1
|
Yang S, Wan M, Cheng X, Cheng Q, Shen H. A 14-3-3 Protein Ca16R Acts Positively in Pepper Immunity against Ralstonia solanacearum by Interacting with CaASR1. PLANTS (BASEL, SWITZERLAND) 2024; 13:1289. [PMID: 38794360 PMCID: PMC11125135 DOI: 10.3390/plants13101289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 04/26/2024] [Accepted: 05/01/2024] [Indexed: 05/26/2024]
Abstract
Although 14-3-3 proteins have been implicated in plant growth, development, and stress response, their roles in pepper immunity against R. solanacearum remain poorly understood. In this study, a 14-3-3-encoding gene in pepper, Ca16R, was found to be upregulated by R. solanacearum inoculation (RSI), its silencing significantly reduced the resistance of pepper plants to RSI, and its overexpression significantly enhanced the resistance of Nicotiana benthamiana to RSI. Consistently, its transient overexpression in pepper leaves triggered HR cell death, indicating that it acts positively in pepper immunity against RSI, and it was further found to act positively in pepper immunity against RSI by promoting SA but repressing JA signaling. Ca16R was also found to interact with CaASR1, originally using pull-down combined with a spectrum assay, and then confirmed using bimolecular fluorescence complementation (BiFC) and a pull-down assay. Furthermore, we found that CaASR1 transient overexpression induced HR cell death and SA-dependent immunity while repressing JA signaling, although this induction and repression was blocked by Ca16R silencing. All these data indicate that Ca16R acts positively in pepper immunity against RSI by interacting with CaASR1, thereby promoting SA-mediated immunity while repressing JA signaling. These results provide new insight into mechanisms underlying pepper immunity against RSI.
Collapse
Affiliation(s)
- Sheng Yang
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China;
| | - Meiyun Wan
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.W.); (X.C.)
| | - Xingge Cheng
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.W.); (X.C.)
| | - Qing Cheng
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China;
| | - Huolin Shen
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China;
| |
Collapse
|
2
|
Shu P, Li Y, Sheng J, Shen L. Recent Advances in Dissecting the Function of Ethylene in Interaction between Host and Pathogen. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:4552-4563. [PMID: 38379128 DOI: 10.1021/acs.jafc.3c07978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Pathogens influence the growth and development of plants, resulting in detrimental damage to their yields and quality. Ethylene, a gaseous phytohormone, serves a pivotal function in modulating diverse physiological processes in plants, including defense mechanisms against pathogen invasion. Ethylene biosynthesis is involved in both plants and pathogens. Recent empirical research elucidates the intricate interactions and regulatory mechanisms between ethylene and pathogens across various plant species. In this review, we provide a comprehensive overview of the latest findings concerning ethylene's role and its regulatory networks in host-pathogen interactions. Additionally, we explore the crosstalk between ethylene and other phytohormones. Points regarding ethylene emission and its modulation by pathogens are also emphasized. Moreover, we also discuss potential unresolved issues in the field that warrant further investigation.
Collapse
Affiliation(s)
- Pan Shu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, P. R. China
| | - Yujing Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, P. R. China
| | - Jiping Sheng
- School of Agricultural Economics and Rural Development, Renmin University of China, Beijing 100872, P. R. China
| | - Lin Shen
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, P. R. China
| |
Collapse
|
3
|
Demiwal P, Nabi SU, Mir JI, Verma MK, Yadav SR, Roy P, Sircar D. Methyl jasmonate improves resistance in scab-susceptible Red Delicious apple by altering ROS homeostasis and enhancing phenylpropanoid biosynthesis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108371. [PMID: 38271863 DOI: 10.1016/j.plaphy.2024.108371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/18/2023] [Accepted: 01/11/2024] [Indexed: 01/27/2024]
Abstract
Apple (Malus domestica) is an economically important rosaceous fruit crop grown at temperate climate zones. Nevertheless, its production is severely affected by scab disease caused by the ascomycetous fungus Venturia inaequalis (VI). Methyl jasmonate (MeJA) is a stress induced plant hormone, shown to induce resistance against wide range of pathogens. The current study investigated the role of MeJA in promoting scab tolerance in susceptible apple varieties through exogenous application of optimized (100 μM) MeJA concentration, followed by VI infection. According to our analysis, applying MeJA exogenously onto leaf surfaces resulted in increased membrane stability and decreased malondialdehyde levels in Red Delicious, suggesting that MeJA is capable of protecting tissues against oxidative damage through its role in restoring membrane stability. In addition, the changes in the levels of key antioxidative enzymes and reactive oxygen species (ROS) showed that exogenous MeJA maintains ROS homeostasis as well. Higher phenylalanine ammonia-lyase activity and increased accumulation of phenylpropanoids in MeJA-treated VI-infected plants indicated the MeJA reprogrammed phenylpropanoid biosynthesis pathway for scab tolerance. Our study of scab tolerance in apples induced by MeJA provides new insights into its physiological and biochemical mechanisms.
Collapse
Affiliation(s)
- Pratibha Demiwal
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - Sajad Un Nabi
- Central Institute of Temperate Horticulture (ICAR-CITH), Srinagar, 190 005, J&K, India
| | - Javid Iqbal Mir
- Central Institute of Temperate Horticulture (ICAR-CITH), Srinagar, 190 005, J&K, India
| | - Mahendra K Verma
- Central Institute of Temperate Horticulture (ICAR-CITH), Srinagar, 190 005, J&K, India
| | - Shri Ram Yadav
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - Partha Roy
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - Debabrata Sircar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, India.
| |
Collapse
|
4
|
N-Methyltransferase CaASHH3 Acts as a Positive Regulator of Immunity against Bacterial Pathogens in Pepper. Int J Mol Sci 2022; 23:ijms23126492. [PMID: 35742935 PMCID: PMC9224371 DOI: 10.3390/ijms23126492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/24/2022] [Accepted: 05/27/2022] [Indexed: 02/04/2023] Open
Abstract
Proteins with conserved SET domain play a critical role in plant immunity. However, the means of organization and functions of these proteins are unclear, particularly in non-model plants such as pepper (Capsicum annum L.). Herein, we functionally characterized CaASHH3, a member of class II (the ASH1 homologs H3K36) proteins in pepper immunity against Ralstonia solanacearum and Pseudomonas syringae pv tomato DC3000 (Pst DC3000). The CaASHH3 was localized in the nucleus, and its transcript levels were significantly enhanced by R. solanacearum inoculation (RSI) and exogenous application of salicylic acid (SA), methyl jasmonate (MeJA), ethephon (ETH), and abscisic acid (ABA). Knockdown of CaASHH3 by virus-induced gene silencing (VIGS) compromised peppers’ resistance to RSI. Furthermore, silencing of CaASHH3 impaired hypersensitive-response (HR)-like cell death response due to RSI and downregulated defense-associated marker genes, including CaPR1, CaNPR1, and CaABR1. The CaASHH3 protein was revealed to affect the promoters of CaNPR1, CaPR1, and CaHSP24. Transiently over-expression of CaASHH3 in pepper leaves elicited HR-like cell death and upregulated immunity-related marker genes. To further study the role of CaASHH3 in plant defense in vivo, CaASHH3 transgenic plants were generated in Arabidopsis. Overexpression of CaASHH3 in transgenic Arabidopsis thaliana enhanced innate immunity against Pst DC3000. Furthermore, CaASHH3 over-expressing transgenic A. thaliana plants exhibited upregulated transcriptional levels of immunity-associated marker genes, such as AtNPR1, AtPR1, and AtPR2. These results collectively confirm the role of CaASHH3 as a positive regulator of plant cell death and pepper immunity against bacterial pathogens, which is regulated by signaling synergistically mediated by SA, JA, ET, and ABA.
Collapse
|
5
|
CabZIP23 Integrates in CabZIP63-CaWRKY40 Cascade and Turns CabZIP63 on Mounting Pepper Immunity against Ralstonia solanacearum via Physical Interaction. Int J Mol Sci 2022; 23:ijms23052656. [PMID: 35269798 PMCID: PMC8910381 DOI: 10.3390/ijms23052656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/13/2022] [Accepted: 02/18/2022] [Indexed: 01/25/2023] Open
Abstract
CabZIP63 and CaWRKY40 were previously found to be shared in the pepper defense response to high temperature stress (HTS) and to Ralstonia solanacearum inoculation (RSI), forming a transcriptional cascade. However, how they activate the two distinct defense responses is not fully understood. Herein, using a revised genetic approach, we functionally characterized CabZIP23 in the CabZIP63-CaWRKY40 cascade and its context specific pepper immunity activation against RSI by interaction with CabZIP63. CabZIP23 was originally found by immunoprecipitation-mass spectrometry to be an interacting protein of CabZIP63-GFP; it was upregulated by RSI and acted positively in pepper immunity against RSI by virus induced gene silencing in pepper plants, and transient overexpression in Nicotiana benthamiana plants. By chromatin immunoprecipitation (ChIP)-qPCR and electrophoresis mobility shift assay (EMSA), CabZIP23 was found to be directly regulated by CaWRKY40, and CabZIP63 was directly regulated by CabZIP23, forming a positive feedback loop. CabZIP23-CabZIP63 interaction was confirmed by co-immunoprecipitation (CoIP) and bimolecular fluorescent complimentary (BiFC) assays, which promoted CabZIP63 binding immunity related target genes, including CaPR1, CaNPR1 and CaWRKY40, thereby enhancing pepper immunity against RSI, but not affecting the expression of thermotolerance related CaHSP24. All these data appear to show that CabZIP23 integrates in the CabZIP63-CaWRKY40 cascade and the context specifically turns it on mounting pepper immunity against RSI.
Collapse
|
6
|
Yang S, Cai W, Shen L, Wu R, Cao J, Tang W, Lu Q, Huang Y, Guan D, He S. Solanaceous plants switch to cytokinin-mediated immunity against Ralstonia solanacearum under high temperature and high humidity. PLANT, CELL & ENVIRONMENT 2022; 45:459-478. [PMID: 34778967 DOI: 10.1111/pce.14222] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 06/13/2023]
Abstract
Plant diseases generally tend to be more serious under conditions of high temperature and high humidity (HTHH) than under ambient temperature, but plant immunity against pathogen attacks under HTHH remains elusive. Herein, we used pepper as an example to study how Solanaceae cope with Ralstonia solanacearum infection (RSI) under HTHH by performing RNA-seq combined with the reverse genetic method. The result showed that immunities mediated by salicylic acid (SA) and jasmonic acid (JA) in pepper roots were activated by RSI under ambient temperature. However, upon RSI under HTHH, JA signalling was blocked and SA signalling was activated early but its duration was greatly shortened in pepper roots, instead, expression of CaIPT5 and Glutathione S-transferase encoding genes, as well as endogenous content of trans-Zeatin, were enhanced. In addition, by silencing in pepper plants and overexpression in Nicotiana benthamiana, CaIPT5 was found to act positively in the immune response to RSI under HTHH in a way related to CaPRP1 and CaMgst3. Furthermore, the susceptibility of pepper, tomato and tobacco to RSI under HTHH was significantly reduced by exogenously applied tZ, but not by either SA or MeJA. All these data collectively suggest that pepper employs cytokinin-mediated immunity to cope with RSI under HTHH.
Collapse
Affiliation(s)
- Sheng Yang
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
| | - Weiwei Cai
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
| | - Lei Shen
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
| | - Ruijie Wu
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
| | - Jianshen Cao
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
| | - Weiqi Tang
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
| | - Qiaoling Lu
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
| | - Yu Huang
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
| | - Deyi Guan
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
| | - Shuilin He
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
| |
Collapse
|
7
|
Pigment-Related Mutations Greatly Affect Berry Metabolome in San Marzano Tomatoes. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8020120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The study describes the alterations in metabolomic profiles of four tomato fruit mutations introgressed into Solanum lycopersicum cv. San Marzano, a well-known Italian traditional variety. Three lines carrying variants affecting the content of all pigments, high pigment-1 (hp-1), hp-2, pigment diluter (pd), and a combination of Anthocyanin fruit and atroviolaceum (Aft_atv), were selected, and characterized. Biochemical analysis of 44 non-polar, 133 polar, and 65 volatile metabolites in ripe fruits revealed a wide range of differences between the variant lines and the recurrent parent San Marzano. Among non-polar compounds, many carotenoids, plastoquinones, and tocopherols increased in the fruit of high pigment lines, as well as in Aft_atv, whose β-carotene levels increased too. Interestingly, pd displayed enriched levels of xanthophylls (all-trans-neoxanthin and luteoxanthin) but, simultaneously, decreased levels of α-and β-/γ-tocopherols. Looking at the metabolites in the polar fraction, a significant decrease in sugar profile was observed in hp-1, pd, and Aft_atv. Conversely, many vitamins and organic acids increased in the hp-2 and Aft_atv lines, respectively. Overall, phenylpropanoids was the metabolic group with the highest extent of polar changes, with considerable increases of many compounds mainly in the case of Aft_atv, followed by the pd and hp-2 lines. Finally, several flavor-related compounds were found to be modified in all mutants, mostly due to increased levels in many benzenoid, lipid, and phenylalanine derivative volatiles, which are associated with sweeter taste and better aroma. Construction of metabolic maps, interaction networks, and correlation matrices gave an integrated representation of the large effect of single variants on the tomato fruit metabolome. In conclusion, the identified differences in the mutated lines might contribute to generating novel phenotypes in the traditional San Marzano type, with increased desirable nutraceutical and organoleptic properties.
