1
|
Pedrazzini E, Vitale A. Protein Biosynthesis and Maturation in the ER. Methods Mol Biol 2024; 2772:191-205. [PMID: 38411815 DOI: 10.1007/978-1-0716-3710-4_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
The endoplasmic reticulum takes care of the folding, assembly, and quality control of thousands of proteins destined to the different compartments of the endomembrane system or to be secreted in the apoplast. Here we describe how these early events in the life of all these proteins can be followed biochemically by using velocity or isopycnic ultracentrifugation, metabolic labelling with radioactive amino acids, drug treatments, and immunoselection in various conditions and, in certain cases, predicted in silico by algorithms.
Collapse
Affiliation(s)
- Emanuela Pedrazzini
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche, Milan, Italy.
| | - Alessandro Vitale
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche, Milan, Italy
| |
Collapse
|
2
|
Devi V, Bhushan B, Gupta M, Sethi M, Kaur C, Singh A, Singh V, Kumar R, Rakshit S, Chaudhary DP. Genetic and molecular understanding for the development of methionine-rich maize: a holistic approach. FRONTIERS IN PLANT SCIENCE 2023; 14:1249230. [PMID: 37794928 PMCID: PMC10546030 DOI: 10.3389/fpls.2023.1249230] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/01/2023] [Indexed: 10/06/2023]
Abstract
Maize (Zea mays) is the most important coarse cereal utilized as a major energy source for animal feed and humans. However, maize grains are deficient in methionine, an essential amino acid required for proper growth and development. Synthetic methionine has been used in animal feed, which is costlier and leads to adverse health effects on end-users. Bio-fortification of maize for methionine is, therefore, the most sustainable and environmental friendly approach. The zein proteins are responsible for methionine deposition in the form of δ-zein, which are major seed storage proteins of maize kernel. The present review summarizes various aspects of methionine including its importance and requirement for different subjects, its role in animal growth and performance, regulation of methionine content in maize and its utilization in human food. This review gives insight into improvement strategies including the selection of natural high-methionine mutants, molecular modulation of maize seed storage proteins and target key enzymes for sulphur metabolism and its flux towards the methionine synthesis, expression of synthetic genes, modifying gene codon and promoters employing genetic engineering approaches to enhance its expression. The compiled information on methionine and essential amino acids linked Quantitative Trait Loci in maize and orthologs cereals will give insight into the hotspot-linked genomic regions across the diverse range of maize germplasm through meta-QTL studies. The detailed information about candidate genes will provide the opportunity to target specific regions for gene editing to enhance methionine content in maize. Overall, this review will be helpful for researchers to design appropriate strategies to develop high-methionine maize.
Collapse
Affiliation(s)
- Veena Devi
- Division of Biochemistry, Indian Institute of Maize Research, Ludhiana, Punjab, India
| | - Bharat Bhushan
- Division of Biochemistry, Indian Institute of Maize Research, Ludhiana, Punjab, India
| | - Mamta Gupta
- Division of Biotechnology, Indian Institute of Maize Research, Ludhiana, Punjab, India
| | - Mehak Sethi
- Division of Biochemistry, Indian Institute of Maize Research, Ludhiana, Punjab, India
| | - Charanjeet Kaur
- Department of Biochemistry, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Alla Singh
- Division of Biotechnology, Indian Institute of Maize Research, Ludhiana, Punjab, India
| | - Vishal Singh
- Division of Plant Breeding, Indian Institute of Maize Research, Ludhiana, Punjab, India
| | - Ramesh Kumar
- Division of Plant Breeding, Indian Institute of Maize Research, Ludhiana, Punjab, India
| | - Sujay Rakshit
- Division of Plant Breeding, Indian Institute of Maize Research, Ludhiana, Punjab, India
| | - Dharam P. Chaudhary
- Division of Biochemistry, Indian Institute of Maize Research, Ludhiana, Punjab, India
| |
Collapse
|
3
|
Zhang Y, Wang Q, Liu Y, Dong S, Zhang Y, Zhu Y, Tian Y, Li J, Wang Z, Wang Y, Yan F. Overexpressing GmCGS2 Improves Total Amino Acid and Protein Content in Soybean Seed. Int J Mol Sci 2023; 24:14125. [PMID: 37762432 PMCID: PMC10532240 DOI: 10.3390/ijms241814125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 09/10/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Soybean (Glycine max (L.) Merr.) is an important source of plant protein, the nutritional quality of which is considerably affected by the content of the sulfur-containing amino acid, methionine (Met). To improve the quality of soybean protein and increase the Met content in seeds, soybean cystathionine γ-synthase 2 (GmCGS2), the first unique enzyme in Met biosynthesis, was overexpressed in the soybean cultivar "Jack", producing three transgenic lines (OE3, OE4, and OE10). We detected a considerable increase in the content of free Met and other free amino acids in the developing seeds of the three transgenic lines at the 15th and 75th days after flowering (15D and 75D). In addition, transcriptome analysis showed that the expression of genes related to Met biosynthesis from the aspartate-family pathway and S-methyl Met cycle was promoted in developing green seeds of OE10. Ultimately, the accumulation of total amino acids and soluble proteins in transgenic mature seeds was promoted. Altogether, these results indicated that GmCGS2 plays an important role in Met biosynthesis, by providing a basis for improving the nutritional quality of soybean seeds.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Fan Yan
- Correspondence: (Y.W.); (F.Y.)
| |
Collapse
|
4
|
Perozeni F, Pivato M, Angelini M, Maricchiolo E, Pompa A, Ballottari M. Towards microalga-based superfoods: heterologous expression of zeolin in Chlamydomonas reinhardtii. FRONTIERS IN PLANT SCIENCE 2023; 14:1184064. [PMID: 37229116 PMCID: PMC10203602 DOI: 10.3389/fpls.2023.1184064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 04/17/2023] [Indexed: 05/27/2023]
Abstract
Microalgae are unicellular photosynthetic organisms that can be grown in artificial systems to capture CO2, release oxygen, use nitrogen- and phosphorus-rich wastes, and produce biomass and bioproducts of interest including edible biomass for space exploration. In the present study, we report a metabolic engineering strategy for the green alga Chlamydomonas reinhardtii to produce high-value proteins for nutritional purposes. Chlamydomonas reinhardtii is a species approved by the U.S. Food and Drug Administration (FDA) for human consumption, and its consumption has been reported to improve gastrointestinal health in both murine models and humans. By utilizing the biotechnological tools available for this green alga, we introduced a synthetic gene encoding a chimeric protein, zeolin, obtained by merging the γ-zein and phaseolin proteins, in the algal genome. Zein and phaseolin are major seed storage proteins of maize (Zea mays) and bean (Phaseolus vulgaris) that accumulate in the endoplasmic reticulum (ER) and storage vacuoles, respectively. Seed storage proteins have unbalanced amino acid content, and for this reason, need to be complemented with each other in the diet. The chimeric recombinant zeolin protein represents an amino acid storage strategy with a balanced amino acid profile. Zeolin protein was thus efficiently expressed in Chlamydomonas reinhardtii; thus, we obtained strains that accumulate this recombinant protein in the endoplasmic reticulum, reaching a concentration up to 5.5 fg cell-1, or secrete it in the growth medium, with a titer value up to 82 µg/L, enabling the production of microalga-based super-food.
Collapse
Affiliation(s)
- Federico Perozeni
- Dipartimento di Biotecnologie, Università degli Studi di Verona, Verona, Italy
| | - Matteo Pivato
- Dipartimento di Biotecnologie, Università degli Studi di Verona, Verona, Italy
| | - Margherita Angelini
- Dipartimento di Biotecnologie, Università degli Studi di Verona, Verona, Italy
| | - Elisa Maricchiolo
- Dipartimento di Scienze Biomolecolari, Università degli Studi di Urbino, Urbino, Italy
| | - Andrea Pompa
- Dipartimento di Scienze Biomolecolari, Università degli Studi di Urbino, Urbino, Italy
| | - Matteo Ballottari
- Dipartimento di Biotecnologie, Università degli Studi di Verona, Verona, Italy
| |
Collapse
|
5
|
Schwestka J, Zeh L, Tschofen M, Schubert F, Arcalis E, Esteve-Gasent M, Pedrazzini E, Vitale A, Stoger E. Generation of multi-layered protein bodies in N. benthamiana for the encapsulation of vaccine antigens. FRONTIERS IN PLANT SCIENCE 2023; 14:1109270. [PMID: 36733717 PMCID: PMC9887037 DOI: 10.3389/fpls.2023.1109270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 01/02/2023] [Indexed: 06/18/2023]
Abstract
The ability of plants to assemble particulate structures such as virus-like particles and protein storage organelles allows the direct bioencapsulation of recombinant proteins during the manufacturing process, which holds promise for the development of new drug delivery vehicles. Storage organelles found in plants such as protein bodies (PBs) have been successfully used as tools for accumulation and encapsulation of recombinant proteins. The fusion of sequences derived from 27-kDa-γ-zein, a major storage protein of maize, with a protein of interest leads to the incorporation of the chimeric protein into the stable and protected environment inside newly induced PBs. While this procedure has proven successful for several, but not all recombinant proteins, the aim of this study was to refine the technology by using a combination of PB-forming proteins, thereby generating multi-layered protein assemblies in N. benthamiana. We used fluorescent proteins to demonstrate that up to three proteinaceous components can be incorporated into different layers. In addition to 27-kDa-γ-zein, which is essential for PB initiation, 16-kDa-γ-zein was identified as a key element to promote the incorporation of a third zein-component into the core of the PBs. We show that a vaccine antigen could be incorporated into the matrix of multi-layered PBs, and the protein microparticles were characterized by confocal and electron microscopy as well as flow cytometry. In future, this approach will enable the generation of designer PBs that serve as drug carriers and integrate multiple components that can be functionalized in different ways.
Collapse
Affiliation(s)
- Jennifer Schwestka
- Institute of Plant Biotechnology and Cell Biology, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Lukas Zeh
- Institute of Plant Biotechnology and Cell Biology, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Marc Tschofen
- Institute of Plant Biotechnology and Cell Biology, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Fabian Schubert
- Institute of Plant Biotechnology and Cell Biology, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Elsa Arcalis
- Institute of Plant Biotechnology and Cell Biology, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Maria Esteve-Gasent
- Department of Veterinary Pathobiology, College of Veterinary Medicine, College Station, TX, United States
| | - Emanuela Pedrazzini
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche (CNR), Milano, Italy
| | - Alessandro Vitale
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche (CNR), Milano, Italy
| | - Eva Stoger
- Institute of Plant Biotechnology and Cell Biology, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| |
Collapse
|
6
|
Feng Z, Li X, Fan B, Zhu C, Chen Z. Maximizing the Production of Recombinant Proteins in Plants: From Transcription to Protein Stability. Int J Mol Sci 2022; 23:13516. [PMID: 36362299 PMCID: PMC9659199 DOI: 10.3390/ijms232113516] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 11/07/2023] Open
Abstract
The production of therapeutic and industrial recombinant proteins in plants has advantages over established bacterial and mammalian systems in terms of cost, scalability, growth conditions, and product safety. In order to compete with these conventional expression systems, however, plant expression platforms must have additional economic advantages by demonstrating a high protein production yield with consistent quality. Over the past decades, important progress has been made in developing strategies to increase the yield of recombinant proteins in plants by enhancing their expression and reducing their degradation. Unlike bacterial and animal systems, plant expression systems can utilize not only cell cultures but also whole plants for the production of recombinant proteins. The development of viral vectors and chloroplast transformation has opened new strategies to drastically increase the yield of recombinant proteins from plants. The identification of promoters for strong, constitutive, and inducible promoters or the tissue-specific expression of transgenes allows for the production of recombinant proteins at high levels and for special purposes. Advances in the understanding of RNAi have led to effective strategies for reducing gene silencing and increasing recombinant protein production. An increased understanding of protein translation, quality control, trafficking, and degradation has also helped with the development of approaches to enhance the synthesis and stability of recombinant proteins in plants. In this review, we discuss the progress in understanding the processes that control the synthesis and degradation of gene transcripts and proteins, which underlie a variety of developed strategies aimed at maximizing recombinant protein production in plants.
Collapse
Affiliation(s)
- Ziru Feng
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Xifeng Li
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Baofang Fan
- Department of Botany and Plant Pathology, Purdue Center for Plant Biology, Purdue University, West Lafayette, IN 47907-2054, USA
| | - Cheng Zhu
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Zhixiang Chen
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China
- Department of Botany and Plant Pathology, Purdue Center for Plant Biology, Purdue University, West Lafayette, IN 47907-2054, USA
| |
Collapse
|
7
|
Li X, Li X, Fan B, Zhu C, Chen Z. Specialized endoplasmic reticulum-derived vesicles in plants: Functional diversity, evolution, and biotechnological exploitation. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:821-835. [PMID: 35142108 PMCID: PMC9314129 DOI: 10.1111/jipb.13233] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
A central role of the endoplasmic reticulum (ER) is the synthesis, folding and quality control of secretory proteins. Secretory proteins usually exit the ER to enter the Golgi apparatus in coat protein complex II (COPII)-coated vesicles before transport to different subcellular destinations. However, in plants there are specialized ER-derived vesicles (ERDVs) that carry specific proteins but, unlike COPII vesicles, can exist as independent organelles or travel to the vacuole in a Golgi-independent manner. These specialized ERDVs include protein bodies and precursor-accumulating vesicles that accumulate storage proteins in the endosperm during seed development. Specialized ERDVs also include precursor protease vesicles that accumulate amino acid sequence KDEL-tailed cysteine proteases and ER bodies in Brassicales plants that accumulate myrosinases that hydrolyzes glucosinolates. These functionally specialized ERDVs act not only as storage organelles but also as platforms for signal-triggered processing, activation and deployment of specific proteins with important roles in plant growth, development and adaptive responses. Some specialized ERDVs have also been exploited to increase production of recombinant proteins and metabolites. Here we discuss our current understanding of the functional diversity, evolutionary mechanisms and biotechnological application of specialized ERDVs, which are associated with some of the highly remarkable characteristics important to plants.
