1
|
Ding S, Feng S, Zhou S, Zhao Z, Liang X, Wang J, Fu R, Deng R, Zhang T, Shao S, Yu J, Foyer CH, Shi K. A novel LRR receptor-like kinase BRAK reciprocally phosphorylates PSKR1 to enhance growth and defense in tomato. EMBO J 2024:10.1038/s44318-024-00278-z. [PMID: 39448885 DOI: 10.1038/s44318-024-00278-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 10/26/2024] Open
Abstract
Plants face constant threats from pathogens, leading to growth retardation and crop failure. Cell-surface leucine-rich repeat receptor-like kinases (LRR-RLKs) are crucial for plant growth and defense, but their specific functions, especially to necrotrophic fungal pathogens, are largely unknown. Here, we identified an LRR-RLK (Solyc06g069650) in tomato (Solanum lycopersicum) induced by the economically important necrotrophic pathogen Botrytis cinerea. Knocking out this LRR-RLK reduced plant growth and increased sensitivity to B. cinerea, while its overexpression led to enhanced growth, yield, and resistance. We named this LRR-RLK as BRAK (B. cinerea resistance-associated kinase). Yeast two-hybrid screen revealed BRAK interacted with phytosulfokine (PSK) receptor PSKR1. PSK-induced growth and defense responses were impaired in pskr1, brak single and double mutants, as well as in PSKR1-overexpressing plants with silenced BRAK. Moreover, BRAK and PSKR1 phosphorylated each other, promoting their interaction as detected by microscale thermophoresis. This reciprocal phosphorylation was crucial for growth and resistance. In summary, we identified BRAK as a novel regulator of seedling growth, fruit yield and defense, offering new possibilities for developing fungal disease-tolerant plants without compromising yield.
Collapse
Affiliation(s)
- Shuting Ding
- Department of Horticulture, Zhejiang University, 866 Yuhangtang Road, 310058, Hangzhou, China
- Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, 572025, Sanya, China
| | - Shuxian Feng
- Department of Horticulture, Zhejiang University, 866 Yuhangtang Road, 310058, Hangzhou, China
| | - Shibo Zhou
- Department of Horticulture, Zhejiang University, 866 Yuhangtang Road, 310058, Hangzhou, China
| | - Zhengran Zhao
- Department of Horticulture, Zhejiang University, 866 Yuhangtang Road, 310058, Hangzhou, China
| | - Xiao Liang
- Department of Horticulture, Zhejiang University, 866 Yuhangtang Road, 310058, Hangzhou, China
| | - Jiao Wang
- Department of Horticulture, Zhejiang University, 866 Yuhangtang Road, 310058, Hangzhou, China
| | - Ruishuang Fu
- Department of Horticulture, Zhejiang University, 866 Yuhangtang Road, 310058, Hangzhou, China
| | - Rui Deng
- Department of Horticulture, Zhejiang University, 866 Yuhangtang Road, 310058, Hangzhou, China
| | - Tao Zhang
- College of Horticulture, Henan Agricultural University, 450002, Zhengzhou, China
| | - Shujun Shao
- Department of Horticulture, Zhejiang University, 866 Yuhangtang Road, 310058, Hangzhou, China
| | - Jingquan Yu
- Department of Horticulture, Zhejiang University, 866 Yuhangtang Road, 310058, Hangzhou, China
| | - Christine H Foyer
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, B15 2TT, UK
| | - Kai Shi
- Department of Horticulture, Zhejiang University, 866 Yuhangtang Road, 310058, Hangzhou, China.
- Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, 572025, Sanya, China.
- Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, 310058, Hangzhou, China.
| |
Collapse
|
2
|
Khalil HB. Genome-Wide Characterization and Expression Profiling of Phytosulfokine Receptor Genes ( PSKRs) in Triticum aestivum with Docking Simulations of Their Interactions with Phytosulfokine (PSK): A Bioinformatics Study. Genes (Basel) 2024; 15:1306. [PMID: 39457430 PMCID: PMC11507999 DOI: 10.3390/genes15101306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/29/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Background/Objectives: The phytosulfokine receptor (PSKR) gene family plays a crucial role in regulating plant growth, development, and stress response. Here, the PSKR gene family was characterized in Triticum aestivum L. The study aimed to bridge knowledge gaps and clarify the functional roles of TaPSKRs to create a solid foundation for examining the structure, functions, and regulatory aspects. Methods: The investigation involved genome-wide identification of PSKRs through collection and chromosomal assignment, followed by phylogenetic analysis and gene expression profiling. Additionally, interactions with their interactors were stimulated and analyzed to elucidate their function. Results: The wide-genome inspection of all TaPSKRs led to 25 genes with various homeologs, resulting in 57 TaPSKR members distributed among the A, B, and D subgenomes. Investigating the expression of 61 TaPSKR cDNAs in RNA-seq datasets generated from different growth stages at 14, 21, and 60 days old and diverse tissues such as leaves, shoots, and roots provided further insight into their functional purposes. The expression profile of the TaPSKRs resulted in three key clusters. Gene cluster 1 (GC 1) is partially associated with root growth, suggesting that specific TaPSKRs control root development. The GC 2 cluster targeted genes that show high levels of expression in all tested leaf growth stages and the early developmental stage of the shoots and roots. Furthermore, the GC 3 cluster was composed of genes that are constantly expressed, highlighting their crucial role in regulating various processes during the entire life cycle of wheat. Molecular docking simulations showed that phytosulfokine type α (PSK-α) interacted with all TaPSKRs and had a strong binding affinity with certain TaPSKR proteins, encompassing TaPSKR1A, TaPSKR3B, and TaPSKR13A, that support their involvement in PSK signaling pathways. The crucial arbitration of the affinity may depend on interactions between wheat PSK-α and PSKRs, especially in the LRR domain region. Conclusions: These discoveries deepened our knowledge of the role of the TaPSKR gene family in wheat growth and development, opening up possibilities for further studies to enhance wheat durability and yield via focused innovation approaches.
Collapse
Affiliation(s)
- Hala Badr Khalil
- Department of Biological Sciences, College of Science, King Faisal University, P.O. Box 380, Al-Ahsa 31982, Saudi Arabia;
- Department of Genetics, Faculty of Agriculture, Ain Shams University, 68 Hadayek Shoubra, Cairo 11241, Egypt
| |
Collapse
|
3
|
Wang X, Zhang S, Xu B. Characterization of the Serine Protease TlSP1 from Trichoderma longibrachiatum T6 and Its Function in the Control of Heterodera avenae in Wheat. J Fungi (Basel) 2024; 10:569. [PMID: 39194895 DOI: 10.3390/jof10080569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 08/29/2024] Open
Abstract
Serine protease is an extracellular protease secreted by biocontrol fungi that can effectively control nematode diseases by degrading nematode eggshells and enhancing plant resistance. Trichoderma longibrachiatum T6, an important biocontrol fungus, has been demonstrated to effectively parasitize and degrade Heterodera avenae cysts, eggs, and second-stage juveniles (J2s). However, the genes that encoding serine protease and their functions in T. longibrachiatum T6 have not been thoroughly investigated. In this study, we successfully cloned and sequenced the serine protease gene TlSP1 in T. longibrachiatum T6. Our results revealed that the expression level of the TlSP1 gene was induced and significantly increased in T. longibrachiatum T6 after inoculation with H. avenae cysts. The full-length sequence of the coding region (CDS) of TlSP1 gene was 1230 bp and encoded a protein consisting of 409 amino acids. Upon the transformation of the TlSP1 gene into Pichia pastoris X33, the purified recombinant TlSP1 protein exhibited optimal activity at a temperature of 50 °C and pH 8.0. Following 4-10-day of treatment with the purified recombinant TlSP1 protein, the eggshells and content were dissolved and exuded. The number of nematodes invading wheat roots was reduced by 38.43% in the group treated with both TlSP1 and eggs on one side (P1+N) compared to the control group, while the number of nematodes invading wheat roots was reduced by 30.4% in the TlSP1 and eggs two-sided treatment group (P1/N). Furthermore, both the P1+N and P1/N treatments significantly upregulated genes associated with defense enzymes (TaPAL, TaCAT, TaSOD, and TaPOD), genes involved in the lignin synthesis pathway (TaC4H, Ta4CL2, TaCAD1, and TaCAD12), and salicylic acid (SA)-responsive genes (TaNPR1, TaPR1, and TaPR2) and led to the high expression of jasmonic acid (JA)-responsive genes (TaPR4, TaOPR3, and TaAOS2). This study has highlighted the significant role of the TlSP1 gene in facilitating H. avenae eggshells' dissolution, preventing nematode invasion in the host plant, and boosting plant resistance in wheat.
Collapse
Affiliation(s)
- Xiujuan Wang
- College of Plant Protection, Gansu Agricultural University, Lanzhou 730070, China
- Gansu Provincial Biocontrol Engineering Laboratory of Crop Diseases and Pests, Lanzhou 730070, China
| | - Shuwu Zhang
- College of Plant Protection, Gansu Agricultural University, Lanzhou 730070, China
- Gansu Provincial Biocontrol Engineering Laboratory of Crop Diseases and Pests, Lanzhou 730070, China
- Gansu Provincial Key Laboratory of Arid Land Crop Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Bingliang Xu
- College of Plant Protection, Gansu Agricultural University, Lanzhou 730070, China
- Gansu Provincial Biocontrol Engineering Laboratory of Crop Diseases and Pests, Lanzhou 730070, China
- Gansu Provincial Key Laboratory of Arid Land Crop Science, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
4
|
Del Corpo D, Coculo D, Greco M, De Lorenzo G, Lionetti V. Pull the fuzes: Processing protein precursors to generate apoplastic danger signals for triggering plant immunity. PLANT COMMUNICATIONS 2024; 5:100931. [PMID: 38689495 PMCID: PMC11371470 DOI: 10.1016/j.xplc.2024.100931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/29/2024] [Accepted: 04/26/2024] [Indexed: 05/02/2024]
Abstract
The apoplast is one of the first cellular compartments outside the plasma membrane encountered by phytopathogenic microbes in the early stages of plant tissue invasion. Plants have developed sophisticated surveillance mechanisms to sense danger events at the cell surface and promptly activate immunity. However, a fine tuning of the activation of immune pathways is necessary to mount a robust and effective defense response. Several endogenous proteins and enzymes are synthesized as inactive precursors, and their post-translational processing has emerged as a critical mechanism for triggering alarms in the apoplast. In this review, we focus on the precursors of phytocytokines, cell wall remodeling enzymes, and proteases. The physiological events that convert inactive precursors into immunomodulatory active peptides or enzymes are described. This review also explores the functional synergies among phytocytokines, cell wall damage-associated molecular patterns, and remodeling, highlighting their roles in boosting extracellular immunity and reinforcing defenses against pests.
Collapse
Affiliation(s)
- Daniele Del Corpo
- Department of Biology and Biotechnology "Charles Darwin," Sapienza University of Rome, Rome, Italy
| | - Daniele Coculo
- Department of Biology and Biotechnology "Charles Darwin," Sapienza University of Rome, Rome, Italy
| | - Marco Greco
- Department of Biology and Biotechnology "Charles Darwin," Sapienza University of Rome, Rome, Italy
| | - Giulia De Lorenzo
- Department of Biology and Biotechnology "Charles Darwin," Sapienza University of Rome, Rome, Italy
| | - Vincenzo Lionetti
- Department of Biology and Biotechnology "Charles Darwin," Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
5
|
Harshith CY, Pal A, Chakraborty M, Nair A, Raju S, Shivaprasad PV. Wound-induced small-peptide-mediated signaling cascade, regulated by OsPSKR, dictates balance between growth and defense in rice. Cell Rep 2024; 43:114515. [PMID: 39003743 DOI: 10.1016/j.celrep.2024.114515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 05/13/2024] [Accepted: 07/01/2024] [Indexed: 07/16/2024] Open
Abstract
Wounding is a general stress in plants that results from various pest and pathogenic infections in addition to environment-induced mechanical damages. Plants have sophisticated molecular mechanisms to recognize and respond to wounding, with those of monocots being distinct from dicots. Here, we show the involvement of two distinct categories of temporally separated, endogenously derived peptides, namely, plant elicitor peptides (PEPs) and phytosulfokine (PSK), mediating wound responses in rice. These peptides trigger a dynamic signal relay in which a receptor kinase involved in PSK perception named OsPSKR plays a major role. Perturbation of OsPSKR expression in rice leads to compromised development and constitutive autoimmune phenotypes. OsPSKR regulates the transitioning of defense to growth signals upon wounding. OsPSKR displays mutual antagonism with the OsPEPR1 receptor involved in PEP perception. Collectively, our work indicates the presence of a stepwise peptide-mediated signal relay that regulates the transition from defense to growth upon wounding in monocots.
Collapse
Affiliation(s)
- Chitthavalli Y Harshith
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bellary Road, Bangalore 560065, India
| | - Avik Pal
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bellary Road, Bangalore 560065, India
| | - Monoswi Chakraborty
- Institute of Bioinformatics and Applied Biotechnology, Bangalore 560100, India
| | - Ashwin Nair
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bellary Road, Bangalore 560065, India
| | - Steffi Raju
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bellary Road, Bangalore 560065, India; SASTRA University, Thirumalaisamudram, Thanjavur 613401, India
| | - Padubidri V Shivaprasad
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bellary Road, Bangalore 560065, India.
| |
Collapse
|
6
|
Lu S, Xiao F. Small Peptides: Orchestrators of Plant Growth and Developmental Processes. Int J Mol Sci 2024; 25:7627. [PMID: 39062870 PMCID: PMC11276966 DOI: 10.3390/ijms25147627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 06/20/2024] [Accepted: 06/22/2024] [Indexed: 07/28/2024] Open
Abstract
Small peptides (SPs), ranging from 5 to 100 amino acids, play integral roles in plants due to their diverse functions. Despite their low abundance and small molecular weight, SPs intricately regulate critical aspects of plant life, including cell division, growth, differentiation, flowering, fruiting, maturation, and stress responses. As vital mediators of intercellular signaling, SPs have garnered significant attention in plant biology research. This comprehensive review delves into SPs' structure, classification, and identification, providing a detailed understanding of their significance. Additionally, we summarize recent findings on the biological functions and signaling pathways of prominent SPs that regulate plant growth and development. This review also offers a perspective on future research directions in peptide signaling pathways.
