1
|
Romero‐Pérez PS, Martínez‐Castro LV, Linares A, Arroyo‐Mosso I, Sánchez‐Puig N, Cuevas‐Velazquez CL, Sukenik S, Guerrero A, Covarrubias AA. Self-association and multimer formation in AtLEA4-5, a desiccation-induced intrinsically disordered protein from plants. Protein Sci 2024; 33:e5192. [PMID: 39467203 PMCID: PMC11516066 DOI: 10.1002/pro.5192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 09/18/2024] [Accepted: 10/08/2024] [Indexed: 10/30/2024]
Abstract
During seed maturation, plants may experience severe desiccation, leading to the accumulation of late embryogenesis abundant (LEA) proteins. These intrinsically disordered proteins also accumulate in plant tissues under water deficit. Functional roles of LEA proteins have been proposed based on in vitro studies, where monomers are considered as the functional units. However, the potential formation of homo-oligomers has been little explored. In this work, we investigated the potential self-association of Arabidopsis thaliana group 4 LEA proteins (AtLEA4) using in vitro and in vivo approaches. LEA4 proteins represent a compelling case of study due to their high conservation throughout the plant kingdom. This protein family is characterized by a conserved N-terminal region, with a high alpha-helix propensity and invitro protective activity, as compared to the highly disordered and low-conserved C-terminal region. Our findings revealed that full-length AtLEA4 proteins oligomerize and that both terminal regions are sufficient for self-association in vitro. However, the ability of both amino and carboxy regions of AtLEA4-5 to self-associate invivo is significantly lower than that of the entire protein. Using high-resolution and quantitative fluorescence microscopy, we were able to disclose the unreported ability of LEA proteins to form high-order oligomers in planta. Additionally, we found that high-order complexes require the simultaneous engagement of both terminal regions, indicating that the entire protein is needed to attain such structural organization. This research provides valuable insights into the self-association of LEA proteins in plants and emphasizes the role of protein oligomer formation.
Collapse
Affiliation(s)
- Paulette Sofía Romero‐Pérez
- Departamento de Biología Molecular de Plantas, Instituto de BiotecnologíaUniversidad Nacional Autónoma de MéxicoCuernavacaMexico
| | - Laura V. Martínez‐Castro
- Departamento de Biología Molecular de Plantas, Instituto de BiotecnologíaUniversidad Nacional Autónoma de MéxicoCuernavacaMexico
| | - Alejandro Linares
- Laboratorio Nacional de Microscopía AvanzadaInstituto de Biotecnología, Universidad Nacional Autónoma de MéxicoCuernavacaMexico
| | - Inti Arroyo‐Mosso
- Departamento de Biología Molecular de Plantas, Instituto de BiotecnologíaUniversidad Nacional Autónoma de MéxicoCuernavacaMexico
| | - Nuria Sánchez‐Puig
- Departamento de Química de BiomacromoléculasInstituto de Química, Universidad Nacional Autónoma de MéxicoCiudad de MéxicoMexico
| | - Cesar L. Cuevas‐Velazquez
- Departamento de Bioquímica, Facultad de QuímicaUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMexico
| | - Shahar Sukenik
- Department of Chemistry and BiochemistryUniversity of California at MercedMercedCaliforniaUSA
| | - Adán Guerrero
- Laboratorio Nacional de Microscopía AvanzadaInstituto de Biotecnología, Universidad Nacional Autónoma de MéxicoCuernavacaMexico
| | - Alejandra A. Covarrubias
- Departamento de Biología Molecular de Plantas, Instituto de BiotecnologíaUniversidad Nacional Autónoma de MéxicoCuernavacaMexico
| |
Collapse
|
2
|
Zhao Y, Fu X, Zou Z. Insights into Genes Encoding LEA_1 Domain-Containing Proteins in Cyperus esculentus, a Desiccation-Tolerant Tuber Plant. PLANTS (BASEL, SWITZERLAND) 2024; 13:2933. [PMID: 39458880 PMCID: PMC11511247 DOI: 10.3390/plants13202933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024]
Abstract
LEA_1 domain-containing proteins constitute a class of late-embryogenesis-abundant proteins that are highly hydrophilic and predominantly accumulate in mature seeds. Though LEA_1 proteins have been proven to be essential for seed desiccation tolerance and longevity, little information is available on their roles in non-seed storage organs. In this study, a first genome-wide characterization of the LEA_1 gene family was conducted in tigernut (Cyperus esculentus L., Cyperaceae), whose underground tubers are desiccation tolerant with a moisture content of less than 6%. Five family members identified in tigernut are comparative to four to six found in seven other Cyperaceae plants, but relatively more than three reported in Arabidopsis. Further comparison of 125 members from 29 plant species supports early divergence of the LEA_1 family into two phylogenetic groups before angiosperm radiation, and gene expansion in tigernut was contributed by whole-genome duplications occurring after the split with the eudicot clade. These two phylogenetic groups could be further divided into six orthogroups in the momocot clade, five of which are present in tigernut and the remaining one is Poaceae specific. Frequent structural variation and expression divergence of paralogs were also observed. Significantly, in contrast to seed-preferential expression of LEA_1 genes in Arabidopsis, rice, and maize, transcriptional profiling and qRT-PCR analysis revealed that CeLEA1 genes have evolved to predominantly express in tubers, exhibiting a seed desiccation-like accumulation during tuber development. Moreover, CeLEA1 transcripts in tubers were shown to be considerably more than that of their orthologs in purple nutsedge, another Cyperaceae plant producing desiccation-sensitive tubers. These results imply species-specific activation and key roles of CeLEA1 genes in the acquisition of desiccation tolerance of tigernut tubers as observed in orthodox seeds. Our findings not only improve the understanding of lineage-specific evolution of the LEA_1 family, but also provide valuable information for further functional analysis and genetic improvement in tigernut.
