthermore, exogenous ATP rescued both the wild type and the dorn1 mutants from fumonisin-B1 toxicity, suggesting that different ATP receptor(s) are operational in this process. Our results point to the existence of additional plant ATP receptor(s) and provide crucial downstream targets for use in designing screens to identify these receptors. Finally, PHOSPHOLIPASE C-LIKE 1 serves as a convergence point for fumonisin B1 and extracellular ATP signalling, and functions in the Arabidopsis stress response to fumonisin B1.
Collapse
Affiliation(s)
- Sarah J Smith
- Department of Biosciences, Durham University, Durham, DH1 3LE, UK
| | - Heather Goodman
- Department of Biosciences, Durham University, Durham, DH1 3LE, UK
| | - Johan T M Kroon
- Department of Biosciences, Durham University, Durham, DH1 3LE, UK
| | - Adrian P Brown
- Department of Biosciences, Durham University, Durham, DH1 3LE, UK
| | - William J Simon
- Department of Biosciences, Durham University, Durham, DH1 3LE, UK
| | - Stephen Chivasa
- Department of Biosciences, Durham University, Durham, DH1 3LE, UK
| |
Collapse
|
19
|
Shah AN, Tanveer M, Abbas A, Fahad S, Baloch MS, Ahmad MI, Saud S, Song Y. Targeting salt stress coping mechanisms for stress tolerance in Brassica: A research perspective. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 158:53-64. [PMID: 33296846 DOI: 10.1016/j.plaphy.2020.11.044] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 11/18/2020] [Indexed: 05/02/2023]
Abstract
Brassica genus comprises numerous cultivated brassica species with various economic importance. Salt stress is an overwhelming problem causing serious losses in Brassica species (e.g. B. napus, B. rapa, B. oleracea, B. juncea) growth and grain yield production by inducing ionic and ROS toxicity. Given that a significant variation exists in salt tolerance level in Brassica genus, Brassica species exhibited numerous salt tolerance mechanisms which were either overlooked or given less importance to improve and understand innate salt stress tolerance mechanism in Brassica species. In this review, we tried to highlight the importance and recent findings relating to some overlooked and potential mechanisms such as role of neurotransmitters, and role of cytosolic Ca2+ and ROS as signaling elements to enhance salt stress tolerance. Studies revealed that salt tolerant brassica species retained more K+ in leaf mesophyll which confers overall salinity tolerance in salt tolerance brassica species. Neurotransmitter such as melatonin, dopamiane and eATP regulates K+ and Ca2+ permeable ion channels and plays a very crucial role in ionic homeostasis under salinity stress in brassica. At the end, the numerous possible salt stress agronomic strategies were also discussed to mitigate the severity of the salt stress in Brassica species.
Collapse
Affiliation(s)
- Adnan Noor Shah
- School of Agronomy, Anhui Agricultural University, Hefei, 230036, China
| | - Mohsin Tanveer
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Australia
| | - Asad Abbas
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Shah Fahad
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou, 570228, Hainan, China; Department of Agronomy, The University of Haripur, Haripur, 22620, Pakistan
| | - Mohammad Safdar Baloch
- Department of Agronomy, Faculty of Agriculture, Gomal University, Dera Ismail Khan, 29050, KPK, Pakistan
| | | | - Shah Saud
- Department of Horticulture, Northeast Agricultural University, Harbin, 150030, China
| | - Youhong Song
- School of Agronomy, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
20
|
Helliwell KE, Harrison EL, Christie-Oleza JA, Rees AP, Kleiner FH, Gaikwad T, Downe J, Aguilo-Ferretjans MM, Al-Moosawi L, Brownlee C, Wheeler GL. A Novel Ca 2+ Signaling Pathway Coordinates Environmental Phosphorus Sensing and Nitrogen Metabolism in Marine Diatoms. Curr Biol 2020; 31:978-989.e4. [PMID: 33373640 DOI: 10.1016/j.cub.2020.11.073] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 10/26/2020] [Accepted: 11/30/2020] [Indexed: 10/22/2022]
Abstract
Diatoms are a diverse and globally important phytoplankton group, responsible for an estimated 20% of carbon fixation on Earth. They frequently form spatially extensive phytoplankton blooms, responding rapidly to increased availability of nutrients, including phosphorus (P) and nitrogen (N). Although it is well established that diatoms are common first responders to nutrient influxes in aquatic ecosystems, little is known of the sensory mechanisms that they employ for nutrient perception. Here, we show that P-limited diatoms use a Ca2+-dependent signaling pathway, not previously described in eukaryotes, to sense and respond to the critical macronutrient P. We demonstrate that P-Ca2+ signaling is conserved between a representative pennate (Phaeodactylum tricornutum) and centric (Thalassiosira pseudonana) diatom. Moreover, this pathway is ecologically relevant, being sensitive to sub-micromolar concentrations of inorganic phosphate and a range of environmentally abundant P forms. Notably, we show that diatom recovery from P limitation requires rapid and substantial increases in N assimilation and demonstrate that this process is dependent on P-Ca2+ signaling. P-Ca2+ signaling thus governs the capacity of diatoms to rapidly sense and respond to P resupply, mediating fundamental cross-talk between the vital nutrients P and N and maximizing diatom resource competition in regions of pulsed nutrient supply.
Collapse
Affiliation(s)
- Katherine E Helliwell
- Marine Biological Association, The Laboratory, Citadel Hill, Plymouth PL1 2PB, UK; Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, UK.
| | - Ellen L Harrison
- Marine Biological Association, The Laboratory, Citadel Hill, Plymouth PL1 2PB, UK
| | | | - Andrew P Rees
- Plymouth Marine Laboratory, Plymouth, Devon PL1 3DH, UK
| | - Friedrich H Kleiner
- Marine Biological Association, The Laboratory, Citadel Hill, Plymouth PL1 2PB, UK
| | - Trupti Gaikwad
- Marine Biological Association, The Laboratory, Citadel Hill, Plymouth PL1 2PB, UK
| | - Joshua Downe
- Marine Biological Association, The Laboratory, Citadel Hill, Plymouth PL1 2PB, UK
| | | | | | - Colin Brownlee
- Marine Biological Association, The Laboratory, Citadel Hill, Plymouth PL1 2PB, UK; School of Ocean and Earth Science, University of Southampton, Southampton SO14 3ZH, UK
| | - Glen L Wheeler
- Marine Biological Association, The Laboratory, Citadel Hill, Plymouth PL1 2PB, UK
| |
Collapse
|
21
|
Pham AQ, Cho SH, Nguyen CT, Stacey G. Arabidopsis Lectin Receptor Kinase P2K2 Is a Second Plant Receptor for Extracellular ATP and Contributes to Innate Immunity. PLANT PHYSIOLOGY 2020; 183:1364-1375. [PMID: 32345768 PMCID: PMC7333714 DOI: 10.1104/pp.19.01265] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 04/14/2020] [Indexed: 05/18/2023]
Abstract
In animals, extracellular ATP is a well-studied signaling molecule that is recognized by plasma membrane-localized P2-type purinergic receptors. However, in contrast, much less is known about purinergic signaling in plants. P2 receptors play critical roles in a variety of animal biological processes, including immune system regulation. The first plant purinergic receptor, Arabidopsis (Arabidopsis thaliana) P2K1 (L-type lectin receptor kinase-I.9), was shown to contribute to plant defense against bacterial, oomycete, and fungal pathogens. Here, we demonstrate the isolation of a second purinergic receptor, P2K2, by complementation of an Arabidopsis p2k1 mutant. P2K2 (LecRK-I.5) has 74% amino acid similarity to P2K1. The P2K2 extracellular lectin domain binds to ATP with higher affinity than P2K1 (dissociation constant [K d] = 44.47 ± 15.73 nm). Interestingly, p2k2 and p2k1 p2k2 mutant plants showed increased susceptibility to the pathogen Pseudomonas syringae, with the double mutant showing a stronger phenotype. In vitro and in planta studies demonstrate that P2K2 and P2K1 interact and cross-phosphorylate upon extracellular ATP treatment. Thus, similar to animals, plants possess multiple purinergic receptors.