Collapse
Affiliation(s)
| | - Fei Xiao
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China;
| |
Collapse
|
7
|
He L, Wu L, Li J. Sulfated peptides and their receptors: Key regulators of plant development and stress adaptation. PLANT COMMUNICATIONS 2024; 5:100918. [PMID: 38600699 PMCID: PMC11211552 DOI: 10.1016/j.xplc.2024.100918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/03/2024] [Accepted: 04/07/2024] [Indexed: 04/12/2024]
Abstract
Four distinct types of sulfated peptides have been identified in Arabidopsis thaliana. These peptides play crucial roles in regulating plant development and stress adaptation. Recent studies have revealed that Xanthomonas and Meloidogyne can secrete plant-like sulfated peptides, exploiting the plant sulfated peptide signaling pathway to suppress plant immunity. Over the past three decades, receptors for these four types of sulfated peptides have been identified, all of which belong to the leucine-rich repeat receptor-like protein kinase subfamily. A number of regulatory proteins have been demonstrated to play important roles in their corresponding signal transduction pathways. In this review, we comprehensively summarize the discoveries of sulfated peptides and their receptors, mainly in Arabidopsis thaliana. We also discuss their known biological functions in plant development and stress adaptation. Finally, we put forward a number of questions for reference in future studies.
Collapse
Affiliation(s)
- Liming He
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Liangfan Wu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jia Li
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, School of Life Sciences, Guangzhou University, Guangzhou 510006, China.
| |
Collapse
|
8
|
Sato Y, Minamikawa MF, Pratama BB, Koyama S, Kojima M, Takebayashi Y, Sakakibara H, Igawa T. Autonomous differentiation of transgenic cells requiring no external hormone application: the endogenous gene expression and phytohormone behaviors. FRONTIERS IN PLANT SCIENCE 2024; 15:1308417. [PMID: 38633452 PMCID: PMC11021773 DOI: 10.3389/fpls.2024.1308417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 03/18/2024] [Indexed: 04/19/2024]
Abstract
The ectopic overexpression of developmental regulator (DR) genes has been reported to improve the transformation in recalcitrant plant species because of the promotion of cellular differentiation during cell culture processes. In other words, the external plant growth regulator (PGR) application during the tissue and cell culture process is still required in cases utilizing DR genes for plant regeneration. Here, the effect of Arabidopsis BABY BOOM (BBM) and WUSCHEL (WUS) on the differentiation of tobacco transgenic cells was examined. We found that the SRDX fusion to WUS, when co-expressed with the BBM-VP16 fusion gene, significantly influenced the induction of autonomous differentiation under PGR-free culture conditions, with similar effects in some other plant species. Furthermore, to understand the endogenous background underlying cell differentiation toward regeneration, phytohormone and RNA-seq analyses were performed using tobacco leaf explants in which transgenic cells were autonomously differentiating. The levels of active auxins, cytokinins, abscisic acid, and inactive gibberellins increased as cell differentiation proceeded toward organogenesis. Gene Ontology terms related to phytohormones and organogenesis were identified as differentially expressed genes, in addition to those related to polysaccharide and nitrate metabolism. The qRT-PCR four selected genes as DEGs supported the RNA-seq data. This differentiation induction system and the reported phytohormone and transcript profiles provide a foundation for the development of PGR-free tissue cultures of various plant species, facilitating future biotechnological breeding.
Collapse
Affiliation(s)
- Yuka Sato
- Plant Cell Technology Laboratory, Graduate School of Horticulture, Chiba University, Matsudo, Japan
| | - Mai F. Minamikawa
- Institute for Advanced Academic Research (IAAR), Chiba University, Chiba, Japan
| | - Berbudi Bintang Pratama
- Plant Cell Technology Laboratory, Graduate School of Horticulture, Chiba University, Matsudo, Japan
| | - Shohei Koyama
- Plant Cell Technology Laboratory, Graduate School of Horticulture, Chiba University, Matsudo, Japan
| | - Mikiko Kojima
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | | | - Hitoshi Sakakibara
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Tomoko Igawa
- Plant Cell Technology Laboratory, Graduate School of Horticulture, Chiba University, Matsudo, Japan
- Plant Molecular Science Center, Chiba University, Chiba, Japan
- Research Center for Space Agriculture and Horticulture, Chiba University, Matsudo, Japan
| |
Collapse
|
9
|
Ding ZJ, Xu C, Yan JY, Wang YX, Cui MQ, Yuan JJ, Wang YN, Li GX, Wu JX, Wu YR, Xu JM, Li CX, Shi YZ, Mao CZ, Guo JT, Zhou JM, Benhamed M, Harberd NP, Zheng SJ. The LRR receptor-like kinase ALR1 is a plant aluminum ion sensor. Cell Res 2024; 34:281-294. [PMID: 38200278 PMCID: PMC10978910 DOI: 10.1038/s41422-023-00915-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/08/2023] [Indexed: 01/12/2024] Open
Abstract
Plant survival requires an ability to adapt to differing concentrations of nutrient and toxic soil ions, yet ion sensors and associated signaling pathways are mostly unknown. Aluminum (Al) ions are highly phytotoxic, and cause severe crop yield loss and forest decline on acidic soils which represent ∼30% of land areas worldwide. Here we found an Arabidopsis mutant hypersensitive to Al. The gene encoding a leucine-rich-repeat receptor-like kinase, was named Al Resistance1 (ALR1). Al ions binding to ALR1 cytoplasmic domain recruits BAK1 co-receptor kinase and promotes ALR1-dependent phosphorylation of the NADPH oxidase RbohD, thereby enhancing reactive oxygen species (ROS) generation. ROS in turn oxidatively modify the RAE1 F-box protein to inhibit RAE1-dependent proteolysis of the central regulator STOP1, thus activating organic acid anion secretion to detoxify Al. These findings establish ALR1 as an Al ion receptor that confers resistance through an integrated Al-triggered signaling pathway, providing novel insights into ion-sensing mechanisms in living organisms, and enabling future molecular breeding of acid-soil-tolerant crops and trees, with huge potential for enhancing both global food security and forest restoration.
Collapse
Affiliation(s)
- Zhong Jie Ding
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Chen Xu
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, Guangdong, China
| | - Jing Ying Yan
- Agricultural Experimental Station, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yu Xuan Wang
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Meng Qi Cui
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jun Jie Yuan
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ya Nan Wang
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Gui Xin Li
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jian Xiang Wu
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yun Rong Wu
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ji Ming Xu
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Chun Xiao Li
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yuan Zhi Shi
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Chuan Zao Mao
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jiang Tao Guo
- Medical School, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jian Min Zhou
- Center for Genome Biology and State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Moussa Benhamed
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay, France
| | - Nicholas P Harberd
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Department of Biology, University of Oxford, Oxford, UK
| | - Shao Jian Zheng
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, Guangdong, China.
- Institute of Ecological Civilization, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
10
|
Vogrinčič V, Kastelec D, Murovec J. Phytosulfokine alpha enhances regeneration of transformed and untransformed protoplasts of Brassica oleracea. FRONTIERS IN PLANT SCIENCE 2024; 15:1379618. [PMID: 38601308 PMCID: PMC11004253 DOI: 10.3389/fpls.2024.1379618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/11/2024] [Indexed: 04/12/2024]
Abstract
Phytosulfokine-α (PSK-α) is a disulfated pentapeptide (YIYTQ) acting as an intercellular signal peptide and growth factor. It was originally isolated from conditioned medium of asparagus mesophyll cell cultures in 1996 and later characterized as a hormone-like signal molecule with important roles in numerous processes of in vivo plant growth and development. It is currently becoming a valuable mitogenic factor in plant breeding and biotechnology due to its stimulatory effect on in vitro cell elongation, proliferation and differentiation. The focus of our work was to review current knowledge about the roles of PSK-α in plant biotechnology and to evaluate its influence on the regeneration of protoplasts of four Brassica oleracea cultivars (two cauliflower and two cabbage) cultured under two distinctive protocols and with different protoplast densities. Protoplast regeneration was studied due to its high value for plant genome editing, which is generally limited by the inefficient regeneration of treated protoplasts of numerous important plant genotypes. Our hypothesis was that the stress related to PEG-mediated protoplast transformation and the following decrease in viable protoplast density in culture could be alleviated by the addition of PSK-α to the culture medium. We therefore tested whether PSK-α could increase cell division at the early stages of culture (5 and 15 days after protoplast isolation) and stimulate the formation of microcallus colonies up to the 30st day of culture and to evaluate its influence on callus organogenesis leading to shoot regeneration. The PSK-α showed a strong stimulatory effect on untransformed protoplast regeneration already during the first days of culture, accelerating cell division up to 5.3-fold and the formation of multicellular microcallus colonies up to 37.0-fold. The beneficial influence was retained at later stages of regeneration, when PSK improved shoot organogenesis even if it was present only during the first 10 days of culture. The highest numbers of shoots, however, were regenerated when PSK was present during the first days of culture and later in solid shoot regeneration medium. Finally, the addition of PSK-α to PEG-transformed protoplasts significantly enhanced their division rate and the formation of microcallus colonies in selection media, up to 44.0-fold.
Collapse
|
11
|
Feng S, Liu Z, Chen H, Li N, Yu T, Zhou R, Nie F, Guo D, Ma X, Song X. PHGD: An integrative and user-friendly database for plant hormone-related genes. IMETA 2024; 3:e164. [PMID: 38868516 PMCID: PMC10989150 DOI: 10.1002/imt2.164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/19/2023] [Accepted: 12/17/2023] [Indexed: 06/14/2024]
Abstract
Plant Hormone Gene Database (PHGD) database platform construction pipeline. First, we collected all reported hormone-related genes in the model plant Arabidopsis thaliana, and combined with the existing experimental background, mapped the hormone-gene interaction network to provide a blueprint. Next, we collected 469 high-quality plant genomes. Then, bioinformatics was used to identify hormone-related genes in these plants. Finally, these genetic data were programmed to be stored in a database and a platform website PHGD was built. PHGD was divided into eight modules, namely Home, Browse, Search, Resources, Download, Tools, Help, and Contact. We provided data resources and platform services to facilitate the study of plant hormones.
Collapse
Affiliation(s)
- Shuyan Feng
- School of Life Sciences/LibraryNorth China University of Science and TechnologyTangshanHebeiChina
| | - Zhuo Liu
- School of Life Sciences/LibraryNorth China University of Science and TechnologyTangshanHebeiChina
| | - Huilong Chen
- College of Grassland Science and TechnologyChina Agricultural UniversityBeijingChina
| | - Nan Li
- School of Life Sciences/LibraryNorth China University of Science and TechnologyTangshanHebeiChina
| | - Tong Yu
- School of Life Sciences/LibraryNorth China University of Science and TechnologyTangshanHebeiChina
| | - Rong Zhou
- Department of Food ScienceAarhus UniversityAarhusDenmark
| | - Fulei Nie
- School of Life Sciences/LibraryNorth China University of Science and TechnologyTangshanHebeiChina
| | - Di Guo
- School of Life Sciences/LibraryNorth China University of Science and TechnologyTangshanHebeiChina
| | - Xiao Ma
- School of Life Sciences/LibraryNorth China University of Science and TechnologyTangshanHebeiChina
- College of Horticultural Science & Technology, Hebei NormalUniversity of Science & TechnologyQinhuangdaoHebeiChina
| | - Xiaoming Song
- School of Life Sciences/LibraryNorth China University of Science and TechnologyTangshanHebeiChina
| |
Collapse
|
12
|
Li Y, Di Q, Luo L, Yu L. Phytosulfokine peptides, their receptors, and functions. FRONTIERS IN PLANT SCIENCE 2024; 14:1326964. [PMID: 38250441 PMCID: PMC10796568 DOI: 10.3389/fpls.2023.1326964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/15/2023] [Indexed: 01/23/2024]
Abstract
Phytosulfokines (PSKs) are a class of disulfated pentapeptides and are regarded as plant peptide hormones. PSK-α, -γ, -δ, and -ϵ are four bioactive PSKs that are reported to have roles in plant growth, development, and immunity. In this review, we summarize recent advances in PSK biosynthesis, signaling, and function. PSKs are encoded by precursor genes that are widespread in higher plants. PSKs maturation from these precursors requires a sulfation step, which is catalyzed by a tyrosylprotein sulfotransferase, as well as proteolytic cleavage by subtilisin serine proteases. PSK signaling is mediated by plasma membrane-localized receptors PSKRs that belong to the leucine-rich repeat receptor-like kinase family. Moreover, multiple biological functions can be attributed to PSKs, including promoting cell division and cell growth, regulating plant reproduction, inducing somatic embryogenesis, enhancing legume nodulation, and regulating plant resistance to biotic and abiotic stress. Finally, we propose several research directions in this field. This review provides important insights into PSKs that will facilitate biotechnological development and PSK application in agriculture.