Collapse
|
8
|
Zheng Y, He S, Cai W, Shen L, Huang X, Yang S, Huang Y, Lu Q, Wang H, Guan D, He S. CaAIL1 Acts Positively in Pepper Immunity against Ralstonia solanacearum by Repressing Negative Regulators. PLANT & CELL PHYSIOLOGY 2021; 62:1702-1717. [PMID: 34463342 DOI: 10.1093/pcp/pcab125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 08/09/2021] [Accepted: 08/28/2021] [Indexed: 06/13/2023]
Abstract
APETALA2 (AP2) subfamily transcription factors participate in plant growth and development, but their roles in plant immunity remain unclear. Here, we discovered that the AP2 transcription factor CaAIL1 functions in immunity against Ralstonia solanacearum infection (RSI) in pepper (Capsicum annuum). CaAIL1 expression was upregulated by RSI, and loss- and gain-of-function assays using virus-induced gene silencing and transient overexpression, respectively, revealed that CaAIL1 plays a positive role in immunity to RSI in pepper. Chromatin immunoprecipitation sequencing (ChIP-seq) uncovered a subset of transcription-factor-encoding genes, including CaRAP2-7, CaGATA17, CaGtf3a and CaTCF25, that were directly targeted by CaAIL1 via their cis-elements, such as GT or AGGCA motifs. ChIP-qPCR and electrophoretic mobility shift assays confirmed these findings. These genes, encoding transcription factors with negative roles in immunity, were repressed by CaAIL1 during pepper response to RSI, whereas genes encoding positive immune regulators such as CaEAS were derepressed by CaAIL1. Importantly, we showed that the atypical EAR motif (LXXLXXLXX) in CaAIL1 is indispensable for its function in immunity. These findings indicate that CaAIL1 enhances the immunity of pepper against RSI by repressing a subset of negative immune regulators during the RSI response through its binding to several cis-elements in their promoters.
Collapse
Affiliation(s)
- Yutong Zheng
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, No. 15, Shang xia dian Road, Jianxin Town, Cangshan District, Fuzhou, Fujian 350002, China
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, No. 15, Shang xia dian Road, Jianxin Town, Cangshan District, Fuzhou, Fujian 350002, China
- College of Agriculture, Fujian Agriculture and Forestry University, No. 15, Shang xia dian Road, Jianxin Town, Cangshan District, Fuzhou, Fujian 350002, China
| | - Shicong He
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, No. 15, Shang xia dian Road, Jianxin Town, Cangshan District, Fuzhou, Fujian 350002, China
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, No. 15, Shang xia dian Road, Jianxin Town, Cangshan District, Fuzhou, Fujian 350002, China
- College of Agriculture, Fujian Agriculture and Forestry University, No. 15, Shang xia dian Road, Jianxin Town, Cangshan District, Fuzhou, Fujian 350002, China
| | - Weiwei Cai
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, No. 15, Shang xia dian Road, Jianxin Town, Cangshan District, Fuzhou, Fujian 350002, China
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, No. 15, Shang xia dian Road, Jianxin Town, Cangshan District, Fuzhou, Fujian 350002, China
- College of Agriculture, Fujian Agriculture and Forestry University, No. 15, Shang xia dian Road, Jianxin Town, Cangshan District, Fuzhou, Fujian 350002, China
| | - Lei Shen
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, No. 15, Shang xia dian Road, Jianxin Town, Cangshan District, Fuzhou, Fujian 350002, China
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, No. 15, Shang xia dian Road, Jianxin Town, Cangshan District, Fuzhou, Fujian 350002, China
- College of Agriculture, Fujian Agriculture and Forestry University, No. 15, Shang xia dian Road, Jianxin Town, Cangshan District, Fuzhou, Fujian 350002, China
| | - Xueying Huang
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, No. 15, Shang xia dian Road, Jianxin Town, Cangshan District, Fuzhou, Fujian 350002, China
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, No. 15, Shang xia dian Road, Jianxin Town, Cangshan District, Fuzhou, Fujian 350002, China
- College of Agriculture, Fujian Agriculture and Forestry University, No. 15, Shang xia dian Road, Jianxin Town, Cangshan District, Fuzhou, Fujian 350002, China
| | - Sheng Yang
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, No. 15, Shang xia dian Road, Jianxin Town, Cangshan District, Fuzhou, Fujian 350002, China
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, No. 15, Shang xia dian Road, Jianxin Town, Cangshan District, Fuzhou, Fujian 350002, China
- College of Agriculture, Fujian Agriculture and Forestry University, No. 15, Shang xia dian Road, Jianxin Town, Cangshan District, Fuzhou, Fujian 350002, China
| | - Yu Huang
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, No. 15, Shang xia dian Road, Jianxin Town, Cangshan District, Fuzhou, Fujian 350002, China
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, No. 15, Shang xia dian Road, Jianxin Town, Cangshan District, Fuzhou, Fujian 350002, China
- College of Agriculture, Fujian Agriculture and Forestry University, No. 15, Shang xia dian Road, Jianxin Town, Cangshan District, Fuzhou, Fujian 350002, China
| | - Qiaoling Lu
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, No. 15, Shang xia dian Road, Jianxin Town, Cangshan District, Fuzhou, Fujian 350002, China
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, No. 15, Shang xia dian Road, Jianxin Town, Cangshan District, Fuzhou, Fujian 350002, China
- College of Agriculture, Fujian Agriculture and Forestry University, No. 15, Shang xia dian Road, Jianxin Town, Cangshan District, Fuzhou, Fujian 350002, China
| | - Hui Wang
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, No. 15, Shang xia dian Road, Jianxin Town, Cangshan District, Fuzhou, Fujian 350002, China
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, No. 15, Shang xia dian Road, Jianxin Town, Cangshan District, Fuzhou, Fujian 350002, China
- College of Agriculture, Fujian Agriculture and Forestry University, No. 15, Shang xia dian Road, Jianxin Town, Cangshan District, Fuzhou, Fujian 350002, China
| | - Deyi Guan
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, No. 15, Shang xia dian Road, Jianxin Town, Cangshan District, Fuzhou, Fujian 350002, China
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, No. 15, Shang xia dian Road, Jianxin Town, Cangshan District, Fuzhou, Fujian 350002, China
- College of Agriculture, Fujian Agriculture and Forestry University, No. 15, Shang xia dian Road, Jianxin Town, Cangshan District, Fuzhou, Fujian 350002, China
| | - Shuilin He
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, No. 15, Shang xia dian Road, Jianxin Town, Cangshan District, Fuzhou, Fujian 350002, China
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, No. 15, Shang xia dian Road, Jianxin Town, Cangshan District, Fuzhou, Fujian 350002, China
- College of Agriculture, Fujian Agriculture and Forestry University, No. 15, Shang xia dian Road, Jianxin Town, Cangshan District, Fuzhou, Fujian 350002, China
| |
Collapse
|
9
|
Gorshkov V, Tsers I. Plant susceptible responses: the underestimated side of plant-pathogen interactions. Biol Rev Camb Philos Soc 2021; 97:45-66. [PMID: 34435443 PMCID: PMC9291929 DOI: 10.1111/brv.12789] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 12/18/2022]
Abstract
Plant susceptibility to pathogens is usually considered from the perspective of the loss of resistance. However, susceptibility cannot be equated with plant passivity since active host cooperation may be required for the pathogen to propagate and cause disease. This cooperation consists of the induction of reactions called susceptible responses that transform a plant from an autonomous biological unit into a component of a pathosystem. Induced susceptibility is scarcely discussed in the literature (at least compared to induced resistance) although this phenomenon has a fundamental impact on plant-pathogen interactions and disease progression. This review aims to summarize current knowledge on plant susceptible responses and their regulation. We highlight two main categories of susceptible responses according to their consequences and indicate the relevance of susceptible response-related studies to agricultural practice. We hope that this review will generate interest in this underestimated aspect of plant-pathogen interactions.
Collapse
Affiliation(s)
- Vladimir Gorshkov
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center Kazan Scientific Center of Russian Academy of Sciences, Kazan, 420111, Russia.,Laboratory of Plant Infectious Diseases, Federal Research Center Kazan Scientific Center of Russian Academy of Sciences, Kazan, 420111, Russia
| | - Ivan Tsers
- Laboratory of Plant Infectious Diseases, Federal Research Center Kazan Scientific Center of Russian Academy of Sciences, Kazan, 420111, Russia
| |
Collapse
|
10
|
Gupta R, Leibman-Markus M, Marash I, Kovetz N, Rav-David D, Elad Y, Bar M. Root zone warming represses foliar diseases in tomato by inducing systemic immunity. PLANT, CELL & ENVIRONMENT 2021; 44:2277-2289. [PMID: 33506959 DOI: 10.1111/pce.14006] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 01/10/2021] [Accepted: 01/12/2021] [Indexed: 06/12/2023]
Abstract
Plants employ systemic-induced resistance as part of their defence arsenal against pathogens. In recent years, the application of mild heating has been found to induce resistance against several pathogens. In the present study, we investigated the effect of root zone warming (RZW) in promoting tomato's resistance against the necrotrophic fungus Botrytis cinerea (Bc), the hemibiotrophic bacterium Xanthomonas campestris pv. vesicatoria (Xcv) and the biotrophic fungus Oidium neolycopersici (On). We demonstrate that RZW enhances tomato's resistance to Bc, On and Xcv through a process that is dependent on salicylic acid and ethylene. RZW induced tomato immunity, resulting in increased defence gene expression, reactive oxygen species (ROS) and ethylene output when plants were challenged, even in the absence of pathogens. Overall, the results provide novel insights into the underlying mechanisms of warming-induced immune responses against phytopathogens with different lifestyles in tomato.
Collapse
Affiliation(s)
- Rupali Gupta
- Department of Plant Pathology and Weed Research, Plant Protection Institute, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Meirav Leibman-Markus
- Department of Plant Pathology and Weed Research, Plant Protection Institute, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Iftah Marash
- Department of Plant Pathology and Weed Research, Plant Protection Institute, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | - Neta Kovetz
- Department of Plant Pathology and Weed Research, Plant Protection Institute, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Dalia Rav-David
- Department of Plant Pathology and Weed Research, Plant Protection Institute, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Yigal Elad
- Department of Plant Pathology and Weed Research, Plant Protection Institute, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Maya Bar
- Department of Plant Pathology and Weed Research, Plant Protection Institute, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| |
Collapse
|
11
|
Hernández-Aparicio F, Lisón P, Rodrigo I, Bellés JM, López-Gresa MP. Signaling in the Tomato Immunity against Fusarium oxysporum. Molecules 2021; 26:1818. [PMID: 33804901 PMCID: PMC8036676 DOI: 10.3390/molecules26071818] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/18/2021] [Accepted: 03/20/2021] [Indexed: 11/16/2022] Open
Abstract
New strategies of control need to be developed with the aim of economic and environmental sustainability in plant and crop protection. Metabolomics is an excellent platform for both understanding the complex plant-pathogen interactions and unraveling new chemical control strategies. GC-MS-based metabolomics, along with a phytohormone analysis of a compatible and incompatible interaction between tomato plants and Fusarium oxysporum f. sp. lycopersici, revealed the specific volatile chemical composition and the plant signals associated with them. The susceptible tomato plants were characterized by the over-emission of methyl- and ethyl-salicylate as well as some fatty acid derivatives, along with an activation of salicylic acid and abscisic acid signaling. In contrast, terpenoids, benzenoids, and 2-ethylhexanoic acid were differentially emitted by plants undergoing an incompatible interaction, together with the activation of the jasmonic acid (JA) pathway. In accordance with this response, a higher expression of several genes participating in the biosynthesis of these volatiles, such as MTS1, TomloxC,TomloxD, and AOS, as well as JAZ7, a JA marker gene, was found to be induced by the fungus in these resistant plants. The characterized metabolome of the immune tomato plants could lead to the development of new resistance inducers against Fusarium wilt treatment.