Collapse
Affiliation(s)
- An Quoc Pham
- Divisions of Plant Science and Biochemistry, C.S. Bond Life Science Center, University of Missouri, Columbia, Missouri 65211
| | - Sung-Hwan Cho
- Divisions of Plant Science and Biochemistry, C.S. Bond Life Science Center, University of Missouri, Columbia, Missouri 65211
| | - Cuong The Nguyen
- Divisions of Plant Science and Biochemistry, C.S. Bond Life Science Center, University of Missouri, Columbia, Missouri 65211
- Cuu Long Delta Rice Research Institute, Cantho 00000, Vietnam
| | - Gary Stacey
- Divisions of Plant Science and Biochemistry, C.S. Bond Life Science Center, University of Missouri, Columbia, Missouri 65211
| |
Collapse
|
22
|
Dong X, Zhu R, Kang E, Shang Z. RRFT1 (Redox Responsive Transcription Factor 1) is involved in extracellular ATP-regulated gene expression in Arabidopsis thaliana seedlings. PLANT SIGNALING & BEHAVIOR 2020; 15:1748282. [PMID: 32248742 PMCID: PMC7238875 DOI: 10.1080/15592324.2020.1748282] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 03/22/2020] [Accepted: 03/24/2020] [Indexed: 06/11/2023]
Abstract
As an apoplast signal molecule, extracellular ATP (eATP) is involved in the growth regulation of Arabidopsis thaliana seedlings. Recently, RRFT1 was revealed to be involved in eATP- regulated seedling growth. To further verify the role of RRTF1 in seedlings' eATP response, expression of 20 eATP-responsive genes in wild type (Col-0) and RRTF1 null mutant (rrtf1-1) seedlings were investigated by using realtime quantitative PCR. After 0.5 mM ATP stimulation, the response of these genes' expression in rrtf1-1 seedlings was significantly different from that in Col-0 seedlings. Proteins which are encoded by these genes include transcription factors, plasma membrane receptors like kinases, ion influx/efflux transporters and hormone signaling components. The results indicated that RRTF1 may be involved in eATP regulated physiological responses via regulating the expression of some functional genes.
Collapse
Affiliation(s)
- Xiaoxia Dong
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, China
| | - Ruojia Zhu
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, China
| | - Erfang Kang
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, China
| | - Zhonglin Shang
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, China
| |
Collapse
|
23
|
Chivasa S. Insights into Plant Extracellular ATP Signaling Revealed by the Discovery of an ATP-Regulated Transcription Factor. PLANT & CELL PHYSIOLOGY 2020; 61:673-674. [PMID: 32170935 DOI: 10.1093/pcp/pcaa033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 03/11/2020] [Indexed: 06/10/2023]
Affiliation(s)
- Stephen Chivasa
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK
| |
Collapse
|
24
|
Zhu R, Dong X, Xue Y, Xu J, Zhang A, Feng M, Zhao Q, Xia S, Yin Y, He S, Li Y, Liu T, Kang E, Shang Z. Redox-Responsive Transcription Factor 1 (RRFT1) Is Involved in Extracellular ATP-Regulated Arabidopsis thaliana Seedling Growth. PLANT & CELL PHYSIOLOGY 2020; 61:685-698. [PMID: 32049334 DOI: 10.1093/pcp/pcaa014] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 01/31/2020] [Indexed: 05/21/2023]
Abstract
Extracellular adenosine triphosphate (eATP) is an apoplastic signaling molecule that plays an essential role in the growth and development of plants. Arabidopsis seedlings have been reported to respond to eATP; however, the downstream signaling components are still not well understood. In this study, we report that an ethylene-responsive factor, Redox-Responsive Transcription Factor 1 (RRTF1), is involved in eATP-regulated Arabidopsis thaliana seedling growth. Exogenous adenosine triphosphate inhibited green seedling root growth and induced hypocotyl bending of etiolated seedlings. RRTF1 loss-of-function mutant (rrtf1) seedlings showed decreased responses to eATP, while its complementation or overexpression led to recovered or increased eATP responsiveness. RRTF1 was expressed rapidly after eATP stimulation and then migrated into the nuclei of root tip cells. eATP-induced auxin accumulation in root tip or hypocotyl cells was impaired in rrtf1. Chromatin immunoprecipitation and high-throughput sequencing results indicated that eATP induced some genes related to cell growth and development in wild type but not in rrtf1 cells. These results suggest that RRTF1 may be involved in eATP signaling by regulating functional gene expression and cell metabolism in Arabidopsis seedlings.
Collapse
Affiliation(s)
- Ruojia Zhu
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, Hebei, China
- College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei, China
| | - Xiaoxia Dong
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, Hebei, China
- Department of Chemistry Engineering and Biological Technology, Xingtai University, Xingtai 054001, Hebei, China
| | - Yingying Xue
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, Hebei, China
| | - Jiawei Xu
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, Hebei, China
| | - Aiqi Zhang
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, Hebei, China
| | - Meng Feng
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, Hebei, China
| | - Qing Zhao
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, Hebei, China
| | - Shuyan Xia
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, Hebei, China
| | - Yahong Yin
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, Hebei, China
| | - Shihua He
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, Hebei, China
| | - Yuke Li
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, Hebei, China
| | - Ting Liu
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, Hebei, China
| | - Erfang Kang
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, Hebei, China
| | - Zhonglin Shang
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, Hebei, China
| |
Collapse
|
25
|
Li Q, Wang C, Mou Z. Perception of Damaged Self in Plants. PLANT PHYSIOLOGY 2020; 182:1545-1565. [PMID: 31907298 PMCID: PMC7140957 DOI: 10.1104/pp.19.01242] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 12/16/2019] [Indexed: 05/04/2023]
Abstract
Plants use specific receptor proteins on the cell surface to detect host-derived danger signals released in response to attacks by pathogens or herbivores and activate immune responses against them.
