1
|
Grismer TS, Karundasa SS, Shrestha R, Byun D, Ni W, Reyes AV, Xu SL. Workflow enhancement of TurboID-mediated proximity labeling for SPY signaling network mapping. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.17.580820. [PMID: 38405906 PMCID: PMC10888891 DOI: 10.1101/2024.02.17.580820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
TurboID-based proximity labeling coupled to mass spectrometry (PL-MS) has emerged as a powerful tool for mapping protein-protein interactions in both plant and animal systems. Despite advances in sensitivity, PL-MS studies can still suffer from false negatives, especially when dealing with low abundance bait proteins and their transient interactors. Protein-level enrichment for biotinylated proteins is well developed and popular, but direct detection of biotinylated proteins by peptide-level enrichment and the difference in results between direct and indirect detection remain underexplored. To address this gap, we compared and improved enrichment and data analysis methods using TurboID fused to SPY, a low-abundance O-fucose transferase, using an AAL-enriched SPY target library for cross-referencing. Our results showed that MyOne and M280 streptavidin beads significantly outperformed antibody beads for peptide-level enrichment, with M280 performing best. In addition, while a biotin concentration ≤ 50 μM is recommended for protein-level enrichment in plants, higher biotin concentrations can be used for peptide-level enrichment, allowing us to improve detection and data quality. FragPipe's MSFragger protein identification and quantification software outperformed Maxquant and Protein Prospector for SPY interactome enrichment due to its superior detection of biotinylated peptides. Our improved washing protocols for protein-level enrichment mitigated bead collapse issues, improving data quality, and reducing experimental time. We found that the two enrichment methods provided complementary results and identified a total of 160 SPY-TurboID-enriched interactors, including 60 previously identified in the AAL-enriched SPY target list and 100 additional novel interactors. SILIA quantitative proteomics comparing WT and spy-4 mutants showed that SPY affects the protein levels of some of the identified interactors, such as nucleoporin proteins. We expect that our improvement will extend beyond TurboID to benefit other PL systems and hold promise for broader applications in biological research.
Collapse
Affiliation(s)
- TaraBryn S Grismer
- Division of biosphere science and engineering, Carnegie Institution for Science, Stanford, California, USA
- Carnegie Mass Spectrometry Facility, Carnegie Institution for Science, Stanford, California, USA
| | - Sumudu S Karundasa
- Division of biosphere science and engineering, Carnegie Institution for Science, Stanford, California, USA
| | - Ruben Shrestha
- Division of biosphere science and engineering, Carnegie Institution for Science, Stanford, California, USA
| | - Danbi Byun
- Division of biosphere science and engineering, Carnegie Institution for Science, Stanford, California, USA
| | - Weimin Ni
- Division of biosphere science and engineering, Carnegie Institution for Science, Stanford, California, USA
| | - Andres V Reyes
- Division of biosphere science and engineering, Carnegie Institution for Science, Stanford, California, USA
- Carnegie Mass Spectrometry Facility, Carnegie Institution for Science, Stanford, California, USA
| | - Shou-Ling Xu
- Division of biosphere science and engineering, Carnegie Institution for Science, Stanford, California, USA
- Carnegie Mass Spectrometry Facility, Carnegie Institution for Science, Stanford, California, USA
| |
Collapse
|
2
|
Bi Y, Shrestha R, Zhang Z, Hsu CC, Reyes AV, Karunadasa S, Baker PR, Maynard JC, Liu Y, Hakimi A, Lopez-Ferrer D, Hassan T, Chalkley RJ, Xu SL, Wang ZY. SPINDLY mediates O-fucosylation of hundreds of proteins and sugar-dependent growth in Arabidopsis. THE PLANT CELL 2023; 35:1318-1333. [PMID: 36739885 PMCID: PMC10118272 DOI: 10.1093/plcell/koad023] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 01/21/2023] [Indexed: 06/18/2023]
Abstract
The recent discovery of SPINDLY (SPY)-catalyzed protein O-fucosylation revealed a novel mechanism for regulating nucleocytoplasmic protein functions in plants. Genetic evidence indicates the important roles of SPY in diverse developmental and physiological processes. However, the upstream signal controlling SPY activity and the downstream substrate proteins O-fucosylated by SPY remain largely unknown. Here, we demonstrated that SPY mediates sugar-dependent growth in Arabidopsis (Arabidopsis thaliana). We further identified hundreds of O-fucosylated proteins using lectin affinity chromatography followed by mass spectrometry. All the O-fucosylation events quantified in our proteomic analyses were undetectable or dramatically decreased in the spy mutants, and thus likely catalyzed by SPY. The O-fucosylome includes mostly nuclear and cytosolic proteins. Many O-fucosylated proteins function in essential cellular processes, phytohormone signaling, and developmental programs, consistent with the genetic functions of SPY. The O-fucosylome also includes many proteins modified by O-linked N-acetylglucosamine (O-GlcNAc) and by phosphorylation downstream of the target of rapamycin (TOR) kinase, revealing the convergence of these nutrient signaling pathways on key regulatory functions such as post-transcriptional/translational regulation and phytohormone responses. Our study identified numerous targets of SPY/O-fucosylation and potential nodes of crosstalk among sugar/nutrient signaling pathways, enabling future dissection of the signaling network that mediates sugar regulation of plant growth and development.
Collapse
Affiliation(s)
| | | | | | - Chuan-Chih Hsu
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305, USA
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 115, Taiwan
| | - Andres V Reyes
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305, USA
- Carnegie Mass Spectrometry Facility, Carnegie Institution for Science, Stanford, California 94305, USA
| | - Sumudu Karunadasa
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305, USA
| | - Peter R Baker
- Department of Pharmaceutical Chemistry, University of California at San Francisco, San Francisco, California 94143, USA
| | - Jason C Maynard
- Department of Pharmaceutical Chemistry, University of California at San Francisco, San Francisco, California 94143, USA
| | - Yang Liu
- ThermoFisher Scientific, San Jose, California 95134, USA
| | | | | | - Tahmid Hassan
- ThermoFisher Scientific, Somerset, New Jersey 08873, USA
| | - Robert J Chalkley
- Department of Pharmaceutical Chemistry, University of California at San Francisco, San Francisco, California 94143, USA
| | | | | |
Collapse
|
3
|
Kumar S, Wang Y, Zhou Y, Dillard L, Li FW, Sciandra CA, Sui N, Zentella R, Zahn E, Shabanowitz J, Hunt DF, Borgnia MJ, Bartesaghi A, Sun TP, Zhou P. Structure and dynamics of the Arabidopsis O-fucosyltransferase SPINDLY. Nat Commun 2023; 14:1538. [PMID: 36941311 PMCID: PMC10027727 DOI: 10.1038/s41467-023-37279-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 03/04/2023] [Indexed: 03/22/2023] Open
Abstract
SPINDLY (SPY) in Arabidopsis thaliana is a novel nucleocytoplasmic protein O-fucosyltransferase (POFUT), which regulates diverse developmental processes. Sequence analysis indicates that SPY is distinct from ER-localized POFUTs and contains N-terminal tetratricopeptide repeats (TPRs) and a C-terminal catalytic domain resembling the O-linked-N-acetylglucosamine (GlcNAc) transferases (OGTs). However, the structural feature that determines the distinct enzymatic selectivity of SPY remains unknown. Here we report the cryo-electron microscopy (cryo-EM) structure of SPY and its complex with GDP-fucose, revealing distinct active-site features enabling GDP-fucose instead of UDP-GlcNAc binding. SPY forms an antiparallel dimer instead of the X-shaped dimer in human OGT, and its catalytic domain interconverts among multiple conformations. Analysis of mass spectrometry, co-IP, fucosylation activity, and cryo-EM data further demonstrates that the N-terminal disordered peptide in SPY contains trans auto-fucosylation sites and inhibits the POFUT activity, whereas TPRs 1-5 dynamically regulate SPY activity by interfering with protein substrate binding.
Collapse
Affiliation(s)
- Shivesh Kumar
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Yan Wang
- Department of Biology, Duke University, Durham, NC, 27708, USA
| | - Ye Zhou
- Department of Computer Science, Duke University, Durham, NC, 27705, USA
| | - Lucas Dillard
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, 27709, USA
| | - Fay-Wei Li
- Plant Biology Section, Cornell University, Ithaca, NY, 14853, USA
- Boyce Thompson Institute, Ithaca, NY, 14853, USA
| | - Carly A Sciandra
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Ning Sui
- Department of Biology, Duke University, Durham, NC, 27708, USA
| | | | - Emily Zahn
- Department of Chemistry, University of Virginia, Charlottesville, VA, 22904, USA
| | - Jeffrey Shabanowitz
- Department of Chemistry, University of Virginia, Charlottesville, VA, 22904, USA
| | - Donald F Hunt
- Department of Chemistry, University of Virginia, Charlottesville, VA, 22904, USA
- Department of Pathology, University of Virginia, Charlottesville, VA, 22903, USA
| | - Mario J Borgnia
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, 27709, USA
| | - Alberto Bartesaghi
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, 27710, USA.
- Department of Computer Science, Duke University, Durham, NC, 27705, USA.
- Department of Electrical and Computer Engineering, Duke University, Durham, NC, 27708, USA.
| | - Tai-Ping Sun
- Department of Biology, Duke University, Durham, NC, 27708, USA.
| | - Pei Zhou
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, 27710, USA.
| |
Collapse
|
4
|
Zentella R, Wang Y, Zahn E, Hu J, Jiang L, Shabanowitz J, Hunt DF, Sun TP. SPINDLY O-fucosylates nuclear and cytoplasmic proteins involved in diverse cellular processes in plants. PLANT PHYSIOLOGY 2023; 191:1546-1560. [PMID: 36740243 PMCID: PMC10022643 DOI: 10.1093/plphys/kiad011] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 12/12/2022] [Indexed: 05/28/2023]
Abstract
SPINDLY (SPY) is a novel nucleocytoplasmic protein O-fucosyltransferase that regulates target protein activity or stability via O-fucosylation of specific Ser/Thr residues. Previous genetic studies indicate that AtSPY regulates plant development during vegetative and reproductive growth by modulating gibberellin and cytokinin responses. AtSPY also regulates the circadian clock and plant responses to biotic and abiotic stresses. The pleiotropic phenotypes of spy mutants point to the likely role of AtSPY in regulating key proteins functioning in diverse cellular pathways. However, very few AtSPY targets are known. Here, we identified 88 SPY targets from Arabidopsis (Arabidopsis thaliana) and Nicotiana benthamiana via the purification of O-fucosylated peptides using Aleuria aurantia lectin followed by electron transfer dissociation-MS/MS analysis. Most AtSPY targets were nuclear proteins that function in DNA repair, transcription, RNA splicing, and nucleocytoplasmic transport. Cytoplasmic AtSPY targets were involved in microtubule-mediated cell division/growth and protein folding. A comparison with the published O-linked-N-acetylglucosamine (O-GlcNAc) proteome revealed that 30% of AtSPY targets were also O-GlcNAcylated, indicating that these distinct glycosylations could co-regulate many protein functions. This study unveiled the roles of O-fucosylation in modulating many key nuclear and cytoplasmic proteins and provided a valuable resource for elucidating the regulatory mechanisms involved.
