1
|
Eckardt NA, Allahverdiyeva Y, Alvarez CE, Büchel C, Burlacot A, Cardona T, Chaloner E, Engel BD, Grossman AR, Harris D, Herrmann N, Hodges M, Kern J, Kim TD, Maurino VG, Mullineaux CW, Mustila H, Nikkanen L, Schlau-Cohen G, Tronconi MA, Wietrzynski W, Yachandra VK, Yano J. Lighting the way: Compelling open questions in photosynthesis research. THE PLANT CELL 2024; 36:3914-3943. [PMID: 39038210 PMCID: PMC11449116 DOI: 10.1093/plcell/koae203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/29/2024] [Accepted: 07/15/2024] [Indexed: 07/24/2024]
Abstract
Photosynthesis-the conversion of energy from sunlight into chemical energy-is essential for life on Earth. Yet there is much we do not understand about photosynthetic energy conversion on a fundamental level: how it evolved and the extent of its diversity, its dynamics, and all the components and connections involved in its regulation. In this commentary, researchers working on fundamental aspects of photosynthesis including the light-dependent reactions, photorespiration, and C4 photosynthetic metabolism pose and discuss what they view as the most compelling open questions in their areas of research.
Collapse
Affiliation(s)
| | - Yagut Allahverdiyeva
- Molecular Plant Biology Unit, Department of Life Technologies, University of Turku, 20014 Turku, Finland
| | - Clarisa E Alvarez
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Facultad de Ciencias Bioquímicas y Farmacuticas, University of Rosario, Suipacha 570, 2000 Rosario, Argentina
| | - Claudia Büchel
- Institute of Molecular Biosciences, Goethe University Frankfurt, 60438 Frankfurt, Germany
| | - Adrien Burlacot
- Division of Bioscience and Engineering, Carnegie Institution for Science, 260 Panama Street, Stanford, CA 94305, USA
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Tanai Cardona
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Emma Chaloner
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Benjamin D Engel
- Biozentrum, University of Basel, Sptialstrasse 41, 4056 Basel, Switzerland
| | - Arthur R Grossman
- Division of Bioscience and Engineering, Carnegie Institution for Science, 260 Panama Street, Stanford, CA 94305, USA
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Dvir Harris
- Department of Chemistry, Massachusetts Institute of Technology, Massachusetts Ave, Cambridge, MA 02139, USA
| | - Nicolas Herrmann
- Institute of Molecular Biosciences, Goethe University Frankfurt, 60438 Frankfurt, Germany
| | - Michael Hodges
- Université Paris-Saclay, CNRS, INRAE, Université d’Evry, Université de Paris Cité, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France
| | - Jan Kern
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Tom Dongmin Kim
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Veronica G Maurino
- Molecular Plant Physiology, Institute for Cellular and Molecular Botany (IZMB), University of Bonn, Kirschallee 1, 53115 Bonn, Germany
| | - Conrad W Mullineaux
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Henna Mustila
- Molecular Plant Biology Unit, Department of Life Technologies, University of Turku, 20014 Turku, Finland
| | - Lauri Nikkanen
- Molecular Plant Biology Unit, Department of Life Technologies, University of Turku, 20014 Turku, Finland
| | - Gabriela Schlau-Cohen
- Department of Chemistry, Massachusetts Institute of Technology, Massachusetts Ave, Cambridge, MA 02139, USA
| | - Marcos A Tronconi
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Facultad de Ciencias Bioquímicas y Farmacuticas, University of Rosario, Suipacha 570, 2000 Rosario, Argentina
| | | | - Vittal K Yachandra
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Junko Yano
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| |
Collapse
|
2
|
Raju AS, Kramer DM, Versaw WK. Genetically manipulated chloroplast stromal phosphate levels alter photosynthetic efficiency. PLANT PHYSIOLOGY 2024; 196:385-396. [PMID: 38701198 PMCID: PMC11376401 DOI: 10.1093/plphys/kiae241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 05/05/2024]
Abstract
The concentration of inorganic phosphate (Pi) in the chloroplast stroma must be maintained within narrow limits to sustain photosynthesis and to direct the partitioning of fixed carbon. However, it is unknown if these limits or the underlying contributions of different chloroplastic Pi transporters vary throughout the photoperiod or between chloroplasts in different leaf tissues. To address these questions, we applied live Pi imaging to Arabidopsis (Arabidopsis thaliana) wild-type plants and 2 loss-of-function transporter mutants: triose phosphate/phosphate translocator (tpt), phosphate transporter 2;1 (pht2;1), and tpt pht2;1. Our analyses revealed that stromal Pi varies spatially and temporally, and that TPT and PHT2;1 contribute to Pi import with overlapping tissue specificities. Further, the series of progressively diminished steady-state stromal Pi levels in these mutants provided the means to examine the effects of Pi on photosynthetic efficiency without imposing nutritional deprivation. ΦPSII and nonphotochemical quenching (NPQ) correlated with stromal Pi levels. However, the proton efflux activity of the ATP synthase (gH+) and the thylakoid proton motive force (pmf) were unaltered under growth conditions, but were suppressed transiently after a dark to light transition with return to wild-type levels within 2 min. These results argue against a simple substrate-level limitation of ATP synthase by depletion of stromal Pi, favoring more integrated regulatory models, which include rapid acclimation of thylakoid ATP synthase activity to reduced Pi levels.
Collapse
Affiliation(s)
| | - David M Kramer
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
- Jan IngenHousz Institute, Bornsesteeg 48A, 6708 PE Wageningen, The Netherlands
| | - Wayne K Versaw
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
3
|
Calzadilla PI. A matter of quantity: The effect of chloroplast stromal phosphate levels on photosynthetic efficiency. PLANT PHYSIOLOGY 2024; 196:18-20. [PMID: 38801785 PMCID: PMC11376378 DOI: 10.1093/plphys/kiae307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 05/13/2024] [Accepted: 05/13/2024] [Indexed: 05/29/2024]
Affiliation(s)
- Pablo Ignacio Calzadilla
- Assistant Features Editor, Plant Physiology, American Society of Plant Biologists
- Instituto de Fisiología Vegetal (INFIVE), Universidad Nacional de La Plata-CONICET, cc 327, 1900 La Plata, Buenos Aires, Argentina
- Department of Earth and Environmental Sciences, Faculty of Science and Engineering, University of Manchester, Manchester, M13 9PT, UK
| |
Collapse
|
4
|
Jiang Z, Wei Z, Zhang J, Zheng C, Zhu H, Zhai H, He S, Gao S, Zhao N, Zhang H, Liu Q. Source-sink synergy is the key unlocking sweet potato starch yield potential. Nat Commun 2024; 15:7260. [PMID: 39179563 PMCID: PMC11343742 DOI: 10.1038/s41467-024-51727-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 08/14/2024] [Indexed: 08/26/2024] Open
Abstract
Sweet potato starch is in high demand globally for food and industry. However, starch content is negatively correlated with fresh yield. It is urgent to uncover the genetic basis and molecular mechanisms underlying the starch yield of sweet potato. Here we systematically explore source-sink synergy-mediated sweet potato starch yield formation: the production, loading, and transport of photosynthates in leaves, as well as their unloading and allocation in storage roots, lead to starch content divergence between sweet potato varieties. Moreover, we find that six haplotypes of IbPMA1 encoding a plasma membrane H+-ATPase are significantly linked with starch accumulation. Overexpression of IbPMA1 in sweet potato results in significantly increased starch and sucrose contents, while its knockdown exhibits an opposing effect. Furthermore, a basic helix-loop-helix (bHLH) transcription factor IbbHLH49 directly targets IbPMA1 and activates its transcription. Overexpression of IbbHLH49 notably improves source-sink synergy-mediated fresh yield and starch accumulation in sweet potato. Both IbbHLH49 and IbPMA1 substantially influence sugar transport and starch biosynthesis in source and sink tissues. These findings expand our understanding of starch yield formation and provide strategies and candidate genes for high starch breeding in root and tuber crops.
Collapse
Affiliation(s)
- Zhicheng Jiang
- Key Laboratory of Sweet Potato Biology and Biotechnology of Ministry of Agriculture and Rural Affairs, College of Agronomy & Biotechnology, China Agricultural University, Beijing, China
| | - Zihao Wei
- Key Laboratory of Sweet Potato Biology and Biotechnology of Ministry of Agriculture and Rural Affairs, College of Agronomy & Biotechnology, China Agricultural University, Beijing, China
| | - Jun Zhang
- Key Laboratory of Sweet Potato Biology and Biotechnology of Ministry of Agriculture and Rural Affairs, College of Agronomy & Biotechnology, China Agricultural University, Beijing, China
| | - Chenxing Zheng
- Key Laboratory of Sweet Potato Biology and Biotechnology of Ministry of Agriculture and Rural Affairs, College of Agronomy & Biotechnology, China Agricultural University, Beijing, China
| | - Hong Zhu
- College of Agronomy, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Hong Zhai
- Key Laboratory of Sweet Potato Biology and Biotechnology of Ministry of Agriculture and Rural Affairs, College of Agronomy & Biotechnology, China Agricultural University, Beijing, China
| | - Shaozhen He
- Key Laboratory of Sweet Potato Biology and Biotechnology of Ministry of Agriculture and Rural Affairs, College of Agronomy & Biotechnology, China Agricultural University, Beijing, China
| | - Shaopei Gao
- Key Laboratory of Sweet Potato Biology and Biotechnology of Ministry of Agriculture and Rural Affairs, College of Agronomy & Biotechnology, China Agricultural University, Beijing, China
| | - Ning Zhao
- Key Laboratory of Sweet Potato Biology and Biotechnology of Ministry of Agriculture and Rural Affairs, College of Agronomy & Biotechnology, China Agricultural University, Beijing, China
| | - Huan Zhang
- Key Laboratory of Sweet Potato Biology and Biotechnology of Ministry of Agriculture and Rural Affairs, College of Agronomy & Biotechnology, China Agricultural University, Beijing, China.
| | - Qingchang Liu
- Key Laboratory of Sweet Potato Biology and Biotechnology of Ministry of Agriculture and Rural Affairs, College of Agronomy & Biotechnology, China Agricultural University, Beijing, China.
| |
Collapse
|
5
|
Ma B, Zhang Y, Fan Y, Zhang L, Li X, Zhang QQ, Shu Q, Huang J, Chen G, Li Q, Gao Q, Zhu XG, He Z, Wang P. Genetic improvement of phosphate-limited photosynthesis for high yield in rice. Proc Natl Acad Sci U S A 2024; 121:e2404199121. [PMID: 39136985 PMCID: PMC11348269 DOI: 10.1073/pnas.2404199121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 06/25/2024] [Indexed: 08/29/2024] Open
Abstract
Low phosphate (Pi) availability decreases photosynthesis, with phosphate limitation of photosynthesis occurring particularly during grain filling of cereal crops; however, effective genetic solutions remain to be established. We previously discovered that rice phosphate transporter OsPHO1;2 controls seed (sink) development through Pi reallocation during grain filling. Here, we find that OsPHO1;2 regulates Pi homeostasis and thus photosynthesis in leaves (source). Loss-of-function of OsPHO1;2 decreased Pi levels in leaves, leading to decreased photosynthetic electron transport activity, CO2 assimilation rate, and early occurrence of phosphate-limited photosynthesis. Interestingly, ectopic expression of OsPHO1;2 greatly increased Pi availability, and thereby, increased photosynthetic rate in leaves during grain filling, contributing to increased yield. This was supported by the effect of foliar Pi application. Moreover, analysis of core rice germplasm resources revealed that higher OsPHO1;2 expression was associated with enhanced photosynthesis and yield potential compared to those with lower expression. These findings reveal that phosphate-limitation of photosynthesis can be relieved via a genetic approach, and the OsPHO1;2 gene can be employed to reinforce crop breeding strategies for achieving higher photosynthetic efficiency.
Collapse
Affiliation(s)
- Bin Ma
- Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai200032, China
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou225009, China
| | - You Zhang
- Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai200032, China
| | - Yanfei Fan
- Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai200032, China
- University of the Chinese Academy of Sciences, Beijing100049, China
| | - Lin Zhang
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou225009, China
| | - Xiaoyuan Li
- Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai200032, China
- Institute of Biotechnology, Hangzhou Academy of Agricultural Sciences, Hangzhou310024, China
| | - Qi-Qi Zhang
- Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai200032, China
- University of the Chinese Academy of Sciences, Beijing100049, China
| | - Qingyao Shu
- National Key Laboratory of Rice Biology, Institute of Crop Sciences, Zhejiang University, Hangzhou310058, Zhejiang, China
| | - Jirong Huang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai200234, China
| | - Genyun Chen
- Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai200032, China
| | - Qun Li
- Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai200032, China
| | - Qifei Gao
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai200240, China
| | - Xin-Guang Zhu
- Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai200032, China
- Key Laboratory of Plant Carbon Capture, Chinese Academy of Sciences, Shanghai200032, China
| | - Zuhua He
- Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai200032, China
| | - Peng Wang
- Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai200032, China
- Key Laboratory of Plant Carbon Capture, Chinese Academy of Sciences, Shanghai200032, China
| |
Collapse
|
6
|
Kim TL, Oh C, Denison MIJ, Natarajan S, Lee K, Lim H. Transcriptomic and physiological responses of Quercus acutissima and Quercus palustris to drought stress and rewatering. FRONTIERS IN PLANT SCIENCE 2024; 15:1430485. [PMID: 39166236 PMCID: PMC11333329 DOI: 10.3389/fpls.2024.1430485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/19/2024] [Indexed: 08/22/2024]
Abstract
Establishment of oak seedlings, which is an important factor in forest restoration, is affected by drought that hampers the survival, growth, and development of seedlings. Therefore, it is necessary to understand how seedlings respond to and recover from water-shortage stress. We subjected seedlings of two oak species, Quercus acutissima and Quercus palustris, to drought stress for one month and then rewatered them for six days to observe physiological and genetic expression changes. Phenotypically, the growth of Q. acutissima was reduced and severe wilting and recovery failure were observed in Q. palustris after an increase in plant temperature. The two species differed in several physiological parameters during drought stress and recovery. Although the photosynthesis-related indicators did not change in Q. acutissima, they were decreased in Q. palustris. Moreover, during drought, content of soluble sugars was significantly increased in both species, but it recovered to original levels only in Q. acutissima. Malondialdehyde content increased in both the species during drought, but it did not recover in Q. palustris after rewatering. Among the antioxidant enzymes, only superoxide dismutase activity increased in Q. acutissima during drought, whereas activities of ascorbate peroxidase, catalase, and glutathione reductase increased in Q. palustris. Abscisic acid levels were increased and then maintained in Q. acutissima, but recovered to previous levels after rewatering in Q. palustris. RNA samples from the control, drought, recovery day 1, and recovery day 6 treatment groups were compared using transcriptome analysis. Q. acutissima exhibited 832 and 1076 differentially expressed genes (DEGs) related to drought response and recovery, respectively, whereas Q. palustris exhibited 3947 and 1587 DEGs, respectively under these conditions. Gene ontology enrichment of DEGs revealed "response to water," "apoplast," and "Protein self-association" to be common to both the species. However, in the heatmap analysis of genes related to sucrose and starch synthesis, glycolysis, antioxidants, and hormones, the two species exhibited very different transcriptome responses. Nevertheless, the levels of most DEGs returned to their pre-drought levels after rewatering. These results provide a basic foundation for understanding the physiological and genetic expression responses of oak seedlings to drought stress and recovery.
Collapse
Affiliation(s)
- Tae-Lim Kim
- Department of Forest Bioresources, National Institute of Forest Science, Suwon, Republic of Korea
| | - Changyoung Oh
- Department of Forest Bioresources, National Institute of Forest Science, Suwon, Republic of Korea
| | | | | | - Kyungmi Lee
- Department of Forest Bioresources, National Institute of Forest Science, Suwon, Republic of Korea
| | - Hyemin Lim
- Department of Forest Bioresources, National Institute of Forest Science, Suwon, Republic of Korea
| |
Collapse
|
7
|
Yang J, Song J, Jeong BR. Flowering and Runnering of Seasonal Strawberry under Different Photoperiods Are Affected by Intensity of Supplemental or Night-Interrupting Blue Light. PLANTS (BASEL, SWITZERLAND) 2024; 13:375. [PMID: 38337908 PMCID: PMC10857185 DOI: 10.3390/plants13030375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024]
Abstract
The strawberry (Fragaria × ananassa Duch.) "Sulhyang" is a typical seasonal flowering (SF) strawberry that produces flower buds in day lengths shorter than a critical limit (variable, but often defined as <12 h). There is a trade-off between photoperiod-controlled flowering and gibberellin (GA) signaling pathway-mediated runnering. Some related genes (such as CO, FT1, SOC1, and TFL1) participating in light signaling and circadian rhythm in plants are altered under blue light (BL). Sugars for flowering and runnering are mainly produced by photosynthetic carbon assimilation. The intensity of light could affect photosynthesis, thereby regulating flowering and runnering. Here, we investigated the effect of the intensity of supplemental blue light (S-BL) or night-interrupting blue light (NI-BL) in photoperiodic flowering and runnering regulation by applying 4 h of S-BL or NI-BL with either 0, 10, 20, 30, or 40 μmol·m-2·s-1 photosynthetic photon flux density (PPFD) in a 10 h short-day (SD10) (SD10 + S-BL4 or + NI-BL4 (0, 10, 20, 30, or 40)) or 14 h long-day (LD14) conditions (LD14 + S-BL4 or + NI-BL4 (0, 10, 20, 30, or 40)). Approximately 45 days after the photoperiodic light treatment, generally, whether S-BL or NI-BL, BL (20) was the most promotive in runnering, leading to more runners in both the LD and SD conditions. For flowering, except the treatment LD14 + S-BL, BL (20) was still the key light, either from BL (20) or BL (40), promoting flowering, especially when BL acted as the night-interrupting light, regardless of the photoperiod. At the harvest stage, larger numbers of inflorescences and runners were observed in the LD14 + NI-BL4 treatment, and the most were observed in the LD14 + NI-BL (20). Moreover, the SD10 + NI-BL4 was slightly inferior to the LD14 + NI-BL4 in increasing the numbers of inflorescences and runners, but it caused earlier flowering. Additionally, the circadian rhythm expression of flowering-related genes was affected differently by the S-BL and NI-BL. After the application of BL in LD conditions, the expression of an LD-specific floral activator FaFT1 was stimulated, while that of a flowering suppressor FaTFL1 was inhibited, resetting the balance of expression between these two opposite flowering regulators. The SD runnering was caused by BL in non-runnering SD conditions associated with the stimulation of two key genes that regulate runner formation in the GA pathway, FaGRAS32 and FaGA20ox4. In addition, the positive effects of BL on enhancing photosynthesis and carbohydrate production also provided an abundant energy supply for the flowering and runnering processes.