Collapse
Affiliation(s)
- Xie Li
- College of Life Science, Key Laboratory of Marine Food Quality and Hazard Controlling Technology of Zhejiang ProvinceChina Jiliang UniversityHangzhou310018China
| | - Xifeng Li
- College of Life Science, Key Laboratory of Marine Food Quality and Hazard Controlling Technology of Zhejiang ProvinceChina Jiliang UniversityHangzhou310018China
| | - Baofang Fan
- Department of Botany and Plant Pathology, Center for Plant BiologyPurdue UniversityWest Lafayette47907‐2054INUSA
| | - Cheng Zhu
- College of Life Science, Key Laboratory of Marine Food Quality and Hazard Controlling Technology of Zhejiang ProvinceChina Jiliang UniversityHangzhou310018China
| | - Zhixiang Chen
- College of Life Science, Key Laboratory of Marine Food Quality and Hazard Controlling Technology of Zhejiang ProvinceChina Jiliang UniversityHangzhou310018China
- Department of Botany and Plant Pathology, Center for Plant BiologyPurdue UniversityWest Lafayette47907‐2054INUSA
| |
Collapse
|
8
|
Brocca L, Zuccaro M, Frugis G, Mainieri D, Marrano C, Ragni L, Klein EM, Vitale A, Pedrazzini E. Two γ-zeins induce the unfolded protein response. PLANT PHYSIOLOGY 2021; 187:1428-1444. [PMID: 34618077 PMCID: PMC8566291 DOI: 10.1093/plphys/kiab367] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 07/09/2021] [Indexed: 06/13/2023]
Abstract
The rapid, massive synthesis of storage proteins that occurs during seed development stresses endoplasmic reticulum (ER) homeostasis, which activates the ER unfolded protein response (UPR). However, how different storage proteins contribute to UPR is not clear. We analyzed vegetative tissues of transgenic Arabidopsis (Arabidopsis thaliana) plants constitutively expressing the common bean (Phaseolus vulgaris) soluble vacuolar storage protein PHASEOLIN (PHSL) or maize (Zea mays) prolamins (27-kDa γ-zein or 16-kDa γ-zein) that participate in forming insoluble protein bodies in the ER. We show that 16-kDa γ-zein significantly activates the INOSITOL REQUIRING ENZYME1/BASIC LEUCINE ZIPPER 60 (bZIP60) UPR branch-but not the bZIP28 branch or autophagy-leading to induction of major UPR-controlled genes that encode folding helpers that function inside the ER. Protein blot analysis of IMMUNOGLOBULIN-BINDING PROTEIN (BIP) 1 and 2, BIP3, GLUCOSE REGULATED PROTEIN 94 (GRP94), and ER-localized DNAJ family 3A (ERDJ3A) polypeptides confirmed their higher accumulation in the plant expressing 16-kDa γ-zein. Expression of 27-kDa γ-zein significantly induced only BIP3 and ERDJ3A transcription even though an increase in GRP94 and BIP1/2 polypeptides also occurred in this plant. These results indicate a significant but weaker effect of 27-kDa γ-zein compared to 16-kDa γ-zein, which corresponds with the higher availability of 16-kDa γ-zein for BIP binding, and indicates subtle protein-specific modulations of plant UPR. None of the analyzed genes was significantly induced by PHSL or by a mutated, soluble form of 27-kDa γ-zein that traffics along the secretory pathway. Such variability in UPR induction may have influenced the evolution of storage proteins with different tissue and subcellular localization.
Collapse
Affiliation(s)
- Lorenzo Brocca
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche, Milano 20133, Italy
| | - Melania Zuccaro
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche, Milano 20133, Italy
| | - Giovanna Frugis
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche, Monterotondo Scalo, Roma 00016, Italy
| | - Davide Mainieri
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche, Milano 20133, Italy
| | - Claudia Marrano
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche, Milano 20133, Italy
| | - Laura Ragni
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche, Milano 20133, Italy
| | - Eva Maria Klein
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche, Milano 20133, Italy
| | - Alessandro Vitale
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche, Milano 20133, Italy
| | - Emanuela Pedrazzini
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche, Milano 20133, Italy
| |
Collapse
|
9
|
Yang J, Xun H, Niu L, He H, Cheng Y, Zhong X, Zhao Q, Xing G, Liu J, Yang X. Elastin-like polypeptide and γ-zein fusions significantly increase recombinant protein accumulation in soybean seeds. Transgenic Res 2021; 30:675-686. [PMID: 33963986 DOI: 10.1007/s11248-021-00258-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 05/03/2021] [Indexed: 11/30/2022]
Abstract
Soybean seeds are an ideal host for the production of recombinant proteins because of their high content of proteins, long-term stability of seed proteins under ambient conditions, and easy establishment of efficient purification protocols. In this study, a polypeptide fusion strategy was applied to explore the capacity of elastin-like polypeptide (ELP) and γ-zein fusions in increasing the accumulation of the recombinant protein in soybean seeds. Transgenic soybean plants were generated to express the γ-zein- or ELP-fused green fluorescent protein (GFP) under the control of the soybean seed-specific promoter of β-conglycinin alpha subunit (BCSP). Significant differences were observed in the accumulation of zein-GFP and GFP-ELP from that of the unfused GFP in transgenic soybean seeds based on the total soluble protein (TSP), despite the low-copy of T-DNA insertions and similar expression at the mRNA levels in selected transgenic lines. The average levels of zein-GFP and GFP-ELP accumulated in immature seeds of these transgenic lines were 0.99% and 0.29% TSP, respectively, compared with 0.07% TSP of the unfused GFP. In mature soybean seeds, the accumulation of zein-GFP and GFP-ELP proteins was 1.8% and 0.84% TSP, an increase of 3.91- and 1.82-fold, respectively, in comparison with that of the unfused GFP (0.46% TSP). Confocal laser scanning analysis showed that both zein-GFP and GFP-ELP were abundantly deposited in many small spherical particles of transgenic seeds, while there were fewer such florescence signals in the same cellular compartments of the unfused GFP-expressing seeds. Despite increased recombinant protein accumulation, there were no significant changes in the total protein and oil content in seeds between the transgenic and non-transformed plants, suggesting the possible presence of threshold limits of total protein accumulation in transgenic soybean seeds. Overall, our results indicate that γ-zein and ELP fusions significantly increased the accumulation of the recombinant protein, but exhibited no significant influence on the total protein and oil content in soybean seeds.
Collapse
Affiliation(s)
- Jing Yang
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - HongWei Xun
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Lu Niu
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Hongli He
- Jilin Normal University, Siping, 136000, China
| | | | - Xiaofang Zhong
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Qianqian Zhao
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Guojie Xing
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | | | - Xiangdong Yang
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China.
| |
Collapse
|
10
|
Hasan MM, Rima R. Genetic engineering to improve essential and conditionally essential amino acids in maize: transporter engineering as a reference. Transgenic Res 2021; 30:207-220. [PMID: 33583006 DOI: 10.1007/s11248-021-00235-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 01/21/2021] [Indexed: 11/27/2022]
Abstract
Ruminants and humans are unable to synthesize essential amino acids (EAAs) and conditionally essential amino acids (CEAAs) under normal conditions and need to acquire them from plant sources. Maize plays, as a major crop, a central role in global food security. However, maize is deficient in several EAAs and CEAAs. Genetic engineering has been successfully used to enrich the EAA content of maize to some extent, including the content of Lys, Trp, and Met. However, research on other EAAs is lacking. Genetic engineering provides several viable approaches for increasing the EAA content in maize, including transformation of a single gene, transformation of multiple genes in a single cassette, overexpression of putative amino acid transporters, engineering the amino acid biosynthesis pathway including silencing of feedback inhibition enzymes, and overexpression of major enzymes in this pathway. These challenging processes require a deep understanding of the biosynthetic and metabolic pathways of individual amino acids, and the interaction of individual amino acids with other metabolic pathways.
Collapse
Affiliation(s)
- Md Mahmudul Hasan
- Department of Nutrition and Food Technology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh.
- The Key Laboratory of Plant-Soil Interactions, Ministry of Education, Center for Resources, Environment and Food Security, Department of Plant Nutrition, China Agricultural University, Beijing, 100193, China.
| | - Rima Rima
- Faculty of Food Science and Nutrition, Poznan University of Life Sciences, Poznan, Poland
| |
Collapse
|
11
|
Ximba P, Chapman R, Meyers AE, Margolin E, van Diepen MT, Williamson AL, Rybicki EP. Characterization and Immunogenicity of HIV Envelope gp140 Zera ® Tagged Antigens. Front Bioeng Biotechnol 2020; 8:321. [PMID: 32328488 PMCID: PMC7160593 DOI: 10.3389/fbioe.2020.00321] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 03/24/2020] [Indexed: 11/13/2022] Open
Abstract
HIV-1 envelope glycoprotein (Env) remains the most relevant target for the elicitation of functional antibodies to HIV by vaccination. However, soluble Env antigens often do not elicit the desired immune responses. Delivering subunit antigens on particulate nanoparticles is an established approach to improve their immunogenicity. In this study the sequence encoding Zera®, a proline-rich domain derived from the γ-zein storage protein, was fused to either the C- or N-terminus of the superinfecting HIV-1 CAP256 gp140 envelope: Zera® generally induces the formation of protein bodies (PBs), which can significantly improve both the immunogenicity and yields of the partner protein. The expression of gp140-Zera® and Zera®-gp140 (N- and C-terminal fusions respectively) in mammalian cells was confirmed by western blot analysis and immunostaining. However, isopycnic ultracentrifugation showed that neither gp140-Zera® nor Zera®-gp140 accumulated in characteristic electron-dense PBs. gp140-Zera® elicited higher binding antibody titers in rabbits to autologous gp140 and V1V2 scaffold than Zera®-gp140. Rabbit anti-gp140-Zera® sera also had significantly higher Tier 1A neutralizing antibody titers than anti-Zera®-gp140 sera. Neither gp140-Zera® nor Zera®-gp140-specific sera neutralized Tier 1B or autologous Tier 2 viruses. These results showed that HIV-1 gp140 tagged with Zera® at either the N- or C-termini elicited high titers of gp140 and V1V2 binding antibodies, and low levels of Tier 1 neutralizing antibodies in rabbits.
Collapse
Affiliation(s)
- Phindile Ximba
- Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.,Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa.,Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Rosamund Chapman
- Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.,Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Ann E Meyers
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| | - Emmanuel Margolin
- Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.,Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa.,Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Michiel T van Diepen
- Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.,Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Anna-Lise Williamson
- Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.,Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Edward P Rybicki
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa.,Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
12
|
Arcalis E, Ibl V, Hilscher J, Rademacher T, Avesani L, Morandini F, Bortesi L, Pezzotti M, Vitale A, Pum D, De Meyer T, Depicker A, Stoger E. Russell-Like Bodies in Plant Seeds Share Common Features With Prolamin Bodies and Occur Upon Recombinant Protein Production. FRONTIERS IN PLANT SCIENCE 2019; 10:777. [PMID: 31316529 PMCID: PMC6611407 DOI: 10.3389/fpls.2019.00777] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 05/28/2019] [Indexed: 05/06/2023]
Abstract
Although many recombinant proteins have been produced in seeds at high yields without adverse effects on the plant, endoplasmic reticulum (ER) stress and aberrant localization of endogenous or recombinant proteins have also been reported. The production of murine interleukin-10 (mIL-10) in Arabidopsis thaliana seeds resulted in the de novo formation of ER-derived structures containing a large fraction of the recombinant protein in an insoluble form. These bodies containing mIL-10 were morphologically similar to Russell bodies found in mammalian cells. We confirmed that the compartment containing mIL-10 was enclosed by ER membranes, and 3D electron microscopy revealed that these structures have a spheroidal shape. Another feature shared with Russell bodies is the continued viability of the cells that generate these organelles. To investigate similarities in the formation of Russell-like bodies and the plant-specific protein bodies formed by prolamins in cereal seeds, we crossed plants containing ectopic ER-derived prolamin protein bodies with a line accumulating mIL-10 in Russell-like bodies. This resulted in seeds containing only one population of protein bodies in which mIL-10 inclusions formed a central core surrounded by the prolamin-containing matrix, suggesting that both types of protein aggregates are together removed from the secretory pathway by a common mechanism. We propose that, like mammalian cells, plant cells are able to form Russell-like bodies as a self-protection mechanism, when they are overloaded with a partially transport-incompetent protein, and we discuss the resulting challenges for recombinant protein production.