Collapse
Affiliation(s)
- Yongguo Zhao
- College of Biology and Food Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China;
- National Key Laboratory for Tropical Crop Breeding, Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Institute of Tropical Biosciences and Biotechnology of Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China;
- Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Sanya 572024, China
| | - Xiaowen Fu
- National Key Laboratory for Tropical Crop Breeding, Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Institute of Tropical Biosciences and Biotechnology of Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China;
- Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Sanya 572024, China
| | - Zhi Zou
- National Key Laboratory for Tropical Crop Breeding, Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Institute of Tropical Biosciences and Biotechnology of Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China;
- Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Sanya 572024, China
| |
Collapse
|
3
|
Romero-Pérez PS, Moran HM, Horani A, Truong A, Manriquez-Sandoval E, Ramirez JF, Martinez A, Gollub E, Hunter K, Lotthammer JM, Emenecker RJ, Liu H, Iwasa JH, Boothby TC, Holehouse AS, Fried SD, Sukenik S. Protein surface chemistry encodes an adaptive tolerance to desiccation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.28.604841. [PMID: 39131385 PMCID: PMC11312438 DOI: 10.1101/2024.07.28.604841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Cellular desiccation - the loss of nearly all water from the cell - is a recurring stress in an increasing number of ecosystems that can drive protein unfolding and aggregation. For cells to survive, at least some of the proteome must resume function upon rehydration. Which proteins tolerate desiccation, and the molecular determinants that underlie this tolerance, are largely unknown. Here, we apply quantitative and structural proteomic mass spectrometry to show that certain proteins possess an innate capacity to tolerate rehydration following extreme water loss. Structural analysis points to protein surface chemistry as a key determinant for desiccation tolerance, which we test by showing that rational surface mutants can convert a desiccation sensitive protein into a tolerant one. Desiccation tolerance also has strong overlap with cellular function, with highly tolerant proteins responsible for production of small molecule building blocks, and intolerant proteins involved in energy-consuming processes such as ribosome biogenesis. As a result, the rehydrated proteome is preferentially enriched with metabolite and small molecule producers and depleted of some of the cell's heaviest consumers. We propose this functional bias enables cells to kickstart their metabolism and promote cell survival following desiccation and rehydration.
Collapse
Affiliation(s)
| | - Haley M. Moran
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Azeem Horani
- Quantitative and Systems Biology Program, University of California Merced, Merced, CA 95343, USA
| | - Alexander Truong
- Dept of Chemistry and Biochemistry, University of California Merced, Merced, CA 95343, USA
| | - Edgar Manriquez-Sandoval
- T. C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - John F. Ramirez
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA
| | - Alec Martinez
- Dept of Chemistry and Biochemistry, University of California Merced, Merced, CA 95343, USA
| | - Edith Gollub
- Dept of Chemistry and Biochemistry, University of California Merced, Merced, CA 95343, USA
| | - Kara Hunter
- Dept of Chemistry and Biochemistry, University of California Merced, Merced, CA 95343, USA
- Department of Chemistry, Syracuse University, Syracuse, NY 13244, USA
| | - Jeffrey M. Lotthammer
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
- Center for Biomolecular Condensates (CBC), Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Ryan J. Emenecker
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
- Center for Biomolecular Condensates (CBC), Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Hui Liu
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Janet H. Iwasa
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Thomas C. Boothby
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA
| | - Alex S. Holehouse
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
- Center for Biomolecular Condensates (CBC), Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Stephen D. Fried
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, USA
- T. C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Shahar Sukenik
- Dept of Chemistry and Biochemistry, University of California Merced, Merced, CA 95343, USA
- Quantitative and Systems Biology Program, University of California Merced, Merced, CA 95343, USA
- Department of Chemistry, Syracuse University, Syracuse, NY 13244, USA
| |
Collapse
|
4
|
Kc S, Nguyen KH, Nicholson V, Walgren A, Trent T, Gollub E, Ramero S, Holehouse AS, Sukenik S, Boothby TC. Disordered proteins interact with the chemical environment to tune their protective function during drying. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.28.582506. [PMID: 38464187 PMCID: PMC10925285 DOI: 10.1101/2024.02.28.582506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
The conformational ensemble and function of intrinsically disordered proteins (IDPs) are sensitive to their solution environment. The inherent malleability of disordered proteins combined with the exposure of their residues accounts for this sensitivity. One context in which IDPs play important roles that is concomitant with massive changes to the intracellular environment is during desiccation (extreme drying). The ability of organisms to survive desiccation has long been linked to the accumulation of high levels of cosolutes such as trehalose or sucrose as well as the enrichment of IDPs, such as late embryogenesis abundant (LEA) proteins or cytoplasmic abundant heat soluble (CAHS) proteins. Despite knowing that IDPs play important roles and are co-enriched alongside endogenous, species-specific cosolutes during desiccation, little is known mechanistically about how IDP-cosolute interactions influence desiccation tolerance. Here, we test the notion that the protective function of desiccation-related IDPs is enhanced through conformational changes induced by endogenous cosolutes. We find that desiccation-related IDPs derived from four different organisms spanning two LEA protein families and the CAHS protein family, synergize best with endogenous cosolutes during drying to promote desiccation protection. Yet the structural parameters of protective IDPs do not correlate with synergy for either CAHS or LEA proteins. We further demonstrate that for CAHS, but not LEA proteins, synergy is related to self-assembly and the formation of a gel. Our results suggest that functional synergy between IDPs and endogenous cosolutes is a convergent desiccation protection strategy seen among different IDP families and organisms, yet, the mechanisms underlying this synergy differ between IDP families.
