1
|
Jha A, Mishra S. Exploring the potential of waste biomass-derived pectin and its functionalized derivatives for water treatment. Int J Biol Macromol 2024; 275:133613. [PMID: 38960223 DOI: 10.1016/j.ijbiomac.2024.133613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 02/02/2024] [Accepted: 06/30/2024] [Indexed: 07/05/2024]
Abstract
Environmental pollution remains a constant challenge due to the indiscriminate use of fossil fuels, mining activities, chemicals, drugs, aromatic compounds, pesticides, etc. Many emerging pollutants with no fixed standards for monitoring and control are being reported. These have adverse impacts on human life and the environment around us. This alarms the wastewater management towards developing materials that can be used for bulk water treatment and are easily available, low cost, non-toxic and biodegradable. Waste biomass like pectin is extracted from fruit peels which are a discarded material. It is used in pharmaceutical and nutraceutical applications but its application as a material for water treatment is very limited in literature. The scientific gap in literature review reports are evident with discussion only on pectin based hydrogels or specific pectin derivatives for some applications. This review focuses on the chemistry, extraction, functionalization and production of pectin derivatives and their applications in water treatment processes. Pectin functionalized derivatives can be used as a flocculant, adsorbent, nano biopolymer, biochar, hybrid material, metal-organic frameworks, and scaffold for the removal of heavy metals, ions, toxic dyes, and other contaminants. The huge quantum of pectin biomass may be explored further to strengthen environmental sustainability and circular economy practices.
Collapse
Affiliation(s)
- Adya Jha
- Department of Chemistry, Birla Institute of Technology, Mesra, Ranchi 835215, India
| | - Sumit Mishra
- Department of Chemistry, Birla Institute of Technology, Mesra, Ranchi 835215, India.
| |
Collapse
|
2
|
Ohashi T, Mabira Y, Mitsuyoshi Y, Kajiura H, Misaki R, Ishimizu T, Fujiyama K. Expression of an endo-rhamnogalacturonase from Aspergillus aculeatus enhances release of Arabidopsis transparent mucilage. J Biosci Bioeng 2024; 138:73-82. [PMID: 38643032 DOI: 10.1016/j.jbiosc.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 03/24/2024] [Accepted: 03/24/2024] [Indexed: 04/22/2024]
Abstract
Mucilage is a gelatinous and sticky hydrophilic polysaccharide released from epidermal cells of seed coat after the hydration of mature seeds and is composed primarily of unbranched rhamnogalacturonan I (RG-I). In this study, we produced a recombinant endo-RG-I hydrolase from Aspergillus aculeatus (AaRhgA) in the fission yeast Schizosaccharomyces pombe and examined its substrate preference for pyridylaminated (PA) RG-I with the various degrees of polymerization (DP). Recombinant AaRhgA requires PA-RG-I with a DP of 10 or higher for its hydrolase activity. We heterologously expressed the AarhgA gene under the strong constitutive promoter, cauliflower mosaic virus 35S promoter, in Arabidopsis thaliana. In a series of biochemical analyses of each mucilage fraction released from the water-imbibed seeds of the transgenic plants, we found the enhanced deposition of the transparent mucilage layer that existed in the peripheral regions of the adherent mucilage and was not stained with ruthenium red. This study demonstrated the feasibility of manipulating the mucilage organization by heterologous expression of the endo-RG-I hydrolase.
Collapse
Affiliation(s)
- Takao Ohashi
- International Center for Biotechnology, Osaka University, Suita, Osaka 565-0871, Japan; Department of Life Science, Faculty of Science and Engineering, Setsunan University, Neyagawa, Osaka 572-8508, Japan.
| | - Yurika Mabira
- International Center for Biotechnology, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yutaro Mitsuyoshi
- International Center for Biotechnology, Osaka University, Suita, Osaka 565-0871, Japan
| | - Hiroyuki Kajiura
- International Center for Biotechnology, Osaka University, Suita, Osaka 565-0871, Japan
| | - Ryo Misaki
- International Center for Biotechnology, Osaka University, Suita, Osaka 565-0871, Japan
| | - Takeshi Ishimizu
- College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Kazuhito Fujiyama
- International Center for Biotechnology, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
3
|
Cosgrove DJ. Building an extensible cell wall. PLANT PHYSIOLOGY 2022; 189:1246-1277. [PMID: 35460252 PMCID: PMC9237729 DOI: 10.1093/plphys/kiac184] [Citation(s) in RCA: 80] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/21/2022] [Indexed: 05/15/2023]
Abstract
This article recounts, from my perspective of four decades in this field, evolving paradigms of primary cell wall structure and the mechanism of surface enlargement of growing cell walls. Updates of the structures, physical interactions, and roles of cellulose, xyloglucan, and pectins are presented. This leads to an example of how a conceptual depiction of wall structure can be translated into an explicit quantitative model based on molecular dynamics methods. Comparison of the model's mechanical behavior with experimental results provides insights into the molecular basis of complex mechanical behaviors of primary cell wall and uncovers the dominant role of cellulose-cellulose interactions in forming a strong yet extensible network.
Collapse
Affiliation(s)
- Daniel J Cosgrove
- Department of Biology, Penn State University, Pennsylvania 16802, USA
| |
Collapse
|
4
|
Chiu T, Behari A, Chartron JW, Putman A, Li Y. Exploring the potential of engineering polygalacturonase-inhibiting protein as an ecological, friendly, and nontoxic pest control agent. Biotechnol Bioeng 2021; 118:3200-3214. [PMID: 34050940 PMCID: PMC8486366 DOI: 10.1002/bit.27845] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 05/03/2021] [Accepted: 05/22/2021] [Indexed: 11/11/2022]
Abstract
In plants, polygalacturonase-inhibiting proteins (PGIPs) play critical roles for resistance to fungal disease by inhibiting the pectin-depolymerizing activity of endopolygalacturonases (PGs), one type of enzyme secreted by pathogens that compromises plant cell walls and leaves the plant susceptible to disease. Here, the interactions between PGIPs from Phaseolus vulgaris (PvPGIP1 and PvPGIP2) and PGs from Aspergillus niger (AnPG2), Botrytis cinerea (BcPG1 and BcPG2), and Fusarium moniliforme (FmPG3) were reconstituted through a yeast two hybrid (Y2H) system to investigate the inhibition efficiency of various PvPGIP1 and 2 truncations and mutants. We found that tPvPGIP2_5-8, which contains LRR5 to LRR8 and is only one-third the size of the full length peptide, exhibits the same level of interactions with AnPG and BcPGs as the full length PvPGIP2 via Y2H. The inhibitory activities of tPvPGIP2_5-8 on the growth of A. niger and B. cinerea were then examined and confirmed on pectin agar. On pectin assays, application of both full length PvPGIP2 and tPvPGIP2_5-8 clearly slows down the growth of A. niger and B. cinerea. Investigation on the sequence-function relationships of PGIP utilizing a combination of site directed mutagenesis and a variety of peptide truncations suggests that LRR5 could have the most essential structural feature for the inhibitory activities, and may be a possible target for the future engineering of PGIP with enhanced activity. This study highlights the potential of plant-derived PGIPs as a candidate for future in planta evaluation as a pest control agent.
Collapse
Affiliation(s)
- Tiffany Chiu
- Department of Chemical and Environmental Engineering, 900 University Avenue, Bourns Hall, Suite A220, Riverside, California 92521, USA
| | - Anita Behari
- Department of Microbiology and Plant Pathology, 900 University Avenue, Boyce Hall, Room 1415, Riverside, California 92521, USA
| | - Justin W. Chartron
- Department of Bioengineering, 900 University Avenue, MSE 205, Riverside, California 92521, USA
| | - Alexander Putman
- Department of Microbiology and Plant Pathology, 900 University Avenue, Boyce Hall, Room 1415, Riverside, California 92521, USA
| | - Yanran Li
- Department of Chemical and Environmental Engineering, 900 University Avenue, Bourns Hall, Suite A220, Riverside, California 92521, USA
| |
Collapse
|
5
|
Yang Y, Anderson CT, Cao J. Polygalacturonase45 cleaves pectin and links cell proliferation and morphogenesis to leaf curvature in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:1493-1508. [PMID: 33960548 DOI: 10.1111/tpj.15308] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 04/28/2021] [Indexed: 06/12/2023]
Abstract
Regulating plant architecture is a major goal in current breeding programs. Previous studies have increased our understanding of the genetic regulation of plant architecture, but it is also essential to understand how organ morphology is controlled at the cellular level. In the cell wall, pectin modification and degradation are required for organ morphogenesis, and these processes involve a series of pectin-modifying enzymes. Polygalacturonases (PGs) are a major group of pectin-hydrolyzing enzymes that cleave pectin backbones and release oligogalacturonides (OGs). PG genes function in cell expansion and separation, and contribute to organ expansion, separation and dehiscence in plants. However, whether and how they influence other cellular processes and organ morphogenesis are poorly understood. Here, we characterized the functions of Arabidopsis PG45 (PG45) in organ morphogenesis using genetic, developmental, cell biological and biochemical analyses. A heterologously expressed portion of PG45 cleaves pectic homogalacturonan in vitro, indicating that PG45 is a bona fide PG. PG45 functions in leaf and flower structure, branch formation and organ growth. Undulation in pg45 knockout and PG45 overexpression leaves is accompanied by impaired adaxial-abaxial polarity, and loss of PG45 shortens the duration of cell proliferation in the adaxial epidermis of developing leaves. Abnormal leaf curvature is coupled with altered pectin metabolism and autogenous OG profiles in pg45 knockout and PG45 overexpression leaves. Together, these results highlight a previously underappreciated function for PGs in determining tissue polarity and regulating cell proliferation, and imply the existence of OG-based signaling pathways that modulate plant development.
Collapse
Affiliation(s)
- Yang Yang
- Hainan Institute of Zhejiang University, Sanya, 572025, China
- Laboratory of Cell and Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, China
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture - Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou, China
| | - Charles T Anderson
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| | - Jiashu Cao
- Hainan Institute of Zhejiang University, Sanya, 572025, China
- Laboratory of Cell and Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, China
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture - Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou, China
| |
Collapse
|
6
|
Host Cell Wall Damage during Pathogen Infection: Mechanisms of Perception and Role in Plant-Pathogen Interactions. PLANTS 2021; 10:plants10020399. [PMID: 33669710 PMCID: PMC7921929 DOI: 10.3390/plants10020399] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 12/21/2022]
Abstract
The plant cell wall (CW) is a complex structure that acts as a mechanical barrier, restricting the access to most microbes. Phytopathogenic microorganisms can deploy an arsenal of CW-degrading enzymes (CWDEs) that are required for virulence. In turn, plants have evolved proteins able to inhibit the activity of specific microbial CWDEs, reducing CW damage and favoring the accumulation of CW-derived fragments that act as damage-associated molecular patterns (DAMPs) and trigger an immune response in the host. CW-derived DAMPs might be a component of the complex system of surveillance of CW integrity (CWI), that plants have evolved to detect changes in CW properties. Microbial CWDEs can activate the plant CWI maintenance system and induce compensatory responses to reinforce CWs during infection. Recent evidence indicates that the CWI surveillance system interacts in a complex way with the innate immune system to fine-tune downstream responses and strike a balance between defense and growth.