Collapse
Affiliation(s)
- Rodolfo Zentella
- Department of Biology, Duke University, Durham, North Carolina 27708, USA
| | - Yan Wang
- Department of Biology, Duke University, Durham, North Carolina 27708, USA
| | - Emily Zahn
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, USA
| | - Jianhong Hu
- Department of Biology, Duke University, Durham, North Carolina 27708, USA
| | - Liang Jiang
- Department of Biology, Duke University, Durham, North Carolina 27708, USA
| | - Jeffrey Shabanowitz
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, USA
| | - Donald F Hunt
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, USA
- Department of Pathology, University of Virginia, Charlottesville, Virginia 22903, USA
| | - Tai-ping Sun
- Department of Biology, Duke University, Durham, North Carolina 27708, USA
| |
Collapse
|
5
|
Xu J, Liu S, Cai L, Wang L, Dong Y, Qi Z, Yu J, Zhou Y. SPINDLY interacts with EIN2 to facilitate ethylene signalling-mediated fruit ripening in tomato. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:219-231. [PMID: 36204970 PMCID: PMC9829397 DOI: 10.1111/pbi.13939] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/26/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
The post-translational modification of proteins enables cells to respond promptly to dynamic stimuli by controlling protein functions. In higher plants, SPINDLY (SPY) and SECRET AGENT (SEC) are two prominent O-glycosylation enzymes that have both unique and overlapping roles; however, the effects of their O-glycosylation on fruit ripening and the underlying mechanisms remain largely unknown. Here we report that SlSPY affects tomato fruit ripening. Using slspy mutants and two SlSPY-OE lines, we provide biological evidence for the positive role of SlSPY in fruit ripening. We demonstrate that SlSPY regulates fruit ripening by changing the ethylene response in tomato. To further investigate the underlying mechanism, we identify a central regulator of ethylene signalling ETHYLENE INSENSITIVE 2 (EIN2) as a SlSPY interacting protein. SlSPY promotes the stability and nuclear accumulation of SlEIN2. Mass spectrometry analysis further identified that SlEIN2 has two potential sites Ser771 and Thr821 of O-glycans modifications. Further study shows that SlEIN2 is essential for SlSPY in regulating fruit ripening in tomatoes. Collectively, our findings reveal a novel regulatory function of SlSPY in fruit and provide novel insights into the role of the SlSPY-SlEIN2 module in tomato fruit ripening.
Collapse
Affiliation(s)
- Jin Xu
- Department of Horticulture, Zijingang CampusZhejiang UniversityHangzhouChina
| | - Sidi Liu
- Department of Horticulture, Zijingang CampusZhejiang UniversityHangzhouChina
| | - Licong Cai
- Department of Horticulture, Zijingang CampusZhejiang UniversityHangzhouChina
| | - Lingyu Wang
- Department of Horticulture, Zijingang CampusZhejiang UniversityHangzhouChina
| | - Yufei Dong
- Department of Horticulture, Zijingang CampusZhejiang UniversityHangzhouChina
| | - Zhenyu Qi
- Agricultural Experiment StationZhejiang UniversityHangzhouChina
| | - Jingquan Yu
- Department of Horticulture, Zijingang CampusZhejiang UniversityHangzhouChina
- Key Laboratory of Horticultural Plants Growth and DevelopmentAgricultural Ministry of ChinaHangzhouChina
| | - Yanhong Zhou
- Department of Horticulture, Zijingang CampusZhejiang UniversityHangzhouChina
- Key Laboratory of Horticultural Plants Growth and DevelopmentAgricultural Ministry of ChinaHangzhouChina
- Hainan Institute, Zhejiang UniversitySanyaChina
| |
Collapse
|
6
|
Zhu W, Yang C, Yong B, Wang Y, Li B, Gu Y, Wei S, An Z, Sun W, Qiu L, He C. An enhancing effect attributed to a nonsynonymous mutation in SOYBEAN SEED SIZE 1, a SPINDLY-like gene, is exploited in soybean domestication and improvement. THE NEW PHYTOLOGIST 2022; 236:1375-1392. [PMID: 36068955 DOI: 10.1111/nph.18461] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 08/12/2022] [Indexed: 05/26/2023]
Abstract
Soybean (Glycine max) was domesticated from its wild relative Glycine soja. One-hundred-seed weight is one of the most important domesticated traits determining soybean yield; however, its underlying genetic basis remains elusive. We characterized a soybean seed size 1 (sss1) mutant featuring large seeds compared to its wild-type background. Positional cloning revealed that the candidate gene GmSSS1 encoded a SPINDLY homolog and was co-located in a well-identified quantitative trait locus (QTL)-rich region on chromosome 19. Knocking out GmSSS1 resulted in small seeds, while overexpressing GmSSS1/Gmsss1 induced large seeds. Modulating GmSSS1/Gmsss1 in transgenic plants can positively influence cell expansion and cell division. Relative to GmSSS1, one mutation leading to an E to Q substitution at the 182nd residue in Gmsss1 conferred an enhancing effect on seed weight. GmSSS1 underwent diversification in wild-type and cultivated soybean, and the alleles encoding the Gmsss1-type substitution of 182nd -Q, which originated along the central and downstream parts of the Yellow River, were selected and expanded during soybean domestication and improvement. We cloned the causative gene for the sss1 mutant, which is linked with a seed weight QTL, identified an elite allele of this gene for increasing seed weight, and provided new insights into soybean domestication and breeding.
Collapse
Affiliation(s)
- Weiwei Zhu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Beijing, 100093, China
- University of Chinese Academy of Sciences, Yuquan Road 19, Beijing, 100049, China
| | - Ce Yang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Beijing, 100093, China
- University of Chinese Academy of Sciences, Yuquan Road 19, Beijing, 100049, China
| | - Bin Yong
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Beijing, 100093, China
- University of Chinese Academy of Sciences, Yuquan Road 19, Beijing, 100049, China
| | - Yan Wang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Beijing, 100093, China
| | - Bingbing Li
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Beijing, 100093, China
- University of Chinese Academy of Sciences, Yuquan Road 19, Beijing, 100049, China
| | - Yongzhe Gu
- National Key Facility for Gene Resources and Genetic Improvement/Key Laboratory of Crop Germplasm Utilization, Ministry of Agriculture, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Siming Wei
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Beijing, 100093, China
- University of Chinese Academy of Sciences, Yuquan Road 19, Beijing, 100049, China
| | - Zhenghong An
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Beijing, 100093, China
- University of Chinese Academy of Sciences, Yuquan Road 19, Beijing, 100049, China
| | - Wenkai Sun
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Beijing, 100093, China
- University of Chinese Academy of Sciences, Yuquan Road 19, Beijing, 100049, China
| | - Lijuan Qiu
- National Key Facility for Gene Resources and Genetic Improvement/Key Laboratory of Crop Germplasm Utilization, Ministry of Agriculture, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Chaoying He
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Beijing, 100093, China
- University of Chinese Academy of Sciences, Yuquan Road 19, Beijing, 100049, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
7
|
Liang L, Wang Q, Song Z, Wu Y, Liang Q, Wang Q, Yang J, Bi Y, Zhou W, Fan LM. O-fucosylation of CPN20 by SPINDLY Derepresses Abscisic Acid Signaling During Seed Germination and Seedling Development. FRONTIERS IN PLANT SCIENCE 2021; 12:724144. [PMID: 34712252 PMCID: PMC8545988 DOI: 10.3389/fpls.2021.724144] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 09/10/2021] [Indexed: 05/31/2023]
Abstract
SPINDLY is involved in some aspects of plant development. However, the nature of this protein as an O-fucosyltransferase was recently discovered. In this study, we show that SPINDLY (SPY) interacts with CPN20 in yeast two-hybrid and split-luc assays, and the interaction is promoted by ABA. CPN20 is a chloroplast-localized co-chaperonin that negatively regulates ABAR-mediated ABA signaling. By using Electron Transfer Dissociation-MS/MS analysis, two O-fucosylation sites, e.g., 116th and 119th threonines, were detected in ectopically expressed CPN20 in mammalian cells and in Arabidopsis. The O-fucosylation at both threonine residues was confirmed by in vitro peptide O-fucosylation assay. We further show that CPN20 accumulates in the chloroplast of spy mutants, suggesting that SPY negatively regulates CPN20 localization in the chloroplast. In vivo protein degradation assay along with CPN20 localization behavior suggest that import of CPN20 into the chloroplast is negatively regulated by SPY. Genetic analysis shows that ABA insensitive phenotypes of spy-3 in terms of seed germination and early seedling development are partially suppressed by the cpn20 mutation, suggesting that CPN20 acts downstream of SPY in this ABA signaling pathway and that there may exist other pathways in parallel with CPN20. Collectively, the above data support the notion that the O-fucosylation of CPN20 by SPY fine-tunes ABA signaling in Arabidopsis.
Collapse
Affiliation(s)
- Lin Liang
- State Key Laboratory for Plant Gene and Protein Research, School of Life Sciences, School of Advanced Agriculture Sciences, Peking University, Beijing, China
- PKU Core Facility of Mass Spectrometry, School of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Qi Wang
- State Key Laboratory for Plant Gene and Protein Research, School of Life Sciences, School of Advanced Agriculture Sciences, Peking University, Beijing, China
| | - Zihao Song
- State Key Laboratory for Plant Gene and Protein Research, School of Life Sciences, School of Advanced Agriculture Sciences, Peking University, Beijing, China
| | - Yaxin Wu
- State Key Laboratory for Plant Gene and Protein Research, School of Life Sciences, School of Advanced Agriculture Sciences, Peking University, Beijing, China
| | - Qing Liang
- State Key Laboratory for Plant Gene and Protein Research, School of Life Sciences, School of Advanced Agriculture Sciences, Peking University, Beijing, China
| | - Qingsong Wang
- State Key Laboratory for Plant Gene and Protein Research, School of Life Sciences, School of Advanced Agriculture Sciences, Peking University, Beijing, China
| | - Jinli Yang
- State Key Laboratory for Plant Gene and Protein Research, School of Life Sciences, School of Advanced Agriculture Sciences, Peking University, Beijing, China
| | - Ying Bi
- State Key Laboratory for Plant Gene and Protein Research, School of Life Sciences, School of Advanced Agriculture Sciences, Peking University, Beijing, China
| | - Wen Zhou
- PKU Core Facility of Mass Spectrometry, School of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Liu-Min Fan
- State Key Laboratory for Plant Gene and Protein Research, School of Life Sciences, School of Advanced Agriculture Sciences, Peking University, Beijing, China
| |
Collapse
|
8
|
Sun TP. Novel nucleocytoplasmic protein O-fucosylation by SPINDLY regulates diverse developmental processes in plants. Curr Opin Struct Biol 2021; 68:113-121. [PMID: 33476897 DOI: 10.1016/j.sbi.2020.12.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/23/2020] [Accepted: 12/29/2020] [Indexed: 12/17/2022]
Abstract
In metazoans, protein O-fucosylation of Ser/Thr residues was only found in secreted or cell surface proteins, and this post-translational modification is catalyzed by ER-localized protein O-fucosyltransferases (POFUTs) in the GT65 family. Recently, a novel nucleocytoplasmic POFUT, SPINDLY (SPY), was identified in the reference plant Arabidopsis thaliana to modify nuclear transcription regulators DELLAs, revealing a new regulatory mechanism for gene expression. The paralog of AtSPY, SECRET AGENT (SEC), is an O-link-N-acetylglucosamine (GlcNAc) transferase (OGT), which O-GlcNAcylates Ser/Thr residues of target proteins. Both AtSPY and AtSEC are tetratricopeptide repeat-domain-containing glycosyltransferases in the GT41 family. The discovery that AtSPY is a POFUT clarified decades of miss-classification of AtSPY as an OGT. SPY and SEC play pleiotropic roles in plant development, and the interactions between SPY and SEC are complex. SPY-like genes are conserved in diverse organisms, except in fungi and metazoans, suggesting that O-fucosylation is a common mechanism in modulating intracellular protein functions.
Collapse
Affiliation(s)
- Tai-Ping Sun
- Department of Biology, Duke University, Durham, NC 27708, USA.
| |
Collapse
|
9
|
Mutanwad KV, Zangl I, Lucyshyn D. The Arabidopsis O-fucosyltransferase SPINDLY regulates root hair patterning independently of gibberellin signaling. Development 2020; 147:dev.192039. [PMID: 32928908 PMCID: PMC7567127 DOI: 10.1242/dev.192039] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 09/07/2020] [Indexed: 12/11/2022]
Abstract
Root hairs are able to sense soil composition and play an important role in water and nutrient uptake. In Arabidopsis thaliana, root hairs are distributed in the epidermis in a specific pattern, regularly alternating with non-root hair cells in continuous cell files. This patterning is regulated by internal factors such as a number of hormones, as well as by external factors like nutrient availability. Thus, root hair patterning is an excellent model for studying the plasticity of cell fate determination in response to environmental changes. Here, we report that loss-of-function mutants for the Protein O-fucosyltransferase SPINDLY (SPY) show defects in root hair patterning. Using transcriptional reporters, we show that patterning in spy-22 is affected upstream of GLABRA2 (GL2) and WEREWOLF (WER). O-fucosylation of nuclear and cytosolic proteins is an important post-translational modification that is still not very well understood. So far, SPY is best characterized for its role in gibberellin signaling via fucosylation of the growth-repressing DELLA protein REPRESSOR OF ga1-3 (RGA). Our data suggest that the epidermal patterning defects in spy-22 are independent of RGA and gibberellin signaling.