Collapse
Affiliation(s)
- Yi Li
- Shanghai Key Laboratory of Bio-energy Crops, School of Life Sciences, Shanghai University, Shanghai, China
| | - Qi Di
- Shanghai Key Laboratory of Bio-energy Crops, School of Life Sciences, Shanghai University, Shanghai, China
| | - Li Luo
- Shanghai Key Laboratory of Bio-energy Crops, School of Life Sciences, Shanghai University, Shanghai, China
| | - Liangliang Yu
- Shanghai Key Laboratory of Bio-energy Crops, School of Life Sciences, Shanghai University, Shanghai, China
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, China
| |
Collapse
|
13
|
Ochatt SJ. Less Frequently Used Growth Regulators in Plant Tissue Culture. Methods Mol Biol 2024; 2827:109-143. [PMID: 38985266 DOI: 10.1007/978-1-0716-3954-2_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Plant growth regulators are routinely added to in vitro culture media to foster the growth and differentiation of the cells, tissues, and organs. However, while the literature on usage of the more common auxins, cytokinins, gibberellins, abscisic acid, and ethylene is vast, other compounds that also have shown a growth-regulating activity have not been studied as frequently. Such substances are also capable of modulating the responses of plant cells and tissues in vitro by regulating their growth, differentiation, and regeneration competence, but also by enhancing their responses toward biotic and abiotic stress agents and improving the production of secondary metabolites of interest. This chapter will discuss the in vitro effects of several of such less frequently added plant growth regulators, including brassinosteroids (BRS), strigolactones (SLs), phytosulfokines (PSKs), methyl jasmonate, salicylic acid (SA), sodium nitroprusside (SNP), hydrogen sulfite, various plant growth retardants and inhibitors (e.g., ancymidol, uniconazole, flurprimidol, paclobutrazol), and polyamines.
Collapse
Affiliation(s)
- Sergio J Ochatt
- Agroécologie, InstitutAgro Dijon, INRAE, Université de Bourgogne, Université de Bourgogne Franche-Comté, Dijon, France.
| |
Collapse
|
14
|
Ribeiro C, de Melo BP, Lourenço-Tessutti IT, Ballesteros HF, Ribeiro KVG, Menuet K, Heyman J, Hemerly A, de Sá MFG, De Veylder L, de Almeida Engler J. The regeneration conferring transcription factor complex ERF115-PAT1 coordinates a wound-induced response in root-knot nematode induced galls. THE NEW PHYTOLOGIST 2024; 241:878-895. [PMID: 38044565 DOI: 10.1111/nph.19399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/13/2023] [Indexed: 12/05/2023]
Abstract
The establishment of root-knot nematode (RKN; Meloidogyne spp.) induced galls in the plant host roots likely involves a wound-induced regeneration response. Confocal imaging demonstrates physical stress or injury caused by RKN infection during parasitism in the model host Arabidopsis thaliana. The ERF115-PAT1 heterodimeric transcription factor complex plays a recognized role in wound-induced regeneration. ERF115 and PAT1 expression flanks injured gall cells likely driving mechanisms of wound healing, implying a local reactivation of cell division which is also hypothetically involved in gall genesis. Herein, functional investigation revealed that ectopic ERF115 expression resulted in premature induction of galls, and callus formation adjacent to the expanding female RKN was seen upon PAT1 upregulation. Smaller galls and less reproduction were observed in ERF115 and PAT1 knockouts. Investigation of components in the ERF115 network upon overexpression and knockdown by qRT-PCR suggests it contributes to steer gall wound-sensing and subsequent competence for tissue regeneration. High expression of CYCD6;1 was detected in galls, and WIND1 overexpression resulted in similar ERF115OE gall phenotypes, also showing faster gall induction. Along these lines, we show that the ERF115-PAT1 complex likely coordinates stress signalling with tissue healing, keeping the gall functional until maturation and nematode reproduction.
Collapse
Affiliation(s)
- Cleberson Ribeiro
- INRAE, Université Côte d'Azur, CNRS, ISA, Sophia Antipolis, 06903, France
- Federal University of Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Bruno Paes de Melo
- INRAE, Université Côte d'Azur, CNRS, ISA, Sophia Antipolis, 06903, France
- Federal University of Viçosa, Viçosa, MG, 36570-900, Brazil
- Embrapa Genetic Resources and Biotechnology, Brasília, DF, 70297-400, Brazil
| | - Isabela Tristan Lourenço-Tessutti
- INRAE, Université Côte d'Azur, CNRS, ISA, Sophia Antipolis, 06903, France
- Embrapa Genetic Resources and Biotechnology, Brasília, DF, 70297-400, Brazil
| | - Helkin Forero Ballesteros
- INRAE, Université Côte d'Azur, CNRS, ISA, Sophia Antipolis, 06903, France
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21491-902, Brazil
| | - Karla Veloso Gonçalves Ribeiro
- INRAE, Université Côte d'Azur, CNRS, ISA, Sophia Antipolis, 06903, France
- Federal University of Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Killian Menuet
- INRAE, Université Côte d'Azur, CNRS, ISA, Sophia Antipolis, 06903, France
| | - Jefri Heyman
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, B-9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent, B-9052, Belgium
| | - Adriana Hemerly
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21491-902, Brazil
| | | | - Lieven De Veylder
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, B-9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent, B-9052, Belgium
| | | |
Collapse
|
15
|
Song S, Morales Moreira Z, Briggs AL, Zhang XC, Diener AC, Haney CH. PSKR1 balances the plant growth-defence trade-off in the rhizosphere microbiome. NATURE PLANTS 2023; 9:2071-2084. [PMID: 37973937 DOI: 10.1038/s41477-023-01539-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 09/08/2023] [Indexed: 11/19/2023]
Abstract
Microbiota benefit their hosts by improving nutrient uptake and pathogen protection. How host immunity restricts microbiota while avoiding autoimmunity is poorly understood. Here we show that the Arabidopsis phytosulfokine receptor 1 (pskr1) mutant displays autoimmunity (plant stunting, defence-gene expression and reduced rhizosphere bacterial growth) in response to growth-promoting Pseudomonas fluorescens. Microbiome profiling and microbiota colonization showed that PSKR1-mediated reduction in bacterial growth and stunting is largely specific to Pseudomonas. Transcriptional profiling demonstrated that PSKR1 regulates the growth-defence trade-off during Pseudomonas colonization: PSKR1 upregulates plant photosynthesis and root growth but suppresses salicylic-acid-mediated defences. Genetic epistasis experiments showed that pskr1 stunting and restriction of bacterial growth are salicylic acid dependent. Finally, we showed that Pseudomonas, but not other bacteria, induces PSKR1 expression in roots, suggesting that Pseudomonas might manipulate plant signalling to promote its colonization. Our data demonstrate a genetic mechanism to coordinate beneficial functions of the microbiome while preventing autoimmunity.
Collapse
Affiliation(s)
- Siyu Song
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Zayda Morales Moreira
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Annika L Briggs
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Xue-Cheng Zhang
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
| | - Andrew C Diener
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
| | - Cara H Haney
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada.
- Department of Biological Sciences, The University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
16
|
Xu F, Yu F. Sensing and regulation of plant extracellular pH. TRENDS IN PLANT SCIENCE 2023; 28:1422-1437. [PMID: 37596188 DOI: 10.1016/j.tplants.2023.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/03/2023] [Accepted: 06/19/2023] [Indexed: 08/20/2023]
Abstract
In plants, pH determines nutrient acquisition and sensing, and triggers responses to osmotic stress, whereas pH homeostasis protects the cellular machinery. Extracellular pH (pHe) controls the chemistry and rheology of the cell wall to adjust its elasticity and regulate cell expansion in space and time. Plasma membrane (PM)-localized proton pumps, cell-wall components, and cell wall-remodeling enzymes jointly maintain pHe homeostasis. To adapt to their environment and modulate growth and development, plant cells must sense subtle changes in pHe caused by the environment or neighboring cells. Accumulating evidence indicates that PM-localized cell-surface peptide-receptor pairs sense pHe. We highlight recent advances in understanding how plants perceive and maintain pHe, and discuss future perspectives.
Collapse
Affiliation(s)
- Fan Xu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, and Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha 410082, PR China
| | - Feng Yu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, and Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha 410082, PR China.
| |
Collapse
|
17
|
Wang Y, Guo X, Xu Y, Sun R, Cai X, Zhou Z, Qin T, Tao Y, Li B, Hou Y, Wang Q, Liu F. Genome-wide association study for boll weight in Gossypium hirsutum races. Funct Integr Genomics 2023; 23:331. [PMID: 37940771 DOI: 10.1007/s10142-023-01261-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/21/2023] [Accepted: 10/23/2023] [Indexed: 11/10/2023]
Abstract
High yield has always been an essential target in almost all of the cotton breeding programs. Boll weight (BW) is a key component of cotton yield. Numerous linkage mapping and genome-wide association studies (GWAS) have been performed to understand the genetic mechanism of BW, but information on the markers/genes controlling BW remains limited. In this study, we conducted a GWAS for BW using 51,268 high-quality single-nucleotide polymorphisms (SNPs) and 189 Gossypium hirsutum accessions across five different environments. A total of 55 SNPs significantly associated with BW were detected, of which 29 and 26 were distributed in the A and D subgenomes, respectively. Five SNPs were simultaneously detected in two environments. For TM5655, TM8662, TM36371, and TM50258, the BW grouped by alleles of each SNP was significantly different. The ± 550 kb regions around these four key SNPs contained 262 genes. Of them, Gh_A02G1473, Gh_A10G1765, and Gh_A02G1442 were expressed highly at 0 to 1 days post-anthesis (dpa), - 3 to 0 dpa, and - 3 to 0 dpa in ovule of TM-1, respectively. They were presumed as the candidate genes for fiber cell differentiation, initiation, or elongation based on gene annotation of their homologs. Overall, these results supplemented valuable information for dissecting the genetic architecture of BW and might help to improve cotton yield through molecular marker-assisted selection breeding and molecular design breeding.
Collapse
Affiliation(s)
- Yuanyuan Wang
- Collaborative Innovation Center of Modern Biological Breeding of Henan Province, Henan Key Laboratory Molecular Ecology and Germplasm Innovation of Cotton and Wheat, Henan International Joint Laboratory of Functional Genomics and Molecular Breeding of Cotton, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Xinlei Guo
- Collaborative Innovation Center of Modern Biological Breeding of Henan Province, Henan Key Laboratory Molecular Ecology and Germplasm Innovation of Cotton and Wheat, Henan International Joint Laboratory of Functional Genomics and Molecular Breeding of Cotton, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Yanchao Xu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Runrun Sun
- Collaborative Innovation Center of Modern Biological Breeding of Henan Province, Henan Key Laboratory Molecular Ecology and Germplasm Innovation of Cotton and Wheat, Henan International Joint Laboratory of Functional Genomics and Molecular Breeding of Cotton, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Xiaoyan Cai
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
- Hainan Yazhou Bay Seed Laboratory / National Nanfan Research Institute of Chinese Academy of Agriculture Sciences, Sanya, 572025, China
| | - Zhongli Zhou
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Tengfei Qin
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Ye Tao
- Collaborative Innovation Center of Modern Biological Breeding of Henan Province, Henan Key Laboratory Molecular Ecology and Germplasm Innovation of Cotton and Wheat, Henan International Joint Laboratory of Functional Genomics and Molecular Breeding of Cotton, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Baihui Li
- Collaborative Innovation Center of Modern Biological Breeding of Henan Province, Henan Key Laboratory Molecular Ecology and Germplasm Innovation of Cotton and Wheat, Henan International Joint Laboratory of Functional Genomics and Molecular Breeding of Cotton, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Yuqing Hou
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Qinglian Wang
- Collaborative Innovation Center of Modern Biological Breeding of Henan Province, Henan Key Laboratory Molecular Ecology and Germplasm Innovation of Cotton and Wheat, Henan International Joint Laboratory of Functional Genomics and Molecular Breeding of Cotton, Henan Institute of Science and Technology, Xinxiang, 453003, China.
| | - Fang Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
- Hainan Yazhou Bay Seed Laboratory / National Nanfan Research Institute of Chinese Academy of Agriculture Sciences, Sanya, 572025, China.
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
18
|
Shen X, Stührwohldt N, Lin C. The Research Process of PSK Biosynthesis, Signaling Transduction, and Potential Applications in Brassica napus. PLANTS (BASEL, SWITZERLAND) 2023; 12:3075. [PMID: 37687322 PMCID: PMC10489974 DOI: 10.3390/plants12173075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/01/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023]
Abstract
Phytosulfokine (PSK) is a disulfated pentapeptide that acts as a growth regulator to control plant growth and development as well as adaptability to biotic and abiotic stress. In the last three decades, PSK has drawn increasing attention due to its various functions. Preproproteins that have been tyrosine sulfonylated and then cleaved by specific enzymes contribute to mature PSK. To transfer a signal from the apoplast to the inner cells, the PSK peptide must bind to the PSK receptors (PSKR1 and PSKR2) at the cell surface. The precise mechanism of PSK signal transduction is still unknown, given that PSKR combines receptor and kinase activity with a capacity to bind calmodulin (CaM). The binding of PSK and PSKR stimulates an abundance of cGMP downstream from PSKR, further activating a cation-translocating unit composed of cyclic nucleotide-gated channel 17 (CNGC17), H+-ATPases AHA1 and AHA2, and BRI-associated receptor kinase 1 (BAK1). Recently, it has been revealed that posttranslational ubiquitination is closely related to the control of PSK and PSKR binding. To date, the majority of studies related to PSK have used Arabidopsis. Given that rapeseed and Arabidopsis share a close genetic relationship, the relevant knowledge obtained from Arabidopsis can be further applied to rapeseed.