Collapse
Affiliation(s)
| | | | | | | | - M. Pilar López-Gresa
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València—Consejo Superior de Investigaciones Científicas, 46022 Valencia, Spain; (F.H.-A.); (P.L.); (I.R.); (J.M.B.)
| |
Collapse
|
12
|
Paladines-Quezada DF, Fernández-Fernández JI, Moreno-Olivares JD, Bleda-Sánchez JA, Gómez-Martínez JC, Martínez-Jiménez JA, Gil-Muñoz R. Application of Elicitors in Two Ripening Periods of Vitis vinifera L. cv Monastrell: Influence on Anthocyanin Concentration of Grapes and Wines. Molecules 2021; 26:molecules26061689. [PMID: 33802929 PMCID: PMC8002746 DOI: 10.3390/molecules26061689] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/12/2021] [Accepted: 03/12/2021] [Indexed: 11/17/2022] Open
Abstract
In recent years, it has been demonstrated that the application of elicitors such as methyl-jasmonate (MeJ) and benzothiadiazole (BTH) to wine grapes can increase their phenolic and aromatic compounds if they are treated at the beginning of ripening (veraison). However, the veraison period is short, and it is not always possible to apply the treatments in a few days. Therefore, it would be of great interest to optimize the moment of elicitor application or extend the treatment period. The aim of this paper was to analyze during two consecutive years (2016–2017) the foliar application of MeJ, BTH, and a combination of both, during two different ripening periods of Monastrell grapes (veraison and mid-ripening), and determine the more appropriate moment to increase the concentration of anthocyanins. To carry out this aim, analysis of anthocyanins by HPLC in grapes and wines was mainly performed. The most suitable period for the application of MeJ, BTH, and MeJ + BTH was at mid-ripening, since the grapes showed a greater accumulation of anthocyanins at harvest. However, the MeJ + BTH treatment applied during veraison also obtained similar results, which would allow extending the application period if necessary. However, the increase in the anthocyanin content of grapes was not reflected in all the wines, which may have been due to reinforcement of the skin cell wall as a result of the application of elicitors. Further analysis is needed to improve the maceration process of the Monastrell grapes and the extraction of the anthocyanins that were increased by the treatments applied in the vineyard.
Collapse
|
13
|
Yang S, Shi Y, Zou L, Huang J, Shen L, Wang Y, Guan D, He S. Pepper CaMLO6 Negatively Regulates Ralstonia solanacearum Resistance and Positively Regulates High Temperature and High Humidity Responses. PLANT & CELL PHYSIOLOGY 2020; 61:1223-1238. [PMID: 32343804 DOI: 10.1093/pcp/pcaa052] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 04/17/2020] [Indexed: 06/11/2023]
Abstract
Plant mildew-resistance locus O (MLO) proteins influence susceptibility to powdery mildew. However, their roles in plant responses to other pathogens and heat stress remain unclear. Here, we showed that CaMLO6, a pepper (Capsicum annuum) member of MLO clade V, is a protein targeted to plasma membrane and probably endoplasmic reticulum. The transcript expression level of CaMLO6 was upregulated in the roots and leaves of pepper plants challenged with high temperature and high humidity (HTHH) and was upregulated in leaves but downregulated in roots of plants infected with the bacterial pathogen Ralstonia solanacearum. CaMLO6 was also directly upregulated by CaWRKY40 upon HTHH but downregulated by CaWRKY40 upon R. solanacearum infection. Virus-induced gene silencing of CaMLO6 significantly decreased pepper HTHH tolerance and R. solanacearum susceptibility. Moreover, CaMLO6 overexpression enhanced the susceptibility of Nicotiana benthamiana and pepper plants to R. solanacearum and their tolerance to HTHH, effects that were associated with the expression of immunity- and thermotolerance-associated marker genes, respectively. These results suggest that CaMLO6 acts as a positive regulator in response to HTHH but a negative regulator in response to R. solanacearum. Moreover, CaMLO6 is transcriptionally affected by R. solanacearum and HTHH; these transcriptional responses are at least partially regulated by CaWRKY40.
Collapse
Affiliation(s)
- Sheng Yang
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Yuanyuan Shi
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Longyun Zou
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Jinfeng Huang
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Lei Shen
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Yuzhu Wang
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Deyi Guan
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Shuilin He
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| |
Collapse
|
14
|
Waseem M, Li N, Su D, Chen J, Li Z. Overexpression of a basic helix-loop-helix transcription factor gene, SlbHLH22, promotes early flowering and accelerates fruit ripening in tomato (Solanum lycopersicum L.). PLANTA 2019; 250:173-185. [PMID: 30955097 DOI: 10.1007/s00425-019-03157-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 04/01/2019] [Indexed: 06/09/2023]
Abstract
The overexpression of SlbHLH22 functioned in controlling flowering time, accelerated fruit ripening, and produced more ethylene-producing phenotypes in tomato. Flowering and fruit ripening are two complex transition processes regulated by various internal and external factors that ultimately lead to fruit maturation and final seed dispersal. The basic helix-loop-helix (bHLH) transcription factor is the largest TF gene family in plants that controls various biological and developmental aspects, but the actual roles of these genes have not been fully studied. Here, we performed a functional characterization of the bHLH gene SlbHLH22 in tomato. SlbHLH22 was fully expressed in tomato flowers, while a moderate expression level was also observed in fruits at different developmental stages. Overexpression of the SlbHLH22 gene revealed that it is highly involved in controlling flowering time, through the activation of the SlSFT or SlLFY genes, and promoting fruit ripening and improved carotenoid accumulation. The expression patterns of carotenoid-related genes (SlPYS1) were also upregulated in transgenic tomato fruits. In transgenic tomato fruit, we observed clear changes in colour from green to orange with enhanced expression of the SlbHLH22 gene. SlbHLH22 was upregulated under exogenous ACC, IAA, ABA, and ethephon. Overexpression of SlbHLH22 also promotes ethylene production. Moreover, ethylene biosynthesis and perception genes (SlACO3, SlACS1, SlACS2, SlACS4, SlACS1a, SlEIN1, SlEIN2, SlEIN3, SlEIN4, SlETR2, SlETR3, SlSAM3, and SlSAMS) were upregulated. Ripening-related genes (SlAP2a, SlCNR, SlNOR, SlMYB, and SlTAG) were consistent in their expression pattern in transgenic plants. Finally, our study provides evidence that tomato bHLH genes play an important role in flowering, fruit ripening, and development.
Collapse
Affiliation(s)
- Muhammad Waseem
- School of Life Sciences, Chongqing University, Shapingba, Chongqing, 401331, People's Republic of China
- Key Laboratory of Functional Gene and Regulation Technologies Under Chongqing Municipal Education Commission, Chongqing, People's Republic of China
| | - Ning Li
- School of Life Sciences, Chongqing University, Shapingba, Chongqing, 401331, People's Republic of China
- Key Laboratory of Functional Gene and Regulation Technologies Under Chongqing Municipal Education Commission, Chongqing, People's Republic of China
| | - Deding Su
- School of Life Sciences, Chongqing University, Shapingba, Chongqing, 401331, People's Republic of China
- Key Laboratory of Functional Gene and Regulation Technologies Under Chongqing Municipal Education Commission, Chongqing, People's Republic of China
| | - Jingxuan Chen
- School of Life Sciences, Chongqing University, Shapingba, Chongqing, 401331, People's Republic of China
- Key Laboratory of Functional Gene and Regulation Technologies Under Chongqing Municipal Education Commission, Chongqing, People's Republic of China
| | - Zhengguo Li
- School of Life Sciences, Chongqing University, Shapingba, Chongqing, 401331, People's Republic of China.
- Key Laboratory of Functional Gene and Regulation Technologies Under Chongqing Municipal Education Commission, Chongqing, People's Republic of China.
| |
Collapse
|
15
|
Abdelsamad NA, MacIntosh GC, Leandro LFS. Induction of ethylene inhibits development of soybean sudden death syndrome by inducing defense-related genes and reducing Fusarium virguliforme growth. PLoS One 2019; 14:e0215653. [PMID: 31116746 PMCID: PMC6530837 DOI: 10.1371/journal.pone.0215653] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 04/07/2019] [Indexed: 12/31/2022] Open
Abstract
Ethylene is a gaseous hormone that regulates plant responses to biotic and abiotic stresses. To investigate the importance of ethylene in soybean resistance to Fusarium virguliforme (Fv), the causal agent of sudden death syndrome (SDS), soybean cultivars Williams 82 (SDS-susceptible) and MN1606 (SDS-resistant) were treated 24 h before and 24h after Fv inoculation with either ethephon (ethylene inducer), cobalt chloride (ethylene biosynthesis inhibitor), or 1-MCP (ethylene perception inhibitor). Inoculated plants were grown for 21 days at 24°C in the greenhouse and then evaluated for SDS severity and expression of soybean defense genes. In both cultivars, plants treated with ethephon showed lower SDS foliar severity compared to the other treatments, whereas those treated with cobalt chloride or 1-MCP showed the same or higher SDS foliar severity compared to the water-treated control. Ethephon application resulted in activation of genes involved in ethylene biosynthesis, such as ethylene synthase (ACS) and ethylene oxidase (ACO), and genes involved in soybean defense response, such as pathogenesis-related protein (PR), basic peroxidase (IPER), chalcone synthase (CHS), and defense-associated transcription factors. Cobalt chloride and 1-MCP treatments had little or no effect on the expression of these genes. In addition, ethephon had a direct inhibitory effect on in-vitro growth of Fv on PDA media. Our results suggest that ethephon application inhibits SDS development directly by slowing Fv growth and/or by inducing soybean ethylene signaling and the expression of defense related genes.
Collapse
Affiliation(s)
- Noor A. Abdelsamad
- San Joaquin Valley Agricultural Sciences Center, USDA-ARS, Parlier, CA, United States of America
| | - Gustavo C. MacIntosh
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, United States of America
| | - Leonor F. S. Leandro
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, United States of America
| |
Collapse
|
16
|
Pluskota WE, Pupel P, Głowacka K, Okorska SB, Jerzmanowski A, Nonogaki H, Górecki RJ. Jasmonic acid and ethylene are involved in the accumulation of osmotin in germinating tomato seeds. JOURNAL OF PLANT PHYSIOLOGY 2019; 232:74-81. [PMID: 30537615 DOI: 10.1016/j.jplph.2018.11.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 11/15/2018] [Accepted: 11/17/2018] [Indexed: 05/18/2023]
Abstract
The expression of SlNP24 encoding osmotin was studied in germinating tomato seeds Solanum lycopersicum L. cv. Moneymaker. The results show that the accumulation of the transcripts of SlNP24 and its potential upstream regulator TERF1 encoding an ethylene response factor was induced by ethylene and methyl jasmonate in germinating tomato seeds. There was no effect of gibberellins on the expression of the genes studied. The expression of SlNP24 was localized in the micropylar region of the endosperm of tomato seeds. The promoter of tomato osmotin was active in the endosperm cells of transgenic Arabidopsis thaliana seeds, which contain reporter genes under control of SlNP24 promoter. The activity of SlNP24 promoter in A. thaliana reporter line seeds was visible when the expression of its ortholog gene in A. thaliana (AtOMS34) was observed. The mechanism of induction and a possible role of NP24 in germinating tomato seeds are discussed.
Collapse
Affiliation(s)
- Wioletta E Pluskota
- Department of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-718 Olsztyn, Poland.
| | - Piotr Pupel
- Department of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-718 Olsztyn, Poland
| | - Katarzyna Głowacka
- Department of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-718 Olsztyn, Poland
| | - Sylwia B Okorska
- Department of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-718 Olsztyn, Poland
| | - Andrzej Jerzmanowski
- Warsaw University and Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| | - Hiroyuki Nonogaki
- Department of Horticulture, Oregon State University, Corvallis, OR, 97331, USA
| | - Ryszard J Górecki
- Department of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-718 Olsztyn, Poland
| |
Collapse
|
17
|
Hussain A, Li X, Weng Y, Liu Z, Ashraf MF, Noman A, Yang S, Ifnan M, Qiu S, Yang Y, Guan D, He S. CaWRKY22 Acts as a Positive Regulator in Pepper Response to RalstoniaSolanacearum by Constituting Networks with CaWRKY6, CaWRKY27, CaWRKY40, and CaWRKY58. Int J Mol Sci 2018; 19:E1426. [PMID: 29747470 PMCID: PMC5983767 DOI: 10.3390/ijms19051426] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 04/23/2018] [Accepted: 05/01/2018] [Indexed: 11/16/2022] Open
Abstract
The WRKY web, which is comprised of a subset of WRKY transcription factors (TFs), plays a crucial role in the regulation of plant immunity, however, the mode of organization and operation of this network remains obscure, especially in non-model plants such as pepper (Capsicum annuum). Herein, CaWRKY22, a member of a subgroup of IIe WRKY proteins from pepper, was functionally characterized in pepper immunity against Ralstonia Solanacearum. CaWRKY22 was found to target the nuclei, and its transcript level was significantly upregulated by Ralstonia Solanacearum inoculation (RSI) and exogenously applied salicylic acid (SA), Methyl jasmonate (MeJA), or ethephon (ETH). Loss-of-function CaWRKY22, caused by virus-induced gene silencing (VIGS), enhanced pepper’s susceptibility to RSI. In addition, the silencing of CaWRKY22 perturbed the hypersensitive response (HR)-like cell death elicited by RSI and downregulated defense-related genes including CaPO2, CaPR4, CaACC, CaBPR1, CaDEF1, CaHIR1, and CaWRKY40. CaWRKY22 was found to directly bind to the promoters of CaPR1, CaDEF1, and CaWRKY40 by chromatin immuno-precipitation (ChIP) analysis. Contrastingly, transient overexpression of CaWRKY22 in pepper leaves triggered significant HR-like cell death and upregulated the tested immunity associated maker genes. Moreover, the transient overexpression of CaWRKY22 upregulated the expression of CaWRKY6 and CaWRKY27 while it downregulated of the expression of CaWRKY58. Conversely, the transient overexpression of CaWRKY6, CaWRKY27, and CaWRKY40 upregulated the expression of CaWRKY22, while transient overexpression of CaWRKY58 downregulated the transcript levels of CaWRKY22. These data collectively recommend the role of CaWRKY22 as a positive regulator of pepper immunity against R. Solanacearum, which is regulated by signaling synergistically mediated by SA, jasmonic acid (JA), and ethylene (ET), integrating into WRKY networks with WRKY TFs including CaWRKY6, CaWRKY27, CaWRKY40, and CaWRKY58.
