1
|
Nguyen CX, Dohnalkova A, Hancock CN, Kirk KR, Stacey G, Stacey MG. Critical role for uricase and xanthine dehydrogenase in soybean nitrogen fixation and nodule development. THE PLANT GENOME 2023; 16:e20171. [PMID: 34904377 DOI: 10.1002/tpg2.20172] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 09/22/2021] [Indexed: 06/14/2023]
Abstract
De novo purine biosynthesis is required for the incorporation of fixed nitrogen in ureide exporting nodules, as formed on soybean [Glycine max (L.) Merr.] roots. However, in many cases, the enzymes involved in this pathway have been deduced strictly from genome annotations with little direct genetic evidence, such as mutant studies, to confirm their biochemical function or importance to nodule development. While efforts to develop large mutant collections of soybean are underway, research on this plant is still hampered by the inability to obtain mutations in any specific gene of interest. Using a forward genetic approach, as well as CRISPR/Cas9 gene editing via Agrobacterium rhizogenes-mediated hairy root transformation, we identified and characterized the role of GmUOX (Uricase) and GmXDH (Xanthine Dehydrogenase) in nitrogen fixation and nodule development in soybean. The gmuox knockout soybean mutants displayed nitrogen deficiency chlorosis and early nodule senescence, as exemplified by the reduced nitrogenase (acetylene reduction) activity in nodules, the internal greenish-white internal appearance of nodules, and diminished leghemoglobin production. In addition, gmuox1 nodules showed collapsed infected cells with degraded cytoplasm, aggregated bacteroids with no discernable symbiosome membranes, and increased formation of poly-β-hydroxybutyrate granules. Similarly, knockout gmxdh mutant nodules, generated with the CRISPR/Cas9 system, also exhibited early nodule senescence. These genetic studies confirm the critical role of the de novo purine metabolisms pathway not only in the incorporation of fixed nitrogen but also in the successful development of a functional, nitrogen-fixing nodule. Furthermore, these studies demonstrate the great utility of the CRISPR/Cas9 system for studying root-associated gene traits when coupled with hairy root transformation.
Collapse
Affiliation(s)
- Cuong X Nguyen
- Division of Plant Sciences, Univ. of Missouri, Columbia, MO, 65211, USA
| | - Alice Dohnalkova
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - C Nathan Hancock
- Dep. of Biology & Geology, Univ. of South Carolina, Aiken, SC, 29801, USA
| | - Kendall R Kirk
- Edisto Research & Education Center, Clemson Univ., Blackville, SC, 29817, USA
| | - Gary Stacey
- Division of Plant Sciences, Univ. of Missouri, Columbia, MO, 65211, USA
- Division of Biochemistry, Univ. of Missouri, Columbia, MO, 65211, USA
| | - Minviluz G Stacey
- Division of Plant Sciences, Univ. of Missouri, Columbia, MO, 65211, USA
| |
Collapse
|
2
|
Feng H, Chen W, Hussain S, Shakir S, Tzin V, Adegbayi F, Ugine T, Fei Z, Jander G. Horizontally transferred genes as RNA interference targets for aphid and whitefly control. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:754-768. [PMID: 36577653 PMCID: PMC10037149 DOI: 10.1111/pbi.13992] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/14/2022] [Accepted: 12/22/2022] [Indexed: 06/01/2023]
Abstract
RNA interference (RNAi)-based technologies are starting to be commercialized as a new approach for agricultural pest control. Horizontally transferred genes (HTGs), which have been transferred into insect genomes from viruses, bacteria, fungi or plants, are attractive targets for RNAi-mediated pest control. HTGs are often unique to a specific insect family or even genus, making it unlikely that RNAi constructs targeting such genes will have negative effects on ladybugs, lacewings and other beneficial predatory insect species. In this study, we sequenced the genome of a red, tobacco-adapted isolate of Myzus persicae (green peach aphid) and bioinformatically identified 30 HTGs. We then used plant-mediated virus-induced gene silencing (VIGS) to show that several HTGs of bacterial and plant origin are important for aphid growth and/or survival. Silencing the expression of fungal-origin HTGs did not affect aphid survivorship but decreased aphid reproduction. Importantly, although there was uptake of plant-expressed RNA by Coccinella septempunctata (seven-spotted ladybugs) via the aphids that they consumed, we did not observe negative effects on ladybugs from aphid-targeted VIGS constructs. To demonstrate that this approach is more broadly applicable, we also targeted five Bemisia tabaci (whitefly) HTGs using VIGS and demonstrated that knockdown of some of these genes affected whitefly survival. As functional HTGs have been identified in the genomes of numerous pest species, we propose that these HTGs should be explored further as efficient and safe targets for control of insect pests using plant-mediated RNA interference.
Collapse
Affiliation(s)
| | - Wenbo Chen
- Boyce Thompson InstituteIthacaNYUSA
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative BiologyZhejiang UniversityHangzhouChina
| | - Sonia Hussain
- Boyce Thompson InstituteIthacaNYUSA
- Present address:
National Institute for Biotechnology and Genetic Engineering CollegePakistan Institute of Engineering and Applied SciencesFaisalabadPakistan
| | - Sara Shakir
- Boyce Thompson InstituteIthacaNYUSA
- Present address:
Gembloux Agro‐Bio Tech InstituteThe University of LiegeGemblouxBelgium
| | - Vered Tzin
- Boyce Thompson InstituteIthacaNYUSA
- Present address:
Jacob Blaustein Institutes for Desert ResearchBen‐Gurion University of the NegevSede BoqerIsrael
| | - Femi Adegbayi
- Boyce Thompson InstituteIthacaNYUSA
- Present address:
Drexel University College of MedicinePhiladelphiaPAUSA
| | - Todd Ugine
- Department of EntomologyCornell UniversityIthacaNYUSA
| | | | | |
Collapse
|
3
|
Dong C, Zhang L, Zhang Q, Yang Y, Li D, Xie Z, Cui G, Chen Y, Wu L, Li Z, Liu G, Zhang X, Liu C, Chu J, Zhao G, Xia C, Jia J, Sun J, Kong X, Liu X. Tiller Number1 encodes an ankyrin repeat protein that controls tillering in bread wheat. Nat Commun 2023; 14:836. [PMID: 36788238 PMCID: PMC9929037 DOI: 10.1038/s41467-023-36271-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 01/23/2023] [Indexed: 02/16/2023] Open
Abstract
Wheat (Triticum aestivum L.) is a major staple food for more than one-third of the world's population. Tiller number is an important agronomic trait in wheat, but only few related genes have been cloned. Here, we isolate a wheat mutant, tiller number1 (tn1), with much fewer tillers. We clone the TN1 gene via map-based cloning: TN1 encodes an ankyrin repeat protein with a transmembrane domain (ANK-TM). We show that a single amino acid substitution in the third conserved ankyrin repeat domain causes the decreased tiller number of tn1 mutant plants. Resequencing and haplotype analysis indicate that TN1 is conserved in wheat landraces and modern cultivars. Further, we reveal that the expression level of the abscisic acid (ABA) biosynthetic gene TaNCED3 and ABA content are significantly increased in the shoot base and tiller bud of the tn1 mutants; TN1 but not tn1 could inhibit the binding of TaPYL to TaPP2C via direct interaction with TaPYL. Taken together, we clone a key wheat tiller number regulatory gene TN1, which promotes tiller bud outgrowth probably through inhibiting ABA biosynthesis and signaling.
Collapse
Affiliation(s)
- Chunhao Dong
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Lichao Zhang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Qiang Zhang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.,State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Yuxin Yang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Danping Li
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zhencheng Xie
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Guoqing Cui
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yaoyu Chen
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Lifen Wu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zhan Li
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Guoxiang Liu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xueying Zhang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Cuimei Liu
- National Centre for Plant Gene Research (Beijing), Innovation Academy for Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jinfang Chu
- National Centre for Plant Gene Research (Beijing), Innovation Academy for Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guangyao Zhao
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Chuan Xia
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jizeng Jia
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jiaqiang Sun
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Xiuying Kong
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Xu Liu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
4
|
Yamazaki A, Battenberg K, Shimoda Y, Hayashi M. NDR1/HIN1-Like Protein 13 Interacts with Symbiotic Receptor Kinases and Regulates Nodulation in Lotus japonicus. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:845-856. [PMID: 36107197 DOI: 10.1094/mpmi-11-21-0263-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Lysin-motif receptor-like kinases (LysM-RLKs) are involved in the recognition of microbe-associated molecular patterns to initiate pattern-triggered immunity (PTI). LysM-RLKs are also required for recognition of microbe-derived symbiotic signal molecules upon establishing mutualistic interactions between plants and microsymbionts. A LysM-RLK CHITIN ELICITOR RECEPTOR KINASE1 (CERK1) plays central roles both in chitin-mediated PTI and in arbuscular mycorrhizal symbiosis, suggesting the overlap between immunity and symbiosis, at least in the signal perception and the activation of downstream signal cascades. In this study, we screened for the interacting proteins of Nod factor Receptor1 (NFR1), a CERK1 homolog in the model legume Lotus japonicus, and obtained a protein orthologous to NONRACE-SPECIFIC DISEASE RESISTANCE1/HARPIN-INDUCED1-LIKE13 (NHL13), a protein involved in the activation of innate immunity in Arabidopsis thaliana, which we named LjNHL13a. LjNHL13a interacted with NFR1 and with the symbiosis receptor kinase SymRK. LjNHL13a also displayed positive effects in nodulation. Our results suggest that NHL13 plays a role both in plant immunity and symbiosis, possibly where they overlap. [Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Akihiro Yamazaki
- Center for Sustainable Resource Science, RIKEN 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Kai Battenberg
- Center for Sustainable Resource Science, RIKEN 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Yoshikazu Shimoda
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization 3-1-3 Kan-nondai, Tsukuba, Ibaraki 305-8604, Japan
| | - Makoto Hayashi
- Center for Sustainable Resource Science, RIKEN 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization 3-1-3 Kan-nondai, Tsukuba, Ibaraki 305-8604, Japan
| |
Collapse
|
5
|
Hu P, Ren Y, Xu J, Wei Q, Song P, Guan Y, Gao H, Zhang Y, Hu H, Li C. Identification of ankyrin-transmembrane-type subfamily genes in Triticeae species reveals TaANKTM2A-5 regulates powdery mildew resistance in wheat. FRONTIERS IN PLANT SCIENCE 2022; 13:943217. [PMID: 35937376 PMCID: PMC9353636 DOI: 10.3389/fpls.2022.943217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
The ankyrin-transmembrane (ANKTM) subfamily is the most abundant subgroup of the ANK superfamily, with critical roles in pathogen defense. However, the function of ANKTM proteins in wheat immunity remains largely unexplored. Here, a total of 381 ANKTMs were identified from five Triticeae species and Arabidopsis, constituting five classes. Among them, class a only contains proteins from Triticeae species and the number of ANKTM in class a of wheat is significantly larger than expected, even after consideration of the ploidy level. Tandem duplication analysis of ANKTM indicates that Triticum urartu, Triticum dicoccoides and wheat all had experienced tandem duplication events which in wheat-produced ANKTM genes all clustered in class a. The above suggests that not only did the genome polyploidization result in the increase of ANKTM gene number, but that tandem duplication is also a mechanism for the expansion of this subfamily. Micro-collinearity analysis of Triticeae ANKTMs indicates that some ANKTM type genes evolved into other types of ANKs in the evolution process. Public RNA-seq data showed that most of the genes in class d and class e are expressed, and some of them show differential responses to biotic stresses. Furthermore, qRT-PCR results showed that some ANKTMs in class d and class e responded to powdery mildew. Silencing of TaANKTM2A-5 by barley stripe mosaic virus-induced gene silencing compromised powdery mildew resistance in common wheat Bainongaikang58. Findings in this study not only help to understand the evolutionary process of ANKTM genes, but also form the basis for exploring disease resistance genes in the ANKTM gene family.
Collapse
Affiliation(s)
- Ping Hu
- Henan Engineering Research Center of Crop Genome Editing, Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, College of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, China
| | - Yueming Ren
- Henan Engineering Research Center of Crop Genome Editing, Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, College of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, China
| | - Jun Xu
- College of Landscape Architecture and Horticulture, Henan Institute of Science and Technology, Xinxiang, China
| | - Qichao Wei
- Henan Engineering Research Center of Crop Genome Editing, Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, College of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, China
| | - Puwen Song
- Henan Engineering Research Center of Crop Genome Editing, Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, College of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, China
| | - Yuanyuan Guan
- Henan Engineering Research Center of Crop Genome Editing, Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, College of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, China
| | - Huanting Gao
- Henan Engineering Research Center of Crop Genome Editing, Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, College of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, China
| | - Yang Zhang
- Henan Engineering Research Center of Crop Genome Editing, Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, College of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, China
| | - Haiyan Hu
- Henan Engineering Research Center of Crop Genome Editing, Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, College of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, China
| | - Chengwei Li
- College of Biological Engineering, Henan University of Technology, Zhengzhou, China
| |
Collapse
|
6
|
Yi X, Liu J, Chen S, Wu H, Liu M, Xu Q, Lei L, Lee S, Zhang B, Kudrna D, Fan W, Wing RA, Wang X, Zhang M, Zhang J, Yang C, Chen N. Genome assembly of the JD17 soybean provides a new reference genome for comparative genomics. G3 (BETHESDA, MD.) 2022; 12:jkac017. [PMID: 35188189 PMCID: PMC8982393 DOI: 10.1093/g3journal/jkac017] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 01/11/2022] [Indexed: 12/30/2022]
Abstract
Cultivated soybean (Glycine max) is an important source for protein and oil. Many elite cultivars with different traits have been developed for different conditions. Each soybean strain has its own genetic diversity, and the availability of more high-quality soybean genomes can enhance comparative genomic analysis for identifying genetic underpinnings for its unique traits. In this study, we constructed a high-quality de novo assembly of an elite soybean cultivar Jidou 17 (JD17) with chromosome contiguity and high accuracy. We annotated 52,840 gene models and reconstructed 74,054 high-quality full-length transcripts. We performed a genome-wide comparative analysis based on the reference genome of JD17 with 3 published soybeans (WM82, ZH13, and W05), which identified 5 large inversions and 2 large translocations specific to JD17, 20,984-46,912 presence-absence variations spanning 13.1-46.9 Mb in size. A total of 1,695,741-3,664,629 SNPs and 446,689-800,489 Indels were identified and annotated between JD17 and them. Symbiotic nitrogen fixation genes were identified and the effects from these variants were further evaluated. It was found that the coding sequences of 9 nitrogen fixation-related genes were greatly affected. The high-quality genome assembly of JD17 can serve as a valuable reference for soybean functional genomics research.