Collapse
Affiliation(s)
- Elsa Arcalis
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Verena Ibl
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Julia Hilscher
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Thomas Rademacher
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
| | - Linda Avesani
- Department of Biotechnology, University of Verona, Verona, Italy
| | | | - Luisa Bortesi
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Mario Pezzotti
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Alessandro Vitale
- Institute of Agricultural Biology and Biotechnology, CNR, Milan, Italy
| | - Dietmar Pum
- Department of Nanobiotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Thomas De Meyer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Ann Depicker
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Eva Stoger
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
- *Correspondence: Eva Stoger, ;
| |
Collapse
|
13
|
Mainieri D, Marrano CA, Prinsi B, Maffi D, Tschofen M, Espen L, Stöger E, Faoro F, Pedrazzini E, Vitale A. Maize 16-kD γ-zein forms very unusual disulfide-bonded polymers in the endoplasmic reticulum: implications for prolamin evolution. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:5013-5027. [PMID: 30085182 PMCID: PMC6184761 DOI: 10.1093/jxb/ery287] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 07/25/2018] [Indexed: 05/22/2023]
Abstract
In the lumen of the endoplasmic reticulum (ER), prolamin storage proteins of cereal seeds form very large, ordered heteropolymers termed protein bodies (PBs), which are insoluble unless treated with alcohol or reducing agents. In maize PBs, 16-kD γ-zein locates at the interface between a core of alcohol-soluble α-zeins and the outermost layer mainly composed of the reduced-soluble 27-kD γ-zein. 16-kD γ-zein originates from 27-kD γ-zein upon whole-genome duplication and is mainly characterized by deletions in the N-terminal domain that eliminate most Pro-rich repeats and part of the Cys residues involved in inter-chain bonds. 27-kD γ-zein also forms insoluble PBs when expressed in transgenic vegetative tissues. We show that in Arabidopsis leaves, 16-kD γ-zein assembles into disulfide-linked polymers that fail to efficiently become insoluble. Instead of forming PBs, these polymers accumulate as very unusual threads that markedly enlarge the ER lumen, resembling amyloid-like fibers. Domain-swapping between the two γ-zeins indicates that the N-terminal region of 16-kD γ-zein has a dominant effect in preventing full insolubilization. Therefore, a newly evolved prolamin has lost the ability to form homotypic PBs, and has acquired a new function in the assembly of natural, heteropolymeric PBs.
Collapse
Affiliation(s)
- Davide Mainieri
- Istituto di Biologia e Biotecnologia Agraria, CNR, Milano, Italy
| | | | - Bhakti Prinsi
- Dipartimento di Scienze Agrarie e Ambientali, Università degli Studi di Milano, Milano, Italy
| | - Dario Maffi
- Dipartimento di Scienze Agrarie e Ambientali, Università degli Studi di Milano, Milano, Italy
| | - Marc Tschofen
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Luca Espen
- Dipartimento di Scienze Agrarie e Ambientali, Università degli Studi di Milano, Milano, Italy
| | - Eva Stöger
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Franco Faoro
- Dipartimento di Scienze Agrarie e Ambientali, Università degli Studi di Milano, Milano, Italy
| | - Emanuela Pedrazzini
- Istituto di Biologia e Biotecnologia Agraria, CNR, Milano, Italy
- Correspondence: or
| | - Alessandro Vitale
- Istituto di Biologia e Biotecnologia Agraria, CNR, Milano, Italy
- Correspondence: or
| |
Collapse
|
14
|
Orona-Tamayo D, Valverde ME, Paredes-López O. Bioactive peptides from selected latin american food crops – A nutraceutical and molecular approach. Crit Rev Food Sci Nutr 2018; 59:1949-1975. [DOI: 10.1080/10408398.2018.1434480] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Domancar Orona-Tamayo
- Centro de Investigación y de Estudios Avanzados de Instituto Politécnico Nacional. Km. 9.6 Libramiento Norte Carretera Irapuato-León, Irapuato, Guanajuato, México, CP
| | - María Elena Valverde
- Centro de Investigación y de Estudios Avanzados de Instituto Politécnico Nacional. Km. 9.6 Libramiento Norte Carretera Irapuato-León, Irapuato, Guanajuato, México, CP
| | - Octavio Paredes-López
- Centro de Investigación y de Estudios Avanzados de Instituto Politécnico Nacional. Km. 9.6 Libramiento Norte Carretera Irapuato-León, Irapuato, Guanajuato, México, CP
| |
Collapse
|
15
|
Abstract
The endoplasmic reticulum takes care of the folding, assembly, and quality control of thousands of proteins destined to the different compartments of the endomembrane system, or to be secreted in the apoplast. Here we describe how these early events in the life of all these proteins can be followed biochemically by using velocity or isopycnic ultracentrifugation, metabolic labeling with radioactive amino acids, and immunoprecipitation in various conditions.
Collapse
Affiliation(s)
- Emanuela Pedrazzini
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche, Via Bassini 15, 20133, Milan, Italy
| | - Alessandro Vitale
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche, Via Bassini 15, 20133, Milan, Italy.
| |
Collapse
|
16
|
Bao Y, Howell SH. The Unfolded Protein Response Supports Plant Development and Defense as well as Responses to Abiotic Stress. FRONTIERS IN PLANT SCIENCE 2017; 8:344. [PMID: 28360918 PMCID: PMC5350557 DOI: 10.3389/fpls.2017.00344] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 02/27/2017] [Indexed: 05/19/2023]
Abstract
The unfolded protein response (UPR) is a stress response conserved in eukaryotic organisms and activated by the accumulation of misfolded proteins in the endoplasmic reticulum (ER). Adverse environmental conditions disrupt protein folding in the ER and trigger the UPR. Recently, it was found that the UPR can be elicited in the course of plant development and defense. During vegetative plant development, the UPR is involved in normal root growth and development, the effect of which can be largely attributed to the influence of the UPR on plant hormone biology. The UPR also functions in plant reproductive development by protecting male gametophyte development from heat stress. In terms of defense, the UPR has been implicated in virus and microbial defense. Viral defense represents a double edge sword in that various virus infections activate the UPR, however, in a number of cases, the UPR actually supports viral infections. The UPR also plays a role in plant immunity to bacterial infections, again through the action of plant hormones in regulating basal immunity responses.
Collapse
|
17
|
De Marchis F, Valeri MC, Pompa A, Bouveret E, Alagna F, Grisan S, Stanzione V, Mariotti R, Cultrera N, Baldoni L, Bellucci M. Overexpression of the olive acyl carrier protein gene (OeACP1) produces alterations in fatty acid composition of tobacco leaves. Transgenic Res 2016; 25:45-61. [PMID: 26560313 DOI: 10.1007/s11248-015-9919-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 11/05/2015] [Indexed: 01/24/2023]
Abstract
Taking into account that fatty acid (FA) biosynthesis plays a crucial role in lipid accumulation in olive (Olea europaea L.) mesocarp, we investigated the effect of olive acyl carrier protein (ACP) on FA composition by overexpressing an olive ACP cDNA in tobacco plants. The OeACP1.1A cDNA was inserted in the nucleus or in the chloroplast DNA of different tobacco plants, resulting in extensive transcription of the transgenes. The transplastomic plants accumulated lower olive ACP levels in comparison to nuclear-transformed plants. Moreover, the phenotype of the former plants was characterized by pale green/white cotyledons with abnormal chloroplasts, delayed germination and reduced growth. We suggest that the transplastomic phenotype was likely caused by inefficient olive ACP mRNA translation in chloroplast stroma. Conversely, total lipids from leaves of nuclear transformants expressing high olive ACP levels showed a significant increase in oleic acid (18:1) and linolenic acid (18:3), and a concomitant significant reduction of hexadecadienoic acid (16:2) and hexadecatrienoic acid (16:3). This implies that in leaves of tobacco transformants, as likely in the mesocarp of olive fruit, olive ACP not only plays a general role in FA synthesis, but seems to be specifically involved in chain length regulation forwarding the elongation to C18 FAs and the subsequent desaturation to 18:1 and 18:3.
Collapse
Affiliation(s)
- Francesca De Marchis
- Institute of Biosciences and Bioresources (IBBR), Research Division of Perugia, CNR, Via Madonna Alta 130, 06128, Perugia, Italy
| | - Maria Cristina Valeri
- Institute of Biosciences and Bioresources (IBBR), Research Division of Perugia, CNR, Via Madonna Alta 130, 06128, Perugia, Italy
- PlantLab, Institute of Life Sciences, Scuola Superiore Sant'Anna, 56127, Pisa, Italy
| | - Andrea Pompa
- Institute of Biosciences and Bioresources (IBBR), Research Division of Perugia, CNR, Via Madonna Alta 130, 06128, Perugia, Italy
| | | | - Fiammetta Alagna
- Institute of Biosciences and Bioresources (IBBR), Research Division of Perugia, CNR, Via Madonna Alta 130, 06128, Perugia, Italy
- Research Unit for Table Grapes and Wine Growing in Mediterranean Environment, CREA, Via Casamassima 148, Turi, 70010, Bari, Italy
| | - Simone Grisan
- Institute of Biosciences and Bioresources (IBBR), Research Division of Perugia, CNR, Via Madonna Alta 130, 06128, Perugia, Italy
| | - Vitale Stanzione
- Institute for Agricultural and Forest Systems in the Mediterranean (ISAFOM), Research Division of Perugia, CNR, Via Madonna Alta 128, 06128, Perugia, Italy
| | - Roberto Mariotti
- Institute of Biosciences and Bioresources (IBBR), Research Division of Perugia, CNR, Via Madonna Alta 130, 06128, Perugia, Italy
| | - Nicolò Cultrera
- Institute of Biosciences and Bioresources (IBBR), Research Division of Perugia, CNR, Via Madonna Alta 130, 06128, Perugia, Italy
| | - Luciana Baldoni
- Institute of Biosciences and Bioresources (IBBR), Research Division of Perugia, CNR, Via Madonna Alta 130, 06128, Perugia, Italy
| | - Michele Bellucci
- Institute of Biosciences and Bioresources (IBBR), Research Division of Perugia, CNR, Via Madonna Alta 130, 06128, Perugia, Italy.
| |
Collapse
|
18
|
Yang X, Srivastava R, Howell SH, Bassham DC. Activation of autophagy by unfolded proteins during endoplasmic reticulum stress. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 85:83-95. [PMID: 26616142 DOI: 10.1111/tpj.13091] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 11/18/2015] [Accepted: 11/20/2015] [Indexed: 05/20/2023]
Abstract
Endoplasmic reticulum stress is defined as the accumulation of unfolded proteins in the endoplasmic reticulum, and is caused by conditions such as heat or agents that cause endoplasmic reticulum stress, including tunicamycin and dithiothreitol. Autophagy, a major pathway for degradation of macromolecules in the vacuole, is activated by these stress agents in a manner dependent on inositol-requiring enzyme 1b (IRE1b), and delivers endoplasmic reticulum fragments to the vacuole for degradation. In this study, we examined the mechanism for activation of autophagy during endoplasmic reticulum stress in Arabidopsis thaliana. The chemical chaperones sodium 4-phenylbutyrate and tauroursodeoxycholic acid were found to reduce tunicamycin- or dithiothreitol-induced autophagy, but not autophagy caused by unrelated stresses. Similarly, over-expression of BINDING IMMUNOGLOBULIN PROTEIN (BIP), encoding a heat shock protein 70 (HSP70) molecular chaperone, reduced autophagy. Autophagy activated by heat stress was also found to be partially dependent on IRE1b and to be inhibited by sodium 4-phenylbutyrate, suggesting that heat-induced autophagy is due to accumulation of unfolded proteins in the endoplasmic reticulum. Expression in Arabidopsis of the misfolded protein mimics zeolin or a mutated form of carboxypeptidase Y (CPY*) also induced autophagy in an IRE1b-dependent manner. Moreover, zeolin and CPY* partially co-localized with the autophagic body marker GFP-ATG8e, indicating delivery to the vacuole by autophagy. We conclude that accumulation of unfolded proteins in the endoplasmic reticulum is a trigger for autophagy under conditions that cause endoplasmic reticulum stress.
Collapse
Affiliation(s)
- Xiaochen Yang
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, 50011, USA
- Interdepartmental Plant Biology Program, Iowa State University, Ames, IA, 50011, USA
| | - Renu Srivastava
- Plant Sciences Institute, Iowa State University, Ames, IA, 50011, USA
| | - Stephen H Howell
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, 50011, USA
- Interdepartmental Plant Biology Program, Iowa State University, Ames, IA, 50011, USA
- Plant Sciences Institute, Iowa State University, Ames, IA, 50011, USA
| | - Diane C Bassham
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, 50011, USA
- Interdepartmental Plant Biology Program, Iowa State University, Ames, IA, 50011, USA
- Plant Sciences Institute, Iowa State University, Ames, IA, 50011, USA
| |
Collapse
|
19
|
Ceresoli V, Mainieri D, Del Fabbro M, Weinstein R, Pedrazzini E. A Fusion between Domains of the Human Bone Morphogenetic Protein-2 and Maize 27 kD γ-Zein Accumulates to High Levels in the Endoplasmic Reticulum without Forming Protein Bodies in Transgenic Tobacco. FRONTIERS IN PLANT SCIENCE 2016; 7:358. [PMID: 27047526 PMCID: PMC4805588 DOI: 10.3389/fpls.2016.00358] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 03/07/2016] [Indexed: 05/12/2023]
Abstract
Human Bone Morphogenetic Protein-2 (hBMP2) is an osteoinductive agent physiologically involved in bone remodeling processes. A commercialized recombinant hBMP2 produced in mammalian cell lines is available in different clinical applications where bone regeneration is needed, but widespread use has been hindered due to an unfavorable cost/effective ratio. Protein bodies are very large insoluble protein polymers that originate within the endoplasmic reticulum by prolamine accumulation during the cereal seed development. The N-terminal domain of the maize prolamin 27 kD γ-zein is able to promote protein body biogenesis when fused to other proteins. To produce high yield of recombinant hBMP2 active domain (ad) in stably transformed tobacco plants we have fused it to the γ-zein domain. We show that this zein-hBMP2ad fusion is retained in the endoplasmic reticulum without forming insoluble protein bodies. The accumulation levels are above 1% of total soluble leaf proteins, indicating that it could be a rapid and suitable strategy to produce hBMP2ad at affordable costs.