Collapse
Affiliation(s)
- Jingli Yang
- Shandong Provincial University Laboratory for Protected Horticulture, Weifang University of Science and Technology, Shouguang 262700, China or (J.Y.); (J.S.)
- Department of Horticulture, Division of Applied Life Science (BK21 Four), Graduate School, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Jinnan Song
- Shandong Provincial University Laboratory for Protected Horticulture, Weifang University of Science and Technology, Shouguang 262700, China or (J.Y.); (J.S.)
- Department of Horticulture, Division of Applied Life Science (BK21 Four), Graduate School, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Byoung Ryong Jeong
- Department of Horticulture, Division of Applied Life Science (BK21 Four), Graduate School, Gyeongsang National University, Jinju 52828, Republic of Korea
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
- Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| |
Collapse
|
8
|
Kitashova A, Brodsky V, Chaturvedi P, Pierides I, Ghatak A, Weckwerth W, Nägele T. Quantifying the impact of dynamic plant-environment interactions on metabolic regulation. JOURNAL OF PLANT PHYSIOLOGY 2023; 290:154116. [PMID: 37839392 DOI: 10.1016/j.jplph.2023.154116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/03/2023] [Accepted: 10/06/2023] [Indexed: 10/17/2023]
Abstract
A plant's genome encodes enzymes, transporters and many other proteins which constitute metabolism. Interactions of plants with their environment shape their growth, development and resilience towards adverse conditions. Although genome sequencing technologies and applications have experienced triumphantly rapid development during the last decades, enabling nowadays a fast and cheap sequencing of full genomes, prediction of metabolic phenotypes from genotype × environment interactions remains, at best, very incomplete. The main reasons are a lack of understanding of how different levels of molecular organisation depend on each other, and how they are constituted and expressed within a setup of growth conditions. Phenotypic plasticity, e.g., of the genetic model plant Arabidopsis thaliana, has provided important insights into plant-environment interactions and the resulting genotype x phenotype relationships. Here, we summarize previous and current findings about plant development in a changing environment and how this might be shaped and reflected in metabolism and its regulation. We identify current challenges in the study of plant development and metabolic regulation and provide an outlook of how methodological workflows might support the application of findings made in model systems to crops and their cultivation.
Collapse
Affiliation(s)
- Anastasia Kitashova
- LMU Munich, Faculty of Biology, Plant Evolutionary Cell Biology, 82152, Planegg, Germany.
| | - Vladimir Brodsky
- LMU Munich, Faculty of Biology, Plant Evolutionary Cell Biology, 82152, Planegg, Germany.
| | - Palak Chaturvedi
- University of Vienna, Molecular Systems Biology Lab (MOSYS), Department of Functional and Evolutionary Ecology, Faculty of Life Sciences, Djerassiplatz 1, 1030, Vienna, Austria.
| | - Iro Pierides
- University of Vienna, Molecular Systems Biology Lab (MOSYS), Department of Functional and Evolutionary Ecology, Faculty of Life Sciences, Djerassiplatz 1, 1030, Vienna, Austria.
| | - Arindam Ghatak
- University of Vienna, Molecular Systems Biology Lab (MOSYS), Department of Functional and Evolutionary Ecology, Faculty of Life Sciences, Djerassiplatz 1, 1030, Vienna, Austria; Vienna Metabolomics Center, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria.
| | - Wolfram Weckwerth
- University of Vienna, Molecular Systems Biology Lab (MOSYS), Department of Functional and Evolutionary Ecology, Faculty of Life Sciences, Djerassiplatz 1, 1030, Vienna, Austria; Vienna Metabolomics Center, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria.
| | - Thomas Nägele
- LMU Munich, Faculty of Biology, Plant Evolutionary Cell Biology, 82152, Planegg, Germany.
| |
Collapse
|
9
|
Lee DH, Choi I, Park SJ, Kim S, Choi MS, Lee HS, Pai HS. Three consecutive cytosolic glycolysis enzymes modulate autophagic flux. PLANT PHYSIOLOGY 2023; 193:1797-1815. [PMID: 37539947 PMCID: PMC10602606 DOI: 10.1093/plphys/kiad439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 05/25/2023] [Accepted: 06/19/2023] [Indexed: 08/05/2023]
Abstract
Autophagy serves as an important recycling route for the growth and survival of eukaryotic organisms in nutrient-deficient conditions. Since starvation induces massive changes in the metabolic flux that are coordinated by key metabolic enzymes, specific processing steps of autophagy may be linked with metabolic flux-monitoring enzymes. We attempted to identify carbon metabolic genes that modulate autophagy using VIGS screening of 45 glycolysis- and Calvin-Benson cycle-related genes in Arabidopsis (Arabidopsis thaliana). Here, we report that three consecutive triose-phosphate-processing enzymes involved in cytosolic glycolysis, triose-phosphate-isomerase (TPI), glyceraldehyde-3-phosphate dehydrogenase (GAPC), and phosphoglycerate kinase (PGK), designated TGP, negatively regulate autophagy. Depletion of TGP enzymes causes spontaneous autophagy induction and increases AUTOPHAGY-RELATED 1 (ATG1) kinase activity. TGP enzymes interact with ATG101, a regulatory component of the ATG1 kinase complex. Spontaneous autophagy induction and abnormal growth under insufficient sugar in TGP mutants are suppressed by crossing with the atg101 mutant. Considering that triose-phosphates are photosynthates transported to the cytosol from active chloroplasts, the TGP enzymes would be strategically positioned to monitor the flow of photosynthetic sugars and modulate autophagy accordingly. Collectively, these results suggest that TGP enzymes negatively control autophagy acting upstream of the ATG1 complex, which is critical for seedling development.
Collapse
Affiliation(s)
- Du-Hwa Lee
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
- Department of Systems Biology, Yonsei University, Seoul 03722, Korea
| | - Ilyeong Choi
- Department of Systems Biology, Yonsei University, Seoul 03722, Korea
| | - Seung Jun Park
- Department of Systems Biology, Yonsei University, Seoul 03722, Korea
| | - Sumin Kim
- Department of Systems Biology, Yonsei University, Seoul 03722, Korea
| | - Min-Soo Choi
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Ho-Seok Lee
- Department of Biology, Kyung Hee University, Seoul 02447, Korea
- Center for Genome Engineering, Institute for Basic Science, Daejeon 34126, Korea
| | - Hyun-Sook Pai
- Department of Systems Biology, Yonsei University, Seoul 03722, Korea
| |
Collapse
|
10
|
Le XH, Millar AH. The diversity of substrates for plant respiration and how to optimize their use. PLANT PHYSIOLOGY 2023; 191:2133-2149. [PMID: 36573332 PMCID: PMC10069909 DOI: 10.1093/plphys/kiac599] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 12/09/2022] [Indexed: 06/18/2023]
Abstract
Plant respiration is a foundational biological process with the potential to be optimized to improve crop yield. To understand and manipulate the outputs of respiration, the inputs of respiration-respiratory substrates-need to be probed in detail. Mitochondria house substrate catabolic pathways and respiratory machinery, so transport into and out of these organelles plays an important role in committing substrates to respiration. The large number of mitochondrial carriers and catabolic pathways that remain unidentified hinder this process and lead to confusion about the identity of direct and indirect respiratory substrates in plants. The sources and usage of respiratory substrates vary and are increasing found to be highly regulated based on cellular processes and environmental factors. This review covers the use of direct respiratory substrates following transport through mitochondrial carriers and catabolism under normal and stressed conditions. We suggest the introduction of enzymes not currently found in plant mitochondria to enable serine and acetate to be direct respiratory substrates in plants. We also compare respiratory substrates by assessing energetic yields, availability in cells, and their full or partial oxidation during cell catabolism. This information can assist in decisions to use synthetic biology approaches to alter the range of respiratory substrates in plants. As a result, respiration could be optimized by introducing, improving, or controlling specific mitochondrial transporters and mitochondrial catabolic pathways.
Collapse
Affiliation(s)
- Xuyen H Le
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Perth 6009, Australia
- The ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Highway, Crawley, Perth 6009, Australia
| | - A Harvey Millar
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Perth 6009, Australia
- The ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Highway, Crawley, Perth 6009, Australia
| |
Collapse
|
11
|
Huang W, Krishnan A, Plett A, Meagher M, Linka N, Wang Y, Ren B, Findinier J, Redekop P, Fakhimi N, Kim RG, Karns DA, Boyle N, Posewitz MC, Grossman AR. Chlamydomonas mutants lacking chloroplast TRIOSE PHOSPHATE TRANSPORTER3 are metabolically compromised and light-sensitive. THE PLANT CELL 2023:koad095. [PMID: 36970811 DOI: 10.1093/plcell/koad095] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/08/2023] [Accepted: 03/23/2023] [Indexed: 06/18/2023]
Abstract
Modulation of photoassimilate export from the chloroplast is essential for controlling the distribution of fixed carbon in the cell and maintaining optimum photosynthetic rates. In this study we identified chloroplast TRIOSE PHOSPHATE/PHOSPHATE TRANSLOCATOR2 (CreTPT2) and CreTPT3 in the green alga Chlamydomonas (Chlamydomonas reinhardtii), which exhibit similar substrate specificities but whose encoding genes are differentially expressed over the diurnal cycle. We focused mostly on CreTPT3 because of its high level of expression and the severe phenotype exhibited by tpt3 relative to tpt2 mutants. Null mutants for CreTPT3 had a pleiotropic phenotype that affected growth, photosynthetic activities, metabolite profiles, carbon partitioning, and organelle-specific accumulation of H2O2. These analyses demonstrated that CreTPT3 is a dominant conduit on the chloroplast envelope for the transport of photoassimilates. In addition, CreTPT3 can serve as a safety valve that moves excess reductant out of the chloroplast and appears to be essential for preventing cells from experiencing oxidative stress and accumulating reactive oxygen species, even under low/moderate light intensities. Finally, our studies indicate subfunctionalization of the CreTPT transporters and suggest that there are differences in managing the export of photoassimilates from the chloroplasts of Chlamydomonas and vascular plants.
Collapse
Affiliation(s)
- Weichao Huang
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA
| | - Anagha Krishnan
- Department of Chemistry, Colorado School of Mines, Golden, CO 80401, USA
| | - Anastasija Plett
- Institute of Plant Biochemistry, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Michelle Meagher
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, CO 80401, USA
| | - Nicole Linka
- Institute of Plant Biochemistry, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Yongsheng Wang
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA
- School of Life Sciences, Tsinghua University, 100084 Beijing, China
| | - Bijie Ren
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA
| | - Justin Findinier
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA
| | - Petra Redekop
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA
| | - Neda Fakhimi
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA
| | - Rick G Kim
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA
| | - Devin A Karns
- Department of Chemistry, Colorado School of Mines, Golden, CO 80401, USA
| | - Nanette Boyle
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, CO 80401, USA
| | - Matthew C Posewitz
- Department of Chemistry, Colorado School of Mines, Golden, CO 80401, USA
| | - Arthur R Grossman
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA
| |
Collapse
|
12
|
Burgess AJ, Retkute R, Murchie EH. Photoacclimation and entrainment of photosynthesis by fluctuating light varies according to genotype in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2023; 14:1116367. [PMID: 36968397 PMCID: PMC10034362 DOI: 10.3389/fpls.2023.1116367] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
Acclimation of photosynthesis to light intensity (photoacclimation) takes days to achieve and so naturally fluctuating light presents a potential challenge where leaves may be exposed to light conditions that are beyond their window of acclimation. Experiments generally have focused on unchanging light with a relatively fixed combination of photosynthetic attributes to confer higher efficiency in those conditions. Here a controlled LED experiment and mathematical modelling was used to assess the acclimation potential of contrasting Arabidopsis thaliana genotypes following transfer to a controlled fluctuating light environment, designed to present frequencies and amplitudes more relevant to natural conditions. We hypothesize that acclimation of light harvesting, photosynthetic capacity and dark respiration are controlled independently. Two different ecotypes were selected, Wassilewskija-4 (Ws), Landsberg erecta (Ler) and a GPT2 knock out mutant on the Ws background (gpt2-), based on their differing abilities to undergo dynamic acclimation i.e. at the sub-cellular or chloroplastic scale. Results from gas exchange and chlorophyll content indicate that plants can independently regulate different components that could optimize photosynthesis in both high and low light; targeting light harvesting in low light and photosynthetic capacity in high light. Empirical modelling indicates that the pattern of 'entrainment' of photosynthetic capacity by past light history is genotype-specific. These data show flexibility of photoacclimation and variation useful for plant improvement.
Collapse
Affiliation(s)
| | - Renata Retkute
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Erik H. Murchie
- School of Biosciences, University of Nottingham, Loughborough, United Kingdom
| |
Collapse
|
13
|
Zirngibl ME, Araguirang GE, Kitashova A, Jahnke K, Rolka T, Kühn C, Nägele T, Richter AS. Triose phosphate export from chloroplasts and cellular sugar content regulate anthocyanin biosynthesis during high light acclimation. PLANT COMMUNICATIONS 2023; 4:100423. [PMID: 35962545 PMCID: PMC9860169 DOI: 10.1016/j.xplc.2022.100423] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 07/22/2022] [Accepted: 08/09/2022] [Indexed: 05/07/2023]
Abstract
Plants have evolved multiple strategies to cope with rapid changes in the environment. During high light (HL) acclimation, the biosynthesis of photoprotective flavonoids, such as anthocyanins, is induced. However, the exact nature of the signal and downstream factors for HL induction of flavonoid biosynthesis (FB) is still under debate. Here, we show that carbon fixation in chloroplasts, subsequent export of photosynthates by triose phosphate/phosphate translocator (TPT), and rapid increase in cellular sugar content permit the transcriptional and metabolic activation of anthocyanin biosynthesis during HL acclimation. In combination with genetic and physiological analysis, targeted and whole-transcriptome gene expression studies suggest that reactive oxygen species and phytohormones play only a minor role in rapid HL induction of the anthocyanin branch of FB. In addition to transcripts of FB, sugar-responsive genes showed delayed repression or induction in tpt-2 during HL treatment, and a significant overlap with transcripts regulated by SNF1-related protein kinase 1 (SnRK1) was observed, including a central transcription factor of FB. Analysis of mutants with increased and repressed SnRK1 activity suggests that sugar-induced inactivation of SnRK1 is required for HL-mediated activation of anthocyanin biosynthesis. Our study emphasizes the central role of chloroplasts as sensors for environmental changes as well as the vital function of sugar signaling in plant acclimation.