Collapse
Affiliation(s)
- Qi Li
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida 32611
| | - Chenggang Wang
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida 32611
| | - Zhonglin Mou
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida 32611
| |
Collapse
|
26
|
Matthus E, Sun J, Wang L, Bhat MG, Mohammad-Sidik AB, Wilkins KA, Leblanc-Fournier N, Legué V, Moulia B, Stacey G, Davies JM. DORN1/P2K1 and purino-calcium signalling in plants: making waves with extracellular ATP. ANNALS OF BOTANY 2020; 124:1227-1242. [PMID: 31904093 PMCID: PMC6943698 DOI: 10.1093/aob/mcz135] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Indexed: 05/03/2023]
Abstract
BACKGROUND AND AIMS Extracellular ATP governs a range of plant functions, including cell viability, adaptation and cross-kingdom interactions. Key functions of extracellular ATP in leaves and roots may involve an increase in cytosolic free calcium as a second messenger ('calcium signature'). The main aim here was to determine to what extent leaf and root calcium responses require the DORN1/P2K1 extracellular ATP receptor in Arabidopsis thaliana. The second aim was to test whether extracellular ATP can generate a calcium wave in the root. METHODS Leaf and root responses to extracellular ATP were reviewed for their possible links to calcium signalling and DORN1/P2K1. Leaves and roots of wild type and dorn1 plants were tested for cytosolic calcium increase in response to ATP, using aequorin. The spatial abundance of DORN1/P2K1 in the root was estimated using green fluorescent protein. Wild type roots expressing GCaMP3 were used to determine the spatial variation of cytosolic calcium increase in response to extracellular ATP. KEY RESULTS Leaf and root ATP-induced calcium signatures differed markedly. The leaf signature was only partially dependent on DORN1/P2K1, while the root signature was fully dependent. The distribution of DORN1/P2K1 in the root supports a key role in the generation of the apical calcium signature. Root apical and sub-apical calcium signatures may operate independently of each other but an apical calcium increase can drive a sub-apical increase, consistent with a calcium wave. CONCLUSION DORN1 could underpin several calcium-related responses but it may not be the only receptor for extracellular ATP in Arabidopsis. The root has the capacity for a calcium wave, triggered by extracellular ATP at the apex.
Collapse
Affiliation(s)
- Elsa Matthus
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - Jian Sun
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
- Institute of Integrative Plant Biology, School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Limin Wang
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - Madhura G Bhat
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | | | - Katie A Wilkins
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | | | - Valérie Legué
- Université Clermont Auvergne, INRA, PIAF, Clermont-Ferrand, France
| | - Bruno Moulia
- Université Clermont Auvergne, INRA, PIAF, Clermont-Ferrand, France
| | - Gary Stacey
- Divisions of Plant Science and Biochemistry, University of Missouri, Columbia, MO, USA
| | - Julia M Davies
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
- For correspondence. E-mail
| |
Collapse
|
27
|
Tanveer M, Shabala S. Neurotransmitters in Signalling and Adaptation to Salinity Stress in Plants. NEUROTRANSMITTERS IN PLANT SIGNALING AND COMMUNICATION 2020. [DOI: 10.1007/978-3-030-54478-2_3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
28
|
Wang L, Stacey G, Leblanc-Fournier N, Legué V, Moulia B, Davies JM. Early Extracellular ATP Signaling in Arabidopsis Root Epidermis: A Multi-Conductance Process. FRONTIERS IN PLANT SCIENCE 2019; 10:1064. [PMID: 31552068 PMCID: PMC6737080 DOI: 10.3389/fpls.2019.01064] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 08/06/2019] [Indexed: 05/13/2023]
Abstract
Adenosine 5'-triphosphate (ATP) is an important extracellular signaling agent, operating in growth regulation, stomatal conductance, and wound response. With the first receptor for extracellular ATP now identified in plants (P2K1/DORN1) and a plasma membrane NADPH oxidase revealed as its target, the search continues for the components of the signaling cascades they command. The Arabidopsis root elongation zone epidermal plasma membrane has recently been shown to contain cation transport pathways (channel conductances) that operate downstream of P2K1 and could contribute to extracellular ATP (eATP) signaling. Here, patch clamp electrophysiology has been used to delineate two further conductances from the root elongation zone epidermal plasma membrane that respond to eATP, including one that would permit chloride transport. This perspective addresses how these conductances compare to those previously characterized in roots and how they might operate together to enable early events in eATP signaling, including elevation of cytosolic-free calcium as a second messenger. The role of the reactive oxygen species (ROS) that could arise from eATP's activation of NADPH oxidases is considered in a qualitative model that also considers the regulation of plasma membrane potential by the concerted action of the various cation and anion conductances. The molecular identities of the channel conductances in eATP signaling remain enigmatic but may yet be found in the multigene families of glutamate receptor-like channels, cyclic nucleotide-gated channels, annexins, and aluminum-activated malate transporters.
Collapse
Affiliation(s)
- Limin Wang
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Gary Stacey
- Divisions of Plant Science and Biochemistry, University of Missouri, Columbia, MO, United States
| | | | - Valérie Legué
- Université Clermont Auvergne, INRA, PIAF, Clermont-Ferrand, France
| | - Bruno Moulia
- Université Clermont Auvergne, INRA, PIAF, Clermont-Ferrand, France
| | - Julia M. Davies
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
- *Correspondence: Julia M. Davies,
| |
Collapse
|
29
|
Veerappa R, Slocum RD, Siegenthaler A, Wang J, Clark G, Roux SJ. Ectopic expression of a pea apyrase enhances root system architecture and drought survival in Arabidopsis and soybean. PLANT, CELL & ENVIRONMENT 2019; 42:337-353. [PMID: 30132918 DOI: 10.1111/pce.13425] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 08/13/2018] [Indexed: 05/27/2023]
Abstract
Ectoapyrases (ecto-NTPDases) function to decrease levels of extracellular ATP and ADP in animals and plants. Prior studies showed that ectopic expression of a pea ectoapyrase, psNTP9, enhanced growth in Arabidopsis seedlings and that the overexpression of the two Arabidopsis apyrases most closely related to psNTP9 enhanced auxin transport and growth in Arabidopsis. These results predicted that ectopic expression of psNTP9 could promote a more extensive root system architecture (RSA) in Arabidopsis. We confirmed that transgenic Arabidopsis seedlings had longer primary roots, more lateral roots, and more and longer root hairs than wild-type plants. Because RSA influences water uptake, we tested whether the transgenic plants could tolerate osmotic stress and water deprivation better than wild-type plants, and we confirmed these properties. Transcriptomic analyses revealed gene expression changes in the transgenic plants that helped account for their enhanced RSA and improved drought tolerance. The effects of psNTP9 were not restricted to Arabidopsis, because its expression in soybeans improved the RSA, growth, and seed yield of this crop and supported higher survival in response to drought. Our results indicate that in both Arabidopsis and soybeans, the constitutive expression of psNTP9 results in a more extensive RSA and improved survival in drought stress conditions.
Collapse
Affiliation(s)
| | - Robert D Slocum
- Department of Biological Sciences, Goucher College, Towson, Maryland
| | | | - Jing Wang
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas
| | - Greg Clark
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas
| | - Stanley J Roux
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas
| |
Collapse
|
30
|
Clark G, Roux SJ. Role of Ca 2+ in Mediating Plant Responses to Extracellular ATP and ADP. Int J Mol Sci 2018; 19:E3590. [PMID: 30441766 PMCID: PMC6274673 DOI: 10.3390/ijms19113590] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 11/08/2018] [Indexed: 12/30/2022] Open
Abstract
Among the most recently discovered chemical regulators of plant growth and development are extracellular nucleotides, especially extracellular ATP (eATP) and extracellular ADP (eADP). Plant cells release ATP into their extracellular matrix under a variety of different circumstances, and this eATP can then function as an agonist that binds to a specific receptor and induces signaling changes, the earliest of which is an increase in the concentration of cytosolic calcium ([Ca2+]cyt). This initial change is then amplified into downstream-signaling changes that include increased levels of reactive oxygen species and nitric oxide, which ultimately lead to major changes in the growth rate, defense responses, and leaf stomatal apertures of plants. This review presents and discusses the evidence that links receptor activation to increased [Ca2+]cyt and, ultimately, to growth and diverse adaptive changes in plant development. It also discusses the evidence that increased [Ca2+]cyt also enhances the activity of apyrase (nucleoside triphosphate diphosphohydrolase) enzymes that function in multiple subcellular locales to hydrolyze ATP and ADP, and thus limit or terminate the effects of these potent regulators.