Collapse
Affiliation(s)
- Krishna Vasant Mutanwad
- Institute of Molecular Plant Biology, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| | - Isabella Zangl
- Institute of Molecular Plant Biology, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| | - Doris Lucyshyn
- Institute of Molecular Plant Biology, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| |
Collapse
|
10
|
Wang Y, He Y, Su C, Zentella R, Sun TP, Wang L. Nuclear Localized O-Fucosyltransferase SPY Facilitates PRR5 Proteolysis to Fine-Tune the Pace of Arabidopsis Circadian Clock. MOLECULAR PLANT 2020; 13:446-458. [PMID: 31899321 PMCID: PMC7058189 DOI: 10.1016/j.molp.2019.12.013] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 11/25/2019] [Accepted: 12/28/2019] [Indexed: 05/07/2023]
Abstract
Post-translational modifications play essential roles in finely modulating eukaryotic circadian clock systems. In plants, the effects of O-glycosylation on the circadian clock and the underlying mechanisms remain largely unknown. The O-fucosyltransferase SPINDLY (SPY) and the O-GlcNAc transferase SECRET AGENT (SEC) are two prominent O-glycosylation enzymes in higher plants, with both overlapped and unique functions in plant growth and development. Unlike the critical role of O-GlcNAc in regulating the animal circadian clock, here we report that nuclear-localized SPY, but not SEC, specifically modulates the pace of the Arabidopsis circadian clock. By identifying the interactome of SPY, we identified PSEUDO-RESPONSE REGULATOR 5 (PRR5), one of the core circadian clock components, as a new SPY-interacting protein. PRR5 can be O-fucosylated by SPY in planta, while point mutation in the catalytic domain of SPY abolishes the O-fucosylation of PRR5. The protein abundance of PRR5 is strongly increased in spy mutants, while the degradation rate of PRR5 is much reduced, suggesting that PRR5 proteolysis is promoted by SPY-mediated O-fucosylation. Moreover, multiple lines of genetic evidence indicate that PRR5 is a major downstream target of SPY to specifically mediate its modulation of the circadian clock. Collectively, our findings provide novel insights into the specific role of the O-fucosyltransferase activity of SPY in modulating the circadian clock and implicate that O-glycosylation might play an evolutionarily conserved role in modulating the circadian clock system, via O-GlcNAcylation in mammals, but via O-fucosylation in higher plants.
Collapse
Affiliation(s)
- Yan Wang
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuqing He
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chen Su
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | | | - Tai-Ping Sun
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Lei Wang
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
11
|
The Arabidopsis O-fucosyltransferase SPINDLY activates nuclear growth repressor DELLA. Nat Chem Biol 2017; 13:479-485. [PMID: 28244988 PMCID: PMC5391292 DOI: 10.1038/nchembio.2320] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 12/01/2016] [Indexed: 02/08/2023]
Abstract
Plant development requires coordination among complex signaling networks to enhance plant’s adaptation to changing environments. The transcription regulators DELLAs, originally identified as repressors of phytohormone gibberellin (GA) signaling, play a central role in integrating multiple signaling activities via direct protein interactions with key transcription factors. Here, we showed that DELLA was mono-O-fucosylated by a novel O-fucosyltransferase SPINDLY (SPY) in Arabidopsis thaliana. O-fucosylation activates DELLA by promoting its interaction with key regulators in brassinosteroid (BR)- and light-signaling pathways, including BRASSINAZOLE-RESISTANT1 (BZR1), PHYTOCHROME-INTERACTING-FACTOR3 (PIF3), and PIF4. Consistently, spy mutants displayed elevated responses to GA and BR, and increased expression of common target genes of DELLAs, BZR1 and PIFs. Our study revealed that SPY-dependent protein O-fucosylation plays a key role in regulating plant development. This finding has broader importance as SPY orthologs are conserved from prokaryotes to eukaryotes, suggesting that intracellular O-fucosylation may regulate a wide range of biological processes in diverse organisms.
Collapse
|
12
|
Contreras-Soto RI, Mora F, de Oliveira MAR, Higashi W, Scapim CA, Schuster I. A Genome-Wide Association Study for Agronomic Traits in Soybean Using SNP Markers and SNP-Based Haplotype Analysis. PLoS One 2017; 12:e0171105. [PMID: 28152092 PMCID: PMC5289539 DOI: 10.1371/journal.pone.0171105] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Accepted: 01/15/2017] [Indexed: 01/06/2023] Open
Abstract
Mapping quantitative trait loci through the use of linkage disequilibrium (LD) in populations of unrelated individuals provides a valuable approach for dissecting the genetic basis of complex traits in soybean (Glycine max). The haplotype-based genome-wide association study (GWAS) has now been proposed as a complementary approach to intensify benefits from LD, which enable to assess the genetic determinants of agronomic traits. In this study a GWAS was undertaken to identify genomic regions that control 100-seed weight (SW), plant height (PH) and seed yield (SY) in a soybean association mapping panel using single nucleotide polymorphism (SNP) markers and haplotype information. The soybean cultivars (N = 169) were field-evaluated across four locations of southern Brazil. The genome-wide haplotype association analysis (941 haplotypes) identified eleven, seventeen and fifty-nine SNP-based haplotypes significantly associated with SY, SW and PH, respectively. Although most marker-trait associations were environment and trait specific, stable haplotype associations were identified for SY and SW across environments (i.e., haplotypes Gm12_Hap12). The haplotype block 42 on Chr19 (Gm19_Hap42) was confirmed to be associated with PH in two environments. These findings enable us to refine the breeding strategy for tropical soybean, which confirm that haplotype-based GWAS can provide new insights on the genetic determinants that are not captured by the single-marker approach.
Collapse
Affiliation(s)
| | - Freddy Mora
- Institute of Biological Sciences, University of Talca, Casilla, Talca, Chile
| | | | | | - Carlos Alberto Scapim
- Departamento de Agronomia, Universidade Estadual de Maringá, Av. Colombo, Maringá, PR, Brasil
| | - Ivan Schuster
- Dow Agrosciences, Rod. Anhanguera, Cravinhos, SP, Brazil
| |
Collapse
|
13
|
González-Plaza JJ, Ortiz-Martín I, Muñoz-Mérida A, García-López C, Sánchez-Sevilla JF, Luque F, Trelles O, Bejarano ER, De La Rosa R, Valpuesta V, Beuzón CR. Transcriptomic Analysis Using Olive Varieties and Breeding Progenies Identifies Candidate Genes Involved in Plant Architecture. FRONTIERS IN PLANT SCIENCE 2016; 7:240. [PMID: 26973682 PMCID: PMC4773642 DOI: 10.3389/fpls.2016.00240] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 02/12/2016] [Indexed: 05/20/2023]
Abstract
Plant architecture is a critical trait in fruit crops that can significantly influence yield, pruning, planting density and harvesting. Little is known about how plant architecture is genetically determined in olive, were most of the existing varieties are traditional with an architecture poorly suited for modern growing and harvesting systems. In the present study, we have carried out microarray analysis of meristematic tissue to compare expression profiles of olive varieties displaying differences in architecture, as well as seedlings from their cross pooled on the basis of their sharing architecture-related phenotypes. The microarray used, previously developed by our group has already been applied to identify candidates genes involved in regulating juvenile to adult transition in the shoot apex of seedlings. Varieties with distinct architecture phenotypes and individuals from segregating progenies displaying opposite architecture features were used to link phenotype to expression. Here, we identify 2252 differentially expressed genes (DEGs) associated to differences in plant architecture. Microarray results were validated by quantitative RT-PCR carried out on genes with functional annotation likely related to plant architecture. Twelve of these genes were further analyzed in individual seedlings of the corresponding pool. We also examined Arabidopsis mutants in putative orthologs of these targeted candidate genes, finding altered architecture for most of them. This supports a functional conservation between species and potential biological relevance of the candidate genes identified. This study is the first to identify genes associated to plant architecture in olive, and the results obtained could be of great help in future programs aimed at selecting phenotypes adapted to modern cultivation practices in this species.
Collapse
Affiliation(s)
- Juan J. González-Plaza
- Departamento de Biología Celular, Genética y Fisiología, Facultad de Ciencias, Instituto de Hortofruticultura Subtropical y Mediterránea, Universidad de Málaga - Consejo Superior de Investigaciones CientíficasMálaga, Spain
| | - Inmaculada Ortiz-Martín
- Departamento de Biología Celular, Genética y Fisiología, Facultad de Ciencias, Instituto de Hortofruticultura Subtropical y Mediterránea, Universidad de Málaga - Consejo Superior de Investigaciones CientíficasMálaga, Spain
| | - Antonio Muñoz-Mérida
- Departamento Arquitectura de Computadores, Escuela Técnica Superior de Ingeniería Informática, Universidad de MálagaMálaga, Spain
| | - Carmen García-López
- Center for Advanced Studies in Olive Grove and Olive Oils, University of JaénJaén, Spain
| | | | - Francisco Luque
- Center for Advanced Studies in Olive Grove and Olive Oils, University of JaénJaén, Spain
| | - Oswaldo Trelles
- Departamento Arquitectura de Computadores, Escuela Técnica Superior de Ingeniería Informática, Universidad de MálagaMálaga, Spain
| | - Eduardo R. Bejarano
- Departamento de Biología Celular, Genética y Fisiología, Facultad de Ciencias, Instituto de Hortofruticultura Subtropical y Mediterránea, Universidad de Málaga - Consejo Superior de Investigaciones CientíficasMálaga, Spain
| | | | - Victoriano Valpuesta
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Instituto de Hortofruticultura Subtropical y Mediterránea, Universidad de Málaga - Consejo Superior de Investigaciones CientíficasMálaga, Spain
| | - Carmen R. Beuzón
- Departamento de Biología Celular, Genética y Fisiología, Facultad de Ciencias, Instituto de Hortofruticultura Subtropical y Mediterránea, Universidad de Málaga - Consejo Superior de Investigaciones CientíficasMálaga, Spain
- *Correspondence: Carmen R. Beuzón
| |
Collapse
|
14
|
Wang GL, Xiong F, Que F, Xu ZS, Wang F, Xiong AS. Morphological characteristics, anatomical structure, and gene expression: novel insights into gibberellin biosynthesis and perception during carrot growth and development. HORTICULTURE RESEARCH 2015; 2:15028. [PMID: 26504574 PMCID: PMC4595985 DOI: 10.1038/hortres.2015.28] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 05/23/2015] [Accepted: 05/24/2015] [Indexed: 05/08/2023]
Abstract
Gibberellins (GAs) are considered potentially important regulators of cell elongation and expansion in plants. Carrot undergoes significant alteration in organ size during its growth and development. However, the molecular mechanisms underlying gibberellin accumulation and perception during carrot growth and development remain unclear. In this study, five stages of carrot growth and development were investigated using morphological and anatomical structural techniques. Gibberellin levels in leaf, petiole, and taproot tissues were also investigated for all five stages. Gibberellin levels in the roots initially increased and then decreased, but these levels were lower than those in the petioles and leaves. Genes involved in gibberellin biosynthesis and signaling were identified from the carrotDB, and their expression was analyzed. All of the genes were evidently responsive to carrot growth and development, and some of them showed tissue-specific expression. The results suggested that gibberellin level may play a vital role in carrot elongation and expansion. The relative transcription levels of gibberellin pathway-related genes may be the main cause of the different bioactive GAs levels, thus exerting influences on gibberellin perception and signals. Carrot growth and development may be regulated by modification of the genes involved in gibberellin biosynthesis, catabolism, and perception.