Collapse
|
5
|
Wang Q, Lei X, Wang Y, Di P, Meng X, Peng W, Rong J, Wang Y. Genome-wide identification of the LEA gene family in Panax ginseng: Evidence for the role of PgLEA2-50 in plant abiotic stress response. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 212:108742. [PMID: 38772166 DOI: 10.1016/j.plaphy.2024.108742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 04/21/2024] [Accepted: 05/16/2024] [Indexed: 05/23/2024]
Abstract
Ginseng frequently encounters environmental stress during its growth and development. Late Embryogenesis Abundant (LEA) proteins play a crucial role in combating adversity stress, particularly against abiotic challenges In this study, 107 LEA genes from ginseng, spanning eight subfamilies, were identified, demonstrating significant evolutionary conservation, with the LEA2 subfamily being most prominent. Gene duplication events, primarily segmental duplications, have played a major role in the expansion of the LEA gene family, which has undergone strong purifying selection. PgLEAs were unevenly distributed across 22 chromosomes, with each subfamily featuring unique structural domains and conserved motifs. PgLEAs were expressed in various tissues, exhibiting distinct variations in abundance and tissue specificity. Numerous regulatory cis-elements, related to abiotic stress and hormones, were identified in the promoter region. Additionally, PgLEAs were regulated by a diverse array of abiotic stress-related transcription factors. A total of 35 PgLEAs were differentially expressed following treatments with ABA, GA, and IAA. Twenty-three PgLEAs showed significant but varied responses to drought, extreme temperatures, and salinity stress. The transformation of tobacco with the key gene PgLEA2-50 enhanced osmoregulation and antioxidant levels in transgenic lines, improving their resistance to abiotic stress. This study offers insights into functional gene analysis, focusing on LEA proteins, and establishes a foundational framework for research on ginseng's resilience to abiotic stress.
Collapse
Affiliation(s)
- Qi Wang
- Jilin Agricultural University, Changchun, Jilin, China
| | - Xiujuan Lei
- Jilin Agricultural University, Changchun, Jilin, China
| | - Yihan Wang
- Jilin Agricultural University, Changchun, Jilin, China
| | - Peng Di
- Jilin Agricultural University, Changchun, Jilin, China
| | - Xiangru Meng
- Jilin Agricultural University, Changchun, Jilin, China
| | - Wenyue Peng
- Jilin Agricultural University, Changchun, Jilin, China
| | - Junbo Rong
- Jilin Agricultural University, Changchun, Jilin, China
| | - Yingping Wang
- Jilin Agricultural University, Changchun, Jilin, China.
| |
Collapse
|
6
|
Florez-Rueda AM, Miguel CM, Figueiredo DD. Comparative transcriptomics of seed nourishing tissues: uncovering conserved and divergent pathways in seed plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:1134-1157. [PMID: 38709819 DOI: 10.1111/tpj.16786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 04/04/2024] [Accepted: 04/12/2024] [Indexed: 05/08/2024]
Abstract
The evolutionary and ecological success of spermatophytes is intrinsically linked to the seed habit, which provides a protective environment for the initial development of the new generation. This environment includes an ephemeral nourishing tissue that supports embryo growth. In gymnosperms this tissue originates from the asexual proliferation of the maternal megagametophyte, while in angiosperms it is a product of fertilization, and is called the endosperm. The emergence of these nourishing tissues is of profound evolutionary value, and they are also food staples for most of the world's population. Here, using Orthofinder to infer orthologue genes among newly generated and previously published datasets, we provide a comparative transcriptomic analysis of seed nourishing tissues from species of several angiosperm clades, including those of early diverging lineages, as well as of one gymnosperm. Our results show that, although the structure and composition of seed nourishing tissues has seen significant divergence along evolution, there are signatures that are conserved throughout the phylogeny. Conversely, we identified processes that are specific to species within the clades studied, and thus illustrate their functional divergence. With this, we aimed to provide a foundation for future studies on the evolutionary history of seed nourishing structures, as well as a resource for gene discovery in future functional studies.
Collapse
Affiliation(s)
- Ana Marcela Florez-Rueda
- Max Planck Institute of Molecular Plant Physiology, Potsdam Science Park, Am Mühlenberg 1, 14476, Potsdam, Germany
- University of Potsdam, Karl-Liebknechts-Str. 24-25, Haus 26, 14476, Potsdam, Germany
| | - Célia M Miguel
- Faculty of Sciences, Biosystems and Integrative Sciences Institute (BioISI), University of Lisbon, Lisboa, Portugal
| | - Duarte D Figueiredo
- Max Planck Institute of Molecular Plant Physiology, Potsdam Science Park, Am Mühlenberg 1, 14476, Potsdam, Germany
| |
Collapse
|
7
|
Meneses-Reyes GI, Rodriguez-Bustos DL, Cuevas-Velazquez CL. Macromolecular crowding sensing during osmotic stress in plants. Trends Biochem Sci 2024; 49:480-493. [PMID: 38514274 DOI: 10.1016/j.tibs.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/07/2024] [Accepted: 02/16/2024] [Indexed: 03/23/2024]
Abstract
Osmotic stress conditions occur at multiple stages of plant life. Changes in water availability caused by osmotic stress induce alterations in the mechanical properties of the plasma membrane, its interaction with the cell wall, and the concentration of macromolecules in the cytoplasm. We summarize the reported players involved in the sensing mechanisms of osmotic stress in plants. We discuss how changes in macromolecular crowding are perceived intracellularly by intrinsically disordered regions (IDRs) in proteins. Finally, we review methods for dynamically monitoring macromolecular crowding in living cells and discuss why their implementation is required for the discovery of new plant osmosensors. Elucidating the osmosensing mechanisms will be essential for designing strategies to improve plant productivity in the face of climate change.