Collapse
Affiliation(s)
- Greg Clark
- Department of Molecular Biosciences, University of Texas, Austin, TX 78712, USA.
| | - Stanley J Roux
- Department of Molecular Biosciences, University of Texas, Austin, TX 78712, USA.
| |
Collapse
|
31
|
Molecular Mechanism of Plant Recognition of Extracellular ATP. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1051:233-253. [PMID: 29064066 DOI: 10.1007/5584_2017_110] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Adenosine 5'-triphosphate (ATP), a ubiquitously dispersed biomolecule, is not only a major source of biochemical energy for living cells, but also acts as a critical signaling molecule through inter-cellular communication. Recent studies have clearly shown that extracellular ATP is involved in various physiological processes in plants, including root growth, stomata movement, pollen tube development, gravitropism, and abiotic/biotic stress responses. The first plant purinergic receptor for extracellular ATP, DORN1 (the founding member of the P2K family of purinergic receptors), was identified in Arabidopsis thaliana by a forward genetic screen. DORN1 consists of an extracellular lectin domain, transmembrane domain, and serine/threonine kinase, intracellular domain. The predicted structure of the DORN1 extracellular domain revealed putative key ATP binding residues but an apparent lack of sugar binding. In this chapter, we summarize recent studies on the molecular mechanism of plant recognition of extracellular ATP with specific reference to the role of DORN1.
Collapse
|
32
|
He P, Xiao G, Liu H, Zhang L, Zhao L, Tang M, Huang S, An Y, Yu J. Two pivotal RNA editing sites in the mitochondrial atp1mRNA are required for ATP synthase to produce sufficient ATP for cotton fiber cell elongation. THE NEW PHYTOLOGIST 2018; 218:167-182. [PMID: 29417579 DOI: 10.1111/nph.14999] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 12/14/2017] [Indexed: 06/08/2023]
Abstract
RNA editing is a post-transcriptional maturation process affecting organelle transcripts in land plants. However, the molecular functions and physiological roles of RNA editing are still poorly understood. Using high-throughput sequencing, we identified 692 RNA editing sites in the Gossypium hirsutum mitochondrial genome. A total of 422 editing sites were found in the coding regions and all the edits are cytidine (C) to uridine (U) conversions. Comparative analysis showed that two editing sites in Ghatp1, C1292 and C1415, had a prominent difference in editing efficiency between fiber and ovule. Biochemical and genetic analyses revealed that the two vital editing sites were important for the interaction between the α and β subunits of ATP synthase, which resulted in ATP accumulation and promoted cell growth in yeast. Ectopic expression of C1292, C1415, or doubly edited Ghatp1 in Arabidopsis caused a significant increase in the number of trichomes in leaves and root length. Our results indicate that editing at C1292 and C1415 sites in Ghatp1 is crucial for ATP synthase to produce sufficient ATP for cotton fiber cell elongation. This work extends our understanding of RNA editing in atp1 and ATP synthesis, and provides insights into the function of mitochondrial edited Atp1 protein in higher plants.
Collapse
Affiliation(s)
- Peng He
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Guanghui Xiao
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Hao Liu
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Lihua Zhang
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Li Zhao
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Meiju Tang
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Sheng Huang
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Yingjie An
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Jianing Yu
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| |
Collapse
|
33
|
Extracellular ATP elicits DORN1-mediated RBOHD phosphorylation to regulate stomatal aperture. Nat Commun 2017; 8:2265. [PMID: 29273780 PMCID: PMC5741621 DOI: 10.1038/s41467-017-02340-3] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 11/21/2017] [Indexed: 02/05/2023] Open
Abstract
In addition to acting as a cellular energy source, ATP can also act as a damage-associated molecular pattern in both animals and plants. Stomata are leaf pores that control gas exchange and, therefore, impact critical functions such as photosynthesis, drought tolerance, and also are the preferred entry point for pathogens. Here we show the addition of ATP leads to the rapid closure of leaf stomata and enhanced resistance to the bacterial pathogen Psuedomonas syringae. This response is mediated by ATP recognition by the receptor DORN1, followed by direct phosphorylation of the NADPH oxidase RBOHD, resulting in elevated production of reactive oxygen species and stomatal closure. Mutation of DORN1 phosphorylation sites on RBOHD eliminates the ability of ATP to induce stomatal closure. The data implicate purinergic signaling via DORN1 in the control of stomatal aperture with important implications for the control of plant photosynthesis, water homeostasis, pathogen resistance, and ultimately yield. Extracellular ATP acts as a damage-associated molecular pattern that triggers signaling responses to wounding and environmental stimuli in plants. Here Chen et al. show that ATP perception by DORN1 can trigger stomatal closure mediated via RBOHD phosphorylation and ROS production.
Collapse
|
34
|
Kumar Tripathy M, Weeraratne G, Clark G, Roux SJ. Apyrase inhibitors enhance the ability of diverse fungicides to inhibit the growth of different plant-pathogenic fungi. MOLECULAR PLANT PATHOLOGY 2017; 18:1012-1023. [PMID: 27392542 PMCID: PMC6638264 DOI: 10.1111/mpp.12458] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 06/24/2016] [Accepted: 07/06/2016] [Indexed: 06/06/2023]
Abstract
A previous study has demonstrated that the treatment of Arabidopsis plants with chemical inhibitors of apyrase enzymes increases their sensitivity to herbicides. In this study, we found that the addition of the same or related apyrase inhibitors could potentiate the ability of different fungicides to inhibit the growth of five different pathogenic fungi in plate growth assays. The growth of all five fungi was partially inhibited by three commonly used fungicides: copper octanoate, myclobutanil and propiconazole. However, when these fungicides were individually tested in combination with any one of four different apyrase inhibitors (AI.1, AI.10, AI.13 or AI.15), their potency to inhibit the growth of five fungal pathogens was increased significantly relative to their application alone. The apyrase inhibitors were most effective in potentiating the ability of copper octanoate to inhibit fungal growth, and least effective in combination with propiconazole. Among the five pathogens assayed, that most sensitive to the fungicide-potentiating effects of the inhibitors was Sclerotinia sclerotiorum. Overall, among the 60 treatment combinations tested (five pathogens, four apyrase inhibitors, three fungicides), the addition of apyrase inhibitors increased significantly the sensitivity of fungi to the fungicide treatments in 53 of the combinations. Consistent with their predicted mode of action, inhibitors AI.1, AI.10 and AI.13 each increased the level of propiconazole retained in one of the fungi, suggesting that they could partially block the ability of efflux transporters to remove propiconazole from these fungi.