Collapse
Affiliation(s)
- Xinxin Yi
- National Key Laboratory of Crop Genetic Improvement, Center of Integrative Biology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Jing Liu
- National Key Laboratory of Crop Genetic Improvement, Center of Integrative Biology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, Kaifeng 475004, Henan, China
| | - Shengcai Chen
- National Key Laboratory of Crop Genetic Improvement, Center of Integrative Biology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, Kaifeng 475004, Henan, China
| | - Hao Wu
- National Key Laboratory of Crop Genetic Improvement, Center of Integrative Biology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Min Liu
- National Key Laboratory of Crop Genetic Improvement, Center of Integrative Biology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Qing Xu
- National Key Laboratory of Crop Genetic Improvement, Center of Integrative Biology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Lingshan Lei
- National Key Laboratory of Crop Genetic Improvement, Center of Integrative Biology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Seunghee Lee
- Arizona Genomics Institute and BIO5 Institute, School of Plant Sciences, University of Arizona, Tucson, AZ 85721, USA
| | - Bao Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, Kaifeng 475004, Henan, China
| | - Dave Kudrna
- Arizona Genomics Institute and BIO5 Institute, School of Plant Sciences, University of Arizona, Tucson, AZ 85721, USA
| | - Wei Fan
- National Key Laboratory of Crop Genetic Improvement, Center of Integrative Biology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, Kaifeng 475004, Henan, China
| | - Rod A Wing
- Arizona Genomics Institute and BIO5 Institute, School of Plant Sciences, University of Arizona, Tucson, AZ 85721, USA
| | - Xuelu Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, Kaifeng 475004, Henan, China
| | - Mengchen Zhang
- Institute of Food and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang 050031, Hebei, China
| | - Jianwei Zhang
- National Key Laboratory of Crop Genetic Improvement, Center of Integrative Biology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
- Arizona Genomics Institute and BIO5 Institute, School of Plant Sciences, University of Arizona, Tucson, AZ 85721, USA
| | - Chunyan Yang
- Institute of Food and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang 050031, Hebei, China
| | - Nansheng Chen
- National Key Laboratory of Crop Genetic Improvement, Center of Integrative Biology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| |
Collapse
|
7
|
Stahlhut KN, Dowell JA, Temme AA, Burke JM, Goolsby EW, Mason CM. Genetic control of arbuscular mycorrhizal colonization by Rhizophagus intraradices in Helianthus annuus (L.). MYCORRHIZA 2021; 31:723-734. [PMID: 34480215 DOI: 10.1007/s00572-021-01050-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
Plant symbiosis with arbuscular mycorrhizal (AM) fungi provides many benefits, including increased nutrient uptake, drought tolerance, and belowground pathogen resistance. To develop a better understanding of the genetic architecture of mycorrhizal symbiosis, we conducted a genome-wide association study (GWAS) of this plant-fungal interaction in cultivated sunflower. A diversity panel of cultivated sunflower (Helianthus annuus L.) was phenotyped for root colonization under inoculation with the AM fungus Rhizophagus intraradices. Using a mixed linear model approach with a high-density genetic map, we identified genomic regions that are likely associated with R. intraradices colonization in sunflower. Additionally, we used a set of twelve diverse lines to assess the effect that inoculation with R. intraradices has on dried shoot biomass and macronutrient uptake. Colonization among lines in the mapping panel ranged from 0-70% and was not correlated with mycorrhizal growth response, shoot phosphorus response, or shoot potassium response among the Core 12 lines. Association mapping yielded three single-nucleotide polymorphisms (SNPs) that were significantly associated with R. intraradices colonization. This is the first study to use GWAS to identify genomic regions associated with AM colonization in an Asterid eudicot species. Three genes of interest identified from the regions containing these SNPs are likely related to plant defense.
Collapse
Affiliation(s)
| | - Jordan A Dowell
- Department of Biology, University of Central Florida, Orlando, FL, 32816, USA
| | - Andries A Temme
- Department of Plant Biology, University of Georgia, Athens, GA, 30602, USA
| | - John M Burke
- Department of Plant Biology, University of Georgia, Athens, GA, 30602, USA
| | - Eric W Goolsby
- Department of Biology, University of Central Florida, Orlando, FL, 32816, USA
| | - Chase M Mason
- Department of Biology, University of Central Florida, Orlando, FL, 32816, USA.
| |
Collapse
|
8
|
Goyal RK, Mattoo AK, Schmidt MA. Rhizobial-Host Interactions and Symbiotic Nitrogen Fixation in Legume Crops Toward Agriculture Sustainability. Front Microbiol 2021; 12:669404. [PMID: 34177848 PMCID: PMC8226219 DOI: 10.3389/fmicb.2021.669404] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/29/2021] [Indexed: 11/13/2022] Open
Abstract
Symbiotic nitrogen fixation (SNF) process makes legume crops self-sufficient in nitrogen (N) in sharp contrast to cereal crops that require an external input by N-fertilizers. Since the latter process in cereal crops results in a huge quantity of greenhouse gas emission, the legume production systems are considered efficient and important for sustainable agriculture and climate preservation. Despite benefits of SNF, and the fact that chemical N-fertilizers cause N-pollution of the ecosystems, the focus on improving SNF efficiency in legumes did not become a breeder’s priority. The size and stability of heritable effects under different environment conditions weigh significantly on any trait useful in breeding strategies. Here we review the challenges and progress made toward decoding the heritable components of SNF, which is considerably more complex than other crop allelic traits since the process involves genetic elements of both the host and the symbiotic rhizobial species. SNF-efficient rhizobial species designed based on the genetics of the host and its symbiotic partner face the test of a unique microbiome for its success and productivity. The progress made thus far in commercial legume crops with relevance to the dynamics of host–rhizobia interaction, environmental impact on rhizobial performance challenges, and what collectively determines the SNF efficiency under field conditions are also reviewed here.
Collapse
Affiliation(s)
- Ravinder K Goyal
- Agriculture and Agri-Food Canada, Lacombe Research and Development Centre, Lacombe, AB, Canada
| | - Autar K Mattoo
- Sustainable Agricultural Systems Laboratory, Agricultural Research Service, United States Department of Agriculture, Beltsville Agricultural Research Center, Beltsville, MD, United States
| | - Maria Augusta Schmidt
- Agriculture and Agri-Food Canada, Lacombe Research and Development Centre, Lacombe, AB, Canada
| |
Collapse
|
9
|
Characteristics and Research Progress of Legume Nodule Senescence. PLANTS 2021; 10:plants10061103. [PMID: 34070891 PMCID: PMC8227080 DOI: 10.3390/plants10061103] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/28/2021] [Accepted: 05/28/2021] [Indexed: 11/17/2022]
Abstract
Delaying the nodule senescence of legume crops can prolong the time of nitrogen fixation and attenuate the lack of fertilizer in the later stage of legume crop cultivation, resulting in improved crop yield and reduced usage of nitrogen fertilizer. However, effective measures to delay the nodule senescence of legume crops in agriculture are relatively lacking. In the present review, we summarized the structural and physiological characteristics of nodule senescence, as well as the corresponding detection methods, providing technical support for the identification of nodule senescence phenotype. We then outlined the key genes currently known to be involved in the regulation of nodule senescence, offering the molecular genetic information for breeding varieties with delayed nodule senescence. In addition, we reviewed various abiotic factors affecting nodule senescence, providing a theoretical basis for the interaction between molecular genetics and abiotic factors in the regulation of nodule senescence. Finally, we briefly prospected research foci of nodule senescence in the future.
Collapse
|
10
|
Agtuca BJ, Stopka SA, Evans S, Samarah L, Liu Y, Xu D, Stacey MG, Koppenaal DW, Paša-Tolić L, Anderton CR, Vertes A, Stacey G. Metabolomic profiling of wild-type and mutant soybean root nodules using laser-ablation electrospray ionization mass spectrometry reveals altered metabolism. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:1937-1958. [PMID: 32410239 DOI: 10.1111/tpj.14815] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 04/05/2020] [Accepted: 04/17/2020] [Indexed: 05/18/2023]
Abstract
The establishment of the nitrogen-fixing symbiosis between soybean and Bradyrhizobium japonicum is a complex process. To document the changes in plant metabolism as a result of symbiosis, we utilized laser ablation electrospray ionization-mass spectrometry (LAESI-MS) for in situ metabolic profiling of wild-type nodules, nodules infected with a B. japonicum nifH mutant unable to fix nitrogen, nodules doubly infected by both strains, and nodules formed on plants mutated in the stearoyl-acyl carrier protein desaturase (sacpd-c) gene, which were previously shown to have an altered nodule ultrastructure. The results showed that the relative abundance of fatty acids, purines, and lipids was significantly changed in response to the symbiosis. The nifH mutant nodules had elevated levels of jasmonic acid, correlating with signs of nitrogen deprivation. Nodules resulting from the mixed inoculant displayed similar, overlapping metabolic distributions within the sectors of effective (fix+ ) and ineffective (nifH mutant, fix- ) endosymbionts. These data are inconsistent with the notion that plant sanctioning is cell autonomous. Nodules lacking sacpd-c displayed an elevation of soyasaponins and organic acids in the central necrotic regions. The present study demonstrates the utility of LAESI-MS for high-throughput screening of plant phenotypes. Overall, nodules disrupted in the symbiosis were elevated in metabolites related to plant defense.
Collapse
Affiliation(s)
- Beverly J Agtuca
- Divisions of Plant Sciences and Biochemistry, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| | - Sylwia A Stopka
- Department of Chemistry, The George Washington University, Washington, DC, 20052, USA
| | - Sterling Evans
- Divisions of Plant Sciences and Biochemistry, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| | - Laith Samarah
- Department of Chemistry, The George Washington University, Washington, DC, 20052, USA
| | - Yang Liu
- Department of Electrical Engineering and Computer Science, Informatics Institute and Christopher S. Bond Life Sciences Center, University of Missouri-Columbia, Columbia, MO, 65211, USA
| | - Dong Xu
- Department of Electrical Engineering and Computer Science, Informatics Institute and Christopher S. Bond Life Sciences Center, University of Missouri-Columbia, Columbia, MO, 65211, USA
| | - Minviluz G Stacey
- Divisions of Plant Sciences and Biochemistry, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| | - David W Koppenaal
- Environmental Molecular Sciences Laboratory, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA, 99354, USA
| | - Ljiljana Paša-Tolić
- Environmental Molecular Sciences Laboratory, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA, 99354, USA
| | - Christopher R Anderton
- Environmental Molecular Sciences Laboratory, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA, 99354, USA
| | - Akos Vertes
- Department of Chemistry, The George Washington University, Washington, DC, 20052, USA
| | - Gary Stacey
- Divisions of Plant Sciences and Biochemistry, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| |
Collapse
|
11
|
Kusakabe S, Higasitani N, Kaneko T, Yasuda M, Miwa H, Okazaki S, Saeki K, Higashitani A, Sato S. Lotus Accessions Possess Multiple Checkpoints Triggered by Different Type III Secretion System Effectors of the Wide-Host-Range Symbiont Bradyrhizobium elkanii USDA61. Microbes Environ 2020; 35. [PMID: 32074548 PMCID: PMC7104275 DOI: 10.1264/jsme2.me19141] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Bradyrhizobium elkanii, a rhizobium with a relatively wide host range, possesses a functional type III secretion system (T3SS) that is involved in symbiotic incompatibility against Rj4-genotype soybean (Glycine max) and some accessions of mung bean (Vigna radiata). To expand our knowledge on the T3SS-mediated partner selection mechanism in the symbiotic legume-rhizobia association, we inoculated three Lotus experimental accessions with wild-type and T3SS-mutant strains of B. elkanii USDA61. Different responses were induced by T3SS in a host genotype-dependent manner. Lotus japonicus Gifu inhibited infection; L. burttii allowed infection, but inhibited nodule maturation at the post-infection stage; and L. burttii and L. japonicus MG-20 both displayed a nodule early senescence-like response. By conducting inoculation tests with mutants of previously reported and newly identified effector protein genes of B. elkanii USDA61, we identified NopF as the effector protein triggering the inhibition of infection, and NopM as the effector protein triggering the nodule early senescence–like response. Consistent with these results, the B. elkanii USDA61 gene for NopF introduced into the Lotus symbiont Mesorhizobium japonicum induced infection inhibition in L. japonicus Gifu, but did not induce any response in L. burttii or L. japonicus MG-20. These results suggest that Lotus accessions possess at least three checkpoints to eliminate unfavorable symbionts, including the post-infection stage, by recognizing different T3SS effector proteins at each checkpoint.
Collapse
Affiliation(s)
| | | | | | - Michiko Yasuda
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology
| | - Hiroki Miwa
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology
| | - Shin Okazaki
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology
| | - Kazuhiko Saeki
- Department of Biological Sciences and Kyousei Science Center for Life and Nature, Nara Women's University
| | | | - Shusei Sato
- Graduate School of Life Sciences, Tohoku University
| |
Collapse
|
12
|
Lopez-Ortiz C, Peña-Garcia Y, Natarajan P, Bhandari M, Abburi V, Dutta SK, Yadav L, Stommel J, Nimmakayala P, Reddy UK. The ankyrin repeat gene family in Capsicum spp: Genome-wide survey, characterization and gene expression profile. Sci Rep 2020; 10:4044. [PMID: 32132613 PMCID: PMC7055287 DOI: 10.1038/s41598-020-61057-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 02/20/2020] [Indexed: 11/09/2022] Open
Abstract
The ankyrin (ANK) repeat protein family is largely distributed across plants and has been found to participate in multiple processes such as plant growth and development, hormone response, response to biotic and abiotic stresses. It is considered as one of the major markers of capsaicin content in pepper fruits. In this study, we performed a genome-wide identification and expression analysis of genes encoding ANK proteins in three Capsicum species: Capsicum baccatum, Capsicum annuum and Capsicum chinense. We identified a total of 87, 85 and 96 ANK genes in C. baccatum, C. annuum and C. chinense genomes, respectively. Next, we performed a comprehensive bioinformatics analysis of the Capsicum ANK gene family including gene chromosomal localization, Cis-elements, conserved motif identification, intron/exon structural patterns and gene ontology classification as well as profile expression. Phylogenetic and domain organization analysis grouped the Capsicum ANK gene family into ten subfamilies distributed across all 12 pepper chromosomes at different densities. Analysis of the expression of ANK genes in leaf and pepper fruits suggested that the ANKs have specific expression patterns at various developmental stages in placenta tissue. Our results provide valuable information for further studies of the evolution, classification and putative functions of ANK genes in pepper.