Collapse
|
7
|
Lorrai R, Francocci F, Gully K, Martens HJ, De Lorenzo G, Nawrath C, Ferrari S. Impaired Cuticle Functionality and Robust Resistance to Botrytis cinerea in Arabidopsis thaliana Plants With Altered Homogalacturonan Integrity Are Dependent on the Class III Peroxidase AtPRX71. FRONTIERS IN PLANT SCIENCE 2021; 12:696955. [PMID: 34484262 PMCID: PMC8415794 DOI: 10.3389/fpls.2021.696955] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 07/26/2021] [Indexed: 05/18/2023]
Abstract
Pectin is a major cell wall component that plays important roles in plant development and response to environmental stresses. Arabidopsis thaliana plants expressing a fungal polygalacturonase (PG plants) that degrades homogalacturonan (HG), a major pectin component, as well as loss-of-function mutants for QUASIMODO2 (QUA2), encoding a putative pectin methyltransferase important for HG biosynthesis, show accumulation of reactive oxygen species (ROS), reduced growth and almost complete resistance to the fungal pathogen Botrytis cinerea. Both PG and qua2 plants show increased expression of the class III peroxidase AtPRX71 that contributes to their elevated ROS levels and reduced growth. In this work, we show that leaves of PG and qua2 plants display greatly increased cuticle permeability. Both increased cuticle permeability and resistance to B. cinerea in qua2 are suppressed by loss of AtPRX71. Increased cuticle permeability in qua2, rather than on defects in cuticle ultrastructure or cutin composition, appears to be dependent on reduced epidermal cell adhesion, which is exacerbated by AtPRX71, and is suppressed by the esmeralda1 mutation, which also reverts the adhesion defect and the resistant phenotype. Increased cuticle permeability, accumulation of ROS, and resistance to B. cinerea are also observed in mutants lacking a functional FERONIA, a receptor-like kinase thought to monitor pectin integrity. In contrast, mutants with defects in other structural components of primary cell wall do not have a defective cuticle and are normally susceptible to the fungus. Our results suggest that disrupted cuticle integrity, mediated by peroxidase-dependent ROS accumulation, plays a major role in the robust resistance to B. cinerea of plants with altered HG integrity.
Collapse
Affiliation(s)
- Riccardo Lorrai
- Dipartimento di Biologia e Biotecnologie “Charles Darwin”, Sapienza Università di Roma, Rome, Italy
| | - Fedra Francocci
- Dipartimento di Biologia e Biotecnologie “Charles Darwin”, Sapienza Università di Roma, Rome, Italy
| | - Kay Gully
- Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
| | - Helle J. Martens
- Section for Forest, Nature and Biomass, Department of Geosciences and Natural Resource Management, University of Copenhagen, Frederiksberg, Denmark
| | - Giulia De Lorenzo
- Dipartimento di Biologia e Biotecnologie “Charles Darwin”, Sapienza Università di Roma, Rome, Italy
| | - Christiane Nawrath
- Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
| | - Simone Ferrari
- Dipartimento di Biologia e Biotecnologie “Charles Darwin”, Sapienza Università di Roma, Rome, Italy
- *Correspondence: Simone Ferrari,
| |
Collapse
|
8
|
Benedetti M, Vecchi V, Guardini Z, Dall’Osto L, Bassi R. Expression of a Hyperthermophilic Cellobiohydrolase in Transgenic Nicotiana tabacum by Protein Storage Vacuole Targeting. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1799. [PMID: 33353085 PMCID: PMC7767180 DOI: 10.3390/plants9121799] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 11/30/2020] [Accepted: 12/15/2020] [Indexed: 02/01/2023]
Abstract
Plant expression of microbial Cell Wall Degrading Enzymes (CWDEs) is a valuable strategy to produce industrial enzymes at affordable cost. Unfortunately, the constitutive expression of CWDEs may affect plant fitness to variable extents, including developmental alterations, sterility and even lethality. In order to explore novel strategies for expressing CWDEs in crops, the cellobiohydrolase CBM3GH5, from the hyperthermophilic bacterium Caldicellulosiruptor saccharolyticus, was constitutively expressed in N. tabacum by targeting the enzyme both to the apoplast and to the protein storage vacuole. The apoplast targeting failed to isolate plants expressing the recombinant enzyme despite a large number of transformants being screened. On the opposite side, the targeting of the cellobiohydrolase to the protein storage vacuole led to several transgenic lines expressing CBM3GH5, with an enzyme yield of up to 0.08 mg g DW-1 (1.67 Units g DW-1) in the mature leaf tissue. The analysis of CBM3GH5 activity revealed that the enzyme accumulated in different plant organs in a developmental-dependent manner, with the highest abundance in mature leaves and roots, followed by seeds, stems and leaf ribs. Notably, both leaves and stems from transgenic plants were characterized by an improved temperature-dependent saccharification profile.
Collapse
Affiliation(s)
- Manuel Benedetti
- Dipartimento di Medicina Clinica, Sanità Pubblica, Scienze della Vita e dell’Ambiente, Università dell’Aquila, Piazzale Salvatore Tommasi 1, 67100 L’Aquila, Italy;
| | - Valeria Vecchi
- Dipartimento di Biotecnologie, Università di Verona, Strada Le Grazie 15, 37134 Verona, Italy; (V.V.); (Z.G.); (L.D.)
| | - Zeno Guardini
- Dipartimento di Biotecnologie, Università di Verona, Strada Le Grazie 15, 37134 Verona, Italy; (V.V.); (Z.G.); (L.D.)
| | - Luca Dall’Osto
- Dipartimento di Biotecnologie, Università di Verona, Strada Le Grazie 15, 37134 Verona, Italy; (V.V.); (Z.G.); (L.D.)
| | - Roberto Bassi
- Dipartimento di Biotecnologie, Università di Verona, Strada Le Grazie 15, 37134 Verona, Italy; (V.V.); (Z.G.); (L.D.)
| |
Collapse
|
9
|
Reem NT, Chambers L, Zhang N, Abdullah SF, Chen Y, Feng G, Gao S, Soto-Burgos J, Pogorelko G, Bassham DC, Anderson CT, Walley JW, Zabotina OA. Post-Synthetic Reduction of Pectin Methylesterification Causes Morphological Abnormalities and Alterations to Stress Response in Arabidopsis thaliana. PLANTS 2020; 9:plants9111558. [PMID: 33198397 PMCID: PMC7697075 DOI: 10.3390/plants9111558] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/03/2020] [Accepted: 11/09/2020] [Indexed: 11/16/2022]
Abstract
Pectin is a critical component of the plant cell wall, supporting wall biomechanics and contributing to cell wall signaling in response to stress. The plant cell carefully regulates pectin methylesterification with endogenous pectin methylesterases (PMEs) and their inhibitors (PMEIs) to promote growth and protect against pathogens. We expressed Aspergillus nidulans pectin methylesterase (AnPME) in Arabidopsis thaliana plants to determine the impacts of methylesterification status on pectin function. Plants expressing AnPME had a roughly 50% reduction in methylester content compared with control plants. AnPME plants displayed a severe dwarf phenotype, including small, bushy rosettes and shorter roots. This phenotype was caused by a reduction in cell elongation. Cell wall composition was altered in AnPME plants, with significantly more arabinose and significantly less galacturonic acid, suggesting that plants actively monitor and compensate for altered pectin content. Cell walls of AnPME plants were more readily degraded by polygalacturonase (PG) alone but were less susceptible to treatment with a mixture of PG and PME. AnPME plants were insensitive to osmotic stress, and their susceptibility to Botrytis cinerea was comparable to wild type plants despite their compromised cell walls. This is likely due to upregulated expression of defense response genes observed in AnPME plants. These results demonstrate the importance of pectin in both normal growth and development, and in response to biotic and abiotic stresses.
Collapse
Affiliation(s)
- Nathan T. Reem
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA 50011, USA; (N.T.R.); (L.C.); (N.Z.); (S.F.A.); (G.P.)
| | - Lauran Chambers
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA 50011, USA; (N.T.R.); (L.C.); (N.Z.); (S.F.A.); (G.P.)
| | - Ning Zhang
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA 50011, USA; (N.T.R.); (L.C.); (N.Z.); (S.F.A.); (G.P.)
| | - Siti Farah Abdullah
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA 50011, USA; (N.T.R.); (L.C.); (N.Z.); (S.F.A.); (G.P.)
| | - Yintong Chen
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA; (Y.C.); (G.F.); (C.T.A.)
| | - Guanhua Feng
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA; (Y.C.); (G.F.); (C.T.A.)
| | - Song Gao
- Department of Plant Pathology & Microbiology, Iowa State University, Ames, IA 50011, USA; (S.G.); (J.W.W.)
| | - Junmarie Soto-Burgos
- Department of Genetics, Development & Cell Biology, Iowa State University, Ames, IA 50011, USA; (J.S.-B.); (D.C.B.)
| | - Gennady Pogorelko
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA 50011, USA; (N.T.R.); (L.C.); (N.Z.); (S.F.A.); (G.P.)
| | - Diane C. Bassham
- Department of Genetics, Development & Cell Biology, Iowa State University, Ames, IA 50011, USA; (J.S.-B.); (D.C.B.)
| | - Charles T. Anderson
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA; (Y.C.); (G.F.); (C.T.A.)
| | - Justin W. Walley
- Department of Plant Pathology & Microbiology, Iowa State University, Ames, IA 50011, USA; (S.G.); (J.W.W.)
| | - Olga A. Zabotina
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA 50011, USA; (N.T.R.); (L.C.); (N.Z.); (S.F.A.); (G.P.)
- Correspondence: ; Tel.: +1-515-294-6125
| |
Collapse
|
10
|
Brandon AG, Scheller HV. Engineering of Bioenergy Crops: Dominant Genetic Approaches to Improve Polysaccharide Properties and Composition in Biomass. FRONTIERS IN PLANT SCIENCE 2020; 11:282. [PMID: 32218797 PMCID: PMC7078332 DOI: 10.3389/fpls.2020.00282] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 02/25/2020] [Indexed: 05/24/2023]
Abstract
Large-scale, sustainable production of lignocellulosic bioenergy from biomass will depend on a variety of dedicated bioenergy crops. Despite their great genetic diversity, prospective bioenergy crops share many similarities in the polysaccharide composition of their cell walls, and the changes needed to optimize them for conversion are largely universal. Therefore, biomass modification strategies that do not depend on genetic background or require mutant varieties are extremely valuable. Due to their preferential fermentation and conversion by microorganisms downstream, the ideal bioenergy crop should contain a high proportion of C6-sugars in polysaccharides like cellulose, callose, galactan, and mixed-linkage glucans. In addition, the biomass should be reduced in inhibitors of fermentation like pentoses and acetate. Finally, the overall complexity of the plant cell wall should be modified to reduce its recalcitrance to enzymatic deconstruction in ways that do no compromise plant health or come at a yield penalty. This review will focus on progress in the use of a variety of genetically dominant strategies to reach these ideals. Due to the breadth and volume of research in the field of lignin bioengineering, this review will instead focus on approaches to improve polysaccharide component plant biomass. Carbohydrate content can be dramatically increased by transgenic overexpression of enzymes involved in cell wall polysaccharide biosynthesis. Additionally, the recalcitrance of the cell wall can be reduced via the overexpression of native or non-native carbohydrate active enzymes like glycosyl hydrolases or carbohydrate esterases. Some research in this area has focused on engineering plants that accumulate cell wall-degrading enzymes that are sequestered to organelles or only active at very high temperatures. The rationale being that, in order to avoid potential negative effects of cell wall modification during plant growth, the enzymes could be activated post-harvest, and post-maturation of the cell wall. A potentially significant limitation of this approach is that at harvest, the cell wall is heavily lignified, making the substrates for these enzymes inaccessible and their activity ineffective. Therefore, this review will only include research employing enzymes that are at least partially active under the ambient conditions of plant growth and cell wall development.