Collapse
Affiliation(s)
- Ansar Hussain
- Ministry of Education Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Xia Li
- Ministry of Education Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Yahong Weng
- Ministry of Education Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Zhiqin Liu
- Ministry of Education Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Muhammad Furqan Ashraf
- Ministry of Education Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Ali Noman
- Ministry of Education Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- Department of Botany, Government College University, Faisalabad 38040, Pakistan.
| | - Sheng Yang
- Ministry of Education Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Muhammad Ifnan
- Ministry of Education Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Shanshan Qiu
- Ministry of Education Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Yingjie Yang
- Ministry of Education Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Deyi Guan
- Ministry of Education Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Shuilin He
- Ministry of Education Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
18
|
Block A, Christensen SA, Hunter CT, Alborn HT. Herbivore-derived fatty-acid amides elicit reactive oxygen species burst in plants. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:1235-1245. [PMID: 29301018 DOI: 10.1093/jxb/erx449] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 11/27/2017] [Indexed: 05/07/2023]
Abstract
Reactive oxygen species (ROS) can be elicited by many forms of stress, including pathogen attack, abiotic stress, damage and insect infestation. Perception of microbe- or damage-associated elicitors triggers an ROS burst in many plant species; however, the impact of herbivore fatty-acid amides on ROS elicitation remains largely unexplored. In this study we show that the lepidopteran-derived fatty-acid amide elicitor N-linolenoyl-L-glutamine (GLN18:3) can induce a ROS burst in multiple plant species. Furthermore, in Arabidopsis this ROS burst is partially dependent on the plasma membrane localized NADPH oxidases RBOHD and RBOHF, and an Arabidopsis rbohD/F double mutant produces enhanced GLN18:3-induced jasmonic acid. Quantification of GLN18:3-induced ROS in phytohormone-deficient lines revealed that in Arabidopsis reduced levels of jasmonic acid resulted in a larger elicitor-induced ROS burst, while in tomato reduction of either jasmonic acid or salicylic acid led to higher induced ROS production. These data indicate that GLN18:3-induced ROS is antagonistic to jasmonic acid production in these species. In biological assays, rbohD/F mutant plants were more resistant to the generalist herbivores Spodoptera exigua and Trichoplusia ni but not to the specialist Plutella xylostella. Collectively, these results demonstrate that in Arabidopsis herbivore-induced ROS may negatively regulate plant defense responses to herbivory.
Collapse
Affiliation(s)
- Anna Block
- Center for Medical, Agricultural and Veterinary Entomology, US Department of Agriculture-Agricultural Research Service, Gainesville, FL, USA
| | - Shawn A Christensen
- Center for Medical, Agricultural and Veterinary Entomology, US Department of Agriculture-Agricultural Research Service, Gainesville, FL, USA
| | - Charles T Hunter
- Center for Medical, Agricultural and Veterinary Entomology, US Department of Agriculture-Agricultural Research Service, Gainesville, FL, USA
| | - Hans T Alborn
- Center for Medical, Agricultural and Veterinary Entomology, US Department of Agriculture-Agricultural Research Service, Gainesville, FL, USA
| |
Collapse
|
19
|
Sánchez-Romera B, Calvo-Polanco M, Ruiz-Lozano JM, Zamarreño ÁM, Arbona V, García-Mina JM, Gómez-Cadenas A, Aroca R. Involvement of the def-1 Mutation in the Response of Tomato Plants to Arbuscular Mycorrhizal Symbiosis Under Well-Watered and Drought Conditions. PLANT & CELL PHYSIOLOGY 2018; 59:248-261. [PMID: 29165704 DOI: 10.1093/pcp/pcx178] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 11/13/2017] [Indexed: 05/27/2023]
Abstract
Jasmonic acid (JA) and arbuscular mycorrhizal (AM) symbioses are known to protect plants against abiotic and biotic stresses, but are also involved in the regulation of root hydraulic conductance (L). The objective of this experiment was to elucidate the role of JA in the water relations and hormonal regulation of AM plants under drought by using tomato plants defective in the synthesis of JA (def-1). Our results showed that JA is involved in the uptake and transport of water through its effect on both physiological parameters (stomatal conductance and L) and molecular parameters, mainly by controlling the expression and abundance of aquaporins. We observed that def-1 plants increased the expression of seven plant aquaporin genes under well-watered conditions in the absence of AM fungus, which partly explain the increment of L by this mutation under well-watered conditions. In addition, the effects of the AM symbiosis on plants were modified by the def-1 mutation, with the expression of some aquaporins and plant hormone concentration being disturbed. On the other hand, methyl salicylate (MeSA) content was increased in non-mycorrhizal def-1 plants, suggesting that MeSA and JA can act together in the regulation of L. In a complementary experiment, it was found that exogenous MeSA increased L, confirming our hypothesis. Likewise, we confirmed that JA, ABA and SA are hormones involved in plant mechanisms to cope with stressful situations, their concentrations being controlled by the AM symbiosis. In conclusion, under well-watered conditions, the def-1 mutation mimics the effects of AM symbiosis, but under drought conditions the def-1 mutation changed the effects of the AM symbiosis on plants.
Collapse
Affiliation(s)
- Beatriz Sánchez-Romera
- Estación Experimental del Zaidín (CSIC), Department of Soil Microbiology and Symbiotic Systems, C/ Profesor Albareda 1, 18008 Granada, Spain
| | - Mónica Calvo-Polanco
- Estación Experimental del Zaidín (CSIC), Department of Soil Microbiology and Symbiotic Systems, C/ Profesor Albareda 1, 18008 Granada, Spain
| | - Juan Manuel Ruiz-Lozano
- Estación Experimental del Zaidín (CSIC), Department of Soil Microbiology and Symbiotic Systems, C/ Profesor Albareda 1, 18008 Granada, Spain
| | - Ángel María Zamarreño
- Department of Environmental Biology, Agricultural Chemistry and Biology Group-CMI Roullier, Faculty of Sciences, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain
| | - Vicent Arbona
- Departament de Ciències Agràries i del Medi Natural, Universitat Jaume I, E-12071, Castellò de la Plana, Spain
| | - Jose María García-Mina
- Department of Environmental Biology, Agricultural Chemistry and Biology Group-CMI Roullier, Faculty of Sciences, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain
| | - Aurelio Gómez-Cadenas
- Departament de Ciències Agràries i del Medi Natural, Universitat Jaume I, E-12071, Castellò de la Plana, Spain
| | - Ricardo Aroca
- Estación Experimental del Zaidín (CSIC), Department of Soil Microbiology and Symbiotic Systems, C/ Profesor Albareda 1, 18008 Granada, Spain
| |
Collapse
|
20
|
Di X, Gomila J, Takken FLW. Involvement of salicylic acid, ethylene and jasmonic acid signalling pathways in the susceptibility of tomato to Fusarium oxysporum. MOLECULAR PLANT PATHOLOGY 2017; 18:1024-1035. [PMID: 28390170 PMCID: PMC6638294 DOI: 10.1111/mpp.12559] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 03/27/2017] [Accepted: 04/03/2017] [Indexed: 05/05/2023]
Abstract
Phytohormones, such as salicylic acid (SA), ethylene (ET) and jasmonic acid (JA), play key roles in plant defence following pathogen attack. The involvement of these hormones in susceptibility following Fusarium oxysporum (Fo) infection has mostly been studied in Arabidopsis thaliana. However, Fo causes vascular wilt disease in a broad range of crops, including tomato (Solanum lycopersicum). Surprisingly little is known about the involvement of these phytohormones in the susceptibility of tomato towards Fo f. sp. lycopersici (Fol). Here, we investigate their involvement by the analysis of the expression of ET, JA and SA marker genes following Fol infection, and by bioassays of tomato mutants affected in either hormone production or perception. Fol inoculation triggered the expression of SA and ET marker genes, showing the activation of these pathways. NahG tomato, in which SA is degraded, became hypersusceptible to Fol infection and showed stronger disease symptoms than wild-type. In contrast, ACD and Never ripe (Nr) mutants, in which ET biosynthesis and perception, respectively, are impaired, showed decreased disease symptoms and reduced fungal colonization on infection. The susceptibility of the def1 tomato mutant, and a prosystemin over-expressing line, in which JA signalling is compromised or constitutively activated, respectively, was unaltered. Our results show that SA is a negative and ET a positive regulator of Fol susceptibility. The SA and ET signalling pathways appear to act synergistically, as an intact ET pathway is required for the induction of an SA marker gene, and vice versa.
Collapse
Affiliation(s)
- Xiaotang Di
- Molecular Plant Pathology, Faculty of ScienceSwammerdam Institute for Life Sciences, University of AmsterdamPO Box 94215, 1090GEAmsterdamthe Netherlands
| | - Jo Gomila
- Molecular Plant Pathology, Faculty of ScienceSwammerdam Institute for Life Sciences, University of AmsterdamPO Box 94215, 1090GEAmsterdamthe Netherlands
| | - Frank L. W. Takken
- Molecular Plant Pathology, Faculty of ScienceSwammerdam Institute for Life Sciences, University of AmsterdamPO Box 94215, 1090GEAmsterdamthe Netherlands
| |
Collapse
|
21
|
Berens ML, Berry HM, Mine A, Argueso CT, Tsuda K. Evolution of Hormone Signaling Networks in Plant Defense. ANNUAL REVIEW OF PHYTOPATHOLOGY 2017; 55:401-425. [PMID: 28645231 DOI: 10.1146/annurev-phyto-080516-035544] [Citation(s) in RCA: 284] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Studies with model plants such as Arabidopsis thaliana have revealed that phytohormones are central regulators of plant defense. The intricate network of phytohormone signaling pathways enables plants to activate appropriate and effective defense responses against pathogens as well as to balance defense and growth. The timing of the evolution of most phytohormone signaling pathways seems to coincide with the colonization of land, a likely requirement for plant adaptations to the more variable terrestrial environments, which included the presence of pathogens. In this review, we explore the evolution of defense hormone signaling networks by combining the model plant-based knowledge about molecular components mediating phytohormone signaling and cross talk with available genome information of other plant species. We highlight conserved hubs in hormone cross talk and discuss evolutionary advantages of defense hormone cross talk. Finally, we examine possibilities of engineering hormone cross talk for improvement of plant fitness and crop production.
Collapse
Affiliation(s)
- Matthias L Berens
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany;
| | - Hannah M Berry
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, Colorado 80523
| | - Akira Mine
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany;
| | - Cristiana T Argueso
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, Colorado 80523
| | - Kenichi Tsuda
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany;
| |
Collapse
|
22
|
Simultaneous determination of acidic phytohormones in cucumbers and green bean sprouts by ion-pair stir bar sorptive extraction-high performance liquid chromatography. Talanta 2017; 170:128-136. [DOI: 10.1016/j.talanta.2017.04.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Revised: 03/29/2017] [Accepted: 04/01/2017] [Indexed: 11/22/2022]
|
23
|
Kissoudis C, Seifi A, Yan Z, Islam ATMT, van der Schoot H, van de Wiel CCM, Visser RGF, van der Linden CG, Bai Y. Ethylene and Abscisic Acid Signaling Pathways Differentially Influence Tomato Resistance to Combined Powdery Mildew and Salt Stress. FRONTIERS IN PLANT SCIENCE 2017; 7:2009. [PMID: 28119708 PMCID: PMC5220069 DOI: 10.3389/fpls.2016.02009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 12/19/2016] [Indexed: 05/07/2023]
Abstract
There is currently limited knowledge on the role of hormones in plants responses to combinations of abiotic and pathogen stress factors. This study focused on the response of tomato near-isogenic lines (NILs) that carry the Ol-1, ol-2, and Ol-4 loci, conferring resistance to tomato powdery mildew (PM) caused by Oidium neolycopersici, to combined PM and salt stress. These NILs were crossed with the notabilis (ABA-deficient), defenceless1 (JA-deficient), and epinastic (ET overproducer) tomato mutants to investigate possible roles of hormone signaling in response to combined stresses. In the NILs, marker genes for hormonal pathways showed differential expression patterns upon PM infection. The epinastic mutation resulted in breakdown of resistance in NIL-Ol-1 and NIL-ol-2. This was accompanied by reduced callose deposition, and was more pronounced under combined salt stress. The notabilis mutation resulted in H2O2 overproduction and reduced susceptibility to PM in NIL-Ol-1 under combined stress, but lead to higher plant growth reduction under salinity and combined stress. Resistance in NIL-ol-2 was compromised by the notabilis mutation, which was potentially caused by reduction of callose deposition. Under combined stress the compromised resistance in NIL-ol-2 was restored. PM resistance in NIL-Ol-4 remained robust across all mutant and treatment combinations. Hormone signaling is critical to the response to combined stress and PM, in terms of resistance and plant fitness. ABA appears to be at the crossroads of disease susceptibility/senescence and plant performance under combined stress These gained insights can aid in narrowing down targets for improving crop performance under stress combinations.