Collapse
Affiliation(s)
- Xuwen Shen
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China;
| | - Nils Stührwohldt
- Department of Plant Physiology and Biochemistry, Institute of Biology, University of Hohenheim, 70593 Stuttgart, Germany;
| | - Chen Lin
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China;
| |
Collapse
|
19
|
Xu K, Tian D, Wang T, Zhang A, Elsadek MAY, Liu W, Chen L, Guo Y. Small secreted peptides (SSPs) in tomato and their potential roles in drought stress response. MOLECULAR HORTICULTURE 2023; 3:17. [PMID: 37789434 PMCID: PMC10515272 DOI: 10.1186/s43897-023-00063-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 07/28/2023] [Indexed: 10/05/2023]
Abstract
Tomato (Solanum lycopersicum) is one of the most important vegetable crops in the world and abiotic stresses often cause serious problems in tomato production. It is thus important to identify new regulators in stress response and to devise new approaches to promote stress tolerance in tomato. Previous studies have shown that small secreted peptides (SSPs) are important signal molecules regulating plant growth and stress response by mediating intercellular communication. However, little is known about tomato SSPs, especially their roles in responding to abiotic stresses. Here we report the identification of 1,050 putative SSPs in the tomato genome, 557 of which were classified into 38 known SSP families based on their conserved domains. GO and transcriptome analyses revealed that a large proportion of SlSSPs might be involved in abiotic stress response. Further analysis indicated that stress response related cis-elements were present on the SlCEP promotors and a number of SlCEPs were significantly upregulated by drought treatments. Among the drought-inducible SlCEPs, SlCEP10 and SlCEP11b were selected for further analysis via exogenous application of synthetic peptides. The results showed that treatments with both SlCEP10 and SlCEP11b peptides enhanced tomato drought stress tolerance, indicating the potential roles of SlSSPs in abiotic stress response.
Collapse
Affiliation(s)
- Kexin Xu
- Department of HorticultureCollege of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Dongdong Tian
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - TingJin Wang
- Department of HorticultureCollege of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Aijun Zhang
- Department of HorticultureCollege of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | | | - Weihong Liu
- Department of HorticultureCollege of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Liping Chen
- Department of HorticultureCollege of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| | - Yongfeng Guo
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China.
| |
Collapse
|
20
|
Zaranek M, Pérez-Pérez R, Milewska-Hendel A, Betekhtin A, Grzebelus E. Promotive effect of phytosulfokine - peptide growth factor - on protoplast cultures development in Fagopyrum tataricum (L.) Gaertn. BMC PLANT BIOLOGY 2023; 23:385. [PMID: 37563739 PMCID: PMC10413615 DOI: 10.1186/s12870-023-04402-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 08/04/2023] [Indexed: 08/12/2023]
Abstract
BACKGROUND Fagopyrum tataricum (Tartary buckwheat) is a valuable crop of great nutritional importance due to its high level of bioactive compounds. Excellent opportunities to obtain plants with the high level or the desired profile of valuable metabolites may be provided by in vitro cultures. Among known in vitro techniques, protoplast technology is an exciting tool for genetic manipulation to improve crop traits. In that context, protoplast fusion may be applied to generate hybrid cells between different species of Fagopyrum. To apply protoplast cultures to the aforementioned approaches in this research, we established the protoplast-to-plant system in Tartary buckwheat. RESULTS In this work, cellulase and pectinase activity enabled protoplast isolation from non-morphogenic and morphogenic callus (MC), reaching, on average, 2.3 × 106 protoplasts per g of fresh weight. However, to release protoplasts from hypocotyls, the key step was the application of driselase in the enzyme mixture. We showed that colony formation could be induced after protoplast embedding in agarose compared to the alginate matrix. Protoplasts cultured in a medium based on Kao and Michayluk supplemented with phytosulfokine (PSK) rebuilt cell walls, underwent repeated mitotic division, formed aggregates, which consequently led to callus formation. Plating efficiency, expressing the number of cell aggregate formed, in 10-day-old protoplast cultures varied from 14% for morphogenic callus to 30% for hypocotyls used as a protoplast source. However plant regeneration via somatic embryogenesis and organogenesis occurred only during the cultivation of MC-derived protoplasts. CONCLUSIONS This study demonstrated that the applied protoplast isolation approach facilitated the recovery of viable protoplasts. Moreover, the embedding of protoplasts in an agarose matrix and supplementation of a culture medium with PSK effectively stimulated cell division and further development of Tartary buckwheat protoplast cultures along with the plant regeneration. Together, these results provide the first evidence of developing a protoplast-to-plant system from the MC of Fagopyrum tataricum used as source material. These findings suggest that Tartary buckwheat's protoplast cultures have potential implications for the species' somatic hybridization and genetic improvement.
Collapse
Affiliation(s)
- Magdalena Zaranek
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, 28 Jagiellonska st, Katowice, 40-032, Poland
| | - Reneé Pérez-Pérez
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, 28 Jagiellonska st, Katowice, 40-032, Poland
| | - Anna Milewska-Hendel
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, 28 Jagiellonska st, Katowice, 40-032, Poland
| | - Alexander Betekhtin
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, 28 Jagiellonska st, Katowice, 40-032, Poland.
| | - Ewa Grzebelus
- Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, al. Mickiewicza 21, Krakow, 31-120, Poland.
| |
Collapse
|
21
|
Hu Z, Fang H, Zhu C, Gu S, Ding S, Yu J, Shi K. Ubiquitylation of PHYTOSULFOKINE RECEPTOR 1 modulates the defense response in tomato. PLANT PHYSIOLOGY 2023; 192:2507-2522. [PMID: 36946197 PMCID: PMC10315268 DOI: 10.1093/plphys/kiad188] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/22/2023] [Accepted: 03/06/2023] [Indexed: 06/18/2023]
Abstract
Phytosulfokine (PSK) is a danger-associated molecular pattern recognized by PHYTOSULFOKINE RECEPTOR 1 (PSKR1) and initiates intercellular signaling to coordinate different physiological processes, especially in the defense response to the necrotrophic fungus Botrytis cinerea. The activity of peptide receptors is largely influenced by different posttranslational modifications, which determine intercellular peptide signal outputs. To date, the posttranslational modification to PHYTOSULFOKINE RECEPTOR 1 (PSKR1) remains largely unknown. Here, we show that tomato (Solanum lycopersicum) PSKR1 is regulated by the ubiquitin/proteasome degradation pathway. Using multiple protein-protein interactions and ubiquitylation analyses, we identified that plant U-box E3 ligases PUB12 and PUB13 interacted with PSKR1, among which PUB13 caused PSKR1 ubiquitylation at Lys-748 and Lys-905 sites to control PSKR1 abundance. However, this posttranslational modification was attenuated upon addition of PSK. Moreover, the disease symptoms observed in PUB13 knock-down and overexpression lines demonstrated that PUB13 significantly suppressed the PSK-initiated defense response. This highlights an important regulatory function for the turnover of a peptide receptor by E3 ligase-mediated ubiquitylation in the plant defense response.
Collapse
Affiliation(s)
- Zhangjian Hu
- Department of Horticulture, Zhejiang University, Hangzhou 310058, China
- Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, Sanya 572025, China
| | - Hanmo Fang
- Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| | - Changan Zhu
- Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| | - Shaohan Gu
- Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| | - Shuting Ding
- Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| | - Jingquan Yu
- Department of Horticulture, Zhejiang University, Hangzhou 310058, China
- Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, Sanya 572025, China
| | - Kai Shi
- Department of Horticulture, Zhejiang University, Hangzhou 310058, China
- Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, Sanya 572025, China
| |
Collapse
|
22
|
Ding S, Lv J, Hu Z, Wang J, Wang P, Yu J, Foyer CH, Shi K. Phytosulfokine peptide optimizes plant growth and defense via glutamine synthetase GS2 phosphorylation in tomato. EMBO J 2023; 42:e111858. [PMID: 36562188 PMCID: PMC10015362 DOI: 10.15252/embj.2022111858] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 12/05/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022] Open
Abstract
Phytosulfokine (PSK) is a plant pentapeptide hormone that fulfills a wide range of functions. Although PSK has frequently been reported to function in the inverse regulation of growth and defense in response to (hemi)biotrophic pathogens, the mechanisms involved remain largely unknown. Using the tomato (Solanum lycopersicum) and Pseudomonas syringae pv. tomato (Pst) DC3000 pathogen system, we present compelling evidence that the PSK receptor PSKR1 interacts with the calcium-dependent protein kinase CPK28, which in turn phosphorylates the key enzyme of nitrogen assimilation glutamine synthetase GS2 at two sites (Serine-334 and Serine-360). GS2 phosphorylation at S334 specifically regulates plant defense, whereas S360 regulates growth, uncoupling the PSK-induced effects on defense responses and growth regulation. The discovery of these sites will inform breeding strategies designed to optimize the growth-defense balance in a compatible manner.
Collapse
Affiliation(s)
- Shuting Ding
- Department of HorticultureZhejiang UniversityHangzhouChina
| | - Jianrong Lv
- Department of HorticultureZhejiang UniversityHangzhouChina
| | - Zhangjian Hu
- Department of HorticultureZhejiang UniversityHangzhouChina
| | - Jiao Wang
- Department of HorticultureZhejiang UniversityHangzhouChina
| | - Ping Wang
- Department of HorticultureZhejiang UniversityHangzhouChina
| | - Jingquan Yu
- Department of HorticultureZhejiang UniversityHangzhouChina
- Hainan Institute, Yazhou Bay Science and Technology CityZhejiang UniversitySanyaChina
- Key Laboratory of Horticultural Plant Growth and DevelopmentMinistry of Agriculture and Rural AffairsHangzhouChina
| | - Christine H Foyer
- School of Biosciences, College of Life and Environmental SciencesUniversity of BirminghamBirminghamUK
| | - Kai Shi
- Department of HorticultureZhejiang UniversityHangzhouChina
- Hainan Institute, Yazhou Bay Science and Technology CityZhejiang UniversitySanyaChina
- Key Laboratory of Horticultural Plant Growth and DevelopmentMinistry of Agriculture and Rural AffairsHangzhouChina
| |
Collapse
|
23
|
Fedoreyeva LI. Molecular Mechanisms of Regulation of Root Development by Plant Peptides. PLANTS (BASEL, SWITZERLAND) 2023; 12:1320. [PMID: 36987008 PMCID: PMC10053774 DOI: 10.3390/plants12061320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/14/2023] [Accepted: 03/01/2023] [Indexed: 06/19/2023]
Abstract
Peptides perform many functions, participating in the regulation of cell differentiation, regulating plant growth and development, and also involved in the response to stress factors and in antimicrobial defense. Peptides are an important class biomolecules for intercellular communication and in the transmission of various signals. The intercellular communication system based on the ligand-receptor bond is one of the most important molecular bases for creating complex multicellular organisms. Peptide-mediated intercellular communication plays a critical role in the coordination and determination of cellular functions in plants. The intercellular communication system based on the receptor-ligand is one of the most important molecular foundations for creating complex multicellular organisms. Peptide-mediated intercellular communication plays a critical role in the coordination and determination of cellular functions in plants. The identification of peptide hormones, their interaction with receptors, and the molecular mechanisms of peptide functioning are important for understanding the mechanisms of both intercellular communications and for regulating plant development. In this review, we drew attention to some peptides involved in the regulation of root development, which implement this regulation by the mechanism of a negative feedback loop.
Collapse
Affiliation(s)
- Larisa I Fedoreyeva
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya 42, 127550 Moscow, Russia
| |
Collapse
|
24
|
Chaudhary S, Sindhu SS, Dhanker R, Kumari A. Microbes-mediated sulphur cycling in soil: Impact on soil fertility, crop production and environmental sustainability. Microbiol Res 2023; 271:127340. [PMID: 36889205 DOI: 10.1016/j.micres.2023.127340] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/06/2023] [Accepted: 02/18/2023] [Indexed: 03/08/2023]
Abstract
Reduction in soil fertility and depletion of natural resources due to current intensive agricultural practices along with climate changes are the major constraints for crop productivity and global food security. Diverse microbial populations' inhabiting the soil and rhizosphere participate in biogeochemical cycling of nutrients and thereby, improve soil fertility and plant health, and reduce the adverse impact of synthetic fertilizers on the environment. Sulphur is 4th most common crucial macronutrient required by all organisms including plants, animals, humans and microorganisms. Effective strategies are required to enhance sulphur content in crops for minimizing adverse effects of sulphur deficiency on plants and humans. Various microorganisms are involved in sulphur cycling in soil through oxidation, reduction, mineralization, and immobilization, and volatalization processes of diverse sulphur compounds. Some microorganisms possess the unique ability to oxidize sulphur compounds into plant utilizable sulphate (SO42-) form. Considering the importance of sulphur as a nutrient for crops, many bacteria and fungi involved in sulphur cycling have been characterized from soil and rhizosphere. Some of these microbes have been found to positively affect plant growth and crop yield through multiple mechanisms including the enhanced mobilization of nutrients in soils (i.e., sulphate, phosphorus and nitrogen), production of growth-promoting hormones, inhibition of phytopathogens, protection against oxidative damage and mitigation of abiotic stresses. Application of these beneficial microbes as biofertilizers may reduce the conventional fertilizer application in soils. However, large-scale, well-designed, and long-term field trials are necessary to recommend the use of these microbes for increasing nutrient availability for growth and yield of crop plants. This review discusses the current knowledge regarding sulphur deficiency symptoms in plants, biogeochemical cycling of sulphur and inoculation effects of sulphur oxidizing microbes in improving plant biomass and crop yield in different crops.