Collapse
Affiliation(s)
- Guang-Long Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Fei Xiong
- Key Laboratories of Crop Genetics and Physiology of the Jiangsu Province and Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Feng Que
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhi-Sheng Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Feng Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Ai-Sheng Xiong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- ()
| |
Collapse
|
15
|
Cui H, Kong D, Wei P, Hao Y, Torii KU, Lee JS, Li J. SPINDLY, ERECTA, and its ligand STOMAGEN have a role in redox-mediated cortex proliferation in the Arabidopsis root. MOLECULAR PLANT 2014; 7:1727-39. [PMID: 25267734 PMCID: PMC4261839 DOI: 10.1093/mp/ssu106] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Reactive oxygen species (ROS) are harmful to all living organisms and therefore they must be removed to ensure normal growth and development. ROS are also signaling molecules, but so far little is known about the mechanisms of ROS perception and developmental response in plants. We here report that hydrogen peroxide induces cortex proliferation in the Arabidopsis root and that SPINDLY (SPY), an O-linked glucosamine acetyltransferase, regulates cortex proliferation by maintaining cellular redox homeostasis. We also found that mutation in the leucine-rich receptor kinase ERECTA and its putative peptide ligand STOMAGEN block the effect of hydrogen peroxide on root cortex proliferation. However, ERECTA and STOMAGEN are expressed in the vascular tissue, whereas extra cortex cells are produced from the endodermis, suggesting the involvement of intercellular signaling. SPY appears to act downstream of ERECTA, because the spy mutation still caused cortex proliferation in the erecta mutant background. We therefore have not only gained insight into the mechanism by which SPY regulates root development but also uncovered a novel pathway for ROS signaling in plants. The importance of redox-mediated cortex proliferation as a protective mechanism against oxidative stress is also discussed.
Collapse
Affiliation(s)
- Hongchang Cui
- Department of Biological Science, Florida State University, Tallahassee, FL 32306-4295, USA
| | - Danyu Kong
- Department of Biological Science, Florida State University, Tallahassee, FL 32306-4295, USA
| | - Pengcheng Wei
- Department of Biological Science, Florida State University, Tallahassee, FL 32306-4295, USA Present address: Biotechnical Group, Institute of Rice Research, Anhui Agricultural Academy of Science, 40#, Nongke South Road, Hefei, Anhui, 230031, China
| | - Yueling Hao
- Department of Biological Science, Florida State University, Tallahassee, FL 32306-4295, USA
| | - Keiko U Torii
- Howard Hughes Medical Institute, Department of Biology, University of Washington, Seattle, WA 98195-1800, USA
| | - Jin Suk Lee
- Howard Hughes Medical Institute, Department of Biology, University of Washington, Seattle, WA 98195-1800, USA
| | - Jie Li
- Department of Biological Science, Florida State University, Tallahassee, FL 32306-4295, USA
| |
Collapse
|
16
|
Matsoukas IG. Interplay between sugar and hormone signaling pathways modulate floral signal transduction. Front Genet 2014; 5:218. [PMID: 25165468 PMCID: PMC4131243 DOI: 10.3389/fgene.2014.00218] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 06/24/2014] [Indexed: 11/13/2022] Open
Abstract
NOMENCLATURE The following nomenclature will be used in this article: Names of genes are written in italicized upper-case letters, e.g., ABI4.Names of proteins are written in non-italicized upper-case letters, e.g., ABI4.Names of mutants are written in italicized lower-case letters, e.g., abi4. The juvenile-to-adult and vegetative-to-reproductive phase transitions are major determinants of plant reproductive success and adaptation to the local environment. Understanding the intricate molecular genetic and physiological machinery by which environment regulates juvenility and floral signal transduction has significant scientific and economic implications. Sugars are recognized as important regulatory molecules that regulate cellular activity at multiple levels, from transcription and translation to protein stability and activity. Molecular genetic and physiological approaches have demonstrated different aspects of carbohydrate involvement and its interactions with other signal transduction pathways in regulation of the juvenile-to-adult and vegetative-to-reproductive phase transitions. Sugars regulate juvenility and floral signal transduction through their function as energy sources, osmotic regulators and signaling molecules. Interestingly, sugar signaling has been shown to involve extensive connections with phytohormone signaling. This includes interactions with phytohormones that are also important for the orchestration of developmental phase transitions, including gibberellins, abscisic acid, ethylene, and brassinosteroids. This article highlights the potential roles of sugar-hormone interactions in regulation of floral signal transduction, with particular emphasis on Arabidopsis thaliana mutant phenotypes, and suggests possible directions for future research.
Collapse
Affiliation(s)
- Ianis G Matsoukas
- Institute for Renewable Energy and Environmental Technologies, University of Bolton Bolton, UK ; Systems and Synthetic Biology, Institute for Materials Research and Innovation, University of Bolton Bolton, UK
| |
Collapse
|
17
|
Cuéllar Pérez A, Nagels Durand A, Vanden Bossche R, De Clercq R, Persiau G, Van Wees SCM, Pieterse CMJ, Gevaert K, De Jaeger G, Goossens A, Pauwels L. The non-JAZ TIFY protein TIFY8 from Arabidopsis thaliana is a transcriptional repressor. PLoS One 2014; 9:e84891. [PMID: 24416306 PMCID: PMC3885651 DOI: 10.1371/journal.pone.0084891] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 11/20/2013] [Indexed: 12/21/2022] Open
Abstract
Jasmonate (JA) signalling is mediated by the JASMONATE-ZIM DOMAIN (JAZ) repressor proteins, which are degraded upon JA perception to release downstream responses. The ZIM protein domain is characteristic of the larger TIFY protein family. It is currently unknown if the atypical member TIFY8 is involved in JA signalling. Here we show that the TIFY8 ZIM domain is functional and mediated interaction with PEAPOD proteins and NINJA. TIFY8 interacted with TOPLESS through NINJA and accordingly acted as a transcriptional repressor. TIFY8 expression was inversely correlated with JAZ expression during development and after infection with Pseudomonas syringae. Nevertheless, transgenic lines with altered TIFY8 expression did not show changes in JA sensitivity. Despite the functional ZIM domain, no interaction with JAZ proteins could be found. In contrast, TIFY8 was found in protein complexes involved in regulation of dephosphorylation, deubiquitination and O-linked N-acetylglucosamine modification suggesting an important role in nuclear signal transduction.
Collapse
Affiliation(s)
- Amparo Cuéllar Pérez
- Department of Plant Systems Biology, VIB, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium
| | - Astrid Nagels Durand
- Department of Plant Systems Biology, VIB, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium
| | - Robin Vanden Bossche
- Department of Plant Systems Biology, VIB, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium
| | - Rebecca De Clercq
- Department of Plant Systems Biology, VIB, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium
| | - Geert Persiau
- Department of Plant Systems Biology, VIB, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium
| | - Saskia C. M. Van Wees
- Plant-Microbe Interactions, Institute of Environmental Biology, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Corné M. J. Pieterse
- Plant-Microbe Interactions, Institute of Environmental Biology, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Kris Gevaert
- Department of Medical Protein Research, VIB, Gent, Belgium
- Department of Biochemistry, Ghent University, Gent, Belgium
| | - Geert De Jaeger
- Department of Plant Systems Biology, VIB, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium
| | - Alain Goossens
- Department of Plant Systems Biology, VIB, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium
| | - Laurens Pauwels
- Department of Plant Systems Biology, VIB, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium
| |
Collapse
|
18
|
Kalve S, De Vos D, Beemster GTS. Leaf development: a cellular perspective. FRONTIERS IN PLANT SCIENCE 2014; 5:362. [PMID: 25132838 PMCID: PMC4116805 DOI: 10.3389/fpls.2014.00362] [Citation(s) in RCA: 157] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Accepted: 07/07/2014] [Indexed: 05/18/2023]
Abstract
Through its photosynthetic capacity the leaf provides the basis for growth of the whole plant. In order to improve crops for higher productivity and resistance for future climate scenarios, it is important to obtain a mechanistic understanding of leaf growth and development and the effect of genetic and environmental factors on the process. Cells are both the basic building blocks of the leaf and the regulatory units that integrate genetic and environmental information into the developmental program. Therefore, to fundamentally understand leaf development, one needs to be able to reconstruct the developmental pathway of individual cells (and their progeny) from the stem cell niche to their final position in the mature leaf. To build the basis for such understanding, we review current knowledge on the spatial and temporal regulation mechanisms operating on cells, contributing to the formation of a leaf. We focus on the molecular networks that control exit from stem cell fate, leaf initiation, polarity, cytoplasmic growth, cell division, endoreduplication, transition between division and expansion, expansion and differentiation and their regulation by intercellular signaling molecules, including plant hormones, sugars, peptides, proteins, and microRNAs. We discuss to what extent the knowledge available in the literature is suitable to be applied in systems biology approaches to model the process of leaf growth, in order to better understand and predict leaf growth starting with the model species Arabidopsis thaliana.
Collapse
Affiliation(s)
- Shweta Kalve
- Laboratory for Molecular Plant Physiology and Biotechnology, Department of Biology, University of Antwerp Antwerp, Belgium
| | - Dirk De Vos
- Laboratory for Molecular Plant Physiology and Biotechnology, Department of Biology, University of Antwerp Antwerp, Belgium ; Department of Mathematics and Computer Science, University of Antwerp Antwerp, Belgium
| | - Gerrit T S Beemster
- Laboratory for Molecular Plant Physiology and Biotechnology, Department of Biology, University of Antwerp Antwerp, Belgium
| |
Collapse
|
19
|
Matsunaga S, Katagiri Y, Nagashima Y, Sugiyama T, Hasegawa J, Hayashi K, Sakamoto T. New insights into the dynamics of plant cell nuclei and chromosomes. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 305:253-301. [PMID: 23890384 DOI: 10.1016/b978-0-12-407695-2.00006-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The plant lamin-like protein NMCP/AtLINC and orthologues of the SUN-KASH complex across the nuclear envelope (NE) show the universality of nuclear structure in eukaryotes. However, depletion of components in the connection complex of the NE in plants does not induce severe defects, unlike in animals. Appearance of the Rabl configuration is not dependent on genome size in plant species. Topoisomerase II and condensin II are not essential for plant chromosome condensation. Plant endoreduplication shares several common characteristics with animals, including involvement of cyclin-dependent kinases and E2F transcription factors. Recent finding regarding endomitosis regulator GIG1 shed light on the suppression mechanism of endomitosis in plants. The robustness of plants, compared with animals, is reflected in their genome redundancy. Spatiotemporal functional analyses using chromophore-assisted light inactivation, super-resolution microscopy, and 4D (3D plus time) imaging will reveal new insights into plant nuclear and chromosomal dynamics.
Collapse
Affiliation(s)
- Sachihiro Matsunaga
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda, Chiba, Japan.
| | | | | | | | | | | | | |
Collapse
|
20
|
Phanchaisri B, Samsang N, Yu L, Singkarat S, Anuntalabhochai S. Expression of OsSPY and 14-3-3 genes involved in plant height variations of ion-beam-induced KDML 105 rice mutants. Mutat Res 2012; 734:56-61. [PMID: 22445891 DOI: 10.1016/j.mrfmmm.2012.03.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Revised: 02/27/2012] [Accepted: 03/04/2012] [Indexed: 10/28/2022]
Abstract
The culm length of two semidwarf rice mutants (PKOS1, HyKOS1) obtained from low-energy N-ion beam bombardments of dehusked Thai jasmine rice (Oryza sativa L. cv. KDML 105) seeds showed 25.7% and 21.5% height reductions and one spindly rice mutant (TKOS4) showed 21.4% increase in comparison with that of the KDML 105 control. A cDNA-RAPD analysis identified differential gene expression in internode tissues of the rice mutants. Two genes identified from the cDNA-RAPD were OsSPY and 14-3-3, possibly associated with stem height variations of the semidwarf and spindly mutants, respectively. The OsSPY gene encoded the SPY protein which is considered to be a negative regulator of gibberellin (GA). On the other hand, the 14-3-3 encoded a signaling protein which can bind and prevent the RSG (repression of shoot growth) protein function as a transcriptional repressor of the kaurene oxidase (KO) gene in the GA biosynthetic pathway. Expression analysis of OsSPY, 14-3-3, RSG, KO, and SLR1 was confirmed in rice internode tissues during the reproductive stage of the plants by semi-quantitative RT-PCR technique. The expression analysis showed a clear increase of the levels of OsSPY transcripts in PKOS1 and HyKOS1 tissue samples compared to that of the KDML 105 and TKOS4 samples at the age of 50-60 days which were at the ages of internode elongation. The 14-3-3 expression had the highest increase in the TKOS4 samples compared to those in KDML 105, PKOS1 and HyKOS1 samples. The expression analysis of RSG and KO showed an increase in TKOS4 samples compared to that of the KDML 105 and that of the two semidwarf mutants. These results indicate that changes of OsSPY and 14-3-3 expression could affect internode elongation and cause the phenotypic changes of semidwarf and spindly rice mutants, respectively.