Collapse
Affiliation(s)
- Max-Emanuel Zirngibl
- Humboldt-Universität zu Berlin, Institute of Biology, Physiology of Plant Cell Organelles, Philippstrasse 13, 10115 Berlin, Germany
| | - Galileo Estopare Araguirang
- University of Rostock, Institute for Biosciences, Physiology of Plant Metabolism, Albert-Einstein-Strasse 3, 18059 Rostock, Germany; Humboldt-Universität zu Berlin, Institute of Biology, Physiology of Plant Cell Organelles, Philippstrasse 13, 10115 Berlin, Germany
| | - Anastasia Kitashova
- Ludwig-Maximilians-Universität München, Faculty of Biology, Plant Evolutionary Cell Biology, 82152 Planegg-Martinsried, Germany
| | - Kathrin Jahnke
- University of Rostock, Institute for Biosciences, Physiology of Plant Metabolism, Albert-Einstein-Strasse 3, 18059 Rostock, Germany
| | - Tobias Rolka
- Humboldt-Universität zu Berlin, Institute of Biology, Physiology of Plant Cell Organelles, Philippstrasse 13, 10115 Berlin, Germany
| | - Christine Kühn
- University of Rostock, Institute for Biosciences, Physiology of Plant Metabolism, Albert-Einstein-Strasse 3, 18059 Rostock, Germany
| | - Thomas Nägele
- Ludwig-Maximilians-Universität München, Faculty of Biology, Plant Evolutionary Cell Biology, 82152 Planegg-Martinsried, Germany
| | - Andreas S Richter
- University of Rostock, Institute for Biosciences, Physiology of Plant Metabolism, Albert-Einstein-Strasse 3, 18059 Rostock, Germany; Humboldt-Universität zu Berlin, Institute of Biology, Physiology of Plant Cell Organelles, Philippstrasse 13, 10115 Berlin, Germany.
| |
Collapse
|
14
|
Kim TL, Lim H, Chung H, Veerappan K, Oh C. Elevated CO 2 Alters the Physiological and Transcriptome Responses of Pinus densiflora to Long-Term CO 2 Exposure. PLANTS (BASEL, SWITZERLAND) 2022; 11:3530. [PMID: 36559641 PMCID: PMC9781706 DOI: 10.3390/plants11243530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/05/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
Physiological response and transcriptome changes were observed to investigate the effects on the growth, metabolism and genetic changes of Pinus densiflora grown for a long time in an environment with an elevated atmospheric CO2 concentration. Pine trees were grown at ambient (400 ppm) and elevated (560 ppm and 720 ppm) CO2 concentrations for 10 years in open-top chambers. The content of nonstructural carbohydrates was significantly increased in elevated CO2. It was notable that the contents of chlorophylls significantly decreased at an elevated CO2. The activities of antioxidants were significantly increased at an elevated CO2 concentration of 720 ppm. We analyzed the differences in the transcriptomes of Pinus densiflora at ambient and elevated CO2 concentrations and elucidated the functions of the differentially expressed genes (DEGs). RNA-Seq analysis identified 2415 and 4462 DEGs between an ambient and elevated CO2 concentrations of 560 ppm and 720 ppm, respectively. Genes related to glycolysis/gluconeogenesis and starch/sucrose metabolism were unchanged or decreased at an elevated CO2 concentration of 560 ppm and tended to increase at an elevated CO2 concentration of 720 ppm. It was confirmed that the expression levels of genes related to photosynthesis and antioxidants were increased at an elevated CO2 concentration of 720 ppm.
Collapse
Affiliation(s)
- Tae-Lim Kim
- Department of Forest Bioresources, National Institute of Forest Science, Suwon 16631, Republic of Korea
| | - Hyemin Lim
- Department of Forest Bioresources, National Institute of Forest Science, Suwon 16631, Republic of Korea
| | - Hoyong Chung
- 3BIGS CO. Ltd., Hwaseong 18469, Republic of Korea
| | | | - Changyoung Oh
- Department of Forest Bioresources, National Institute of Forest Science, Suwon 16631, Republic of Korea
| |
Collapse
|
15
|
Yang J, Song J, Jeong BR. Blue Light Supplemented at Intervals in Long-Day Conditions Intervenes in Photoperiodic Flowering, Photosynthesis, and Antioxidant Properties in Chrysanthemums. Antioxidants (Basel) 2022; 11:2310. [PMID: 36552519 PMCID: PMC9774458 DOI: 10.3390/antiox11122310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 11/24/2022] Open
Abstract
The flowering of chrysanthemum (Chrysanthemum morifolium Ramat.), inhibited by long-day lighting, can be reversed with a short period of low supplemental blue light (S-BL). Both flowering and the reactive oxygen species (ROS) scavenging processes are primarily driven by sugars created by photosynthetic carbon assimilation. In addition, the antioxidant ability potentially affects flowering in photoperiod- and/or circadian rhythm-dependent manners. This indicates that there is an interactive relationship among blue (B) light, photosynthetic efficiency, sugar accumulation, and antioxidant ability in flowering regulation. Here, 4 h of 30 μmol·m-2·s-1 photosynthetic photon flux density (PPFD) S-BL was applied at the end of a 13-h long-day period (LD13 + 4B) at different intervals during 60 days of experimental duration. The five experimental groups were named according to the actual number of days of S-BL and their intervals: applied once every day, "60 days-(LD13 + 4B) (100.0%)"; once every other day, "30 days-(LD13 + 4B) (50.0%)"; once every three days, "15 days-(LD13 + 4B) (25.0%)"; once every five days, "10 days-(LD13 + 4B) (16.7%)"; and once every seven days, "7 days-(LD13 + 4B) (11.7%)". Two non-S-BL control groups were also included: 60 10-h short days (60 days-SD10) and 13-h long days (60 days-LD13). At the harvest stage, varying degrees of flowering were observed except in "60 days-LD13" and "7 days-(LD13 + 4B) (11.7%)". The number of flowers increased and the flower buds appeared earlier as the proportion of S-BL days increased in LD13 conditions, although the "60 days-SD10" gave the earliest flowering. The proportion of initial, pivotal, and optimal flowering was 16.7% ("10 days-(LD13 + 4B)"), 50.0% ("30 days-(LD13 + 4B)"), and 100.0% ("60 days-(LD13 + 4B)"), respectively. Meanwhile, a series of physiological parameters such as the production of enzymatic or non-enzymatic antioxidants, chlorophyll content, photosynthetic efficiency, enzyme activities, and carbohydrate accumulation were significantly improved by "30 days-(LD13 + 4B) (50.0%)" as a turning point until the peaks appeared in "60 days-(LD13 + 4B) (100.0%)", as well as the expression of florigenic or anti-florigenic and some antioxidant-synthetic genes. Furthermore, the results of principal component analysis (PCA) indicated that S-BL days positively regulated flowering, photosynthesis, carbohydrate accumulation, and antioxidant production. In aggregate, the pivotal and optimal proportions of S-BL days to reconcile the relationship among flowering, photosynthetic carbon assimilation, and antioxidant ability were 50.0% and 100.0%, respectively. However, there are still significant gaps to be filled in order to determine the specific involvement of blue light and antioxidant abilities in flowering regulation.
Collapse
Affiliation(s)
- Jingli Yang
- Department of Horticulture, Division of Applied Life Science (BK21 Four), Graduate School of Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Jinnan Song
- Department of Horticulture, Division of Applied Life Science (BK21 Four), Graduate School of Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Byoung Ryong Jeong
- Department of Horticulture, Division of Applied Life Science (BK21 Four), Graduate School of Gyeongsang National University, Jinju 52828, Republic of Korea
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
- Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| |
Collapse
|
16
|
Yang J, Song J, Jeong BR. The flowering of SDP chrysanthemum in response to intensity of supplemental or night-interruptional blue light is modulated by both photosynthetic carbon assimilation and photoreceptor-mediated regulation. FRONTIERS IN PLANT SCIENCE 2022; 13:981143. [PMID: 36186037 PMCID: PMC9523439 DOI: 10.3389/fpls.2022.981143] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/02/2022] [Indexed: 06/16/2023]
Abstract
The photoreceptor-mediated photoperiodic sensitivity determines the obligate short-day flowering in chrysanthemum (Chrysanthemum morifolium Ramat.) when the night length is longer than a critical minimum, otherwise, flowering is effectively inhibited. The reversal of this inhibition by subsequent exposure to a short period of supplemental (S) or night-interruptional (NI) blue (B) light (S-B; NI-B) indicates the involvement of B light-received photoreceptors in the flowering response. Flowering is mainly powered by sugars produced through photosynthetic carbon assimilation. Thus, the light intensity can be involved in flowering regulation by affecting photosynthesis. Here, it is elucidated that the intensity of S-B or NI-B in photoperiodic flowering regulation of chrysanthemums by applying 4-h of S-B or NI-B with either 0, 10, 20, 30, or 40 μmol·m-2·s-1 photosynthetic photon flux density (PPFD) in a 10-h short-day (SD10) [SD10 + 4B or + NI-4B (0, 10, 20, 30, or 40)] or 13-h long-day (LD13) condition [LD13 + 4B or + NI-4B (0, 10, 20, 30, or 40)] provided by 300 ± 5 μmol·m-2·s-1 PPFD white (W) LEDs. After 60 days of photoperiodic light treatments other than the LD13 and LD13 + NI-4B (40), flowering with varying degrees was observed, although the SD10 gave the earliest flowering. And the LD13 + 4B (30) produced the greatest number of flowers. The flowering pattern in response to the intensity of S-B or NI-B was consistent as it was gradually promoted from 10 to 30 μmol m-2 s-1 PPFD and inhibited by 40B regardless of the photoperiod. In SD conditions, the same intensity of S-B and NI-B did not significantly affect flowering, while differential flowering inhibition was observed with any intensity of NI-B in LDs. Furthermore, the 30 μmol·m-2·s-1 PPFD of S-B or NI-B up-regulated the expression of floral meristem identity or florigen genes, as well as the chlorophyll content, photosynthetic efficiency, and carbohydrate accumulation. The 40B also promoted these physiological traits but led to the unbalanced expression of florigen or anti-florigen genes. Overall, the photoperiodic flowering in response to the intensity of S-B or NI-B of the SDP chrysanthemum suggests the co-regulation of photosynthetic carbon assimilation and differential photoreceptor-mediated control.
Collapse
Affiliation(s)
- Jingli Yang
- Department of Horticulture, Division of Applied Life Science (BK21 Four Program), Graduate School of Gyeongsang National University, Jinju, South Korea
| | - Jinnan Song
- Department of Horticulture, Division of Applied Life Science (BK21 Four Program), Graduate School of Gyeongsang National University, Jinju, South Korea
| | - Byoung Ryong Jeong
- Department of Horticulture, Division of Applied Life Science (BK21 Four Program), Graduate School of Gyeongsang National University, Jinju, South Korea
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, South Korea
- Research Institute of Life Science, Gyeongsang National University, Jinju, South Korea
| |
Collapse
|
17
|
Sun L, Deng R, Liu J, Lai M, Wu J, Liu X, Shahid MQ. An overview of sucrose transporter (SUT) genes family in rice. Mol Biol Rep 2022; 49:5685-5695. [PMID: 35699859 DOI: 10.1007/s11033-022-07611-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/17/2022] [Indexed: 10/18/2022]
Abstract
INTRODUCTION Photosynthesis provides the energy basis for the life activities of plants by producing organic compounds, mainly sugar. As the main energy form of photosynthesis, sugar affects the growth and development of plants. During long-distance transportation, sucrose is the main form of transportation. The rate of sugar transport and the allocation of carbohydrates affect the biomass of crops and are closely related to the reproductive growth of crops. MAIN TEXT The transportation of sugar is divided into active transportation and passive transportation. So how does the sucrose transporters (SUT) genes, which are the main carriers of sucrose in active transportation, affect the performance of rice agronomic traits is still to be explored. In this article, we describe the structure of inflorescence and review the transport forms and metabolic processes of sucrose in rice, such as how CO2 is fixed, carbohydrate assimilation, and transport of organic matter. Sucrose transporters exhibited remarkable effects on the development of reproductive organs in rice. CONCLUSIONS Here, the effects of different factors, such as the effects of anthers morphology on starch enrichment of pollen, effects of biotic and abiotic factors on sucrose transporters, effects of changes in trace elements on sucrose transporters, were discussed. Moreover, the regulation of transcription or translation level provides ideas for future research on sucrose transporters.
Collapse
Affiliation(s)
- Lixia Sun
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China.,College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Ruilian Deng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China.,College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Jingwen Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China.,College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Mingyu Lai
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China.,College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Jinwen Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China.,College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Xiangdong Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China.,College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Muhammad Qasim Shahid
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China. .,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China. .,Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China. .,College of Agriculture, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
18
|
Fünfgeld MMFF, Wang W, Ishihara H, Arrivault S, Feil R, Smith AM, Stitt M, Lunn JE, Niittylä T. Sucrose synthases are not involved in starch synthesis in Arabidopsis leaves. NATURE PLANTS 2022; 8:574-582. [PMID: 35484201 PMCID: PMC9122829 DOI: 10.1038/s41477-022-01140-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 03/18/2022] [Indexed: 05/11/2023]
Abstract
Many plants accumulate transitory starch reserves in their leaves during the day to buffer their carbohydrate supply against fluctuating light conditions, and to provide carbon and energy for survival at night. It is universally accepted that transitory starch is synthesized from ADP-glucose (ADPG) in the chloroplasts. However, the consensus that ADPG is made in the chloroplasts by ADPG pyrophosphorylase has been challenged by a controversial proposal that ADPG is made primarily in the cytosol, probably by sucrose synthase (SUS), and then imported into the chloroplasts. To resolve this long-standing controversy, we critically re-examined the experimental evidence that appears to conflict with the consensus pathway. We show that when precautions are taken to avoid artefactual changes during leaf sampling, Arabidopsis thaliana mutants that lack SUS activity in mesophyll cells (quadruple sus1234) or have no SUS activity (sextuple sus123456) have wild-type levels of ADPG and starch, while ADPG is 20 times lower in the pgm and adg1 mutants that are blocked in the consensus chloroplastic pathway of starch synthesis. We conclude that the ADPG needed for starch synthesis in leaves is synthesized primarily by ADPG pyrophosphorylase in the chloroplasts.
Collapse
Affiliation(s)
- Maximilian M F F Fünfgeld
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
- Luxembourg Institute of Health, Strassen, Luxembourg
| | - Wei Wang
- Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå Plant Science Centre, Umeå, Sweden
| | - Hirofumi Ishihara
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
- University of Helsinki, Helsinki, Finland
| | | | - Regina Feil
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | | | - Mark Stitt
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - John E Lunn
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany.
| | - Totte Niittylä
- Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå Plant Science Centre, Umeå, Sweden.
| |
Collapse
|
19
|
Suzuki Y, Ishiyama K, Yoon DK, Takegahara-Tamakawa Y, Kondo E, Suganami M, Wada S, Miyake C, Makino A. Suppression of chloroplast triose phosphate isomerase evokes inorganic phosphate-limited photosynthesis in rice. PLANT PHYSIOLOGY 2022; 188:1550-1562. [PMID: 34893891 PMCID: PMC8896644 DOI: 10.1093/plphys/kiab576] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 11/14/2021] [Indexed: 05/12/2023]
Abstract
The availability of inorganic phosphate (Pi) for ATP synthesis is thought to limit photosynthesis at elevated [CO2] when Pi regeneration via sucrose or starch synthesis is limited. We report here another mechanism for the occurrence of Pi-limited photosynthesis caused by insufficient capacity of chloroplast triose phosphate isomerase (cpTPI). In cpTPI-antisense transgenic rice (Oryza sativa) plants with 55%-86% reductions in cpTPI content, CO2 sensitivity of the rate of CO2 assimilation (A) decreased and even reversed at elevated [CO2]. The pool sizes of the Calvin-Benson cycle metabolites from pentose phosphates to 3-phosphoglycerate increased at elevated [CO2], whereas those of ATP decreased. These phenomena are similar to the typical symptoms of Pi-limited photosynthesis, suggesting sufficient capacity of cpTPI is necessary to prevent the occurrence of Pi-limited photosynthesis and that cpTPI content moderately affects photosynthetic capacity at elevated [CO2]. As there tended to be slight variations in the amounts of total leaf-N depending on the genotypes, relationships between A and the amounts of cpTPI were examined after these parameters were expressed per unit amount of total leaf-N (A/N and cpTPI/N, respectively). A/N at elevated [CO2] decreased linearly as cpTPI/N decreased before A/N sharply decreased, owing to further decreases in cpTPI/N. Within this linear range, decreases in cpTPI/N by 80% led to decreases up to 27% in A/N at elevated [CO2]. Thus, cpTPI function is crucial for photosynthesis at elevated [CO2].
Collapse
Affiliation(s)
- Yuji Suzuki
- Faculty of Agriculture, Iwate University, Morioka, Iwate 020-8550, Japan
| | - Keiki Ishiyama
- Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - Dong-Kyung Yoon
- Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | | | - Eri Kondo
- Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - Mao Suganami
- Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - Shinya Wada
- Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| | - Chikahiro Miyake
- Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| | - Amane Makino
- Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| |
Collapse
|
20
|
Siadjeu C, Lauterbach M, Kadereit G. Insights into Regulation of C 2 and C 4 Photosynthesis in Amaranthaceae/ Chenopodiaceae Using RNA-Seq. Int J Mol Sci 2021; 22:12120. [PMID: 34830004 PMCID: PMC8624041 DOI: 10.3390/ijms222212120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/02/2021] [Accepted: 11/03/2021] [Indexed: 02/08/2023] Open
Abstract
Amaranthaceae (incl. Chenopodiaceae) shows an immense diversity of C4 syndromes. More than 15 independent origins of C4 photosynthesis, and the largest number of C4 species in eudicots signify the importance of this angiosperm lineage in C4 evolution. Here, we conduct RNA-Seq followed by comparative transcriptome analysis of three species from Camphorosmeae representing related clades with different photosynthetic types: Threlkeldia diffusa (C3), Sedobassia sedoides (C2), and Bassia prostrata (C4). Results show that B. prostrata belongs to the NADP-ME type and core genes encoding for C4 cycle are significantly upregulated when compared with Sed. sedoides and T. diffusa. Sedobassia sedoides and B. prostrata share a number of upregulated C4-related genes; however, two C4 transporters (DIT and TPT) are found significantly upregulated only in Sed. sedoides. Combined analysis of transcription factors (TFs) of the closely related lineages (Camphorosmeae and Salsoleae) revealed that no C3-specific TFs are higher in C2 species compared with C4 species; instead, the C2 species show their own set of upregulated TFs. Taken together, our study indicates that the hypothesis of the C2 photosynthesis as a proxy towards C4 photosynthesis is questionable in Sed. sedoides and more in favour of an independent evolutionary stable state.