Collapse
Affiliation(s)
- Suman Chaudhary
- Research Associate, EBL Laboratory, ICAR-Central Institute of Research on Buffaloes, Hisar 125001, Haryana, India.
| | - Satyavir Singh Sindhu
- Department of Microbiology, CCS Haryana Agricultural University, Hisar 125004, Haryana, India.
| | - Rinku Dhanker
- International Institute of Veterinary, Education & Research, Bahuakbarpur, Rohtak 124001, Haryana, India.
| | - Anju Kumari
- Center of Food Science and Technology, CCS Haryana Agricultural University, Hisar 125004, Haryana, India.
| |
Collapse
|
25
|
Hao Z, Wu H, Zheng R, Li R, Zhu Z, Chen Y, Lu Y, Cheng T, Shi J, Chen J. The plant peptide hormone phytosulfokine promotes somatic embryogenesis by maintaining redox homeostasis in Cunninghamia lanceolata. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 113:716-733. [PMID: 36575581 DOI: 10.1111/tpj.16077] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
Somatic embryogenesis (SE) is widely used for studying the mechanisms of embryo development. However, little is known about the underlying mechanisms, especially in woody plants. Previous studies have established an SE system for Chinese fir (Cunninghamia lanceolata), but this system is genotype-dependent, which limits its application in practice. Here, we found that phytosulfokine (PSK), a plant peptide hormone, can not only increase SE efficiency, but also establish SE in recalcitrant genotypes of C. lanceolata. Proembryogenic mass (PEM) browning and determination of hydrogen peroxide (H2 O2 ) content by 2',7'-dichlorofluorescein staining indicated that a reactive oxygen species (ROS) burst occurred rapidly after PEMs were transferred to SE induction medium. Transcriptome analysis and quantitative reverse transcriptase-PCR validation showed that PSK treatment helped to maintain ROS homeostasis by decreasing the activity of peroxidases in early SE induction. This PSK-regulated redox microenvironment might be helpful to induce expression of SE-related genes like WOX2 in early SE induction. Further analyses suggested that PSK promotes SE induction in C. lanceolata partially through decreasing H2 O2 levels, which is necessary but not sufficient for SE induction in recalcitrant genotypes of C. lanceolata. Furthermore, heterologous overexpression of ClPSK in Arabidopsis led to enhanced SE induction and resistance to H2 O2 stress. Taken together, our study reveals a biological function for the plant peptide hormone PSK, extends our knowledge about SE in woody trees, and provides a valuable tool for establishing an efficient and genotype-independent SE system in C. lanceolata and other coniferous trees.
Collapse
Affiliation(s)
- Zhaodong Hao
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Hua Wu
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Renhua Zheng
- Fujian Academy of Forestry, Fuzhou, 350012, Fujian, China
| | - Rui Li
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Zeli Zhu
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Ya Chen
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Ye Lu
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Tielong Cheng
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Jisen Shi
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Jinhui Chen
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| |
Collapse
|
26
|
Ercoli MF, Ramos PZ, Jain R, Pilotte J, Dong OX, Thompson T, Wells CI, Elkins JM, Edwards AM, Couñago RM, Drewry DH, Ronald PC. An open source plant kinase chemogenomics set. PLANT DIRECT 2022; 6:e460. [PMID: 36447653 PMCID: PMC9694430 DOI: 10.1002/pld3.460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 10/08/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
One hundred twenty-nine protein kinases, selected to represent the diversity of the rice (Oryza sativa) kinome, were cloned and tested for expression in Escherichia coli. Forty of these rice kinases were purified and screened using differential scanning fluorimetry (DSF) against 627 diverse kinase inhibitors, with a range of structures and activities targeting diverse human kinases. Thirty-seven active compounds were then tested for their ability to modify primary root development in Arabidopsis. Of these, 14 compounds caused a significant reduction of primary root length compared with control plants. Two of these inhibitory compounds bind to the predicted orthologue of Arabidopsis PSKR1, one of two receptors for PSK, a small sulfated peptide that positively controls root development. The reduced root length phenotype could not be rescued by the exogenous addition of the PSK peptide, suggesting that chemical treatment may inhibit both PSKR1 and its closely related receptor PSKR2. Six of the compounds acting as root growth inhibitors in Arabidopsis conferred the same effect in rice. Compound RAF265 (CHIR-265), previously shown to bind the human kinase BRAF (B-Raf proto-oncogene, serine/threonine kinase), also binds to nine highly conserved rice kinases tested. The binding of human and rice kinases to the same compound suggests that human kinase inhibitor sets will be useful for dissecting the function of plant kinases.
Collapse
Affiliation(s)
| | - Priscila Zonzini Ramos
- Centro de Química Medicinal (CQMED), Centro de Biologia Molecular e Engenharia Genética (CBMEG)Universidade Estadual de Campinas (UNICAMP)CampinasSPBrazil
| | - Rashmi Jain
- Department of Plant Pathology and the Genome CenterUniversity of CaliforniaDavisCAUSA
| | - Joseph Pilotte
- Structural Genomics Consortium (SGC)UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill (UNC‐CH)Chapel HillNCUSA
- Division of Chemical Biology and Medicinal ChemistryUNC Eshelman School of Pharmacy, UNC‐CHChapel HillNCUSA
| | - Oliver Xiaoou Dong
- Department of Plant Pathology and the Genome CenterUniversity of CaliforniaDavisCAUSA
| | - Ty Thompson
- Department of Plant Pathology and the Genome CenterUniversity of CaliforniaDavisCAUSA
| | - Carrow I. Wells
- Structural Genomics Consortium (SGC)UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill (UNC‐CH)Chapel HillNCUSA
- Division of Chemical Biology and Medicinal ChemistryUNC Eshelman School of Pharmacy, UNC‐CHChapel HillNCUSA
| | - Jonathan M. Elkins
- Centro de Química Medicinal (CQMED), Centro de Biologia Molecular e Engenharia Genética (CBMEG)Universidade Estadual de Campinas (UNICAMP)CampinasSPBrazil
- Centre for Medicines DiscoveryUniversity of OxfordOxfordUK
| | - Aled M. Edwards
- Structural Genomics ConsortiumUniversity of TorontoTorontoCanada
| | - Rafael M. Couñago
- Centro de Química Medicinal (CQMED), Centro de Biologia Molecular e Engenharia Genética (CBMEG)Universidade Estadual de Campinas (UNICAMP)CampinasSPBrazil
| | - David H. Drewry
- Structural Genomics Consortium (SGC)UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill (UNC‐CH)Chapel HillNCUSA
- Division of Chemical Biology and Medicinal ChemistryUNC Eshelman School of Pharmacy, UNC‐CHChapel HillNCUSA
| | - Pamela C. Ronald
- Department of Plant Pathology and the Genome CenterUniversity of CaliforniaDavisCAUSA
| |
Collapse
|
27
|
Li X, Zhang J, Shi H, Li B, Li J. Rapid responses: Receptor-like kinases directly regulate the functions of membrane transport proteins in plants. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:1303-1309. [PMID: 35546272 DOI: 10.1111/jipb.13274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
Receptor-like kinases (RLKs) are a large group of plant-specific transmembrane proteins mainly acting as receptors or co-receptors of various extracellular signals. They usually turn extracellular signals into intracellular responses via altering gene expression profiles. However, recent studies confirmed that many RLKs can physically interact with diverse membrane-localized transport proteins and regulate their activities for speedy responses in limited tissues or cells. In this minireview, we highlight recent discoveries regarding how RLKs can work with membrane transport proteins collaboratively and thereby trigger cellular responses in a precise and rapid manner. It is anticipated that such regulation broadly presents in plants and more examples will be gradually revealed when in-depth analyses are conducted for the functions of RLKs.
Collapse
Affiliation(s)
- Xiaopeng Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Jingjie Zhang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Hongyong Shi
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Bo Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Jia Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| |
Collapse
|
28
|
Huang P, Li Z, Guo H. New Advances in the Regulation of Leaf Senescence by Classical and Peptide Hormones. FRONTIERS IN PLANT SCIENCE 2022; 13:923136. [PMID: 35837465 PMCID: PMC9274171 DOI: 10.3389/fpls.2022.923136] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/02/2022] [Indexed: 06/15/2023]
Abstract
Leaf senescence is the last stage of leaf development, manifested by leaf yellowing due to the loss of chlorophyll, along with the degradation of macromolecules and facilitates nutrient translocation from the sink to the source tissues, which is essential for the plants' fitness. Leaf senescence is controlled by a sophisticated genetic network that has been revealed through the study of the molecular mechanisms of hundreds of senescence-associated genes (SAGs), which are involved in multiple layers of regulation. Leaf senescence is primarily regulated by plant age, but also influenced by a variety of factors, including phytohormones and environmental stimuli. Phytohormones, as important signaling molecules in plant, contribute to the onset and progression of leaf senescence. Recently, peptide hormones have been reported to be involved in the regulation of leaf senescence, enriching the significance of signaling molecules in controlling leaf senescence. This review summarizes recent advances in the regulation of leaf senescence by classical and peptide hormones, aiming to better understand the coordinated network of different pathways during leaf senescence.
Collapse
Affiliation(s)
- Peixin Huang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Research Center for Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Zhonghai Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Research Center for Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Hongwei Guo
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Research Center for Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Department of Biology, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
29
|
Badola PK, Sharma A, Gautam H, Trivedi PK. MicroRNA858a, its encoded peptide, and phytosulfokine regulate Arabidopsis growth and development. PLANT PHYSIOLOGY 2022; 189:1397-1415. [PMID: 35325214 PMCID: PMC9237717 DOI: 10.1093/plphys/kiac138] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/04/2022] [Indexed: 06/02/2023]
Abstract
Small molecules, such as peptides and miRNAs, are crucial regulators of plant growth. Here, we show the importance of cross-talk between miPEP858a (microRNA858a-encoded peptide)/miR858a and phytosulfokine (PSK4) in regulating plant growth and development in Arabidopsis (Arabidopsis thaliana). Genome-wide expression analysis suggested modulated expression of PSK4 in miR858a mutants and miR858a-overexpressing (miR858aOX) plants. The silencing of PSK4 in miR858aOX plants compromised growth, whereas overexpression of PSK4 in the miR858a mutant rescued the developmental defects. The exogenous application of synthetic PSK4 further complemented the plant development in mutant plants. Exogenous treatment of synthetic miPEP858a in the PSK4 mutant led to clathrin-mediated internalization of the peptide; however, it did not enhance growth as is the case in wild-type plants. We also demonstrated that MYB3 is an important molecular component participating in the miPEP858a/miR858a-PSK4 module. Finally, our work highlights the signaling between miR858a/miPEP858a-MYB3-PSK4 in modulating the expression of key elements involved in auxin responses, leading to the regulation of growth.
Collapse
Affiliation(s)
| | | | - Himanshi Gautam
- CSIR-National Botanical Research Institute, Council of Scientific and Industrial Research (CSIR-NBRI), Lucknow 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | | |
Collapse
|
30
|
Wang G, Zhang Y, Li C, Wang X, Fletcher JC. Signaling peptides direct the art of rebirth. TRENDS IN PLANT SCIENCE 2022; 27:516-519. [PMID: 35397996 DOI: 10.1016/j.tplants.2022.03.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/14/2022] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
Signaling peptide-mediated cell-cell communication is crucial for plant growth, development, and adaptive responses to environmental stimuli. Given the prominent roles signaling peptides play in stem cell homeostasis, we propose investigating their impact on plant regeneration, which requires cellular reprogramming of differentiated cells to stem cells and establishment of nascent meristems.
Collapse
Affiliation(s)
- Guodong Wang
- National Engineering Laboratory for Endangered Medicinal Resources Development in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry of Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China.
| | - Yonghong Zhang
- Laboratory of Medicinal Plant, Academy of Bio-Medicine Research, Hubei University of Medicine, Shiyan 442000, China
| | - Chen Li
- Laboratory of Medicinal Plant, Academy of Bio-Medicine Research, Hubei University of Medicine, Shiyan 442000, China
| | - Xuening Wang
- National Engineering Laboratory for Endangered Medicinal Resources Development in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry of Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Jennifer C Fletcher
- Plant Gene Expression Center, USDA-ARS/UC Berkeley, Albany, CA, USA; Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA.
| |
Collapse
|
31
|
Zeng Y, Tang Y, Shen S, Zhang M, Chen L, Ye D, Zhang X. Plant-specific small peptide AtZSP1 interacts with ROCK1 to regulate organ size in Arabidopsis. THE NEW PHYTOLOGIST 2022; 234:1696-1713. [PMID: 35285523 DOI: 10.1111/nph.18093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 02/25/2022] [Indexed: 06/14/2023]
Abstract
Organ size is an important agronomic trait. Small peptides function in various stages of plant growth, but their regulatory mechanisms in organ growth remain poorly understood. Here, we characterize a novel small peptide, AtZSP1, which positively regulates organ size in Arabidopsis. Loss-of-function mutant atzsp1-1 exhibited small organs, whereas AtZSP1 overexpression plants (p35S:AtZSP1#1) produced larger organs. Differentially expressed genes in the shoots of atzsp1-1 and p35S:AtZSP1#1 were enriched in the cytokinin pathway. Further analysis on shoots of atzsp1-1 showed that endogenous cytokinin levels were significantly reduced, consistent with reduced expression of the cytokinin response genes ARR5/6/7 and a decrease in pARR5:GUS activity. By contrast, cytokinin levels were elevated in p35S:AtZSP1#1. These results indicate that AtZSP1 affects shoot size via changes in cytokinin levels. AtZSP1 is ubiquitously expressed and encodes a 57-amino acid endomembrane-associated protein that is highly conserved among plant species. AtZSP1 interacts with ROCK1 at the endomembrane. Genetic analysis confirmed that the small organs and low cytokinin levels in atzsp1-1 shoots are partially suppressed by the rock1-4 mutation, suggesting that AtZSP1 may function in a common pathway with ROCK1 to antagonistically regulate organ growth. Our study identified an unknown small peptide, AtZSP1, and defined its function in regulating organ size in Arabidopsis.