Collapse
Affiliation(s)
- Manas Kumar Tripathy
- Department of Molecular BiosciencesUniversity of Texas at AustinAustinTX78712USA
| | - Gayani Weeraratne
- Department of Molecular BiosciencesUniversity of Texas at AustinAustinTX78712USA
| | - Greg Clark
- Department of Molecular BiosciencesUniversity of Texas at AustinAustinTX78712USA
| | - Stanley J. Roux
- Department of Molecular BiosciencesUniversity of Texas at AustinAustinTX78712USA
| |
Collapse
|
35
|
Zhu R, Dong X, Hao W, Gao W, Zhang W, Xia S, Liu T, Shang Z. Heterotrimeric G Protein-Regulated Ca 2+ Influx and PIN2 Asymmetric Distribution Are Involved in Arabidopsis thaliana Roots' Avoidance Response to Extracellular ATP. FRONTIERS IN PLANT SCIENCE 2017; 8:1522. [PMID: 28919907 PMCID: PMC5585194 DOI: 10.3389/fpls.2017.01522] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 08/18/2017] [Indexed: 05/04/2023]
Abstract
Extracellular ATP (eATP) has been reported to be involved in plant growth as a primary messenger in the apoplast. Here, roots of Arabidopsis thaliana seedlings growing in jointed medium bent upon contact with ATP-containing medium to keep away from eATP, showing a marked avoidance response. Roots responded similarly to ADP and bz-ATP but did not respond to AMP and GTP. The eATP avoidance response was reduced in loss-of-function mutants of heterotrimeric G protein α subunit (Gα) (gpa1-1 and gpa1-2) and enhanced in Gα-over-expression (OE) lines (wGα and cGα). Ethylenebis(oxyethylenenitrilo) tetraacetic acid (EGTA) and Gd3+ remarkably suppressed eATP-induced root bending. ATP-stimulated Ca2+ influx was impaired in Gα null mutants and increased in its OE lines. DR5-GFP and PIN2 were asymmetrically distributed in ATP-stimulated root tips, this effect was strongly suppressed by EGTA and diminished in Gα null mutants. In addition, some eATP-induced genes' expression was also impaired in Gα null mutants. Based on these results, we propose that heterotrimeric Gα-regulated Ca2+ influx and PIN2 distribution may be key signaling events in eATP sensing and avoidance response in Arabidopsis thaliana roots.
Collapse
|
36
|
Yang X, Wang B, Farris B, Clark G, Roux SJ. Modulation of Root Skewing in Arabidopsis by Apyrases and Extracellular ATP. PLANT & CELL PHYSIOLOGY 2015; 56:2197-206. [PMID: 26412783 DOI: 10.1093/pcp/pcv134] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 09/16/2015] [Indexed: 05/04/2023]
Abstract
When plant primary roots grow along a tilted surface that is impenetrable, they can undergo a slanted deviation from the direction of gravity called skewing. Skewing is induced by touch stimuli which the roots experience as they grow along the surface. Touch stimuli also induce the release of extracellular ATP (eATP) into the plant's extracellular matrix, and two apyrases (NTPDases) in Arabidopsis, APY1 and APY2, can help regulate the concentration of eATP. The primary roots of seedlings overexpressing APY1 show less skewing than wild-type plants. Plants suppressed in their expression of APY1 show more skewing than wild-type plants. Correspondingly, chemical inhibition of apyrase activity increased skewing in mutants and wild-type roots. Exogenous application of ATP or ATPγS also increased skewing in wild-type roots, which could be blocked by co-incubation with a purinergic receptor antagonist. These results suggest a model in which gradients of eATP set up by differential touch stimuli along roots help direct skewing in roots growing along an impenetrable surface.
Collapse
Affiliation(s)
- Xingyan Yang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400030, China
| | - Bochu Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400030, China
| | - Ben Farris
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Greg Clark
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Stanley J Roux
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
37
|
Polle A, Chen S. On the salty side of life: molecular, physiological and anatomical adaptation and acclimation of trees to extreme habitats. PLANT, CELL & ENVIRONMENT 2015; 38:1794-816. [PMID: 25159181 DOI: 10.1111/pce.12440] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Revised: 08/11/2014] [Accepted: 08/17/2014] [Indexed: 05/04/2023]
Abstract
Saline and sodic soils that cannot be used for agriculture occur worldwide. Cultivating stress-tolerant trees to obtain biomass from salinized areas has been suggested. Various tree species of economic importance for fruit, fibre and timber production exhibit high salinity tolerance. Little is known about the mechanisms enabling tree crops to cope with high salinity for extended periods. Here, the molecular, physiological and anatomical adjustments underlying salt tolerance in glycophytic and halophytic model tree species, such as Populus euphratica in terrestrial habitats, and mangrove species along coastlines are reviewed. Key mechanisms that have been identified as mediating salt tolerance are discussed at scales from the genetic to the morphological level, including leaf succulence and structural adjustments of wood anatomy. The genetic and transcriptomic bases for physiological salt acclimation are salt sensing and signalling networks that activate target genes; the target genes keep reactive oxygen species under control, maintain the ion balance and restore water status. Evolutionary adaptation includes gene duplication in these pathways. Strategies for and limitations to tree improvement, particularly transgenic approaches for increasing salt tolerance by transforming trees with single and multiple candidate genes, are discussed.
Collapse
Affiliation(s)
- Andrea Polle
- Forstbotanik und Baumphysiologie, Büsgen-Institut, Georg-August Universität Göttingen, Göttingen, 37077, Germany
| | - Shaoliang Chen
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| |
Collapse
|
38
|
Clark GB, Morgan RO, Fernandez MP, Salmi ML, Roux SJ. Breakthroughs spotlighting roles for extracellular nucleotides and apyrases in stress responses and growth and development. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 225:107-116. [PMID: 25017166 DOI: 10.1016/j.plantsci.2014.06.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 05/31/2014] [Accepted: 06/02/2014] [Indexed: 06/03/2023]
Abstract
Animal and plant cells release nucleotides into their extracellular matrix when touched, wounded, and when their plasma membranes are stretched during delivery of secretory vesicles and growth. These released nucleotides then function as signaling agents that induce rapid increases in the concentration of cytosolic calcium, nitric oxide and superoxide. These, in turn, are transduced into downstream physiological changes. These changes in plants include changes in the growth of diverse tissues, in gravitropism, and in the opening and closing of stomates. The concentration of extracellular nucleotides is controlled by various phosphatases, prominent among which are apyrases EC 3.6.1.5 (nucleoside triphosphate diphosphohydrolases, NTPDases). This review provides phylogenetic and pHMM analyses of plant apyrases as well as analysis of predicted post-translational modifications for Arabidopsis apyrases. This review also summarizes and discusses recent advances in research on the roles of apyrases and extracellular nucleotides in controlling plant growth and development. These include new findings that document how apyrases and extracellular nucleotides control auxin transport, modulate stomatal aperture, and mediate biotic and abiotic stress responses, and on how apyrase suppression leads to growth inhibition.