Collapse
Affiliation(s)
| | - Alireza Seifi
- Biotechnology and Plant Breeding Department, Faculty of Agriculture, Ferdowsi University of MashhadMashhad, Iran
| | - Zhe Yan
- Plant Breeding, Wageningen University & ResearchWageningen, Netherlands
| | | | | | | | | | | | - Yuling Bai
- Plant Breeding, Wageningen University & ResearchWageningen, Netherlands
| |
Collapse
|
24
|
Kissoudis C, Sunarti S, van de Wiel C, Visser RGF, van der Linden CG, Bai Y. Responses to combined abiotic and biotic stress in tomato are governed by stress intensity and resistance mechanism. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:5119-32. [PMID: 27436279 PMCID: PMC5014164 DOI: 10.1093/jxb/erw285] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Stress conditions in agricultural ecosystems can occur at variable intensities. Different resistance mechanisms against abiotic stress and pathogens are deployed by plants. Thus, it is important to examine plant responses to stress combinations under different scenarios. Here, we evaluated the effect of different levels of salt stress ranging from mild to severe (50, 100, and 150mM NaCl) on powdery mildew resistance and overall performance of tomato introgression lines with contrasting levels of partial resistance, as well as near-isogenic lines (NILs) carrying the resistance gene Ol-1 (associated with a slow hypersensitivity response; HR), ol-2 (an mlo mutant associated with papilla formation), and Ol-4 (an R gene associated with a fast HR). Powdery mildew resistance was affected by salt stress in a genotype- and stress intensity-dependent manner. In susceptible and partial resistant lines, increased susceptibility was observed under mild salt stress (50mM) which was accompanied by accelerated cell death-like senescence. In contrast, severe salt stress (150mM) reduced disease symptoms. Na(+) and Cl(-) accumulation in the leaves was linearly related to the decreased pathogen symptoms under severe stress. In contrast, complete resistance mediated by ol-2 and Ol-4 was unaffected under all treatment combinations, and was associated with a decreased growth penalty. Increased susceptibility and senescence under combined stress in NIL-Ol-1 was associated with the induction of ethylene and jasmonic acid pathway genes and the cell wall invertase gene LIN6. These results highlight the significance of stress severity and resistance type on the plant's performance under the combination of abiotic and biotic stress.
Collapse
Affiliation(s)
- Christos Kissoudis
- Wageningen UR Plant Breeding, Wageningen University & Research Centre, PO Box 386, 6700AJ, Wageningen, The Netherlands
| | - Sri Sunarti
- Wageningen UR Plant Breeding, Wageningen University & Research Centre, PO Box 386, 6700AJ, Wageningen, The Netherlands
| | - Clemens van de Wiel
- Wageningen UR Plant Breeding, Wageningen University & Research Centre, PO Box 386, 6700AJ, Wageningen, The Netherlands
| | - Richard G F Visser
- Wageningen UR Plant Breeding, Wageningen University & Research Centre, PO Box 386, 6700AJ, Wageningen, The Netherlands
| | - C Gerard van der Linden
- Wageningen UR Plant Breeding, Wageningen University & Research Centre, PO Box 386, 6700AJ, Wageningen, The Netherlands
| | - Yuling Bai
- Wageningen UR Plant Breeding, Wageningen University & Research Centre, PO Box 386, 6700AJ, Wageningen, The Netherlands
| |
Collapse
|
25
|
Campanella B, Pulidori E, Onor M, Passaglia E, Tegli S, Izquierdo CG, Bramanti E. New polymeric sorbent for the solid-phase extraction of indole-3-acetic acid from plants followed by liquid chromatography — Fluorescence detector. Microchem J 2016. [DOI: 10.1016/j.microc.2016.04.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
26
|
Ghosh S, Narula K, Sinha A, Ghosh R, Jawa P, Chakraborty N, Chakraborty S. Proteometabolomic Study of Compatible Interaction in Tomato Fruit Challenged with Sclerotinia rolfsii Illustrates Novel Protein Network during Disease Progression. FRONTIERS IN PLANT SCIENCE 2016; 7:1034. [PMID: 27507973 PMCID: PMC4960257 DOI: 10.3389/fpls.2016.01034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 06/30/2016] [Indexed: 05/27/2023]
Abstract
Fruit is an assimilator of metabolites, nutrients, and signaling molecules, thus considered as potential target for pathogen attack. In response to patho-stress, such as fungal invasion, plants reorganize their proteome, and reconfigure their physiology in the infected organ. This remodeling is coordinated by a poorly understood signal transduction network, hormonal cascades, and metabolite reallocation. The aim of the study was to explore organ-based proteomic alterations in the susceptibility of heterotrophic fruit to necrotrophic fungal attack. We conducted time-series protein profiling of Sclerotinia rolfsii invaded tomato (Solanum lycopersicum) fruit. The differential display of proteome revealed 216 patho-stress responsive proteins (PSRPs) that change their abundance by more than 2.5-fold. Mass spectrometric analyses led to the identification of 56 PSRPs presumably involved in disease progression; regulating diverse functions viz. metabolism, signaling, redox homeostasis, transport, stress-response, protein folding, modification and degradation, development. Metabolome study indicated differential regulation of organic acid, amino acids, and carbohydrates paralleling with the proteomics analysis. Further, we interrogated the proteome data using network analysis that identified two significant functional protein hubs centered around malate dehydrogenase, T-complex protein 1 subunit gamma, and ATP synthase beta. This study reports, for the first-time, kinetically controlled patho-stress responsive protein network during post-harvest storage in a sink tissue, particularly fruit and constitute the basis toward understanding the onset and context of disease signaling and metabolic pathway alterations. The network representation may facilitate the prioritization of candidate proteins for quality improvement in storage organ.
Collapse
|
27
|
Gorshkov VY, Daminova AG, Mikshina PV, Petrova OE, Ageeva MV, Salnikov VV, Gorshkova TA, Gogolev YV. Pathogen-induced conditioning of the primary xylem vessels - a prerequisite for the formation of bacterial emboli by Pectobacterium atrosepticum. PLANT BIOLOGY (STUTTGART, GERMANY) 2016; 18:609-17. [PMID: 26992469 DOI: 10.1111/plb.12448] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Accepted: 03/15/2016] [Indexed: 06/05/2023]
Abstract
Representatives of Pectobacterium genus are some of the most harmful phytopathogens in the world. In the present study, we have elucidated novel aspects of plant-Pectobacterium atrosepticum interactions. This bacterium was recently demonstrated to form specific 'multicellular' structures - bacterial emboli in the xylem vessels of infected plants. In our work, we showed that the process of formation of these structures includes the pathogen-induced reactions of the plant. The colonisation of the plant by P. atrosepticum is coupled with the release of a pectic polysaccharide, rhamnogalacturonan I, into the vessel lumen from the plant cell wall. This polysaccharide gives rise to a gel that serves as a matrix for bacterial emboli. P. atrosepticum-caused infection involves an increase of reactive oxygen species (ROS) levels in the vessels, creating the conditions for the scission of polysaccharides and modification of plant cell wall composition. Both the release of rhamnogalacturonan I and the increase in ROS precede colonisation of the vessels by bacteria and occur only in the primary xylem vessels, the same as the subsequent formation of bacterial emboli. Since the appearance of rhamnogalacturonan I and increase in ROS levels do not hamper the bacterial cells and form a basis for the assembly of bacterial emboli, these reactions may be regarded as part of the susceptible response of the plant. Bacterial emboli thus represent the products of host-pathogen integration, since the formation of these structures requires the action of both partners.
Collapse
Affiliation(s)
- V Y Gorshkov
- Kazan Institute of Biochemistry and Biophysics, Kazan Scientific Center, Russian Academy of Sciences, Kazan, Russia
- Kazan Federal University, Kazan, Russia
| | - A G Daminova
- Kazan Institute of Biochemistry and Biophysics, Kazan Scientific Center, Russian Academy of Sciences, Kazan, Russia
| | - P V Mikshina
- Kazan Institute of Biochemistry and Biophysics, Kazan Scientific Center, Russian Academy of Sciences, Kazan, Russia
| | - O E Petrova
- Kazan Institute of Biochemistry and Biophysics, Kazan Scientific Center, Russian Academy of Sciences, Kazan, Russia
| | - M V Ageeva
- Kazan Institute of Biochemistry and Biophysics, Kazan Scientific Center, Russian Academy of Sciences, Kazan, Russia
| | - V V Salnikov
- Kazan Institute of Biochemistry and Biophysics, Kazan Scientific Center, Russian Academy of Sciences, Kazan, Russia
- Kazan Federal University, Kazan, Russia
| | - T A Gorshkova
- Kazan Institute of Biochemistry and Biophysics, Kazan Scientific Center, Russian Academy of Sciences, Kazan, Russia
| | - Y V Gogolev
- Kazan Institute of Biochemistry and Biophysics, Kazan Scientific Center, Russian Academy of Sciences, Kazan, Russia
- Kazan Federal University, Kazan, Russia
| |
Collapse
|
28
|
Mhlongo MI, Piater LA, Madala NE, Steenkamp PA, Dubery IA. Phenylpropanoid Defences in Nicotiana tabacum Cells: Overlapping Metabolomes Indicate Common Aspects to Priming Responses Induced by Lipopolysaccharides, Chitosan and Flagellin-22. PLoS One 2016; 11:e0151350. [PMID: 26978774 PMCID: PMC4792386 DOI: 10.1371/journal.pone.0151350] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 02/26/2016] [Indexed: 01/17/2023] Open
Abstract
Plants have evolved both constitutive and inducible defence strategies to cope with different biotic stimuli and stresses. Exposure of a plant to a challenging stress can lead to a primed state that allows it to launch a more rapid and stronger defence. Here we applied a metabolomic approach to study and compare the responses induced in Nicotiana tabacum cells by microbe-associated molecular pattern (MAMP) molecules, namely lipopolysaccharides (LPS), chitosan (CHT) and flagellin-22 (FLG22). Early response metabolites, extracted with methanol, were analysed by UHPLC-MS/MS. Using multivariate statistical tools the metabolic profiles induced by these elicitors were analysed. In the metabolic fingerprint of these agents a total of 19 cinnamic acid derivatives conjugated to quinic acids (chlorogenic acids), shikimic acid, tyramine, polyamines or glucose were found as discriminant biomarkers. In addition, treatment with the phytohormones salicylic acid (SA), methyljasmonic acid (MJ) and abscisic acid (ABA) resulted in differentially-induced phenylpropanoid pathway metabolites. The results indicate that the phenylpropanoid pathway is activated by these elicitors while hydroxycinnamic acid derivatives are commonly associated with the metabolic response to the MAMPs, and that the activated responses are modulated by both SA and MJ, with ABA not playing a role.