Collapse
Affiliation(s)
- Boonrak Phanchaisri
- Science and Technology Research Institute, Chiang Mai University, Chiang Mai 50200, Thailand
| | | | | | | | | |
Collapse
|
21
|
Qin F, Kodaira KS, Maruyama K, Mizoi J, Tran LSP, Fujita Y, Morimoto K, Shinozaki K, Yamaguchi-Shinozaki K. SPINDLY, a negative regulator of gibberellic acid signaling, is involved in the plant abiotic stress response. PLANT PHYSIOLOGY 2011; 157:1900-13. [PMID: 22013217 PMCID: PMC3327212 DOI: 10.1104/pp.111.187302] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Accepted: 10/17/2011] [Indexed: 05/18/2023]
Abstract
The SPINDLY (SPY) gene was first identified as a negative regulator of plant gibberellic acid (GA) signaling because mutation of this gene phenocopies plants treated with an overdose of bioactive GA and results in insensitivity to a GA inhibitor during seed germination. The SPY gene encodes an O-linked N-acetylglucosamine transferase that can modify the target protein and modulate the protein activity in cells. In this study, we describe the strong salt and drought tolerance phenotypes of Arabidopsis (Arabidopsis thaliana) spy-1 and spy-3 mutants in addition to their GA-related phenotypes. SPY gene expression was found to be drought stress inducible and slightly responsive to salt stress. Transcriptome analysis of spy-3 revealed that many GA-responsive genes were up-regulated, which could explain the GA-overdosed phenotype of spy-3. Some stress-inducible genes were found to be up-regulated in spy-3, such as genes encoding late embryogenesis abundant proteins, Responsive to Dehydration20, and AREB1-like transcription factor, which may confer stress tolerance on spy-3. CKX3, a cytokinin (CK) catabolism gene, was up-regulated in spy-3; this up-regulation indicates that the mutant possesses reduced CK signaling, which is consistent with a positive role for SPY in CK signaling. Moreover, overexpression of SPY in transgenics (SPY overexpressing [SPY-OX]) impaired plant drought stress tolerance, opposite to the phenotype of spy. The expression levels of several genes, such as DREB1E/DDF1 and SNH1/WIN1, were decreased in SPY-OX but increased in spy-3. Taken together, these data indicate that SPY plays a negative role in plant abiotic stress tolerance, probably by integrating environmental stress signals via GA and CK cross talk.
Collapse
|
22
|
De Veylder L, Larkin JC, Schnittger A. Molecular control and function of endoreplication in development and physiology. TRENDS IN PLANT SCIENCE 2011; 16:624-34. [PMID: 21889902 DOI: 10.1016/j.tplants.2011.07.001] [Citation(s) in RCA: 204] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Revised: 07/19/2011] [Accepted: 07/21/2011] [Indexed: 05/03/2023]
Abstract
Endoreplication, also called endoreduplication, is a cell cycle variant of multicellular eukaryotes in which mitosis is skipped and cells repeatedly replicate their DNA, resulting in cellular polyploidy. In recent years, research results have shed light on the molecular mechanism of endoreplication control, but the function of this cell-cycle variant has remained elusive. However, new evidence is at last providing insight into the biological relevance of cellular polyploidy, demonstrating that endoreplication is essential for developmental processes, such as cell fate maintenance, and is a prominent response to physiological conditions, such as pathogen attack or DNA damage. Thus, endoreplication is being revealed as an important module in plant growth that contributes to the robustness of plant life.
Collapse
|
23
|
Root Apical Meristem Pattern: Hormone Circuitry and Transcriptional Networks. PROGRESS IN BOTANY 72 2010. [DOI: 10.1007/978-3-642-13145-5_2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
24
|
|
25
|
Olszewski NE, West CM, Sassi SO, Hartweck LM. O-GlcNAc protein modification in plants: Evolution and function. Biochim Biophys Acta Gen Subj 2009; 1800:49-56. [PMID: 19961900 DOI: 10.1016/j.bbagen.2009.11.016] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2009] [Revised: 11/19/2009] [Accepted: 11/25/2009] [Indexed: 11/30/2022]
Abstract
The role in plants of posttranslational modification of proteins with O-linked N-acetylglucosamine and the evolution and function of O-GlcNAc transferases responsible for this modification are reviewed. Phylogenetic analysis of eukaryotic O-GlcNAc transferases (OGTs) leads us to propose that plants have two distinct OGTs, SEC- and SPY-like, that originated in prokaryotes. Animals and some fungi have a SEC-like enzyme while plants have both. Green algae and some members of the Apicomplexa and amoebozoa have the SPY-like enzyme. Interestingly the progenitor of the Apicomplexa lineage likely had a photosynthetic plastid that persists in a degenerated form in some species, raising the possibility that plant SPY-like OGTs are derived from a photosynthetic endosymbiont. OGTs have multiple tetratricopeptide repeats (TPRs) that within the SEC- and SPY-like classes exhibit evidence of strong selective pressure on specific repeats, suggesting that the function of these repeats is conserved. SPY-like and SEC-like OGTs have both unique and overlapping roles in the plant. The phenotypes of sec and spy single and double mutants indicate that O-GlcNAc modification is essential and that it affects diverse plant processes including response to hormones and environmental signals, circadian rhythms, development, intercellular transport and virus infection. The mechanistic details of how O-GlcNAc modification affects these processes are largely unknown. A major impediment to understanding this is the lack of knowledge of the identities of the modified proteins.
Collapse
Affiliation(s)
- Neil E Olszewski
- Department of Plant Biology, Microbial and Plant Genomics Institute, 250 Biological Sciences Center, 1445 Gortner Ave., St. Paul, MN 55108, USA.
| | | | | | | |
Collapse
|
26
|
Abstract
A great many cell types are necessary for the myriad capabilities of complex, multicellular organisms. One interesting aspect of this diversity of cell type is that many cells in diploid organisms are polyploid. This is called endopolyploidy and arises from cell cycles that are often characterized as "variant," but in fact are widespread throughout nature. Endopolyploidy is essential for normal development and physiology in many different organisms. Here we review how both plants and animals use variations of the cell cycle, termed collectively as endoreplication, resulting in polyploid cells that support specific aspects of development. In addition, we discuss briefly how endoreplication occurs in response to certain physiological stresses, and how it may contribute to the development of cancer. Finally, we describe the molecular mechanisms that support the onset and progression of endoreplication.
Collapse
|
27
|
Cui H, Benfey PN. Interplay between SCARECROW, GA and LIKE HETEROCHROMATIN PROTEIN 1 in ground tissue patterning in the Arabidopsis root. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 4:551-3. [PMID: 19228333 PMCID: PMC2803106 DOI: 10.1111/j.1365-313x.2009.03839.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Regulated cell division is critical for the development of multi-cellular organisms. In the Arabidopsis root, SCARECROW (SCR) is required for the first cell division, but represses the subsequent, longitudinal asymmetric cell divisions that generate the two cell types of the ground tissue - cortex and endodermis. To elucidate the molecular basis of the role of SCR in ground tissue patterning, we screened for SCR-interacting proteins using the yeast two-hybrid method. A number of putative SCR-interacting proteins were identified, among them LIKE HETEROCHROMATIN PROTEIN 1 (LHP1). In lhp1 mutants, a second longitudinal asymmetric cell division occurs in the ground tissue earlier than in wild-type plants. Similar to the scr mutant, this premature middle cortex phenotype is suppressed by the phytohormone gibberellin (GA). We provide evidence that the N-terminal domain of SCR is required for the interaction between SCR and LHP1 as well as with other interacting partners, and that this domain is essential for repression of asymmetric cell divisions. Consistent with a role for GA in cortex proliferation, mutants of key GA signaling components produce a middle cortex precociously. Intriguingly, we found that the spindly (spy) mutant has a similar middle cortex phenotype. As SPY homologs in animals physically interact with histone deacetylase, we examined the role of histone deacetylation in middle cortex formation. We show that inhibition of histone deacetylase activity causes premature middle cortex formation in wild-type roots. Together, these results suggest that epigenetic regulation is probably the common basis for SCR and GA activity in cortex cell proliferation.
Collapse
MESH Headings
- Arabidopsis/genetics
- Arabidopsis/growth & development
- Arabidopsis/metabolism
- Arabidopsis Proteins/genetics
- Arabidopsis Proteins/metabolism
- Cell Division
- Chromosomal Proteins, Non-Histone/genetics
- Chromosomal Proteins, Non-Histone/metabolism
- Cloning, Molecular
- Epigenesis, Genetic
- Gene Expression Regulation, Developmental
- Gene Expression Regulation, Plant
- Gene Library
- Gibberellins/metabolism
- Microscopy, Confocal
- Mutation
- Plant Growth Regulators/metabolism
- Plant Roots/cytology
- Plant Roots/genetics
- Plant Roots/metabolism
- Plants, Genetically Modified/genetics
- Plants, Genetically Modified/growth & development
- Plants, Genetically Modified/metabolism
- Two-Hybrid System Techniques
Collapse
|
28
|
Maymon I, Greenboim-Wainberg Y, Sagiv S, Kieber JJ, Moshelion M, Olszewski N, Weiss D. Cytosolic activity of SPINDLY implies the existence of a DELLA-independent gibberellin-response pathway. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 58:979-88. [PMID: 19228341 DOI: 10.1111/j.1365-313x.2009.03840.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Specific plant developmental processes are modulated by cross-talk between gibberellin (GA)- and cytokinin-response pathways. Coordination of the two pathways involves the O-linked N-acetylglucosamine transferase SPINDLY (SPY) that suppresses GA signaling and promotes cytokinin responses in Arabidopsis. Although SPY is a nucleocytoplasmic protein, its site of action and targets are unknown. Several studies have suggested that SPY acts in the nucleus, where it modifies nuclear components such as the DELLA proteins to regulate signaling networks. Using chimeric GFP-SPY fused to a nuclear-export signal or to a glucocorticoid receptor, we show that cytosolic SPY promotes cytokinin responses and suppresses GA signaling. In contrast, nuclear-localized GFP-SPY failed to complement the spy mutation. To examine whether modulation of cytokinin activity by GA and spy is mediated by the nuclear DELLA proteins, cytokinin responses were studied in double and quadruple della mutants lacking the activities of REPRESSOR OF GA1-3 (RGA) and GA-INSENSITIVE (GAI) or RGA, GAI, RGA Like1 (RGL1) and RGL2. Unlike spy, the della mutants were cytokinin-sensitive. Moreover, when GA was applied to a cytokinin-treated quadruple della mutant it was able to suppress various cytokinin responses. These results suggest that cytosolic SPY and GA regulate cytokinin responses via a DELLA-independent pathway(s).