Collapse
Affiliation(s)
- Greg B Clark
- Department of Molecular Biosciences, University of Texas, Austin, TX 78713, USA
| | - Reginald O Morgan
- Department of Biochemistry and Molecular Biology, Faculty of Medicine and University Institute of Biotechnology of Asturias, University of Oviedo, E-33006 Oviedo, Spain
| | - Maria-Pilar Fernandez
- Department of Biochemistry and Molecular Biology, Faculty of Medicine and University Institute of Biotechnology of Asturias, University of Oviedo, E-33006 Oviedo, Spain
| | - Mari L Salmi
- Department of Molecular Biosciences, University of Texas, Austin, TX 78713, USA
| | - Stanley J Roux
- Department of Molecular Biosciences, University of Texas, Austin, TX 78713, USA.
| |
Collapse
|
39
|
Lim MH, Wu J, Yao J, Gallardo IF, Dugger JW, Webb LJ, Huang J, Salmi ML, Song J, Clark G, Roux SJ. Apyrase suppression raises extracellular ATP levels and induces gene expression and cell wall changes characteristic of stress responses. PLANT PHYSIOLOGY 2014; 164:2054-67. [PMID: 24550243 PMCID: PMC3982762 DOI: 10.1104/pp.113.233429] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 02/13/2014] [Indexed: 05/20/2023]
Abstract
Plant cells release ATP into their extracellular matrix as they grow, and extracellular ATP (eATP) can modulate the rate of cell growth in diverse tissues. Two closely related apyrases (APYs) in Arabidopsis (Arabidopsis thaliana), APY1 and APY2, function, in part, to control the concentration of eATP. The expression of APY1/APY2 can be inhibited by RNA interference, and this suppression leads to an increase in the concentration of eATP in the extracellular medium and severely reduces growth. To clarify how the suppression of APY1 and APY2 is linked to growth inhibition, the gene expression changes that occur in seedlings when apyrase expression is suppressed were assayed by microarray and quantitative real-time-PCR analyses. The most significant gene expression changes induced by APY suppression were in genes involved in biotic stress responses, which include those genes regulating wall composition and extensibility. These expression changes predicted specific chemical changes in the walls of mutant seedlings, and two of these changes, wall lignification and decreased methyl ester bonds, were verified by direct analyses. Taken together, the results are consistent with the hypothesis that APY1, APY2, and eATP play important roles in the signaling steps that link biotic stresses to plant defense responses and growth changes.
Collapse
|
40
|
Nucleotides and Nucleosides: Transport, Metabolism, and Signaling Function of Extracellular ATP. PROGRESS IN BOTANY 2014. [DOI: 10.1007/978-3-642-38797-5_4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
41
|
Tanaka K, Choi J, Cao Y, Stacey G. Extracellular ATP acts as a damage-associated molecular pattern (DAMP) signal in plants. FRONTIERS IN PLANT SCIENCE 2014; 5:446. [PMID: 25232361 PMCID: PMC4153020 DOI: 10.3389/fpls.2014.00446] [Citation(s) in RCA: 132] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 08/19/2014] [Indexed: 05/16/2023]
Abstract
As sessile organisms, plants have evolved effective mechanisms to protect themselves from environmental stresses. Damaged (i.e., wounded) plants recognize a variety of endogenous molecules as danger signals, referred to as damage-associated molecular patterns (DAMPs). ATP is among the molecules that are released by cell damage, and recent evidence suggests that ATP can serve as a DAMP. Although little studied in plants, extracellular ATP is well known for its signaling roles in animals, including acting as a DAMP during the inflammatory response and wound healing. If ATP acts outside the cell, then it is reasonable to expect that it is recognized by a plasma membrane-localized receptor. Recently, DORN1, a lectin receptor kinase, was shown to recognize extracellular ATP in Arabidopsis. DORN1 is the founding member of a new purinoceptor subfamily, P2K (P2 receptor kinase), which is plant-specific. P2K1 (DORN1) is required for ATP-induced cellular responses (e.g., cytosolic Ca(2+) elevation, MAPK phosphorylation, and gene expression). Genetic analysis of loss-of-function mutants and overexpression lines showed that P2K1 participates in the plant wound response, consistent with the role of ATP as a DAMP. In this review, we summarize past research on the roles and mechanisms of extracellular ATP signaling in plants, and discuss the direction of future research on extracellular ATP as a DAMP signal.
Collapse
Affiliation(s)
- Kiwamu Tanaka
- Department of Plant Pathology, Washington State UniversityPullman, WA, USA
- *Correspondence: Kiwamu Tanaka, Department of Plant Pathology, Washington State University, P.O. BOX 646430, Pullman, WA 99164, USA e-mail:
| | - Jeongmin Choi
- Division of Plant Sciences and Biochemistry, Christopher S. Bond Life Sciences Center, University of MissouriColumbia, MO, USA
| | - Yangrong Cao
- Division of Plant Sciences and Biochemistry, Christopher S. Bond Life Sciences Center, University of MissouriColumbia, MO, USA
| | - Gary Stacey
- Division of Plant Sciences and Biochemistry, Christopher S. Bond Life Sciences Center, University of MissouriColumbia, MO, USA
| |
Collapse
|
42
|
Tanaka K, Choi J, Cao Y, Stacey G. Extracellular ATP acts as a damage-associated molecular pattern (DAMP) signal in plants. FRONTIERS IN PLANT SCIENCE 2014. [PMID: 25232361 DOI: 10.3389/fpls.2014.00446.ecollection] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
As sessile organisms, plants have evolved effective mechanisms to protect themselves from environmental stresses. Damaged (i.e., wounded) plants recognize a variety of endogenous molecules as danger signals, referred to as damage-associated molecular patterns (DAMPs). ATP is among the molecules that are released by cell damage, and recent evidence suggests that ATP can serve as a DAMP. Although little studied in plants, extracellular ATP is well known for its signaling roles in animals, including acting as a DAMP during the inflammatory response and wound healing. If ATP acts outside the cell, then it is reasonable to expect that it is recognized by a plasma membrane-localized receptor. Recently, DORN1, a lectin receptor kinase, was shown to recognize extracellular ATP in Arabidopsis. DORN1 is the founding member of a new purinoceptor subfamily, P2K (P2 receptor kinase), which is plant-specific. P2K1 (DORN1) is required for ATP-induced cellular responses (e.g., cytosolic Ca(2+) elevation, MAPK phosphorylation, and gene expression). Genetic analysis of loss-of-function mutants and overexpression lines showed that P2K1 participates in the plant wound response, consistent with the role of ATP as a DAMP. In this review, we summarize past research on the roles and mechanisms of extracellular ATP signaling in plants, and discuss the direction of future research on extracellular ATP as a DAMP signal.
Collapse
Affiliation(s)
- Kiwamu Tanaka
- Department of Plant Pathology, Washington State University Pullman, WA, USA
| | - Jeongmin Choi
- Division of Plant Sciences and Biochemistry, Christopher S. Bond Life Sciences Center, University of Missouri Columbia, MO, USA
| | - Yangrong Cao
- Division of Plant Sciences and Biochemistry, Christopher S. Bond Life Sciences Center, University of Missouri Columbia, MO, USA
| | - Gary Stacey
- Division of Plant Sciences and Biochemistry, Christopher S. Bond Life Sciences Center, University of Missouri Columbia, MO, USA
| |
Collapse
|
43
|
Salmi ML, Clark G, Roux SJ. Current status and proposed roles for nitric oxide as a key mediator of the effects of extracellular nucleotides on plant growth. FRONTIERS IN PLANT SCIENCE 2013; 4:427. [PMID: 24298275 PMCID: PMC3829461 DOI: 10.3389/fpls.2013.00427] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 10/09/2013] [Indexed: 05/20/2023]
Abstract
Recent data indicate that nucleotides are released into the extracellular matrix during plant cell growth, and that these extracellular nucleotides induce signaling changes that can, in a dose-dependent manner, increase or decrease the cell growth. After activation of a presumed receptor, the earliest signaling change induced by extracellular nucleotides is an increase in the concentration of cytosolic Ca(2+), but rapidly following this change is an increase in the cellular level of nitric oxide (NO). In Arabidopsis, mutants deficient in nitrate reductase activity (nia1nia2) have drastically reduced nitric oxide production and cannot transduce the effects of applied nucleotides into growth changes. Both increased levels of extracellular nucleotides and increased NO production inhibit auxin transport and inhibit growth, and these effects are potentially due to disruption of the localization and/or function of auxin transport facilitators. However, because NO- and auxin-induced signaling pathways can intersect at multiple points, there may be diverse ways by which the induction of NO by extracellular ATP could modulate auxin signaling and thus influence growth. This review will discuss these optional mechanisms and suggest possible regulatory routes based on current experimental data and predictive computational analyses.