Collapse
Affiliation(s)
- Christian Siadjeu
- Systematics, Biodiversity and Evolution of Plants, Ludwig Maximilian University Munich, 80638 Munich, Germany;
| | | | - Gudrun Kadereit
- Systematics, Biodiversity and Evolution of Plants, Ludwig Maximilian University Munich, 80638 Munich, Germany;
| |
Collapse
|
21
|
Höhner R, Day PM, Zimmermann SE, Lopez LS, Krämer M, Giavalisco P, Correa Galvis V, Armbruster U, Schöttler MA, Jahns P, Krueger S, Kunz HH. Stromal NADH supplied by PHOSPHOGLYCERATE DEHYDROGENASE3 is crucial for photosynthetic performance. PLANT PHYSIOLOGY 2021; 186:142-167. [PMID: 33779763 PMCID: PMC8154072 DOI: 10.1093/plphys/kiaa117] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/17/2020] [Indexed: 05/22/2023]
Abstract
During photosynthesis, electrons travel from light-excited chlorophyll molecules along the electron transport chain to the final electron acceptor nicotinamide adenine dinucleotide phosphate (NADP) to form NADPH, which fuels the Calvin-Benson-Bassham cycle (CBBC). To allow photosynthetic reactions to occur flawlessly, a constant resupply of the acceptor NADP is mandatory. Several known stromal mechanisms aid in balancing the redox poise, but none of them utilizes the structurally highly similar coenzyme NAD(H). Using Arabidopsis (Arabidopsis thaliana) as a C3-model, we describe a pathway that employs the stromal enzyme PHOSPHOGLYCERATE DEHYDROGENASE 3 (PGDH3). We showed that PGDH3 exerts high NAD(H)-specificity and is active in photosynthesizing chloroplasts. PGDH3 withdrew its substrate 3-PGA directly from the CBBC. As a result, electrons become diverted from NADPH via the CBBC into the separate NADH redox pool. pgdh3 loss-of-function mutants revealed an overreduced NADP(H) redox pool but a more oxidized plastid NAD(H) pool compared to wild-type plants. As a result, photosystem I acceptor side limitation increased in pgdh3. Furthermore, pgdh3 plants displayed delayed CBBC activation, changes in nonphotochemical quenching, and altered proton motive force partitioning. Our fluctuating light-stress phenotyping data showed progressing photosystem II damage in pgdh3 mutants, emphasizing the significance of PGDH3 for plant performance under natural light environments. In summary, this study reveals an NAD(H)-specific mechanism in the stroma that aids in balancing the chloroplast redox poise. Consequently, the stromal NAD(H) pool may provide a promising target to manipulate plant photosynthesis.
Collapse
Affiliation(s)
- Ricarda Höhner
- School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA
| | - Philip M Day
- School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA
| | - Sandra E Zimmermann
- Biocenter University of Cologne, Institute for Plant Science, Cologne 50674, Germany
| | - Laura S Lopez
- School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA
| | - Moritz Krämer
- School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA
| | | | - Viviana Correa Galvis
- Max Planck Institute of Molecular Plant Physiology, Wissenschaftspark Golm, Potsdam 14476, Germany
| | - Ute Armbruster
- Max Planck Institute of Molecular Plant Physiology, Wissenschaftspark Golm, Potsdam 14476, Germany
| | - Mark Aurel Schöttler
- Max Planck Institute of Molecular Plant Physiology, Wissenschaftspark Golm, Potsdam 14476, Germany
| | - Peter Jahns
- Plant Biochemistry, Heinrich-Heine-University Düsseldorf, Düsseldorf D-40225, Germany
| | - Stephan Krueger
- Biocenter University of Cologne, Institute for Plant Science, Cologne 50674, Germany
| | - Hans-Henning Kunz
- School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA
| |
Collapse
|
22
|
Karim MF, Johnson GN. Acclimation of Photosynthesis to Changes in the Environment Results in Decreases of Oxidative Stress in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2021; 12:683986. [PMID: 34630448 PMCID: PMC8495028 DOI: 10.3389/fpls.2021.683986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 08/18/2021] [Indexed: 05/08/2023]
Abstract
The dynamic acclimation of photosynthesis plays an important role in increasing the fitness of a plant under variable light environments. Since acclimation is partially mediated by a glucose-6-phosphate/phosphate translocator 2 (GPT2), this study examined whether plants lacking GPT2, which consequently have defective acclimation to increases in light, are more susceptible to oxidative stress. To understand this mechanism, we used the model plant Arabidopsis thaliana [accession Wassilewskija-4 (Ws-4)] and compared it with mutants lacking GPT2. The plants were then grown at low light (LL) at 100 μmol m-2 s-1 for 7 weeks. For the acclimation experiments, a set of plants from LL was transferred to 400 μmol m-2 s-1 conditions for 7 days. Biochemical and physiological analyses showed that the gpt2 mutant plants had significantly greater activity for ascorbate peroxidase (APX), guiacol peroxidase (GPOX), and superoxide dismutase (SOD). Furthermore, the mutant plants had significantly lower maximum quantum yields of photosynthesis (Fv/Fm). A microarray analysis also showed that gpt2 plants exhibited a greater induction of stress-related genes relative to wild-type (WT) plants. We then concluded that photosynthetic acclimation to a higher intensity of light protects plants against oxidative stress.
Collapse
|
23
|
Satyanarayan MB, Zhao J, Zhang J, Yu F, Lu Y. Functional relationships of three NFU proteins in the biogenesis of chloroplastic iron-sulfur clusters. PLANT DIRECT 2021; 5:e00303. [PMID: 33553997 PMCID: PMC7851846 DOI: 10.1002/pld3.303] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 12/27/2020] [Accepted: 12/28/2020] [Indexed: 05/14/2023]
Abstract
Iron-sulfur clusters are required in a variety of biological processes. Biogenesis of iron-sulfur clusters includes assembly of iron-sulfur clusters on scaffold complexes and transfer of iron-sulfur clusters to recipient apoproteins by iron-sulfur carriers, such as nitrogen-fixation-subunit-U (NFU)-type proteins. Arabidopsis thaliana has three plastid-targeted NFUs: NFU1, NFU2, and NFU3. We previously discovered that nfu2 -/- nfu3 -/- mutants are embryo lethal. The lack of viable nfu2 -/- nfu3 -/- mutants posed a serious challenge. To overcome this problem, we characterized nfu2-1 -/- nfu3-2+/- and nfu2-1+/- nfu3-2 -/- sesquimutants. Simultaneous loss-of-function mutations in NFU2 and NFU3 have an additive effect on the declines of 4Fe-4S-containing PSI core subunits. Consequently, the sesquimutants had much lower PSI and PSII activities, much less chlorophyll, and much smaller plant sizes, than nfu2-1 and nfu3-2 single mutants. These observations are consistent with proposed roles of NFU3 and NFU2 in the biogenesis of chloroplastic 4Fe-4S. By performing spectroscopic and in vitro reconstitution experiments, we found that NFU1 may act as a carrier for chloroplastic 4Fe-4S and 3Fe-4S clusters. In line with this hypothesis, loss-of-function mutations in NFU1 resulted in significant declines in 4Fe-4S- and 3Fe-4S-containing chloroplastic proteins. The declines of PSI activity and 4Fe-4S-containing PSI core subunits in nfu1 mutants indicate that PSI is the main target of NFU1 action. The reductions in 4Fe-4S-containing PSI core proteins and PSI activity in nfu3-2, nfu2-1, and nfu1 single mutants suggest that all three plastid-targeted NFU proteins contribute to the biogenesis of chloroplastic 4Fe-4S clusters. Although different insertion sites of T-DNA lines may cause variations in phenotypic results, mutation severity could be an indicator of the relative importance of the gene product. Our results are consistent with the hypothesis that NFU3 contributes more than NFU2 and NFU2 contributes more than NFU1 to the production of 4Fe-4S-containing PSI core subunits.
Collapse
Affiliation(s)
- Manasa B. Satyanarayan
- Department of Biological SciencesWestern Michigan UniversityKalamazooMIUSA
- Present address:
Charles River LaboratoriesMattawanMIUSA
| | - Jun Zhao
- Department of Biological SciencesWestern Michigan UniversityKalamazooMIUSA
- Present address:
State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life SciencesNorthwest A&F UniversityYanglingChina
| | - Jessica Zhang
- Department of Biological SciencesWestern Michigan UniversityKalamazooMIUSA
| | - Fei Yu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life SciencesNorthwest A&F UniversityYanglingChina
| | - Yan Lu
- Department of Biological SciencesWestern Michigan UniversityKalamazooMIUSA
| |
Collapse
|
24
|
Fabiańska I, Bucher M, Häusler RE. Intracellular phosphate homeostasis - A short way from metabolism to signaling. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 286:57-67. [PMID: 31300142 DOI: 10.1016/j.plantsci.2019.05.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 05/14/2019] [Accepted: 05/22/2019] [Indexed: 05/21/2023]
Abstract
Phosphorus in plant cells occurs in inorganic form as both ortho- and pyrophosphate or bound to organic compounds, like e.g., nucleotides, phosphorylated metabolites, phospholipids, phosphorylated proteins, or phytate as P storage in the vacuoles of seeds. Individual compartments of the cell are surrounded by membranes that are selective barriers to avoid uncontrolled solute exchange. A controlled exchange of phosphate or phosphorylated metabolites is accomplished by specific phosphate transporters (PHTs) and the plastidial phosphate translocator family (PTs) of the inner envelope membrane. Plastids, in particular chloroplasts, are the site of various anabolic sequences of enzyme-catalyzed reactions. Apart from their role in metabolism PHTs and PTs are presumed to be also involved in communication between organelles and plant organs. Here we will focus on the integration of phosphate transport and homeostasis in signaling processes. Recent developments in this field will be critically assessed and potential future developments discussed. In particular, the occurrence of various plastid types in one organ (i.e. the leaf) with different functions with respect to metabolism or sensing, as has been documented recently following a tissue-specific proteomics approach (Beltran et al., 2018), will shed new light on functional aspects of phosphate homeostasis.
Collapse
Affiliation(s)
- Izabela Fabiańska
- Botanical Institute, Cologne Biocenter, University of Cologne, 50674 Cologne, Germany
| | - Marcel Bucher
- Botanical Institute, Cologne Biocenter, University of Cologne, 50674 Cologne, Germany; Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, 50674 Cologne, Germany
| | - Rainer E Häusler
- Botanical Institute, Cologne Biocenter, University of Cologne, 50674 Cologne, Germany.
| |
Collapse
|
25
|
Shameer S, Ratcliffe RG, Sweetlove LJ. Leaf Energy Balance Requires Mitochondrial Respiration and Export of Chloroplast NADPH in the Light. PLANT PHYSIOLOGY 2019; 180:1947-1961. [PMID: 31213510 PMCID: PMC6670072 DOI: 10.1104/pp.19.00624] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 06/04/2019] [Indexed: 05/04/2023]
Abstract
Key aspects of leaf mitochondrial metabolism in the light remain unresolved. For example, there is debate about the relative importance of exporting reducing equivalents from mitochondria for the peroxisomal steps of photorespiration versus oxidation of NADH to generate ATP by oxidative phosphorylation. Here, we address this and explore energetic coupling between organelles in the light using a diel flux balance analysis model. The model included more than 600 reactions of central metabolism with full stoichiometric accounting of energy production and consumption. Different scenarios of energy availability (light intensity) and demand (source leaf versus a growing leaf) were considered, and the model was constrained by the nonlinear relationship between light and CO2 assimilation rate. The analysis demonstrated that the chloroplast can theoretically generate sufficient ATP to satisfy the energy requirements of the rest of the cell in addition to its own. However, this requires unrealistic high light use efficiency and, in practice, the availability of chloroplast-derived ATP is limited by chloroplast energy dissipation systems, such as nonphotochemical quenching, and the capacity of the chloroplast ATP export shuttles. Given these limitations, substantial mitochondrial ATP synthesis is required to fulfill cytosolic ATP requirements, with only minimal, or zero, export of mitochondrial reducing equivalents. The analysis also revealed the importance of exporting reducing equivalents from chloroplasts to sustain photorespiration. Hence, the chloroplast malate valve and triose phosphate-3-phosphoglycerate shuttle are predicted to have important metabolic roles, in addition to their more commonly discussed contribution to the avoidance of photooxidative stress.
Collapse
Affiliation(s)
- Sanu Shameer
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, United Kingdom
| | - R George Ratcliffe
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, United Kingdom
| | - Lee J Sweetlove
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, United Kingdom
| |
Collapse
|
26
|
Herrmann HA, Schwartz JM, Johnson GN. Metabolic acclimation-a key to enhancing photosynthesis in changing environments? JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:3043-3056. [PMID: 30997505 DOI: 10.1093/jxb/erz157] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 03/21/2019] [Indexed: 05/18/2023]
Abstract
Plants adjust their photosynthetic capacity in response to their environment in a way that optimizes their yield and fitness. There is growing evidence that this acclimation is a response to changes in the leaf metabolome, but the extent to which these are linked and how this is optimized remain poorly understood. Using as an example the metabolic perturbations occurring in response to cold, we define the different stages required for acclimation, discuss the evidence for a metabolic temperature sensor, and suggest further work towards designing climate-smart crops. In particular, we discuss how constraint-based and kinetic metabolic modelling approaches can be used to generate targeted hypotheses about relevant pathways, and argue that a stronger integration of experimental and in silico studies will help us to understand the tightly regulated interplay of carbon partitioning and resource allocation required for photosynthetic acclimation to different environmental conditions.
Collapse
Affiliation(s)
- Helena A Herrmann
- School of Earth and Environmental Sciences, Faculty of Science and Engineering, University of Manchester, Manchester, UK
- Division of Evolution & Genomic Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Jean-Marc Schwartz
- Division of Evolution & Genomic Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Giles N Johnson
- School of Earth and Environmental Sciences, Faculty of Science and Engineering, University of Manchester, Manchester, UK
| |
Collapse
|
27
|
Levey M, Timm S, Mettler-Altmann T, Luca Borghi G, Koczor M, Arrivault S, PM Weber A, Bauwe H, Gowik U, Westhoff P. Efficient 2-phosphoglycolate degradation is required to maintain carbon assimilation and allocation in the C4 plant Flaveria bidentis. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:575-587. [PMID: 30357386 PMCID: PMC6322630 DOI: 10.1093/jxb/ery370] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 10/15/2018] [Indexed: 05/18/2023]
Abstract
Photorespiration is indispensable for oxygenic photosynthesis since it detoxifies and recycles 2-phosphoglycolate (2PG), which is the primary oxygenation product of Rubisco. However, C4 plant species typically display very low rates of photorespiration due to their efficient biochemical carbon-concentrating mechanism. Thus, the broader relevance of photorespiration in these organisms remains unclear. In this study, we assessed the importance of a functional photorespiratory pathway in the C4 plant Flaveria bidentis using knockdown of the first enzymatic step, namely 2PG phosphatase (PGLP). The isolated RNAi lines showed strongly reduced amounts of PGLP protein, but distinct signs of the photorespiratory phenotype only emerged below 5% residual PGLP protein. Lines with this characteristic were stunted in growth, had strongly increased 2PG content, exhibited accelerated leaf senescence, and accumulated high amounts of branched-chain and aromatic amino acids, which are both characteristics of incipient carbon starvation. Oxygen-dependent gas-exchange measurements consistently suggested the cumulative impairment of ribulose-1,5-bisphosphate regeneration with increased photorespiratory pressure. Our results indicate that photorespiration is essential for maintaining high rates of C4 photosynthesis by preventing the 2PG-mediated inhibition of carbon utilization efficiency. However, considerably higher 2PG accumulation can be tolerated compared to equivalent lines of C3 plants due to the differential distribution of specific enzymatic steps between the mesophyll and bundle sheath cells.