Collapse
Affiliation(s)
- Andrew G. Brandon
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, United States
- Feedstocks Division, Joint BioEnergy Institute, Emeryville, CA, United States
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Henrik V. Scheller
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, United States
- Feedstocks Division, Joint BioEnergy Institute, Emeryville, CA, United States
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| |
Collapse
|
11
|
Green Production and Biotechnological Applications of Cell Wall Lytic Enzymes. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9235012] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
: Energy demand is constantly growing, and, nowadays, fossil fuels still play a dominant role in global energy production, despite their negative effects on air pollution and the emission of greenhouse gases, which are the main contributors to global warming. An alternative clean source of energy is represented by the lignocellulose fraction of plant cell walls, the most abundant carbon source on Earth. To obtain biofuels, lignocellulose must be efficiently converted into fermentable sugars. In this regard, the exploitation of cell wall lytic enzymes (CWLEs) produced by lignocellulolytic fungi and bacteria may be considered as an eco-friendly alternative. These organisms evolved to produce a variety of highly specific CWLEs, even if in low amounts. For an industrial use, both the identification of novel CWLEs and the optimization of sustainable CWLE-expressing biofactories are crucial. In this review, we focus on recently reported advances in the heterologous expression of CWLEs from microbial and plant expression systems as well as some of their industrial applications, including the production of biofuels from agricultural feedstock and of value-added compounds from waste materials. Moreover, since heterologous expression of CWLEs may be toxic to plant hosts, genetic strategies aimed in converting such a deleterious effect into a beneficial trait are discussed.
Collapse
|
12
|
Benedetti M, Vecchi V, Betterle N, Natali A, Bassi R, Dall'Osto L. Design of a highly thermostable hemicellulose-degrading blend from Thermotoga neapolitana for the treatment of lignocellulosic biomass. J Biotechnol 2019; 296:42-52. [PMID: 30885654 DOI: 10.1016/j.jbiotec.2019.03.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 03/07/2019] [Accepted: 03/12/2019] [Indexed: 01/06/2023]
Abstract
The biological conversion of lignocellulose into fermentable sugars is a key process for the sustainable production of biofuels from plant biomass. Polysaccharides in plant feedstock can be valorized using thermostable mixtures of enzymes that degrade the cell walls, thus avoiding harmful and expensive pre-treatments. (Hyper)thermophilic bacteria of the phylum Thermotogae provide a rich source of enzymes for such industrial applications. Here we selected T. neapolitana as a source of hyperthermophilic hemicellulases for the degradation of lignocellulosic biomass. Two genes encoding putative hemicellulases were cloned from T. neapolitana genomic DNA and expressed in Escherichia coli. Further characterization revealed that the genes encoded an endo-1,4-β-galactanase and an α-l-arabinofuranosidase with optimal temperatures of ˜90 °C and high turnover numbers during catalysis (kcat values of ˜177 and ˜133 s-1, respectively, on soluble substrates). These enzymes were combined with three additional T. neapolitana hyperthermophilic hemicellulases - endo-1,4-β-xylanase (XynA), endo-1,4-β-mannanase (ManB/Man5A) and β-glucosidase (GghA) - to form a highly thermostable hemicellulolytic blend. The treatment of barley straw and corn bran with this enzymatic cocktail resulted in the solubilization of multiple hemicelluloses and boosted the yield of fermentable sugars by up to 65% when the complex substrates were further degraded by cellulases.
Collapse
Affiliation(s)
- Manuel Benedetti
- Dipartimento di Biotecnologie, Università di Verona, Strada Le Grazie 15, 37134, Verona, Italy
| | - Valeria Vecchi
- Dipartimento di Biotecnologie, Università di Verona, Strada Le Grazie 15, 37134, Verona, Italy
| | - Nico Betterle
- Dipartimento di Biotecnologie, Università di Verona, Strada Le Grazie 15, 37134, Verona, Italy.
| | - Alberto Natali
- Dipartimento di Biotecnologie, Università di Verona, Strada Le Grazie 15, 37134, Verona, Italy.
| | - Roberto Bassi
- Dipartimento di Biotecnologie, Università di Verona, Strada Le Grazie 15, 37134, Verona, Italy
| | - Luca Dall'Osto
- Dipartimento di Biotecnologie, Università di Verona, Strada Le Grazie 15, 37134, Verona, Italy.
| |
Collapse
|
13
|
Allario T, Tixier A, Awad H, Lemaire C, Brunel N, Badel E, Barigah TS, Julien JL, Peyret P, Mellerowicz EJ, Cochard H, Herbette S. PtxtPME1 and homogalacturonans influence xylem hydraulic properties in poplar. PHYSIOLOGIA PLANTARUM 2018; 163:502-515. [PMID: 29412468 DOI: 10.1111/ppl.12702] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 01/15/2018] [Accepted: 01/31/2018] [Indexed: 06/08/2023]
Abstract
While the xylem hydraulic properties, such as vulnerability to cavitation (VC), are of paramount importance in drought resistance, their genetic determinants remain unexplored. There is evidence that pectins and their methylation pattern are involved, but the detail of their involvement and the corresponding genes need to be clarified. We analyzed the hydraulic properties of the 35S::PME1 transgenic aspen that ectopically under- or over-express a xylem-abundant pectin methyl esterase, PtxtPME1. We also produced and analyzed 4CL1::PGII transgenic poplars expressing a fungal polygalacturonase, AnPGII, under the control of the Ptxa4CL1 promoter that is active in the developing xylem after xylem cell expansion. Both the 35S::PME1 under- and over-expressing aspen lines developed xylem with lower-specific hydraulic conductivity and lower VC, while the 4CL1::PGII plants developed xylem with a higher VC. These xylem hydraulic changes were associated with modifications in xylem structure or in intervessel pit structure that can result in changes in mechanical behavior of the pit membrane. This study shows that homogalacturonans and their methylation pattern influence xylem hydraulic properties, through its effect on xylem cell expansion and on intervessel pit properties and it show a role for PtxtPME1 in the xylem hydraulic properties.
Collapse
Affiliation(s)
- Thierry Allario
- UCA, INRA, PIAF, 63000, Clermont-Ferrand, France
- UCA, EA 4678 CIDAM, 63000, Clermont-Ferrand, France
| | - Aude Tixier
- UCA, INRA, PIAF, 63000, Clermont-Ferrand, France
| | - Hosam Awad
- Agriculture and Botany Department, Faculty of Agriculture, Menoufia University, Shebin El-Kom, Egypt
| | | | | | - Eric Badel
- UCA, INRA, PIAF, 63000, Clermont-Ferrand, France
| | | | | | | | - Ewa J Mellerowicz
- Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 901 83, Umeå, Sweden
| | | | | |
Collapse
|
14
|
Lampugnani ER, Khan GA, Somssich M, Persson S. Building a plant cell wall at a glance. J Cell Sci 2018; 131:131/2/jcs207373. [PMID: 29378834 DOI: 10.1242/jcs.207373] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Plant cells are surrounded by a strong polysaccharide-rich cell wall that aids in determining the overall form, growth and development of the plant body. Indeed, the unique shapes of the 40-odd cell types in plants are determined by their walls, as removal of the cell wall results in spherical protoplasts that are amorphic. Hence, assembly and remodeling of the wall is essential in plant development. Most plant cell walls are composed of a framework of cellulose microfibrils that are cross-linked to each other by heteropolysaccharides. The cell walls are highly dynamic and adapt to the changing requirements of the plant during growth. However, despite the importance of plant cell walls for plant growth and for applications that we use in our daily life such as food, feed and fuel, comparatively little is known about how they are synthesized and modified. In this Cell Science at a Glance article and accompanying poster, we aim to illustrate the underpinning cell biology of the synthesis of wall carbohydrates, and their incorporation into the wall, in the model plant Arabidopsis.
Collapse
Affiliation(s)
- Edwin R Lampugnani
- School of Biosciences, University of Melbourne, Parkville 3010 VIC, Melbourne, Australia
| | - Ghazanfar Abbas Khan
- School of Biosciences, University of Melbourne, Parkville 3010 VIC, Melbourne, Australia
| | - Marc Somssich
- School of Biosciences, University of Melbourne, Parkville 3010 VIC, Melbourne, Australia
| | - Staffan Persson
- School of Biosciences, University of Melbourne, Parkville 3010 VIC, Melbourne, Australia
| |
Collapse
|
15
|
Xiao C, Barnes WJ, Zamil MS, Yi H, Puri VM, Anderson CT. Activation tagging of Arabidopsis POLYGALACTURONASE INVOLVED IN EXPANSION2 promotes hypocotyl elongation, leaf expansion, stem lignification, mechanical stiffening, and lodging. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 89:1159-1173. [PMID: 28004869 DOI: 10.1111/tpj.13453] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 11/14/2016] [Accepted: 12/08/2016] [Indexed: 05/19/2023]
Abstract
Pectin is the most abundant component of primary cell walls in eudicot plants. The modification and degradation of pectin affects multiple processes during plant development, including cell expansion, organ initiation, and cell separation. However, the extent to which pectin degradation by polygalacturonases affects stem development and secondary wall formation remains unclear. Using an activation tag screen, we identified a transgenic Arabidopsis thaliana line with longer etiolated hypocotyls, which overexpresses a gene encoding a polygalacturonase. We designated this gene as POLYGALACTURONASE INVOLVED IN EXPANSION2 (PGX2), and the corresponding activation tagged line as PGX2AT . PGX2 is widely expressed in young seedlings and in roots, stems, leaves, flowers, and siliques of adult plants. PGX2-GFP localizes to the cell wall, and PGX2AT plants show higher total polygalacturonase activity and smaller pectin molecular masses than wild-type controls, supporting a function for this protein in apoplastic pectin degradation. A heterologously expressed, truncated version of PGX2 also displays polygalacturonase activity in vitro. Like previously identified PGX1AT plants, PGX2AT plants have longer hypocotyls and larger rosette leaves, but they also uniquely display early flowering, earlier stem lignification, and lodging stems with enhanced mechanical stiffness that is possibly due to decreased stem thickness. Together, these results indicate that PGX2 both functions in cell expansion and influences secondary wall formation, providing a possible link between these two developmental processes.
Collapse
Affiliation(s)
- Chaowen Xiao
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA
- Center for Lignocellulose Structure and Formation, The Pennsylvania State University, University Park, PA 16802, USA
| | - William J Barnes
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA
- Center for Lignocellulose Structure and Formation, The Pennsylvania State University, University Park, PA 16802, USA
| | - M Shafayet Zamil
- Department of Agricultural and Biological Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Hojae Yi
- Department of Agricultural and Biological Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Virendra M Puri
- Department of Agricultural and Biological Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Charles T Anderson
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA
- Center for Lignocellulose Structure and Formation, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
16
|
Wang Y, Fan C, Hu H, Li Y, Sun D, Wang Y, Peng L. Genetic modification of plant cell walls to enhance biomass yield and biofuel production in bioenergy crops. Biotechnol Adv 2016; 34:997-1017. [PMID: 27269671 DOI: 10.1016/j.biotechadv.2016.06.001] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 05/31/2016] [Accepted: 06/01/2016] [Indexed: 02/06/2023]
Abstract
Plant cell walls represent an enormous biomass resource for the generation of biofuels and chemicals. As lignocellulose property principally determines biomass recalcitrance, the genetic modification of plant cell walls has been posed as a powerful solution. Here, we review recent progress in understanding the effects of distinct cell wall polymers (cellulose, hemicelluloses, lignin, pectin, wall proteins) on the enzymatic digestibility of biomass under various physical and chemical pretreatments in herbaceous grasses, major agronomic crops and fast-growing trees. We also compare the main factors of wall polymer features, including cellulose crystallinity (CrI), hemicellulosic Xyl/Ara ratio, monolignol proportion and uronic acid level. Furthermore, the review presents the main gene candidates, such as CesA, GH9, GH10, GT61, GT43 etc., for potential genetic cell wall modification towards enhancing both biomass yield and enzymatic saccharification in genetic mutants and transgenic plants. Regarding cell wall modification, it proposes a novel groove-like cell wall model that highlights to increase amorphous regions (density and depth) of the native cellulose microfibrils, providing a general strategy for bioenergy crop breeding and biofuel processing technology.