Collapse
Affiliation(s)
- Carlos Lopez-Ortiz
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, West Virginia, United States of America
| | - Yadira Peña-Garcia
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, West Virginia, United States of America
| | - Purushothaman Natarajan
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, West Virginia, United States of America.,Department of Genetic Engineering, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, 603203, India
| | - Menuka Bhandari
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, West Virginia, United States of America
| | - Venkata Abburi
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, West Virginia, United States of America
| | - Sudip Kumar Dutta
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, West Virginia, United States of America.,ICAR RC NEH Region, Mizoram Centre, Kolasib, Mizoram, India
| | - Lav Yadav
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, West Virginia, United States of America
| | - John Stommel
- Genetic Improvement of Fruits and Vegetables Laboratory (USDA, ARS), Beltsville, MD, 20705, USA
| | - Padma Nimmakayala
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, West Virginia, United States of America.
| | - Umesh K Reddy
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, West Virginia, United States of America.
| |
Collapse
|
13
|
Imai A, Ohtani M, Nara A, Tsukakoshi A, Narita A, Hirakawa H, Sato S, Suganuma N. The Lotus japonicus nucleoporin GLE1 is involved in symbiotic association with rhizobia. PHYSIOLOGIA PLANTARUM 2020; 168:590-600. [PMID: 31115057 DOI: 10.1111/ppl.12996] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/01/2019] [Accepted: 05/18/2019] [Indexed: 06/09/2023]
Abstract
Nucleoporins are components of the nuclear pore complexes, channels that regulate the transport of macromolecules between the nucleus and cytoplasm. The nucleoporin GLE1 (GLFG lethal1) functions in the export of messenger RNAs containing poly(A) tails from the nucleus into the cytoplasm. Here we investigated a mutant of the model legume Lotus japonicus that was defective in GLE1, which we designated Ljgle1. The growth of Ljgle1 was retarded under symbiotic association with rhizobia, and the nitrogen-fixation activities of the nodules were around one-third of those in the wild-type plant. The growth of Ljgle1 was not substantialy recovered by supplemention of combined nitrogen. Nodules formed on the Ljgle1 were smaller than those on the wild-type and colored faint pink. The numbers of infected cells of nodules on the Ljgle1 were smaller than on the wild-type plant, and the former cells remained undeveloped. Rhizobia in the cells of the Ljgle1 exhibited disordered forms, and the symbiosome membrane was closely attached to the bacterial membrane. These results indicate that GLE1 plays a distinct role in the symbiotic association between legumes and rhizobia.
Collapse
Affiliation(s)
- Akito Imai
- Department of Life Science, Aichi University of Education, Kariya, Aichi, Japan
| | - Mai Ohtani
- Department of Life Science, Aichi University of Education, Kariya, Aichi, Japan
| | - Asami Nara
- Department of Life Science, Aichi University of Education, Kariya, Aichi, Japan
| | - Anna Tsukakoshi
- Department of Life Science, Aichi University of Education, Kariya, Aichi, Japan
| | - Aya Narita
- Department of Life Science, Aichi University of Education, Kariya, Aichi, Japan
| | | | - Shusei Sato
- Kazusa DNA Research Institute, Kisarazu, Chiba, Japan
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Norio Suganuma
- Department of Life Science, Aichi University of Education, Kariya, Aichi, Japan
| |
Collapse
|
14
|
The rhizobial autotransporter determines the symbiotic nitrogen fixation activity of Lotus japonicus in a host-specific manner. Proc Natl Acad Sci U S A 2020; 117:1806-1815. [PMID: 31900357 DOI: 10.1073/pnas.1913349117] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Leguminous plants establish endosymbiotic associations with rhizobia and form root nodules in which the rhizobia fix atmospheric nitrogen. The host plant and intracellular rhizobia strictly control this symbiotic nitrogen fixation. We recently reported a Lotus japonicus Fix- mutant, apn1 (aspartic peptidase nodule-induced 1), that impairs symbiotic nitrogen fixation. APN1 encodes a nodule-specific aspartic peptidase involved in the Fix- phenotype in a rhizobial strain-specific manner. This host-strain specificity implies that some molecular interactions between host plant APN1 and rhizobial factors are required, although the biological function of APN1 in nodules and the mechanisms governing the interactions are unknown. To clarify how rhizobial factors are involved in strain-specific nitrogen fixation, we explored transposon mutants of Mesorhizobium loti strain TONO, which normally form Fix- nodules on apn1 roots, and identified TONO mutants that formed Fix+ nodules on apn1 The identified causal gene encodes an autotransporter, part of a protein secretion system of Gram-negative bacteria. Expression of the autotransporter gene in M. loti strain MAFF3030399, which normally forms Fix+ nodules on apn1 roots, resulted in Fix- nodules. The autotransporter of TONO functions to secrete a part of its own protein (a passenger domain) into extracellular spaces, and the recombinant APN1 protein cleaved the passenger protein in vitro. The M. loti autotransporter showed the activity to induce the genes involved in nodule senescence in a dose-dependent manner. Therefore, we conclude that the nodule-specific aspartic peptidase, APN1, suppresses negative effects of the rhizobial autotransporter in order to maintain effective symbiotic nitrogen fixation in root nodules.
Collapse
|
15
|
Deng J, Zhu F, Liu J, Zhao Y, Wen J, Wang T, Dong J. Transcription Factor bHLH2 Represses CYSTEINE PROTEASE77 to Negatively Regulate Nodule Senescence. PLANT PHYSIOLOGY 2019; 181:1683-1703. [PMID: 31591150 PMCID: PMC6878008 DOI: 10.1104/pp.19.00574] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 09/23/2019] [Indexed: 05/12/2023]
Abstract
Legume-rhizobia symbiosis is a time-limited process due to the onset of senescence, which results in the degradation of host plant cells and symbiosomes. A number of transcription factors, proteases, and functional genes have been associated with nodule senescence; however, whether other proteases or transcription factors are involved in nodule senescence remains poorly understood. In this study, we identified an early nodule senescence mutant in Medicago truncatula, denoted basic helix-loop-helix transcription factor2 (bhlh2), that exhibits decreased nitrogenase activity, acceleration of plant programmed cell death (PCD), and accumulation of reactive oxygen species (ROS). The results suggest that MtbHLH2 plays a negative role in nodule senescence. Nodules of wild-type and bhlh2-TALEN mutant plants at 28 d postinoculation were used for transcriptome sequencing. The transcriptome data analysis identified a papain-like Cys protease gene, denoted MtCP77, that could serve as a potential target of MtbHLH2. Electrophoretic mobility shift assays and chromatin immunoprecipitation analysis demonstrated that MtbHLH2 directly binds to the promoter of MtCP77 to inhibit its expression. MtCP77 positively regulates nodule senescence by accelerating plant PCD and ROS accumulation. In addition, the expression of MtbHLH2 in the nodules gradually decreased from the meristematic zone to the nitrogen fixation zone, whereas the expression of MtCP77 showed enhancement. These results indicate that MtbHLH2 and MtCP77 have opposite functions in the regulation of nodule senescence. These results reveal significant roles for MtbHLH2 and MtCP77 in plant PCD, ROS accumulation, and nodule senescence, and improve our understanding of the regulation of the nodule senescence process.
Collapse
Affiliation(s)
- Jie Deng
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Fugui Zhu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jiaxing Liu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yafei Zhao
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jiangqi Wen
- Plant Biology Division, Samuel Roberts Noble Research Institute, 2510 Sam Noble Parkway, Ardmore, Oklahoma 73401
| | - Tao Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jiangli Dong
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
16
|
Kramer EM, Statter SA, Yi HJ, Carlson JW, McClelland DHR. Flowering plant immune repertoires expand under mycorrhizal symbiosis. PLANT DIRECT 2019; 3:e00125. [PMID: 31245768 PMCID: PMC6508770 DOI: 10.1002/pld3.125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 02/13/2019] [Accepted: 02/14/2019] [Indexed: 06/09/2023]
Abstract
Immune perception in flowering plants is mediated by a repertoire of cytoplasmic and cell-surface receptors that detect invading microbes and their effects on cells. Here, we show that several large families of immune receptors exhibit size variations related to a plant's competence to host symbiotic root fungi (mycorrhiza). Plants that do not participate in mycorrhizal associations have significantly smaller immune repertoires, while the most promiscuous symbiotic hosts (ectomycorrhizal plant species) have significantly larger immune repertoires. By contrast, we find no significant increase in immune repertoire size among legumes competent to form a symbiosis with nitrogen-fixing bacteria (rhizobia). To explain these observations, we hypothesize that plant immune repertoire size expands with symbiote species diversity.
Collapse
Affiliation(s)
- Eric M. Kramer
- Department of PhysicsBard College at Simon's RockGreat BarringtonMassachusetts
| | - Samantha A. Statter
- Department of PhysicsBard College at Simon's RockGreat BarringtonMassachusetts
| | - Ho Jun Yi
- Department of PhysicsBard College at Simon's RockGreat BarringtonMassachusetts
| | - Joseph W. Carlson
- Lawrence Berkeley National LaboratoryJoint Genome InstituteBerkeleyCalifornia
| | - Donald H. R. McClelland
- Department of Environmental ScienceBard College at Simon's RockGreat BarringtonMassachusetts
| |
Collapse
|
17
|
Serova TA, Tsyganova AV, Tsyganov VE. Early nodule senescence is activated in symbiotic mutants of pea (Pisum sativum L.) forming ineffective nodules blocked at different nodule developmental stages. PROTOPLASMA 2018; 255:1443-1459. [PMID: 29616347 DOI: 10.1007/s00709-018-1246-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 03/21/2018] [Indexed: 05/13/2023]
Abstract
Plant symbiotic mutants are useful tool to uncover the molecular-genetic mechanisms of nodule senescence. The pea (Pisum sativum L.) mutants SGEFix--1 (sym40), SGEFix--3 (sym26), and SGEFix--7 (sym27) display an early nodule senescence phenotype, whereas the mutant SGEFix--2 (sym33) does not show premature degradation of symbiotic structures, but its nodules show an enhanced immune response. The nodules of these mutants were compared with each other and with those of the wild-type SGE line using seven marker genes that are known to be activated during nodule senescence. In wild-type SGE nodules, transcript levels of all of the senescence-associated genes were highest at 6 weeks after inoculation (WAI). The senescence-associated genes showed higher transcript abundance in mutant nodules than in wild-type nodules at 2 WAI and attained maximum levels in the mutant nodules at 4 WAI. Immunolocalization analyses showed that the ethylene precursor 1-aminocyclopropane-1-carboxylate accumulated earlier in the mutant nodules than in wild-type nodules. Together, these results showed that nodule senescence was activated in ineffective nodules blocked at different developmental stages in pea lines that harbor mutations in four symbiotic genes.
Collapse
Affiliation(s)
- Tatiana A Serova
- All-Russia Research Institute for Agricultural Microbiology, Laboratory of Molecular and Cellular Biology, Podbelsky Chaussee 3, 196608, Pushkin 8, Saint-Petersburg, Russia
| | - Anna V Tsyganova
- All-Russia Research Institute for Agricultural Microbiology, Laboratory of Molecular and Cellular Biology, Podbelsky Chaussee 3, 196608, Pushkin 8, Saint-Petersburg, Russia
| | - Viktor E Tsyganov
- All-Russia Research Institute for Agricultural Microbiology, Laboratory of Molecular and Cellular Biology, Podbelsky Chaussee 3, 196608, Pushkin 8, Saint-Petersburg, Russia.
| |
Collapse
|
18
|
Yamaya-Ito H, Shimoda Y, Hakoyama T, Sato S, Kaneko T, Hossain MS, Shibata S, Kawaguchi M, Hayashi M, Kouchi H, Umehara Y. Loss-of-function of ASPARTIC PEPTIDASE NODULE-INDUCED 1 (APN1) in Lotus japonicus restricts efficient nitrogen-fixing symbiosis with specific Mesorhizobium loti strains. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 93:5-16. [PMID: 29086445 DOI: 10.1111/tpj.13759] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 10/04/2017] [Accepted: 10/17/2017] [Indexed: 05/06/2023]
Abstract
The nitrogen-fixing symbiosis of legumes and Rhizobium bacteria is established by complex interactions between the two symbiotic partners. Legume Fix- mutants form apparently normal nodules with endosymbiotic rhizobia but fail to induce rhizobial nitrogen fixation. These mutants are useful for identifying the legume genes involved in the interactions essential for symbiotic nitrogen fixation. We describe here a Fix- mutant of Lotus japonicus, apn1, which showed a very specific symbiotic phenotype. It formed ineffective nodules when inoculated with the Mesorhizobium loti strain TONO. In these nodules, infected cells disintegrated and successively became necrotic, indicating premature senescence typical of Fix- mutants. However, it formed effective nodules when inoculated with the M. loti strain MAFF303099. Among nine different M. loti strains tested, four formed ineffective nodules and five formed effective nodules on apn1 roots. The identified causal gene, ASPARTIC PEPTIDASE NODULE-INDUCED 1 (LjAPN1), encodes a nepenthesin-type aspartic peptidase. The well characterized Arabidopsis aspartic peptidase CDR1 could complement the strain-specific Fix- phenotype of apn1. LjAPN1 is a typical late nodulin; its gene expression was exclusively induced during nodule development. LjAPN1 was most abundantly expressed in the infected cells in the nodules. Our findings indicate that LjAPN1 is required for the development and persistence of functional (nitrogen-fixing) symbiosis in a rhizobial strain-dependent manner, and thus determines compatibility between M. loti and L. japonicus at the level of nitrogen fixation.