Collapse
Affiliation(s)
- Inbar Maymon
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agricultural, Food and Environmental Quality Sciences, The Hebrew University of Jerusalem, PO Box 12, Rehovot 76100, Israel
| | | | | | | | | | | | | |
Collapse
|
29
|
Cui H, Benfey PN. Cortex proliferation: simple phenotype, complex regulatory mechanisms. PLANT SIGNALING & BEHAVIOR 2009; 4:551-553. [PMID: 19816127 PMCID: PMC2688310 DOI: 10.4161/psb.4.6.8731] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2009] [Accepted: 04/15/2009] [Indexed: 05/19/2023]
Abstract
In plants, the cortex is a relatively undifferentiated cell type. Proliferation of cortex tissues initially appeared to be a simple process of repetitive cell division. However, our recent studies showed that in the Arabidopsis root cortex proliferation involves complex regulatory mechanisms. First, it requires the combined activity of the transcriptional regulators SHORT-ROOT (SHR) and SCARECROW (SCR), but SCR also plays a role in restricting the number of cell divisions. The two opposing activities appear to be mediated by different domains of SCR through physical interaction with distinct partners, and whether SCR behaves as an activator or repressor depends on the relative level of the two protein complexes. We confirmed previous findings that GA plays a major role in cortex proliferation, but also found distinct roles for GA signaling components in this process. We showed that ABA and ethylene also play a role in cortex proliferation, but in an unexpected manner. Finally, we identified an epigenetic component of the regulation, and our data suggested that this is likely the common basis on which various pathways converge. There is evidence that similar mechanisms to those found in Arabidopsis are employed in other plant species.
Collapse
Affiliation(s)
- Hongchang Cui
- Biology Department and IGSP Center for Systems Biology, Duke University, Durham, NC, USA
| | | |
Collapse
|
30
|
Foucher F, Chevalier M, Corre C, Soufflet-Freslon V, Legeai F, Hibrand-Saint Oyant L. New resources for studying the rose flowering process. Genome 2009; 51:827-37. [PMID: 18923534 DOI: 10.1139/g08-067] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Knowledge of the flowering process - an important trait in ornamental plants such as roses - is necessary for efficient control of flowering. This study was carried out to develop and characterize new resources to gain further insight into floral control in rose. We studied floral initiation in a nonrecurrent blooming rose (hybrid of Rosa wichurana) and a recurrent blooming rose (Rosa hybrida Black Baccara. In Black Baccara, floral initiation took place rapidly after bud burst, whereas in the greenhouse R. wichurana remained vegetative. During floral initiation, the apex enlarged and domed quickly and concomitantly. This is the first description of this transition between the vegetative and floral bud stages in rose. From these vegetative and pre-floral tissues, two cDNA libraries were constructed and 5,000 ESTs sequenced. By collecting our ESTs and those available in public databases, we developed a comprehensive database representing approximately 5,000 unique sequences after clustering. By screening this database for candidate genes involved in the flowering process, we identified 13 genes potentially involved in gibberellic acid signalling, photoperiod pathways, and floral development. Based on expression data, we put forward different hypotheses on the control of flowering in rose (photoperiod control and involvement of gibberellins) relative to what is already known in Arabidopsis.
Collapse
|
31
|
Schwechheimer C. Understanding gibberellic acid signaling--are we there yet? CURRENT OPINION IN PLANT BIOLOGY 2008; 11:9-15. [PMID: 18077204 DOI: 10.1016/j.pbi.2007.10.011] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2007] [Revised: 10/24/2007] [Accepted: 10/25/2007] [Indexed: 05/06/2023]
Abstract
The phytohormone gibberellic acid (GA) controls important aspects of plant growth such as seed germination, elongation growth, and flowering. The key components of the GA signaling pathway have been identified over the past 10 years. The current view is that GA binds to a soluble GID1 receptor, which interacts with the DELLA repressor proteins in a GA-dependent manner and thereby induces DELLA protein degradation via the E3 ubiquitin ligase SCF(GID2/SLY1). GA-dependent growth responses can generally be correlated with and be explained by changes in DELLA repressor abundance, where the DELLA repressor exerts a growth restraint that is relieved upon its degradation. However, it is obvious that other mechanisms must exist that control the activity of this pathway. This review discusses recent advances in the understanding of GA signaling, of its homeostasis, and of its cross-talk with other signaling pathways.
Collapse
Affiliation(s)
- Claus Schwechheimer
- Department of Developmental Genetics, Center for Plant Molecular Biology, Tübingen University, Auf der Morgenstelle 5, 72076 Tübingen, Germany.
| |
Collapse
|
32
|
Sun TP. Gibberellin metabolism, perception and signaling pathways in Arabidopsis. THE ARABIDOPSIS BOOK 2008; 6:e0103. [PMID: 22303234 PMCID: PMC3243332 DOI: 10.1199/tab.0103] [Citation(s) in RCA: 146] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Bioactive gibberellins (GAs) are diterpene phytohormones that modulate growth and development throughout the whole life cycle of the plant. Arabidopsis genes encoding most GA biosynthesis and catabolism enzymes, as well as GA receptors (GIBBERELLIN INSENSITIVE DWARF1, GID1) and early GA signaling components have been identified. Expression studies on the GA biosynthesis genes are beginning to reveal the potential sites of GA biosynthesis during plant development. Biochemical and genetic analyses demonstrate that GA de-represses its signaling pathway by binding to GID1s, which induce degradation of GA signaling repressors (DELLAs) via an ubiquitin-proteasome pathway. To modulate plant growth and development, the GA pathway is also regulated by endogenous signals (other hormones) and environmental cues (such as light, temperature and salt stress). In many cases, these internal and external cues directly affect GA metabolism and bioactive GA levels, and indirectly alter DELLA accumulation and GA responses. Importantly, direct negative interaction between DELLA and PIF3 and PIF4 (2 phytochrome interacting transcription factors) appears to integrate the effects of light and GA on hypocotyl elongation.
Collapse
Affiliation(s)
- Tai-Ping Sun
- Department of Biology, Duke University, Durham, NC 27708
| |
Collapse
|
33
|
Singh DP, Jermakow AM, Swain SM. Preliminary development of a genetic strategy to prevent transgene escape by blocking effective pollen flow from transgenic plants. FUNCTIONAL PLANT BIOLOGY : FPB 2008; 34:1055-1060. [PMID: 32689435 DOI: 10.1071/fp06323] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2006] [Accepted: 10/15/2007] [Indexed: 06/11/2023]
Abstract
Genetic modification (GM) of plants has great potential in the production of food and industrial compounds, and in molecular pharming. One of the greatest public concerns regarding this technology is effective pollen flow, in which wind- or insect-borne transgenic pollen is able to fertilise either non-GM crops of the same species, or closely related weed species, and lead to viable seed formation. In this paper we describe a novel concept, based on epigenetic inheritance (imprinting) and post-transcriptional gene silencing (PTGS)/RNA interference (RNAi), designed to prevent transgene escape via pollen flow from transgenic plants. A key advantage of this strategy is that it would allow all seeds from self-pollinated transgenic plants to be harvested and re-sown, without the need for specific treatments, while retaining all of the transgenes present in the parent. Thus, this strategy is not a Genetic Use Restriction Technology (GURT) and if implemented would not prevent seed saving by end-users.
Collapse
|
34
|
Zentella R, Zhang ZL, Park M, Thomas SG, Endo A, Murase K, Fleet CM, Jikumaru Y, Nambara E, Kamiya Y, Sun TP. Global analysis of della direct targets in early gibberellin signaling in Arabidopsis. THE PLANT CELL 2007; 19:3037-57. [PMID: 17933900 PMCID: PMC2174696 DOI: 10.1105/tpc.107.054999] [Citation(s) in RCA: 436] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Bioactive gibberellins (GAs) are phytohormones that regulate growth and development throughout the life cycle of plants. DELLA proteins are conserved growth repressors that modulate all aspects of GA responses. These GA-signaling repressors are nuclear localized and likely function as transcriptional regulators. Recent studies demonstrated that GA, upon binding to its receptor, derepresses its signaling pathway by binding directly to DELLA proteins and targeting them for rapid degradation via the ubiquitin-proteasome pathway. Therefore, elucidating the signaling events immediately downstream of DELLA is key to our understanding of how GA controls plant development. Two sets of microarray studies followed by quantitative RT-PCR analysis allowed us to identify 14 early GA-responsive genes that are also early DELLA-responsive in Arabidopsis thaliana seedlings. Chromatin immunoprecipitation provided evidence for in vivo association of DELLA with promoters of eight of these putative DELLA target genes. Expression of all 14 genes was downregulated by GA and upregulated by DELLA. Our study reveals that DELLA proteins play two important roles in GA signaling: (1) they help establish GA homeostasis by direct feedback regulation on the expression of GA biosynthetic and GA receptor genes, and (2) they promote the expression of downstream negative components that are putative transcription factors/regulators or ubiquitin E2/E3 enzymes. In addition, one of the putative DELLA targets, XERICO, promotes accumulation of abscisic acid (ABA) that antagonizes GA effects. Therefore, DELLA may restrict GA-promoted processes by modulating both GA and ABA pathways.
Collapse
Affiliation(s)
- Rodolfo Zentella
- Department of Biology, Duke University, Durham, North Carolina 27708, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Zentella R, Zhang ZL, Park M, Thomas SG, Endo A, Murase K, Fleet CM, Jikumaru Y, Nambara E, Kamiya Y, Sun TP. Global analysis of della direct targets in early gibberellin signaling in Arabidopsis. THE PLANT CELL 2007. [PMID: 17933900 DOI: 10.1105/tpc.107.054999:tpc.107.054999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Bioactive gibberellins (GAs) are phytohormones that regulate growth and development throughout the life cycle of plants. DELLA proteins are conserved growth repressors that modulate all aspects of GA responses. These GA-signaling repressors are nuclear localized and likely function as transcriptional regulators. Recent studies demonstrated that GA, upon binding to its receptor, derepresses its signaling pathway by binding directly to DELLA proteins and targeting them for rapid degradation via the ubiquitin-proteasome pathway. Therefore, elucidating the signaling events immediately downstream of DELLA is key to our understanding of how GA controls plant development. Two sets of microarray studies followed by quantitative RT-PCR analysis allowed us to identify 14 early GA-responsive genes that are also early DELLA-responsive in Arabidopsis thaliana seedlings. Chromatin immunoprecipitation provided evidence for in vivo association of DELLA with promoters of eight of these putative DELLA target genes. Expression of all 14 genes was downregulated by GA and upregulated by DELLA. Our study reveals that DELLA proteins play two important roles in GA signaling: (1) they help establish GA homeostasis by direct feedback regulation on the expression of GA biosynthetic and GA receptor genes, and (2) they promote the expression of downstream negative components that are putative transcription factors/regulators or ubiquitin E2/E3 enzymes. In addition, one of the putative DELLA targets, XERICO, promotes accumulation of abscisic acid (ABA) that antagonizes GA effects. Therefore, DELLA may restrict GA-promoted processes by modulating both GA and ABA pathways.
Collapse
Affiliation(s)
- Rodolfo Zentella
- Department of Biology, Duke University, Durham, North Carolina 27708, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Czikkel BE, Maxwell DP. NtGRAS1, a novel stress-induced member of the GRAS family in tobacco, localizes to the nucleus. JOURNAL OF PLANT PHYSIOLOGY 2007; 164:1220-30. [PMID: 17007961 DOI: 10.1016/j.jplph.2006.07.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2006] [Accepted: 07/12/2006] [Indexed: 05/12/2023]
Abstract
We report the isolation and initial characterization of a new member of the GRAS gene family from tobacco, NtGRAS1. Analysis of the predicted amino acid sequence shows that NtGRAS1 shares the highly conserved carboxy-terminal motifs common to all members of the GRAS family. NtGRAS1 expression was strongly induced in tobacco (BY-2) suspension cells by antimycin A, H(2)O(2), salicylic acid, and L-cysteine which were all found to raise intracellular reactive oxygen levels. An increase in NtGRAS1 expression was also triggered by treating cells with the nitric oxide donor sodium nitroprusside. By employing inhibitors of protein kinase and phosphatase action, we show that reversible phosphorylation is required for the stress-induced induction of NtGRAS1 and that reactive oxygen as well as NO-dependent signaling pathways probably share key intracellular components. Interestingly, in soil-grown plants, high constitutive expression of NtGRAS1 was found only in roots while expression was strongly induced in leaf tissue upon antimycin A treatment or following Pseudomonas syringae infection. Many members of the GRAS family are implicated in regulating transcription and this function for NtGRAS1 is supported by our finding that an NtGRAS1-GFP fusion protein localizes to the nucleus of onion epidermal cells. Our data suggest that NtGRAS1 may represent an important transcriptional regulator involved in the plant stress response.