Collapse
Affiliation(s)
| | | | - Stanley J. Roux
- *Correspondence: Stanley J. Roux, Department of Molecular Biosciences, The University of Texas at Austin, 1 University Station A6700, 205 West 24th Street, BIO 16, Austin, TX 78712-0183, USA e-mail:
| |
Collapse
|
44
|
Krajnáková J, Bertolini A, Zoratti L, Gömöry D, Häggman H, Vianello A. Changes in ATP, glucose-6-phosphate and NAD(P)H cellular levels during the proliferation and maturation phases of Abies alba Mill. embryogenic cultures. TREE PHYSIOLOGY 2013; 33:1099-110. [PMID: 24200583 DOI: 10.1093/treephys/tpt082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The aim of the present study was to evaluate the adenosine triphospate (ATP), glucose-6-phosphate (glu-6P) and reduced form of nicotinamide adenine dinucleotide phosphate (NAD(P)H) cellular levels during the proliferation and maturation phases of Abies alba Mill. somatic embryos. For a better understanding of the dynamics of these parameters during the proliferation cycle, four embryonic cell lines were tested. During the maturation period, three independent experiments were conducted, focused on the effects of PEG-4000 (5 or 10% (w/v)) and abscisic acid (16, 32 or 64 μM) applied together (Experiments A and B) or with addition of gibberellic acid (Experiment C) on the dynamics of bio-energetic molecules and on the mean number of cotyledonary somatic embryos. Our results demonstrated that the cellular levels of bio-energetic molecules strongly depended on the composition of maturation media. Generally, the higher the number of cotyledonary embryos produced, the higher the level of ATP observed after a 2-week maturation period. The cellular level of ATP, glu-6P and NAD(P)H increased, particularly after the transition from the proliferation to the maturation phase when the differentiation and growth of somatic embryos occurred.
Collapse
Affiliation(s)
- Jana Krajnáková
- Faculty of Forestry and Wood Technology, Mendel University, Zemědělská 3, 613 00 Czech Republic
| | | | | | | | | | | |
Collapse
|
45
|
Manzano AI, Larkin OJ, Dijkstra CE, Anthony P, Davey MR, Eaves L, Hill RJA, Herranz R, Medina FJ. Meristematic cell proliferation and ribosome biogenesis are decoupled in diamagnetically levitated Arabidopsis seedlings. BMC PLANT BIOLOGY 2013; 13:124. [PMID: 24006876 PMCID: PMC3847623 DOI: 10.1186/1471-2229-13-124] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 08/07/2013] [Indexed: 05/04/2023]
Abstract
BACKGROUND Cell growth and cell proliferation are intimately linked in the presence of Earth's gravity, but are decoupled under the microgravity conditions present in orbiting spacecraft. New technologies to simulate microgravity conditions for long-duration experiments, with stable environmental conditions, in Earth-based laboratories are required to further our understanding of the effect of extraterrestrial conditions on the growth, development and health of living matter. RESULTS We studied the response of transgenic seedlings of Arabidopsis thaliana, containing either the CycB1-GUS proliferation marker or the DR5-GUS auxin-mediated growth marker, to diamagnetic levitation in the bore of a superconducting solenoid magnet. As a control, a second set of seedlings were exposed to a strong magnetic field, but not to levitation forces. A third set was exposed to a strong field and simulated hypergravity (2 g). Cell proliferation and cell growth cytological parameters were measured for each set of seedlings. Nucleolin immunodetection was used as a marker of cell growth. Collectively, the data indicate that these two fundamental cellular processes are decoupled in root meristems, as in microgravity: cell proliferation was enhanced whereas cell growth markers were depleted. These results also demonstrated delocalisation of auxin signalling in the root tip despite the fact that levitation of the seedling as a whole does not prevent the sedimentation of statoliths in the root cells. CONCLUSIONS In our model system, we found that diamagnetic levitation led to changes that are very similar to those caused by real- [e.g. on board the International Space Station (ISS)] or mechanically-simulated microgravity [e.g. using a Random Positioning Machine (RPM)]. These changes decoupled meristematic cell proliferation from ribosome biogenesis, and altered auxin polar transport.
Collapse
Affiliation(s)
- Ana Isabel Manzano
- Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, E-28040 Madrid, Spain
| | - Oliver J Larkin
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK
| | - Camelia E Dijkstra
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK
- Present Address: Faculty of Health and Life Sciences, Coventry University, Coventry CV1 5FB, UK
| | - Paul Anthony
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK
| | - Michael R Davey
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK
| | - Laurence Eaves
- School of Physics & Astronomy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Richard JA Hill
- School of Physics & Astronomy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Raul Herranz
- Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, E-28040 Madrid, Spain
| | - F Javier Medina
- Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, E-28040 Madrid, Spain
| |
Collapse
|
46
|
Sun J, Zhang X, Deng S, Zhang C, Wang M, Ding M, Zhao R, Shen X, Zhou X, Lu C, Chen S. Extracellular ATP signaling is mediated by H₂O₂ and cytosolic Ca²⁺ in the salt response of Populus euphratica cells. PLoS One 2012; 7:e53136. [PMID: 23285259 PMCID: PMC3532164 DOI: 10.1371/journal.pone.0053136] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Accepted: 11/27/2012] [Indexed: 12/02/2022] Open
Abstract
Extracellular ATP (eATP) has been implicated in mediating plant growth and antioxidant defense; however, it is largely unknown whether eATP might mediate salinity tolerance. We used confocal microscopy, a non-invasive vibrating ion-selective microelectrode, and quantitative real time PCR analysis to evaluate the physiological significance of eATP in the salt resistance of cell cultures derived from a salt-tolerant woody species, Populus euphratica. Application of NaCl (200 mM) shock induced a transient elevation in [eATP]. We investigated the effects of eATP by blocking P2 receptors with suramin and PPADS and applying an ATP trap system of hexokinase-glucose. We found that eATP regulated a wide range of cellular processes required for salt adaptation, including vacuolar Na+ compartmentation, Na+/H+ exchange across the plasma membrane (PM), K+ homeostasis, reactive oxygen species regulation, and salt-responsive expression of genes related to K+/Na+ homeostasis and PM repair. Furthermore, we found that the eATP signaling was mediated by H2O2 and cytosolic Ca2+ released in response to high salt in P. euphratica cells. We concluded that salt-induced eATP was sensed by purinoceptors in the PM, and this led to the induction of downstream signals, like H2O2 and cytosolic Ca2+, which are required for the up-regulation of genes linked to K+/Na+ homeostasis and PM repair. Consequently, the viability of P. euphratica cells was maintained during a prolonged period of salt stress.