Collapse
Affiliation(s)
- Hiroko Yamaya-Ito
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, 305-8602, Japan
- College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa, 252-0800, Japan
| | - Yoshikazu Shimoda
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, 305-8602, Japan
| | - Tsuneo Hakoyama
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, 305-8602, Japan
| | - Shusei Sato
- Kazusa DNA Research Institute, Kisarazu, Chiba, 292-0818, Japan
| | - Takakazu Kaneko
- Kazusa DNA Research Institute, Kisarazu, Chiba, 292-0818, Japan
| | - Md Shakhawat Hossain
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, 305-8602, Japan
| | - Satoshi Shibata
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, 305-8602, Japan
| | | | - Makoto Hayashi
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, 305-8602, Japan
| | - Hiroshi Kouchi
- International Christian University, Mitaka, Tokyo, 181-8585, Japan
| | - Yosuke Umehara
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, 305-8602, Japan
| |
Collapse
|
19
|
McCormick S. Rhizobial strain-dependent restriction of nitrogen fixation in a legume-Rhizobium symbiosis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 93:3-4. [PMID: 29243889 DOI: 10.1111/tpj.13791] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
|
20
|
Tsyganova AV, Kitaeva AB, Tsyganov VE. Cell differentiation in nitrogen-fixing nodules hosting symbiosomes. FUNCTIONAL PLANT BIOLOGY : FPB 2018; 45:47-57. [PMID: 32291020 DOI: 10.1071/fp16377] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Accepted: 01/25/2017] [Indexed: 06/11/2023]
Abstract
The nitrogen-fixing nodule is a unique ecological niche for rhizobia, where microaerobic conditions support functioning of the main enzyme of nitrogen fixation, nitrogenase, which is highly sensitive to oxygen. To accommodate bacteria in a symbiotic nodule, the specialised infected cells increase in size owing to endoreduplication and are able to shelter thousands of bacteria. Bacteria are isolated from the cytoplasm of the plant cell by a membrane-bound organelle-like structure termed the symbiosome. It is enclosed by a symbiosome membrane, mainly of plant origin but with some inclusion of bacterial proteins. Within the symbiosome, bacterial cells differentiate into bacteroids a form that is specialised for nitrogen fixation. In this review, we briefly summarise recent advances in studies of differentiation both of symbiosomes and of the infected cells that accommodate them. We will consider the role of CCS52A, DNA topoisomerase VI, tubulin cytoskeleton rearrangements in differentiation of infected cells, the fate of the vacuole, and the distribution of symbiosomes in the infected cells. We will also consider differentiation of symbiosomes, paying attention to the role of NCR peptides, vesicular transport to symbiosomes, and mutant analysis of symbiosome development in model and crop legumes. Finally, we conclude that mechanisms involved in redistribution organelles, including the symbiosomes, clearly merit much more attention.
Collapse
Affiliation(s)
- Anna V Tsyganova
- All-Russia Research Institute for Agricultural Microbiology, Laboratory of Molecular and Cellular Biology, Podbelsky chaussee 3, 196608, Pushkin 8, Saint-Petersburg, Russia
| | - Anna B Kitaeva
- All-Russia Research Institute for Agricultural Microbiology, Laboratory of Molecular and Cellular Biology, Podbelsky chaussee 3, 196608, Pushkin 8, Saint-Petersburg, Russia
| | - Viktor E Tsyganov
- All-Russia Research Institute for Agricultural Microbiology, Laboratory of Molecular and Cellular Biology, Podbelsky chaussee 3, 196608, Pushkin 8, Saint-Petersburg, Russia
| |
Collapse
|
21
|
Duan G, Hakoyama T, Kamiya T, Miwa H, Lombardo F, Sato S, Tabata S, Chen Z, Watanabe T, Shinano T, Fujiwara T. LjMOT1, a high-affinity molybdate transporter from Lotus japonicus, is essential for molybdate uptake, but not for the delivery to nodules. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 90:1108-1119. [PMID: 28276145 DOI: 10.1111/tpj.13532] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 03/01/2017] [Accepted: 03/01/2017] [Indexed: 05/06/2023]
Abstract
Molybdenum (Mo) is an essential nutrient for plants, and is required for nitrogenase activity of legumes. However, the pathways of Mo uptake from soils and then delivery to the nodules have not been characterized in legumes. In this study, we characterized a high-affinity Mo transporter (LjMOT1) from Lotus japonicus. Mo concentrations in an ethyl methanesulfonate-mutagenized line (ljmot1) decreased by 70-95% compared with wild-type (WT). By comparing the DNA sequences of four AtMOT1 homologs between mutant and WT lines, one point mutation was found in LjMOT1, which altered Trp292 to a stop codon; no mutation was found in the other homologous genes. The phenotype of Mo concentrations in F2 progeny from ljmot1 and WT crosses were associated with genotypes of LjMOT1. Introduction of endogenous LjMOT1 to ljmot1 restored Mo accumulation to approximately 60-70% of the WT. Yeast expressing LjMOT1 exhibited high Mo uptake activity, and the Km was 182 nm. LjMOT1 was expressed mainly in roots, and its expression was not affected by Mo supply or rhizobium inoculation. Although Mo accumulation in the nodules of ljmot1 was significantly lower than that of WT, it was still high enough for normal nodulation and nitrogenase activity, even for cotyledons-removed ljmot1 plants grown under low Mo conditions, in this case the plant growth was significantly inhibited by Mo deficiency. Our results suggest that LjMOT1 is an essential Mo transporter in L. japonicus for Mo uptake from the soil and growth, but is not for Mo delivery to the nodules.
Collapse
Affiliation(s)
- Guilan Duan
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Tsuneo Hakoyama
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Takehiro Kamiya
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Hiroki Miwa
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Fabien Lombardo
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
- National Agriculture and Food Research Organization (NARO) Institute of Crop Science, Ibaraki, 305-8518, Japan
| | - Shusei Sato
- Kazusa DNA Research Institute, Kisarazu, Chiba, 292-0812, Japan
- Graduate School of Life Sciences, Tohoku University, Aoba-ku, Sendai, 980-8577, Japan
| | - Satoshi Tabata
- Kazusa DNA Research Institute, Kisarazu, Chiba, 292-0812, Japan
| | - Zheng Chen
- Graduate School of Agriculture, Hokkaido University, Kita-ku, Sapporo, 010-8589, Japan
- Department of Environmental Science, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu, 215123, China
| | - Toshihiro Watanabe
- Graduate School of Agriculture, Hokkaido University, Kita-ku, Sapporo, 010-8589, Japan
| | - Takuro Shinano
- Graduate School of Agriculture, Hokkaido University, Kita-ku, Sapporo, 010-8589, Japan
- NARO Tohoku Agricultural Research Center, Arai, Fukushima, 960-2156, Japan
| | - Toru Fujiwara
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| |
Collapse
|
22
|
Serova TA, Tikhonovich IA, Tsyganov VE. Analysis of nodule senescence in pea (Pisum sativum L.) using laser microdissection, real-time PCR, and ACC immunolocalization. JOURNAL OF PLANT PHYSIOLOGY 2017; 212:29-44. [PMID: 28242415 DOI: 10.1016/j.jplph.2017.01.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 12/23/2016] [Accepted: 01/02/2017] [Indexed: 05/13/2023]
Abstract
A delay in the senescence of symbiotic nodules could prolong active nitrogen fixation, resulting in improved crop yield and a reduced need for chemical fertilizers. The molecular genetic mechanisms underlying nodule senescence have not been extensively studied with a view to breeding varieties with delayed nodule senescence. In such studies, plant mutants with the phenotype of premature degradation of symbiotic structures are useful models to elucidate the genetic basis of nodule senescence. Using a dataset from transcriptome analysis of Medicago truncatula Gaertn. nodules and previous studies on pea (Pisum sativum L.) nodules, we developed a set of molecular markers based on genes that are known to be activated during nodule senescence. These genes encode cysteine proteases, a thiol protease, a bZIP transcription factor, enzymes involved in the biosynthesis of ethylene (ACS2 for ACC synthase and ACO1 for ACC oxidase) and ABA (AO3 for aldehyde oxidase), and an enzyme involved in catabolism of gibberellins (GA 2-oxidase). We analyzed the transcript levels of these genes in the nodules of two pea wild-types (cv. Sparkle and line Sprint-2) and two mutant lines, one showing premature nodule senescence (E135F (sym13)) and one showing no morphological signs of symbiotic structure degradation (Sprint-2Fix- (sym31)). Real-time PCR analyses revealed that all of the selected genes showed increased transcript levels during nodule aging in all phenotypes. Remarkably, at 4 weeks after inoculation (WAI), the transcript levels of all analyzed genes were significantly higher in the early senescent nodules of the mutant line E135F (sym13) and in nodules of the mutant Sprint-2Fix- (sym31) than in the active nitrogen-fixing nodules of wild-types. In contrast, the transcript levels of the same genes of both wild-types were significantly increased only at 6 WAI. We evaluated the expression of selected markers in the different histological nodule zones of pea cv. Sparkle and its mutant line E135F (sym13) by laser capture microdissection analysis. Finally, we analyzed ACC by immunolocalization in the nodules of both wild-type pea and their mutants. Together, the results indicate that nodule senescence is a general plant response to nodule ineffectiveness.
Collapse
Affiliation(s)
- Tatiana A Serova
- All-Russia Research Institute for Agricultural Microbiology, Laboratory of Molecular and Cellular Biology, Podbelsky chaussee 3, 196608, Pushkin 8, Saint-Petersburg, Russia
| | - Igor A Tikhonovich
- All-Russia Research Institute for Agricultural Microbiology, Laboratory of Molecular and Cellular Biology, Podbelsky chaussee 3, 196608, Pushkin 8, Saint-Petersburg, Russia; Saint-Petersburg State University, Universitetskaya embankment 7-9, Saint-Petersburg, 199034, Russia
| | - Viktor E Tsyganov
- All-Russia Research Institute for Agricultural Microbiology, Laboratory of Molecular and Cellular Biology, Podbelsky chaussee 3, 196608, Pushkin 8, Saint-Petersburg, Russia.
| |
Collapse
|
23
|
Cerri MR, Frances L, Kelner A, Fournier J, Middleton PH, Auriac MC, Mysore KS, Wen J, Erard M, Barker DG, Oldroyd GE, de Carvalho-Niebel F. The Symbiosis-Related ERN Transcription Factors Act in Concert to Coordinate Rhizobial Host Root Infection. PLANT PHYSIOLOGY 2016; 171:1037-54. [PMID: 27208242 PMCID: PMC4902606 DOI: 10.1104/pp.16.00230] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 03/31/2016] [Indexed: 05/09/2023]
Abstract
Legumes improve their mineral nutrition through nitrogen-fixing root nodule symbioses with soil rhizobia. Rhizobial infection of legumes is regulated by a number of transcription factors, including ERF Required for Nodulation1 (ERN1). Medicago truncatula plants defective in ERN1 are unable to nodulate, but still exhibit early symbiotic responses including rhizobial infection. ERN1 has a close homolog, ERN2, which shows partially overlapping expression patterns. Here we show that ern2 mutants exhibit a later nodulation phenotype than ern1, being able to form nodules but with signs of premature senescence. Molecular characterization of the ern2-1 mutation reveals a key role for a conserved threonine for both DNA binding and transcriptional activity. In contrast to either single mutant, the double ern1-1 ern2-1 line is completely unable to initiate infection or nodule development. The strong ern1-1 ern2-1 phenotype demonstrates functional redundancy between these two transcriptional regulators and reveals the essential role of ERN1/ERN2 to coordinately induce rhizobial infection and nodule organogenesis. While ERN1/ERN2 act in concert in the root epidermis, only ERN1 can efficiently allow the development of mature nodules in the cortex, probably through an independent pathway. Together, these findings reveal the key roles that ERN1/ERN2 play at the very earliest stages of root nodule development.
Collapse
Affiliation(s)
- Marion R Cerri
- Laboratory of Plant-Microbe Interactions (LIPM), Centre National de la Recherche Scientifique (CNRS, UMR 2594), Institut National de la Recherche Agronomique (INRA, UMR 441), F-31326 Castanet-Tolosan, France (M.R.C., L.F., A.K., J.F., M.-C.A., D.G.B., F.d.C.-N.)Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom (P.H.M., G.E.O.)The Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401 (K.S.M., J.W.); andInstitute de Pharmacologie et de Biologie Structurale (IPBS), UMR 5089-205, 31077 Toulouse, France (M.E.)
| | - Lisa Frances
- Laboratory of Plant-Microbe Interactions (LIPM), Centre National de la Recherche Scientifique (CNRS, UMR 2594), Institut National de la Recherche Agronomique (INRA, UMR 441), F-31326 Castanet-Tolosan, France (M.R.C., L.F., A.K., J.F., M.-C.A., D.G.B., F.d.C.-N.)Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom (P.H.M., G.E.O.)The Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401 (K.S.M., J.W.); andInstitute de Pharmacologie et de Biologie Structurale (IPBS), UMR 5089-205, 31077 Toulouse, France (M.E.)
| | - Audrey Kelner
- Laboratory of Plant-Microbe Interactions (LIPM), Centre National de la Recherche Scientifique (CNRS, UMR 2594), Institut National de la Recherche Agronomique (INRA, UMR 441), F-31326 Castanet-Tolosan, France (M.R.C., L.F., A.K., J.F., M.-C.A., D.G.B., F.d.C.-N.)Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom (P.H.M., G.E.O.)The Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401 (K.S.M., J.W.); andInstitute de Pharmacologie et de Biologie Structurale (IPBS), UMR 5089-205, 31077 Toulouse, France (M.E.)
| | - Joëlle Fournier
- Laboratory of Plant-Microbe Interactions (LIPM), Centre National de la Recherche Scientifique (CNRS, UMR 2594), Institut National de la Recherche Agronomique (INRA, UMR 441), F-31326 Castanet-Tolosan, France (M.R.C., L.F., A.K., J.F., M.-C.A., D.G.B., F.d.C.-N.)Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom (P.H.M., G.E.O.)The Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401 (K.S.M., J.W.); andInstitute de Pharmacologie et de Biologie Structurale (IPBS), UMR 5089-205, 31077 Toulouse, France (M.E.)
| | - Patrick H Middleton
- Laboratory of Plant-Microbe Interactions (LIPM), Centre National de la Recherche Scientifique (CNRS, UMR 2594), Institut National de la Recherche Agronomique (INRA, UMR 441), F-31326 Castanet-Tolosan, France (M.R.C., L.F., A.K., J.F., M.-C.A., D.G.B., F.d.C.-N.)Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom (P.H.M., G.E.O.)The Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401 (K.S.M., J.W.); andInstitute de Pharmacologie et de Biologie Structurale (IPBS), UMR 5089-205, 31077 Toulouse, France (M.E.)