Collapse
Affiliation(s)
- Msizi I. Mhlongo
- Department of Biochemistry, University of Johannesburg, Auckland Park, Johannesburg, South Africa
| | - Lizelle A. Piater
- Department of Biochemistry, University of Johannesburg, Auckland Park, Johannesburg, South Africa
| | - Ntakadzeni E. Madala
- Department of Biochemistry, University of Johannesburg, Auckland Park, Johannesburg, South Africa
| | - Paul A. Steenkamp
- Department of Biochemistry, University of Johannesburg, Auckland Park, Johannesburg, South Africa
- CSIR Biosciences, Natural Products and Agroprocessing Group, Pretoria, South Africa
| | - Ian A. Dubery
- Department of Biochemistry, University of Johannesburg, Auckland Park, Johannesburg, South Africa
| |
Collapse
|
29
|
Datta R, Kumar D, Sultana A, Hazra S, Bhattacharyya D, Chattopadhyay S. Glutathione Regulates 1-Aminocyclopropane-1-Carboxylate Synthase Transcription via WRKY33 and 1-Aminocyclopropane-1-Carboxylate Oxidase by Modulating Messenger RNA Stability to Induce Ethylene Synthesis during Stress. PLANT PHYSIOLOGY 2015; 169:2963-81. [PMID: 26463088 PMCID: PMC4677924 DOI: 10.1104/pp.15.01543] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 10/08/2015] [Indexed: 05/13/2023]
Abstract
Glutathione (GSH) plays a fundamental role in plant defense-signaling network. Recently, we have established the involvement of GSH with ethylene (ET) to combat environmental stress. However, the mechanism of GSH-ET interplay still remains unexplored. Here, we demonstrate that GSH induces ET biosynthesis by modulating the transcriptional and posttranscriptional regulations of its key enzymes, 1-aminocyclopropane-1-carboxylate synthase (ACS) and 1-aminocyclopropane-1-carboxylate oxidase (ACO). Transgenic Arabidopsis (Arabidopsis thaliana) plants with enhanced GSH content (AtECS) exhibited remarkable up-regulation of ACS2, ACS6, and ACO1 at transcript as well as protein levels, while they were down-regulated in the GSH-depleted phytoalexin deficient2-1 (pad2-1) mutant. We further observed that GSH induced ACS2 and ACS6 transcription in a WRKY33-dependent manner, while ACO1 transcription remained unaffected. On the other hand, the messenger RNA stability for ACO1 was found to be increased by GSH, which explains our above observations. In addition, we also identified the ACO1 protein to be a subject for S-glutathionylation, which is consistent with our in silico data. However, S-glutathionylation of ACS2 and ACS6 proteins was not detected. Further, the AtECS plants exhibited resistance to necrotrophic infection and salt stress, while the pad2-1 mutant was sensitive. Exogenously applied GSH could improve stress tolerance in wild-type plants but not in the ET-signaling mutant ethylene insensitive2-1, indicating that GSH-mediated resistance to these stresses occurs via an ET-mediated pathway. Together, our investigation reveals a dual-level regulation of ET biosynthesis by GSH during stress.
Collapse
Affiliation(s)
- Riddhi Datta
- Plant Biology Laboratory, Organic and Medicinal Chemistry Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology, Kolkata 700 032, India
| | - Deepak Kumar
- Plant Biology Laboratory, Organic and Medicinal Chemistry Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology, Kolkata 700 032, India
| | - Asma Sultana
- Plant Biology Laboratory, Organic and Medicinal Chemistry Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology, Kolkata 700 032, India
| | - Saptarshi Hazra
- Plant Biology Laboratory, Organic and Medicinal Chemistry Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology, Kolkata 700 032, India
| | - Dipto Bhattacharyya
- Plant Biology Laboratory, Organic and Medicinal Chemistry Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology, Kolkata 700 032, India
| | - Sharmila Chattopadhyay
- Plant Biology Laboratory, Organic and Medicinal Chemistry Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology, Kolkata 700 032, India
| |
Collapse
|
30
|
Rodríguez-Álvarez CI, López-Climent MF, Gómez-Cadenas A, Kaloshian I, Nombela G. Salicylic acid is required for Mi-1-mediated resistance of tomato to whitefly Bemisia tabaci, but not for basal defense to this insect pest. BULLETIN OF ENTOMOLOGICAL RESEARCH 2015; 105:574-82. [PMID: 26032615 DOI: 10.1017/s0007485315000449] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Plant defense to pests or pathogens involves global changes in gene expression mediated by multiple signaling pathways. A role for the salicylic acid (SA) signaling pathway in Mi-1-mediated resistance of tomato (Solanum lycopersicum) to aphids was previously identified and its implication in the resistance to root-knot nematodes is controversial, but the importance of SA in basal and Mi-1-mediated resistance of tomato to whitefly Bemisia tabaci had not been determined. SA levels were measured before and after B. tabaci infestation in susceptible and resistant Mi-1-containing tomatoes, and in plants with the NahG bacterial transgene. Tomato plants of the same genotypes were also screened with B. tabaci (MEAM1 and MED species, before known as B and Q biotypes, respectively). The SA content in all tomato genotypes transiently increased after infestation with B. tabaci albeit at variable levels. Whitefly fecundity or infestation rates on susceptible Moneymaker were not significantly affected by the expression of NahG gene, but the Mi-1-mediated resistance to B. tabaci was lost in VFN NahG plants. Results indicated that whiteflies induce both SA and jasmonic acid accumulation in tomato. However, SA has no role in basal defense of tomato against B. tabaci. In contrast, SA is an important component of the Mi-1-mediated resistance to B. tabaci in tomato.
Collapse
Affiliation(s)
- C I Rodríguez-Álvarez
- Department of Plant Protection,Institute for Agricultural Sciences,Spanish National Research Council (CSIC),Serrano 115 Dpdo.,Madrid 28006,Spain
| | - M F López-Climent
- Department of Experimental Sciences,University Jaume I (UJI),Castellón de la Plana 12071,Spain
| | - A Gómez-Cadenas
- Department of Experimental Sciences,University Jaume I (UJI),Castellón de la Plana 12071,Spain
| | - I Kaloshian
- Department of Nematology,University of California,Riverside,CA 92521,USA
| | - G Nombela
- Department of Plant Protection,Institute for Agricultural Sciences,Spanish National Research Council (CSIC),Serrano 115 Dpdo.,Madrid 28006,Spain
| |
Collapse
|
31
|
Stork W, Kim JG, Mudgett MB. Functional Analysis of Plant Defense Suppression and Activation by the Xanthomonas Core Type III Effector XopX. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2015; 28:180-94. [PMID: 25338145 PMCID: PMC4293322 DOI: 10.1094/mpmi-09-14-0263-r] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Many phytopathogenic type III secretion effector proteins (T3Es) have been shown to target and suppress plant immune signaling but perturbation of the plant immune system by T3Es can also elicit a plant response. XopX is a "core" Xanthomonas T3E that contributes to growth and symptom development during Xanthomonas euvesicatoria infection of tomato but its functional role is undefined. We tested the effect of XopX on several aspects of plant immune signaling. XopX promoted ethylene production and plant cell death (PCD) during X. euvesicatoria infection of susceptible tomato and in transient expression assays in Nicotiana benthamiana, which is consistent with its requirement for the development of X. euvesicatoria-induced disease symptoms. Additionally, although XopX suppressed flagellin-induced reactive oxygen species, it promoted the accumulation of pattern-triggered immunity (PTI) gene transcripts. Surprisingly, XopX coexpression with other PCD elicitors resulted in delayed PCD, suggesting antagonism between XopX-dependent PCD and other PCD pathways. However, we found no evidence that XopX contributed to the suppression of effector-triggered immunity during X. euvesicatoria-tomato interactions, suggesting that XopX's primary virulence role is to modulate PTI. These results highlight the dual role of a core Xanthomonas T3E in simultaneously suppressing and activating plant defense responses.
Collapse
|
32
|
Sánchez-Romera B, Ruiz-Lozano JM, Li G, Luu DT, Martínez-Ballesta MDC, Carvajal M, Zamarreño AM, García-Mina JM, Maurel C, Aroca R. Enhancement of root hydraulic conductivity by methyl jasmonate and the role of calcium and abscisic acid in this process. PLANT, CELL & ENVIRONMENT 2014; 37:995-1008. [PMID: 24131347 DOI: 10.1111/pce.12214] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The role of jasmonic acid in the induction of stomatal closure is well known. However, its role in regulating root hydraulic conductivity (L) has not yet been explored. The objectives of the present research were to evaluate how JA regulates L and how calcium and abscisic acid (ABA) could be involved in such regulation. We found that exogenous methyl jasmonate (MeJA) increased L of Phaseolus vulgaris, Solanum lycopersicum and Arabidopsis thaliana roots. Tomato plants defective in JA biosynthesis had lower values of L than wild-type plants, and that L was restored by addition of MeJA. The increase of L by MeJA was accompanied by an increase of the phosphorylation state of the aquaporin PIP2. We observed that MeJA addition increased the concentration of cytosolic calcium and that calcium channel blockers inhibited the rise of L caused by MeJA. Treatment with fluoridone, an inhibitor of ABA biosynthesis, partially inhibited the increase of L caused by MeJA, and tomato plants defective in ABA biosynthesis increased their L after application of MeJA. It is concluded that JA enhances L and that this enhancement is linked to calcium and ABA dependent and independent signalling pathways.
Collapse
Affiliation(s)
- Beatriz Sánchez-Romera
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín (CSIC), Profesor Albareda 1, 18008, Granada, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Shen J, Tieman D, Jones JB, Taylor MG, Schmelz E, Huffaker A, Bies D, Chen K, Klee HJ. A 13-lipoxygenase, TomloxC, is essential for synthesis of C5 flavour volatiles in tomato. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:419-28. [PMID: 24453226 PMCID: PMC3904703 DOI: 10.1093/jxb/ert382] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
C5 volatile compounds, derived from fatty acids, are among the most important contributors to consumer liking of fresh tomatoes. Despite their important roles in flavour, the genes responsible for C5 volatile synthesis have yet to be identified. This work shows that their synthesis is catalysed in part by a 13-lipoxygenase (LOX), TomloxC, the same enzyme responsible for synthesis of C6 volatiles. C5 synthesis is independent of hydroperoxide lyase (HPL); moreover, HPL knockdown significantly increased C5 volatile synthesis. This LOX-dependent, HPL-independent pathway functions in both fruits and leaves. Synthesis of C5 volatiles increases in leaves following mechanical wounding but does not increase in response to infection with Xanthomonas campestris pv. vesicatoria. Large reductions in C5 and C6 volatiles in antisense TomloxC knockdown plants were observed but those reductions did not alter the development of disease symptoms, indicating that these volatiles do not have an important defensive function against this bacterial pathogen.
Collapse
Affiliation(s)
- Jiyuan Shen
- Horticultural Sciences, University of Florida, PO Box 110690, Gainesville, FL 32611-0690, USA
- Laboratory of Fruit Quality Biology/The State dgriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, PR China
- * These authors contributed equally to this manuscript
| | - Denise Tieman
- Horticultural Sciences, University of Florida, PO Box 110690, Gainesville, FL 32611-0690, USA
- * These authors contributed equally to this manuscript
| | - Jeffrey B. Jones
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611-068, USA
| | - Mark G. Taylor
- Horticultural Sciences, University of Florida, PO Box 110690, Gainesville, FL 32611-0690, USA
| | - Eric Schmelz
- United States Department of Agriculture-Agricultural Research Service, Center for Medical Agricultural and Veterinary Entomology, 1700 SW 23rd Drive, Gainesville, FL 32608, USA
| | - Alisa Huffaker
- United States Department of Agriculture-Agricultural Research Service, Center for Medical Agricultural and Veterinary Entomology, 1700 SW 23rd Drive, Gainesville, FL 32608, USA
| | - Dawn Bies
- Horticultural Sciences, University of Florida, PO Box 110690, Gainesville, FL 32611-0690, USA
| | - Kunsong Chen
- Laboratory of Fruit Quality Biology/The State dgriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, PR China
- To whom correspondence should be addressed. E-mail: or
| | - Harry J. Klee
- Horticultural Sciences, University of Florida, PO Box 110690, Gainesville, FL 32611-0690, USA
- To whom correspondence should be addressed. E-mail: or
| |
Collapse
|
34
|
Wang ZH, Xia JF, Han Q, Shi HN, Guo XM, Wang H, Ding MY. Multi-walled carbon nanotube as a solid phase extraction adsorbent for analysis of indole-3-butyric acid and 1-naphthylacetic acid in plant samples. CHINESE CHEM LETT 2013. [DOI: 10.1016/j.cclet.2013.04.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
35
|
Parker J, Koh J, Yoo MJ, Zhu N, Feole M, Yi S, Chen S. Quantitative proteomics of tomato defense against Pseudomonas syringae infection. Proteomics 2013; 13:1934-46. [PMID: 23533086 DOI: 10.1002/pmic.201200402] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 01/17/2013] [Accepted: 02/08/2013] [Indexed: 12/12/2022]
Abstract
Genetic and microarray analyses have provided useful information in the area of plant and pathogen interactions. Pseudomonas syringae pv. tomato DC3000 (Pst) causes bacterial speck disease in tomato. Previous studies have shown that changes in response to pathogen infection at transcript level are variable at different time points. This study provides information not only on proteomic changes between a resistant and a susceptible genotype, but also information on changes between an early and a late time point. Using the iTRAQ quantitative proteomics approach, we have identified 2369 proteins in tomato leaves, and 477 of them were determined to be responsive to Pst inoculation. Unique and differential proteins after each comparison were further analyzed to provide information about protein changes and the potential functions they play in the pathogen response. This information is applicable not only to tomato proteomics, but also adds to the repertoire of proteins now available for crop proteomic analysis and how they change in response to pathogen infection.