Collapse
Affiliation(s)
- Valentina Ceresoli
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale Delle RicercheMilano, Italy
- Dipartimento Scienze Biomediche, Chirurgiche e Odontoiatriche, Università Degli Studi di MilanoMilano, Italy
- IRCCS Istituto Ortopedico GaleazziMilano, Italy
| | - Davide Mainieri
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale Delle RicercheMilano, Italy
| | - Massimo Del Fabbro
- Dipartimento Scienze Biomediche, Chirurgiche e Odontoiatriche, Università Degli Studi di MilanoMilano, Italy
- IRCCS Istituto Ortopedico GaleazziMilano, Italy
| | - Roberto Weinstein
- Dipartimento Scienze Biomediche, Chirurgiche e Odontoiatriche, Università Degli Studi di MilanoMilano, Italy
- IRCCS Istituto Ortopedico GaleazziMilano, Italy
| | - Emanuela Pedrazzini
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale Delle RicercheMilano, Italy
- *Correspondence: Emanuela Pedrazzini
| |
Collapse
|
20
|
Hofbauer A, Melnik S, Tschofen M, Arcalis E, Phan HT, Gresch U, Lampel J, Conrad U, Stoger E. The Encapsulation of Hemagglutinin in Protein Bodies Achieves a Stronger Immune Response in Mice than the Soluble Antigen. FRONTIERS IN PLANT SCIENCE 2016; 7:142. [PMID: 26909090 PMCID: PMC4754457 DOI: 10.3389/fpls.2016.00142] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 01/27/2016] [Indexed: 05/22/2023]
Abstract
Zein is a water-insoluble polymer from maize seeds that has been widely used to produce carrier particles for the delivery of therapeutic molecules. We encapsulated a recombinant model vaccine antigen in newly formed zein bodies in planta by generating a fusion construct comprising the ectodomain of hemagglutinin subtype 5 and the N-terminal part of γ-zein. The chimeric protein was transiently produced in tobacco leaves, and H5-containing protein bodies (PBs) were used to immunize mice. An immune response was achieved in all mice treated with H5-zein, even at low doses. The fusion to zein markedly enhanced the IgG response compared the soluble H5 control, and the effect was similar to a commercial adjuvant. The co-administration of adjuvants with the H5-zein bodies did not enhance the immune response any further, suggesting that the zein portion itself mediates an adjuvant effect. While the zein portion used to induce protein body formation was only weakly immunogenic, our results indicate that zein-induced PBs are promising production and delivery vehicles for subunit vaccines.
Collapse
Affiliation(s)
- Anna Hofbauer
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life SciencesVienna, Austria
| | - Stanislav Melnik
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life SciencesVienna, Austria
| | - Marc Tschofen
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life SciencesVienna, Austria
| | - Elsa Arcalis
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life SciencesVienna, Austria
| | - Hoang T. Phan
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant ResearchGatersleben, Germany
| | - Ulrike Gresch
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant ResearchGatersleben, Germany
| | - Johannes Lampel
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life SciencesVienna, Austria
| | - Udo Conrad
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant ResearchGatersleben, Germany
| | - Eva Stoger
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life SciencesVienna, Austria
- *Correspondence: Eva Stoger, .
| |
Collapse
|
21
|
Pedrazzini E, Mainieri D, Marrano CA, Vitale A. Where do Protein Bodies of Cereal Seeds Come From? FRONTIERS IN PLANT SCIENCE 2016; 7:1139. [PMID: 27540384 PMCID: PMC4973428 DOI: 10.3389/fpls.2016.01139] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 07/18/2016] [Indexed: 05/03/2023]
Abstract
Protein bodies of cereal seeds consist of ordered, largely insoluble heteropolymers formed by prolamin storage proteins within the endoplasmic reticulum (ER) of developing endosperm cells. Often these structures are permanently unable to traffic along the secretory pathway, thus representing a unique example for the use of the ER as a protein storage compartment. In recent years, marked progress has been made in understanding what is needed to make a protein body and in formulating hypotheses on how protein body formation might have evolved as an efficient mechanism to store large amounts of protein during seed development, as opposed to the much more common system of seed storage protein accumulation in vacuoles. The major key evolutionary events that have generated prolamins appear to have been insertions or deletions that have disrupted the conformation of the eight-cysteine motif, a protein folding motif common to many proteins with different functions and locations along the secretory pathway, and, alternatively, the fusion between the eight-cysteine motif and domains containing additional cysteine residues.
Collapse
|
22
|
Mbewana S, Mortimer E, Pêra FFPG, Hitzeroth II, Rybicki EP. Production of H5N1 Influenza Virus Matrix Protein 2 Ectodomain Protein Bodies in Tobacco Plants and in Insect Cells as a Candidate Universal Influenza Vaccine. Front Bioeng Biotechnol 2015; 3:197. [PMID: 26697423 PMCID: PMC4672040 DOI: 10.3389/fbioe.2015.00197] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 11/23/2015] [Indexed: 11/13/2022] Open
Abstract
The spread of influenza A viruses is partially controlled and prevented by vaccination. The matrix protein 2 ectodomain (M2e) is the most conserved sequence in influenza A viruses, and is therefore a good potential target for a vaccine to protect against multiple virus subtypes. We explored the feasibility of an M2e-based universal influenza A vaccine candidate based on the highly pathogenic avian influenza A virus, H5N1. A synthetic M2e gene was human- and plant-codon optimized and fused in-frame with a sequence encoding the N-terminal proline-rich domain (Zera(®)) of the γ-zein protein of maize. Zera(®)M2e was expressed transiently in Nicotiana benthamiana and Sf21 baculovirus/insect cell expression systems, and Zera(®)M2e protein bodies (PBs) were successfully produced in both expression systems. The plant-produced Zera(®)M2e PBs were purified and injected into Balb/c mice. Western blot analysis using insect cell-produced Zera(®)M2e PBs and multiple tandem M2e sequences (5xM2e) fused with the avian influenza H5N1 transmembrane and cytosolic tail (5xM2e_tHA) confirmed the presence of M2e-specific antibodies in immunized mice sera. The immunogenicity of the Zera(®)M2e indicates that our plant-produced protein has potential as an inexpensive universal influenza A vaccine.
Collapse
Affiliation(s)
- Sandiswa Mbewana
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town , Rondebosch , South Africa
| | - Elizabeth Mortimer
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town , Rondebosch , South Africa
| | - Francisco F P G Pêra
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town , Rondebosch , South Africa
| | - Inga Isabel Hitzeroth
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town , Rondebosch , South Africa
| | - Edward P Rybicki
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town , Rondebosch , South Africa ; Institute of Infectious Disease and Molecular Medicine, Faculty of Heath Science, University of Cape Town , Cape Town , South Africa
| |
Collapse
|
23
|
Benmoussa M, Chandrashekar A, Ejeta G, Hamaker BR. Cellular Response to the high protein digestibility/high-Lysine (hdhl) sorghum mutation. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 241:70-77. [PMID: 26706060 DOI: 10.1016/j.plantsci.2015.08.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Revised: 08/30/2015] [Accepted: 08/31/2015] [Indexed: 06/05/2023]
Abstract
A high protein digestibility/high-lysine mutant P721Q (hdhl) with a multi-folded protein body morphology has been developed, with a 22kDa α-kafirin single point mutation having also been recently identified. Relatively little is known regarding the resulting cellular response in hdhl endosperm. The aim is to elucidate these biochemical changes. Two-dimentional gel electrophoresis showed an apparent increase of non-kafirin and a decrease in kafirins content in hdhl endosperm. Mass spectrometry data yielded the identity of differentially expressed non-kafirin proteins in hdhl, wild-type lines such as cytoskeleton and chaperones proteins, and also others involved in amino acids and carbohydrates biochemical synthesis pathways. Western blot analysis showed that chaperone proteins were more highly expressed in the hdhl than the wild-type sorghum and confirmed the non-kafirin proteins proteomic results. Two-dimentional gel electrophoresis showed that the γ-kafirin subunits content had decreased, and the 22kDa α-kafirin subunit was increased in hdhl without any apparent molecular mass change. The observed differential expression most likely led to proteins interactions between γ- and α-kafirin subunits in particular, which resulted in a kafirins packing differently to form the protein body's multi-folded morphology, while also improving its digestibility.
Collapse
Affiliation(s)
- Mustapha Benmoussa
- Whistler Center for Carbohydrate Research, Department of Food Science, Purdue University, 745 Agriculture Mall Drive, West Lafayette, IN 47907-2009, United states
| | | | - Gebisa Ejeta
- Department of Agronomy, Lilly Building, Purdue University, West Lafayette, IN 47907-2009, United states
| | - Bruce R Hamaker
- Whistler Center for Carbohydrate Research, Department of Food Science, Purdue University, 745 Agriculture Mall Drive, West Lafayette, IN 47907-2009, United states.
| |
Collapse
|
24
|
Sun X, Chi-Ham CL, Cohen-Davidyan T, DeBen C, Getachew G, DePeters E, Putnam D, Bennett A. Protein accumulation and rumen stability of wheat γ-gliadin fusion proteins in tobacco and alfalfa. PLANT BIOTECHNOLOGY JOURNAL 2015; 13:974-82. [PMID: 25659597 DOI: 10.1111/pbi.12338] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 12/13/2014] [Accepted: 12/15/2014] [Indexed: 06/04/2023]
Abstract
The nutritional value of various crops can be improved by engineering plants to produce high levels of proteins. For example, because methionine deficiency limits the protein quality of Medicago Sativa (alfalfa) forage, producing alfalfa plants that accumulate high levels of a methionine-rich protein could increase the nutritional value of that crop. We used three strategies in designing methionine-rich recombinant proteins that could accumulate to high levels in plants and thereby serve as candidates for improving the protein quality of alfalfa forage. In tobacco, two fusion proteins, γ-gliadin-δ-zein and γ-δ-zein, as well as δ-zein co-expressed with β-zein, all formed protein bodies. However, the γ-gliadin-δ-zein fusion protein accumulated to the highest level, representing up to 1.5% of total soluble protein (TSP) in one transformant. In alfalfa, γ-gliadin-δ-zein accumulated to 0.2% of TSP, and in an in vitro rumen digestion assay, γ-gliadin-δ-zein was more resistant to microbial degradation than Rubisco. Additionally, although it did not form protein bodies, a γ-gliadin-GFP fusion protein accumulated to much higher levels, 7% of TSP, than a recombinant protein comprised of an ER localization signal fused to GFP in tobacco. Based on our results, we conclude that γ-gliadin-δ-zein is a potential candidate protein to use for enhancing methionine levels in plants and for improving rumen stability of forage protein. γ-gliadin fusion proteins may provide a general platform for increasing the accumulation of recombinant proteins in transgenic plants.
Collapse
Affiliation(s)
- Xiaodong Sun
- Public Intellectual Property Resource for Agriculture, Department of Plant Sciences, University of California, Davis, CA, USA
| | - Cecilia L Chi-Ham
- Public Intellectual Property Resource for Agriculture, Department of Plant Sciences, University of California, Davis, CA, USA
| | | | - Christopher DeBen
- Department of Plant Sciences, University of California, Davis, CA, USA
| | - Girma Getachew
- Department of Animal Science, University of California, Davis, CA, USA
| | - Edward DePeters
- Department of Animal Science, University of California, Davis, CA, USA
| | - Daniel Putnam
- Department of Plant Sciences, University of California, Davis, CA, USA
| | - Alan Bennett
- Public Intellectual Property Resource for Agriculture, Department of Plant Sciences, University of California, Davis, CA, USA
| |
Collapse
|
25
|
Cheng Q, Zhou Y, Liu Z, Zhang L, Song G, Guo Z, Wang W, Qu X, Zhu Y, Yang D. An alternatively spliced heat shock transcription factor, OsHSFA2dI, functions in the heat stress-induced unfolded protein response in rice. PLANT BIOLOGY (STUTTGART, GERMANY) 2015; 17:419-29. [PMID: 25255693 DOI: 10.1111/plb.12267] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2014] [Accepted: 09/09/2014] [Indexed: 05/25/2023]
Abstract
As sessile organisms, plants have evolved a wide range of defence pathways to cope with environmental stress such as heat shock. However, the molecular mechanism of these defence pathways remains unclear in rice. In this study, we found that OsHSFA2d, a heat shock transcriptional factor, encodes two main splice variant proteins, OsHSFA2dI and OsHSFA2dII in rice. Under normal conditions, OsHSFA2dII is the dominant but transcriptionally inactive spliced form. However, when the plant suffers heat stress, OsHSFA2d is alternatively spliced into a transcriptionally active form, OsHSFA2dI, which participates in the heat stress response (HSR). Further study found that this alternative splicing was induced by heat shock rather than photoperiod. We found that OsHSFA2dI is localised to the nucleus, whereas OsHSFA2dII is localised to the nucleus and cytoplasm. Moreover, expression of the unfolded protein response (UNFOLDED PROTEIN RESPONSE) sensors, OsIRE1, OsbZIP39/OsbZIP60 and the UNFOLDED PROTEIN RESPONSE marker OsBiP1, was up-regulated. Interestingly, OsbZIP50 was also alternatively spliced under heat stress, indicating that UNFOLDED PROTEIN RESPONSE signalling pathways were activated by heat stress to re-establish cellular protein homeostasis. We further demonstrated that OsHSFA2dI participated in the unfolded protein response by regulating expression of OsBiP1.