Collapse
Affiliation(s)
- Myles Levey
- Institute of Plant Molecular and Developmental Biology, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine-University, Universitätsstraße, Düsseldorf, Germany
| | - Stefan Timm
- University of Rostock, Plant Physiology Department, Albert-Einstein-Straße, Rostock, Germany
| | - Tabea Mettler-Altmann
- Institute of Plant Biochemistry and Cluster of Excellence on Plant Sciences (CEPLAS) Plant Metabolism and Metabolomics Laboratory, Heinrich Heine University, Universitätsstraße, Düsseldorf, Germany
| | - Gian Luca Borghi
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg, Golm, Germany
| | - Maria Koczor
- Institute of Plant Molecular and Developmental Biology, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine-University, Universitätsstraße, Düsseldorf, Germany
| | - Stéphanie Arrivault
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg, Golm, Germany
| | - Andreas PM Weber
- Institute of Plant Biochemistry and Cluster of Excellence on Plant Sciences (CEPLAS) Plant Metabolism and Metabolomics Laboratory, Heinrich Heine University, Universitätsstraße, Düsseldorf, Germany
| | - Hermann Bauwe
- University of Rostock, Plant Physiology Department, Albert-Einstein-Straße, Rostock, Germany
| | - Udo Gowik
- Institute of Plant Molecular and Developmental Biology, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine-University, Universitätsstraße, Düsseldorf, Germany
| | - Peter Westhoff
- Institute of Plant Molecular and Developmental Biology, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine-University, Universitätsstraße, Düsseldorf, Germany
| |
Collapse
|
28
|
Hilgers EJA, Staehr P, Flügge UI, Häusler RE. The Xylulose 5-Phosphate/Phosphate Translocator Supports Triose Phosphate, but Not Phosphoenolpyruvate Transport Across the Inner Envelope Membrane of Plastids in Arabidopsis thaliana Mutant Plants. FRONTIERS IN PLANT SCIENCE 2018; 9:1461. [PMID: 30405650 PMCID: PMC6201195 DOI: 10.3389/fpls.2018.01461] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Accepted: 09/13/2018] [Indexed: 05/08/2023]
Abstract
The xylulose 5-phosphate/phosphate translocator (PTs) (XPT) represents a link between the plastidial and extraplastidial branches of the oxidative pentose phosphate pathway. Its role is to retrieve pentose phosphates from the extraplastidial space and to make them available to the plastids. However, the XPT transports also triose phosphates and to a lesser extent phosphoenolpyruvate (PEP). Thus, it might support both the triose phosphate/PT (TPT) in the export of photoassimilates from illuminated chloroplasts and the PEP/PT (PPT) in the import of PEP into green or non-green plastids. In mutants defective in the day- and night-path of photoassimilate export from the chloroplasts (i.e., knockout of the TPT [tpt-2] in a starch-free background [adg1-1])the XPT provides a bypass for triose phosphate export and thereby guarantees survival of the adg1-1/tpt-2 double mutant. Here we show that the additional knockout of the XPT in adg1-1/tpt-2/xpt-1 triple mutants results in lethality when the plants were grown in soil. Thus the XPT can functionally support the TPT. The PEP transport capacity of the XPT has been revisited here with a protein heterologously expressed in yeast. PEP transport rates in the proteoliposome system were increased with decreasing pH-values below 7.0. Moreover, PEP transport determined in leaf extracts from wild-type plants showed a similar pH-response, suggesting that in both cases PEP2- is the transported charge-species. Hence, PEP import into illuminated chloroplasts might be unidirectional because of the alkaline pH of the stroma. Here the consequence of a block in PEP transport across the envelope was analyzed in triple mutants defective in both PPTs and the XPT. PPT1 is knocked out in the cue1 mutant. For PPT2 two new mutant alleles were isolated and established as homozygous lines. In contrast to the strong phenotype of cue1, both ppt2 alleles showed only slight growth retardation. As plastidial PEP is required e.g., for the shikimate pathway of aromatic amino acid synthesis, a block in PEP import should result in a lethal phenotype. However, the cue1-6/ppt2-1/ppt2-1 triple mutant was viable and even exhibited residual PEP transport capacity. Hence, alternative ways of PEP transport must exist and are discussed.
Collapse
Affiliation(s)
- Elke J. A. Hilgers
- Department of Biology, Botany II and Cluster of Excellence on Plant Sciences (CEPLAS), Cologne Biocenter, University of Cologne, Cologne, Germany
| | - Pia Staehr
- Department of Biology, Botany II and Cluster of Excellence on Plant Sciences (CEPLAS), Cologne Biocenter, University of Cologne, Cologne, Germany
- Lophius Biosciences GmbH, Regensburg, Germany
| | - Ulf-Ingo Flügge
- Department of Biology, Botany II and Cluster of Excellence on Plant Sciences (CEPLAS), Cologne Biocenter, University of Cologne, Cologne, Germany
| | - Rainer E. Häusler
- Department of Biology, Botany II and Cluster of Excellence on Plant Sciences (CEPLAS), Cologne Biocenter, University of Cologne, Cologne, Germany
| |
Collapse
|
29
|
Hilgers EJA, Schöttler MA, Mettler-Altmann T, Krueger S, Dörmann P, Eicks M, Flügge UI, Häusler RE. The Combined Loss of Triose Phosphate and Xylulose 5-Phosphate/Phosphate Translocators Leads to Severe Growth Retardation and Impaired Photosynthesis in Arabidopsis thaliana tpt/xpt Double Mutants. FRONTIERS IN PLANT SCIENCE 2018; 9:1331. [PMID: 30333839 PMCID: PMC6175978 DOI: 10.3389/fpls.2018.01331] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Accepted: 08/24/2018] [Indexed: 05/18/2023]
Abstract
The xylulose 5-phosphate/phosphate translocator (XPT) represents the fourth functional member of the phosphate translocator (PT) family residing in the plastid inner envelope membrane. In contrast to the other three members, little is known on the physiological role of the XPT. Based on its major transport substrates (i.e., pentose phosphates) the XPT has been proposed to act as a link between the plastidial and extraplastidial branches of the oxidative pentose phosphate pathway (OPPP). As the XPT is also capable of transporting triose phosphates, it might as well support the triose phosphate PT (TPT) in exporting photoassimilates from the chloroplast in the light ('day path of carbon') and hence in supplying the whole plant with carbohydrates. Two independent knockout mutant alleles of the XPT (xpt-1 and xpt-2) lacked any specific phenotype, suggesting that the XPT function is redundant. However, double mutants generated from crossings of xpt-1 to different mutant alleles of the TPT (tpt-1 and tpt-2) were severely retarded in size, exhibited a high chlorophyll fluorescence phenotype, and impaired photosynthetic electron transport rates. In the double mutant the export of triose phosphates from the chloroplasts is completely blocked. Hence, precursors for sucrose biosynthesis derive entirely from starch turnover ('night path of carbon'), which was accompanied by a marked accumulation of maltose as a starch breakdown product. Moreover, pentose phosphates produced by the extraplastidial branch of the OPPP also accumulated in the double mutants. Thus, an active XPT indeed retrieves excessive pentose phosphates from the extra-plastidial space and makes them available to the plastids. Further metabolic profiling revealed that phosphorylated intermediates remained largely unaffected, whereas fumarate and glycine contents were diminished in the double mutants. The assessment of C/N-ratios suggested co-limitations of C- and N-metabolism as possible cause for growth retardation of the double mutants. Feeding of sucrose partially rescued the growth and photosynthesis phenotypes of the double mutants. Immunoblots of thylakoid proteins, spectroscopic determinations of photosynthesis complexes, and chlorophyll a fluorescence emission spectra at 77 Kelvin could only partially explain constrains in photosynthesis observed in the double mutants. The data are discussed together with aspects of the OPPP and central carbon metabolism.
Collapse
Affiliation(s)
- Elke J. A. Hilgers
- Department of Biology, Cologne Biocenter, Botanical Institute II and Cluster of Excellence on Plant Sciences, University of Cologne, Cologne, Germany
| | | | | | - Stephan Krueger
- Department of Biology, Cologne Biocenter, Botanical Institute II and Cluster of Excellence on Plant Sciences, University of Cologne, Cologne, Germany
| | - Peter Dörmann
- Molecular Biotechnology and Biochemistry, Universität Bonn, Bonn, Germany
| | | | - Ulf-Ingo Flügge
- Department of Biology, Cologne Biocenter, Botanical Institute II and Cluster of Excellence on Plant Sciences, University of Cologne, Cologne, Germany
| | - Rainer E. Häusler
- Department of Biology, Cologne Biocenter, Botanical Institute II and Cluster of Excellence on Plant Sciences, University of Cologne, Cologne, Germany
| |
Collapse
|
30
|
Lanoue J, Leonardos ED, Grodzinski B. Effects of Light Quality and Intensity on Diurnal Patterns and Rates of Photo-Assimilate Translocation and Transpiration in Tomato Leaves. FRONTIERS IN PLANT SCIENCE 2018; 9:756. [PMID: 29915612 PMCID: PMC5994434 DOI: 10.3389/fpls.2018.00756] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 05/17/2018] [Indexed: 05/05/2023]
Abstract
Translocation of assimilates is a fundamental process involving carbon and water balance affecting source/sink relationships. Diurnal patterns of CO2 exchange, translocation (carbon export), and transpiration of an intact tomato source leaf were determined during 14CO2 steady-state labeling under different wavelengths at three pre-set photosynthetic rates. Daily patterns showed that photosynthesis and export were supported by all wavelengths of light tested including orange and green. Export in the light, under all wavelengths was always higher than that at night. Export in the light varied from 65-83% of the total daily carbon fixed, depending on light intensity. Photosynthesis and export were highly correlated under all wavelengths (r = 0.90-0.96). Export as a percentage of photosynthesis (relative export) decreased as photosynthesis increased by increasing light intensity under all wavelengths. These data indicate an upper limit for export under all spectral conditions. Interestingly, only at the medium photosynthetic rate, relative export under the blue and the orange light-emitting diodes (LEDs) were higher than under white and red-white LEDs. Stomatal conductance, transpiration rates, and water-use-efficiency showed similar daily patterns under all wavelengths. Illuminating tomato leaves with different spectral quality resulted in similar carbon export rates, but stomatal conductance and transpiration rates varied due to wavelength specific control of stomatal function. Thus, we caution that the link between transpiration and C-export may be more complex than previously thought. In summary, these data indicate that orange and green LEDs, not simply the traditionally used red and blue LEDs, should be considered and tested when designing lighting systems for optimizing source leaf strength during plant production in controlled environment systems. In addition, knowledge related to the interplay between water and C-movement within a plant and how they are affected by environmental stimuli, is needed to develop a better understanding of source/sink relationships.
Collapse
Affiliation(s)
- Jason Lanoue
- Department of Plant Agriculture, University of Guelph, Guelph, ON, Canada
- Harrow Research and Development Centre, Agriculture and Agri-Food Canada, Harrow, ON, Canada
| | | | - Bernard Grodzinski
- Department of Plant Agriculture, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
31
|
Gangwar M, Sood A, Bansal A, Chauhan RS. Comparative transcriptomics reveals a reduction in carbon capture and flux between source and sink in cytokinin-treated inflorescences of Jatropha curcas L. 3 Biotech 2018; 8:64. [PMID: 29354375 DOI: 10.1007/s13205-018-1089-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 01/04/2018] [Indexed: 12/27/2022] Open
Abstract
The low seed yield of Jatropha curcas has been a stumbling block in realizing its full potential as an ideal bioenergy crop. Low female to male flower ratio is considered as a major limiting factor responsible for low seed yield in Jatropha. An exogenous cytokinin application was performed on floral meristems to increase the seed yield. This resulted in an increase of total flowers count with a higher female to male flower ratio. However, the seed biomass did not increase in the same proportion. The possible reason for this was hypothesized to be the lack of increased photosynthesis efficiency at source tissues which could fulfil the increased demand of photosynthates and primary metabolites in maturing seeds. After cytokinin application, possible molecular mechanisms underlying carbon capture and flux affected between the source and sink in developing flowers, fruits and seeds were investigated. Comparative transcriptome analysis was performed on inflorescence meristems (treated with cytokinin) and control (untreated inflorescence meristems) at time intervals of 15 and 30 days, respectively. KEGG-based functional annotation identified various metabolic pathways associated with carbon capture and flux. Pathways such as photosynthesis, carbon fixation, carbohydrate metabolism and nitrogen metabolism were upregulated after 15 days of cytokinin treatment; however, those were downregulated after 30 days. Five genes FBP, SBP, GS, GDH and AGPase showed significant increase in transcript abundance after 15 days of treatment but showed a significant decrease after 30 days. These genes, after functional validation, can be suitable targets in designing a suitable genetic intervention strategy to increase overall seed yield in Jatropha.
Collapse
|
32
|
Fernandez O, Ishihara H, George GM, Mengin V, Flis A, Sumner D, Arrivault S, Feil R, Lunn JE, Zeeman SC, Smith AM, Stitt M. Leaf Starch Turnover Occurs in Long Days and in Falling Light at the End of the Day. PLANT PHYSIOLOGY 2017; 174:2199-2212. [PMID: 28663333 PMCID: PMC5543966 DOI: 10.1104/pp.17.00601] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 06/24/2017] [Indexed: 05/17/2023]
Abstract
We investigated whether starch degradation occurs at the same time as starch synthesis in Arabidopsis (Arabidopsis thaliana) leaves in the light. Starch accumulated in a linear fashion for about 12 h after dawn, then accumulation slowed and content plateaued. Following decreases in light intensity, the rate of accumulation of starch declined in proportion to the decline in photosynthesis if the decrease occurred <10 h after dawn, but accumulation ceased or loss of starch occurred if the same decrease in light intensity was imposed more than 10 h after dawn. These changes in starch accumulation patterns after prolonged periods in the light occurred at both high and low starch contents and were not related to time-dependent changes in either the rate of photosynthesis or the partitioning of assimilate between starch and Suc, as assessed from metabolite measurements and 14CO2 pulse experiments. Instead, measurements of incorporation of 13C from 13CO2 into starch and of levels of the starch degradation product maltose showed that substantial starch degradation occurred simultaneously with synthesis at time points >14 h after dawn and in response to decreases in light intensity that occurred >10 h after dawn. Starch measurements in circadian clock mutants suggested that the clock influences the timing of onset of degradation. We conclude that the propensity for leaf starch to be degraded increases with time after dawn. The importance of this phenomenon for efficient use of carbon for growth in long days and for prevention of starvation during twilight is discussed.
Collapse
Affiliation(s)
- Olivier Fernandez
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Hirofumi Ishihara
- Max Planck Institute for Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Gavin M George
- ETH Zürich, Plant Biochemistry, CH-8092 Zurich, Switzerland
| | - Virginie Mengin
- Max Planck Institute for Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Anna Flis
- Max Planck Institute for Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Dean Sumner
- Max Planck Institute for Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Stéphanie Arrivault
- Max Planck Institute for Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Regina Feil
- Max Planck Institute for Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - John E Lunn
- Max Planck Institute for Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | | | - Alison M Smith
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Mark Stitt
- Max Planck Institute for Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| |
Collapse
|
33
|
Tian Y, Sacharz J, Ware MA, Zhang H, Ruban AV. Effects of periodic photoinhibitory light exposure on physiology and productivity of Arabidopsis plants grown under low light. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:4249-4262. [PMID: 28922753 PMCID: PMC5853873 DOI: 10.1093/jxb/erx213] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 05/31/2017] [Indexed: 05/18/2023]
Abstract
This work examined the long-term effects of periodic high light stress on photosynthesis, morphology, and productivity of low-light-acclimated Arabidopsis plants. Significant photoinhibition of Arabidopsis seedlings grown under low light (100 μmol photons m-2 s-1) was observed at the beginning of the high light treatment (three times a day for 30 min at 1800 μmol photons m-2 s-1). However, after 2 weeks of treatment, similar photosynthesis yields (Fv/Fm) to those of control plants were attained. The daily levels of photochemical quenching measured in the dark (qPd) indicated that the plants recovered from photoinhibition within several hours once transferred back to low light conditions, with complete recovery being achieved overnight. Acclimation to high light stress resulted in the modification of the number, structure, and position of chloroplasts, and an increase in the average chlorophyll a/b ratio. During ontogenesis, high-light-exposed plants had lower total leaf areas but higher above-ground biomass. This was attributed to the consumption of starch for stem and seed production. Moreover, periodic high light exposure brought forward the reproductive phase and resulted in higher seed yields compared with control plants grown under low light. The responses to periodic high light exposure of mature Arabidopsis plants were similar to those of seedlings but had higher light tolerance.
Collapse
Affiliation(s)
- Yonglan Tian
- School of Biological and Chemical Sciences, Queen Mary University of London, UK
- Research Center for Engineering Ecology and Nonlinear Science, North China Electric Power University, Beijing, China
| | - Joanna Sacharz
- School of Biological and Chemical Sciences, Queen Mary University of London, UK
| | - Maxwell A Ware
- School of Biological and Chemical Sciences, Queen Mary University of London, UK
| | - Huayong Zhang
- Research Center for Engineering Ecology and Nonlinear Science, North China Electric Power University, Beijing, China
| | - Alexander V Ruban
- School of Biological and Chemical Sciences, Queen Mary University of London, UK
- Correspondence:
| |
Collapse
|
34
|
Alric J, Johnson X. Alternative electron transport pathways in photosynthesis: a confluence of regulation. CURRENT OPINION IN PLANT BIOLOGY 2017; 37:78-86. [PMID: 28426976 DOI: 10.1016/j.pbi.2017.03.014] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 03/23/2017] [Accepted: 03/28/2017] [Indexed: 05/19/2023]
Abstract
Photosynthetic reactions proceed along a linear electron transfer chain linking water oxidation at photosystem II (PSII) to CO2 reduction in the Calvin-Benson-Bassham cycle. Alternative pathways poise the electron carriers along the chain in response to changing light, temperature and CO2 inputs, under prolonged hydration stress and during development. We describe recent literature that reports the physiological functions of new molecular players. Such highlights include the flavodiiron proteins and their important role in the green lineage. The parsing of the proton-motive force between ΔpH and Δψ, regulated in many different ways (cyclic electron flow, ATPsynthase conductivity, ion/H+ transporters), is comprehensively reported. This review focuses on an integrated description of alternative electron transfer pathways and how they contribute to photosynthetic productivity in the context of plant fitness to the environment.