Collapse
Affiliation(s)
- Jennifer Parker
- Plant Molecular and Cellular Biology, University of Florida, Gainesville, FL 32610, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Ruiz-García Y, Gil-Muñoz R, López-Roca JM, Martínez-Cutillas A, Romero-Cascales I, Gómez-Plaza E. Increasing the phenolic compound content of grapes by preharvest application of abcisic acid and a combination of methyl jasmonate and benzothiadiazole. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:3978-3983. [PMID: 23560815 DOI: 10.1021/jf400631m] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Benzothiadiazole (BTH) and methyl jasmonate (MeJ) have been described as exogenous elicitors of some plant defense compounds, polyphenols among them. Given that they activate different arrays of biochemical reactions to induce resistance, the objective of this study was to determine whether the joint application of BTH and MeJ to grape clusters affects the level of the main flavonoid compounds in grapes and in the resulting wines. The results are compared with those obtained when abscisic acid (ABA), a plant growth regulator involved in several physiological processes, was sprayed in the same vineyard. The results obtained indicated that, although the application of ABA increased the content of skin anthocyanins and tannins, these positive effects were not reflected in the wines made from these grapes. BTH+MeJ-treated grapes also presented higher anthocyanin and flavonol contents, and in this case, their wines presented better chromatic characteristics that the wine made from control grapes.
Collapse
Affiliation(s)
- Yolanda Ruiz-García
- Food Science and Technology Deparment, Faculty of Veterinary Science, University of Murcia , Campus de Espinardo, 30071 Murcia, Spain
| | | | | | | | | | | |
Collapse
|
37
|
Jia C, Zhang L, Liu L, Wang J, Li C, Wang Q. Multiple phytohormone signalling pathways modulate susceptibility of tomato plants to Alternaria alternata f. sp. lycopersici. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:637-50. [PMID: 23264518 PMCID: PMC3542053 DOI: 10.1093/jxb/ers360] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Three phytohormone molecules - ethylene (ET), jasmonic acid (JA) and salicylic acid (SA) - play key roles in mediating disease response to necrotrophic fungal pathogens. This study investigated the roles of the ET, JA, and SA pathways as well as their crosstalk during the interaction between tomato (Solanum lycopersicum) plants and a necrotrophic fungal pathogen Alternaria alternata f. sp. lycopersici (AAL). Both the ET and JASMONIC ACID INSENSITIVE1 (JAI1) receptor-dependent JA signalling pathways are necessary for susceptibility, while SA response promotes resistance to AAL infection. In addition, the role of JA in susceptibility to AAL is partly dependent on ET biosynthesis and perception, while the SA pathway enhances resistance to AAL and antagonizes the ET response. Based on these results, it is proposed that ET, JA, and SA each on their own can influence the susceptibility of tomato to AAL. Furthermore, the functions of JA and SA in susceptibility to the pathogen are correlated with the enhanced or decreased action of ET, respectively. This study has revealed the functional relationship among the three key hormone pathways in tomato defence against AAL.
Collapse
Affiliation(s)
- Chengguo Jia
- Key Laboratory of Horticultural Plant Growth, Development and Quality improvement, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou 310058, China
- * These authors contributed equally to this work
| | - Liping Zhang
- Key Laboratory of Horticultural Plant Growth, Development and Quality improvement, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou 310058, China
- * These authors contributed equally to this work
| | - Lihong Liu
- Key Laboratory of Horticultural Plant Growth, Development and Quality improvement, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| | - Jiansheng Wang
- Key Laboratory of Horticultural Plant Growth, Development and Quality improvement, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| | - Chuanyou Li
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qiaomei Wang
- Key Laboratory of Horticultural Plant Growth, Development and Quality improvement, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou 310058, China
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
38
|
Rahman TAE, Oirdi ME, Gonzalez-Lamothe R, Bouarab K. Necrotrophic pathogens use the salicylic acid signaling pathway to promote disease development in tomato. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2012; 25:1584-93. [PMID: 22950753 DOI: 10.1094/mpmi-07-12-0187-r] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Plants use different immune pathways to combat pathogens. The activation of the jasmonic acid (JA)-signaling pathway is required for resistance against necrotrophic pathogens; however, to combat biotrophic pathogens, the plants activate mainly the salicylic acid (SA)-signaling pathway. SA can antagonize JA signaling and vice versa. NPR1 (noninducible pathogenesis-related 1) is considered a master regulator of SA signaling. NPR1 interacts with TGA transcription factors, ultimately leading to the activation of SA-dependent responses. SA has been shown to promote disease development caused by the necrotrophic pathogen Botrytis cinerea through NPR1, by suppressing the expression of two JA-dependent defense genes, proteinase inhibitors I and II. We show here that the transcription factor TGA1.a contributes to disease development caused by B. cinerea in tomato by suppressing the expression of proteinase inhibitors I and II. Finally, we present evidence that the SA-signaling pathway contributes to disease development caused by another necrotrophic pathogen, Alternaria solani, in tomato. Disease development promoted by SA through NPR1 requires the TGA1.a transcription factor. These data highlight how necrotrophs manipulate the SAsignaling pathway to promote their disease in tomato.
Collapse
Affiliation(s)
- Taha Abd El Rahman
- Departement de Biologie, Universite de Sherbrooke, Sherbrooke, Quebec, Canada
| | | | | | | |
Collapse
|
39
|
Huang L, Ren Q, Sun Y, Ye L, Cao H, Ge F. Lower incidence and severity of tomato virus in elevated CO(2) is accompanied by modulated plant induced defence in tomato. PLANT BIOLOGY (STUTTGART, GERMANY) 2012; 14:905-13. [PMID: 22512888 DOI: 10.1111/j.1438-8677.2012.00582.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Elevation in atmospheric CO(2) concentration broadly affects plant phenology and physiology, and these effects may alter the performance of plant viruses. The effects of elevated CO(2) on the susceptibility of tomato plants to Tomato yellow leaf curl virus (TYLCV) were examined for two successive years in open top chambers (OTC) in the field. We experimentally tested the hypothesis that elevated CO(2) would reduce the incidence and severity of TYLCV on tomato by altering plant defence strategies. Our results showed that elevated CO(2) decreased TYLCV disease incidence (by 14.6% in 2009 and 11.8% in 2010) and decreased disease severity (by 20.0% in 2009 and 10.4% in 2010). Elevated CO(2) also decreased the level of TYLCV coat protein in tomato leaves. Regardless of virus infection, elevated CO(2) increased plant height and aboveground biomass. Additionally, elevated CO(2) increased the leaf C:N ratio of tomato, but decreased soluble protein content in leaves. Notably, elevated CO(2) increased the salicylic acid (SA) level in uninfected and infected plants. In contrast, elevated CO(2) reduced jasmonic acid (JA) in uninfected plants while it increased JA and abscisic acid (ABA) in virus-infected plants. Furthermore, combined exogenous SA and JA application enhanced resistance to TYLCV more than application of either SA or JA alone. Our results suggest that the modulated antagonistic relationship between SA and JA under elevated CO(2) makes a great contribution to increased tomato resistance to TYLCV, and the predicted increases in tomato productivity may be enhanced by reduced plant virus susceptibility under projected rising CO(2) conditions.
Collapse
Affiliation(s)
- L Huang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | | | | | | | | | | |
Collapse
|
40
|
Liu L, Wei J, Zhang M, Zhang L, Li C, Wang Q. Ethylene independent induction of lycopene biosynthesis in tomato fruits by jasmonates. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:5751-61. [PMID: 22945939 PMCID: PMC3467294 DOI: 10.1093/jxb/ers224] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
One of the main characteristics of tomato (Solanum lycopersicum) fruit ripening is a massive accumulation of carotenoids (mainly lycopene), which may contribute to the nutrient quality of tomato fruit and its role in chemoprevention. Previous studies have shown that ethylene (ET) plays a central role in promoting fruit ripening. In this study, the role of jasmonic acid (JA) in controlling lycopene accumulation in tomato fruits was analysed by measuring fruit lycopene content and the expression levels of lycopene biosynthetic genes in JA-deficient mutants (spr2 and def1) and a 35S::prosystemin transgenic line (35S::prosys) with increased JA levels and constitutive JA signalling. The lycopene content was significantly decreased in the fruits of spr2 and def1, but was enhanced in 35S::prosys fruits. Simultaneously, the expression of lycopene biosynthetic genes followed a similar trend. Lycopene synthesis in methyl jasmonate (MeJA) vapour-treated fruits showed an inverted U-shaped dose response, which significantly enhanced the fruit lycopene content and restored lycopene accumulation in spr2 and def1 at a concentration of 0.5 µM. The results indicated that JA plays a positive role in lycopene biosynthesis. In addition, the role of ET in JA-induced lycopene accumulation was also examined. Ethylene production in tomato fruits was depressed in spr2 and def1 while it increased in 35S::prosys. However, the exogenous application of MeJA to Never ripe (Nr), the ET-insensitive mutant, significantly promoted lycopene accumulation, as well as the expression of lycopene biosynthetic genes. Based on these results, it is proposed that JA might function independently of ethylene to promote lycopene biosynthesis in tomato fruits.
Collapse
Affiliation(s)
- Lihong Liu
- Key Laboratory of Horticultural Plant Growth, Development and Quality improvement, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou 310058, PR China
| | - Jia Wei
- Key Laboratory of Horticultural Plant Growth, Development and Quality improvement, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou 310058, PR China
- Present address: Institution of Sericulture, Zhejiang Academy of Agricultural Sciences,Hangzhou, 310021,PR China.
| | - Min Zhang
- Key Laboratory of Horticultural Plant Growth, Development and Quality improvement, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou 310058, PR China
| | - Liping Zhang
- Key Laboratory of Horticultural Plant Growth, Development and Quality improvement, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou 310058, PR China
| | - Chuanyou Li
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Qiaomei Wang
- Key Laboratory of Horticultural Plant Growth, Development and Quality improvement, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou 310058, PR China
- To whom correspondence should be addressed: E-mail:
| |
Collapse
|
41
|
Yan H, Wang F, Han D, Yang G. Simultaneous determination of four plant hormones in bananas by molecularly imprinted solid-phase extraction coupled with high performance liquid chromatography. Analyst 2012; 137:2884-90. [DOI: 10.1039/c2an35362h] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
42
|
Zhang L, Jia C, Liu L, Zhang Z, Li C, Wang Q. The involvement of jasmonates and ethylene in Alternaria alternata f. sp. lycopersici toxin-induced tomato cell death. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:5405-18. [PMID: 21865178 PMCID: PMC3223041 DOI: 10.1093/jxb/err217] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Revised: 05/30/2011] [Accepted: 06/08/2011] [Indexed: 05/19/2023]
Abstract
Previous studies have shown that an ethylene (ET)-dependent pathway is involved in the cell death signalling triggered by Alternaria alternata f. sp. lycopersici (AAL) toxin in detached tomato (Solanum lycopersicum) leaves. In this study, the role of jasmonic acid (JA) signalling in programmed cell death (PCD) induced by AAL toxin was analysed using a 35S::prosystemin transgenic line (35S::prosys), a JA-deficient mutant spr2, and a JA-insensitive mutant jai1. The results indicated that JA biosynthesis and signalling play a positive role in the AAL toxin-induced PCD process. In addition, treatment with the exogenous ET action inhibitor silver thiosulphate (STS) greatly suppressed necrotic lesions in 35S::prosys leaves, although 35S::prosys leaflets co-treated with AAL toxin and STS still have a significant high relative conductivity. Application of 1-aminocyclopropane-1-carboxylic acid (ACC) markedly enhanced the sensitivity of spr2 and jai1 mutants to the toxin. However, compared with AAL toxin treatment alone, exogenous application of JA to the ET-insensitive mutant Never ripe (Nr) did not alter AAL toxin-induced cell death. In addition, the reduced ET-mediated gene expression in jai1 leaves was restored by co-treatment with ACC and AAL toxin. Furthermore, JA treatment restored the decreased expression of ET biosynthetic genes but not ET-responsive genes in the Nr mutant compared with the toxin treatment alone. Based on these results, it is proposed that both JA and ET promote the AAL toxin-induced cell death alone, and the JAI1 receptor-dependent JA pathway also acts upstream of ET biosynthesis in AAL toxin-triggered PCD.