Collapse
Affiliation(s)
- Q Cheng
- State Key Laboratory of Hybrid Rice, Engineering Research Center for Plant Biotechnology and Germplasm Utilization, Ministry of Education, College of Life Sciences, Wuhan University, Wuhan, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Hofbauer A, Peters J, Arcalis E, Rademacher T, Lampel J, Eudes F, Vitale A, Stoger E. The Induction of Recombinant Protein Bodies in Different Subcellular Compartments Reveals a Cryptic Plastid-Targeting Signal in the 27-kDa γ-Zein Sequence. Front Bioeng Biotechnol 2014; 2:67. [PMID: 25566533 PMCID: PMC4263181 DOI: 10.3389/fbioe.2014.00067] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 11/24/2014] [Indexed: 11/18/2022] Open
Abstract
Naturally occurring storage proteins such as zeins are used as fusion partners for recombinant proteins because they induce the formation of ectopic storage organelles known as protein bodies (PBs) where the proteins are stabilized by intermolecular interactions and the formation of disulfide bonds. Endogenous PBs are derived from the endoplasmic reticulum (ER). Here, we have used different targeting sequences to determine whether ectopic PBs composed of the N-terminal portion of mature 27 kDa γ-zein added to a fluorescent protein could be induced to form elsewhere in the cell. The addition of a transit peptide for targeting to plastids causes PB formation in the stroma, whereas in the absence of any added targeting sequence PBs were typically associated with the plastid envelope, revealing the presence of a cryptic plastid-targeting signal within the γ-zein cysteine-rich domain. The subcellular localization of the PBs influences their morphology and the solubility of the stored recombinant fusion protein. Our results indicate that the biogenesis and budding of PBs does not require ER-specific factors and therefore, confirm that γ-zein is a versatile fusion partner for recombinant proteins offering unique opportunities for the accumulation and bioencapsulation of recombinant proteins in different subcellular compartments.
Collapse
Affiliation(s)
- Anna Hofbauer
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences , Vienna , Austria
| | - Jenny Peters
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences , Vienna , Austria
| | - Elsa Arcalis
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences , Vienna , Austria
| | - Thomas Rademacher
- Institute of Molecular Biotechnology, RWTH Aachen University , Aachen , Germany
| | - Johannes Lampel
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences , Vienna , Austria
| | - François Eudes
- Agriculture and Agri-Food Canada , Lethbridge, AB , Canada
| | - Alessandro Vitale
- Institute of Agricultural Biology and Biotechnology, National Research Council (CNR) , Milan , Italy
| | - Eva Stoger
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences , Vienna , Austria
| |
Collapse
|
27
|
Carvalho HH, Silva PA, Mendes GC, Brustolini OJ, Pimenta MR, Gouveia BC, Valente MAS, Ramos HJ, Soares-Ramos JR, Fontes EP. The endoplasmic reticulum binding protein BiP displays dual function in modulating cell death events. PLANT PHYSIOLOGY 2014; 164:654-70. [PMID: 24319082 PMCID: PMC3912096 DOI: 10.1104/pp.113.231928] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 12/06/2013] [Indexed: 05/03/2023]
Abstract
The binding protein (BiP) has been demonstrated to participate in innate immunity and attenuate endoplasmic reticulum- and osmotic stress-induced cell death. Here, we employed transgenic plants with manipulated levels of BiP to assess whether BiP also controlled developmental and hypersensitive programmed cell death (PCD). Under normal conditions, the BiP-induced transcriptome revealed a robust down-regulation of developmental PCD genes and an up-regulation of the genes involved in hypersensitive PCD triggered by nonhost-pathogen interactions. Accordingly, the BiP-overexpressing line displayed delayed leaf senescence under normal conditions and accelerated hypersensitive response triggered by Pseudomonas syringae pv tomato in soybean (Glycine max) and tobacco (Nicotiana tabacum), as monitored by measuring hallmarks of PCD in plants. The BiP-mediated delay of leaf senescence correlated with the attenuation of N-rich protein (NRP)-mediated cell death signaling and the inhibition of the senescence-associated activation of the unfolded protein response (UPR). By contrast, under biological activation of salicylic acid (SA) signaling and hypersensitive PCD, BiP overexpression further induced NRP-mediated cell death signaling and antagonistically inhibited the UPR. Thus, the SA-mediated induction of NRP cell death signaling occurs via a pathway distinct from UPR. Our data indicate that during the hypersensitive PCD, BiP positively regulates the NRP cell death signaling through a yet undefined mechanism that is activated by SA signaling and related to ER functioning. By contrast, BiP's negative regulation of leaf senescence may be linked to its capacity to attenuate the UPR activation and NRP cell death signaling. Therefore, BiP can function either as a negative or positive modulator of PCD events.
Collapse
Affiliation(s)
- Humberto H. Carvalho
- National Institute of Science and Technology in Plant-Pest Interactions (H.H.C., P.A.S., G.C.M., O.J.B.B., M.R.P., B.C.G., H.J.O.R., E.B.P.F.), Departamento de Bioquímica e Biologia Molecular/Bioagro (P.A.S., O.J.B.B., B.C.G., M.A.S.V., H.J.O.R., J.R.L.S.-R., E.B.P.F.), and Departamento de Biologia Vegetal (H.H.C., G.C.M., M.R.P.), Universidade Federal de Viçosa, 36570.000, Viçosa, Minas Gerais, Brazil
| | - Priscila A. Silva
- National Institute of Science and Technology in Plant-Pest Interactions (H.H.C., P.A.S., G.C.M., O.J.B.B., M.R.P., B.C.G., H.J.O.R., E.B.P.F.), Departamento de Bioquímica e Biologia Molecular/Bioagro (P.A.S., O.J.B.B., B.C.G., M.A.S.V., H.J.O.R., J.R.L.S.-R., E.B.P.F.), and Departamento de Biologia Vegetal (H.H.C., G.C.M., M.R.P.), Universidade Federal de Viçosa, 36570.000, Viçosa, Minas Gerais, Brazil
| | - Giselle C. Mendes
- National Institute of Science and Technology in Plant-Pest Interactions (H.H.C., P.A.S., G.C.M., O.J.B.B., M.R.P., B.C.G., H.J.O.R., E.B.P.F.), Departamento de Bioquímica e Biologia Molecular/Bioagro (P.A.S., O.J.B.B., B.C.G., M.A.S.V., H.J.O.R., J.R.L.S.-R., E.B.P.F.), and Departamento de Biologia Vegetal (H.H.C., G.C.M., M.R.P.), Universidade Federal de Viçosa, 36570.000, Viçosa, Minas Gerais, Brazil
| | - Otávio J.B. Brustolini
- National Institute of Science and Technology in Plant-Pest Interactions (H.H.C., P.A.S., G.C.M., O.J.B.B., M.R.P., B.C.G., H.J.O.R., E.B.P.F.), Departamento de Bioquímica e Biologia Molecular/Bioagro (P.A.S., O.J.B.B., B.C.G., M.A.S.V., H.J.O.R., J.R.L.S.-R., E.B.P.F.), and Departamento de Biologia Vegetal (H.H.C., G.C.M., M.R.P.), Universidade Federal de Viçosa, 36570.000, Viçosa, Minas Gerais, Brazil
| | - Maiana R. Pimenta
- National Institute of Science and Technology in Plant-Pest Interactions (H.H.C., P.A.S., G.C.M., O.J.B.B., M.R.P., B.C.G., H.J.O.R., E.B.P.F.), Departamento de Bioquímica e Biologia Molecular/Bioagro (P.A.S., O.J.B.B., B.C.G., M.A.S.V., H.J.O.R., J.R.L.S.-R., E.B.P.F.), and Departamento de Biologia Vegetal (H.H.C., G.C.M., M.R.P.), Universidade Federal de Viçosa, 36570.000, Viçosa, Minas Gerais, Brazil
| | - Bianca C. Gouveia
- National Institute of Science and Technology in Plant-Pest Interactions (H.H.C., P.A.S., G.C.M., O.J.B.B., M.R.P., B.C.G., H.J.O.R., E.B.P.F.), Departamento de Bioquímica e Biologia Molecular/Bioagro (P.A.S., O.J.B.B., B.C.G., M.A.S.V., H.J.O.R., J.R.L.S.-R., E.B.P.F.), and Departamento de Biologia Vegetal (H.H.C., G.C.M., M.R.P.), Universidade Federal de Viçosa, 36570.000, Viçosa, Minas Gerais, Brazil
| | - Maria Anete S. Valente
- National Institute of Science and Technology in Plant-Pest Interactions (H.H.C., P.A.S., G.C.M., O.J.B.B., M.R.P., B.C.G., H.J.O.R., E.B.P.F.), Departamento de Bioquímica e Biologia Molecular/Bioagro (P.A.S., O.J.B.B., B.C.G., M.A.S.V., H.J.O.R., J.R.L.S.-R., E.B.P.F.), and Departamento de Biologia Vegetal (H.H.C., G.C.M., M.R.P.), Universidade Federal de Viçosa, 36570.000, Viçosa, Minas Gerais, Brazil
| | - Humberto J.O. Ramos
- National Institute of Science and Technology in Plant-Pest Interactions (H.H.C., P.A.S., G.C.M., O.J.B.B., M.R.P., B.C.G., H.J.O.R., E.B.P.F.), Departamento de Bioquímica e Biologia Molecular/Bioagro (P.A.S., O.J.B.B., B.C.G., M.A.S.V., H.J.O.R., J.R.L.S.-R., E.B.P.F.), and Departamento de Biologia Vegetal (H.H.C., G.C.M., M.R.P.), Universidade Federal de Viçosa, 36570.000, Viçosa, Minas Gerais, Brazil
| | - Juliana R.L. Soares-Ramos
- National Institute of Science and Technology in Plant-Pest Interactions (H.H.C., P.A.S., G.C.M., O.J.B.B., M.R.P., B.C.G., H.J.O.R., E.B.P.F.), Departamento de Bioquímica e Biologia Molecular/Bioagro (P.A.S., O.J.B.B., B.C.G., M.A.S.V., H.J.O.R., J.R.L.S.-R., E.B.P.F.), and Departamento de Biologia Vegetal (H.H.C., G.C.M., M.R.P.), Universidade Federal de Viçosa, 36570.000, Viçosa, Minas Gerais, Brazil
| | - Elizabeth P.B. Fontes
- National Institute of Science and Technology in Plant-Pest Interactions (H.H.C., P.A.S., G.C.M., O.J.B.B., M.R.P., B.C.G., H.J.O.R., E.B.P.F.), Departamento de Bioquímica e Biologia Molecular/Bioagro (P.A.S., O.J.B.B., B.C.G., M.A.S.V., H.J.O.R., J.R.L.S.-R., E.B.P.F.), and Departamento de Biologia Vegetal (H.H.C., G.C.M., M.R.P.), Universidade Federal de Viçosa, 36570.000, Viçosa, Minas Gerais, Brazil
| |
Collapse
|
28
|
Mainieri D, Morandini F, Maîtrejean M, Saccani A, Pedrazzini E, Alessandro V. Protein body formation in the endoplasmic reticulum as an evolution of storage protein sorting to vacuoles: insights from maize γ-zein. FRONTIERS IN PLANT SCIENCE 2014; 5:331. [PMID: 25076952 PMCID: PMC4097401 DOI: 10.3389/fpls.2014.00331] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 06/23/2014] [Indexed: 05/20/2023]
Abstract
The albumin and globulin seed storage proteins present in all plants accumulate in storage vacuoles. Prolamins, which are the major proteins in cereal seeds and are present only there, instead accumulate within the endoplasmic reticulum (ER) lumen as very large insoluble polymers termed protein bodies. Inter-chain disulfide bonds play a major role in polymerization and insolubility of many prolamins. The N-terminal domain of the maize prolamin 27 kD γ-zein is able to promote protein body formation when fused to other proteins and contains seven cysteine residues involved in inter-chain bonds. We show that progressive substitution of these amino acids with serine residues in full length γ-zein leads to similarly progressive increase in solubility and availability to traffic from the ER along the secretory pathway. Total substitution results in very efficient secretion, whereas the presence of a single cysteine is sufficient to promote partial sorting to the vacuole via a wortmannin-sensitive pathway, similar to the traffic pathway of vacuolar storage proteins. We propose that the mechanism leading to accumulation of prolamins in the ER is a further evolutionary step of the one responsible for accumulation in storage vacuoles.