Collapse
Affiliation(s)
- Yanting Wang
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan 430070, China; National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Chunfen Fan
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan 430070, China; National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Huizhen Hu
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan 430070, China; National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Ying Li
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan 430070, China; National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Dan Sun
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; College of Chemistry and Chemical Engineering, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Youmei Wang
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan 430070, China; National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Liangcai Peng
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan 430070, China; National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
17
|
|
18
|
Reem NT, Pogorelko G, Lionetti V, Chambers L, Held MA, Bellincampi D, Zabotina OA. Decreased Polysaccharide Feruloylation Compromises Plant Cell Wall Integrity and Increases Susceptibility to Necrotrophic Fungal Pathogens. FRONTIERS IN PLANT SCIENCE 2016; 7:630. [PMID: 27242834 PMCID: PMC4862258 DOI: 10.3389/fpls.2016.00630] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 04/25/2016] [Indexed: 05/18/2023]
Abstract
The complexity of cell wall composition and structure determines the strength, flexibility, and function of the primary cell wall in plants. However, the contribution of the various components to cell wall integrity (CWI) and function remains unclear. Modifications of cell wall composition can induce plant responses known as CWI control. In this study, we used transgenic expression of the fungal feruloyl esterase AnFAE to examine the effect of post-synthetic modification of Arabidopsis and Brachypodium cell walls. Transgenic Arabidopsis plants expressing AnFAE showed a significant reduction of monomeric ferulic acid, decreased amounts of wall-associated extensins, and increased susceptibility to Botrytis cinerea, compared with wild type. Transgenic Brachypodium showed reductions in monomeric and dimeric ferulic acids and increased susceptibility to Bipolaris sorokiniana. Upon infection, transgenic Arabidopsis and Brachypodium plants also showed increased expression of several defense-related genes compared with wild type. These results demonstrate a role, in both monocot and dicot plants, of polysaccharide feruloylation in plant CWI, which contributes to plant resistance to necrotrophic pathogens.
Collapse
Affiliation(s)
- Nathan T. Reem
- Roy J. Carver Department of Biochemistry,
Biophysiscs and Molecular Biology, Iowa State University, Ames, IAUSA
| | - Gennady Pogorelko
- Roy J. Carver Department of Biochemistry,
Biophysiscs and Molecular Biology, Iowa State University, Ames, IAUSA
| | - Vincenzo Lionetti
- Dipartmento di Biologia e Biotechnologie
“Charles Darwin,” Sapienza Universita di Roma, RomeItaly
| | - Lauran Chambers
- Roy J. Carver Department of Biochemistry,
Biophysiscs and Molecular Biology, Iowa State University, Ames, IAUSA
| | - Michael A. Held
- Department of Chemistry and Biochemistry, Ohio
University, Athens, OHUSA
| | - Daniela Bellincampi
- Dipartmento di Biologia e Biotechnologie
“Charles Darwin,” Sapienza Universita di Roma, RomeItaly
| | - Olga A. Zabotina
- Roy J. Carver Department of Biochemistry,
Biophysiscs and Molecular Biology, Iowa State University, Ames, IAUSA
- *Correspondence: Olga A. Zabotina,
| |
Collapse
|
19
|
Raggi S, Ferrarini A, Delledonne M, Dunand C, Ranocha P, De Lorenzo G, Cervone F, Ferrari S. The Arabidopsis Class III Peroxidase AtPRX71 Negatively Regulates Growth under Physiological Conditions and in Response to Cell Wall Damage. PLANT PHYSIOLOGY 2015; 169:2513-25. [PMID: 26468518 PMCID: PMC4677920 DOI: 10.1104/pp.15.01464] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Accepted: 10/13/2015] [Indexed: 05/18/2023]
Abstract
The structure of the cell wall has a major impact on plant growth and development, and alteration of cell wall structural components is often detrimental to biomass production. However, the molecular mechanisms responsible for these negative effects are largely unknown. Arabidopsis (Arabidopsis thaliana) plants with altered pectin composition because of either the expression of the Aspergillus niger polygalacturonase II (AnPGII; 35S:AnPGII plants) or a mutation in the QUASIMODO2 (QUA2) gene that encodes a putative pectin methyltransferase (qua2-1 plants), display severe growth defects. Here, we show that expression of Arabidopsis PEROXIDASE71 (AtPRX71), encoding a class III peroxidase, strongly increases in 35S:AnPGII and qua2-1 plants as well as in response to treatments with the cellulose synthase inhibitor isoxaben, which also impairs cell wall integrity. Analysis of atprx71 loss-of-function mutants and plants overexpressing AtPRX71 indicates that this gene negatively influences Arabidopsis growth at different stages of development, likely limiting cell expansion. The atprx71-1 mutation partially suppresses the dwarf phenotype of qua2-1, suggesting that AtPRX71 contributes to the growth defects observed in plants undergoing cell wall damage. Furthermore, AtPRX71 seems to promote the production of reactive oxygen species in qua2-1 plants as well as plants treated with isoxaben. We propose that AtPRX71 contributes to strengthen cell walls, therefore restricting cell expansion, during normal growth and in response to cell wall damage.
Collapse
Affiliation(s)
- Sara Raggi
- Institute Pasteur-Fondazione Cenci Bolognetti and Dipartimento di Biologia e Biotecnologie "Charles Darwin," Sapienza Università di Roma, 00185 Rome, Italy (S.R., G.D.L., F.C., S.F.);Dipartimento di Biotecnologie, Università degli Studi di Verona, 37134 Verona, Italy (A.F., M.D.);Université de Toulouse, Université Paul Sabatier, Unité Mixte de Recherche 5546, Laboratoire de Recherche en Sciences Végétales, F-31326 Castanet-Tolosan, France (C.D., P.R.); andCentre National de la Recherche Scientifique, Unité Mixte de Recherche 5546, F-31326 Castanet-Tolosan, France (C.D., P.R.)
| | - Alberto Ferrarini
- Institute Pasteur-Fondazione Cenci Bolognetti and Dipartimento di Biologia e Biotecnologie "Charles Darwin," Sapienza Università di Roma, 00185 Rome, Italy (S.R., G.D.L., F.C., S.F.);Dipartimento di Biotecnologie, Università degli Studi di Verona, 37134 Verona, Italy (A.F., M.D.);Université de Toulouse, Université Paul Sabatier, Unité Mixte de Recherche 5546, Laboratoire de Recherche en Sciences Végétales, F-31326 Castanet-Tolosan, France (C.D., P.R.); andCentre National de la Recherche Scientifique, Unité Mixte de Recherche 5546, F-31326 Castanet-Tolosan, France (C.D., P.R.)
| | - Massimo Delledonne
- Institute Pasteur-Fondazione Cenci Bolognetti and Dipartimento di Biologia e Biotecnologie "Charles Darwin," Sapienza Università di Roma, 00185 Rome, Italy (S.R., G.D.L., F.C., S.F.);Dipartimento di Biotecnologie, Università degli Studi di Verona, 37134 Verona, Italy (A.F., M.D.);Université de Toulouse, Université Paul Sabatier, Unité Mixte de Recherche 5546, Laboratoire de Recherche en Sciences Végétales, F-31326 Castanet-Tolosan, France (C.D., P.R.); andCentre National de la Recherche Scientifique, Unité Mixte de Recherche 5546, F-31326 Castanet-Tolosan, France (C.D., P.R.)
| | - Christophe Dunand
- Institute Pasteur-Fondazione Cenci Bolognetti and Dipartimento di Biologia e Biotecnologie "Charles Darwin," Sapienza Università di Roma, 00185 Rome, Italy (S.R., G.D.L., F.C., S.F.);Dipartimento di Biotecnologie, Università degli Studi di Verona, 37134 Verona, Italy (A.F., M.D.);Université de Toulouse, Université Paul Sabatier, Unité Mixte de Recherche 5546, Laboratoire de Recherche en Sciences Végétales, F-31326 Castanet-Tolosan, France (C.D., P.R.); andCentre National de la Recherche Scientifique, Unité Mixte de Recherche 5546, F-31326 Castanet-Tolosan, France (C.D., P.R.)
| | - Philippe Ranocha
- Institute Pasteur-Fondazione Cenci Bolognetti and Dipartimento di Biologia e Biotecnologie "Charles Darwin," Sapienza Università di Roma, 00185 Rome, Italy (S.R., G.D.L., F.C., S.F.);Dipartimento di Biotecnologie, Università degli Studi di Verona, 37134 Verona, Italy (A.F., M.D.);Université de Toulouse, Université Paul Sabatier, Unité Mixte de Recherche 5546, Laboratoire de Recherche en Sciences Végétales, F-31326 Castanet-Tolosan, France (C.D., P.R.); andCentre National de la Recherche Scientifique, Unité Mixte de Recherche 5546, F-31326 Castanet-Tolosan, France (C.D., P.R.)
| | - Giulia De Lorenzo
- Institute Pasteur-Fondazione Cenci Bolognetti and Dipartimento di Biologia e Biotecnologie "Charles Darwin," Sapienza Università di Roma, 00185 Rome, Italy (S.R., G.D.L., F.C., S.F.);Dipartimento di Biotecnologie, Università degli Studi di Verona, 37134 Verona, Italy (A.F., M.D.);Université de Toulouse, Université Paul Sabatier, Unité Mixte de Recherche 5546, Laboratoire de Recherche en Sciences Végétales, F-31326 Castanet-Tolosan, France (C.D., P.R.); andCentre National de la Recherche Scientifique, Unité Mixte de Recherche 5546, F-31326 Castanet-Tolosan, France (C.D., P.R.)
| | - Felice Cervone
- Institute Pasteur-Fondazione Cenci Bolognetti and Dipartimento di Biologia e Biotecnologie "Charles Darwin," Sapienza Università di Roma, 00185 Rome, Italy (S.R., G.D.L., F.C., S.F.);Dipartimento di Biotecnologie, Università degli Studi di Verona, 37134 Verona, Italy (A.F., M.D.);Université de Toulouse, Université Paul Sabatier, Unité Mixte de Recherche 5546, Laboratoire de Recherche en Sciences Végétales, F-31326 Castanet-Tolosan, France (C.D., P.R.); andCentre National de la Recherche Scientifique, Unité Mixte de Recherche 5546, F-31326 Castanet-Tolosan, France (C.D., P.R.)
| | - Simone Ferrari
- Institute Pasteur-Fondazione Cenci Bolognetti and Dipartimento di Biologia e Biotecnologie "Charles Darwin," Sapienza Università di Roma, 00185 Rome, Italy (S.R., G.D.L., F.C., S.F.);Dipartimento di Biotecnologie, Università degli Studi di Verona, 37134 Verona, Italy (A.F., M.D.);Université de Toulouse, Université Paul Sabatier, Unité Mixte de Recherche 5546, Laboratoire de Recherche en Sciences Végétales, F-31326 Castanet-Tolosan, France (C.D., P.R.); andCentre National de la Recherche Scientifique, Unité Mixte de Recherche 5546, F-31326 Castanet-Tolosan, France (C.D., P.R.)