Collapse
Affiliation(s)
- G I Meneses-Reyes
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - D L Rodriguez-Bustos
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - C L Cuevas-Velazquez
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico.
| |
Collapse
|
8
|
Salazar OR, Chen K, Melino VJ, Reddy MP, Hřibová E, Čížková J, Beránková D, Arciniegas Vega JP, Cáceres Leal LM, Aranda M, Jaremko L, Jaremko M, Fedoroff NV, Tester M, Schmöckel SM. SOS1 tonoplast neo-localization and the RGG protein SALTY are important in the extreme salinity tolerance of Salicornia bigelovii. Nat Commun 2024; 15:4279. [PMID: 38769297 PMCID: PMC11106269 DOI: 10.1038/s41467-024-48595-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 05/07/2024] [Indexed: 05/22/2024] Open
Abstract
The identification of genes involved in salinity tolerance has primarily focused on model plants and crops. However, plants naturally adapted to highly saline environments offer valuable insights into tolerance to extreme salinity. Salicornia plants grow in coastal salt marshes, stimulated by NaCl. To understand this tolerance, we generated genome sequences of two Salicornia species and analyzed the transcriptomic and proteomic responses of Salicornia bigelovii to NaCl. Subcellular membrane proteomes reveal that SbiSOS1, a homolog of the well-known SALT-OVERLY-SENSITIVE 1 (SOS1) protein, appears to localize to the tonoplast, consistent with subcellular localization assays in tobacco. This neo-localized protein can pump Na+ into the vacuole, preventing toxicity in the cytosol. We further identify 11 proteins of interest, of which SbiSALTY, substantially improves yeast growth on saline media. Structural characterization using NMR identified it as an intrinsically disordered protein, localizing to the endoplasmic reticulum in planta, where it can interact with ribosomes and RNA, stabilizing or protecting them during salt stress.
Collapse
Affiliation(s)
- Octavio R Salazar
- Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
- Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
- Red Sea Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Ke Chen
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Vanessa J Melino
- Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
- Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Muppala P Reddy
- Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
- Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Eva Hřibová
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of Plant Structural and Functional Genomics, Šlechtitelů 31, 77900, Olomouc, Czech Republic
| | - Jana Čížková
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of Plant Structural and Functional Genomics, Šlechtitelů 31, 77900, Olomouc, Czech Republic
| | - Denisa Beránková
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of Plant Structural and Functional Genomics, Šlechtitelů 31, 77900, Olomouc, Czech Republic
| | - Juan Pablo Arciniegas Vega
- Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
- Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Lina María Cáceres Leal
- Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
- Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Manuel Aranda
- Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
- Red Sea Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Lukasz Jaremko
- Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Mariusz Jaremko
- Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Nina V Fedoroff
- Department of Biology, Penn State University, University Park, PA, 16801, US
| | - Mark Tester
- Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia.
- Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia.
| | - Sandra M Schmöckel
- Department Physiology of Yield Stability, Institute of Crop Science, University of Hohenheim, Fruwirthstr. 21, 70599, Stuttgart, Germany
| |
Collapse
|
9
|
Hernández‐Sánchez I, Rindfleisch T, Alpers J, Dulle M, Garvey CJ, Knox‐Brown P, Miettinen MS, Nagy G, Pusterla JM, Rekas A, Shou K, Stadler AM, Walther D, Wolff M, Zuther E, Thalhammer A. Functional in vitro diversity of an intrinsically disordered plant protein during freeze-thawing is encoded by its structural plasticity. Protein Sci 2024; 33:e4989. [PMID: 38659213 PMCID: PMC11043620 DOI: 10.1002/pro.4989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 03/09/2024] [Accepted: 03/31/2024] [Indexed: 04/26/2024]
Abstract
Intrinsically disordered late embryogenesis abundant (LEA) proteins play a central role in the tolerance of plants and other organisms to dehydration brought upon, for example, by freezing temperatures, high salt concentration, drought or desiccation, and many LEA proteins have been found to stabilize dehydration-sensitive cellular structures. Their conformational ensembles are highly sensitive to the environment, allowing them to undergo conformational changes and adopt ordered secondary and quaternary structures and to participate in formation of membraneless organelles. In an interdisciplinary approach, we discovered how the functional diversity of the Arabidopsis thaliana LEA protein COR15A found in vitro is encoded in its structural repertoire, with the stabilization of membranes being achieved at the level of secondary structure and the stabilization of enzymes accomplished by the formation of oligomeric complexes. We provide molecular details on intra- and inter-monomeric helix-helix interactions, demonstrate how oligomerization is driven by an α-helical molecular recognition feature (α-MoRF) and provide a rationale that the formation of noncanonical, loosely packed, right-handed coiled-coils might be a recurring theme for homo- and hetero-oligomerization of LEA proteins.