Collapse
Affiliation(s)
| | | | | | | | | | - Vitale Alessandro
- *Correspondence: Alessandro Vitale, Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche, via Bassini 15, 20133 Milano, Italy e-mail:
| |
Collapse
|
29
|
Paul M, Reljic R, Klein K, Drake PMW, van Dolleweerd C, Pabst M, Windwarder M, Arcalis E, Stoger E, Altmann F, Cosgrove C, Bartolf A, Baden S, Ma JKC. Characterization of a plant-produced recombinant human secretory IgA with broad neutralizing activity against HIV. MAbs 2014; 6:1585-97. [PMID: 25484063 PMCID: PMC4622858 DOI: 10.4161/mabs.36336] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 08/15/2014] [Accepted: 09/03/2014] [Indexed: 12/16/2022] Open
Abstract
Recombinant Secretory IgA (SIgA) complexes have the potential to improve antibody-based passive immunotherapeutic approaches to combat many mucosal pathogens. In this report, we describe the expression, purification and characterization of a human SIgA format of the broadly neutralizing anti-HIV monoclonal antibody (mAb) 2G12, using both transgenic tobacco plants and transient expression in Nicotiana benthamiana as expression hosts (P2G12 SIgA). The resulting heterodecameric complexes accumulated in intracellular compartments in leaf tissue, including the vacuole. SIgA complexes could not be detected in the apoplast. Maximum yields of antibody were 15.2 μg/g leaf fresh mass (LFM) in transgenic tobacco and 25 μg/g LFM after transient expression, and assembly of SIgA complexes was superior in transgenic tobacco. Protein L purified antibody specifically bound HIV gp140 and neutralised tier 2 and tier 3 HIV isolates. Glycoanalysis revealed predominantly high mannose structures present on most N-glycosylation sites, with limited evidence for complex glycosylation or processing to paucimannosidic forms. O-glycan structures were not identified. Functionally, P2G12 SIgA, but not IgG, effectively aggregated HIV virions. Binding of P2G12 SIgA was observed to CD209 / DC-SIGN, but not to CD89 / FcalphaR on a monocyte cell line. Furthermore, P2G12 SIgA demonstrated enhanced stability in mucosal secretions in comparison to P2G12 IgG mAb.
Collapse
MESH Headings
- Antibodies, Neutralizing/immunology
- Antibodies, Neutralizing/metabolism
- Antibodies, Neutralizing/pharmacology
- Binding Sites/immunology
- Body Fluids/immunology
- Body Fluids/metabolism
- Female
- Glycosylation
- HIV/drug effects
- HIV/immunology
- HIV/metabolism
- Humans
- Immunoblotting
- Immunoglobulin A, Secretory/genetics
- Immunoglobulin A, Secretory/immunology
- Immunoglobulin A, Secretory/metabolism
- Microscopy, Electron
- Microscopy, Fluorescence
- Plant Leaves/genetics
- Plant Leaves/metabolism
- Plant Leaves/ultrastructure
- Plants, Genetically Modified
- Polysaccharides/analysis
- Polysaccharides/immunology
- Protein Binding/immunology
- Recombinant Proteins/immunology
- Recombinant Proteins/metabolism
- Recombinant Proteins/pharmacology
- Nicotiana/genetics
- Nicotiana/metabolism
- Vagina/immunology
- Vagina/metabolism
- Virion/drug effects
- Virion/immunology
- Virion/metabolism
- env Gene Products, Human Immunodeficiency Virus/immunology
- env Gene Products, Human Immunodeficiency Virus/metabolism
Collapse
Affiliation(s)
- Matthew Paul
- The Hotung Molecular Immunology Group; Institute for Infection & Immunity; St George's; University of London; London, UK
| | - Rajko Reljic
- The Hotung Molecular Immunology Group; Institute for Infection & Immunity; St George's; University of London; London, UK
| | - Katja Klein
- Faculty of Medicine; Department of Medicine; Imperial College; London, UK
| | - Pascal MW Drake
- The Hotung Molecular Immunology Group; Institute for Infection & Immunity; St George's; University of London; London, UK
| | - Craig van Dolleweerd
- The Hotung Molecular Immunology Group; Institute for Infection & Immunity; St George's; University of London; London, UK
| | - Martin Pabst
- Division of Biochemistry; Universität für Bodenkultur; Vienna, Austria
| | - Markus Windwarder
- Division of Biochemistry; Universität für Bodenkultur; Vienna, Austria
| | - Elsa Arcalis
- Institute of Applied Genetics and Cell Biology (IAGZ); Universität für Bodenkultur; Vienna, Austria
| | - Eva Stoger
- Institute of Applied Genetics and Cell Biology (IAGZ); Universität für Bodenkultur; Vienna, Austria
| | - Friedrich Altmann
- Division of Biochemistry; Universität für Bodenkultur; Vienna, Austria
| | - Catherine Cosgrove
- St. George's Vaccine Institute, St. George's, University of London, London, UK
| | - Angela Bartolf
- St. George's Vaccine Institute, St. George's, University of London, London, UK
| | - Susan Baden
- St. George's Vaccine Institute, St. George's, University of London, London, UK
| | - Julian K-C Ma
- The Hotung Molecular Immunology Group; Institute for Infection & Immunity; St George's; University of London; London, UK
| |
Collapse
|
30
|
Abstract
Protein bodies are natural structures containing protein aggregates that exist in many organisms ranging from bacteria to mammals and plants. In bacteria they are often a phenomenon associated to over-expression of heterologous proteins. In mammals the so called Russell bodies indicate an accumulation of mutated immune globulins. In plants the protein bodies play a major role as protein storage organelle in seeds. Besides these natural cases, protein bodies can also be artificially induced primarily using self-assembling peptides. Frequently plant derived proteins such as prolamins or their derivatives are used. In some cases the help of an endoplasmatic retention signal is needed to create artificial protein bodies. The biotechnological application of protein bodies offers novel solutions such as the simplification of downstream processing in protein manufacture, the utilisation as particle for immunisation as vaccines or as carrier free self immobilised enzyme particle for many industrial catalytic processes.
Collapse
|
31
|
De Buck S, Nolf J, De Meyer T, Virdi V, De Wilde K, Van Lerberge E, Van Droogenbroeck B, Depicker A. Fusion of an Fc chain to a VHH boosts the accumulation levels in Arabidopsis seeds. PLANT BIOTECHNOLOGY JOURNAL 2013; 11:1006-16. [PMID: 23915060 DOI: 10.1111/pbi.12094] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 05/22/2013] [Accepted: 05/24/2013] [Indexed: 05/18/2023]
Abstract
Nanobodies® (VHHs) provide powerful tools in therapeutic and biotechnological applications. Nevertheless, for some applications, bivalent antibodies perform much better, and for this, an Fc chain can be fused to the VHH domain, resulting in a bivalent homodimeric VHH-Fc complex. However, the production of bivalent antibodies in Escherichia coli is rather inefficient. Therefore, we compared the production of VHH7 and VHH7-Fc as antibodies of interest in Arabidopsis seeds for detecting prostate-specific antigen (PSA), a well-known biomarker for prostate cancer in the early stages of tumour development. The influence of the signal sequence (camel versus plant) and that of the Fc chain origin (human, mouse or pig) were evaluated. The accumulation levels of VHHs were very low, with a maximum of 0.13% VHH of total soluble protein (TSP) in homozygous T3 seeds, while VHH-Fc accumulation levels were at least 10- to 100-fold higher, with a maximum of 16.25% VHH-Fc of TSP. Both the camel and plant signal peptides were efficiently cleaved off and did not affect the accumulation levels. However, the Fc chain origin strongly affected the degree of proteolysis, but only had a slight influence on the accumulation level. Analysis of the mRNA levels suggested that the low amount of VHHs produced in Arabidopsis seeds was not due to a failure in transcription, but rather to translation inefficiency, protein instability and/or degradation. Most importantly, the plant-produced VHH7 and VHH7-Fc antibodies were functional in detecting PSA and could thus be used for diagnostic applications.
Collapse
Affiliation(s)
- Sylvie De Buck
- Department of Plant Systems Biology, VIB, Gent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Peters J, Sabalza M, Ramessar K, Christou P, Capell T, Stöger E, Arcalís E. Efficient recovery of recombinant proteins from cereal endosperm is affected by interaction with endogenous storage proteins. Biotechnol J 2013; 8:1203-12. [PMID: 23960004 DOI: 10.1002/biot.201300068] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 08/02/2013] [Accepted: 08/16/2013] [Indexed: 01/02/2023]
Abstract
Cereal seeds are versatile platforms for the production of recombinant proteins because they provide a stable environment for protein accumulation. Endogenous seed storage proteins, however, include several prolamin-type polypeptides that aggregate and crosslink via intermolecular disulfide bridges, which could potentially interact with multimeric recombinant proteins such as antibodies, which assemble in the same manner. We investigated this possibility by sequentially extracting a human antibody expressed in maize endosperm, followed by precipitation in vitro with zein. We provide evidence that a significant proportion of the antibody pool interacts with zein and therefore cannot be extracted using non-reducing buffers. Immunolocalization experiments demonstrated that antibodies targeted for secretion were instead retained within zein bodies because of such covalent interactions. Our findings suggest that the production of soluble recombinant antibodies in maize could be enhanced by eliminating or minimizing interactions with endogenous storage proteins.
Collapse
Affiliation(s)
- Jenny Peters
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|
33
|
Virgili-López G, Langhans M, Bubeck J, Pedrazzini E, Gouzerh G, Neuhaus JM, Robinson DG, Vitale A. Comparison of membrane targeting strategies for the accumulation of the human immunodeficiency virus p24 protein in transgenic tobacco. Int J Mol Sci 2013; 14:13241-65. [PMID: 23803657 PMCID: PMC3742185 DOI: 10.3390/ijms140713241] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2013] [Revised: 05/28/2013] [Accepted: 06/17/2013] [Indexed: 01/09/2023] Open
Abstract
Membrane anchorage was tested as a strategy to accumulate recombinant proteins in transgenic plants. Transmembrane domains of different lengths and topology were fused to the cytosolic HIV antigen p24, to promote endoplasmic reticulum (ER) residence or traffic to distal compartments of the secretory pathway in transgenic tobacco. Fusions to a domain of the maize seed storage protein γ-zein were also expressed, as a reference strategy that leads to very high stability via the formation of large polymers in the ER lumen. Although all the membrane anchored constructs were less stable compared to the zein fusions, residence at the ER membrane either as a type I fusion (where the p24 sequence is luminal) or a tail-anchored fusion (where the p24 sequence is cytosolic) resulted in much higher stability than delivery to the plasma membrane or intermediate traffic compartments. Delivery to the tonoplast was never observed. The inclusion of a thrombin cleavage site allowed for the quantitative in vitro recovery of p24 from all constructs. These results point to the ER as suitable compartment for the accumulation of membrane-anchored recombinant proteins in plants.
Collapse
Affiliation(s)
- Goretti Virgili-López
- Department of Plant Cell Biology, Centre for Organismal Studies, University of Heidelberg, Heidelberg D-69120, Germany; E-Mails: (G.V.-L.); (M.L.); (J.B.)
- Institute of Agricultural Biology and Biotechnology, National Research Council (CNR), via Bassini 15, Milano 20133, Italy; E-Mail:
- Laboratory of Cell and Molecular Biology, University of Neuchatel, Rue Emile-Argand 11, Neuchâtel CH-2000, Switzerland; E-Mail:
| | - Markus Langhans
- Department of Plant Cell Biology, Centre for Organismal Studies, University of Heidelberg, Heidelberg D-69120, Germany; E-Mails: (G.V.-L.); (M.L.); (J.B.)
| | - Julia Bubeck
- Department of Plant Cell Biology, Centre for Organismal Studies, University of Heidelberg, Heidelberg D-69120, Germany; E-Mails: (G.V.-L.); (M.L.); (J.B.)
| | - Emanuela Pedrazzini
- Institute of Agricultural Biology and Biotechnology, National Research Council (CNR), via Bassini 15, Milano 20133, Italy; E-Mail:
| | - Guillaume Gouzerh
- Laboratory of Cell and Molecular Biology, University of Neuchatel, Rue Emile-Argand 11, Neuchâtel CH-2000, Switzerland; E-Mail:
| | - Jean-Marc Neuhaus
- Laboratory of Cell and Molecular Biology, University of Neuchatel, Rue Emile-Argand 11, Neuchâtel CH-2000, Switzerland; E-Mail:
| | - David G. Robinson
- Department of Plant Cell Biology, Centre for Organismal Studies, University of Heidelberg, Heidelberg D-69120, Germany; E-Mails: (G.V.-L.); (M.L.); (J.B.)
| | - Alessandro Vitale
- Institute of Agricultural Biology and Biotechnology, National Research Council (CNR), via Bassini 15, Milano 20133, Italy; E-Mail:
| |
Collapse
|
34
|
Gutiérrez SP, Saberianfar R, Kohalmi SE, Menassa R. Protein body formation in stable transgenic tobacco expressing elastin-like polypeptide and hydrophobin fusion proteins. BMC Biotechnol 2013; 13:40. [PMID: 23663656 PMCID: PMC3659085 DOI: 10.1186/1472-6750-13-40] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 05/06/2013] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Plants are recognized as an efficient and inexpensive system to produce valuable recombinant proteins. Two different strategies have been commonly used for the expression of recombinant proteins in plants: transient expression mediated by Agrobacterium; or stable transformation of the plant genome. However, the use of plants as bioreactors still faces two main limitations: low accumulation levels of some recombinant proteins and lack of efficient purification methods. Elastin-like polypeptide (ELP), hydrophobin I (HFBI) and Zera® are three fusion partners found to increase the accumulation levels of recombinant proteins and induce the formation of protein bodies (PBs) in leaves when targeted to the endoplasmic reticulum (ER) in transient expression assays. In this study the effects of ELP and HFBI fusion tags on recombinant protein accumulation levels and PB formation was examined in stable transgenic Nicotiana tabacum. RESULTS The accumulation of recombinant protein and PB formation was evaluated in two cultivars of Nicotiana tabacum transformed with green fluorescent protein (GFP) fused to ELP or HFBI, both targeted and retrieved to the ER. The ELP and HFBI tags increased the accumulation of the recombinant protein and induced the formation of PBs in leaves of stable transgenic plants from both cultivars. Furthermore, these tags induced the formation of PBs in a concentration-dependent manner, where a specific level of recombinant protein accumulation was required for PBs to appear. Moreover, agro-infiltration of plants accumulating low levels of recombinant protein with p19, a suppressor of post-transcriptional gene silencing (PTGS), increased accumulation levels in four independent transgenic lines, suggesting that PTGS might have caused the low accumulation levels in these plants. CONCLUSION The use of ELP and HFBI tags as fusion partners in stable transgenic plants of tobacco is feasible and promising. In a constitutive environment, these tags increase the accumulation levels of the recombinant protein and induce the formation of PBs regardless of the cultivar used. However, a specific level of recombinant protein accumulation needs to be reached for PBs to form.