Collapse
Affiliation(s)
- Jian Sun
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- College of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Xuan Zhang
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Shurong Deng
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Chunlan Zhang
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Meijuan Wang
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Mingquan Ding
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Rui Zhao
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Xin Shen
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Xiaoyang Zhou
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Cunfu Lu
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Shaoliang Chen
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- * E-mail:
| |
Collapse
|
47
|
Roux SJ. Root waving and skewing: unexpectedly in micro-g. BMC PLANT BIOLOGY 2012; 12:231. [PMID: 23217095 PMCID: PMC3533921 DOI: 10.1186/1471-2229-12-231] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 11/28/2012] [Indexed: 05/11/2023]
Abstract
Gravity has major effects on both the form and overall length of root growth. Numerous papers have documented these effects (over 300 publications in the last 5 years), the most well-studied being gravitropism, which is a growth re-orientation directed by gravity toward the earth's center. Less studied effects of gravity are undulations due to the regular periodic change in the direction root tips grow, called waving, and the slanted angle of growth roots exhibit when they are growing along a nearly-vertical surface, called skewing. Although diverse studies have led to the conclusion that a gravity stimulus is needed for plant roots to show waving and skewing, the novel results just published by Paul et al. (2012) reveal that this conclusion is not correct. In studies carried out in microgravity on the International Space Station, the authors used a new imaging system to collect digital photographs of plants every six hours during 15 days of spaceflight. The imaging system allowed them to observe how roots grew when their orientation was directed not by gravity but by overhead LED lights, which roots grew away from because they are negatively phototropic. Surprisingly, the authors observed both skewing and waving in spaceflight plants, thus demonstrating that both growth phenomena were gravity independent. Touch responses and differential auxin transport would be common features of root waving and skewing at 1-g and micro-g, and the novel results of Paul et al. will focus the attention of cell and molecular biologists more on these features as they try to decipher the signaling pathways that regulate root skewing and waving.
Collapse
Affiliation(s)
- Stanley J Roux
- Section of Molecular Cell and Developmental Biology, University of Texas, Austin, TX, USA
| |
Collapse
|
48
|
Liu X, Wu J, Clark G, Lundy S, Lim M, Arnold D, Chan J, Tang W, Muday GK, Gardner G, Roux SJ. Role for apyrases in polar auxin transport in Arabidopsis. PLANT PHYSIOLOGY 2012; 160:1985-95. [PMID: 23071251 PMCID: PMC3510125 DOI: 10.1104/pp.112.202887] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Accepted: 10/10/2012] [Indexed: 05/20/2023]
Abstract
Recent evidence indicates that extracellular nucleotides regulate plant growth. Exogenous ATP has been shown to block auxin transport and gravitropic growth in primary roots of Arabidopsis (Arabidopsis thaliana). Cells limit the concentration of extracellular ATP in part through the activity of ectoapyrases (ectonucleoside triphosphate diphosphohydrolases), and two nearly identical Arabidopsis apyrases, APY1 and APY2, appear to share this function. These findings, plus the fact that suppression of APY1 and APY2 blocks growth in Arabidopsis, suggested that the expression of these apyrases could influence auxin transport. This report tests that hypothesis. The polar movement of [(3)H]indole-3-acetic acid in both hypocotyl sections and primary roots of Arabidopsis seedlings was measured. In both tissues, polar auxin transport was significantly reduced in apy2 null mutants when they were induced by estradiol to suppress the expression of APY1 by RNA interference. In the hypocotyl assays, the basal halves of APY-suppressed hypocotyls contained considerably lower free indole-3-acetic acid levels when compared with wild-type plants, and disrupted auxin transport in the APY-suppressed roots was reflected by their significant morphological abnormalities. When a green fluorescent protein fluorescence signal encoded by a DR5:green fluorescent protein construct was measured in primary roots whose apyrase expression was suppressed either genetically or chemically, the roots showed no signal asymmetry following gravistimulation, and both their growth and gravitropic curvature were inhibited. Chemicals that suppress apyrase activity also inhibit gravitropic curvature and, to a lesser extent, growth. Taken together, these results indicate that a critical step connecting apyrase suppression to growth suppression is the inhibition of polar auxin transport.
Collapse
|
49
|
Wu S, Peiffer M, Luthe DS, Felton GW. ATP hydrolyzing salivary enzymes of caterpillars suppress plant defenses. PLoS One 2012; 7:e41947. [PMID: 22848670 PMCID: PMC3405022 DOI: 10.1371/journal.pone.0041947] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Accepted: 06/27/2012] [Indexed: 12/25/2022] Open
Abstract
The oral secretions of herbivores are important recognition cues that can be used by plants to mediate induced defenses. In this study, a degradation of adenosine-5'-triphosphate (ATP) in tomato leaves was detected after treatment with Helicoverpa zea saliva. Correspondingly, a high level of ATPase activity in saliva was detected and three ATP hydrolyzing enzymes: apyrase, ATP synthase and ATPase 13A1 were identified in salivary glands. To determine the functions of these proteins in mediating defenses, they were cloned from H. zea and expressed in Escherichia coli. By applying the purified expressed apyrase, ATP synthase or ATPase 13A1 to wounded tomato leaves, it was determined that these ATP hydrolyzing enzymes suppressed the defensive genes regulated by the jasmonic acid and ethylene pathways in tomato plant. Suppression of glandular trichome production was also observed after treatment. Blood-feeding arthropods employ 5'-nucleotidase family of apyrases to circumvent host responses and the H. zea apyrase, is also a member of this family. The comparatively high degree of sequence similarity of the H. zea salivary apyrase with mosquito apyrases suggests a broader evolutionary role for salivary apyrases than previously envisioned.
Collapse
Affiliation(s)
- Shuang Wu
- Department of Entomology and Center for Chemical Ecology, Pennsylvania State University, University Park, Pennsylvania, United States of America
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, P. R. China
| | - Michelle Peiffer
- Department of Entomology and Center for Chemical Ecology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Dawn S. Luthe
- Department of Crop and Soil Science and Center for Chemical Ecology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Gary W. Felton
- Department of Entomology and Center for Chemical Ecology, Pennsylvania State University, University Park, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
50
|
Hao LH, Wang WX, Chen C, Wang YF, Liu T, Li X, Shang ZL. Extracellular ATP promotes stomatal opening of Arabidopsis thaliana through heterotrimeric G protein α subunit and reactive oxygen species. MOLECULAR PLANT 2012; 5:852-64. [PMID: 22138967 DOI: 10.1093/mp/ssr095] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
In recent years, adenosine tri-phosphate (ATP) has been reported to exist in apoplasts of plant cells as a signal molecule. Extracellular ATP (eATP) plays important roles in plant growth, development, and stress tolerance. Here, extracellular ATP was found to promote stomatal opening of Arabidopsis thaliana in light and darkness. ADP, GTP, and weakly hydrolyzable ATP analogs (ATPγS, Bz-ATP, and 2meATP) showed similar effects, whereas AMP and adenosine did not affect stomatal movement. Apyrase inhibited stomatal opening. ATP-promoted stomatal opening was blocked by an NADPH oxidase inhibitor (diphenylene iodonium) or deoxidizer (dithiothreitol), and was impaired in null mutant of NADPH oxidase (atrbohD/F). Added ATP triggered ROS generation in guard cells via NADPH oxidase. ATP also induced Ca(2+) influx and H(+) efflux in guard cells. In atrbohD/F, ATP-induced ion flux was strongly suppressed. In null mutants of the heterotrimeric G protein α subunit, ATP-promoted stomatal opening, cytoplasmic ROS generation, Ca(2+) influx, and H(+) efflux were all suppressed. These results indicated that eATP-promoted stomatal opening possibly involves the heterotrimeric G protein, ROS, cytosolic Ca(2+), and plasma membrane H(+)-ATPase.
Collapse
Affiliation(s)
- Li-Hua Hao
- Key Laboratory of Molecular and Cell Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, PR China
| | | | | | | | | | | | | |
Collapse
|