| | - Marie-Christine Auriac
- Laboratory of Plant-Microbe Interactions (LIPM), Centre National de la Recherche Scientifique (CNRS, UMR 2594), Institut National de la Recherche Agronomique (INRA, UMR 441), F-31326 Castanet-Tolosan, France (M.R.C., L.F., A.K., J.F., M.-C.A., D.G.B., F.d.C.-N.)Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom (P.H.M., G.E.O.)The Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401 (K.S.M., J.W.); andInstitute de Pharmacologie et de Biologie Structurale (IPBS), UMR 5089-205, 31077 Toulouse, France (M.E.)
| | - Kirankumar S Mysore
- Laboratory of Plant-Microbe Interactions (LIPM), Centre National de la Recherche Scientifique (CNRS, UMR 2594), Institut National de la Recherche Agronomique (INRA, UMR 441), F-31326 Castanet-Tolosan, France (M.R.C., L.F., A.K., J.F., M.-C.A., D.G.B., F.d.C.-N.)Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom (P.H.M., G.E.O.)The Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401 (K.S.M., J.W.); andInstitute de Pharmacologie et de Biologie Structurale (IPBS), UMR 5089-205, 31077 Toulouse, France (M.E.)
| | - Jiangqi Wen
- Laboratory of Plant-Microbe Interactions (LIPM), Centre National de la Recherche Scientifique (CNRS, UMR 2594), Institut National de la Recherche Agronomique (INRA, UMR 441), F-31326 Castanet-Tolosan, France (M.R.C., L.F., A.K., J.F., M.-C.A., D.G.B., F.d.C.-N.)Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom (P.H.M., G.E.O.)The Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401 (K.S.M., J.W.); andInstitute de Pharmacologie et de Biologie Structurale (IPBS), UMR 5089-205, 31077 Toulouse, France (M.E.)
| | - Monique Erard
- Laboratory of Plant-Microbe Interactions (LIPM), Centre National de la Recherche Scientifique (CNRS, UMR 2594), Institut National de la Recherche Agronomique (INRA, UMR 441), F-31326 Castanet-Tolosan, France (M.R.C., L.F., A.K., J.F., M.-C.A., D.G.B., F.d.C.-N.)Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom (P.H.M., G.E.O.)The Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401 (K.S.M., J.W.); andInstitute de Pharmacologie et de Biologie Structurale (IPBS), UMR 5089-205, 31077 Toulouse, France (M.E.)
| | - David G Barker
- Laboratory of Plant-Microbe Interactions (LIPM), Centre National de la Recherche Scientifique (CNRS, UMR 2594), Institut National de la Recherche Agronomique (INRA, UMR 441), F-31326 Castanet-Tolosan, France (M.R.C., L.F., A.K., J.F., M.-C.A., D.G.B., F.d.C.-N.)Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom (P.H.M., G.E.O.)The Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401 (K.S.M., J.W.); andInstitute de Pharmacologie et de Biologie Structurale (IPBS), UMR 5089-205, 31077 Toulouse, France (M.E.)
| | - Giles E Oldroyd
- Laboratory of Plant-Microbe Interactions (LIPM), Centre National de la Recherche Scientifique (CNRS, UMR 2594), Institut National de la Recherche Agronomique (INRA, UMR 441), F-31326 Castanet-Tolosan, France (M.R.C., L.F., A.K., J.F., M.-C.A., D.G.B., F.d.C.-N.)Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom (P.H.M., G.E.O.)The Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401 (K.S.M., J.W.); andInstitute de Pharmacologie et de Biologie Structurale (IPBS), UMR 5089-205, 31077 Toulouse, France (M.E.)
| | - Fernanda de Carvalho-Niebel
- Laboratory of Plant-Microbe Interactions (LIPM), Centre National de la Recherche Scientifique (CNRS, UMR 2594), Institut National de la Recherche Agronomique (INRA, UMR 441), F-31326 Castanet-Tolosan, France (M.R.C., L.F., A.K., J.F., M.-C.A., D.G.B., F.d.C.-N.)Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom (P.H.M., G.E.O.)The Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401 (K.S.M., J.W.); andInstitute de Pharmacologie et de Biologie Structurale (IPBS), UMR 5089-205, 31077 Toulouse, France (M.E.)
| |
Collapse
|
24
|
Zhukov VA, Rychagov TS, Fedorina JV, Pinaev AG, Andronov EE, Borisov AY, Tikhonovich IA. Features of expression of the PsSst1 and PsIgn1 genes in nodules of pea (Pisum sativum L.) symbiotic mutants. RUSS J GENET+ 2016. [DOI: 10.1134/s1022795416040128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
25
|
De Novo Assembly of the Pea (Pisum sativum L.) Nodule Transcriptome. Int J Genomics 2015; 2015:695947. [PMID: 26688806 PMCID: PMC4672141 DOI: 10.1155/2015/695947] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 09/28/2015] [Accepted: 10/25/2015] [Indexed: 11/17/2022] Open
Abstract
The large size and complexity of the garden pea (Pisum sativum L.) genome hamper its sequencing and the discovery of pea gene resources. Although transcriptome sequencing provides extensive information about expressed genes, some tissue-specific transcripts can only be identified from particular organs under appropriate conditions. In this study, we performed RNA sequencing of polyadenylated transcripts from young pea nodules and root tips on an Illumina GAIIx system, followed by de novo transcriptome assembly using the Trinity program. We obtained more than 58,000 and 37,000 contigs from "Nodules" and "Root Tips" assemblies, respectively. The quality of the assemblies was assessed by comparison with pea expressed sequence tags and transcriptome sequencing project data available from NCBI website. The "Nodules" assembly was compared with the "Root Tips" assembly and with pea transcriptome sequencing data from projects indicating tissue specificity. As a result, approximately 13,000 nodule-specific contigs were found and annotated by alignment to known plant protein-coding sequences and by Gene Ontology searching. Of these, 581 sequences were found to possess full CDSs and could thus be considered as novel nodule-specific transcripts of pea. The information about pea nodule-specific gene sequences can be applied for gene-based markers creation, polymorphism studies, and real-time PCR.
Collapse
|
26
|
Alves-Carvalho S, Aubert G, Carrère S, Cruaud C, Brochot AL, Jacquin F, Klein A, Martin C, Boucherot K, Kreplak J, da Silva C, Moreau S, Gamas P, Wincker P, Gouzy J, Burstin J. Full-length de novo assembly of RNA-seq data in pea (Pisum sativum L.) provides a gene expression atlas and gives insights into root nodulation in this species. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 84:1-19. [PMID: 26296678 DOI: 10.1111/tpj.12967] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 07/09/2015] [Accepted: 07/16/2015] [Indexed: 05/21/2023]
Abstract
Next-generation sequencing technologies allow an almost exhaustive survey of the transcriptome, even in species with no available genome sequence. To produce a Unigene set representing most of the expressed genes of pea, 20 cDNA libraries produced from various plant tissues harvested at various developmental stages from plants grown under contrasting nitrogen conditions were sequenced. Around one billion reads and 100 Gb of sequence were de novo assembled. Following several steps of redundancy reduction, 46 099 contigs with N50 length of 1667 nt were identified. These constitute the 'Caméor' Unigene set. The high depth of sequencing allowed identification of rare transcripts and detected expression for approximately 80% of contigs in each library. The Unigene set is now available online (http://bios.dijon.inra.fr/FATAL/cgi/pscam.cgi), allowing (i) searches for pea orthologs of candidate genes based on gene sequences from other species, or based on annotation, (ii) determination of transcript expression patterns using various metrics, (iii) identification of uncharacterized genes with interesting patterns of expression, and (iv) comparison of gene ontology pathways between tissues. This resource has allowed identification of the pea orthologs of major nodulation genes characterized in recent years in model species, as a major step towards deciphering unresolved pea nodulation phenotypes. In addition to a remarkable conservation of the early transcriptome nodulation apparatus between pea and Medicago truncatula, some specific features were highlighted. The resource provides a reference for the pea exome, and will facilitate transcriptome and proteome approaches as well as SNP discovery in pea.
Collapse
Affiliation(s)
- Susete Alves-Carvalho
- Institut National de la Recherche Agronomique, UMR1347, 17 rue Sully, BP 86510, 21065, Dijon Cedex, France
| | - Grégoire Aubert
- Institut National de la Recherche Agronomique, UMR1347, 17 rue Sully, BP 86510, 21065, Dijon Cedex, France
| | - Sébastien Carrère
- Laboratoire des Interactions Plantes Micro-Organismes, Institut National de la Recherche Agronomique/Centre National de la Recherche Scientifique, 24 chemin de Borde Rouge, 31326, Castanet Tolosan, France
| | | | - Anne-Lise Brochot
- Institut National de la Recherche Agronomique, UMR1347, 17 rue Sully, BP 86510, 21065, Dijon Cedex, France
| | - Françoise Jacquin
- Institut National de la Recherche Agronomique, UMR1347, 17 rue Sully, BP 86510, 21065, Dijon Cedex, France
| | - Anthony Klein
- Institut National de la Recherche Agronomique, UMR1347, 17 rue Sully, BP 86510, 21065, Dijon Cedex, France
| | - Chantal Martin
- Institut National de la Recherche Agronomique, UMR1347, 17 rue Sully, BP 86510, 21065, Dijon Cedex, France
| | - Karen Boucherot
- Institut National de la Recherche Agronomique, UMR1347, 17 rue Sully, BP 86510, 21065, Dijon Cedex, France
| | - Jonathan Kreplak
- Institut National de la Recherche Agronomique, UMR1347, 17 rue Sully, BP 86510, 21065, Dijon Cedex, France
| | | | - Sandra Moreau
- Laboratoire des Interactions Plantes Micro-Organismes, Institut National de la Recherche Agronomique/Centre National de la Recherche Scientifique, 24 chemin de Borde Rouge, 31326, Castanet Tolosan, France
| | - Pascal Gamas
- Laboratoire des Interactions Plantes Micro-Organismes, Institut National de la Recherche Agronomique/Centre National de la Recherche Scientifique, 24 chemin de Borde Rouge, 31326, Castanet Tolosan, France
| | | | - Jérôme Gouzy
- Laboratoire des Interactions Plantes Micro-Organismes, Institut National de la Recherche Agronomique/Centre National de la Recherche Scientifique, 24 chemin de Borde Rouge, 31326, Castanet Tolosan, France
| | - Judith Burstin
- Institut National de la Recherche Agronomique, UMR1347, 17 rue Sully, BP 86510, 21065, Dijon Cedex, France
| |
Collapse
|
27
|
Nambu M, Tatsukami Y, Morisaka H, Kuroda K, Ueda M. Quantitative time-course proteome analysis of Mesorhizobium loti during nodule maturation. J Proteomics 2015; 125:112-20. [DOI: 10.1016/j.jprot.2015.04.034] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 04/22/2015] [Accepted: 04/27/2015] [Indexed: 11/30/2022]
|
28
|
Gillman JD, Stacey MG, Cui Y, Berg HR, Stacey G. Deletions of the SACPD-C locus elevate seed stearic acid levels but also result in fatty acid and morphological alterations in nitrogen fixing nodules. BMC PLANT BIOLOGY 2014; 14:143. [PMID: 24886084 PMCID: PMC4058718 DOI: 10.1186/1471-2229-14-143] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 05/16/2014] [Indexed: 05/20/2023]
Abstract
BACKGROUND Soybean (Glycine max) seeds are the primary source of edible oil in the United States. Despite its widespread utility, soybean oil is oxidatively unstable. Until recently, the majority of soybean oil underwent chemical hydrogenation, a process which also generates trans fats. An alternative to chemical hydrogenation is genetic modification of seed oil through identification and introgression of mutant alleles. One target for improvement is the elevation of a saturated fat with no negative cardiovascular impacts, stearic acid, which typically constitutes a minute portion of seed oil (~3%). RESULTS We examined radiation induced soybean mutants with moderately increased stearic acid (10-15% of seed oil, ~3-5 X the levels in wild-type soybean seeds) via comparative whole genome hybridization and genetic analysis. The deletion of one SACPD isoform encoding gene (SACPD-C) was perfectly correlated with moderate elevation of seed stearic acid content. However, SACPD-C deletion lines were also found to have altered nodule fatty acid composition and grossly altered morphology. Despite these defects, overall nodule accumulation and nitrogen fixation were unaffected, at least under laboratory conditions. CONCLUSIONS Although no yield penalty has been reported for moderate elevated seed stearic acid content in soybean seeds, our results demonstrate that genetic alteration of seed traits can have unforeseen pleiotropic consequences. We have identified a role for fatty acid biosynthesis, and SACPD activity in particular, in the establishment and maintenance of symbiotic nitrogen fixation.
Collapse
Affiliation(s)
- Jason D Gillman
- USDA-ARS, University of Missouri-Columbia, 205 Curtis Hall, Columbia MO 65211, USA
| | - Minviluz G Stacey
- Divisions of Plant Science and Biochemistry, University of Missouri-Columbia, Columbia MO 65211, USA
| | - Yaya Cui
- Divisions of Plant Science and Biochemistry, University of Missouri-Columbia, Columbia MO 65211, USA
| | - Howard R Berg
- Donald Danforth Plant Science Center, St. Louis MO, USA
| | - Gary Stacey
- Divisions of Plant Science and Biochemistry, University of Missouri-Columbia, Columbia MO 65211, USA
| |
Collapse
|
29
|
Domonkos A, Horvath B, Marsh JF, Halasz G, Ayaydin F, Oldroyd GED, Kalo P. The identification of novel loci required for appropriate nodule development in Medicago truncatula. BMC PLANT BIOLOGY 2013; 13:157. [PMID: 24119289 PMCID: PMC3852326 DOI: 10.1186/1471-2229-13-157] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Accepted: 09/25/2013] [Indexed: 05/21/2023]
Abstract
BACKGROUND The formation of functional symbiotic nodules is the result of a coordinated developmental program between legumes and rhizobial bacteria. Genetic analyses in legumes have been used to dissect the signaling processes required for establishing the legume-rhizobial endosymbiotic association. Compared to the early events of the symbiotic interaction, less attention has been paid to plant loci required for rhizobial colonization and the functioning of the nodule. Here we describe the identification and characterization of a number of new genetic loci in Medicago truncatula that are required for the development of effective nitrogen fixing nodules. RESULTS Approximately 38,000 EMS and fast neutron mutagenized Medicago truncatula seedlings were screened for defects in symbiotic nitrogen fixation. Mutant plants impaired in nodule development and efficient nitrogen fixation were selected for further genetic and phenotypic analysis. Nine mutants completely lacking in nodule formation (Nod-) represented six complementation groups of which two novel loci have been identified. Eight mutants with ineffective nodules (Fix-) represented seven complementation groups, out of which five were new monogenic loci. The Fix- M. truncatula mutants showed symptoms of nitrogen deficiency and developed small white nodules. Microscopic analysis of Fix- nodules revealed that the mutants have defects in the release of rhizobia from infection threads, differentiation of rhizobia and maintenance of persistence of bacteria in nodule cells. Additionally, we monitored the transcriptional activity of symbiosis specific genes to define what transcriptional stage of the symbiotic process is blocked in each of the Fix- mutants. Based on the phenotypic and gene expression analysis a functional hierarchy of the FIX genes is proposed. CONCLUSIONS The new symbiotic loci of M. truncatula isolated in this study provide the foundation for further characterization of the mechanisms underpinning nodulation, in particular the later stages associated with bacterial release and nodule function.