Collapse
Affiliation(s)
- Sonia P Gutiérrez
- Department of Biology, University of Western Ontario, London, ON, Canada
- Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, London, ON, Canada
| | - Reza Saberianfar
- Department of Biology, University of Western Ontario, London, ON, Canada
- Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, London, ON, Canada
| | - Susanne E Kohalmi
- Department of Biology, University of Western Ontario, London, ON, Canada
| | - Rima Menassa
- Department of Biology, University of Western Ontario, London, ON, Canada
- Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, London, ON, Canada
| |
Collapse
|
35
|
Wang J, Shen J, Cai Y, Robinson DG, Jiang L. Successful transport to the vacuole of heterologously expressed mung bean 8S globulin occurs in seed but not in vegetative tissues. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:1587-601. [PMID: 23382549 PMCID: PMC3617825 DOI: 10.1093/jxb/ert014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
This study investigated the subcellular location of mung bean (Vigna radiata) 8S globulin in transient expression systems as well as in tobacco (Nicotiana tabacum) BY-2 cells and different tissues from a transgenic Arabidopsis (Arabidopsis thaliana) line stably expressing this storage globulin. When transiently expressed in protoplasts from both BY-2 cells and Arabidopsis suspension cultured cells, the 8S globulin located to structures that were neither Golgi nor pre-vacuolar compartments (PVCs). Immunogold electron microscopy of the transgenics reveals the 8S globulin-positive structures to be small, spherical, ribosome-covered endoplasmic reticulum (ER)-derived bodies. In BY-2 cells and all vegetative cells, the 8S globulin was present as a pro-form. However, in Arabidopsis embryos, with the onset of endogenous storage protein synthesis, the 8S globulin exited the ER and passed through the PVC to the protein storage vacuole where it was processed to its smaller mature form. These results clearly demonstrated that, when taken out of context and expressed in vegetative cells, the mung bean 8S storage globulin cannot exit the ER, and indicate that natural targeting of storage proteins to the vacuole should be better studied in the maturing seed.
Collapse
Affiliation(s)
- Junqi Wang
- School of Life Sciences, Centre for Cell and Developmental Biology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, PR China
- Department of Biology, South University of Science and Technology of China, Shenzhen, PR China
| | - Jinbo Shen
- School of Life Sciences, Centre for Cell and Developmental Biology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, PR China
| | - Yi Cai
- School of Life Sciences, Centre for Cell and Developmental Biology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, PR China
| | - David G. Robinson
- Department of Plant Cell Biology, Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | - Liwen Jiang
- School of Life Sciences, Centre for Cell and Developmental Biology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, PR China
| |
Collapse
|
36
|
Galili G, Amir R. Fortifying plants with the essential amino acids lysine and methionine to improve nutritional quality. PLANT BIOTECHNOLOGY JOURNAL 2013; 11:211-22. [PMID: 23279001 DOI: 10.1111/pbi.12025] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 09/27/2012] [Accepted: 10/12/2012] [Indexed: 05/03/2023]
Abstract
Humans, as well as farm animals, cannot synthesize a number of essential amino acids, which are critical for their survival. Hence, these organisms must obtain these essential amino acids from their diets. Cereal and legume crops, which represent the major food and feed sources for humans and livestock worldwide, possess limiting levels of some of these essential amino acids, particularly Lys and Met. Extensive efforts were made to fortify crop plants with these essential amino acids using traditional breeding and mutagenesis. However, aside from some results obtained with maize, none of these approaches was successful. Therefore, additional efforts using genetic engineering approaches concentrated on increasing the synthesis and reducing the catabolism of these essential amino acids and also on the expression of recombinant proteins enriched in them. In the present review, we discuss the basic biological aspects associated with the synthesis and accumulation of these amino acids in plants and also describe recent developments associated with the fortification of crop plants with essential amino acids by genetic engineering approaches.
Collapse
Affiliation(s)
- Gad Galili
- Department of Plant Science, The Weizmann Institute of Science, Rehovot, Israel.
| | | |
Collapse
|
37
|
Iwata Y, Koizumi N. Plant transducers of the endoplasmic reticulum unfolded protein response. TRENDS IN PLANT SCIENCE 2012; 17:720-7. [PMID: 22796463 DOI: 10.1016/j.tplants.2012.06.014] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Revised: 06/21/2012] [Accepted: 06/27/2012] [Indexed: 05/20/2023]
Abstract
The unfolded protein response (UPR) activates a set of genes to overcome accumulation of unfolded proteins in the endoplasmic reticulum (ER), a condition termed ER stress, and constitutes an essential part of ER protein quality control that ensures efficient maturation of secretory and membrane proteins in eukaryotes. Recent studies on Arabidopsis and rice identified the signaling pathway in which the ER membrane-localized ribonuclease IRE1 (inositol-requiring enzyme 1) catalyzes unconventional cytoplasmic splicing of mRNA, thereby producing the active transcription factor Arabidopsis bZIP60 (basic leucine zipper 60) and its ortholog in rice. Here we review recent findings identifying the molecular components of the plant UPR, including IRE1/bZIP60 and the membrane-bound transcription factors bZIP17 and bZIP28, and implicating its importance in several physiological phenomena such as pathogen response.
Collapse
Affiliation(s)
- Yuji Iwata
- Division of Chemical and Life Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | | |
Collapse
|
38
|
Abstract
The unfolded protein response (UPR) activates a set of genes to overcome accumulation of unfolded proteins in the endoplasmic reticulum (ER), a condition termed ER stress, and constitutes an essential part of ER protein quality control that ensures efficient maturation of secretory and membrane proteins in eukaryotes. Recent studies on Arabidopsis and rice identified the signaling pathway in which the ER membrane-localized ribonuclease IRE1 (inositol-requiring enzyme 1) catalyzes unconventional cytoplasmic splicing of mRNA, thereby producing the active transcription factor Arabidopsis bZIP60 (basic leucine zipper 60) and its ortholog in rice. Here we review recent findings identifying the molecular components of the plant UPR, including IRE1/bZIP60 and the membrane-bound transcription factors bZIP17 and bZIP28, and implicating its importance in several physiological phenomena such as pathogen response.
Collapse
Affiliation(s)
- Yuji Iwata
- Division of Chemical and Life Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | | |
Collapse
|
39
|
De Marchis F, Pompa A, Bellucci M. Plastid proteostasis and heterologous protein accumulation in transplastomic plants. PLANT PHYSIOLOGY 2012; 160:571-81. [PMID: 22872774 PMCID: PMC3461539 DOI: 10.1104/pp.112.203778] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
|
40
|
|
41
|
Yang L, Hirose S, Suzuki K, Hiroi T, Takaiwa F. Expression of hypoallergenic Der f 2 derivatives with altered intramolecular disulphide bonds induces the formation of novel ER-derived protein bodies in transgenic rice seeds. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:2947-59. [PMID: 22378952 PMCID: PMC3350914 DOI: 10.1093/jxb/ers006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Accepted: 01/05/2012] [Indexed: 05/24/2023]
Abstract
House dust mites (HDM) are the most common source of indoor allergens and are associated with allergic diseases worldwide. To benefit allergic patients, safer and non-invasive mucosal routes of oral administration are considered to be the best alternative to conventional allergen-specific immunotherapy. In this study, transgenic rice was developed expressing derivatives of the major HDM allergen Der f 2 with reduced Der f 2-specific IgE reactivity by disrupting intramolecular disulphide bonds in Der f 2. These derivatives were produced specifically as secretory proteins in the endosperm tissue of seeds under the control of the endosperm-specific glutelin GluB-1 promoter. Notably, modified Der f 2 derivatives aggregated in the endoplasmic reticulum (ER) lumen and were deposited in a unique protein body (PB)-like structure tentatively called the Der f 2 body. Der f 2 bodies were characterized by their intracellular localization and physico-chemical properties, and were distinct from ER-derived PBs (PB-Is) and protein storage vacuoles (PB-IIs). Unlike ER-derived organelles such as PB-Is, Der f 2 bodies were rapidly digested in simulated gastric fluid in a manner similar to that of PB-IIs. Oral administration in mice of transgenic rice seeds containing Der f 2 derivatives encapsulated in Der f 2 bodies suppressed Der f 2-specific IgE and IgG production compared with that in mice fed non-transgenic rice seeds, and the effect was dependent on the type of Der f 2 derivative expressed. These results suggest that engineered hypoallergenic Der f 2 derivatives expressed in the rice seed endosperm could serve as a basis for the development of viable strategies for the oral delivery of vaccines against HDM allergy.
Collapse
Affiliation(s)
- Lijun Yang
- Functional Crop Research and Development Unit, National Institute of Agrobiological Sciences, Tsukuba 305-8602, Ibaraki, Japan
| | - Sakiko Hirose
- Functional Crop Research and Development Unit, National Institute of Agrobiological Sciences, Tsukuba 305-8602, Ibaraki, Japan
| | - Kazuya Suzuki
- Department of Allergy and Immunology, The Tokyo Metropolitan Institute of Medical Science, Setagaya-ku 156-8609, Tokyo, Japan
| | - Takachika Hiroi
- Department of Allergy and Immunology, The Tokyo Metropolitan Institute of Medical Science, Setagaya-ku 156-8609, Tokyo, Japan
| | - Fumio Takaiwa
- Functional Crop Research and Development Unit, National Institute of Agrobiological Sciences, Tsukuba 305-8602, Ibaraki, Japan
| |
Collapse
|
42
|
Ibl V, Stoger E. The formation, function and fate of protein storage compartments in seeds. PROTOPLASMA 2012; 249:379-92. [PMID: 21614590 DOI: 10.1007/s00709-011-0288-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Accepted: 05/12/2011] [Indexed: 05/07/2023]
Abstract
Seed storage proteins (SSPs) have been studied for more than 250 years because of their nutritional value and their impact on the use of grain in food processing. More recently, the use of seeds for the production of recombinant proteins has rekindled interest in the behavior of SSPs and the question how they are able to accumulate as stable storage reserves. Seed cells produce vast amounts of SSPs with different subcellular destinations creating an enormous logistic challenge for the endomembrane system. Seed cells contain several different storage organelles including the complex and dynamic protein storage vacuoles (PSVs) and other protein bodies (PBs) derived from the endoplasmic reticulum (ER). Storage proteins destined for the PSV may pass through or bypass the Golgi, using different vesicles that follow different routes through the cell. In addition, trafficking may depend on the plant species, tissue and developmental stage, showing that the endomembrane system is capable of massive reorganization. Some SSPs contain sorting signals or interact with membranes or with other proteins en route in order to reach their destination. The ability of SSPs to form aggregates is particularly important in the formation or ER-derived PBs, a mechanism that occurs naturally in response to overloading with proteins that cannot be transported and that can be used to induce artificial storage bodies in vegetative tissues. In this review, we summarize recent findings that provide insight into the formation, function, and fate of storage organelles and describe tools that can be used to study them.