| |
Collapse
|
20
|
Tomassetti S, Pontiggia D, Verrascina I, Reca IB, Francocci F, Salvi G, Cervone F, Ferrari S. Controlled expression of pectic enzymes in Arabidopsis thaliana enhances biomass conversion without adverse effects on growth. PHYTOCHEMISTRY 2015; 112:221-30. [PMID: 25242621 DOI: 10.1016/j.phytochem.2014.08.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 07/09/2014] [Accepted: 08/28/2014] [Indexed: 05/11/2023]
Abstract
Lignocellulosic biomass from agriculture wastes is a potential source of biofuel, but its use is currently limited by the recalcitrance of the plant cell wall to enzymatic digestion. Modification of the wall structural components can be a viable strategy to overcome this bottleneck. We have previously shown that the expression of a fungal polygalacturonase (pga2 from Aspergillus niger) in Arabidopsis and tobacco plants reduces the levels of de-esterified homogalacturonan in the cell wall and significantly increases saccharification efficiency. However, plants expressing pga2 show stunted growth and reduced biomass production, likely as a consequence of an extensive loss of pectin integrity during the whole plant life cycle. We report here that the expression in Arabidopsis of another pectic enzyme, the pectate lyase 1 (PL1) of Pectobacterium carotovorum, under the control of a chemically inducible promoter, results, after induction of the transgene, in a saccharification efficiency similar to that of plants expressing pga2. However, lines with high levels of transgene induction show reduced growth even in the absence of the inducer. To overcome the problem of plant fitness, we have generated Arabidopsis plants that express pga2 under the control of the promoter of SAG12, a gene expressed only during senescence. These plants expressed pga2 only at late stages of development, and their growth was comparable to that of WT plants. Notably, leaves and stems of transgenic plants were more easily digested by cellulase, compared to WT plants, only during senescence. Expression of cell wall-degrading enzymes at the end of the plant life cycle may be therefore a useful strategy to engineer crops unimpaired in biomass yield but improved for bioconversion.
Collapse
Affiliation(s)
- Susanna Tomassetti
- Dipartimento di Biologia e Biotecnologie "Charles Darwin", Sapienza Università di Roma, Piazzale Aldo Moro, 5, 00185 Roma, Italy
| | - Daniela Pontiggia
- Dipartimento di Biologia e Biotecnologie "Charles Darwin", Sapienza Università di Roma, Piazzale Aldo Moro, 5, 00185 Roma, Italy
| | - Ilaria Verrascina
- Dipartimento di Biologia e Biotecnologie "Charles Darwin", Sapienza Università di Roma, Piazzale Aldo Moro, 5, 00185 Roma, Italy
| | - Ida Barbara Reca
- Dipartimento di Biologia e Biotecnologie "Charles Darwin", Sapienza Università di Roma, Piazzale Aldo Moro, 5, 00185 Roma, Italy
| | - Fedra Francocci
- Dipartimento di Biologia e Biotecnologie "Charles Darwin", Sapienza Università di Roma, Piazzale Aldo Moro, 5, 00185 Roma, Italy
| | - Gianni Salvi
- Dipartimento di Biologia e Biotecnologie "Charles Darwin", Sapienza Università di Roma, Piazzale Aldo Moro, 5, 00185 Roma, Italy
| | - Felice Cervone
- Dipartimento di Biologia e Biotecnologie "Charles Darwin", Sapienza Università di Roma, Piazzale Aldo Moro, 5, 00185 Roma, Italy
| | - Simone Ferrari
- Dipartimento di Biologia e Biotecnologie "Charles Darwin", Sapienza Università di Roma, Piazzale Aldo Moro, 5, 00185 Roma, Italy.
| |
Collapse
|
21
|
Li Q, Song J, Peng S, Wang JP, Qu GZ, Sederoff RR, Chiang VL. Plant biotechnology for lignocellulosic biofuel production. PLANT BIOTECHNOLOGY JOURNAL 2014; 12:1174-92. [PMID: 25330253 DOI: 10.1111/pbi.12273] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2014] [Revised: 08/11/2014] [Accepted: 09/05/2014] [Indexed: 05/18/2023]
Abstract
Lignocelluloses from plant cell walls are attractive resources for sustainable biofuel production. However, conversion of lignocellulose to biofuel is more expensive than other current technologies, due to the costs of chemical pretreatment and enzyme hydrolysis for cell wall deconstruction. Recalcitrance of cell walls to deconstruction has been reduced in many plant species by modifying plant cell walls through biotechnology. These results have been achieved by reducing lignin content and altering its composition and structure. Reduction of recalcitrance has also been achieved by manipulating hemicellulose biosynthesis and by overexpression of bacterial enzymes in plants to disrupt linkages in the lignin-carbohydrate complexes. These modified plants often have improved saccharification yield and higher ethanol production. Cell wall-degrading (CWD) enzymes from bacteria and fungi have been expressed at high levels in plants to increase the efficiency of saccharification compared with exogenous addition of cellulolytic enzymes. In planta expression of heat-stable CWD enzymes from bacterial thermophiles has made autohydrolysis possible. Transgenic plants can be engineered to reduce recalcitrance without any yield penalty, indicating that successful cell wall modification can be achieved without impacting cell wall integrity or plant development. A more complete understanding of cell wall formation and structure should greatly improve lignocellulosic feedstocks and reduce the cost of biofuel production.
Collapse
Affiliation(s)
- Quanzi Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China; State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
22
|
Kim WC, Kim JY, Ko JH, Kang H, Kim J, Han KH. AtC3H14, a plant-specific tandem CCCH zinc-finger protein, binds to its target mRNAs in a sequence-specific manner and affects cell elongation in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 80:772-84. [PMID: 25228083 DOI: 10.1111/tpj.12667] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Revised: 08/27/2014] [Accepted: 08/29/2014] [Indexed: 05/19/2023]
Abstract
AtC3H14 (At1 g66810) is a plant-specific tandem CCCH zinc-finger (TZF) protein that belongs to the 68-member CCCH family in Arabidopsis thaliana. In animals, TZFs have been shown to bind and recruit target mRNAs to the cytoplasmic foci where mRNA decay enzymes are active. However, it is not known whether plant TZF proteins such as AtC3H14 function. So far, no mRNA targets of plant TZFs have been identified. We have obtained several lines of experimental evidence in support of our hypothesis that AtC3H14 is involved in post-transcriptional regulation of its target genes. Nucleic acid binding assays using [(35) S]-labeled AtC3H14 protein showed that AtC3H14 could bind to ssDNA, dsDNA, and ribohomopolymers, suggesting its RNA-binding activity. RNA immunoprecipitation (RIP) assay identified several putative target RNAs of AtC3H14, including a polygalacturonase, a well-known cell wall modifying gene. RNA electrophoretic mobility shift assays (RNA-EMSA) were used to confirm the RIP results and demonstrate that the TZF domain of AtC3H14 is required for the target RNA binding. Microarray analysis of 35S::AtC3H14 plants revealed that many of the cell wall elongation and/or modification-associated genes were differentially expressed, which is consistent with the cell elongation defect phenotype and the changes in the cell wall monosaccharide composition. In addition, yeast activation assay showed that AtC3H14 also function as a transcriptional activator, which is consistent with the previous finding that AtC3H14 activate the secondary wall biosynthesis genes. Taken together, we conclude that AtC3H14 may play a key role in both transcriptional and post-transcriptional regulation.
Collapse
Affiliation(s)
- Won-Chan Kim
- Department of Horticulture and Department of Forestry, Michigan State University, East Lansing, MI, 48824-1222, USA; DOE-Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, 48824-1222, USA
| | | | | | | | | | | |
Collapse
|
23
|
Cona A, Tisi A, Ghuge SA, Franchi S, De Lorenzo G, Angelini R. Wound healing response and xylem differentiation in tobacco plants over-expressing a fungal endopolygalacturonase is mediated by copper amine oxidase activity. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2014; 82:54-65. [PMID: 24907525 DOI: 10.1016/j.plaphy.2014.05.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 05/11/2014] [Indexed: 06/03/2023]
Abstract
In this work, we have investigated the involvement of copper amine oxidase (CuAO; EC 1.4.3.21) in wound healing and xylem differentiation of Nicotiana tabacum plants over-expressing a fungal endopolygalacturonase (PG plants), which show constitutively activated defence responses. In petioles and stems of PG plants, we found higher CuAO activity and lower polyamine (PA) levels, particularly putrescine (Put), with respect to wild-type (WT) plants. Upon wounding, a more intense autofluorescence of cell wall phenolics was observed in correspondence of wound surface, extending to epidermis and cortical parenchima only in PG plants. This response was mostly dependent on CuAO activity, as suggested by the reversion of autofluorescence upon supply of 2-bromoethylamine (2-BrEt), a CuAO specific inhibitor. Moreover, in unwounded plants, histochemical analysis revealed a tissue-specific expression of the enzyme in the vascular cambium and neighboring derivative cells of both petioles and stems of PG plants, whereas the corresponding WT tissues appeared unstained or faintly stained. A higher histochemical CuAO activity was also observed in xylem cells of PG plants as compared to WT xylem tissues suggesting a peculiar role of CuAO activity in xylem differentiation in PG plants. Indeed, roots of PG plants exhibited early xylem differentiation, a phenotype consistent with both the higher CuAO and the lower Put levels observed and supported by the 2-BrEt-mediated reversion of early root xylem differentiation and H2O2 accumulation. These results strongly support the relevance of PA-catabolism derived H2O2 in defence responses, such as those signaled by a compromised status of cell wall pectin integrity.
Collapse
Affiliation(s)
- Alessandra Cona
- Dipartimento di Scienze, Università degli Studi "Roma Tre", V.le G. Marconi 446, 00146 Roma, Italy
| | - Alessandra Tisi
- Dipartimento di Scienze, Università degli Studi "Roma Tre", V.le G. Marconi 446, 00146 Roma, Italy
| | - Sandip Annasaheb Ghuge
- Dipartimento di Scienze, Università degli Studi "Roma Tre", V.le G. Marconi 446, 00146 Roma, Italy
| | - Stefano Franchi
- Dipartimento di Scienze, Università degli Studi "Roma Tre", V.le G. Marconi 446, 00146 Roma, Italy
| | - Giulia De Lorenzo
- Dipartimento di Biologia e Biotecnologie Charles Darwin, Sapienza Università di Roma, 00185 Roma, Italy
| | - Riccardo Angelini
- Dipartimento di Scienze, Università degli Studi "Roma Tre", V.le G. Marconi 446, 00146 Roma, Italy.
| |
Collapse
|
24
|
Pereira EO, Kolotilin I, Conley AJ, Menassa R. Production and characterization of in planta transiently produced polygalacturanase from Aspergillus niger and its fusions with hydrophobin or ELP tags. BMC Biotechnol 2014; 14:59. [PMID: 24970673 PMCID: PMC4083859 DOI: 10.1186/1472-6750-14-59] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 06/18/2014] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Pectinases play an important role in plant cell wall deconstruction and have potential in diverse industries such as food, wine, animal feed, textile, paper, fuel, and others. The demand for such enzymes is increasing exponentially, as are the efforts to improve their production and to implement their use in several industrial processes. The goal of this study was to examine the potential of producing polygalacturonase I from Aspergillus niger in plants and to investigate the effects of subcellular compartmentalization and protein fusions on its accumulation and activity. RESULTS Polygalacturonase I from Aspergillus niger (AnPGI) was transiently produced in Nicotiana benthamiana by targeting it to five different cellular compartments: apoplast, endoplasmic reticulum (ER), vacuole, chloroplast and cytosol. Accumulation levels of 2.5%, 3.0%, and 1.9% of total soluble protein (TSP) were observed in the apoplast, ER, and vacuole, respectively, and specific activity was significantly higher in vacuole-targeted AnPGI compared to the same enzyme targeted to the ER or apoplast. No accumulation was found for AnPGI when targeted to the chloroplast or cytosol. Analysis of AnPGI fused with elastin-like polypeptide (ELP) revealed a significant increase in the protein accumulation level, especially when targeted to the vacuole where the protein doubles its accumulation to 3.6% of TSP, while the hydrophobin (HFBI) fusion impaired AnPGI accumulation and both tags impaired activity, albeit to different extents. The recombinant protein showed activity against polygalacturonic acid with optimum conditions at pH 5.0 and temperature from 30 to 50°C, depending on its fusion. In vivo analysis of reducing sugar content revealed a higher release of reducing sugars in plant tissue expressing recombinant AnPGI compared to wild type N. benthamiana leaves. CONCLUSION Our results demonstrate that subcellular compartmentalization of enzymes has an impact on both the target protein accumulation and its activity, especially in the case of proteins that undergo post-translational modifications, and should be taken into consideration when protein production strategies are designed. Using plants to produce heterologous enzymes for the degradation of a key component of the plant cell wall could reduce the cost of biomass pretreatment for the production of cellulosic biofuels.