Collapse
Affiliation(s)
- Itzell Hernández‐Sánchez
- Max‐Planck Institute of Molecular Plant PhysiologyPotsdamGermany
- Present address:
Center for Desert Agriculture, Biological and Environmental Science and Engineering DivisionKing Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
| | - Tobias Rindfleisch
- Max‐Planck Institute of Molecular Plant PhysiologyPotsdamGermany
- Physical BiochemistryUniversity of PotsdamPotsdamGermany
- Department of ChemistryUniversity of BergenBergenNorway
- Computational Biology Unit, Department of InformaticsUniversity of BergenBergenNorway
| | - Jessica Alpers
- Max‐Planck Institute of Molecular Plant PhysiologyPotsdamGermany
| | - Martin Dulle
- Jülich Centre for Neutron Science (JCNS‐1) and Institute of Biological Information Processing (IBI‐8: Neutron Scattering and Biological Matter)Forschungszentrum Jülich GmbHJülichGermany
| | | | - Patrick Knox‐Brown
- Physical BiochemistryUniversity of PotsdamPotsdamGermany
- Present address:
Department of Discovery Pharmaceutical SciencesMerck & Co., Inc.South San FranciscoCaliforniaUSA
| | - Markus S. Miettinen
- Department of ChemistryUniversity of BergenBergenNorway
- Computational Biology Unit, Department of InformaticsUniversity of BergenBergenNorway
- Department of Theory and Bio‐SystemsMax Planck Institute of Colloids and InterfacesPotsdamGermany
| | - Gergely Nagy
- Neutron Scattering DivisionOak Ridge National LaboratoryOak RidgeTennesseeUSA
| | - Julio M. Pusterla
- Jülich Centre for Neutron Science (JCNS‐1) and Institute of Biological Information Processing (IBI‐8: Neutron Scattering and Biological Matter)Forschungszentrum Jülich GmbHJülichGermany
| | - Agata Rekas
- Australian Nuclear Science and Technology Organization (ANSTO)KirraweeNew South WalesAustralia
| | - Keyun Shou
- Jülich Centre for Neutron Science (JCNS‐1) and Institute of Biological Information Processing (IBI‐8: Neutron Scattering and Biological Matter)Forschungszentrum Jülich GmbHJülichGermany
- Australian Nuclear Science and Technology Organization (ANSTO)KirraweeNew South WalesAustralia
- Institute of Physical Chemistry, RWTH Aachen UniversityAachenGermany
| | - Andreas M. Stadler
- Jülich Centre for Neutron Science (JCNS‐1) and Institute of Biological Information Processing (IBI‐8: Neutron Scattering and Biological Matter)Forschungszentrum Jülich GmbHJülichGermany
- Institute of Physical Chemistry, RWTH Aachen UniversityAachenGermany
| | - Dirk Walther
- Max‐Planck Institute of Molecular Plant PhysiologyPotsdamGermany
| | - Martin Wolff
- Physical BiochemistryUniversity of PotsdamPotsdamGermany
| | - Ellen Zuther
- Max‐Planck Institute of Molecular Plant PhysiologyPotsdamGermany
- Present address:
Center of Artificial Intelligence in Public Health Research (ZKI‐PH)Robert Koch InstituteBerlinGermany
| | | |
Collapse
|
10
|
Lv A, Su L, Fan N, Wen W, Gao L, Mo X, You X, Zhou P, An Y. The MsDHN1-MsPIP2;1-MsmMYB module orchestrates the trade-off between growth and survival of alfalfa in response to drought stress. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:1132-1145. [PMID: 38048288 PMCID: PMC11022793 DOI: 10.1111/pbi.14251] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 10/09/2023] [Accepted: 11/13/2023] [Indexed: 12/06/2023]
Abstract
Dehydrins and aquaporins play crucial roles in plant growth and stress responses by acting as protector and controlling water transport across membranes, respectively. MsDHN1 (dehydrin) and MsPIP2;1 (aquaporin) were demonstrated to interact with a membrane-anchored MYB protein, MsmMYB (as mMYB) in plasma membrane under normal condition. MsDHN1, MsPIP2;1 and MsDHN1-MsPIP2;1 positively regulated alfalfa tolerance to water deficiency. Water deficiency caused phosphorylation of MsPIP2;1 at Ser 272, which led to release C terminus of mMYB (mMYBΔ83) from plasma membrane and translocate to nucleus, where C terminus of MsDHN1 interacted with mMYBΔ83, and promoted mMYBΔ83 transcriptional activity in response to water deficiency. Overexpression of mMYB and mMYBΔ83 down-regulated the expression of MsCESA3, but up-regulated MsCESA7 expression by directly binding to their promoters, and resulted in high drought tolerance in transgenic hairy roots. These results indicate that the MsDHN1-MsPIP2;1-MsMYB module serves as a key regulator in alfalfa against drought stress.