Collapse
Affiliation(s)
- Yuejuan Zeng
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yu Tang
- University of California, Berkeley, 371 Koshland Hall, Berkeley, CA, 94720, USA
| | - Simin Shen
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Man Zhang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Liqun Chen
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - De Ye
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xueqin Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
32
|
Supikova K, Kosinova A, Vavrusa M, Koplikova L, François A, Pospisil J, Zatloukal M, Wever R, Hartog A, Gruz J. Sulfated phenolic acids in plants. PLANTA 2022; 255:124. [PMID: 35562552 DOI: 10.1007/s00425-022-03902-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 04/21/2022] [Indexed: 06/15/2023]
Abstract
Sulfated phenolic acids are widely occurring metabolites in plants, including fruits, vegetables and crops. The untargeted UHPLC-QTOF-MS metabolomics of more than 50 samples from plant, fungi and algae lead to the discovery of a small group of sulfated metabolites derived from phenolic acids. These compounds were detected in land plants for the first time. In this study, zosteric acid, 4-(sulfooxy)benzoic acid, 4-(sulfoooxy)phenylacetic acid, ferulic acid 4-sulfate and/or vanillic acid 4-sulfate were detected in a number of edible species/products, including oat (Avena sativa L.), wheat (Triticum aestivum L.), barley (Hordeum vulgare L.), tomato (Solanum lycopersicum L.), carrot (Daucus carota subsp. Sativus Hoffm.), broccoli (Brassica oleracea var. Italica Plenck), celery (Apium graveolens L.), cabbage (Brassica oleracea convar. sabauda L.), banana tree (Musa tropicana L.), pineapple fruit (Ananas comosus L.), radish bulb (Raphanus sativus L.) and olive oil (Olea europaea L.). The structural identification of sulfated compounds was performed by comparing retention times and mass spectral data to those of synthesized standards. In addition to above-mentioned compounds, isoferulic acid 3-sulfate and caffeic acid 4-sulfate were putatively identified in celery bulb (Apium graveolens L.) and broccoli floret (Brassica oleracea var. Italica Plenck), respectively. While sulfated phenolic acids were quantified in concentrations ranging from 0.34 to 22.18 µg·g-1 DW, the corresponding non-sulfated acids were mostly undetected or present at lower concentrations. The subsequent analysis of oat symplast and apoplast showed that they are predominantly accumulated in the symplast (> 70%) where they are supposed to be biosynthesized by sulfotransferases.
Collapse
Affiliation(s)
- Klara Supikova
- Department of Experimental Biology, Palacky University, Slechtitelu 27, 78371, Olomouc, Czech Republic
| | - Andrea Kosinova
- Department of Experimental Biology, Palacky University, Slechtitelu 27, 78371, Olomouc, Czech Republic
| | - Martin Vavrusa
- Department of Experimental Biology, Palacky University, Slechtitelu 27, 78371, Olomouc, Czech Republic
| | - Lucie Koplikova
- Department of Experimental Biology, Palacky University, Slechtitelu 27, 78371, Olomouc, Czech Republic
| | - Anja François
- Institute of Pharmacy/Pharmacognosy, University of Innsbruck, Innsbruck, Austria
| | - Jiri Pospisil
- Department of Chemical Biology, Palacky University, Olomouc, Czech Republic
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences, and Faculty of Science, Palacky University, Olomouc, Czech Republic
| | - Marek Zatloukal
- Department of Chemical Biology, Palacky University, Olomouc, Czech Republic
| | - Ron Wever
- Van 't Hoff Institute for Molecular Sciences, Universiteit Van Amsterdam, Amsterdam, Netherlands
| | - Aloysius Hartog
- Van 't Hoff Institute for Molecular Sciences, Universiteit Van Amsterdam, Amsterdam, Netherlands
| | - Jiri Gruz
- Department of Experimental Biology, Palacky University, Slechtitelu 27, 78371, Olomouc, Czech Republic.
| |
Collapse
|
33
|
Yu L, Di Q, Zhang D, Liu Y, Li X, Mysore KS, Wen J, Yan J, Luo L. A legume-specific novel type of phytosulfokine, PSK-δ, promotes nodulation by enhancing nodule organogenesis. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:2698-2713. [PMID: 35137020 DOI: 10.1093/jxb/erac051] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
Phytosulfokine-α (PSK-α), a tyrosine-sulfated pentapeptide with the sequence YSO3IYSO3TQ, is widely distributed across the plant kingdom and plays multiple roles in plant growth, development, and immune response. Here, we report a novel type of phytosulfokine, PSK-δ, and its precursor proteins (MtPSKδ, LjPSKδ, and GmPSKδ1), specifically from legume species. The sequence YSO3IYSO3TN of sulfated PSK-δ peptide is different from PSK-α at the last amino acid. Expression pattern analysis revealed PSK-δ-encoding precursor genes to be expressed primarily in legume root nodules. Specifically, in Medicago truncatula, MtPSKδ expression was detected in root cortical cells undergoing nodule organogenesis, in nodule primordia and young nodules, and in the apical region of mature nodules. Accumulation of sulfated PSK-δ peptide in M. truncatula nodules was detected by LC/MS. Application of synthetic PSK-δ peptide significantly increased nodule number in legumes. Similarly, overexpression of MtPSKδ in transgenic M. truncatula markedly promoted symbiotic nodulation. This increase in nodule number was attributed to enhanced nodule organogenesis induced by PSK-δ. Additional genetic evidence from the MtPSKδ mutant and RNA interference assays suggested that the PSK-δ and PSK-α peptides function redundantly in regulating nodule organogenesis. These results suggest that PSK-δ, a legume-specific novel type of phytosulfokine, promotes symbiotic nodulation by enhancing nodule organogenesis.
Collapse
Affiliation(s)
- Liangliang Yu
- Shanghai Key Laboratory of Bio-energy Crops, School of Life Sciences, Shanghai University, Shanghai, China
| | - Qi Di
- Shanghai Key Laboratory of Bio-energy Crops, School of Life Sciences, Shanghai University, Shanghai, China
| | - Danping Zhang
- Shanghai Key Laboratory of Bio-energy Crops, School of Life Sciences, Shanghai University, Shanghai, China
| | - Yumin Liu
- Shanghai Key Laboratory of Bio-energy Crops, School of Life Sciences, Shanghai University, Shanghai, China
| | - Xiaolin Li
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Kirankumar S Mysore
- Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, Oklahoma, USA
| | - Jiangqi Wen
- Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, Oklahoma, USA
| | - Junhui Yan
- Shanghai Key Laboratory of Bio-energy Crops, School of Life Sciences, Shanghai University, Shanghai, China
| | - Li Luo
- Shanghai Key Laboratory of Bio-energy Crops, School of Life Sciences, Shanghai University, Shanghai, China
| |
Collapse
|
34
|
Nagar P, Sharma N, Jain M, Sharma G, Prasad M, Mustafiz A. OsPSKR15, a phytosulfokine receptor from rice enhances abscisic acid response and drought stress tolerance. PHYSIOLOGIA PLANTARUM 2022; 174:e13569. [PMID: 34549425 DOI: 10.1111/ppl.13569] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 09/06/2021] [Accepted: 09/20/2021] [Indexed: 06/13/2023]
Abstract
Abscisic acid (ABA) is a major phytohormone that acts as stimuli and plays an important role in plant growth, development, and environmental stress responses. Membrane-localized receptor-like kinases (RLKs) help to detect extracellular stimuli and activate downstream signaling responses to modulate a variety of biological processes. Phytosulfokine receptor (PSKR), a Leu-rich repeat (LRR)-RLK, has been characterized for its role in growth, development and biotic stress. Here, we observed that OsPSKR15, a rice PSKR, was upregulated by ABA in Oryza sativa. We demonstrated OsPSKR15 is a positive regulator in plant response to ABA. Ectopic expression of OsPSKR15 in Arabidopsis thaliana increased the sensitivity to ABA during germination, growth and stomatal closure. Consistently, the expression of ABA-inducible genes was significantly upregulated in these plants. OsPSKR15 also regulated reactive oxygen species (ROS)-mediated ABA signaling in guard cells, thereby governing stomatal closure. Furthermore, the constitutive expression of OsPSKR15 enhanced drought tolerance by reducing the transpirational water loss in Arabidopsis. We also reported that OsPSKR15 directly interacts with AtPYL9 and its orthologue OsPYL11 of rice through its kinase domain in the plasma membrane and nucleus. Altogether, these results reveal an important role of OsPSKR15 in plant response toward abiotic stress in an ABA-dependent manner.
Collapse
Affiliation(s)
- Preeti Nagar
- Plant Molecular Biology Laboratory, Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, India
| | - Namisha Sharma
- National Institute of Plant Genome Research, New Delhi, India
| | - Muskan Jain
- Plant Molecular Biology Laboratory, Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, India
| | - Gauri Sharma
- Plant Molecular Biology Laboratory, Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, India
| | - Manoj Prasad
- National Institute of Plant Genome Research, New Delhi, India
| | - Ananda Mustafiz
- Plant Molecular Biology Laboratory, Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, India
| |
Collapse
|
35
|
Furumizu C, Sawa S. Insight into early diversification of leucine-rich repeat receptor-like kinases provided by the sequenced moss and hornwort genomes. PLANT MOLECULAR BIOLOGY 2021; 107:337-353. [PMID: 33389562 DOI: 10.1007/s11103-020-01100-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 11/26/2020] [Indexed: 05/05/2023]
Abstract
Identification of the subfamily X leucine-rich repeat receptor-like kinases in the recently sequenced moss and hornwort genomes points to their diversification into distinct groups during early evolution of land plants. Signal transduction mediated through receptor-ligand interactions plays key roles in controlling developmental and physiological processes of multicellular organisms, and plants employ diverse receptors in signaling. Leucine-rich repeat receptor-like kinases (LRR-RLKs) represent one of the largest receptor classes in plants and are structurally classified into subfamilies. LRR-RLKs of the subfamily X are unique in the variety of their signaling roles; they include receptors for steroid or peptide hormones as well as negative regulators of signaling through binding to other LRR-RLKs, raising a question as to how they diversified. However, our understanding of diversification processes of LRR-RLKs has been hindered by the paucity of genomic data in non-seed plants and limited taxa sampling in previous phylogenetic analyses. Here we analyzed the phylogeny of LRR-RLK X sequences collected from all major land plant lineages and show that this subfamily diversified into six major clades before the divergence between bryophytes and vascular plants. Notably, we have identified homologues of the brassinosteroid receptor, BRASSINOSTEROID INSENSITIVE 1 (BRI1), in the genomes of Sphagnum mosses, hornworts, and ferns, contrary to earlier reports that postulate the origin of BRI1-like LRR-RLKs in the seed plant lineage. The phylogenetic distribution of major clades illustrates that the current receptor repertoire was shaped through lineage-specific gene family expansion and independent gene losses, highlighting dynamic changes in the evolution of LRR-RLKs.
Collapse
Affiliation(s)
- Chihiro Furumizu
- Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan.
| | - Shinichiro Sawa
- Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan
| |
Collapse
|
36
|
Garnelo Gómez B, Holzwart E, Shi C, Lozano-Durán R, Wolf S. Phosphorylation-dependent routing of RLP44 towards brassinosteroid or phytosulfokine signalling. J Cell Sci 2021; 134:272537. [PMID: 34569597 PMCID: PMC8572011 DOI: 10.1242/jcs.259134] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 09/20/2021] [Indexed: 12/14/2022] Open
Abstract
Plants rely on cell surface receptors to integrate developmental and environmental cues into behaviour adapted to the conditions. The largest group of these receptors, leucine-rich repeat receptor-like kinases, form a complex interaction network that is modulated and extended by receptor-like proteins. This raises the question of how specific outputs can be generated when receptor proteins are engaged in a plethora of promiscuous interactions. RECEPTOR-LIKE PROTEIN 44 (RLP44) acts to promote both brassinosteroid and phytosulfokine signalling, which orchestrate diverse cellular responses. However, it is unclear how these activities are coordinated. Here, we show that RLP44 is phosphorylated in its highly conserved cytosolic tail and that this post-translational modification governs its subcellular localization. Whereas phosphorylation is essential for brassinosteroid-associated functions of RLP44, its role in phytosulfokine signalling is not affected by phospho-status. Detailed mutational analysis suggests that phospho-charge, rather than modification of individual amino acids determines routing of RLP44 to its target receptor complexes, providing a framework to understand how a common component of different receptor complexes can get specifically engaged in a particular signalling pathway.