Collapse
Affiliation(s)
- Agota Domonkos
- Agricultural Biotechnology Center, Gödöllő 2100, Hungary
| | | | | | - Gabor Halasz
- Agricultural Biotechnology Center, Gödöllő 2100, Hungary
| | - Ferhan Ayaydin
- Cellular Imaging Laboratory, Biological Research Center, Szeged 6726, Hungary
| | | | - Peter Kalo
- Agricultural Biotechnology Center, Gödöllő 2100, Hungary
| |
Collapse
|
30
|
Sinharoy S, Torres-Jerez I, Bandyopadhyay K, Kereszt A, Pislariu CI, Nakashima J, Benedito VA, Kondorosi E, Udvardi MK. The C2H2 transcription factor regulator of symbiosome differentiation represses transcription of the secretory pathway gene VAMP721a and promotes symbiosome development in Medicago truncatula. THE PLANT CELL 2013; 25:3584-601. [PMID: 24082011 PMCID: PMC3809551 DOI: 10.1105/tpc.113.114017] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 08/26/2013] [Accepted: 09/11/2013] [Indexed: 05/07/2023]
Abstract
Transcription factors (TFs) are thought to regulate many aspects of nodule and symbiosis development in legumes, although few TFs have been characterized functionally. Here, we describe regulator of symbiosome differentiation (RSD) of Medicago truncatula, a member of the Cysteine-2/Histidine-2 (C2H2) family of plant TFs that is required for normal symbiosome differentiation during nodule development. RSD is expressed in a nodule-specific manner, with maximal transcript levels in the bacterial invasion zone. A tobacco (Nicotiana tabacum) retrotransposon (Tnt1) insertion rsd mutant produced nodules that were unable to fix nitrogen and that contained incompletely differentiated symbiosomes and bacteroids. RSD protein was localized to the nucleus, consistent with a role of the protein in transcriptional regulation. RSD acted as a transcriptional repressor in a heterologous yeast assay. Transcriptome analysis of an rsd mutant identified 11 genes as potential targets of RSD repression. RSD interacted physically with the promoter of one of these genes, VAMP721a, which encodes vesicle-associated membrane protein 721a. Thus, RSD may influence symbiosome development in part by repressing transcription of VAMP721a and modifying vesicle trafficking in nodule cells. This establishes RSD as a TF implicated directly in symbiosome and bacteroid differentiation and a transcriptional regulator of secretory pathway genes in plants.
Collapse
Affiliation(s)
| | | | | | - Attila Kereszt
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, 6726 Szeged, Hungary
| | | | - Jin Nakashima
- The Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401
| | | | - Eva Kondorosi
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, 6726 Szeged, Hungary
- Institut des Sciences du Végétal, Centre National de la Recherche Scientifique, Avenue de la Terrasse 91198 Gif sur Yvette, France
| | | |
Collapse
|
31
|
Mou S, Liu Z, Guan D, Qiu A, Lai Y, He S. Functional analysis and expressional characterization of rice ankyrin repeat-containing protein, OsPIANK1, in basal defense against Magnaporthe oryzae attack. PLoS One 2013; 8:e59699. [PMID: 23555750 PMCID: PMC3608567 DOI: 10.1371/journal.pone.0059699] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 02/17/2013] [Indexed: 11/18/2022] Open
Abstract
The ankyrin repeat-containing protein gene OsPIANK1 (AK068021) in rice (Oryza sativa L.) was previously shown to be upregulated following infection with the rice leaf blight pathogen Xanthomonas oryzae pv oryzae (Xoo). In this study, we further characterized the role of OsPIANK1 in basal defense against Magnaporthe oryzae (M.oryzae) by 5' deletion analysis of its promoter and overexpression of the gene. The promoter of OsPIANK1 with 1,985 bps in length was sufficient to induce the OsPIANK1 response to inoculation with M.oryzae and to exogenous application of methyl jasmonate (MeJA) or salicylic acid (SA), but not to exogenous application of abscisic acid (ABA). A TCA-element present in the region between -563 bp and -249 bp may be responsible for the OsPIANK1 response to both M.oryzae infection and exogenous SA application. The JERE box, CGTCA-box, and two MYB binding sites locating in the region between -1985 bp and -907 bp may be responsible for the response of OsPIANK1 to exogenous MeJA. OsPIANK1 expression was upregulated after inoculation with M.oryzae and after treatment with exogenous SA and MeJA. Overexpression of OsPIANK1 enhanced resistance of rice to M.oryzae, although it did not confer complete resistance. The enhanced resistance to M.oryzae was accompanied by enhanced transcriptional expression of SA- and JA-dependent genes such as NH1, WKRY13, PAL, AOS2, PR1b, and PR5. This evidence suggests that OsPIANK1 acted as a positive regulator in rice basal defense mediated by SA- and JA-signaling pathways.
Collapse
Affiliation(s)
- Shaoliang Mou
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- National Education Minster Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Zhiqin Liu
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- National Education Minster Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Deyi Guan
- National Education Minster Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Ailian Qiu
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- National Education Minster Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Yan Lai
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- National Education Minster Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Shuilin He
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- National Education Minster Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- * E-mail:
| |
Collapse
|
32
|
Bourcy M, Brocard L, Pislariu CI, Cosson V, Mergaert P, Tadege M, Mysore KS, Udvardi MK, Gourion B, Ratet P. Medicago truncatula DNF2 is a PI-PLC-XD-containing protein required for bacteroid persistence and prevention of nodule early senescence and defense-like reactions. THE NEW PHYTOLOGIST 2013; 197:1250-1261. [PMID: 23278348 DOI: 10.1111/nph.12091] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Accepted: 11/06/2012] [Indexed: 06/01/2023]
Abstract
Medicago truncatula and Sinorhizobium meliloti form a symbiotic association resulting in the formation of nitrogen-fixing nodules. Nodule cells contain large numbers of bacteroids which are differentiated, nitrogen-fixing forms of the symbiotic bacteria. In the nodules, symbiotic plant cells home and maintain hundreds of viable bacteria. In order to better understand the molecular mechanism sustaining the phenomenon, we searched for new plant genes required for effective symbiosis. We used a combination of forward and reverse genetics approaches to identify a gene required for nitrogen fixation, and we used cell and molecular biology to characterize the mutant phenotype and to gain an insight into gene function. The symbiotic gene DNF2 encodes a putative phosphatidylinositol phospholipase C-like protein. Nodules formed by the mutant contain a zone of infected cells reduced to a few cell layers. In this zone, bacteria do not differentiate properly into bacteroids. Furthermore, mutant nodules senesce rapidly and exhibit defense-like reactions. This atypical phenotype amongst Fix(-) mutants unravels dnf2 as a new actor of bacteroid persistence inside symbiotic plant cells.
Collapse
Affiliation(s)
- Marie Bourcy
- Institut des Sciences du Végétal, CNRS, Avenue de la terrasse, 91198, Gif Sur Yvette, France
| | - Lysiane Brocard
- Institut des Sciences du Végétal, CNRS, Avenue de la terrasse, 91198, Gif Sur Yvette, France
| | - Catalina I Pislariu
- The Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, 73401, OK, USA
| | - Viviane Cosson
- Institut des Sciences du Végétal, CNRS, Avenue de la terrasse, 91198, Gif Sur Yvette, France
| | - Peter Mergaert
- Institut des Sciences du Végétal, CNRS, Avenue de la terrasse, 91198, Gif Sur Yvette, France
| | - Millon Tadege
- The Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, 73401, OK, USA
| | - Kirankumar S Mysore
- The Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, 73401, OK, USA
| | - Michael K Udvardi
- The Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, 73401, OK, USA
| | - Benjamin Gourion
- Institut des Sciences du Végétal, CNRS, Avenue de la terrasse, 91198, Gif Sur Yvette, France
| | - Pascal Ratet
- Institut des Sciences du Végétal, CNRS, Avenue de la terrasse, 91198, Gif Sur Yvette, France
| |
Collapse
|
33
|
Montiel J, Nava N, Cárdenas L, Sánchez-López R, Arthikala MK, Santana O, Sánchez F, Quinto C. A Phaseolus vulgaris NADPH oxidase gene is required for root infection by Rhizobia. PLANT & CELL PHYSIOLOGY 2012; 53:1751-67. [PMID: 22942250 DOI: 10.1093/pcp/pcs120] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Plant NADPH oxidases [respiratory burst oxidase homologs (RBOHs)] have emerged as key players in the regulation of plant-pathogen interactions. Nonetheless, their role in mutualistic associations, such as the rhizobia-legume symbiosis, is poorly understood. In this work, nine members of the Phaseolus vulgaris Rboh gene family were identified. The transcript of one of these, PvRbohB, accumulated abundantly in shoots, roots and nodules. PvRbohB promoter activity was detected in meristematic regions of P. vulgaris roots, as well as during infection thread (IT) progression and nodule development. RNA interference (RNAi)-mediated PvRbohB down-regulation in transgenic roots reduced reactive oxygen species (ROS) production and lateral root density, and greatly impaired nodulation. Microscopy analysis revealed that progression of the ITs was impeded at the base of root hairs in PvRbohB-RNAi roots. Furthermore, the few nodules that formed in PvRbohB-down-regulated roots displayed abnormally wide ITs and reduced nitrogen fixation. These findings indicate that this common bean NADPH oxidase is crucial for successful rhizobial colonization and probably maintains proper IT growth and shape.
Collapse
Affiliation(s)
- Jesús Montiel
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, UNAM, Apartado Postal 510-3, Cuernavaca, Morelos 62271, México
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Hakoyama T, Oi R, Hazuma K, Suga E, Adachi Y, Kobayashi M, Akai R, Sato S, Fukai E, Tabata S, Shibata S, Wu GJ, Hase Y, Tanaka A, Kawaguchi M, Kouchi H, Umehara Y, Suganuma N. The SNARE protein SYP71 expressed in vascular tissues is involved in symbiotic nitrogen fixation in Lotus japonicus nodules. PLANT PHYSIOLOGY 2012; 160:897-905. [PMID: 22858633 PMCID: PMC3461563 DOI: 10.1104/pp.112.200782] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Accepted: 07/31/2012] [Indexed: 05/22/2023]
Abstract
Soluble N-Ethylmaleimide Sensitive Factor Attachment Protein Receptor (SNARE) proteins are crucial for signal transduction and development in plants. Here, we investigate a Lotus japonicus symbiotic mutant defective in one of the SNARE proteins. When in symbiosis with rhizobia, the growth of the mutant was retarded compared with that of the wild-type plant. Although the mutant formed nodules, these exhibited lower nitrogen fixation activity than the wild type. The rhizobia were able to invade nodule cells, but enlarged symbiosomes were observed in the infected cells. The causal gene, designated LjSYP71 (for L. japonicus syntaxin of plants71), was identified by map-based cloning and shown to encode a Qc-SNARE protein homologous to Arabidopsis (Arabidopsis thaliana) SYP71. LjSYP71 was expressed ubiquitously in shoot, roots, and nodules, and transcripts were detected in the vascular tissues. In the mutant, no other visible defects in plant morphology were observed. Furthermore, in the presence of combined nitrogen, the mutant plant grew almost as well as the wild type. These results suggest that the vascular tissues expressing LjSYP71 play a pivotal role in symbiotic nitrogen fixation in L. japonicus nodules.
Collapse
MESH Headings
- Chromosome Mapping
- Cloning, Molecular
- Crosses, Genetic
- Gene Expression Regulation, Plant
- Genes, Plant
- Genetic Complementation Test
- Lotus/genetics
- Lotus/metabolism
- Lotus/microbiology
- Mesorhizobium/growth & development
- Microscopy, Electron, Transmission
- Mutagenesis
- Nitrogen Fixation
- Phylogeny
- Plant Proteins/genetics
- Plant Proteins/metabolism
- Plant Shoots/genetics
- Plant Shoots/metabolism
- Plant Vascular Bundle/genetics
- Plant Vascular Bundle/metabolism
- Plants, Genetically Modified/genetics
- Plants, Genetically Modified/metabolism
- Plants, Genetically Modified/microbiology
- Qc-SNARE Proteins/genetics
- Qc-SNARE Proteins/metabolism
- Root Nodules, Plant/genetics
- Root Nodules, Plant/metabolism
- Root Nodules, Plant/microbiology
- Symbiosis
Collapse
|
35
|
Tominaga A, Gondo T, Akashi R, Zheng SH, Arima S, Suzuki A. Quantitative trait locus analysis of symbiotic nitrogen fixation activity in the model legume Lotus japonicus. JOURNAL OF PLANT RESEARCH 2012; 125:395-406. [PMID: 22009016 DOI: 10.1007/s10265-011-0459-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Accepted: 09/14/2011] [Indexed: 05/21/2023]
Abstract
Many legumes form nitrogen-fixing root nodules. An elevation of nitrogen fixation in such legumes would have significant implications for plant growth and biomass production in agriculture. To identify the genetic basis for the regulation of nitrogen fixation, quantitative trait locus (QTL) analysis was conducted with recombinant inbred lines derived from the cross Miyakojima MG-20 × Gifu B-129 in the model legume Lotus japonicus. This population was inoculated with Mesorhizobium loti MAFF303099 and grown for 14 days in pods containing vermiculite. Phenotypic data were collected for acetylene reduction activity (ARA) per plant (ARA/P), ARA per nodule weight (ARA/NW), ARA per nodule number (ARA/NN), NN per plant, NW per plant, stem length (SL), SL without inoculation (SLbac-), shoot dry weight without inoculation (SWbac-), root length without inoculation (RLbac-), and root dry weight (RWbac-), and finally 34 QTLs were identified. ARA/P, ARA/NN, NW, and SL showed strong correlations and QTL co-localization, suggesting that several plant characteristics important for symbiotic nitrogen fixation are controlled by the same locus. QTLs for ARA/P, ARA/NN, NW, and SL, co-localized around marker TM0832 on chromosome 4, were also co-localized with previously reported QTLs for seed mass. This is the first report of QTL analysis for symbiotic nitrogen fixation activity traits.