Collapse
Affiliation(s)
- Aimin Lv
- School of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina
- State Key Laboratory of Subtropical SilvicultureZhejiang A&F UniversityHangzhouChina
| | - Liantai Su
- School of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina
| | - Nana Fan
- College of life scienceYulin UniversityYulinChina
| | - Wuwu Wen
- School of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina
| | - Li Gao
- School of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina
| | - Xin Mo
- School of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina
| | - Xiangkai You
- School of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina
| | - Peng Zhou
- School of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina
| | - Yuan An
- School of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina
- Key Laboratory of Urban AgricultureMinistry of AgricultureShanghaiChina
| |
Collapse
|
11
|
Wei H, Wang X, Wang K, Tang X, Zhang N, Si H. Transcription factors as molecular switches regulating plant responses to drought stress. PHYSIOLOGIA PLANTARUM 2024; 176:e14366. [PMID: 38812034 DOI: 10.1111/ppl.14366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/31/2024]
Abstract
Plants often experience abiotic stress, which severely affects their growth. With the advent of global warming, drought stress has become a pivotal factor affecting crop yield and quality. Increasing numbers of studies have focused on elucidating the molecular mechanisms underlying plant responses to drought stress. As molecular switches, transcription factors (TFs) are key participants in drought-resistance regulatory networks in crops. TFs regulate the transcription of downstream genes and are regulated by various upstream regulatory factors. Therefore, understanding the mechanisms of action of TFs in regulating drought stress can help enhance the adaptive capacity of crops under drought conditions. In this review, we summarize the structural characteristics of several common TFs, their multiple drought-response pathways, and recently employed research strategies. We describe the application of new technologies such as analysis of stress granule dynamics and function, multi-omics data, gene editing, and molecular crosstalk between TFs in drought resistance. This review aims to familiarize readers with the regulatory network of TFs in drought resistance and to provide a reference for examining the molecular mechanisms of drought resistance in plants and improving agronomic traits.
Collapse
Affiliation(s)
- Han Wei
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, People's Republic of China
- College of Agronomy, Gansu Agricultural University, Lanzhou, People's Republic of China
| | - Xiao Wang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, People's Republic of China
- College of Agronomy, Gansu Agricultural University, Lanzhou, People's Republic of China
| | - Kaitong Wang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, People's Republic of China
- College of Agronomy, Gansu Agricultural University, Lanzhou, People's Republic of China
| | - Xun Tang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, People's Republic of China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, People's Republic of China
| | - Ning Zhang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, People's Republic of China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, People's Republic of China
| | - Huaijun Si
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, People's Republic of China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, People's Republic of China
| |
Collapse
|
12
|
Wang D, Ni Y, Xie K, Li Y, Wu W, Shan H, Cheng B, Li X. Aquaporin ZmTIP2;3 Promotes Drought Resistance of Maize through Symbiosis with Arbuscular Mycorrhizal Fungi. Int J Mol Sci 2024; 25:4205. [PMID: 38673792 PMCID: PMC11050007 DOI: 10.3390/ijms25084205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/02/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024] Open
Abstract
Arbuscular mycorrhizal fungi symbiosis plays important roles in enhancing plant tolerance to biotic and abiotic stresses. Aquaporins have also been linked to improved drought tolerance in plants and the regulation of water transport. However, the mechanisms that underlie this association remain to be further explored. In this study, we found that arbuscular mycorrhiza fungi symbiosis could induce the gene expression of the aquaporin ZmTIP2;3 in maize roots. Moreover, compared with the wild-type plants, the maize zmtip2;3 mutant also showed a lower total biomass, colonization rate, relative water content, and POD and SOD activities after arbuscular mycorrhiza fungi symbiosis under drought stress. qRT-PCR assays revealed reduced expression levels of stress genes including LEA3, P5CS4, and NECD1 in the maize zmtip2;3 mutant. Taken together, these data suggest that ZmTIP2;3 plays an important role in promoting maize tolerance to drought stress during arbuscular mycorrhiza fungi symbiosis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Beijiu Cheng
- Key Laboratory of Crop Stress Resistance and High Quality Biology of Anhui Province, Anhui Agricultural University, Hefei 230036, China; (D.W.); (Y.N.); (K.X.); (Y.L.); (W.W.); (H.S.)
| | - Xiaoyu Li
- Key Laboratory of Crop Stress Resistance and High Quality Biology of Anhui Province, Anhui Agricultural University, Hefei 230036, China; (D.W.); (Y.N.); (K.X.); (Y.L.); (W.W.); (H.S.)
| |
Collapse
|
13
|
Holehouse AS, Kragelund BB. The molecular basis for cellular function of intrinsically disordered protein regions. Nat Rev Mol Cell Biol 2024; 25:187-211. [PMID: 37957331 PMCID: PMC11459374 DOI: 10.1038/s41580-023-00673-0] [Citation(s) in RCA: 62] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2023] [Indexed: 11/15/2023]
Abstract
Intrinsically disordered protein regions exist in a collection of dynamic interconverting conformations that lack a stable 3D structure. These regions are structurally heterogeneous, ubiquitous and found across all kingdoms of life. Despite the absence of a defined 3D structure, disordered regions are essential for cellular processes ranging from transcriptional control and cell signalling to subcellular organization. Through their conformational malleability and adaptability, disordered regions extend the repertoire of macromolecular interactions and are readily tunable by their structural and chemical context, making them ideal responders to regulatory cues. Recent work has led to major advances in understanding the link between protein sequence and conformational behaviour in disordered regions, yet the link between sequence and molecular function is less well defined. Here we consider the biochemical and biophysical foundations that underlie how and why disordered regions can engage in productive cellular functions, provide examples of emerging concepts and discuss how protein disorder contributes to intracellular information processing and regulation of cellular function.
Collapse
Affiliation(s)
- Alex S Holehouse
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, MO, USA.