Collapse
Affiliation(s)
- Borja Garnelo Gómez
- Centre for Organismal Studies Heidelberg, University of Heidelberg, INF230, 69120 Heidelberg, Germany.,Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences (CAS), Shanghai 201602China
| | - Eleonore Holzwart
- Centre for Organismal Studies Heidelberg, University of Heidelberg, INF230, 69120 Heidelberg, Germany
| | - Chaonan Shi
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences (CAS), Shanghai 201602China
| | - Rosa Lozano-Durán
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences (CAS), Shanghai 201602China.,Department of Plant Biochemistry, Centre for Plant Molecular Biology (ZMBP), Eberhard Karls University, D-72076 Tübingen, Germany
| | - Sebastian Wolf
- Centre for Organismal Studies Heidelberg, University of Heidelberg, INF230, 69120 Heidelberg, Germany.,Department of Plant Biochemistry, Centre for Plant Molecular Biology (ZMBP), Eberhard Karls University, D-72076 Tübingen, Germany
| |
Collapse
|
37
|
Heerah S, Molinari R, Guerrier S, Marshall-Colon A. Granger-causal testing for irregularly sampled time series with application to nitrogen signalling in Arabidopsis. BIOINFORMATICS (OXFORD, ENGLAND) 2021; 37:2450-2460. [PMID: 33693548 DOI: 10.1101/2020.06.15.152819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 02/18/2021] [Accepted: 03/03/2021] [Indexed: 05/27/2023]
Abstract
MOTIVATION Identification of system-wide causal relationships can contribute to our understanding of long-distance, intercellular signalling in biological organisms. Dynamic transcriptome analysis holds great potential to uncover coordinated biological processes between organs. However, many existing dynamic transcriptome studies are characterized by sparse and often unevenly spaced time points that make the identification of causal relationships across organs analytically challenging. Application of existing statistical models, designed for regular time series with abundant time points, to sparse data may fail to reveal biologically significant, causal relationships. With increasing research interest in biological time series data, there is a need for new statistical methods that are able to determine causality within and between time series data sets. Here, a statistical framework was developed to identify (Granger) causal gene-gene relationships of unevenly spaced, multivariate time series data from two different tissues of Arabidopsis thaliana in response to a nitrogen signal. RESULTS This work delivers a statistical approach for modelling irregularly sampled bivariate signals which embeds functions from the domain of engineering that allow to adapt the model's dependence structure to the specific sampling time. Using maximum-likelihood to estimate the parameters of this model for each bivariate time series, it is then possible to use bootstrap procedures for small samples (or asymptotics for large samples) in order to test for Granger-Causality. When applied to the A.thaliana data, the proposed approach produced 3078 significant interactions, in which 2012 interactions have root causal genes and 1066 interactions have shoot causal genes. Many of the predicted causal and target genes are known players in local and long-distance nitrogen signalling, including genes encoding transcription factors, hormones and signalling peptides. Of the 1007 total causal genes (either organ), 384 are either known or predicted mobile transcripts, suggesting that the identified causal genes may be directly involved in long-distance nitrogen signalling through intercellular interactions. The model predictions and subsequent network analysis identified nitrogen-responsive genes that can be further tested for their specific roles in long-distance nitrogen signalling. AVAILABILITY AND IMPLEMENTATION The method was developed with the R statistical software and is made available through the R package 'irg' hosted on the GitHub repository https://github.com/SMAC-Group/irg where also a running example vignette can be found (https://smac-group.github.io/irg/articles/vignette.html). A few signals from the original data set are made available in the package as an example to apply the method and the complete A.thaliana data can be found at: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE97500. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Sachin Heerah
- Department of Plant Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Roberto Molinari
- Department of Mathematics and Statistics, Auburn University, Auburn, AL 36849, USA
| | - Stéphane Guerrier
- Faculty of Science & Geneva School of Economics and Management, University of Geneva, Geneva 1205, Switzerland
| | - Amy Marshall-Colon
- Department of Plant Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
38
|
Tanaka K, Heil M. Damage-Associated Molecular Patterns (DAMPs) in Plant Innate Immunity: Applying the Danger Model and Evolutionary Perspectives. ANNUAL REVIEW OF PHYTOPATHOLOGY 2021; 59:53-75. [PMID: 33900789 DOI: 10.1146/annurev-phyto-082718-100146] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Danger signals trigger immune responses upon perception by a complex surveillance system. Such signals can originate from the infectious nonself or the damaged self, the latter termed damage-associated molecular patterns (DAMPs). Here, we apply Matzinger's danger model to plant innate immunity to discuss the adaptive advantages of DAMPs and their integration into preexisting signaling pathways. Constitutive DAMPs (cDAMPs), e.g., extracellular ATP, histones, and self-DNA, fulfill primary, conserved functions and adopt a signaling role only when cellular damage causes their fragmentation or localization to aberrant compartments. By contrast, immunomodulatory peptides (also known as phytocytokines) exclusively function as signals and, upon damage, are activated as inducible DAMPs (iDAMPs). Dynamic coevolutionary processes between the signals and their emerging receptors and shared co-receptors have likely linked danger recognition to preexisting, conserved downstream pathways.
Collapse
Affiliation(s)
- Kiwamu Tanaka
- Department of Plant Pathology, Washington State University, Pullman, Washington 99163, USA;
| | - Martin Heil
- Departamento de Ingeniería Genética, CINVESTAV, 36821 Irapuato, Guanajuato, México
| |
Collapse
|
39
|
Shinohara H. Root meristem growth factor RGF, a sulfated peptide hormone in plants. Peptides 2021; 142:170556. [PMID: 33901628 DOI: 10.1016/j.peptides.2021.170556] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/12/2021] [Accepted: 04/14/2021] [Indexed: 12/19/2022]
Abstract
In recent decades, small secreted peptides have been recognized as a new class of intercellular signaling phytohormones in plants. Tyrosine sulfation plays crucial roles in peptide hormone bioactivities in plants. The Arabidopsis tyrosylprotein sulfotransferase mutant tpst-1 causes severe abnormalities in the root tip due to deficiency in the biosynthesis of all functional tyrosine-sulfated peptides. Root meristem growth factor RGF, a sulfated peptide hormone specifically expressed in the root tip, was found to complement tpst-1 root defects. This review summarizes the history of the identification of RGF, the characteristics of RGF, the identification of RGF receptors, and the target of RGF. In brief, RGF is a 13 amino acid sulfated peptide. The RGF peptide mutant rgf1,2,3 exhibited a reduced size of the root apical meristem, indicating that RGF maintains cell proliferation activity in the root apical meristem. RGF receptors were identified by comprehensive binding analysis with a custom-made receptor expression library. The RGF receptor mutant rgfr1,2,3 showed a phenotype of reduced root length due to a reduction in the root apical meristem and was insensitive to RGF. The signaling cascade through RGF-RGF receptor pairs regulates the gradient formation of PLETHORA (PLT), which is known as the master regulator of root formation. In the peptide mutant rgf1,2,3 and receptor mutant rgfr1,2,3, the gradient of PLT proteins disappeared, indicating that RGF defines the PLT protein gradient to ensure robust root growth and root development. Recent studies of the downstream signaling of RGF-RGF receptor pairs are also described in this review.
Collapse
Affiliation(s)
- Hidefumi Shinohara
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa, Nagoya, 464-8602, Japan.
| |
Collapse
|
40
|
Kaufmann C, Stührwohldt N, Sauter M. Tyrosylprotein sulfotransferase-dependent and -independent regulation of root development and signaling by PSK LRR receptor kinases in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:5508-5521. [PMID: 34028532 PMCID: PMC8318253 DOI: 10.1093/jxb/erab233] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 05/20/2021] [Indexed: 05/13/2023]
Abstract
Tyrosine-sulfated peptides are key regulators of plant growth and development. The disulfated pentapeptide phytosulfokine (PSK) mediates growth via leucine-rich repeat receptor-like kinases, PSKR1 and PSKR2. PSK receptors (PSKRs) are part of a response module at the plasma membrane that mediates short-term growth responses, but downstream signaling of transcriptional regulation remains unexplored. In Arabidopsis, tyrosine sulfation is catalyzed by a single-copy gene (TPST; encoding tyrosylprotein sulfotransferase). We performed a microarray-based transcriptome analysis in the tpst-1 mutant background that lacks sulfated peptides to identify PSK-regulated genes and genes that are regulated by other sulfated peptides. Of the 169 PSK-regulated genes, several had functions in root growth and development, in agreement with shorter roots and a higher lateral root density in tpst-1. Further, tpst-1 roots developed higher numbers of root hairs, and PSK induced expression of WEREWOLF (WER), its paralog MYB DOMAIN PROTEIN 23 (MYB23), and At1g66800 that maintain non-hair cell fate. The tpst-1 pskr1-3 pskr2-1 mutant showed even shorter roots, and higher lateral root and root hair density than tpst-1, revealing unexpected synergistic effects of ligand and PSKR deficiencies. While residual activities may exist, overexpression of PSKR1 in the tpst-1 background induced root growth, suggesting that PSKR1 may be active in the absence of sulfated ligands.
Collapse
Affiliation(s)
- Christine Kaufmann
- Plant Developmental Biology and Physiology, University of Kiel, Kiel, Germany
| | - Nils Stührwohldt
- Plant Developmental Biology and Physiology, University of Kiel, Kiel, Germany
| | - Margret Sauter
- Plant Developmental Biology and Physiology, University of Kiel, Kiel, Germany
- Correspondence:
| |
Collapse
|
41
|
Xiang D, Meng F, Wang A, Wu Y, Wang Z, Zheng S, Mao C. Root-secreted peptide OsPEP1 regulates primary root elongation in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:480-492. [PMID: 33942424 DOI: 10.1111/tpj.15303] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 02/28/2021] [Accepted: 04/21/2021] [Indexed: 06/12/2023]
Abstract
Hormone-like signaling peptides play essential roles in plant growth and development; however, few peptides regulating root development have been identified in rice (Oryza sativa). Here, we combined liquid chromatography-tandem mass spectrometry (LC-MS/MS) with whole-genome in silico screening for root-secreted peptides in rice. We identified the five-amino-acid PEPTIDE 1 (PEP1) encoded by OsPEP1 (LOC_Os11g09560). OsPEP1 was expressed highly in root tissues, especially root cap cells and epidermal cells in the root maturation zone. Exogenous application of PEP1 inhibited primary root growth. Notably, OsPEP1 RNA interference (RNAi) lines had short primary roots with small meristems and short cells in the root elongation zone; furthermore, the short root phenotype of OsPEP1 RNAi plants could be rescued by exogenous application of PEP1. Our transcriptome data further revealed that PEP1 could reprogram the expression of genes in different pathways, including oxidation-reduction. OsPEP1 overexpression lines similarly displayed short roots, although this phenotype was not rescued by exogenous PEP1. These results suggest that root growth can be inhibited by both too much and too little PEP1. Our findings highlight PEP1 as a candidate plant peptide hormone regulating root development in rice.
Collapse
Affiliation(s)
- Dan Xiang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Funing Meng
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Aodi Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yunrong Wu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Zhiye Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Shaojian Zheng
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Chuanzao Mao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
- Hainan Institute of Zhejiang University, Yazhou Bay Science and Technology City, Sanya, 572025, China
| |
Collapse
|
42
|
Abstract
Our knowledge of plant ion channels was significantly enhanced by the first application of the patch-clamp technique to isolated guard cell protoplasts over 35 years ago. Since then, research has demonstrated the importance of ion channels in the control of gas exchange in guard cells, their role in nutrient uptake in roots, and the participation of calcium-permeable cation channels in the regulation of cell signaling affected by the intracellular concentrations of this second messenger. In recent years, through the employment of reverse genetics, mutant proteins, and heterologous expression systems, research on ion channels has identified mechanisms that modify their activity through protein-protein interactions or that result in activation and/or deactivation of ion channels through posttranslational modifications. Additional and confirmatory information on ion channel functioning has been derived from the crystallization and molecular modeling of plant proteins that, together with functional analyses, have helped to increase our knowledge of the functioning of these important membrane proteins that may eventually help to improve crop yield. Here, an update on the advances obtained in plant ion channel function during the last few years is presented.
Collapse
Affiliation(s)
- Omar Pantoja
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62210, México;
| |
Collapse
|
43
|
Wang X, Zhang N, Zhang L, He Y, Cai C, Zhou J, Li J, Meng X. Perception of the pathogen-induced peptide RGF7 by the receptor-like kinases RGI4 and RGI5 triggers innate immunity in Arabidopsis thaliana. THE NEW PHYTOLOGIST 2021; 230:1110-1125. [PMID: 33454976 DOI: 10.1111/nph.17197] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 01/01/2021] [Indexed: 05/26/2023]
Abstract
Signaling peptides play crucial roles in plant growth, development and defense. We report here that the Arabidopsis thaliana secreted peptide, ROOT MERISTEM GROWTH FACTOR 7 (RGF7), functions as an endogenous elicitor to trigger plant immunity. Expression of the RGF7 precursor-encoding gene (preRGF7) is highly induced in Arabidopsis leaves upon infection by the bacterial pathogen Pseudomonas syringae. The pathogen-responsive preRGF7 expression is regulated by the transcription factor WRKY33 and its upstream mitogen-activated protein kinases MPK3/MPK6 and calcium-dependent protein kinases CPK5/CPK6. In the absence of pathogen attack, chemically induced expression of preRGF7 in transgenic Arabidopsis plants was sufficient to trigger immune responses. Pre-induction of preRGF7 expression in transgenic Arabidopsis also led to enhanced immune responses and increased resistance to P. syringae infection. Biochemical and genetic analyses demonstrated that RGF7 is perceived by the leaf-expressed RGF1 INSENSITIVE (RGI) family receptors RGI4 and RGI5. The SOMATIC EMBRYOGENESIS RECEPTOR KINASES (SERKs) BAK1 and SERK4 are also involved in RGF7 perception via forming RGF7-induced receptor-complexes with RGI4 and RGI5. These results indicate that the pathogen-induced RGF7 peptide, perceived by the RGI4/RGI5-BAK1/SERK4 receptor complexes, acts as a new damage-associated molecular pattern (DAMP) and plays a significant role in Arabidopsis immunity.