Collapse
Affiliation(s)
- Akiyoshi Tominaga
- United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima 890-0065, Japan
| | | | | | | | | | | |
Collapse
|
36
|
Hakoyama T, Niimi K, Yamamoto T, Isobe S, Sato S, Nakamura Y, Tabata S, Kumagai H, Umehara Y, Brossuleit K, Petersen TR, Sandal N, Stougaard J, Udvardi MK, Tamaoki M, Kawaguchi M, Kouchi H, Suganuma N. The integral membrane protein SEN1 is required for symbiotic nitrogen fixation in Lotus japonicus nodules. PLANT & CELL PHYSIOLOGY 2012; 53:225-36. [PMID: 22123791 DOI: 10.1093/pcp/pcr167] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Legume plants establish a symbiotic association with bacteria called rhizobia, resulting in the formation of nitrogen-fixing root nodules. A Lotus japonicus symbiotic mutant, sen1, forms nodules that are infected by rhizobia but that do not fix nitrogen. Here, we report molecular identification of the causal gene, SEN1, by map-based cloning. The SEN1 gene encodes an integral membrane protein homologous to Glycine max nodulin-21, and also to CCC1, a vacuolar iron/manganese transporter of Saccharomyces cerevisiae, and VIT1, a vacuolar iron transporter of Arabidopsis thaliana. Expression of the SEN1 gene was detected exclusively in nodule-infected cells and increased during nodule development. Nif gene expression as well as the presence of nitrogenase proteins was detected in rhizobia from sen1 nodules, although the levels of expression were low compared with those from wild-type nodules. Microscopic observations revealed that symbiosome and/or bacteroid differentiation are impaired in the sen1 nodules even at a very early stage of nodule development. Phylogenetic analysis indicated that SEN1 belongs to a protein clade specific to legumes. These results indicate that SEN1 is essential for nitrogen fixation activity and symbiosome/bacteroid differentiation in legume nodules.
Collapse
Affiliation(s)
- Tsuneo Hakoyama
- National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Popp C, Ott T. Regulation of signal transduction and bacterial infection during root nodule symbiosis. CURRENT OPINION IN PLANT BIOLOGY 2011; 14:458-67. [PMID: 21489860 DOI: 10.1016/j.pbi.2011.03.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Revised: 03/15/2011] [Accepted: 03/18/2011] [Indexed: 05/08/2023]
Abstract
Among plant-microbe interactions, root nodule symbiosis is one of the most important beneficial interactions providing legume plants with nitrogenous compounds. Over the past years a number of genes required for root nodule symbiosis has been identified but most recently great advances have been made to dissect signalling pathways and molecular interactions triggered by a set of receptor-like kinases. Genetic and biochemical approaches have not only provided evidence for the cross talk between bacterial infection of the host plant and organogenesis of a root nodule but also gained insights into dynamic regulation processes underlying successful infection events. Here, we summarise recent progress in the understanding of molecular mechanisms that regulate and trigger cellular signalling cascades during this mutualistic interaction.
Collapse
Affiliation(s)
- Claudia Popp
- University of Munich, Genetics, Großhaderner Str. 2-4, 82152 Martinsried, Germany
| | | |
Collapse
|
38
|
Yoo J, Shin DH, Cho MH, Kim TL, Bhoo SH, Hahn TR. An ankyrin repeat protein is involved in anthocyanin biosynthesis in Arabidopsis. PHYSIOLOGIA PLANTARUM 2011; 142:314-325. [PMID: 21395597 DOI: 10.1111/j.1399-3054.2011.01468.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The ankyrin domain is one of the most common protein motifs in eukaryotic proteins. Repeated ankyrin domains are ubiquitous and their mediation of protein-protein interactions is involved in a number of physiological and developmental responses such as the cell cycle, signal transduction and cell differentiation. A novel putative phytochrome-interacting ankyrin repeat protein 2 (PIA2) containing three repeated ankyrin domains was identified in Arabidopsis. An in vitro pull-down and phosphorylation assay revealed that PIA2 is phosphorylated and interacts directly with oat phytochrome A. The N-terminal domain of PIA2 was specifically phosphorylated, whereas interactions between the domains of PIA2 and phytochrome A had no Pr/Pfr preference. PIA2 was ubiquitously expressed in most tissues and was localized in both the nucleus and the cytoplasm independent of treatment with light of specific wavelengths. Anthocyanin accumulation in seedlings grown under far-red light, a typical phenotype of wild-type plants, was reduced in a loss-of-function mutant of PIA2 (pia2), whereas anthocyanin accumulation was increased in an overexpressing plant (PIA2-OX). The gene expression of UDP-flavonoid-3'-glucosyl-transferase (UF3GT), a major enzyme in the anthocyanin biosynthesis processes, was decreased in pia2 knockout plants suggesting that decreased anthocyanin was because of the decreased expression of UF3GT. Our results suggest that PIA2 plays a role in the anthocyanin biosynthesis during seedling development as a novel phytochrome-interacting protein.
Collapse
Affiliation(s)
- Jihye Yoo
- Graduate School of Biotechnology and Plant Metabolism Research Center, Kyung Hee University, Yongin 446-701, Korea
| | | | | | | | | | | |
Collapse
|
39
|
Liu CT, Lee KB, Wang YS, Peng MH, Lee KT, Suzuki S, Suzuki T, Oyaizu H. Involvement of the azorhizobial chromosome partition gene (parA) in the onset of bacteroid differentiation during Sesbania rostrata stem nodule development. Appl Environ Microbiol 2011; 77:4371-82. [PMID: 21571889 PMCID: PMC3127717 DOI: 10.1128/aem.02327-10] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Accepted: 05/03/2011] [Indexed: 12/17/2022] Open
Abstract
A parA gene in-frame deletion mutant of Azorhizobium caulinodans ORS571 (ORS571-ΔparA) was constructed to evaluate the roles of the chromosome-partitioning gene on various bacterial traits and on the development of stem-positioned nodules. The ΔparA mutant showed a pleiomorphic cell shape phenotype and was polyploid, with differences in nucleoid sizes due to dramatic defects in chromosome partitioning. Upon inoculation of the ΔparA mutant onto the stem of Sesbania rostrata, three types of immature nodule-like structures with impaired nitrogen-fixing activity were generated. Most showed signs of bacteroid early senescence. Moreover, the ΔparA cells within the nodule-like structures exhibited multiple developmental-stage phenotypes. Since the bacA gene has been considered an indicator for bacteroid formation, we applied the expression pattern of bacA as a nodule maturity index in this study. Our data indicate that the bacA gene expression is parA dependent in symbiosis. The presence of the parA gene transcript was inversely correlated with the maturity of nodule; the transcript was switched off in fully mature bacteroids. In summary, our experimental evidence demonstrates that the parA gene not only plays crucial roles in cellular development when the microbe is free-living but also negatively regulates bacteroid formation in S. rostrata stem nodules.
Collapse
Affiliation(s)
- Chi-Te Liu
- Institute of Biotechnology, National Taiwan University, R412, No. 81, Chang-Xing St., Taipei 106, Taiwan.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Islas-Flores T, Guillén G, Alvarado-Affantranger X, Lara-Flores M, Sánchez F, Villanueva MA. PvRACK1 loss-of-function impairs cell expansion and morphogenesis in Phaseolus vulgaris L. root nodules. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2011; 24:819-26. [PMID: 21425924 DOI: 10.1094/mpmi-11-10-0261] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Receptor for activated C kinase (RACK1) is a highly conserved, eukaryotic protein of the WD-40 repeat family. Its peculiar β-propeller structure allows its interaction with multiple proteins in various plant signal-transduction pathways, including those arising from hormone responses, development, and environmental stress. During Phaseolus vulgaris root development, RACK1 (PvRACK1) mRNA expression was induced by auxins, abscissic acid, cytokinin, and gibberellic acid. In addition, during P. vulgaris nodule development, PvRACK1 mRNA was highly accumulated at 12 to 15 days postinoculation, suggesting an important role after nodule meristem initiation and Rhizobium nodule infection. PvRACK1 transcript accumulation was downregulated by a specific RNA interference construct which was expressed in transgenic roots of composite plants of P. vulgaris inoculated with Rhizobium tropici. PvRACK1 downregulated transcript levels were monitored by quantitative reverse-transcription polymerase chain reaction analysis in individual transgenic roots and nodules. We observed a clear phenotype in PvRACK1-knockdown nodules, in which nodule number and nodule cell expansion were impaired, resulting in altered nodule size. Microscopic analysis indicated that, in PvRACK1-knockdown nodules, infected and uninfected cells were considerably smaller (80 and 60%, respectively) than in control nodules. In addition, noninfected cells and symbiosomes in silenced nodules showed significant defects in membrane structure under electron microscopy analysis. These findings indicate that PvRACK1 has a pivotal role in cell expansion and in symbiosome and bacteroid integrity during nodule development.
Collapse
Affiliation(s)
- Tania Islas-Flores
- Departamento de Biologia Molecular de Plantas, Universidad Nacional Autonoma de Mexico, Morelos, Mexico
| | | | | | | | | | | |
Collapse
|
41
|
Kouchi H, Imaizumi-Anraku H, Hayashi M, Hakoyama T, Nakagawa T, Umehara Y, Suganuma N, Kawaguchi M. How many peas in a pod? Legume genes responsible for mutualistic symbioses underground. PLANT & CELL PHYSIOLOGY 2010; 51:1381-97. [PMID: 20660226 PMCID: PMC2938637 DOI: 10.1093/pcp/pcq107] [Citation(s) in RCA: 148] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The nitrogen-fixing symbiosis between legume plants and Rhizobium bacteria is the most prominent plant-microbe endosymbiotic system and, together with mycorrhizal fungi, has critical importance in agriculture. The introduction of two model legume species, Lotus japonicus and Medicago truncatula, has enabled us to identify a number of host legume genes required for symbiosis. A total of 26 genes have so far been cloned from various symbiotic mutants of these model legumes, which are involved in recognition of rhizobial nodulation signals, early symbiotic signaling cascades, infection and nodulation processes, and regulation of nitrogen fixation. These accomplishments during the past decade provide important clues to understanding not only the molecular mechanisms underlying plant-microbe endosymbiotic associations but also the evolutionary aspects of nitrogen-fixing symbiosis between legume plants and Rhizobium bacteria. In this review we survey recent progress in molecular genetic studies using these model legumes.
Collapse
Affiliation(s)
- Hiroshi Kouchi
- Department of Plant Sciences, National Institute of Agrobiological Sciences, Tsukuba 305-8602, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Yokota K, Soyano T, Kouchi H, Hayashi M. Function of GRAS Proteins in Root Nodule Symbiosis is Retained in Homologs of a Non-Legume, Rice. ACTA ACUST UNITED AC 2010; 51:1436-42. [DOI: 10.1093/pcp/pcq124] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
43
|
Tominaga A, Nagata M, Futsuki K, Abe H, Uchiumi T, Abe M, Kucho KI, Hashiguchi M, Akashi R, Hirsch A, Arima S, Suzuki A. Effect of abscisic acid on symbiotic nitrogen fixation activity in the root nodules of Lotus japonicus. PLANT SIGNALING & BEHAVIOR 2010; 5:440-3. [PMID: 20118670 PMCID: PMC2958596 DOI: 10.4161/psb.5.4.10849] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2009] [Accepted: 12/04/2009] [Indexed: 05/21/2023]
Abstract
The phytohormone abscisic acid (ABA) is known to be a negative regulator of legume root nodule formation. By screening Lotus japonicus seedlings for survival on an agar medium containing 70 μM ABA, we obtained mutants that not only showed increased root nodule number, but also enhanced nitrogen fixation. The mutant was designated enf1 (enhanced nitrogen fixation 1) and was confirmed to be monogenic and incompletely dominant. In long-term growth experiments with M. loti, although some yield parameters were the same for both enf1 and wild-type plants, both the dry weight and N content of 100 seeds and entire enf1 plants were significantly larger compared than those traits in wild-type seeds and plants. The augmentation of the weight and N content of the enf1 plants most likely reflects the increased N supplied by the additional enf1 nodules and the concomitant increase in N fixation activity. We determined that the endogenous ABA concentration and the sensitivity to ABA of enf1 were lower than that of wild-type seedlings. When wild-type plants were treated with abamine, a specific inhibitor of 9-cis-epoxycarotenoid dioxygenase (NCED), which results in reduced ABA content, the N fixation activity of abamine-treated plants was elevated to the same levels as enf1. We also determined that production of nitric oxide (NO) in enf1 nodules was decreased. We conclude that endogenous ABA concentration not only regulates nodulation, but also nitrogen fixation activity by decreasing NO production in nodules.
Collapse
Affiliation(s)
| | - Maki Nagata
- Graduate School of Engineering; Kagoshima University; Kagoshima, Japan
| | - Koichi Futsuki
- Department of Agricultural Sciences; Saga University; Saga, Japan
| | - Hidetoshi Abe
- Department of Agricultural Sciences; Saga University; Saga, Japan
| | - Toshiki Uchiumi
- Graduate School of Engineering; Kagoshima University; Kagoshima, Japan
| | - Mikiko Abe
- Graduate School of Engineering; Kagoshima University; Kagoshima, Japan
| | - Ken-ichi Kucho
- Graduate School of Engineering; Kagoshima University; Kagoshima, Japan
| | | | - Ryo Akashi
- Frontier Science Research Center; University of Miyazaki; Miyazaki, Japan
| | - Ann Hirsch
- Department of Molecular, Cell and Developmental Biology and Molecular Biology Institute; University of California Los Angeles; Los Angeles, California USA
| | - Susumu Arima
- Department of Agricultural Sciences; Saga University; Saga, Japan
| | - Akihiro Suzuki
- Department of Agricultural Sciences; Saga University; Saga, Japan
| |
Collapse
|
44
|
Pumplin N, Mondo SJ, Topp S, Starker CG, Gantt JS, Harrison MJ. Medicago truncatula Vapyrin is a novel protein required for arbuscular mycorrhizal symbiosis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 61:482-94. [PMID: 19912567 DOI: 10.1111/j.1365-313x.2009.04072.x] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Arbuscular mycorrhizal (AM) symbiosis is a widespread mutualism formed between vascular plants and fungi of the Glomeromycota. In this endosymbiosis, fungal hyphae enter the roots, growing through epidermal cells to the cortex where they establish differentiated hyphae called arbuscules in the cortical cells. Reprogramming of the plant epidermal and cortical cells occurs to enable intracellular growth of the fungal symbiont; however, the plant genes underlying this process are largely unknown. Here, through the use of RNAi, we demonstrate that the expression of a Medicago truncatula gene named Vapyrin is essential for arbuscule formation, and also for efficient epidermal penetration by AM fungi. Vapyrin is induced transiently in the epidermis coincident with hyphal penetration, and then in the cortex during arbuscule formation. The Vapyrin protein is cytoplasmic, and in cells containing AM fungal hyphae, the protein accumulates in small puncta that move through the cytoplasm. Vapyrin is a novel protein composed of two domains that mediate protein-protein interactions: an N-terminal VAMP-associated protein (VAP)/major sperm protein (MSP) domain and a C-terminal ankyrin-repeat domain. Putative Vapyrin orthologs exist widely in the plant kingdom, but not in Arabidopsis, or in non-plant species. The data suggest a role for Vapyrin in cellular remodeling to support the intracellular development of fungal hyphae during AM symbiosis.