- Center for Biomolecular Condensates, Washington University in St Louis, St Louis, MO, USA.
| | - Birthe B Kragelund
- REPIN, Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
14
|
Feng X, Chen Q, Wu W, Wang J, Li G, Xu S, Shao S, Liu M, Zhong C, Wu CI, Shi S, He Z. Genomic evidence for rediploidization and adaptive evolution following the whole-genome triplication. Nat Commun 2024; 15:1635. [PMID: 38388712 PMCID: PMC10884412 DOI: 10.1038/s41467-024-46080-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 02/13/2024] [Indexed: 02/24/2024] Open
Abstract
Whole-genome duplication (WGD), or polyploidy, events are widespread and significant in the evolutionary history of angiosperms. However, empirical evidence for rediploidization, the major process where polyploids give rise to diploid descendants, is still lacking at the genomic level. Here we present chromosome-scale genomes of the mangrove tree Sonneratia alba and the related inland plant Lagerstroemia speciosa. Their common ancestor has experienced a whole-genome triplication (WGT) approximately 64 million years ago coinciding with a period of dramatic global climate change. Sonneratia, adapting mangrove habitats, experienced extensive chromosome rearrangements post-WGT. We observe the WGT retentions display sequence and expression divergence, suggesting potential neo- and sub-functionalization. Strong selection acting on three-copy retentions indicates adaptive value in response to new environments. To elucidate the role of ploidy changes in genome evolution, we improve a model of the polyploidization-rediploidization process based on genomic evidence, contributing to the understanding of adaptive evolution during climate change.
Collapse
Affiliation(s)
- Xiao Feng
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, 510275, Guangzhou, China
| | - Qipian Chen
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, 510275, Guangzhou, China
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, 518120, Shenzhen, China
| | - Weihong Wu
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, 510275, Guangzhou, China
| | - Jiexin Wang
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, 510275, Guangzhou, China
| | - Guohong Li
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, 510275, Guangzhou, China
| | - Shaohua Xu
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, 510275, Guangzhou, China
| | - Shao Shao
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, 510275, Guangzhou, China
| | - Min Liu
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, 510275, Guangzhou, China
| | - Cairong Zhong
- Hainan Academy of Forestry (Hainan Academy of Mangrove), 571100, Haikou, China
| | - Chung-I Wu
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, 510275, Guangzhou, China
| | - Suhua Shi
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, 510275, Guangzhou, China.
| | - Ziwen He
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, 510275, Guangzhou, China.
| |
Collapse
|
15
|
Rendón-Luna DF, Arroyo-Mosso IA, De Luna-Valenciano H, Campos F, Segovia L, Saab-Rincón G, Cuevas-Velazquez CL, Reyes JL, Covarrubias AA. Alternative conformations of a group 4 Late Embryogenesis Abundant protein associated to its in vitro protective activity. Sci Rep 2024; 14:2770. [PMID: 38307936 PMCID: PMC10837141 DOI: 10.1038/s41598-024-53295-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/30/2024] [Indexed: 02/04/2024] Open
Abstract
Late Embryogenesis Abundant (LEA) proteins are a group of intrinsically disordered proteins implicated in plant responses to water deficit. In vitro studies revealed that LEA proteins protect reporter enzymes from inactivation during low water availability. Group 4 LEA proteins constitute a conserved protein family, displaying in vitro protective capabilities. Under water deficiency or macromolecular crowding, the N-terminal of these proteins adopts an alpha-helix conformation. This region has been identified as responsible for the protein in vitro protective activity. This study investigates whether the attainment of alpha-helix conformation and/or particular amino acid residues are required for the in vitro protective activity. The LEA4-5 protein from Arabidopsis thaliana was used to generate mutant proteins. The mutations altered conserved residues, deleted specific conserved regions, or introduced prolines to hinder alpha-helix formation. The results indicate that conserved residues are not essential for LEA4-5 protective function. Interestingly, the C-terminal region was found to contribute to this function. Moreover, alpha-helix conformation is necessary for the protective activity only when the C-terminal region is deleted. Overall, LEA4-5 shows the ability to adopt alternative functional conformations under the tested conditions. These findings shed light on the in vitro mechanisms by which LEA proteins protect against water deficit stress.
Collapse
Affiliation(s)
- David F Rendón-Luna
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Colonia Chamilpa, 62210, Cuernavaca, Morelos, México
| | - Inti A Arroyo-Mosso
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Colonia Chamilpa, 62210, Cuernavaca, Morelos, México
| | - Haydee De Luna-Valenciano
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Colonia Chamilpa, 62210, Cuernavaca, Morelos, México
- Programa de Biología Sintética, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Av. Universidad 2001, Colonia Chamilpa, 62210, Cuernavaca, Morelos, México
| | - Francisco Campos
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Colonia Chamilpa, 62210, Cuernavaca, Morelos, México
| | - Lorenzo Segovia
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Colonia Chamilpa, 62210, Cuernavaca, Morelos, México
| | - Gloria Saab-Rincón
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Colonia Chamilpa, 62210, Cuernavaca, Morelos, México
| | - Cesar L Cuevas-Velazquez
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, Ciudad de México, México
| | - José Luis Reyes
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Colonia Chamilpa, 62210, Cuernavaca, Morelos, México
| | - Alejandra A Covarrubias
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Colonia Chamilpa, 62210, Cuernavaca, Morelos, México.