Collapse
Affiliation(s)
- Beatrix E Czikkel
- Environmental Stress Biology Group, Department of Biology, University of Western Ontario, London, ONT, Canada
| | | |
Collapse
|
37
|
Silverstone AL, Tseng TS, Swain SM, Dill A, Jeong SY, Olszewski NE, Sun TP. Functional analysis of SPINDLY in gibberellin signaling in Arabidopsis. PLANT PHYSIOLOGY 2007; 143:987-1000. [PMID: 17142481 PMCID: PMC1803720 DOI: 10.1104/pp.106.091025] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The Arabidopsis (Arabidopsis thaliana) SPINDLY (SPY) protein negatively regulates the gibberellin (GA) signaling pathway. SPY is an O-linked N-acetylglucosamine (GlcNAc) transferase (OGT) with a protein-protein interaction domain consisting of 10 tetratricopeptide repeats (TPR). OGTs add a GlcNAc monosaccharide to serine/threonine residues of nuclear and cytosolic proteins. Determination of the molecular defects in 14 new spy alleles reveals that these mutations cluster in three TPRs and the C-terminal catalytic region. Phenotypic characterization of 12 spy alleles indicates that TPRs 6, 8, and 9 and the catalytic domain are crucial for GA-regulated stem elongation, floral induction, and fertility. TPRs 8 and 9 and the catalytic region are also important for modulating trichome morphology and inflorescence phyllotaxy. Consistent with a role for SPY in embryo development, several alleles affect seedling cotyledon number. These results suggest that three of the TPRs and the OGT activity in SPY are required for its function in GA signal transduction. We also examined the effect of spy mutations on another negative regulator of GA signaling, REPRESSOR OF ga1-3 (RGA). The DELLA motif in RGA is essential for GA-induced proteolysis of RGA, and deletion of this motif (as in rga-delta17) causes a GA-insensitive dwarf phenotype. Here, we demonstrate that spy partially suppresses the rga-delta17 phenotype but does not reduce rga-delta17 or RGA protein levels or alter RGA nuclear localization. We propose that SPY may function as a negative regulator of GA response by increasing the activity of RGA, and presumably other DELLA proteins, by GlcNAc modification.
Collapse
Affiliation(s)
- Aron L Silverstone
- Department of Biology, Duke University, Durham, North Carolina 27708, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Ueguchi-Tanaka M, Nakajima M, Motoyuki A, Matsuoka M. Gibberellin receptor and its role in gibberellin signaling in plants. ANNUAL REVIEW OF PLANT BIOLOGY 2007; 58:183-98. [PMID: 17472566 DOI: 10.1146/annurev.arplant.58.032806.103830] [Citation(s) in RCA: 208] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Gibberellins (GAs) are a large family of tetracyclic, diterpenoid plant hormones that induce a wide range of plant growth responses. It has been postulated that plants have two types of GA receptors, including soluble and membrane-bound forms. Recently, it was determined that the rice GIBBERELLIN INSENSITIVE DWARF1 (GID1) gene encodes an unknown protein with similarity to the hormone-sensitive lipases that has high affinity only for biologically active GAs. Moreover, GID1 binds to SLR1, a repressor of GA signaling, in a GA-dependent manner in yeast cells. Based on these observations, it has been concluded that GID1 is a soluble receptor mediating GA signaling in rice. More recently, Arabidopsis thaliana was found to have three GID1 homologs, AtGID1a, b, and c, all of which bind GA and interact with the five Arabidopsis DELLA proteins.
Collapse
Affiliation(s)
- Miyako Ueguchi-Tanaka
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, Aichi 464-8601, Japan.
| | | | | | | |
Collapse
|
39
|
Forsythe ME, Love DC, Lazarus BD, Kim EJ, Prinz WA, Ashwell G, Krause MW, Hanover JA. Caenorhabditis elegans ortholog of a diabetes susceptibility locus: oga-1 (O-GlcNAcase) knockout impacts O-GlcNAc cycling, metabolism, and dauer. Proc Natl Acad Sci U S A 2006; 103:11952-7. [PMID: 16882729 PMCID: PMC1567679 DOI: 10.1073/pnas.0601931103] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A dynamic cycle of O-linked N-acetylglucosamine (O-GlcNAc) addition and removal acts on nuclear pore proteins, transcription factors, and kinases to modulate cellular signaling cascades. Two highly conserved enzymes (O-GlcNAc transferase and O-GlcNAcase) catalyze the final steps in this nutrient-driven "hexosamine-signaling pathway." A single nucleotide polymorphism in the human O-GlcNAcase gene is linked to type 2 diabetes. Here, we show that Caenorhabditis elegans oga-1 encodes an active O-GlcNAcase. We also describe a knockout allele, oga-1(ok1207), that is viable and fertile yet accumulates O-GlcNAc on nuclear pores and other cellular proteins. Interfering with O-GlcNAc cycling with either oga-1(ok1207) or the O-GlcNAc transferase-null ogt-1(ok430) altered Ser- and Thr-phosphoprotein profiles and increased glycogen synthase kinase 3beta (GSK-3beta) levels. Both the oga-1(ok1207) and ogt-1(ok430) strains showed elevated stores of glycogen and trehalose, and decreased lipid storage. These striking metabolic changes prompted us to examine the insulin-like signaling pathway controlling nutrient storage, longevity, and dauer formation in the C. elegans O-GlcNAc cycling mutants. Indeed, we found that the oga-1(ok1207) knockout augmented dauer formation induced by a temperature sensitive insulin-like receptor (daf-2) mutant under conditions in which the ogt-1(ok430)-null diminished dauer formation. Our findings suggest that the enzymes of O-GlcNAc cycling "fine-tune" insulin-like signaling in response to nutrient flux. The knockout of O-GlcNAcase (oga-1) in C. elegans mimics many of the metabolic and signaling changes associated with human insulin resistance and provides a genetically amenable model of non-insulin-dependent diabetes.
Collapse
Affiliation(s)
- Michele E. Forsythe
- Laboratory of Cell Biochemistry and Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0850
| | - Dona C. Love
- Laboratory of Cell Biochemistry and Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0850
| | - Brooke D. Lazarus
- Laboratory of Cell Biochemistry and Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0850
| | - Eun Ju Kim
- Laboratory of Cell Biochemistry and Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0850
| | - William A. Prinz
- Laboratory of Cell Biochemistry and Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0850
| | - Gilbert Ashwell
- Laboratory of Cell Biochemistry and Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0850
- *To whom correspondence may be addressed. E-mail:
or
| | - Michael W. Krause
- Laboratory of Cell Biochemistry and Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0850
| | - John A. Hanover
- Laboratory of Cell Biochemistry and Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0850
- *To whom correspondence may be addressed. E-mail:
or
| |
Collapse
|
40
|
Hartweck LM, Genger RK, Grey WM, Olszewski NE. SECRET AGENT and SPINDLY have overlapping roles in the development of Arabidopsis thaliana L. Heyn. JOURNAL OF EXPERIMENTAL BOTANY 2006; 57:865-75. [PMID: 16473894 DOI: 10.1093/jxb/erj071] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
O-GlcNAc transferase (OGT) catalyses transfer of GlcNAc (N-acetylglucosamine) to serine or threonine of proteins. The Arabidopsis OGTs, SECRET AGENT (SEC) and SPINDLY (SPY) have overlapping functions during gametogenesis and embryogenesis. SPY functions in a number of processes including circadian, light, and gibberellin (GA) responses. The role of SEC in plant development and GA signalling was investigated by determining the phenotypes of sec-1 and sec-2 plants and the expression pattern of SEC. Similar to SPY, SEC transcripts were ubiquitous. Although there is no evidence of transcript-level regulation by other factors, SEC mRNA levels are elevated in spy plants and SPY mRNA levels are elevated in sec plants. sec-1 and sec-2 plants exhibited few of the defects observed in spy plants and had wild-type GA responses. Compared with wild type, sec plants produced leaves at a reduced rate. Haplo-insufficiency at SEC in a spy ga1 double mutant background suppressed spy during germination and enhanced the production of ovaries with four carpels by spy. By contrast, SPY haplo-insufficiency in a sec ga1 double mutant background caused a novel phenotype, production of a proliferation of pin-like structures instead of a floral shoot. These results are consistent with SEC function overlapping with SPY for leaf production and reproductive development.
Collapse
Affiliation(s)
- Lynn M Hartweck
- Department of Plant Biology, University of Minnesota, 250 Biological Sciences Center, 1445 Gortner Ave., St Paul, 55108, USA
| | | | | | | |
Collapse
|
41
|
Abstract
A dynamic cycle of addition and removal of O-linked N-acetylglucosamine (O-GlcNAc) at serine and threonine residues is emerging as a key regulator of nuclear and cytoplasmic protein activity. Like phosphorylation, protein O-GlcNAcylation dramatically alters the posttranslational fate and function of target proteins. Indeed, O-GlcNAcylation may compete with phosphorylation for certain Ser/Thr target sites. Like kinases and phosphatases, the enzymes of O-GlcNAc metabolism are highly compartmentalized and regulated. Yet, O-GlcNAc addition is subject to an additional and unique level of metabolic control. O-GlcNAc transfer is the terminal step in a "hexosamine signaling pathway" (HSP). In the HSP, levels of uridine 5'-diphosphate (UDP)-GlcNAc respond to nutrient excess to activate O-GlcNAcylation. Removal of O-GlcNAc may also be under similar metabolic regulation. Differentially targeted isoforms of the enzymes of O-GlcNAc metabolism allow the participation of O-GlcNAc in diverse intracellular functions. O-GlcNAc addition and removal are key to histone remodeling, transcription, proliferation, apoptosis, and proteasomal degradation. This nutrient-responsive signaling pathway also modulates important cellular pathways, including the insulin signaling cascade in animals and the gibberellin signaling pathway in plants. Alterations in O-GlcNAc metabolism are associated with various human diseases including diabetes mellitus and neurodegeneration. This review will focus on current approaches to deciphering the "O-GlcNAc code" in order to elucidate how O-GlcNAc participates in its diverse functions. This ongoing effort requires analysis of the enzymes of O-GlcNAc metabolism, their many targets, and how the O-GlcNAc modification may be regulated.
Collapse
Affiliation(s)
- Dona C Love
- Laboratory of Cell Biochemistry and Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA
| | | |
Collapse
|
42
|
Bernier G, Périlleux C. A physiological overview of the genetics of flowering time control. PLANT BIOTECHNOLOGY JOURNAL 2005; 3:3-16. [PMID: 17168895 DOI: 10.1111/j.1467-7652.2004.00114.x] [Citation(s) in RCA: 175] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Physiological studies on flowering time control have shown that plants integrate several environmental signals. Predictable factors, such as day length and vernalization, are regarded as 'primary', but clearly interfere with, or can even be substituted by, less predictable factors. All plant parts participate in the sensing of these interacting factors. In the case of floral induction by photoperiod, long-distance signalling is known to occur between the leaves and the shoot apical meristem (SAM) via the phloem. In the long-day plant, Sinapis alba, this long-distance signalling has also been shown to involve the root system and to include sucrose, nitrate, glutamine and cytokinins, but not gibberellins. In Arabidopsis thaliana, a number of genetic pathways controlling flowering time have been identified. Models now extend beyond 'primary' controlling factors and show an ever-increasing number of cross-talks between pathways triggered or influenced by various environmental factors and hormones (mainly gibberellins). Most of the genes involved are preferentially expressed in meristems (the SAM and the root tip), but, surprisingly, only a few are expressed preferentially or exclusively in leaves. However, long-distance signalling from leaves to SAM has been shown to occur in Arabidopsis during the induction of flowering by long days. In this review, we propose a model integrating physiological data and genes activated by the photoperiodic pathway controlling flowering time in early-flowering accessions of Arabidopsis. This model involves metabolites, hormones and gene products interacting as long- or short-distance signalling molecules.