Collapse
Affiliation(s)
- Nathan Pumplin
- Boyce Thompson Institute for Plant Research, Tower Road, Ithaca, NY 14853, USA
| | | | | | | | | | | |
Collapse
|
45
|
Hakoyama T, Niimi K, Watanabe H, Tabata R, Matsubara J, Sato S, Nakamura Y, Tabata S, Jichun L, Matsumoto T, Tatsumi K, Nomura M, Tajima S, Ishizaka M, Yano K, Imaizumi-Anraku H, Kawaguchi M, Kouchi H, Suganuma N. Host plant genome overcomes the lack of a bacterial gene for symbiotic nitrogen fixation. Nature 2010; 462:514-7. [PMID: 19940927 DOI: 10.1038/nature08594] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2009] [Accepted: 10/19/2009] [Indexed: 11/10/2022]
Abstract
Homocitrate is a component of the iron-molybdenum cofactor in nitrogenase, where nitrogen fixation occurs. NifV, which encodes homocitrate synthase (HCS), has been identified from various diazotrophs but is not present in most rhizobial species that perform efficient nitrogen fixation only in symbiotic association with legumes. Here we show that the FEN1 gene of a model legume, Lotus japonicus, overcomes the lack of NifV in rhizobia for symbiotic nitrogen fixation. A Fix(-) (non-fixing) plant mutant, fen1, forms morphologically normal but ineffective nodules. The causal gene, FEN1, was shown to encode HCS by its ability to complement a HCS-defective mutant of Saccharomyces cerevisiae. Homocitrate was present abundantly in wild-type nodules but was absent from ineffective fen1 nodules. Inoculation with Mesorhizobium loti carrying FEN1 or Azotobacter vinelandii NifV rescued the defect in nitrogen-fixing activity of the fen1 nodules. Exogenous supply of homocitrate also recovered the nitrogen-fixing activity of the fen1 nodules through de novo nitrogenase synthesis in the rhizobial bacteroids. These results indicate that homocitrate derived from the host plant cells is essential for the efficient and continuing synthesis of the nitrogenase system in endosymbionts, and thus provide a molecular basis for the complementary and indispensable partnership between legumes and rhizobia in symbiotic nitrogen fixation.
Collapse
Affiliation(s)
- Tsuneo Hakoyama
- National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8602, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Tominaga A, Nagata M, Futsuki K, Abe H, Uchiumi T, Abe M, Kucho KI, Hashiguchi M, Akashi R, Hirsch AM, Arima S, Suzuki A. Enhanced nodulation and nitrogen fixation in the abscisic acid low-sensitive mutant enhanced nitrogen fixation1 of Lotus japonicus. PLANT PHYSIOLOGY 2009; 151:1965-76. [PMID: 19776164 PMCID: PMC2785972 DOI: 10.1104/pp.109.142638] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2009] [Accepted: 09/18/2009] [Indexed: 05/12/2023]
Abstract
The phytohormone abscisic acid (ABA) is known to be a negative regulator of legume root nodule formation. By screening Lotus japonicus seedlings for survival on an agar medium containing 70 microM ABA, we obtained mutants that not only showed increased root nodule number but also enhanced nitrogen fixation. The mutant was designated enhanced nitrogen fixation1 (enf1) and was confirmed to be monogenic and incompletely dominant. The low sensitivity to ABA phenotype was thought to result from either a decrease in the concentration of the plant's endogenous ABA or from a disruption in ABA signaling. We determined that the endogenous ABA concentration of enf1 was lower than that of wild-type seedlings, and furthermore, when wild-type plants were treated with abamine, a specific inhibitor of 9-cis-epoxycarotenoid dioxygenase, which results in reduced ABA content, the nitrogen fixation activity of abamine-treated plants was elevated to the same levels as enf1. We also determined that production of nitric oxide in enf1 nodules was decreased. We conclude that endogenous ABA concentration not only regulates nodulation but also nitrogen fixation activity by decreasing nitric oxide production in nodules.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Akihiro Suzuki
- Department of Agricultural Sciences, Faculty of Agriculture, Saga University, Saga 840–8502, Japan (A.T., K.F., H.A., S.A., A.S.); Graduate School of Science and Engineering, Kagoshima University, Kagoshima 890–0065, Japan (M.N., T.U., M.A., K.K.); Frontier Science Research Center, University of Miyazaki, Miyazaki 889–2192, Japan (M.H., R.A.); and Department of Molecular, Cell, and Developmental Biology and Molecular Biology Institute, University of California, Los Angeles, California 90095–1606 (A.M.H.)
| |
Collapse
|
47
|
Yano K, Shibata S, Chen WL, Sato S, Kaneko T, Jurkiewicz A, Sandal N, Banba M, Imaizumi-Anraku H, Kojima T, Ohtomo R, Szczyglowski K, Stougaard J, Tabata S, Hayashi M, Kouchi H, Umehara Y. CERBERUS, a novel U-box protein containing WD-40 repeats, is required for formation of the infection thread and nodule development in the legume-Rhizobium symbiosis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 60:168-80. [PMID: 19508425 DOI: 10.1111/j.1365-313x.2009.03943.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Endosymbiotic infection of legume plants by Rhizobium bacteria is initiated through infection threads (ITs) which are initiated within and penetrate from root hairs and deliver the endosymbionts into nodule cells. Despite recent progress in understanding the mutual recognition and early symbiotic signaling cascades in host legumes, the molecular mechanisms underlying bacterial infection processes and successive nodule organogenesis are still poorly understood. We isolated a novel symbiotic mutant of Lotus japonicus, cerberus, which shows defects in IT formation and nodule organogenesis. Map-based cloning of the causal gene allowed us to identify the CERBERUS gene, which encodes a novel protein containing a U-box domain and WD-40 repeats. CERBERUS expression was detected in the roots and nodules, and was enhanced after inoculation of Mesorhizobium loti. Strong expression was detected in developing nodule primordia and the infected zone of mature nodules. In cerberus mutants, Rhizobium colonized curled root hair tips, but hardly penetrated into root hair cells. The occasional ITs that were formed inside the root hair cells were mostly arrested within the epidermal cell layer. Nodule organogenesis was aborted prematurely, resulting in the formation of a large number of small bumps which contained no endosymbiotic bacteria. These phenotypic and genetic analyses, together with comparisons with other legume mutants with defects in IT formation, indicate that CERBERUS plays a critical role in the very early steps of IT formation as well as in growth and differentiation of nodules.
Collapse
Affiliation(s)
- Koji Yano
- National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8602, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Huang J, Zhao X, Yu H, Ouyang Y, Wang L, Zhang Q. The ankyrin repeat gene family in rice: genome-wide identification, classification and expression profiling. PLANT MOLECULAR BIOLOGY 2009; 71:207-226. [PMID: 19609685 DOI: 10.1007/s11103-009-9518-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2009] [Accepted: 06/12/2009] [Indexed: 05/28/2023]
Abstract
Ankyrin repeat (ANK) containing proteins comprise a large protein family. Although many members of this family have been implicated in plant growth, development and signal transduction, only a few ANK genes have been reported in rice. In this study, we analyzed the structures, phylogenetic relationship, genome localizations and expression profiles of 175 ankyrin repeat genes identified in rice (OsANK). Domain composition analysis suggested OsANK proteins can be classified into ten subfamilies. Chromosomal localizations of OsANK genes indicated nine segmental duplication events involving 17 genes and 65 OsANK genes were involved in tandem duplications. The expression profiles of 158 OsANK genes were analyzed in 24 tissues covering the whole life cycle of two rice genotypes, Minghui 63 and Zhenshan 97. Sixteen genes showed preferential expression in given tissues compared to all the other tissues in Minghui 63 and Zhenshan 97. Nine genes were preferentially expressed in stamen of 1 day before flowering, suggesting that these genes may play important roles in pollination and fertilization. Expression data of OsANK genes were also obtained with tissues of seedlings subjected to three phytohormone (NAA, GA3 and KT) and light/dark treatments. Eighteen genes showed differential expression with at least one phytohormone treatment while under light/dark treatments, 13 OsANK genes showed differential expression. Our data provided a very useful reference for cloning and functional analysis of members of this gene family in rice.
Collapse
Affiliation(s)
- Jianyan Huang
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, 430070 Wuhan, China.
| | | | | | | | | | | |
Collapse
|
49
|
Ishmael N, Hotopp JCD, Ioannidis P, Biber S, Sakamoto J, Siozios S, Nene V, Werren J, Bourtzis K, Bordenstein SR, Tettelin H. Extensive genomic diversity of closely related Wolbachia strains. MICROBIOLOGY-SGM 2009; 155:2211-2222. [PMID: 19389774 DOI: 10.1099/mic.0.027581-0] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Using microarray-based comparative genome hybridization (mCGH), the genomic content of Wolbachia pipientis wMel from Drosophila melanogaster was compared to the closely related Wolbachia from D. innubila (wInn), D. santomea (wSan), and three strains from D. simulans (wAu, wRi, wSim). A large number of auxiliary genes are identified in these five strains, with most absent/divergent genes being unique to a given strain. Each strain caused an average of approximately 60 genes to be removed from the core genome. As such, these organisms do not appear to have the streamlined genomes expected of obligate intracellular bacteria. Prophage, hypothetical and ankyrin repeat genes are over-represented in the absent/divergent genes, with 21-87% of absent/divergent genes coming from prophage regions. The only wMel region absent/divergent in all five query strains is that containing WD_0509 to WD_0511, including a DNA mismatch repair protein MutL-2, a degenerate RNase, and a conserved hypothetical protein. A region flanked by the two portions of the WO-B prophage in wMel is found in four of the five Wolbachia strains as well as on a plasmid of a rickettsial endosymbiont of Ixodes scapularis, suggesting lateral gene transfer between these two obligate intracellular species. Overall, these insect-associated Wolbachia have highly mosaic genomes, with lateral gene transfer playing an important role in their diversity and evolution.
Collapse
Affiliation(s)
- Nadeeza Ishmael
- Institute for Genome Sciences, Department of Microbiology and Immunology, University of Maryland Baltimore, Baltimore, MD 21201, USA.,J. Craig Venter Institute, 9708 Medical Center Dr., Rockville, MD 20850, USA
| | - Julie C Dunning Hotopp
- Institute for Genome Sciences, Department of Microbiology and Immunology, University of Maryland Baltimore, Baltimore, MD 21201, USA.,J. Craig Venter Institute, 9708 Medical Center Dr., Rockville, MD 20850, USA
| | - Panagiotis Ioannidis
- Department of Environmental and Natural Resources Management, University of Ioannina, 30100 Agrinio, Greece
| | - Sarah Biber
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, The Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - Joyce Sakamoto
- Institute for Genome Sciences, Department of Microbiology and Immunology, University of Maryland Baltimore, Baltimore, MD 21201, USA
| | - Stefanos Siozios
- Department of Environmental and Natural Resources Management, University of Ioannina, 30100 Agrinio, Greece
| | - Vishvanath Nene
- Institute for Genome Sciences, Department of Microbiology and Immunology, University of Maryland Baltimore, Baltimore, MD 21201, USA.,J. Craig Venter Institute, 9708 Medical Center Dr., Rockville, MD 20850, USA
| | - John Werren
- Biology Department, University of Rochester, Rochester, NY 14627, USA
| | - Kostas Bourtzis
- Department of Environmental and Natural Resources Management, University of Ioannina, 30100 Agrinio, Greece
| | - Seth R Bordenstein
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA.,Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, The Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - Hervé Tettelin
- Institute for Genome Sciences, Department of Microbiology and Immunology, University of Maryland Baltimore, Baltimore, MD 21201, USA.,J. Craig Venter Institute, 9708 Medical Center Dr., Rockville, MD 20850, USA
| |
Collapse
|
50
|
Zhang X, Li D, Zhang H, Wang X, Zheng Z, Song F. Molecular characterization of rice OsBIANK1, encoding a plasma membrane-anchored ankyrin repeat protein, and its inducible expression in defense responses. Mol Biol Rep 2009; 37:653-60. [PMID: 19288292 DOI: 10.1007/s11033-009-9507-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2008] [Accepted: 03/04/2009] [Indexed: 10/21/2022]
Abstract
A rice gene, OsBIANK1, encoding a protein containing a typical ankyrin repeat domain, was cloned and identified. The OsBIANK1 protein, consisting of 329 amino acids, contains a conserved ankyrin repeat domain with two ankyrin repeats organized in tandem and was showed to be localized on cytoplasmic membrane during transient expression in onion epidermal cells. Expression of OsBIANK1 was induced by treatment with benzothiadiazole (BTH), a chemical inducer capable of inducing disease resistance response in rice. In BTH-treated rice seedlings, expression of OsBIANK1 was further induced by infection with Magnaporthe grisea, the rice blast fungus, as compared with those in water-treated seedlings. Our preliminary results confirm previous evidences that OsBIANK1 may be involved in regulation of disease resistance response in rice.
Collapse
Affiliation(s)
- Xinchun Zhang
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, 310029, Hangzhou, Zhejiang, People's Republic of China
| | | | | | | | | | | |
Collapse
|