Collapse
Affiliation(s)
- Jean Alric
- CEA, CNRS, Aix-Marseille Université, Institut de Biosciences et Biotechnologies Aix-Marseille, UMR 7265, Laboratoire de Bioénergétique et Biotechnologie des Bactéries et Microalgues, CEA Cadarache, Saint-Paul-lez-Durance F-13108, France
| | - Xenie Johnson
- CEA, CNRS, Aix-Marseille Université, Institut de Biosciences et Biotechnologies Aix-Marseille, UMR 7265, Laboratoire de Bioénergétique et Biotechnologie des Bactéries et Microalgues, CEA Cadarache, Saint-Paul-lez-Durance F-13108, France.
| |
Collapse
|
35
|
Nath K, O'Donnell JP, Lu Y. Chloroplastic iron-sulfur scaffold protein NFU3 is essential to overall plant fitness. PLANT SIGNALING & BEHAVIOR 2017; 12:e1282023. [PMID: 28102753 PMCID: PMC5351725 DOI: 10.1080/15592324.2017.1282023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
A previous study showed that Nitrogen-Fixing-subunit-U-type protein NFU3 may act an iron-sulfur scaffold protein in the assembly and transfer of 4Fe-4S and 3Fe-4S clusters in the chloroplast. Examples of 4Fe-4S and 3Fe-4S-requiring proteins and complexes include Photosystem I (PSI), NAD(P)H dehydrogenase, and ferredoxin-dependent glutamine oxoglutarate aminotransferases. In this paper, the authors provided additional evidence for the role of NFU3 in 4Fe-4S and 3Fe-4S cluster assembly and transfer, as well as its role in overall plant fitness. Confocal microscopic analysis of the fluorescently-tagged NFU3 protein confirmed the chloroplast localization of the NFU3 protein. Detailed analysis of chlorophyll fluorescence data revealed that a substantial increase in minimal fluorescence is the primary contributor to the decrease in PSII maximum photochemical efficiency observed in the nfu3 mutants. The substantial increase in minimal fluorescence in the nfu3 mutants is probably the result of an impaired PSI function, blockage of electron flow from PSII to PSI, and over-accumulation of reduced plastoquinone at the acceptor side of PSII. Analyses of seed morphology and germination showed that NFU3 is essential to seed development and germination, in addition to plant growth, development, and flowering. In summary, NFU3 has wide-ranging effects on many biologic processes and is therefore important to overall plant fitness. NFU3 may exert these effects by modulating the availability of 4Fe-4S and 3Fe-4S clusters to 4Fe-4S and 3Fe-4S-requiring proteins and complexes involved in various biologic processes.
Collapse
Affiliation(s)
- Krishna Nath
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, USA
| | - James P. O'Donnell
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, USA
| | - Yan Lu
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, USA
- CONTACT Yan Lu Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008, USA
| |
Collapse
|
36
|
Nath K, Wessendorf RL, Lu Y. A Nitrogen-Fixing Subunit Essential for Accumulating 4Fe-4S-Containing Photosystem I Core Proteins. PLANT PHYSIOLOGY 2016; 172:2459-2470. [PMID: 27784767 PMCID: PMC5129733 DOI: 10.1104/pp.16.01564] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 10/25/2016] [Indexed: 05/07/2023]
Abstract
Nitrogen-fixation-subunit-U (NFU)-type proteins have been shown to be involved in the biogenesis of iron-sulfur clusters. We investigated the molecular function of a chloroplastic NFU-type iron-sulfur scaffold protein, NFU3, in Arabidopsis (Arabidopsis thaliana) using genetics approaches. Loss-of-function mutations in the NFU3 gene caused yellow pigmentation in leaves, reductions in plant size, leaf size, and growth rate, delay in flowering and seeding, and decreases in seed production. Biochemical and physiological analyses indicated that these defects are due to the substantial reductions in the abundances of 4Fe-4S-containing photosystem I (PSI) core subunits PsaA (where Psa stands for PSI), PsaB, and PsaC and a nearly complete loss of PSI activity. In addition to the substantial decreases in the amounts of PSI core proteins, the content of 3Fe-4S-containing ferredoxin-dependent glutamine oxoglutarate aminotransferases declined significantly in the nfu3 mutants. Furthermore, the absorption spectrum of the recombinant NFU3 protein showed features characteristic of 4Fe-4S and 3Fe-4S clusters, and the in vitro reconstitution experiment indicated an iron-sulfur scaffold function of NFU3. These data demonstrate that NFU3 is involved in the assembly and transfer of 4Fe-4S and 3Fe-4S clusters and that NFU3 is required for the accumulation of 4Fe-4S- and 3Fe-4S-containing proteins, especially 4Fe-4S-containing PSI core subunits, in the Arabidopsis chloroplast.
Collapse
Affiliation(s)
- Krishna Nath
- Department of Biological Sciences, Western Michigan University, Kalamazoo, Michigan 49008-5410
| | - Ryan L Wessendorf
- Department of Biological Sciences, Western Michigan University, Kalamazoo, Michigan 49008-5410
| | - Yan Lu
- Department of Biological Sciences, Western Michigan University, Kalamazoo, Michigan 49008-5410
| |
Collapse
|
37
|
Yang JT, Preiser AL, Li Z, Weise SE, Sharkey TD. Triose phosphate use limitation of photosynthesis: short-term and long-term effects. PLANTA 2016; 243:687-98. [PMID: 26620947 DOI: 10.1007/s00425-015-2436-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 11/16/2015] [Indexed: 05/02/2023]
Abstract
MAIN CONCLUSION The triose phosphate use limitation was studied using long-term and short term changes in capacity. The TPU limitation caused increased proton motive force; long-term TPU limitation additionally reduced other photosynthetic components. Photosynthetic responses to CO2 can be interpreted primarily as being limited by the amount or activity of Rubisco or the capacity for ribulose bisphosphate regeneration, but at high rates of photosynthesis a third response is often seen. Photosynthesis becomes insensitive to CO2 or even declines with increasing CO2, and this behavior has been associated with a limitation of export of carbon from the Calvin-Benson cycle. It is often called the triose phosphate use (TPU) limitation. We studied the long-term consequences of this limitation using plants engineered to have reduced capacity for starch or sucrose synthesis. We studied short-term consequences using temperature as a method for changing the balance of carbon fixation capacity and TPU. A long-term and short-term TPU limitation resulted in an increase in proton motive force (PMF) in the thylakoids. Once a TPU limitation was reached, any further increases in CO2 was met with a further increase in the PMF but no increase or little increase in net assimilation of CO2. A long-term TPU limitation resulted in reduced Rubisco and RuBP regeneration capacity. We hypothesize that TPU, Rubisco activity, and RuBP regeneration are regulated so that TPU is normally in slight excess of what is required, and that this results in more effective regulation than if TPU were in large excess.
Collapse
Affiliation(s)
- Jennifer T Yang
- Department of Biochemistry and Molecular Biology, Michigan State University, 201 Biochemistry, 603 Wilson Rd, East Lansing, MI, 48824, USA
- Intercollege Program of Plant Biology, The Pennsylvania State University, State College, PA, 16802, USA
| | - Alyssa L Preiser
- Department of Biochemistry and Molecular Biology, Michigan State University, 201 Biochemistry, 603 Wilson Rd, East Lansing, MI, 48824, USA
| | - Ziru Li
- Department of Biochemistry and Molecular Biology, Michigan State University, 201 Biochemistry, 603 Wilson Rd, East Lansing, MI, 48824, USA
| | - Sean E Weise
- Department of Biochemistry and Molecular Biology, Michigan State University, 201 Biochemistry, 603 Wilson Rd, East Lansing, MI, 48824, USA
| | - Thomas D Sharkey
- Department of Biochemistry and Molecular Biology, Michigan State University, 201 Biochemistry, 603 Wilson Rd, East Lansing, MI, 48824, USA.
| |
Collapse
|
38
|
Yamaoka C, Suzuki Y, Makino A. Differential Expression of Genes of the Calvin-Benson Cycle and its Related Genes During Leaf Development in Rice. PLANT & CELL PHYSIOLOGY 2016; 57:115-124. [PMID: 26615032 DOI: 10.1093/pcp/pcv183] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 11/01/2015] [Indexed: 06/05/2023]
Abstract
To understand how the machinery for photosynthetic carbon assimilation is formed and maintained during leaf development, changes in the mRNA levels of the Calvin-Benson cycle enzymes, ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) activase and two key enzymes for sucrose synthesis were determined in rice (Oryza sativa L.). According to the patterns of changes in the mRNA levels, these genes were categorized into three groups. Group 1 included most of the genes involved in the carboxylation and reduction phases of the Calvin-Benson cycle, as well as three genes in the regeneration phase. The mRNA levels increased and reached maxima during leaf expansion and then rapidly declined, although there were some variations in the residual mRNA levels in senescent leaves. Group 2 included a number of genes involved in the regeneration phase, one gene in the reduction phase of the Calvin-Benson cycle and one gene in sucrose synthesis. The mRNA levels increased and almost reached maxima before full expansion and then gradually declined. Group 3 included Rubisco activase, one gene involved in the regeneration phase and one gene in sucrose synthesis. The overall pattern was similar to that in group 2 genes except that the mRNA levels reached maxima after the stage of full expansion. Thus, genes of the Calvin-Benson cycle and its related genes were differentially expressed during leaf development in rice, suggesting that such differential gene expression is necessary for formation and maintenance of the machinery of photosynthetic carbon assimilation.
Collapse
Affiliation(s)
- Chihiro Yamaoka
- Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidori-Amamiyamachi, Sendai, 981-8555 Japan
| | - Yuji Suzuki
- Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidori-Amamiyamachi, Sendai, 981-8555 Japan
| | - Amane Makino
- Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidori-Amamiyamachi, Sendai, 981-8555 Japan CREST, JST, Gobancho, Chiyoda-ku, Tokyo, 102-0076 Japan
| |
Collapse
|
39
|
Bahaji A, Baroja-Fernández E, Ricarte-Bermejo A, Sánchez-López ÁM, Muñoz FJ, Romero JM, Ruiz MT, Baslam M, Almagro G, Sesma MT, Pozueta-Romero J. Characterization of multiple SPS knockout mutants reveals redundant functions of the four Arabidopsis sucrose phosphate synthase isoforms in plant viability, and strongly indicates that enhanced respiration and accelerated starch turnover can alleviate the blockage of sucrose biosynthesis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 238:135-47. [PMID: 26259182 DOI: 10.1016/j.plantsci.2015.06.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 06/04/2015] [Accepted: 06/06/2015] [Indexed: 05/08/2023]
Abstract
We characterized multiple knock-out mutants of the four Arabidopsis sucrose phosphate synthase (SPSA1, SPSA2, SPSB and SPSC) isoforms. Despite their reduced SPS activity, spsa1/spsa2, spsa1/spsb, spsa2/spsb, spsa2/spsc, spsb/spsc, spsa1/spsa2/spsb and spsa2/spsb/spsc mutants displayed wild type (WT) vegetative and reproductive morphology, and showed WT photosynthetic capacity and respiration. In contrast, growth of rosettes, flowers and siliques of the spsa1/spsc and spsa1/spsa2/spsc mutants was reduced compared with WT plants. Furthermore, these plants displayed a high dark respiration phenotype. spsa1/spsb/spsc and spsa1/spsa2/spsb/spsc seeds poorly germinated and produced aberrant and sterile plants. Leaves of all viable sps mutants, except spsa1/spsc and spsa1/spsa2/spsc, accumulated WT levels of nonstructural carbohydrates. spsa1/spsc leaves possessed high levels of metabolic intermediates and activities of enzymes of the glycolytic and tricarboxylic acid cycle pathways, and accumulated high levels of metabolic intermediates of the nocturnal starch-to-sucrose conversion process, even under continuous light conditions. Results presented in this work show that SPS is essential for plant viability, reveal redundant functions of the four SPS isoforms in processes that are important for plant growth and nonstructural carbohydrate metabolism, and strongly indicate that accelerated starch turnover and enhanced respiration can alleviate the blockage of sucrose biosynthesis in spsa1/spsc leaves.
Collapse
Affiliation(s)
- Abdellatif Bahaji
- Instituto de Agrobiotecnología (CSIC/UPNA/Gobierno de Navarra), Iruñako etorbidea 123, 31192 Mutiloabeti, Nafarroa, Spain
| | - Edurne Baroja-Fernández
- Instituto de Agrobiotecnología (CSIC/UPNA/Gobierno de Navarra), Iruñako etorbidea 123, 31192 Mutiloabeti, Nafarroa, Spain
| | - Adriana Ricarte-Bermejo
- Instituto de Agrobiotecnología (CSIC/UPNA/Gobierno de Navarra), Iruñako etorbidea 123, 31192 Mutiloabeti, Nafarroa, Spain
| | - Ángela María Sánchez-López
- Instituto de Agrobiotecnología (CSIC/UPNA/Gobierno de Navarra), Iruñako etorbidea 123, 31192 Mutiloabeti, Nafarroa, Spain
| | - Francisco José Muñoz
- Instituto de Agrobiotecnología (CSIC/UPNA/Gobierno de Navarra), Iruñako etorbidea 123, 31192 Mutiloabeti, Nafarroa, Spain
| | - Jose M Romero
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla-CSIC, Avenida Américo Vespucio 49, Isla de la Cartuja, 41092 Sevilla, Spain
| | - María Teresa Ruiz
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla-CSIC, Avenida Américo Vespucio 49, Isla de la Cartuja, 41092 Sevilla, Spain
| | - Marouane Baslam
- Instituto de Agrobiotecnología (CSIC/UPNA/Gobierno de Navarra), Iruñako etorbidea 123, 31192 Mutiloabeti, Nafarroa, Spain
| | - Goizeder Almagro
- Instituto de Agrobiotecnología (CSIC/UPNA/Gobierno de Navarra), Iruñako etorbidea 123, 31192 Mutiloabeti, Nafarroa, Spain
| | - María Teresa Sesma
- Instituto de Agrobiotecnología (CSIC/UPNA/Gobierno de Navarra), Iruñako etorbidea 123, 31192 Mutiloabeti, Nafarroa, Spain
| | - Javier Pozueta-Romero
- Instituto de Agrobiotecnología (CSIC/UPNA/Gobierno de Navarra), Iruñako etorbidea 123, 31192 Mutiloabeti, Nafarroa, Spain.
| |
Collapse
|
40
|
Dyson BC, Allwood JW, Feil R, Xu Y, Miller M, Bowsher CG, Goodacre R, Lunn JE, Johnson GN. Acclimation of metabolism to light in Arabidopsis thaliana: the glucose 6-phosphate/phosphate translocator GPT2 directs metabolic acclimation. PLANT, CELL & ENVIRONMENT 2015; 38:1404-17. [PMID: 25474495 PMCID: PMC4949648 DOI: 10.1111/pce.12495] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 11/24/2014] [Accepted: 11/25/2014] [Indexed: 05/18/2023]
Abstract
Mature leaves of plants transferred from low to high light typically increase their photosynthetic capacity. In Arabidopsis thaliana, this dynamic acclimation requires expression of GPT2, a glucose 6-phosphate/phosphate translocator. Here, we examine the impact of GPT2 on leaf metabolism and photosynthesis. Plants of wild type and of a GPT2 knockout (gpt2.2) grown under low light achieved the same photosynthetic rate despite having different metabolic and transcriptomic strategies. Immediately upon transfer to high light, gpt2.2 plants showed a higher rate of photosynthesis than wild-type plants (35%); however, over subsequent days, wild-type plants acclimated photosynthetic capacity, increasing the photosynthesis rate by 100% after 7 d. Wild-type plants accumulated more starch than gpt2.2 plants throughout acclimation. We suggest that GPT2 activity results in the net import of glucose 6-phosphate from cytosol to chloroplast, increasing starch synthesis. There was clear acclimation of metabolism, with short-term changes typically being reversed as plants acclimated. Distinct responses to light were observed in wild-type and gpt2.2 leaves. Significantly higher levels of sugar phosphates were observed in gpt2.2. We suggest that GPT2 alters the distribution of metabolites between compartments and that this plays an essential role in allowing the cell to interpret environmental signals.
Collapse
Affiliation(s)
- Beth C Dyson
- Faculty of Life Sciences, University of Manchester, Manchester, M13 9PT, UK
| | - J William Allwood
- School of Chemistry and Manchester Institute of Biotechnology, University of Manchester, Manchester, M1 7DN, UK
| | - Regina Feil
- Max Planck Institute of Molecular Plant Physiology, 14476, Potsdam-Golm, Germany
| | - Yun Xu
- School of Chemistry and Manchester Institute of Biotechnology, University of Manchester, Manchester, M1 7DN, UK
| | - Matthew Miller
- Faculty of Life Sciences, University of Manchester, Manchester, M13 9PT, UK
| | - Caroline G Bowsher
- Faculty of Life Sciences, University of Manchester, Manchester, M13 9PT, UK
| | - Royston Goodacre
- School of Chemistry and Manchester Institute of Biotechnology, University of Manchester, Manchester, M1 7DN, UK
| | - John E Lunn
- Max Planck Institute of Molecular Plant Physiology, 14476, Potsdam-Golm, Germany
| | - Giles N Johnson
- Faculty of Life Sciences, University of Manchester, Manchester, M13 9PT, UK
| |
Collapse
|
41
|
McCormick AJ, Kruger NJ. Lack of fructose 2,6-bisphosphate compromises photosynthesis and growth in Arabidopsis in fluctuating environments. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 81:670-83. [PMID: 25602028 DOI: 10.1111/tpj.12765] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 12/16/2014] [Accepted: 12/18/2014] [Indexed: 05/09/2023]
Abstract
The balance between carbon assimilation, storage and utilisation during photosynthesis is dependent on partitioning of photoassimilate between starch and sucrose, and varies in response to changes in the environment. However, the extent to which the capacity to modulate carbon partitioning rapidly through short-term allosteric regulation may contribute to plant performance is unknown. Here we examine the physiological role of fructose 2,6-bisphosphate (Fru-2,6-P2 ) during photosynthesis, growth and reproduction in Arabidopsis thaliana (L.). In leaves this signal metabolite contributes to coordination of carbon assimilation and partitioning during photosynthesis by allosterically modulating the activity of cytosolic fructose-1,6-bisphosphatase. Three independent T-DNA insertional mutant lines deficient in 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (F2KP), the bifunctional enzyme responsible for both the synthesis and degradation of Fru-2,6-P2 , lack Fru-2,6-P2 . These plants have normal steady-state rates of photosynthesis, but exhibit increased partitioning of photoassimilate into sucrose and have delayed photosynthetic induction kinetics. The F2KP-deficient plants grow normally in constant environments, but show reduced growth and seed yields relative to wildtype plants in fluctuating light and/or temperature. We conclude that Fru-2,6-P2 is required for optimum regulation of photosynthetic carbon metabolism under variable growth conditions. These analyses suggest that the capacity of Fru-2,6-P2 to modulate partitioning of photoassimilate is an important determinant of growth and fitness in natural environments.