Collapse
Affiliation(s)
- Xiaoyang Wang
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai, 200444, China
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Na Zhang
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Lina Zhang
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Yunxia He
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Chao Cai
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Jinggeng Zhou
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Jia Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Xiangzong Meng
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| |
Collapse
|
44
|
Stührwohldt N, Bühler E, Sauter M, Schaller A. Phytosulfokine (PSK) precursor processing by subtilase SBT3.8 and PSK signaling improve drought stress tolerance in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:3427-3440. [PMID: 33471900 DOI: 10.1093/jxb/erab017] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 01/17/2021] [Indexed: 05/06/2023]
Abstract
Increasing drought stress poses a severe threat to agricultural productivity. Plants, however, have evolved numerous mechanisms to cope with such environmental stress. Here we report that the stress-induced production of a peptide signal contributes to stress tolerance. The expression of phytosulfokine (PSK) peptide precursor genes, and transcripts of three subtilisin-like serine proteases, SBT1.4, SBT3.7, and SBT3.8, were found to be up-regulated in response to osmotic stress. Stress symptoms were more pronounced in sbt3.8 loss-of-function mutants and could be alleviated by PSK treatment. Osmotic stress tolerance was improved in plants overexpressing the PSK1 precursor (proPSK1) or SBT3.8, resulting in higher fresh weight and improved lateral root development in transgenic plants compared with wild-type plants. We further showed that SBT3.8 is involved in the biogenesis of the bioactive PSK peptide. ProPSK1 was cleaved by SBT3.8 at the C-terminus of the PSK pentapeptide. Processing by SBT3.8 depended on the aspartic acid residue directly following the cleavage site. ProPSK1 processing was impaired in the sbt3.8 mutant. The data suggest that increased expression of proPSK1 in response to osmotic stress followed by the post-translational processing of proPSK1 by SBT3.8 leads to the production of PSK as a peptide signal for stress mitigation.
Collapse
Affiliation(s)
- Nils Stührwohldt
- Department of Plant Physiology and Biochemistry, Institute of Biology, University of Hohenheim, Stuttgart, Germany
| | - Eric Bühler
- Department of Plant Physiology and Biochemistry, Institute of Biology, University of Hohenheim, Stuttgart, Germany
| | - Margret Sauter
- Plant Developmental Biology and Physiology, University of Kiel, Kiel, Germany
| | - Andreas Schaller
- Department of Plant Physiology and Biochemistry, Institute of Biology, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
45
|
Transcriptome Analysis Reveals Genes of Flooding-Tolerant and Flooding-Sensitive Rapeseeds Differentially Respond to Flooding at the Germination Stage. PLANTS 2021; 10:plants10040693. [PMID: 33916802 PMCID: PMC8065761 DOI: 10.3390/plants10040693] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/19/2021] [Accepted: 03/21/2021] [Indexed: 12/31/2022]
Abstract
Flooding results in significant crop yield losses due to exposure of plants to hypoxic stress. Various studies have reported the effect of flooding stress at seedling establishment or later stages. However, the molecular mechanism prevailing at the germination stage under flooding stress remains enigmatic. The present study highlights the comparative transcriptome analysis in two rapeseed lines, i.e., flooding-tolerant (Santana) and -sensitive (23651) lines under control and 6-h flooding treatments at the germination stage. A total of 1840 up-regulated and 1301 down-regulated genes were shared by both lines in response to flooding. There were 4410 differentially expressed genes (DEGs) with increased expression and 4271 DEGs with reduced expression shared in both control and flooding conditions. Gene ontology (GO) enrichment analysis revealed that “transcription regulation”, “structural constituent of cell wall”, “reactive oxygen species metabolic”, “peroxidase”, oxidoreductase”, and “antioxidant activity” were the common processes in rapeseed flooding response. In addition, the processes such as “hormone-mediated signaling pathway”, “response to organic substance response”, “motor activity”, and “microtubule-based process” are likely to confer rapeseed flooding resistance. Mclust analysis clustered DEGs into nine modules; genes in each module shared similar expression patterns and many of these genes overlapped with the top 20 DEGs in some groups. This work provides a comprehensive insight into gene responses and the regulatory network in rapeseed flooding stress and provides guidelines for probing the underlying molecular mechanisms in flooding resistance.
Collapse
|
46
|
Yuan N, Furumizu C, Zhang B, Sawa S. Database mining of plant peptide homologues. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2021; 38:137-143. [PMID: 34177333 PMCID: PMC8215471 DOI: 10.5511/plantbiotechnology.20.0720a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
In plant-pathogen interactions, pathogens employ secreted molecules, known as effectors to overcome physical barriers, modulate plant immunity, and facilitate colonization. Among these diverse effectors, some are found to mimic the plant peptides, to target host's peptide receptors, and intervene in the peptide-regulated defense pathways and/or plant development. To better understand how pathogens have co-evolved with their plant hosts in order to improve disease management, we explored the presence of plant peptide mimics in microbes by bioinformatic analysis. In total, 36 novel peptide mimics belong to five plant peptide families were detected in bacterial and fungal kingdoms. Among them, phytosulfokine homologues were widely distributed in 22 phytopathogens and one bacterium, thereby constituted the largest proportion of the identified mimics. The putative functional peptide region is well conserved between plant and microbes, while the existence of a putative signal peptide varies between species. Our findings will increase understanding of plant-pathogen interactions, and provide new ideas for future studies of pathogenic mechanisms and disease management.
Collapse
Affiliation(s)
- Na Yuan
- Institute of Crop Germplasm and Biotechnology, Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Faculty of Advanced Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan
| | - Chihiro Furumizu
- Faculty of Advanced Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan
| | - Baolong Zhang
- Institute of Crop Germplasm and Biotechnology, Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Shinichiro Sawa
- Faculty of Advanced Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan
- E-mail: Tel & Fax: +81-96-342-3439
| |
Collapse
|
47
|
Regeneration of Pinus halepensis (Mill.) through Organogenesis from Apical Shoot Buds. FORESTS 2021. [DOI: 10.3390/f12030363] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Organogenesis and somatic embryogenesis have been widely applied as the two main regeneration pathways in plant tissue cultures. However, recalcitrance is still the main restriction in the clonal propagation of many woody species, especially in conifers. They undergo a “phase change” that leads to significant loss of vegetative propagation capacity, reducing the aptitude of tissues and organs to be regenerated in vitro beyond this point. In line with this, the in vitro regeneration of mature conifer trees has been a long-cherished goal in many laboratories worldwide. Based on previous works in Pinus species regeneration from adult trees, we now present data about the culture of apical shoot buds in an attempt to induce organogenesis and somatic embryogenesis to clone mature trees of Aleppo pine (Pinus halepensis). Reinvigorated axillary shoots were submitted to conditions usually applied to induce somatic embryogenesis through the manipulation of culture media, including the use of auxins such as 2,4-Dichlorophenoxyacetic acid and 1-Naphthaleneacetic acid, cytokinins (6-benzyladenine and kinetin), and phytosulfokine (50, 100, and 200 nM). Although somatic embryos could not be obtained, an embryogenic-like tissue was produced, followed by the emergence of actively proliferating non-embryogenic calli. Variations in the consistence, texture, and color of non-embryogenic calli were observed; especially those arising in the media containing phytosulfokine. Reinvigorated shoots, induced by 22 or 44 µM 6-benzyladenine, were obtained through organogenesis and acclimatized, and phenotypically normal plants were obtained.
Collapse
|
48
|
Heerah S, Molinari R, Guerrier S, Marshall-Colon A. Granger-Causal Testing for Irregularly Sampled Time Series with Application to Nitrogen Signaling in Arabidopsis. Bioinformatics 2021; 37:2450-2460. [PMID: 33693548 PMCID: PMC8388030 DOI: 10.1093/bioinformatics/btab126] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 02/18/2021] [Accepted: 03/03/2021] [Indexed: 12/05/2022] Open
Abstract
Motivation Identification of system-wide causal relationships can contribute to our understanding of long-distance, intercellular signalling in biological organisms. Dynamic transcriptome analysis holds great potential to uncover coordinated biological processes between organs. However, many existing dynamic transcriptome studies are characterized by sparse and often unevenly spaced time points that make the identification of causal relationships across organs analytically challenging. Application of existing statistical models, designed for regular time series with abundant time points, to sparse data may fail to reveal biologically significant, causal relationships. With increasing research interest in biological time series data, there is a need for new statistical methods that are able to determine causality within and between time series data sets. Here, a statistical framework was developed to identify (Granger) causal gene-gene relationships of unevenly spaced, multivariate time series data from two different tissues of Arabidopsis thaliana in response to a nitrogen signal. Results This work delivers a statistical approach for modelling irregularly sampled bivariate signals which embeds functions from the domain of engineering that allow to adapt the model’s dependence structure to the specific sampling time. Using maximum-likelihood to estimate the parameters of this model for each bivariate time series, it is then possible to use bootstrap procedures for small samples (or asymptotics for large samples) in order to test for Granger-Causality. When applied to the A.thaliana data, the proposed approach produced 3078 significant interactions, in which 2012 interactions have root causal genes and 1066 interactions have shoot causal genes. Many of the predicted causal and target genes are known players in local and long-distance nitrogen signalling, including genes encoding transcription factors, hormones and signalling peptides. Of the 1007 total causal genes (either organ), 384 are either known or predicted mobile transcripts, suggesting that the identified causal genes may be directly involved in long-distance nitrogen signalling through intercellular interactions. The model predictions and subsequent network analysis identified nitrogen-responsive genes that can be further tested for their specific roles in long-distance nitrogen signalling. Availability and implementation The method was developed with the R statistical software and is made available through the R package ‘irg’ hosted on the GitHub repository https://github.com/SMAC-Group/irg where also a running example vignette can be found (https://smac-group.github.io/irg/articles/vignette.html). A few signals from the original data set are made available in the package as an example to apply the method and the complete A.thaliana data can be found at: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE97500. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Sachin Heerah
- Department of Plant Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Roberto Molinari
- Department of Mathematics and Statistics, Auburn University, Auburn, AL, USA
| | - Stéphane Guerrier
- Faculty of Science & Geneva School of Economics and Management, University of Geneva, Geneva, Switzerland
| | - Amy Marshall-Colon
- Department of Plant Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
49
|
de Souza JV, Kondal M, Zaborniak P, Cairns R, Bronowska AK. Controlling the Heterodimerisation of the Phytosulfokine Receptor 1 (PSKR1) via Island Loop Modulation. Int J Mol Sci 2021; 22:1806. [PMID: 33670396 PMCID: PMC7918699 DOI: 10.3390/ijms22041806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 02/02/2021] [Accepted: 02/08/2021] [Indexed: 01/17/2023] Open
Abstract
Phytosulfokine (PSK) is a phytohormone responsible for cell-to-cell communication in plants, playing a pivotal role in plant development and growth. The binding of PSK to its cognate receptor, PSKR1, is modulated by the formation of a binding site located between a leucine-rich repeat (LRR) domain of PSKR1 and the loop located in the receptor's island domain (ID). The atomic resolution structure of the extracellular PSKR1 bound to PSK has been reported, however, the intrinsic dynamics of PSK binding and the architecture of the PSKR1 binding site remain to be understood. In this work, we used atomistic molecular dynamics (MD) simulations and free energy calculations to elucidate how the PSKR1 island domain (ID) loop forms and binds PSK. Moreover, we report a novel "druggable" binding site which could be exploited for the targeted modulation of the PSKR1-PSK binding by small molecules. We expect that our results will open new ways to modulate the PSK signalling cascade via small molecules, which can result in new crop control and agricultural applications.
Collapse
Affiliation(s)
- João V. de Souza
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; (M.K.); (P.Z.)
| | - Matthew Kondal
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; (M.K.); (P.Z.)
| | - Piotr Zaborniak
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; (M.K.); (P.Z.)
| | - Ryland Cairns
- Fontus Environmental, High Garth, Thirsk YO7 3PX, UK;
| | - Agnieszka K. Bronowska
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; (M.K.); (P.Z.)
| |
Collapse
|
50
|
Turek I, Irving H. Moonlighting Proteins Shine New Light on Molecular Signaling Niches. Int J Mol Sci 2021; 22:1367. [PMID: 33573037 PMCID: PMC7866414 DOI: 10.3390/ijms22031367] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 02/06/2023] Open
Abstract
Plants as sessile organisms face daily environmental challenges and have developed highly nuanced signaling systems to enable suitable growth, development, defense, or stalling responses. Moonlighting proteins have multiple tasks and contribute to cellular signaling cascades where they produce additional variables adding to the complexity or fuzziness of biological systems. Here we examine roles of moonlighting kinases that also generate 3',5'-cyclic guanosine monophosphate (cGMP) in plants. These proteins include receptor like kinases and lipid kinases. Their guanylate cyclase activity potentiates the development of localized cGMP-enriched nanodomains or niches surrounding the kinase and its interactome. These nanodomains contribute to allosteric regulation of kinase and other molecules in the immediate complex directly or indirectly modulating signal cascades. Effects include downregulation of kinase activity, modulation of other members of the protein complexes such as cyclic nucleotide gated channels and potential triggering of cGMP-dependent degradation cascades terminating signaling. The additional layers of information provided by the moonlighting kinases are discussed in terms of how they may be used to provide a layer of fuzziness to effectively modulate cellular signaling cascades.
Collapse
Affiliation(s)
| | - Helen Irving
- Department of Pharmacy and Biomedical Sciences, La Trobe Institute for Molecular Science, La Trobe University, Bendigo, VIC 3550, Australia;
| |
Collapse
|