Collapse
Affiliation(s)
- Liping Zhang
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| | - Chengguo Jia
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| | - Lihong Liu
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| | - Zhiming Zhang
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| | - Chuanyou Li
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qiaomei Wang
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou 310058, China
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
43
|
Guerrero-González ML, Rodríguez-Kessler M, Rodríguez-Guerra R, González-Chavira M, Simpson J, Sanchez F, Jiménez-Bremont JF. Differential expression of Phaseolus vulgaris genes induced during the interaction with Rhizoctonia solani. PLANT CELL REPORTS 2011; 30:1465-73. [PMID: 21416283 DOI: 10.1007/s00299-011-1055-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2010] [Revised: 02/08/2011] [Accepted: 02/24/2011] [Indexed: 05/22/2023]
Abstract
Common bean (Phaseolus vulgaris L.) is the most important grain legume for direct human consumption; however, bean production is affected by several diseases such as Rhizoctonia root rot. Few bean cultivars have been identified that effectively resist the attack of this fungus. Herein, we used the P. vulgaris Pv-2094 landrace, which is less susceptible to Rhizoctonia root rot, for the construction of a suppressive subtractive hybridization cDNA library in order to isolate plant defense-related genes. Total RNAs obtained after 8 and 16 h from inoculated and non-inoculated roots with R. solani Kühn, were used as the source of the "tester" and the "driver" samples, respectively. A total of 136 unigenes were obtained and classified into 12 functional categories. Six unigenes were selected to analyze for differential expression by qRT-PCR, including a receptor-like kinase (PvRK20-1), an acid phosphatase associated to defense (PA), a pathogenesis related protein (PR1), an ethylene responsive factor (ERF), a polygalacturonase inhibitor protein (PGIP), and an alpha-dioxygenase (α-DOX). These genes were found to be differentially expressed in a time-dependent manner in bean roots during the interaction with R. solani. Data generated from this study will contribute to the understanding of the molecular mechanisms associated with plant defense against root rot in common bean.
Collapse
Affiliation(s)
- M L Guerrero-González
- División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, Camino a la Presa de San José 2055 AP 3-74 Tangamanga, CP 78216, San Luís Potosí, México
| | | | | | | | | | | | | |
Collapse
|
44
|
El Oirdi M, El Rahman TA, Rigano L, El Hadrami A, Rodriguez MC, Daayf F, Vojnov A, Bouarab K. Botrytis cinerea manipulates the antagonistic effects between immune pathways to promote disease development in tomato. THE PLANT CELL 2011; 23:2405-21. [PMID: 21665999 PMCID: PMC3160041 DOI: 10.1105/tpc.111.083394] [Citation(s) in RCA: 229] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Revised: 04/11/2011] [Accepted: 05/26/2011] [Indexed: 05/18/2023]
Abstract
Plants have evolved sophisticated mechanisms to sense and respond to pathogen attacks. Resistance against necrotrophic pathogens generally requires the activation of the jasmonic acid (JA) signaling pathway, whereas the salicylic acid (SA) signaling pathway is mainly activated against biotrophic pathogens. SA can antagonize JA signaling and vice versa. Here, we report that the necrotrophic pathogen Botrytis cinerea exploits this antagonism as a strategy to cause disease development. We show that B. cinerea produces an exopolysaccharide, which acts as an elicitor of the SA pathway. In turn, the SA pathway antagonizes the JA signaling pathway, thereby allowing the fungus to develop its disease in tomato (Solanum lycopersicum). SA-promoted disease development occurs through Nonexpressed Pathogen Related1. We also show that the JA signaling pathway required for tomato resistance against B. cinerea is mediated by the systemin elicitor. These data highlight a new strategy used by B. cinerea to overcome the plant's defense system and to spread within the host.
Collapse
Affiliation(s)
- Mohamed El Oirdi
- Centre de Recherche en Amélioration Végétale, Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, Quebec J1K 2R1, Canada
| | - Taha Abd El Rahman
- Centre de Recherche en Amélioration Végétale, Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, Quebec J1K 2R1, Canada
| | - Luciano Rigano
- Instituto de Ciencia y Tecnología Dr. Cesar Milstein, Fundación Pablo Cassará-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Saladillo 2468-C1440FFX, Ciudad de Buenos Aires, Argentina
| | | | - María Cecilia Rodriguez
- Departamento de Biodiversidad y Biología Experimental and Centro de Investigaciones en Hidratos de Carbono (CONICET), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1428EGA Ciudad de Buenos Aires, Argentina
| | - Fouad Daayf
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Adrian Vojnov
- Instituto de Ciencia y Tecnología Dr. Cesar Milstein, Fundación Pablo Cassará-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Saladillo 2468-C1440FFX, Ciudad de Buenos Aires, Argentina
| | - Kamal Bouarab
- Centre de Recherche en Amélioration Végétale, Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, Quebec J1K 2R1, Canada
| |
Collapse
|
45
|
Sarmento RA, Lemos F, Bleeker PM, Schuurink RC, Pallini A, Oliveira MGA, Lima ER, Kant M, Sabelis MW, Janssen A. A herbivore that manipulates plant defence. Ecol Lett 2011; 14:229-36. [PMID: 21299823 PMCID: PMC3084520 DOI: 10.1111/j.1461-0248.2010.01575.x] [Citation(s) in RCA: 152] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Phytopathogens and herbivores induce plant defences. Whereas there is evidence that some pathogens suppress these defences by interfering with signalling pathways involved in the defence, such evidence is scarce for herbivores. We found that the invasive spider mite Tetranychus evansi suppresses the induction of the salicylic acid and jasmonic acid signalling routes involved in induced plant defences in tomato. This was reflected in the levels of inducible defence compounds, such as proteinase inhibitors, which in mite-infested plants were reduced to even lower levels than the constitutive levels in herbivore-free plants. Additionally, the spider mite suppressed the release of inducible volatiles, which are implicated in plant defence. Consequently, the mites performed much better on previously attacked plants than on non-attacked plants. These findings provide a new perspective on plant-herbivore interactions, plant protection and plant resistance to invasive species.
Collapse
|
46
|
Runyon JB, Mescher MC, De Moraes CM. Plant defenses against parasitic plants show similarities to those induced by herbivores and pathogens. PLANT SIGNALING & BEHAVIOR 2010; 5:929-31. [PMID: 20495380 PMCID: PMC3115164 DOI: 10.4161/psb.5.8.11772] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Accepted: 03/09/2010] [Indexed: 05/07/2023]
Abstract
Herbivores and pathogens come quickly to mind when one thinks of the biotic challenges faced by plants. Important but less appreciated enemies are parasitic plants, which can have important consequences for the fitness and survival of their hosts. Our knowledge of plant perception, signaling, and response to herbivores and pathogens has expanded rapidly in recent years, but information is generally lacking for parasitic species. In a recent paper we reported that some of the same defense responses induced by herbivores and pathogens--notably increases in jasmonic acid (JA), salicylic acid (SA), and a hypersensitive-like response (HLR)--also occur in tomato plants upon attack by the parasitic plant Cuscuta pentagona (field dodder). Parasitism induced a distinct pattern of JA and SA accumulation, and growth trials using genetically-altered tomato hosts suggested that both JA and SA govern effective defenses against the parasite, though the extent of the response varied with host plant age. Here we discuss similarities between the induced responses we observed in response to Cuscuta parasitism to those previously described for herbivores and pathogens and present new data showing that trichomes should be added to the list of plant defenses that act against multiple enemies and across Kingdoms.
Collapse
Affiliation(s)
- Justin B Runyon
- Center for Chemical Ecology, Department of Entomology, Pennsylvania State University, University Park, PA, USA
| | | | | |
Collapse
|
47
|
Tieman D, Zeigler M, Schmelz E, Taylor MG, Rushing S, Jones JB, Klee HJ. Functional analysis of a tomato salicylic acid methyl transferase and its role in synthesis of the flavor volatile methyl salicylate. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 62:113-23. [PMID: 20070566 DOI: 10.1111/j.1365-313x.2010.04128.x] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Methyl salicylate (MeSA) is a volatile plant secondary metabolite that is an important contributor to taste and scent of many fruits and flowers. It is synthesized from salicylic acid (SA), a phytohormone that contributes to plant pathogen defense. MeSA is synthesized by members of a family of O-methyltransferases. In order to elaborate the mechanism of MeSA synthesis in tomato, we screened a set of O-methyltransferases for activity against multiple substrates. An enzyme that specifically catalyzes methylation of SA, SlSAMT, as well as enzymes that act upon jasmonic acid and indole-3-acetic acid were identified. Analyses of transgenic over- and under-producing lines validated the function of SlSAMT in vivo. The SlSAMT gene was mapped to a position near the bottom of chromosome 9. Analysis of MeSA emissions from an introgression population derived from a cross with Solanum pennellii revealed a quantitative trait locus (QTL) linked to higher fruit methyl salicylate emissions. The higher MeSA emissions associate with significantly higher SpSAMT expression, consistent with SAMT gene expression being rate limiting for ripening-associated MeSA emissions. Transgenic plants that constitutively over-produce MeSA exhibited only slightly delayed symptom development following infection with the disease-causing bacterial pathogen, Xanthomonas campestris pv. vesicatoria (Xcv). Unexpectedly, pathogen-challenged leaves accumulated significantly higher levels of SA as well as glycosylated forms of SA and MeSA, indicating a disruption in control of the SA-related metabolite pool. Taken together, the results indicate that SlSAMT is critical for methyl salicylate synthesis and methyl salicylate, in turn, likely has an important role in controlling SA synthesis.
Collapse
Affiliation(s)
- Denise Tieman
- Plant Molecular and Cellular Biology Program, Horticultural Sciences, University of Florida, Gainesville, FL 32611-0690, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Thaler JS, Agrawal AA, Halitschke R. Salicylate-mediated interactions between pathogens and herbivores. Ecology 2010; 91:1075-82. [DOI: 10.1890/08-2347.1] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
49
|
Runyon JB, Mescher MC, Felton GW, De Moraes CM. Parasitism by Cuscuta pentagona sequentially induces JA and SA defence pathways in tomato. PLANT, CELL & ENVIRONMENT 2010; 33:290-303. [PMID: 19930126 DOI: 10.1111/j.1365-3040.2009.02082.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
While plant responses to herbivores and pathogens are well characterized, responses to attack by other plants remain largely unexplored. We measured phytohormones and C(18) fatty acids in tomato attacked by the parasitic plant Cuscuta pentagona, and used transgenic and mutant plants to explore the roles of the defence-related phytohormones salicylic acid (SA) and jasmonic acid (JA). Parasite attachment to 10-day-old tomato plants elicited few biochemical changes, but a second attachment 10 d later elicited a 60-fold increase in JA, a 30-fold increase in SA and a hypersensitive-like response (HLR). Host age also influenced the response: neither Cuscuta seedlings nor established vines elicited a HLR in 10-day-old hosts, but both did in 20-day-old hosts. Parasites grew larger on hosts deficient in SA (NahG) or insensitive to JA [jasmonic acid-insensitive1 (jai1)], suggesting that both phytohormones mediate effective defences. Moreover, amounts of JA peaked 12 h before SA, indicating that defences may be coordinated via sequential induction of these hormones. Parasitism also induced increases in free linolenic and linoleic acids and abscisic acid. These findings provide the first documentation of plant hormonal signalling induced by a parasitic plant and show that tomato responses to C. pentagona display characteristics similar to both herbivore- and pathogen-induced responses.
Collapse
Affiliation(s)
- Justin B Runyon
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA
| | | | | | | |
Collapse
|
50
|
Zurbriggen MD, Carrillo N, Tognetti VB, Melzer M, Peisker M, Hause B, Hajirezaei MR. Chloroplast-generated reactive oxygen species play a major role in localized cell death during the non-host interaction between tobacco and Xanthomonas campestris pv. vesicatoria. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 60:962-73. [PMID: 19719480 DOI: 10.1111/j.1365-313x.2009.04010.x] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Attempted infection of plants by pathogens elicits a complex defensive response. In many non-host and incompatible host interactions it includes the induction of defence-associated genes and a form of localized cell death (LCD), purportedly designed to restrict pathogen advance, collectively known as the hypersensitive response (HR). It is preceded by an oxidative burst, generating reactive oxygen species (ROS) that are proposed to cue subsequent deployment of the HR, although neither the origin nor the precise role played by ROS in the execution of this response are completely understood. We used tobacco plants expressing cyanobacterial flavodoxin to address these questions. Flavodoxin is an electron shuttle present in prokaryotes and algae that, when expressed in chloroplasts, specifically prevents ROS formation in plastids during abiotic stress episodes. Infiltration of tobacco wild-type leaves with high titres of Xanthomonas campestris pv. vesicatoria (Xcv), a non-host pathogen, resulted in ROS accumulation in chloroplasts, followed by the appearance of localized lesions typical of the HR. In contrast, chloroplast ROS build-up and LCD were significantly reduced in Xcv-inoculated plants expressing plastid-targeted flavodoxin. Metabolic routes normally inhibited by pathogens were protected in the transformants, whereas other aspects of the HR, including the induction of defence-associated genes and synthesis of salicylic and jasmonic acid, proceeded as in inoculated wild-type plants. Therefore, ROS generated in chloroplasts during this non-host interaction are essential for the progress of LCD, but do not contribute to the induction of pathogenesis-related genes or other signalling components of the response.
Collapse
Affiliation(s)
- Matias D Zurbriggen
- Instituto de Biología Molecular y Celular de Rosario (IBR, UNR/CONICET), División Biología Molecular, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, S2002LRK Rosario, Argentina
| | | | | | | | | | | | | |
Collapse
|