Collapse
Affiliation(s)
- Alistair J McCormick
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| | | |
Collapse
|
42
|
Lee SK, Eom JS, Voll LM, Prasch CM, Park YI, Hahn TR, Ha SH, An G, Jeon JS. Analysis of a triose phosphate/phosphate translocator-deficient mutant reveals a limited capacity for starch synthesis in rice leaves. MOLECULAR PLANT 2014; 7:1705-1708. [PMID: 25038232 DOI: 10.1093/mp/ssu082] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Affiliation(s)
- Sang-Kyu Lee
- Graduate School of Biotechnology, Kyung Hee University, Yongin 446-701, Korea; Crop Biotech Institute, Kyung Hee University, Yongin 446-701, Korea; Plant Metabolism Research Center, Kyung Hee University, Yongin 446-701, Korea
| | - Joon-Seob Eom
- Graduate School of Biotechnology, Kyung Hee University, Yongin 446-701, Korea; Crop Biotech Institute, Kyung Hee University, Yongin 446-701, Korea; Plant Metabolism Research Center, Kyung Hee University, Yongin 446-701, Korea
| | - Lars M Voll
- Friedrich-Alexander Universität Erlangen-Nürnberg, Lehrstuhl für Biochemie, Staudtstrasse 5, D-91058 Erlangen, Germany
| | - Christian M Prasch
- Friedrich-Alexander Universität Erlangen-Nürnberg, Lehrstuhl für Biochemie, Staudtstrasse 5, D-91058 Erlangen, Germany
| | - Youn-Il Park
- Department of Biology, Chungnam National University, Daejeon 305-764, Korea
| | - Tae-Ryong Hahn
- Graduate School of Biotechnology, Kyung Hee University, Yongin 446-701, Korea; Plant Metabolism Research Center, Kyung Hee University, Yongin 446-701, Korea
| | - Sun-Hwa Ha
- Graduate School of Biotechnology, Kyung Hee University, Yongin 446-701, Korea; Crop Biotech Institute, Kyung Hee University, Yongin 446-701, Korea; Department of Plant Molecular Systems Biotechnology, Kyung Hee University, Yongin 446-701, Korea
| | - Gynheung An
- Graduate School of Biotechnology, Kyung Hee University, Yongin 446-701, Korea; Crop Biotech Institute, Kyung Hee University, Yongin 446-701, Korea; Department of Plant Molecular Systems Biotechnology, Kyung Hee University, Yongin 446-701, Korea
| | - Jong-Seong Jeon
- Graduate School of Biotechnology, Kyung Hee University, Yongin 446-701, Korea; Crop Biotech Institute, Kyung Hee University, Yongin 446-701, Korea; Plant Metabolism Research Center, Kyung Hee University, Yongin 446-701, Korea; Department of Plant Molecular Systems Biotechnology, Kyung Hee University, Yongin 446-701, Korea.
| |
Collapse
|
43
|
Kunz HH, Zamani-Nour S, Häusler RE, Ludewig K, Schroeder JI, Malinova I, Fettke J, Flügge UI, Gierth M. Loss of cytosolic phosphoglucose isomerase affects carbohydrate metabolism in leaves and is essential for fertility of Arabidopsis. PLANT PHYSIOLOGY 2014; 166:753-65. [PMID: 25104722 PMCID: PMC4213106 DOI: 10.1104/pp.114.241091] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 08/04/2014] [Indexed: 05/18/2023]
Abstract
Carbohydrate metabolism in plants is tightly linked to photosynthesis and is essential for energy and carbon skeleton supply of the entire organism. Thus, the hexose phosphate pools of the cytosol and the chloroplast represent important metabolic resources that are maintained through action of phosphoglucose isomerase (PGI) and phosphoglucose mutase interconverting glucose 6-phosphate, fructose 6-phosphate, and glucose 1-phosphate. Here, we investigated the impact of disrupted cytosolic PGI (cPGI) function on plant viability and metabolism. Overexpressing an artificial microRNA targeted against cPGI (amiR-cpgi) resulted in adult plants with vegetative tissue essentially free of cPGI activity. These plants displayed diminished growth compared with the wild type and accumulated excess starch in chloroplasts but maintained low sucrose content in leaves at the end of the night. Moreover, amiR-cpgi plants exhibited increased nonphotochemical chlorophyll a quenching during photosynthesis. In contrast to amiR-cpgi plants, viable transfer DNA insertion mutants disrupted in cPGI function could only be identified as heterozygous individuals. However, homozygous transfer DNA insertion mutants could be isolated among plants ectopically expressing cPGI. Intriguingly, these plants were only fertile when expression was driven by the ubiquitin10 promoter but sterile when the seed-specific unknown seed protein promoter or the Cauliflower mosaic virus 35S promoter were employed. These data show that metabolism is apparently able to compensate for missing cPGI activity in adult amiR-cpgi plants and indicate an essential function for cPGI in plant reproduction. Moreover, our data suggest a feedback regulation in amiR-cpgi plants that fine-tunes cytosolic sucrose metabolism with plastidic starch turnover.
Collapse
Affiliation(s)
- Hans-Henning Kunz
- Department of Botany II, University of Cologne, 50674 Cologne, Germany (H.-H.K., S.Z.-N., R.E.H., K.L., U.-I.F., M.G.);Division of Biological Sciences, Cell and Developmental Biology Section, University of California, San Diego, La Jolla, California 92093 (J.I.S.); andInstitute of Biochemistry and Biology, University of Potsdam, 14476 Golm, Germany (I.M., J.F.)
| | - Shirin Zamani-Nour
- Department of Botany II, University of Cologne, 50674 Cologne, Germany (H.-H.K., S.Z.-N., R.E.H., K.L., U.-I.F., M.G.);Division of Biological Sciences, Cell and Developmental Biology Section, University of California, San Diego, La Jolla, California 92093 (J.I.S.); andInstitute of Biochemistry and Biology, University of Potsdam, 14476 Golm, Germany (I.M., J.F.)
| | - Rainer E Häusler
- Department of Botany II, University of Cologne, 50674 Cologne, Germany (H.-H.K., S.Z.-N., R.E.H., K.L., U.-I.F., M.G.);Division of Biological Sciences, Cell and Developmental Biology Section, University of California, San Diego, La Jolla, California 92093 (J.I.S.); andInstitute of Biochemistry and Biology, University of Potsdam, 14476 Golm, Germany (I.M., J.F.)
| | - Katja Ludewig
- Department of Botany II, University of Cologne, 50674 Cologne, Germany (H.-H.K., S.Z.-N., R.E.H., K.L., U.-I.F., M.G.);Division of Biological Sciences, Cell and Developmental Biology Section, University of California, San Diego, La Jolla, California 92093 (J.I.S.); andInstitute of Biochemistry and Biology, University of Potsdam, 14476 Golm, Germany (I.M., J.F.)
| | - Julian I Schroeder
- Department of Botany II, University of Cologne, 50674 Cologne, Germany (H.-H.K., S.Z.-N., R.E.H., K.L., U.-I.F., M.G.);Division of Biological Sciences, Cell and Developmental Biology Section, University of California, San Diego, La Jolla, California 92093 (J.I.S.); andInstitute of Biochemistry and Biology, University of Potsdam, 14476 Golm, Germany (I.M., J.F.)
| | - Irina Malinova
- Department of Botany II, University of Cologne, 50674 Cologne, Germany (H.-H.K., S.Z.-N., R.E.H., K.L., U.-I.F., M.G.);Division of Biological Sciences, Cell and Developmental Biology Section, University of California, San Diego, La Jolla, California 92093 (J.I.S.); andInstitute of Biochemistry and Biology, University of Potsdam, 14476 Golm, Germany (I.M., J.F.)
| | - Joerg Fettke
- Department of Botany II, University of Cologne, 50674 Cologne, Germany (H.-H.K., S.Z.-N., R.E.H., K.L., U.-I.F., M.G.);Division of Biological Sciences, Cell and Developmental Biology Section, University of California, San Diego, La Jolla, California 92093 (J.I.S.); andInstitute of Biochemistry and Biology, University of Potsdam, 14476 Golm, Germany (I.M., J.F.)
| | - Ulf-Ingo Flügge
- Department of Botany II, University of Cologne, 50674 Cologne, Germany (H.-H.K., S.Z.-N., R.E.H., K.L., U.-I.F., M.G.);Division of Biological Sciences, Cell and Developmental Biology Section, University of California, San Diego, La Jolla, California 92093 (J.I.S.); andInstitute of Biochemistry and Biology, University of Potsdam, 14476 Golm, Germany (I.M., J.F.)
| | - Markus Gierth
- Department of Botany II, University of Cologne, 50674 Cologne, Germany (H.-H.K., S.Z.-N., R.E.H., K.L., U.-I.F., M.G.);Division of Biological Sciences, Cell and Developmental Biology Section, University of California, San Diego, La Jolla, California 92093 (J.I.S.); andInstitute of Biochemistry and Biology, University of Potsdam, 14476 Golm, Germany (I.M., J.F.)
| |
Collapse
|
44
|
Bahaji A, Baroja-Fernández E, Sánchez-López ÁM, Muñoz FJ, Li J, Almagro G, Montero M, Pujol P, Galarza R, Kaneko K, Oikawa K, Wada K, Mitsui T, Pozueta-Romero J. HPLC-MS/MS analyses show that the near-Starchless aps1 and pgm leaves accumulate wild type levels of ADPglucose: further evidence for the occurrence of important ADPglucose biosynthetic pathway(s) alternative to the pPGI-pPGM-AGP pathway. PLoS One 2014; 9:e104997. [PMID: 25133777 PMCID: PMC4136846 DOI: 10.1371/journal.pone.0104997] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 07/16/2014] [Indexed: 11/19/2022] Open
Abstract
In leaves, it is widely assumed that starch is the end-product of a metabolic pathway exclusively taking place in the chloroplast that (a) involves plastidic phosphoglucomutase (pPGM), ADPglucose (ADPG) pyrophosphorylase (AGP) and starch synthase (SS), and (b) is linked to the Calvin-Benson cycle by means of the plastidic phosphoglucose isomerase (pPGI). This view also implies that AGP is the sole enzyme producing the starch precursor molecule, ADPG. However, mounting evidence has been compiled pointing to the occurrence of important sources, other than the pPGI-pPGM-AGP pathway, of ADPG. To further explore this possibility, in this work two independent laboratories have carried out HPLC-MS/MS analyses of ADPG content in leaves of the near-starchless pgm and aps1 mutants impaired in pPGM and AGP, respectively, and in leaves of double aps1/pgm mutants grown under two different culture conditions. We also measured the ADPG content in wild type (WT) and aps1 leaves expressing in the plastid two different ADPG cleaving enzymes, and in aps1 leaves expressing in the plastid GlgC, a bacterial AGP. Furthermore, we measured the ADPG content in ss3/ss4/aps1 mutants impaired in starch granule initiation and chloroplastic ADPG synthesis. We found that, irrespective of their starch contents, pgm and aps1 leaves, WT and aps1 leaves expressing in the plastid ADPG cleaving enzymes, and aps1 leaves expressing in the plastid GlgC accumulate WT ADPG content. In clear contrast, ss3/ss4/aps1 leaves accumulated ca. 300 fold-more ADPG than WT leaves. The overall data showed that, in Arabidopsis leaves, (a) there are important ADPG biosynthetic pathways, other than the pPGI-pPGM-AGP pathway, (b) pPGM and AGP are not major determinants of intracellular ADPG content, and (c) the contribution of the chloroplastic ADPG pool to the total ADPG pool is low.
Collapse
Affiliation(s)
- Abdellatif Bahaji
- Instituto de Agrobiotecnología, Universidad Pública de Navarra/Consejo Superior de Investigaciones Científicas/Gobierno de Navarra, Mutiloabeti, Nafarroa, Spain
| | - Edurne Baroja-Fernández
- Instituto de Agrobiotecnología, Universidad Pública de Navarra/Consejo Superior de Investigaciones Científicas/Gobierno de Navarra, Mutiloabeti, Nafarroa, Spain
| | - Ángela María Sánchez-López
- Instituto de Agrobiotecnología, Universidad Pública de Navarra/Consejo Superior de Investigaciones Científicas/Gobierno de Navarra, Mutiloabeti, Nafarroa, Spain
| | - Francisco José Muñoz
- Instituto de Agrobiotecnología, Universidad Pública de Navarra/Consejo Superior de Investigaciones Científicas/Gobierno de Navarra, Mutiloabeti, Nafarroa, Spain
| | - Jun Li
- Instituto de Agrobiotecnología, Universidad Pública de Navarra/Consejo Superior de Investigaciones Científicas/Gobierno de Navarra, Mutiloabeti, Nafarroa, Spain
| | - Goizeder Almagro
- Instituto de Agrobiotecnología, Universidad Pública de Navarra/Consejo Superior de Investigaciones Científicas/Gobierno de Navarra, Mutiloabeti, Nafarroa, Spain
| | - Manuel Montero
- Instituto de Agrobiotecnología, Universidad Pública de Navarra/Consejo Superior de Investigaciones Científicas/Gobierno de Navarra, Mutiloabeti, Nafarroa, Spain
| | - Pablo Pujol
- Servicio de Apoyo a la Investigación, Universidad Pública de Navarra, Campus de Arrosadia, Iruña, Nafarroa, Spain
| | - Regina Galarza
- Servicio de Apoyo a la Investigación, Universidad Pública de Navarra, Campus de Arrosadia, Iruña, Nafarroa, Spain
| | - Kentaro Kaneko
- Department of Applied Biological Chemistry, Niigata University, Niigata, Japan
| | - Kazusato Oikawa
- Department of Applied Biological Chemistry, Niigata University, Niigata, Japan
| | - Kaede Wada
- Department of Applied Biological Chemistry, Niigata University, Niigata, Japan
| | - Toshiaki Mitsui
- Department of Applied Biological Chemistry, Niigata University, Niigata, Japan
| | - Javier Pozueta-Romero
- Instituto de Agrobiotecnología, Universidad Pública de Navarra/Consejo Superior de Investigaciones Científicas/Gobierno de Navarra, Mutiloabeti, Nafarroa, Spain
| |
Collapse
|
45
|
Gutiérrez J, González-Pérez S, García-García F, Daly CT, Lorenzo O, Revuelta JL, McCabe PF, Arellano JB. Programmed cell death activated by Rose Bengal in Arabidopsis thaliana cell suspension cultures requires functional chloroplasts. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:3081-95. [PMID: 24723397 PMCID: PMC4071827 DOI: 10.1093/jxb/eru151] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Light-grown Arabidopsis thaliana cell suspension culture (ACSC) were subjected to mild photooxidative damage with Rose Bengal (RB) with the aim of gaining a better understanding of singlet oxygen-mediated defence responses in plants. Additionally, ACSC were treated with H2O2 at concentrations that induced comparable levels of protein oxidation damage. Under low to medium light conditions, both RB and H2O2 treatments activated transcriptional defence responses and inhibited photosynthetic activity, but they differed in that programmed cell death (PCD) was only observed in cells treated with RB. When dark-grown ACSC were subjected to RB in the light, PCD was suppressed, indicating that the singlet oxygen-mediated signalling pathway in ACSC requires functional chloroplasts. Analysis of up-regulated transcripts in light-grown ACSC, treated with RB in the light, showed that both singlet oxygen-responsive transcripts and transcripts with a key role in hormone-activated PCD (i.e. ethylene and jasmonic acid) were present. A co-regulation analysis proved that ACSC treated with RB exhibited higher correlation with the conditional fluorescence (flu) mutant than with other singlet oxygen-producing mutants or wild-type plants subjected to high light. However, there was no evidence for the up-regulation of EDS1, suggesting that activation of PCD was not associated with the EXECUTER- and EDS1-dependent signalling pathway described in the flu mutant. Indigo Carmine and Methylene Violet, two photosensitizers unable to enter chloroplasts, did not activate transcriptional defence responses in ACSC; however, whether this was due to their location or to their inherently low singlet oxygen quantum efficiencies was not determined.