Collapse
Affiliation(s)
- Eridan Orlando Pereira
- Agriculture and Agri-Food Canada, 1391 Sandford Street, London, ON N5V 4T3, Canada
- Department of Biology, Western University, London, ON N6A 5B7, Canada
- Current address: Universidade Estadual do Ceará, Av. Dr. Silas Munguba, 1700 - Campus do Itaperi, Fortaleza 60714-903, Brazil
| | - Igor Kolotilin
- Agriculture and Agri-Food Canada, 1391 Sandford Street, London, ON N5V 4T3, Canada
| | | | - Rima Menassa
- Agriculture and Agri-Food Canada, 1391 Sandford Street, London, ON N5V 4T3, Canada
- Department of Biology, Western University, London, ON N6A 5B7, Canada
| |
Collapse
|
25
|
Francocci F, Bastianelli E, Lionetti V, Ferrari S, De Lorenzo G, Bellincampi D, Cervone F. Analysis of pectin mutants and natural accessions of Arabidopsis highlights the impact of de-methyl-esterified homogalacturonan on tissue saccharification. BIOTECHNOLOGY FOR BIOFUELS 2013; 6:163. [PMID: 24245704 PMCID: PMC3843582 DOI: 10.1186/1754-6834-6-163] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 10/25/2013] [Indexed: 05/08/2023]
Abstract
BACKGROUND Plant biomass is a potentially important renewable source of energy and industrial products. The natural recalcitrance of the cell walls to enzymatic degradation (saccharification), which plants have evolved to defend themselves from biotic stresses, represents a major bottleneck for the industrial bioconversion of lignocellulosic biomasses. The identification of factors that influence the cell wall recalcitrance to saccharification may help to overcome the existing limitations that hamper the utilization of biomass. RESULTS Here we have investigated in Arabidopsis thaliana the impact of homogalacturonan (HG) content and structure on tissue saccharification. We characterized mutants affected in genes encoding proteins involved in HG biosynthesis (quasimodo2-1; qua2-1) and methylesterification (pectin methylesterase 3; pme3). We also analyzed the natural variation of Arabidopsis through the characterization of a nested core collection of 24 accessions generated to maximize genetic variability. We found a negative correlation between the level of de-methyl-esterified HG (HGA) and cellulose degradability. CONCLUSIONS We propose to use the level of HGA domains as a biochemical marker of the cell wall recalcitrance to saccharification. This may be utilized for selecting, on a large scale, natural variants or mutants with improved bioconversion features.
Collapse
Affiliation(s)
- Fedra Francocci
- Dipartimento di Biologia e Biotecnologie “Charles Darwin”, Sapienza Università di Roma, Piazzale Aldo Moro 5, Rome 00185, Italy
| | - Elisa Bastianelli
- Dipartimento di Biologia e Biotecnologie “Charles Darwin”, Sapienza Università di Roma, Piazzale Aldo Moro 5, Rome 00185, Italy
| | - Vincenzo Lionetti
- Dipartimento di Biologia e Biotecnologie “Charles Darwin”, Sapienza Università di Roma, Piazzale Aldo Moro 5, Rome 00185, Italy
| | - Simone Ferrari
- Dipartimento di Biologia e Biotecnologie “Charles Darwin”, Sapienza Università di Roma, Piazzale Aldo Moro 5, Rome 00185, Italy
| | - Giulia De Lorenzo
- Dipartimento di Biologia e Biotecnologie “Charles Darwin”, Sapienza Università di Roma, Piazzale Aldo Moro 5, Rome 00185, Italy
| | - Daniela Bellincampi
- Dipartimento di Biologia e Biotecnologie “Charles Darwin”, Sapienza Università di Roma, Piazzale Aldo Moro 5, Rome 00185, Italy
| | - Felice Cervone
- Dipartimento di Biologia e Biotecnologie “Charles Darwin”, Sapienza Università di Roma, Piazzale Aldo Moro 5, Rome 00185, Italy
| |
Collapse
|
26
|
Pogorelko G, Lionetti V, Bellincampi D, Zabotina O. Cell wall integrity: targeted post-synthetic modifications to reveal its role in plant growth and defense against pathogens. PLANT SIGNALING & BEHAVIOR 2013; 8:e25435. [PMID: 23857352 PMCID: PMC4002593 DOI: 10.4161/psb.25435] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Accepted: 06/17/2013] [Indexed: 05/18/2023]
Abstract
The plant cell wall, a dynamic network of polysaccharides and glycoproteins of significant compositional and structural complexity, functions in plant growth, development and stress responses. In recent years, the existence of plant cell wall integrity (CWI) maintenance mechanisms has been demonstrated, but little is known about the signaling pathways involved, or their components. Examination of key mutants has shed light on the relationships between cell wall remodeling and plant cell responses, indicating a central role for the regulatory network that monitors and controls cell wall performance and integrity. In this review, we present a short overview of cell wall composition and discuss post-synthetic cell wall modification as a valuable approach for studying CWI perception and signaling pathways.
Collapse
Affiliation(s)
- Gennady Pogorelko
- Roy J. Carver Department of Biochemistry; Biophysics and Molecular Biology; Iowa State University; Ames, IA USA
| | - Vincenzo Lionetti
- Dipartmento di Biologia e Biotecnologie “Charles Darwin,” Sapienza Università di Roma; Rome, Italy
| | - Daniela Bellincampi
- Dipartmento di Biologia e Biotecnologie “Charles Darwin,” Sapienza Università di Roma; Rome, Italy
| | - Olga Zabotina
- Roy J. Carver Department of Biochemistry; Biophysics and Molecular Biology; Iowa State University; Ames, IA USA
| |
Collapse
|
27
|
Borras-Hidalgo O, Caprari C, Hernandez-Estevez I, Lorenzo GD, Cervone F. A gene for plant protection: expression of a bean polygalacturonase inhibitor in tobacco confers a strong resistance against Rhizoctonia solani and two oomycetes. FRONTIERS IN PLANT SCIENCE 2012; 3:268. [PMID: 23264779 PMCID: PMC3525109 DOI: 10.3389/fpls.2012.00268] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Accepted: 11/18/2012] [Indexed: 05/07/2023]
Abstract
We have tested whether a gene encoding a polygalacturonase-inhibiting protein (PGIP) protects tobacco against a fungal pathogen (Rhizoctonia solani) and two oomycetes (Phytophthora parasitica var. nicotianae and Peronospora hyoscyami f. sp. tabacina). The trials were performed in greenhouse conditions for R. solani and P. parasitica and in the field for P. hyoscyami. Our results show that expression of PGIP is a powerful way of engineering a broad-spectrum disease resistance.
Collapse
Affiliation(s)
| | - Claudio Caprari
- Department of Bioscience and Territory, University of MolisePesche (IS), Italy
| | | | - Giulia De Lorenzo
- Department of Biology and Biotechnology, Sapienza University of RomeRome, Italy
| | - Felice Cervone
- Department of Biology and Biotechnology, Sapienza University of RomeRome, Italy
| |
Collapse
|
28
|
Atkinson RG, Sutherland PW, Johnston SL, Gunaseelan K, Hallett IC, Mitra D, Brummell DA, Schröder R, Johnston JW, Schaffer RJ. Down-regulation of POLYGALACTURONASE1 alters firmness, tensile strength and water loss in apple (Malus x domestica) fruit. BMC PLANT BIOLOGY 2012; 12:129. [PMID: 22856470 PMCID: PMC3509026 DOI: 10.1186/1471-2229-12-129] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 07/25/2012] [Indexed: 05/18/2023]
Abstract
BACKGROUND While there is now a significant body of research correlating apple (Malus x domestica) fruit softening with the cell wall hydrolase ENDO-POLYGALACTURONASE1 (PG1), there is currently little knowledge of its physiological effects in planta. This study examined the effect of down regulation of PG1 expression in 'Royal Gala' apples, a cultivar that typically has high levels of PG1, and softens during fruit ripening. RESULTS PG1-suppressed 'Royal Gala' apples harvested from multiple seasons were firmer than controls after ripening, and intercellular adhesion was higher. Cell wall analyses indicated changes in yield and composition of pectin, and a higher molecular weight distribution of CDTA-soluble pectin. Structural analyses revealed more ruptured cells and free juice in pulled apart sections, suggesting improved integrity of intercellular connections and consequent cell rupture due to failure of the primary cell walls under stress. PG1-suppressed lines also had reduced expansion of cells in the hypodermis of ripe apples, resulting in more densely packed cells in this layer. This change in morphology appears to be linked with reduced transpirational water loss in the fruit. CONCLUSIONS These findings confirm PG1's role in apple fruit softening and suggests that this is achieved in part by reducing cellular adhesion. This is consistent with previous studies carried out in strawberry but not with those performed in tomato. In apple PG1 also appears to influence other fruit texture characters such as juiciness and water loss.