Collapse
Affiliation(s)
- Georges Bernier
- Laboratory of Plant Physiology, Department of Life Sciences, University of Liège, B22 Sart Tilman, B4000 Liège, Belgium.
| | | |
Collapse
|
43
|
Greenboim-Wainberg Y, Maymon I, Borochov R, Alvarez J, Olszewski N, Ori N, Eshed Y, Weiss D. Cross talk between gibberellin and cytokinin: the Arabidopsis GA response inhibitor SPINDLY plays a positive role in cytokinin signaling. THE PLANT CELL 2005; 17:92-102. [PMID: 15608330 PMCID: PMC544492 DOI: 10.1105/tpc.104.028472] [Citation(s) in RCA: 212] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2004] [Accepted: 11/05/2004] [Indexed: 05/17/2023]
Abstract
SPINDLY (SPY) is a negative regulator of gibberellin (GA) responses; however, spy mutants exhibit various phenotypic alterations not found in GA-treated plants. Assaying for additional roles for SPY revealed that spy mutants are resistant to exogenously applied cytokinin. GA also repressed the effects of cytokinin, suggesting that there is cross talk between the two hormone-response pathways, which may involve SPY function. Two spy alleles showing severe (spy-4) and mild (spy-3) GA-associated phenotypes exhibited similar resistance to cytokinin, suggesting that SPY enhances cytokinin responses and inhibits GA signaling through distinct mechanisms. GA and spy repressed numerous cytokinin responses, from seedling development to senescence, indicating that cross talk occurs early in the cytokinin-signaling pathway. Because GA3 and spy-4 inhibited induction of the cytokinin primary-response gene, type-A Arabidopsis response regulator 5, SPY may interact with and modify elements from the phosphorelay cascade of the cytokinin signal transduction pathway. Cytokinin, on the other hand, had no effect on GA biosynthesis or responses. Our results demonstrate that SPY acts as both a repressor of GA responses and a positive regulator of cytokinin signaling. Hence, SPY may play a central role in the regulation of GA/cytokinin cross talk during plant development.
Collapse
Affiliation(s)
- Yaarit Greenboim-Wainberg
- Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agricultural, Food and Environmental Quality Sciences, Hebrew University of Jerusalem, Rehovot 76100, Israel
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Van Damme EJM, Barre A, Rougé P, Peumans WJ. Cytoplasmic/nuclear plant lectins: a new story. TRENDS IN PLANT SCIENCE 2004; 9:484-9. [PMID: 15465683 DOI: 10.1016/j.tplants.2004.08.003] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Affiliation(s)
- Els J M Van Damme
- Department of Molecular Biotechnology, Ghent University, Coupure Links 653, 9000 Gent, Belgium.
| | | | | | | |
Collapse
|
45
|
Robertson M. Two transcription factors are negative regulators of gibberellin response in the HvSPY-signaling pathway in barley aleurone. PLANT PHYSIOLOGY 2004; 136:2747-61. [PMID: 15347799 PMCID: PMC523338 DOI: 10.1104/pp.104.041665] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2004] [Revised: 06/20/2004] [Accepted: 06/28/2004] [Indexed: 05/21/2023]
Abstract
SPINDLY (SPY) protein from barley (Hordeum vulgare L. cv Himalaya; HvSPY) negatively regulated GA responses in aleurone, and genetic analyses of Arabidopsis thaliana predict that SPY functions in a derepressible GA-signaling pathway. Many, if not all, GA-dependent responses require SPY protein, and to improve our understanding of how the SPY signaling pathway operates, a yeast two-hybrid screen was used to identify both upstream and downstream components that might regulate the activity of the HvSPY protein. A number of proteins from diverse classes were identified using HvSPY as bait and barley cDNA libraries as prey. Two of the HvSPY-interacting (HSI) proteins were transcription factors belonging to the myb and NAC gene families, HSImyb and HSINAC. Interaction occurred via the tetratricopeptide repeat domain of HvSPY and specificity was shown both in vivo and in vitro. Messenger RNAs for these proteins were expressed differentially in many parts of the barley plant but at very low levels. Both HSImyb and HSINAC inhibited the GA(3) up-regulation of alpha-amylase expression in aleurone, both were activators of transcription in yeast, and the green fluorescent protein-HSI fusion proteins were localized in the nucleus. These results are consistent with the model that HSI transcription factors act downstream of HvSPY as negative regulators and that they in turn could activate other negative regulators, forming the HvSPY negative regulator-signaling pathway for GA response.
Collapse
Affiliation(s)
- Masumi Robertson
- Commonwealth Scientific and Industrial Research Organisation Plant Industry, Canberra, Australian Capitol Territory 2601, Australia.
| |
Collapse
|
46
|
Fu X, Richards DE, Fleck B, Xie D, Burton N, Harberd NP. The Arabidopsis mutant sleepy1gar2-1 protein promotes plant growth by increasing the affinity of the SCFSLY1 E3 ubiquitin ligase for DELLA protein substrates. THE PLANT CELL 2004; 16:1406-18. [PMID: 15161962 PMCID: PMC490035 DOI: 10.1105/tpc.021386] [Citation(s) in RCA: 191] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2004] [Accepted: 03/03/2004] [Indexed: 05/18/2023]
Abstract
DELLA proteins restrain the cell proliferation and enlargement that characterizes the growth of plant organs. Gibberellin stimulates growth via 26S proteasome-dependent destruction of DELLAs, thus relieving DELLA-mediated growth restraint. Here, we show that the Arabidopsis thaliana sleepy1gar2-1 (sly1gar2-1) mutant allele encodes a mutant subunit (sly1gar2-1) of an SCF(SLY1) E3 ubiquitin ligase complex. SLY1 (the wild-type form) and sly1gar2-1 both confer substrate specificity on this complex via specific binding to the DELLA proteins. However, sly1gar2-1 interacts more strongly with the DELLA target than does SLY1. In addition, the strength of the SCFSLY1-DELLA interaction is increased by target phosphorylation. Growth-promoting DELLA destruction is dependent on SLY1 availability, on the strength of the interaction between SLY1 and the DELLA target, and on promotion of the SCFSLY1-DELLA interaction by DELLA phosphorylation.
Collapse
Affiliation(s)
- Xiangdong Fu
- John Ines Centre, Norwich NR4 7UH, United Kingdom
| | | | | | | | | | | |
Collapse
|
47
|
Nanjo Y, Asatsuma S, Itoh K, Hori H, Mitsui T, Fujisawa Y. Posttranscriptional regulation of alpha-amylase II-4 expression by gibberellin in germinating rice seeds. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2004; 42:477-484. [PMID: 15246060 DOI: 10.1016/j.plaphy.2004.04.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2003] [Accepted: 04/15/2004] [Indexed: 05/24/2023]
Abstract
Hormonal regulation of expression of alpha-amylase II-4 that lacks the gibberellin-response cis-element (GARE) in the promoter region of the gene was studied in germinating rice (Oryza sativa L.) seeds. Temporal and spatial expression of alpha-amylase II-4 in the aleurone layer were essentially identical to those of alpha-amylase I-1 whose gene contains GARE, although these were distinguishable in the embryo tissues at the early stage of germination. The gibberellin-responsible expression of alpha-amylase II-4 was also similar to that of alpha-amylase I-1. However, the level of alpha-amylase II-4 mRNA was not increased by gibberellin, indicating that the transcriptional enhancement of alpha-amylase II-4 expression did not occur in the aleurone. Gibberellin stimulated the accumulation of 45Ca2+ into the intracellular secretory membrane system. In addition, several inhibitors for Ca2+ signaling, such as EGTA, neomycin, ruthenium red (RuR), and W-7 prevented the gibberellin-induced expression of alpha-amylase II-4 effectively. While the gibberellin-induced expression of alpha-amylase II-4 occurred normally in the aleurone layer of a rice dwarf mutant d1 which is defective in the alpha subunit of the heterotrimeric G protein. Based on these results, it was concluded that the posttranscriptional regulation of alpha-amylase II-4 expression by gibberellin operates in the aleurone layer of germinating rice seed, which is mediated by Ca2+ but not the G protein.
Collapse
Affiliation(s)
- Yohei Nanjo
- Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan
| | | | | | | | | | | |
Collapse
|
48
|
Tseng TS, Salomé PA, McClung CR, Olszewski NE. SPINDLY and GIGANTEA interact and act in Arabidopsis thaliana pathways involved in light responses, flowering, and rhythms in cotyledon movements. THE PLANT CELL 2004; 16:1550-63. [PMID: 15155885 PMCID: PMC490045 DOI: 10.1105/tpc.019224] [Citation(s) in RCA: 133] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2003] [Accepted: 03/30/2004] [Indexed: 05/18/2023]
Abstract
SPINDLY (SPY) is a negative regulator of gibberellin signaling in Arabidopsis thaliana that also functions in previously undefined pathways. The N terminus of SPY contains a protein-protein interaction domain consisting of 10 tetratricopeptide repeats (TPRs). GIGANTEA (GI) was recovered from a yeast two-hybrid screen for proteins that interact with the TPR domain. GI and SPY also interacted in Escherichia coli and in vitro pull-down assays. The phenotypes of spy and spy-4 gi-2 plants support the hypothesis that SPY functions with GI in pathways controlling flowering, circadian cotyledon movements, and hypocotyl elongation. GI acts in the long-day flowering pathway upstream of CONSTANS (CO) and FLOWERING LOCUS T (FT). Loss of GI function causes late flowering and reduces CO and FT RNA levels. Consistent with SPY functioning in the long-day flowering pathway upstream of CO, spy-4 partially suppressed the reduced abundance of CO and FT RNA and the late flowering of gi-2 plants. Like gi, spy affects the free-running period of cotyledon movements. The free-running period was lengthened in spy-4 mutants and shortened in plants that overexpress SPY under the control of the 35S promoter of Cauliflower mosaic virus. When grown under red light, gi-2 plants have a long hypocotyl. This hypocotyl phenotype was suppressed in spy-4 gi-2 double mutants. Additionally, dark-grown and far-red-light-grown spy-4 seedlings were found to have short and long hypocotyls, respectively. The different hypocotyl length phenotypes of spy-4 seedlings grown under different light conditions are consistent with SPY acting in the GA pathway to inhibit hypocotyl elongation and also acting as a light-regulated promoter of elongation.
Collapse
Affiliation(s)
- Tong-Seung Tseng
- Department of Plant Biology and Plant Molecular Genetics Institute, University of Minesota, St. Paul, Minesota 55108, USA
| | | | | | | |
Collapse
|
49
|
Dekkers BJW, Schuurmans JAMJ, Smeekens SCM. Glucose delays seed germination in Arabidopsis thaliana. PLANTA 2004; 218:579-88. [PMID: 14648119 DOI: 10.1007/s00425-003-1154-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2003] [Accepted: 10/13/2003] [Indexed: 05/18/2023]
Abstract
Here we report that glucose delays germination of Arabidopsis thaliana (L.) Heynh. seeds at concentrations below those known to inhibit early seedling development. This inhibition acts on embryo growth and is independent of hexokinase (HXK) function. Hormones and hormone inhibitors were applied to the germination media and several hormone biosynthesis and signalling mutants were tested on glucose media to investigate a possible role of abscisic acid (ABA), gibberellin and ethylene in the glucose-induced germination delay. Results indicate that the germination inhibition by glucose cannot be antagonized by ethylene or gibberellin and is independent of the HXK1/ABA/ ABI4 signalling cascade. These findings suggest that there is a separate regulatory pathway independent of ABI2/ ABI4/ ABI5. Thus, in a relatively short time frame sugars utilize different signalling cascades to inhibit germination and post-germination growth, underlining the complexity of sugar responses.
Collapse
Affiliation(s)
- Bas J W Dekkers
- Department of Plant Biology, Molecular Plant Physiology, University of Utrecht, Padualaan 8, 3584 CH Utrecht, The Netherlands.
| | | | | |
Collapse
|
50
|
Abstract
The hormone gibberellin (GA) plays an important role in modulating diverse processes throughout plant development. In recent years, significant progress has been made in the identification of upstream GA signaling components and trans- and cis-acting factors that regulate downstream GA-responsive genes in higher plants. GA appears to derepress its signaling pathway by inducing proteolysis of GA signaling repressors (the DELLA proteins). Recent evidence indicates that the DELLA proteins are targeted for degradation by an E3 ubiquitin ligase SCF complex through the ubiquitin-26S proteasome pathway.
Collapse
Affiliation(s)
- Tai-Ping Sun
- Department of Biology, Duke University, Durham, North Carolina 27708, USA.
| | | |
Collapse
|