Collapse
Affiliation(s)
- Jorge Gutiérrez
- Instituto de Recursos Naturales y Agrobiología de Salamanca (IRNASA-CSIC), Cordel de merinas 52, 37008 Salamanca, Spain Department of Nutritional Sciences, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey GU2 7XH, UK
| | - Sergio González-Pérez
- Instituto de Recursos Naturales y Agrobiología de Salamanca (IRNASA-CSIC), Cordel de merinas 52, 37008 Salamanca, Spain
| | - Francisco García-García
- Functional Genomics Node, INB, Computational Medicine, Prince Felipe Research Centre, Av. Autopista del Saler 16, Camino de las Moreras, 46012 Valencia, Spain
| | - Cara T Daly
- School of Science, Department of Chemical and Life Sciences, Waterford Institute of Technology, Cork Road, Waterford, Ireland School of Biology and Environmental Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Oscar Lorenzo
- Departamento de Fisiología Vegetal, Centro Hispano-Luso de Investigaciones Agrarias, Facultad de Biología, Universidad de Salamanca, C/ Río Duero 12, 37185 Salamanca, Spain
| | - José L Revuelta
- Departamento de Microbiología y Genética, Universidad de Salamanca, Campus Miguel de Unamuno, E-37007 Salamanca, Spain
| | - Paul F McCabe
- School of Biology and Environmental Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Juan B Arellano
- Instituto de Recursos Naturales y Agrobiología de Salamanca (IRNASA-CSIC), Cordel de merinas 52, 37008 Salamanca, Spain
| |
Collapse
|
46
|
Häusler RE, Heinrichs L, Schmitz J, Flügge UI. How sugars might coordinate chloroplast and nuclear gene expression during acclimation to high light intensities. MOLECULAR PLANT 2014; 7:1121-37. [PMID: 25006007 DOI: 10.1093/mp/ssu064] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The concept of retrograde control of nuclear gene expression assumes the generation of signals inside the chloroplasts, which are either released from or sensed inside of the organelle. In both cases, downstream signaling pathways lead eventually to a differential regulation of nuclear gene expression and the production of proteins required in the chloroplast. This concept appears reasonable as the majority of the over 3000 predicted plastidial proteins are encoded by nuclear genes. Hence, the nucleus needs information on the status of the chloroplasts, such as during acclimation responses, which trigger massive changes in the protein composition of the thylakoid membrane and in the stroma. Here, we propose an additional control mechanism of nuclear- and plastome-encoded photosynthesis genes, taking advantage of pathways involved in sugar- or hormonal signaling. Sugars are major end products of photosynthesis and their contents respond very sensitively to changes in light intensities. Based on recent findings, we ask the question as to whether the carbohydrate status outside the chloroplast can be directly sensed within the chloroplast stroma. Sugars might synchronize the responsiveness of both genomes and thereby help to coordinate the expression of plastome- and nuclear-encoded photosynthesis genes in concert with other, more specific retrograde signals.
Collapse
Affiliation(s)
- Rainer E Häusler
- Department of Botany II, Cologne Biocenter, University of Cologne, Zülpicherstr. 47b, 50674 Cologne, Germany
| | - Luisa Heinrichs
- Department of Botany II, Cologne Biocenter, University of Cologne, Zülpicherstr. 47b, 50674 Cologne, Germany
| | - Jessica Schmitz
- Department of Botany II, Cologne Biocenter, University of Cologne, Zülpicherstr. 47b, 50674 Cologne, Germany Present address: Plant Molecular Physiology and Biotechnology, Heinrich-Heine-University, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Ulf-Ingo Flügge
- Department of Botany II, Cologne Biocenter, University of Cologne, Zülpicherstr. 47b, 50674 Cologne, Germany
| |
Collapse
|
47
|
Schmitz J, Heinrichs L, Scossa F, Fernie AR, Oelze ML, Dietz KJ, Rothbart M, Grimm B, Flügge UI, Häusler RE. The essential role of sugar metabolism in the acclimation response of Arabidopsis thaliana to high light intensities. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:1619-36. [PMID: 24523502 PMCID: PMC3967092 DOI: 10.1093/jxb/eru027] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Retrograde signals from chloroplasts are thought to control the expression of nuclear genes associated with plastidial processes such as acclimation to varying light conditions. Arabidopsis mutants altered in the day and night path of photoassimilate export from the chloroplasts served as tools to study the involvement of carbohydrates in high light (HL) acclimation. A double mutant impaired in the triose phosphate/phosphate translocator (TPT) and ADP-glucose pyrophosphorylase (AGPase) (adg1-1/tpt-2) exhibits a HL-dependent depletion in endogenous carbohydrates combined with a severe growth and photosynthesis phenotype. The acclimation response of mutant and wild-type plants has been assessed in time series after transfer from low light (LL) to HL by analysing photosynthetic performance, carbohydrates, MgProtoIX (a chlorophyll precursor), and the ascorbate/glutathione redox system, combined with microarray-based transcriptomic and GC-MS-based metabolomic approaches. The data indicate that the accumulation of soluble carbohydrates (predominantly glucose) acts as a short-term response to HL exposure in both mutant and wild-type plants. Only if carbohydrates are depleted in the long term (e.g. after 2 d) is the acclimation response impaired, as observed in the adg1-1/tpt-2 double mutant. Furthermore, meta-analyses conducted with in-house and publicly available microarray data suggest that, in the long term, reactive oxygen species such as H₂O₂ can replace carbohydrates as signals. Moreover, a cross-talk exists between genes associated with the regulation of starch and lipid metabolism. The involvement of genes responding to phytohormones in HL acclimation appears to be less likely. Various candidate genes involved in retrograde control of nuclear gene expression emerged from the analyses of global gene expression.
Collapse
Affiliation(s)
- Jessica Schmitz
- Department of Botany II, Cologne Biocenter, University of Cologne, Zülpicher Straße 47b, D-50674 Cologne, Germany
- * Present address: Plant Molecular Physiology and Biotechnology, Heinrich-Heine-University, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
| | - Luisa Heinrichs
- Department of Botany II, Cologne Biocenter, University of Cologne, Zülpicher Straße 47b, D-50674 Cologne, Germany
| | - Federico Scossa
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam OT Golm, Germany
- Agriculture Research Council, Research Center for Vegetable Crops, Via Cavalleggeri 25, 84098 Pontecagnano (Salerno), Italy
| | - Alisdair R. Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam OT Golm, Germany
| | - Marie-Luise Oelze
- Biochemistry and Physiology of Plants, University of Bielefeld, Universitätsstraße 25, D-33615 Bielefeld, Germany
| | - Karl-Josef Dietz
- Biochemistry and Physiology of Plants, University of Bielefeld, Universitätsstraße 25, D-33615 Bielefeld, Germany
| | - Maxi Rothbart
- Institute of Biology, Plant Physiology, Humboldt-University Berlin, Philippstraße 13, D-10115 Berlin, Germany
| | - Bernhard Grimm
- Institute of Biology, Plant Physiology, Humboldt-University Berlin, Philippstraße 13, D-10115 Berlin, Germany
| | - Ulf-Ingo Flügge
- Department of Botany II, Cologne Biocenter, University of Cologne, Zülpicher Straße 47b, D-50674 Cologne, Germany
| | - Rainer E. Häusler
- Department of Botany II, Cologne Biocenter, University of Cologne, Zülpicher Straße 47b, D-50674 Cologne, Germany
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
48
|
Urban O, Klem K, Holišová P, Šigut L, Šprtová M, Teslová-Navrátilová P, Zitová M, Špunda V, Marek MV, Grace J. Impact of elevated CO2 concentration on dynamics of leaf photosynthesis in Fagus sylvatica is modulated by sky conditions. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2014; 185:271-80. [PMID: 24316065 DOI: 10.1016/j.envpol.2013.11.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 11/06/2013] [Accepted: 11/10/2013] [Indexed: 05/20/2023]
Abstract
It has been suggested that atmospheric CO2 concentration and frequency of cloud cover will increase in future. It remains unclear, however, how elevated CO2 influences photosynthesis under complex clear versus cloudy sky conditions. Accordingly, diurnal changes in photosynthetic responses among beech trees grown at ambient (AC) and doubled (EC) CO2 concentrations were studied under contrasting sky conditions. EC stimulated the daily sum of fixed CO2 and light use efficiency under clear sky. Meanwhile, both these parameters were reduced under cloudy sky as compared with AC treatment. Reduction in photosynthesis rate under cloudy sky was particularly associated with EC-stimulated, xanthophyll-dependent thermal dissipation of absorbed light energy. Under clear sky, a pronounced afternoon depression of CO2 assimilation rate was found in sun-adapted leaves under EC compared with AC conditions. This was caused in particular by stomata closure mediated by vapour pressure deficit.
Collapse
Affiliation(s)
- Otmar Urban
- Global Change Research Centre, Academy of Sciences of the Czech Republic, Bělidla 4a, CZ-60300 Brno, Czech Republic.
| | - Karel Klem
- Global Change Research Centre, Academy of Sciences of the Czech Republic, Bělidla 4a, CZ-60300 Brno, Czech Republic
| | - Petra Holišová
- Global Change Research Centre, Academy of Sciences of the Czech Republic, Bělidla 4a, CZ-60300 Brno, Czech Republic
| | - Ladislav Šigut
- Global Change Research Centre, Academy of Sciences of the Czech Republic, Bělidla 4a, CZ-60300 Brno, Czech Republic; Faculty of Science, University of Ostrava, 30. dubna 22, CZ-70103 Ostrava 1, Czech Republic
| | - Mirka Šprtová
- Global Change Research Centre, Academy of Sciences of the Czech Republic, Bělidla 4a, CZ-60300 Brno, Czech Republic
| | | | - Martina Zitová
- Global Change Research Centre, Academy of Sciences of the Czech Republic, Bělidla 4a, CZ-60300 Brno, Czech Republic
| | - Vladimír Špunda
- Global Change Research Centre, Academy of Sciences of the Czech Republic, Bělidla 4a, CZ-60300 Brno, Czech Republic; Faculty of Science, University of Ostrava, 30. dubna 22, CZ-70103 Ostrava 1, Czech Republic
| | - Michal V Marek
- Global Change Research Centre, Academy of Sciences of the Czech Republic, Bělidla 4a, CZ-60300 Brno, Czech Republic
| | - John Grace
- Institute of Atmospheric and Environmental Science, School of GeoSciences, University of Edinburgh, The Kings Buildings, Edinburgh EH9 3JN, UK
| |
Collapse
|
49
|
Meng F, Liu H, Wang K, Liu L, Wang S, Zhao Y, Yin J, Li Y. Development-associated microRNAs in grains of wheat (Triticum aestivum L.). BMC PLANT BIOLOGY 2013; 13:140. [PMID: 24060047 PMCID: PMC4015866 DOI: 10.1186/1471-2229-13-140] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 09/20/2013] [Indexed: 05/18/2023]
Abstract
BACKGROUND MicroRNAs (miRNAs) are a class of regulatory small RNAs (sRNAs) that down-regulate target genes by mRNA degradation or translational repression. Numerous plant miRNAs have been identified. Evidence is increasing for their crucial roles during plant development. In the globally important crop of wheat (Triticum aestivum L.), the process by which grains are formed determines yield and end-use quality. However, little is known about miRNA-mediated developmental regulation of grain production. Here, we applied high-throughput sRNA sequencing and genome-wide mining to identify miRNAs potentially involved in the developmental regulation of wheat grains. RESULTS Four sRNA libraries were generated and sequenced from developing grains sampled at 5, 15, 25, and 30 days after pollination (DAP). Through integrative analysis, we identified 605 miRNAs (representing 540 families) and found that 86 are possibly involved in the control of grain-filling. Additionally, 268 novel miRNAs (182 families) were identified, with 18 of them also potentially related to that maturation process. Our target predictions indicated that the 104 grain filling-associated miRNAs might target a set of wheat genes involved in various biological processes, including the metabolism of carbohydrates and proteins, transcription, cellular transport, cell organization and biogenesis, stress responses, signal transduction, and phytohormone signaling. Together, these results demonstrate that the developmental steps by which wheat grains are filled is correlated with miRNA-mediated gene regulatory networks. CONCLUSIONS We identified 605 conserved and 268 novel miRNAs from wheat grains. Of these, 104 are potentially involved in the regulation of grain-filling. Our dataset provides a useful resource for investigating miRNA-mediated regulatory mechanisms in cereal grains, and our results suggest that miRNAs contribute to this regulation during a crucial phase in determining grain yield and flour quality.
Collapse
Affiliation(s)
- Fanrong Meng
- College of Life Science, Henan Agricultural University, Zhengzhou 450002, China
- Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou 450002, China
| | - Hao Liu
- College of Life Science, Henan Agricultural University, Zhengzhou 450002, China
- Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou 450002, China
| | - Ketao Wang
- College of Life Science, Henan Agricultural University, Zhengzhou 450002, China
- Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou 450002, China
| | - Lulu Liu
- National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou 450002, China
- Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou 450002, China
| | - Shaohui Wang
- College of Life Science, Henan Agricultural University, Zhengzhou 450002, China
- Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou 450002, China
| | - Yanhong Zhao
- College of Agriculture, Ludong University, Yantai 264025, China
| | - Jun Yin
- National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou 450002, China
- Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou 450002, China
| | - Yongchun Li
- National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou 450002, China
- Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou 450002, China
| |
Collapse
|
50
|
Bahaji A, Li J, Sánchez-López ÁM, Baroja-Fernández E, Muñoz FJ, Ovecka M, Almagro G, Montero M, Ezquer I, Etxeberria E, Pozueta-Romero J. Starch biosynthesis, its regulation and biotechnological approaches to improve crop yields. Biotechnol Adv 2013; 32:87-106. [PMID: 23827783 DOI: 10.1016/j.biotechadv.2013.06.006] [Citation(s) in RCA: 140] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 06/21/2013] [Indexed: 01/08/2023]
Abstract
Structurally composed of the glucose homopolymers amylose and amylopectin, starch is the main storage carbohydrate in vascular plants, and is synthesized in the plastids of both photosynthetic and non-photosynthetic cells. Its abundance as a naturally occurring organic compound is surpassed only by cellulose, and represents both a cornerstone for human and animal nutrition and a feedstock for many non-food industrial applications including production of adhesives, biodegradable materials, and first-generation bioethanol. This review provides an update on the different proposed pathways of starch biosynthesis occurring in both autotrophic and heterotrophic organs, and provides emerging information about the networks regulating them and their interactions with the environment. Special emphasis is given to recent findings showing that volatile compounds emitted by microorganisms promote both growth and the accumulation of exceptionally high levels of starch in mono- and dicotyledonous plants. We also review how plant biotechnologists have attempted to use basic knowledge on starch metabolism for the rational design of genetic engineering traits aimed at increasing starch in annual crop species. Finally we present some potential biotechnological strategies for enhancing starch content.
Collapse
Affiliation(s)
- Abdellatif Bahaji
- Instituto de Agrobiotecnología (CSIC/UPNA/Gobierno de Navarra), Mutiloako etorbidea z/g, 31192 Mutiloabeti, Nafarroa, Spain
| | - Jun Li
- Instituto de Agrobiotecnología (CSIC/UPNA/Gobierno de Navarra), Mutiloako etorbidea z/g, 31192 Mutiloabeti, Nafarroa, Spain
| | - Ángela María Sánchez-López
- Instituto de Agrobiotecnología (CSIC/UPNA/Gobierno de Navarra), Mutiloako etorbidea z/g, 31192 Mutiloabeti, Nafarroa, Spain
| | - Edurne Baroja-Fernández
- Instituto de Agrobiotecnología (CSIC/UPNA/Gobierno de Navarra), Mutiloako etorbidea z/g, 31192 Mutiloabeti, Nafarroa, Spain
| | - Francisco José Muñoz
- Instituto de Agrobiotecnología (CSIC/UPNA/Gobierno de Navarra), Mutiloako etorbidea z/g, 31192 Mutiloabeti, Nafarroa, Spain
| | - Miroslav Ovecka
- Instituto de Agrobiotecnología (CSIC/UPNA/Gobierno de Navarra), Mutiloako etorbidea z/g, 31192 Mutiloabeti, Nafarroa, Spain; Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Cell Biology, Faculty of Science, Palacky University, Šlechtitelů 11, CZ-783 71 Olomouc, Czech Republic
| | - Goizeder Almagro
- Instituto de Agrobiotecnología (CSIC/UPNA/Gobierno de Navarra), Mutiloako etorbidea z/g, 31192 Mutiloabeti, Nafarroa, Spain
| | - Manuel Montero
- Instituto de Agrobiotecnología (CSIC/UPNA/Gobierno de Navarra), Mutiloako etorbidea z/g, 31192 Mutiloabeti, Nafarroa, Spain
| | - Ignacio Ezquer
- Instituto de Agrobiotecnología (CSIC/UPNA/Gobierno de Navarra), Mutiloako etorbidea z/g, 31192 Mutiloabeti, Nafarroa, Spain
| | - Ed Etxeberria
- University of Florida, Institute of Food and Agricultural Sciences, Citrus Research and Education Center, 700 Experiment Station Road, Lake Alfred, FL 33850-2299, USA
| | - Javier Pozueta-Romero
- Instituto de Agrobiotecnología (CSIC/UPNA/Gobierno de Navarra), Mutiloako etorbidea z/g, 31192 Mutiloabeti, Nafarroa, Spain.
| |
Collapse
|