Collapse
Affiliation(s)
- Ross G Atkinson
- The New Zealand Institute for Plant & Food Research Limited (PFR), Mount Albert Research Centre, Private Bag 92169, Auckland 1142, New Zealand
| | - Paul W Sutherland
- The New Zealand Institute for Plant & Food Research Limited (PFR), Mount Albert Research Centre, Private Bag 92169, Auckland 1142, New Zealand
| | - Sarah L Johnston
- The New Zealand Institute for Plant & Food Research Limited (PFR), Mount Albert Research Centre, Private Bag 92169, Auckland 1142, New Zealand
| | - Kularajathevan Gunaseelan
- The New Zealand Institute for Plant & Food Research Limited (PFR), Mount Albert Research Centre, Private Bag 92169, Auckland 1142, New Zealand
| | - Ian C Hallett
- The New Zealand Institute for Plant & Food Research Limited (PFR), Mount Albert Research Centre, Private Bag 92169, Auckland 1142, New Zealand
| | - Deepali Mitra
- The New Zealand Institute for Plant & Food Research Limited (PFR), Mount Albert Research Centre, Private Bag 92169, Auckland 1142, New Zealand
| | - David A Brummell
- PFR, Food Industry Science Centre, Private Bag 11600, Palmerston North, 4442, New Zealand
| | - Roswitha Schröder
- The New Zealand Institute for Plant & Food Research Limited (PFR), Mount Albert Research Centre, Private Bag 92169, Auckland 1142, New Zealand
| | - Jason W Johnston
- The New Zealand Institute for Plant & Food Research Limited (PFR), Mount Albert Research Centre, Private Bag 92169, Auckland 1142, New Zealand
| | - Robert J Schaffer
- The New Zealand Institute for Plant & Food Research Limited (PFR), Mount Albert Research Centre, Private Bag 92169, Auckland 1142, New Zealand
- The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| |
Collapse
|
29
|
Profiling the main cell wall polysaccharides of tobacco leaves using high-throughput and fractionation techniques. Carbohydr Polym 2012. [DOI: 10.1016/j.carbpol.2012.01.044] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
30
|
Pogorelko G, Fursova O, Lin M, Pyle E, Jass J, Zabotina OA. Post-synthetic modification of plant cell walls by expression of microbial hydrolases in the apoplast. PLANT MOLECULAR BIOLOGY 2011; 77:433-45. [PMID: 21910026 DOI: 10.1007/s11103-011-9822-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Accepted: 08/23/2011] [Indexed: 05/25/2023]
Abstract
The systematic creation of defined cell wall modifications in the model plant Arabidopsis thaliana by expression of microbial hydrolases with known specific activities is a promising approach to examine the impacts of cell wall composition and structure on both plant fitness and cell wall recalcitrance. Moreover, this approach allows the direct evaluation in living plants of hydrolase specificity, which can differ from in vitro specificity. To express genes encoding microbial hydrolases in A. thaliana, and target the hydrolases to the apoplast compartment, we constructed an expression cassette composed of the Cauliflower Mosaic Virus 35S RNA promoter, the A. thaliana β-expansin signal peptide, and the fluorescent marker protein YFP. Using this construct we successfully introduced into Colombia-0 plants three Aspergillus nidulans hydrolases, β-xylosidase/α-arabinosidase, feruloyl esterase, acetylxylan esterase, and a Xanthomonas oryzae putative a-L: -arabinofuranosidase. Fusion with YFP permitted quick and easy screening of transformants, detection of apoplastic localization, and protein size confirmation. Compared to wild-type Col-0, all transgenic lines showed a significant increase in the corresponding hydrolytic activity in the apoplast and changes in cell wall composition. Examination of hydrolytic activity in the transgenic plants also showed, for the first time, that the X. oryzae gene indeed encoded an enzyme with α-L: -arabinofuranosidase activity. None of the transgenic plants showed a visible phenotype; however, the induced compositional changes increased the degradability of biomass from plants expressing feruloyl esterase and β-xylosidase/α-arabinosidase. Our results demonstrate the viability of creating a set of transgenic A. thaliana plants with modified cell walls to use as a toolset for investigation of how cell wall composition contributes to recalcitrance and affects plant fitness.
Collapse
Affiliation(s)
- Gennady Pogorelko
- Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | | | | | | | | | | |
Collapse
|
31
|
De Lorenzo G, Brutus A, Savatin DV, Sicilia F, Cervone F. Engineering plant resistance by constructing chimeric receptors that recognize damage-associated molecular patterns (DAMPs). FEBS Lett 2011; 585:1521-8. [PMID: 21536040 DOI: 10.1016/j.febslet.2011.04.043] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Revised: 04/15/2011] [Accepted: 04/18/2011] [Indexed: 11/26/2022]
Abstract
An efficient sensing of danger and a rapid activation of the immune system are crucial for the survival of plants. Conserved pathogen/microbe-associated molecular patterns (PAMPs/MAMPs) and endogenous molecular patterns, which are present only when the tissue is infected or damaged (damage-associated molecular patterns or DAMPs), can act as danger signals and activate the plant immune response. These molecules are recognized by surface receptors that are indicated as pattern recognition receptors (PRRs). In this paper we summarize recent information on oligogalacturonides (OGs), a class of DAMPs that is released from the extracellular matrix of the plant cell during pathogen attack or wounding. We also describe the characteristics of the Arabidopsis Wall-Associated Kinase 1 (WAK1), a PRR recently identified as a receptor of OGs and discuss the use of WAK1, PRRs and chimeric receptors to engineer resistance in crop plants.
Collapse
Affiliation(s)
- Giulia De Lorenzo
- Istituto Pasteur-Cenci-Bolognetti, Dipartimento di Biologia e Biotecnologie C. Darwin, Sapienza Università di Roma, Rome, Italy.
| | | | | | | | | |
Collapse
|
32
|
Selivanov NY, Sorokina IV, Selivanova OG, Sokolov OI, Ignatov VV. Investigation of enzymatic degradation of pectin polysaccharides under limiting conditions. BIOCHEMISTRY (MOSCOW) 2011; 73:80-6. [DOI: 10.1134/s0006297908010124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
33
|
De Caroli M, Lenucci MS, Di Sansebastiano GP, Dalessandro G, De Lorenzo G, Piro G. Protein trafficking to the cell wall occurs through mechanisms distinguishable from default sorting in tobacco. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 65:295-308. [PMID: 21223393 DOI: 10.1111/j.1365-313x.2010.04421.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The secretory pathway in plants involves sustained traffic to the cell wall, as matrix components, polysaccharides and proteins reach the cell wall through the endomembrane system. We studied the secretion pattern of cell-wall proteins in tobacco protoplasts and leaf epidermal cells using fluorescent forms of a pectin methylesterase inhibitor protein (PMEI1) and a polygalacturonase inhibitor protein (PGIP2). The two most representative protein fusions, secGFP-PMEI1 and PGIP2-GFP, reached the cell wall by passing through ER and Golgi stacks but using distinct mechanisms. secGFP-PMEI1 was linked to a glycosylphosphatidylinositol (GPI) anchor and stably accumulated in the cell wall, regulating the activity of the endogenous pectin methylesterases (PMEs) that are constitutively present in this compartment. A mannosamine-induced non-GPI-anchored form of PMEI1 as well as a form (PMEI1-GFP) that was unable to bind membranes failed to reach the cell wall, and accumulated in the Golgi stacks. In contrast, PGIP2-GFP moved as a soluble cargo protein along the secretory pathway, but was not stably retained in the cell wall, due to internalization to an endosomal compartment and eventually the vacuole. Stable localization of PGIP2 in the wall was observed only in the presence of a specific fungal endopolygalacturonase ligand in the cell wall. Both secGFP-PMEI1 and PGIP2-GFP sorting were distinguishable from that of a secreted GFP, suggesting that rigorous and more complex controls than the simple mechanism of bulk flow are the basis of cell-wall growth and differentiation.
Collapse
Affiliation(s)
- Monica De Caroli
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, 73100 Lecce, Italy
| | | | | | | | | | | |
Collapse
|
34
|
Lionetti V, Francocci F, Ferrari S, Volpi C, Bellincampi D, Galletti R, D’Ovidio R, De Lorenzo G, Cervone F. Engineering the cell wall by reducing de-methyl-esterified homogalacturonan improves saccharification of plant tissues for bioconversion. Proc Natl Acad Sci U S A 2010; 107:616-21. [PMID: 20080727 PMCID: PMC2818903 DOI: 10.1073/pnas.0907549107] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Plant cell walls represent an abundant, renewable source of biofuel and other useful products. The major bottleneck for the industrial scale-up of their conversion to simple sugars (saccharification), to be subsequently converted by microorganisms into ethanol or other products, is their recalcitrance to enzymatic saccharification. We investigated whether the structure of pectin that embeds the cellulose-hemicellulose network affects the exposure of cellulose to enzymes and consequently the process of saccharification. Reduction of de-methyl-esterified homogalacturonan (HGA) in Arabidopsis plants through the expression of a fungal polygalacturonase (PG) or an inhibitor of pectin methylesterase (PMEI) increased the efficiency of enzymatic saccharification. The improved enzymatic saccharification efficiency observed in transformed plants could also reduce the need for acid pretreatment. Similar results were obtained in PG-expressing tobacco plants and in PMEI-expressing wheat plants, indicating that reduction of de-methyl-esterified HGA may be used in crop species to facilitate the process of biomass saccharification.
Collapse
Affiliation(s)
- Vincenzo Lionetti
- Istituto Pasteur Fondazione Cenci Bolognetti, Dipartimento di Biologia Vegetale, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy; and
| | - Fedra Francocci
- Istituto Pasteur Fondazione Cenci Bolognetti, Dipartimento di Biologia Vegetale, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy; and
| | - Simone Ferrari
- Istituto Pasteur Fondazione Cenci Bolognetti, Dipartimento di Biologia Vegetale, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy; and
| | - Chiara Volpi
- Dipartimento di Agrobiologia e Agrochimica, Università della Tuscia, Via San Camillo de Lellis, s.n.c., 01100 Viterbo, Italy
| | - Daniela Bellincampi
- Istituto Pasteur Fondazione Cenci Bolognetti, Dipartimento di Biologia Vegetale, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy; and
| | - Roberta Galletti
- Istituto Pasteur Fondazione Cenci Bolognetti, Dipartimento di Biologia Vegetale, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy; and
| | - Renato D’Ovidio
- Dipartimento di Agrobiologia e Agrochimica, Università della Tuscia, Via San Camillo de Lellis, s.n.c., 01100 Viterbo, Italy
| | - Giulia De Lorenzo
- Istituto Pasteur Fondazione Cenci Bolognetti, Dipartimento di Biologia Vegetale, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy; and
| | - Felice Cervone
- Istituto Pasteur Fondazione Cenci Bolognetti, Dipartimento di Biologia Vegetale, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy; and
| |
Collapse
|
35
|
Caffall KH, Mohnen D. The structure, function, and biosynthesis of plant cell wall pectic polysaccharides. Carbohydr Res 2009; 344:1879-900. [PMID: 19616198 DOI: 10.1016/j.carres.2009.05.021] [Citation(s) in RCA: 948] [Impact Index Per Article: 63.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2008] [Revised: 05/04/2009] [Accepted: 05/06/2009] [Indexed: 11/15/2022]
Abstract
Plant cell walls consist of carbohydrate, protein, and aromatic compounds and are essential to the proper growth and development of plants. The carbohydrate components make up approximately 90% of the primary wall, and are critical to wall function. There is a diversity of polysaccharides that make up the wall and that are classified as one of three types: cellulose, hemicellulose, or pectin. The pectins, which are most abundant in the plant primary cell walls and the middle lamellae, are a class of molecules defined by the presence of galacturonic acid. The pectic polysaccharides include the galacturonans (homogalacturonan, substituted galacturonans, and RG-II) and rhamnogalacturonan-I. Galacturonans have a backbone that consists of alpha-1,4-linked galacturonic acid. The identification of glycosyltransferases involved in pectin synthesis is essential to the study of cell wall function in plant growth and development and for maximizing the value and use of plant polysaccharides in industry and human health. A detailed synopsis of the existing literature on pectin structure, function, and biosynthesis is presented.