Collapse
Affiliation(s)
- Verena Ibl
- Department for Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Muthgasse 18, 1190, Vienna, Austria
| | | |
Collapse
|
43
|
Khan I, Twyman RM, Arcalis E, Stoger E. Using storage organelles for the accumulation and encapsulation of recombinant proteins. Biotechnol J 2012; 7:1099-108. [DOI: 10.1002/biot.201100089] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2011] [Revised: 01/18/2012] [Accepted: 02/06/2012] [Indexed: 11/06/2022]
|
44
|
Leyva-Guerrero E, Narayanan NN, Ihemere U, Sayre RT. Iron and protein biofortification of cassava: lessons learned. Curr Opin Biotechnol 2012; 23:257-64. [PMID: 22226461 DOI: 10.1016/j.copbio.2011.12.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Revised: 10/26/2011] [Accepted: 12/14/2011] [Indexed: 11/28/2022]
Abstract
Over two hundred and fifty million Africans rely on the starchy root crop cassava (Manihot esculenta) as their primary source of calories. Cassava roots, however, have the lowest protein:energy ratio of all the world's major staple crops. Furthermore, a typical cassava-based diet provides less than 10-20% of the required amounts of iron, zinc, vitamin A and vitamin E. The BioCassava Plus program employed modern biotechnologies to improve the health of Africans through development and delivery of novel cassava germplasm with increased nutrient levels. Here we describe the development of molecular strategies and their outcomes to meet minimum daily allowances for protein and iron in cassava based diets. We demonstrate that cyanogens play a central role in cassava nitrogen metabolism and that strategies employed to increase root protein levels result in reduced cyanogen levels in roots. We also demonstrate that enhancing root iron uptake has an impact on the expression of genes that regulate iron homeostasis in multiple tissues. These observations demonstrate the complex metabolic interactions involved in enhancing targeted nutrient levels in plants and identify potential new strategies for further enhancing nutrient levels in cassava.
Collapse
|
45
|
De Marchis F, Balducci C, Pompa A, Riise Stensland HMF, Guaragno M, Pagiotti R, Menghini AR, Persichetti E, Beccari T, Bellucci M. Human α-mannosidase produced in transgenic tobacco plants is processed in human α-mannosidosis cell lines. PLANT BIOTECHNOLOGY JOURNAL 2011; 9:1061-73. [PMID: 21645202 DOI: 10.1111/j.1467-7652.2011.00630.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Deficiency in human lysosomal α-mannosidase (MAN2B1) results in α-mannosidosis, a lysosomal storage disorder; patients present a wide range of neurological, immunological, and skeletal symptoms caused by a multisystemic accumulation of mannose-containing oligosaccharides. Here, we describe the expression of recombinant MAN2B1 both transiently in Nicotiana benthamiana leaves and in the leaves and seeds of stably transformed N. tabacum plants. After purification from tobacco leaves, the recombinant enzyme was found to be N-glycosylated and localized in vacuolar compartments. In the fresh leaves of tobacco transformants, MAN2B1 was measured at 10,200 units/kg, and the purified enzyme from these leaves had a specific activity of 32-45 U/mg. Furthermore, tobacco-produced MAN2B1 was biochemically similar to the enzyme purified from human tissues, and it was internalized and processed by α-mannosidosis fibroblast cells. These results strongly indicate that plants can be considered a promising expression system for the production of recombinant MAN2B1 for use in enzyme replacement therapy.
Collapse
Affiliation(s)
- Francesca De Marchis
- Institute of Plant Genetics, Italian National Council of Research (CNR), Perugia, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Francin-Allami M, Saumonneau A, Lavenant L, Bouder A, Sparkes I, Hawes C, Popineau Y. Dynamic trafficking of wheat γ-gliadin and of its structural domains in tobacco cells, studied with fluorescent protein fusions. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:4507-20. [PMID: 21617248 PMCID: PMC3170547 DOI: 10.1093/jxb/err159] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Revised: 03/18/2011] [Accepted: 04/25/2011] [Indexed: 05/10/2023]
Abstract
Prolamins, the main storage proteins of wheat seeds, are synthesized and retained in the endoplasmic reticulum (ER) of the endosperm cells, where they accumulate in protein bodies (PBs) and are then exported to the storage vacuole. The mechanisms leading to these events are unresolved. To investigate this unconventional trafficking pathway, wheat γ-gliadin and its isolated repeated N-terminal and cysteine-rich C-terminal domains were fused to fluorescent proteins and expressed in tobacco leaf epidermal cells. The results indicated that γ-gliadin and both isolated domains were able to be retained and accumulated as protein body-like structures (PBLS) in the ER, suggesting that tandem repeats are not the only sequence involved in γ-gliadin ER retention and PBLS formation. The high actin-dependent mobility of γ-gliadin PBLS is also reported, and it is demonstrated that most of them do not co-localize with Golgi body or pre-vacuolar compartment markers. Both γ-gliadin domains are found in the same PBLS when co-expressed, which is most probably due to their ability to interact with each other, as indicated by the yeast two-hybrid and FRET-FLIM experiments. Moreover, when stably expressed in BY-2 cells, green fluorescent protein (GFP) fusions to γ-gliadin and its isolated domains were retained in the ER for several days before being exported to the vacuole in a Golgi-dependent manner, and degraded, leading to the release of the GFP 'core'. Taken together, the results show that tobacco cells are a convenient model to study the atypical wheat prolamin trafficking with fluorescent protein fusions.
Collapse
|
47
|
De Marchis F, Pompa A, Mannucci R, Morosinotto T, Bellucci M. A plant secretory signal peptide targets plastome-encoded recombinant proteins to the thylakoid membrane. PLANT MOLECULAR BIOLOGY 2011; 76:427-41. [PMID: 20714919 DOI: 10.1007/s11103-010-9676-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2010] [Accepted: 07/21/2010] [Indexed: 05/29/2023]
Abstract
Plastids are considered promising bioreactors for the production of recombinant proteins, but the knowledge of the mechanisms regulating foreign protein folding, targeting, and accumulation in these organelles is still incomplete. Here we demonstrate that a plant secretory signal peptide is able to target a plastome-encoded recombinant protein to the thylakoid membrane. The fusion protein zeolin with its native signal peptide expressed by tobacco (Nicotiana tabacum) transplastomic plants was directed into the chloroplast thylakoid membranes, whereas the zeolin mutant devoid of the signal peptide, Δzeolin, is instead accumulated in the stroma. We also show that zeolin folds in the thylakoid membrane where it accumulates as trimers able to form disulphide bonds. Disulphide bonds contribute to protein accumulation since zeolin shows a higher accumulation level with respect to stromal Δzeolin, whose folding is hampered as the protein accumulates at low amounts in a monomeric form and it is not oxidized. Thus, post-transcriptional processes seem to regulate the stability and accumulation of plastid-synthesized zeolin. The most plausible zeolin targeting mechanism to thylakoid is discussed herein.
Collapse
Affiliation(s)
- Francesca De Marchis
- Istituto di Genetica Vegetale, Consiglio Nazionale delle Ricerche (CNR), via della Madonna Alta 130, 06128 Perugia, Italy
| | | | | | | | | |
Collapse
|
48
|
Saumonneau A, Rottier K, Conrad U, Popineau Y, Guéguen J, Francin-Allami M. Expression of a new chimeric protein with a highly repeated sequence in tobacco cells. PLANT CELL REPORTS 2011; 30:1289-302. [PMID: 21373795 DOI: 10.1007/s00299-011-1040-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Revised: 02/04/2011] [Accepted: 02/09/2011] [Indexed: 05/30/2023]
Abstract
In wheat, the high-molecular weight (HMW) glutenin subunits are known to contribute to gluten viscoelasticity, and show some similarities to elastomeric animal proteins as elastin. When combining the sequence of a glutenin with that of elastin is a way to create new chimeric functional proteins, which could be expressed in plants. The sequence of a glutenin subunit was modified by the insertion of several hydrophobic and elastic motifs derived from elastin (elastin-like peptide, ELP) into the hydrophilic repetitive domain of the glutenin subunit to create a triblock protein, the objective being to improve the mechanical (elastomeric) properties of this wheat storage protein. In this study, we investigated an expression model system to analyze the expression and trafficking of the wild-type HMW glutenin subunit (GS(W)) and an HMW glutenin subunit mutated by the insertion of elastin motifs (GS(M)-ELP). For this purpose, a series of constructs was made to express wild-type subunits and subunits mutated by insertion of elastin motifs in fusion with green fluorescent protein (GFP) in tobacco BY-2 cells. Our results showed for the first time the expression of HMW glutenin fused with GFP in tobacco protoplasts. We also expressed and localized the chimeric protein composed of plant glutenin and animal elastin-like peptides (ELP) in BY-2 protoplasts, and demonstrated its presence in protein body-like structures in the endoplasmic reticulum. This work, therefore, provides a basis for heterologous production of the glutenin-ELP triblock protein to characterize its mechanical properties.
Collapse
Affiliation(s)
- Amélie Saumonneau
- Institut National de la Recherche Agronomique, UR1268, Biopolymères Interactions Assemblages, Nantes, France
| | | | | | | | | | | |
Collapse
|
49
|
Conley AJ, Joensuu JJ, Richman A, Menassa R. Protein body-inducing fusions for high-level production and purification of recombinant proteins in plants. PLANT BIOTECHNOLOGY JOURNAL 2011; 9:419-33. [PMID: 21338467 DOI: 10.1111/j.1467-7652.2011.00596.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
For the past two decades, therapeutic and industrially important proteins have been expressed in plants with varying levels of success. The two major challenges hindering the economical production of plant-made recombinant proteins include inadequate accumulation levels and the lack of efficient purification methods. To address these limitations, several fusion protein strategies have been recently developed to significantly enhance the production yield of plant-made recombinant proteins, while simultaneously assisting in their subsequent purification. Elastin-like polypeptides are thermally responsive biopolymers composed of a repeating pentapeptide 'VPGXG' sequence that are valuable for the purification of recombinant proteins. Hydrophobins are small fungal proteins capable of altering the hydrophobicity of their respective fusion partner, thus enabling efficient purification by surfactant-based aqueous two-phase systems. Zera, a domain of the maize seed storage protein γ-zein, can induce the formation of protein storage bodies, thus facilitating the recovery of fused proteins using density-based separation methods. These three novel protein fusion systems have also been shown to enhance the accumulation of a range of different recombinant proteins, while concurrently inducing the formation of protein bodies. The packing of these fusion proteins into protein bodies may exclude the recombinant protein from normal physiological turnover. Furthermore, these systems allow for quick, simple and inexpensive nonchromatographic purification of the recombinant protein, which can be scaled up to industrial levels of protein production. This review will focus on the similarities and differences of these artificial storage organelles, their biogenesis and their implication for the production of recombinant proteins in plants and their subsequent purification.
Collapse
Affiliation(s)
- Andrew J Conley
- Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, London, ON, Canada
| | | | | | | |
Collapse
|
50
|
Llop-Tous I, Ortiz M, Torrent M, Ludevid MD. The expression of a xylanase targeted to ER-protein bodies provides a simple strategy to produce active insoluble enzyme polymers in tobacco plants. PLoS One 2011; 6:e19474. [PMID: 21559333 PMCID: PMC3084875 DOI: 10.1371/journal.pone.0019474] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2011] [Accepted: 04/04/2011] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Xylanases deserve particular attention due to their potential application in the feed, pulp bleaching and paper industries. We have developed here an efficient system for the production of an active xylanase in tobacco plants fused to a proline-rich domain (Zera) of the maize storage protein γ-zein. Zera is a self-assembling domain able to form protein aggregates in vivo packed in newly formed endoplasmic reticulum-derived organelles known as protein bodies (PBs). METHODOLOGY/PRINCIPAL FINDINGS Tobacco leaves were transiently transformed with a binary vector containing the Zera-xylanase coding region, which was optimized for plant expression, under the control of the 35S CaMV promoter. The fusion protein was efficiently expressed and stored in dense PBs, resulting in yields of up to 9% of total protein. Zera-xylanase was post-translationally modified with high-mannose-type glycans. Xylanase fused to Zera was biologically active not only when solubilized from PBs but also in its insoluble form. The resistance of insoluble Zera-xylanase to trypsin digestion demonstrated that the correct folding of xylanase in PBs was not impaired by Zera oligomerization. The activity of insoluble Zera-xylanase was enhanced when substrate accessibility was facilitated by physical treatments such as ultrasound. Moreover, we found that the thermostability of the enzyme was improved when Zera was fused to the C-terminus of xylanase. CONCLUSION/SIGNIFICANCE In the present work we have successfully produced an active insoluble aggregate of xylanase fused to Zera in plants. Zera-xylanase chimeric protein accumulates within ER-derived protein bodies as active aggregates that can easily be recovered by a simple density-based downstream process. The production of insoluble active Zera-xylanase protein in tobacco outlines the potential of Zera as a fusion partner for producing enzymes of biotechnological relevance. Zera-PBs could thus become efficient and low-cost bioreactors for industrial purposes.
Collapse
Affiliation(s)
- Immaculada Llop-Tous
- Department of Molecular Genetics, Centre for Research in Agricultural Genomics (CRAG, Consortium CSIC-IRTA-UAB), Barcelona, Spain
- ERA Biotech, Barcelona, Spain
| | - Miriam Ortiz
- Department of Molecular Genetics, Centre for Research in Agricultural Genomics (CRAG, Consortium CSIC-IRTA-UAB), Barcelona, Spain
| | - Margarita Torrent
- Department of Molecular Genetics, Centre for Research in Agricultural Genomics (CRAG, Consortium CSIC-IRTA-UAB), Barcelona, Spain
| | - M. Dolors Ludevid
- Department of Molecular Genetics, Centre for Research in Agricultural Genomics (CRAG, Consortium CSIC-IRTA-UAB), Barcelona, Spain
| |
Collapse
|