Collapse
Affiliation(s)
- Kerry Hosmer Caffall
- University of Georgia, Department of Biochemistry and Molecular Biology and Complex Carbohydrate Research Center, Athens, 30602, United States
| | | |
Collapse
|
36
|
Protsenko MA, Buza NL, Krinitsyna AA, Bulantseva EA, Korableva NP. Polygalacturonase-inhibiting protein is a structural component of plant cell wall. BIOCHEMISTRY (MOSCOW) 2008; 73:1053-62. [PMID: 18991551 DOI: 10.1134/s0006297908100015] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
It is generally believed that plants "evolved a strategy of defending themselves from a phytopathogen attack" during evolution. This metaphor is used frequently, but it does not facilitate understanding of the mechanisms providing plant resistance to the invasion of foreign organisms and to other unfavorable external factors, as well as the role of these mechanisms in plant growth and development. Information on processes involving one of the plant resistance factors--polygalacturonase-inhibiting protein (PGIP)--is considered in this review. The data presented here indicate that PGIP, being an extracellular leucine-rich repeat-containing protein, performs important functions in the structure of plant cell wall. Amino acid residues participating in PGIP binding to homogalacturonan in the cell wall have been determined. The degree of methylation and the mode of distribution of homogalacturonan methyl groups are responsible for the formation of a complex structure, which perhaps determines the specificity of PGIP binding to pectin. PGIP is apparently one of the components of plant cell wall determining some of its mechanical properties; it is involved in biochemical processes related to growth, expansion, and maceration, and it influences plant morphology. Polygalacturonase (PG) is present within practically all plant tissues, but the manifestation of its activity varies significantly depending on physiological conditions in the tissue. Apparently, the regulation of PG functioning in apoplast significantly affects the development of processes associated with the modification of the structure of plant cell wall. PGIP can regulate PG activity through binding to homogalacturonan. The genetically determined structure of PGIP in plants determines the mode of its interaction with an invader and perhaps is one of the factors responsible for the set of pathogens causing diseases in a given plant species.
Collapse
Affiliation(s)
- M A Protsenko
- Bach Institute of Biochemistry, Russian Academy of Sciences, Moscow, 119071, Russia.
| | | | | | | | | |
Collapse
|
37
|
Ferrari S, Galletti R, Pontiggia D, Manfredini C, Lionetti V, Bellincampi D, Cervone F, De Lorenzo G. Transgenic expression of a fungal endo-polygalacturonase increases plant resistance to pathogens and reduces auxin sensitivity. PLANT PHYSIOLOGY 2008; 146:669-81. [PMID: 18065558 PMCID: PMC2245817 DOI: 10.1104/pp.107.109686] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2007] [Accepted: 11/28/2007] [Indexed: 05/20/2023]
Abstract
Polygalacturonases (PGs), enzymes that hydrolyze the homogalacturonan of the plant cell wall, are virulence factors of several phytopathogenic fungi and bacteria. On the other hand, PGs may activate defense responses by releasing oligogalacturonides (OGs) perceived by the plant cell as host-associated molecular patterns. Tobacco (Nicotiana tabacum) and Arabidopsis (Arabidopsis thaliana) plants expressing a fungal PG (PG plants) have a reduced content of homogalacturonan. Here, we show that PG plants are more resistant to microbial pathogens and have constitutively activated defense responses. Interestingly, either in tobacco PG or wild-type plants treated with OGs, resistance to fungal infection is suppressed by exogenous auxin, whereas sensitivity to auxin of PG plants is reduced in different bioassays. The altered plant defense responses and auxin sensitivity in PG plants may reflect an increased accumulation of OGs and subsequent antagonism of auxin action. Alternatively, it may be a consequence of perturbations of cellular physiology and elevated defense status as a result of altered cell wall architecture.
Collapse
Affiliation(s)
- Simone Ferrari
- Dipartimento di Biologia Vegetale, Università degli Studi di Roma La Sapienza, 00185 Rome, Italy
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Joubert DA, Kars I, Wagemakers L, Bergmann C, Kemp G, Vivier MA, van Kan JAL. A polygalacturonase-inhibiting protein from grapevine reduces the symptoms of the endopolygalacturonase BcPG2 from Botrytis cinerea in Nicotiana benthamiana leaves without any evidence for in vitro interaction. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2007; 20:392-402. [PMID: 17427809 DOI: 10.1094/mpmi-20-4-0392] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Six endopolygalacturonases from Botrytis cinerea (BcPG1 to BcPG6) as well as mutated forms of BcPG1 and BcPG2 were expressed transiently in leaves of Nicotiana benthamiana using agroinfiltration. Expression of BcPG1, BcPG2, BcPG4, BcPG5, and mutant BcPG1-D203A caused symptoms, whereas BcPG3, BcPG6, and mutant BcPG2-D192A caused no symptoms. Expression of BcPG2 caused the most severe symptoms, including wilting and necrosis. BcPG2 previously has been shown to be essential for B. cinerea virulence. The in vivo effect of this enzyme and the inhibition by a polygalacturonase-inhibiting protein (PGIP) was examined by coexpressing Bcpg2 and the Vvpgipl gene from Vitis vinifera in N. benthamiana. Coinfiltration resulted in a substantial reduction of the symptoms inflicted by the activity of BcPG2 in planta, as evidenced by quantifying the variable chlorophyll fluorescence yield. In vitro, however, no interaction between pure VvPGIP1 and pure BcPG2 was detected. Specifically, VvPGIP1 neither inhibited BcPG2 activity nor altered the degradation profile of polygalacturonic acid by BcPG2. Furthermore, using surface plasmon resonance technology, no physical interaction between VvPGIP1 and BcPG2 was detected in vitro. The data suggest that the in planta environment provided a context to support the interaction between BcPG2 and VvPGIP1, leading to a reduction in symptom development, whereas neither of the in vitro assays detected any interaction between these proteins.
Collapse
Affiliation(s)
- Dirk A Joubert
- Institute for Wine Biotechnology, Department of Viticulture and Oenology, Stellenbosch University, Stellenbosch, 7600, South Africa
| | | | | | | | | | | | | |
Collapse
|
39
|
Nardini A, Gascó A, Cervone F, Salleo S. Reduced content of homogalacturonan does not alter the ion-mediated increase in xylem hydraulic conductivity in tobacco. PLANT PHYSIOLOGY 2007; 143:1975-81. [PMID: 17307902 PMCID: PMC1851802 DOI: 10.1104/pp.106.091827] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2006] [Accepted: 01/27/2007] [Indexed: 05/14/2023]
Abstract
Xylem hydraulic conductivity (K(s)) in stems of tobacco (Nicotiana tabacum) wild-type SR1 was compared to that of PG7 and PG16, two transgenic lines with increased levels of expression of the gene encoding the Aspergillus niger endopolygalacturonase (AnPGII). Activity of AnPGII removes in planta blocks of homogalacturonan (HG) with deesterified carboxyls, thus increasing the degree of neutrality of pectins. The effect of K+ was tested in increasing stem K(s) using model plants with more neutral polysaccharides in primary walls and, hence, in intervessel pit membranes. K(s) measured with deionized water was compared to that with KCl solutions at increasing concentrations (DeltaK(s), %). Plants transformed for HG degree of neutrality showed a dwarfed phenotype, but DeltaK(s) did not differ among the three experimental groups. The ion-mediated hydraulic effect saturated at a KCl concentration of 25 mm in SR1 plants. All the three tobacco lines showed DeltaK(s) of around +12.5% and +17.0% when perfused with 10 and 25 mm KCl, respectively. Because modification of HG content did not influence ion-mediated hydraulic enhancement, we suggest that pectin components other than HG, like rhamnogalacturonan-I and/or rhamnogalacturonan-II, might play important roles in the hydrogel behavior of pit membranes.
Collapse
Affiliation(s)
- Andrea Nardini
- Dipartimento di Biologia, Università di Trieste, 34127 Trieste, Italy.
| | | | | | | |
Collapse
|
40
|
Mata GH, Sepúlveda B, Richards A, Soriano E. The architecture of Phaseolus vulgaris root is altered when a defense response is elicited by an oligogalacturonide. ACTA ACUST UNITED AC 2006. [DOI: 10.1590/s1677-04202006000200012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Phytoalexin accumulation is one of a myriad of plant defense responses; these responses can be elicited by pathogens or molecules such as oligogalacturonides (OGAs). Phytoalexin production has been considered a vital component of the resistance mechanisms that determine the outcome of many plant-microbe interactions. Besides inducing defense responses, OGAs have been shown to affect plant development, which normally is controlled by plant hormones, particularly auxin. In this work we measured phytoalexin accumulation in roots of bean (Phaseolus vulgaris L.) seedlings grown in the presence or absence of the auxin 3-naphtalenacetic acid (NAA) and treated with a decagalacturonide (OGA10). We found that OGA10 (0.01 mM) caused phytoalexin production and also inhibited main root elongation and the formation of secondary roots by ca. 33%. Expression of Cycb 2-2 was also inhibited, while pal and chs were highly expressed. The root growth inhibition was not overcome by the addition of a stimulatory concentration of auxin (NAA 0.1 µM). The data suggests that elicitation of defense responses in the root alters metabolism in such a way that results in the modification of the architecture of bean roots.
Collapse
Affiliation(s)
| | | | - Alan Richards
- Universidad Michoacana de San Nicolás de Hidalgo, México
| | - Eva Soriano
- Universidad Michoacana de San Nicolás de Hidalgo, México
| |
Collapse
|
41
|
Spadoni S, Zabotina O, Di Matteo A, Mikkelsen JD, Cervone F, De Lorenzo G, Mattei B, Bellincampi D. Polygalacturonase-inhibiting protein interacts with pectin through a binding site formed by four clustered residues of arginine and lysine. PLANT PHYSIOLOGY 2006; 141:557-64. [PMID: 16648220 PMCID: PMC1475430 DOI: 10.1104/pp.106.076950] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2006] [Revised: 04/13/2006] [Accepted: 04/19/2006] [Indexed: 05/08/2023]
Abstract
Polygalacturonase-inhibiting protein (PGIP) is a cell wall protein that inhibits fungal polygalacturonases (PGs) and retards the invasion of plant tissues by phytopathogenic fungi. Here, we report the interaction of two PGIP isoforms from Phaseolus vulgaris (PvPGIP1 and PvPGIP2) with both polygalacturonic acid and cell wall fractions containing uronic acids. We identify in the three-dimensional structure of PvPGIP2 a motif of four clustered arginine and lysine residues (R183, R206, K230, and R252) responsible for this binding. The four residues were mutated and the protein variants were expressed in Pichia pastoris. The ability of both wild-type and mutated proteins to bind pectins was investigated by affinity chromatography. Single mutations impaired the binding and double mutations abolished the interaction, thus indicating that the four clustered residues form the pectin-binding site. Remarkably, the binding of PGIP to pectin is displaced in vitro by PGs, suggesting that PGIP interacts with pectin and PGs through overlapping although not identical regions. The specific interaction of PGIP with polygalacturonic acid may be strategic to protect pectins from the degrading activity of fungal PGs.
Collapse
Affiliation(s)
- Sara Spadoni
- Dipartimento di Biologia Vegetale, Università di Roma La Sapienza, 00185 Rome, Italy
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Di Matteo A, Bonivento D, Tsernoglou D, Federici L, Cervone F. Polygalacturonase-inhibiting protein (PGIP) in plant defence: a structural view. PHYTOCHEMISTRY 2006; 67:528-33. [PMID: 16458942 DOI: 10.1016/j.phytochem.2005.12.025] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2005] [Accepted: 12/16/2005] [Indexed: 05/06/2023]
Abstract
Polygalacturonase-inhibiting proteins are plant extracellular leucine-rich repeat proteins that specifically bind and inhibit fungal polygalacturonases. The interaction with PGIP limits the destructive potential of polygalacturonases and might trigger the plant defence responses induced by oligogalacturonides. A high degree of polymorphism is found both in PGs and PGIPs, accounting for the specificity of different plant inhibitors for PGs from different fungi. Here, we review the structural features and our current understanding of the PG-PGIP interaction.
Collapse
Affiliation(s)
- Adele Di Matteo
- Dipartimento di Biologia Vegetale, Universita' di Roma "La Sapienza", Piazzale Aldo Moro 5, 00185 Roma, Italy
| | | | | | | | | |
Collapse
|