| |
Collapse
|
16
|
Biswas S, Gollub E, Yu F, Ginell G, Holehouse A, Sukenik S, Boothby TC. Helicity of a tardigrade disordered protein contributes to its protective function during desiccation. Protein Sci 2024; 33:e4872. [PMID: 38114424 PMCID: PMC10804681 DOI: 10.1002/pro.4872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/30/2023] [Accepted: 12/12/2023] [Indexed: 12/21/2023]
Abstract
To survive extreme drying (anhydrobiosis), many organisms, spanning every kingdom of life, accumulate intrinsically disordered proteins (IDPs). For decades, the ability of anhydrobiosis-related IDPs to form transient amphipathic helices has been suggested to be important for promoting desiccation tolerance. However, evidence empirically supporting the necessity and/or sufficiency of helicity in mediating anhydrobiosis is lacking. Here, we demonstrate that the linker region of CAHS D, a desiccation-related IDP from the tardigrade Hypsibius exemplaris, that contains significant helical structure, is the protective portion of this protein. Perturbing the sequence composition and grammar of the linker region of CAHS D, through the insertion of helix-breaking prolines, modulating the identity of charged residues, or replacement of hydrophobic amino acids with serine or glycine residues results in variants with different degrees of helical structure. Importantly, correlation of protective capacity and helical content in variants generated through different helix perturbing modalities does not show as strong a trend, suggesting that while helicity is important, it is not the only property that makes a protein protective during desiccation. These results provide direct evidence for the decades-old theory that helicity of desiccation-related IDPs is linked to their anhydrobiotic capacity.
Collapse
Affiliation(s)
- Sourav Biswas
- Department of Molecular BiologyUniversity of WyomingLaramieWyomingUSA
| | - Edith Gollub
- Department of Chemistry and BiochemistryUniversity of California, MercedMercedCaliforniaUSA
- Quantitative Systems Biology ProgramUniversity of California MercedMercedCaliforniaUSA
| | - Feng Yu
- Department of Chemistry and BiochemistryUniversity of California, MercedMercedCaliforniaUSA
- Quantitative Systems Biology ProgramUniversity of California MercedMercedCaliforniaUSA
| | - Garrett Ginell
- Department of Biochemistry and Molecular BiophysicsWashington University School of MedicineSt. LouisMissouriUSA
- Center for Biomolecular CondensatesWashington University in St. LouisSt. LouisMissouriUSA
| | - Alex Holehouse
- Department of Biochemistry and Molecular BiophysicsWashington University School of MedicineSt. LouisMissouriUSA
- Center for Biomolecular CondensatesWashington University in St. LouisSt. LouisMissouriUSA
| | - Shahar Sukenik
- Department of Chemistry and BiochemistryUniversity of California, MercedMercedCaliforniaUSA
- Quantitative Systems Biology ProgramUniversity of California MercedMercedCaliforniaUSA
| | - Thomas C. Boothby
- Department of Molecular BiologyUniversity of WyomingLaramieWyomingUSA
| |
Collapse
|
17
|
Hsiao AS. Protein Disorder in Plant Stress Adaptation: From Late Embryogenesis Abundant to Other Intrinsically Disordered Proteins. Int J Mol Sci 2024; 25:1178. [PMID: 38256256 PMCID: PMC10816898 DOI: 10.3390/ijms25021178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
Global climate change has caused severe abiotic and biotic stresses, affecting plant growth and food security. The mechanical understanding of plant stress responses is critical for achieving sustainable agriculture. Intrinsically disordered proteins (IDPs) are a group of proteins without unique three-dimensional structures. The environmental sensitivity and structural flexibility of IDPs contribute to the growth and developmental plasticity for sessile plants to deal with environmental challenges. This article discusses the roles of various disordered proteins in plant stress tolerance and resistance, describes the current mechanistic insights into unstructured proteins such as the disorder-to-order transition for adopting secondary structures to interact with specific partners (i.e., cellular membranes, membrane proteins, metal ions, and DNA), and elucidates the roles of liquid-liquid phase separation driven by protein disorder in stress responses. By comparing IDP studies in animal systems, this article provides conceptual principles of plant protein disorder in stress adaptation, reveals the current research gaps, and advises on the future research direction. The highlighting of relevant unanswered questions in plant protein disorder research aims to encourage more studies on these emerging topics to understand the mechanisms of action behind their stress resistance phenotypes.
Collapse
Affiliation(s)
- An-Shan Hsiao
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| |
Collapse
|
18
|
Liu Q, Liu W, Niu Y, Wang T, Dong J. Liquid-liquid phase separation in plants: Advances and perspectives from model species to crops. PLANT COMMUNICATIONS 2024; 5:100663. [PMID: 37496271 PMCID: PMC10811348 DOI: 10.1016/j.xplc.2023.100663] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/23/2023] [Accepted: 07/20/2023] [Indexed: 07/28/2023]
Abstract
Membraneless biomolecular condensates play important roles in both normal biological activities and responses to environmental stimuli in living organisms. Liquid‒liquid phase separation (LLPS) is an organizational mechanism that has emerged in recent years to explain the formation of biomolecular condensates. In the past decade, advances in LLPS research have contributed to breakthroughs in disease fields. By contrast, although LLPS research in plants has progressed over the past 5 years, it has been concentrated on the model plant Arabidopsis, which has limited relevance to agricultural production. In this review, we provide an overview of recently reported advances in LLPS in plants, with a particular focus on photomorphogenesis, flowering, and abiotic and biotic stress responses. We propose that many potential LLPS proteins also exist in crops and may affect crop growth, development, and stress resistance. This possibility presents a great challenge as well as an opportunity for rigorous scientific research on the biological functions and applications of LLPS in crops.
Collapse
Affiliation(s)
- Qianwen Liu
- College of Biological Sciences, China Agricultural University, Beijing 100193, China; College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Wenxuan Liu
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Yiding Niu
- Key Laboratory of Forage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010021, China
| | - Tao Wang
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jiangli Dong
- College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
19
|
Li XH, Yu CWH, Gomez-Navarro N, Stancheva V, Zhu H, Murthy A, Wozny M, Malhotra K, Johnson CM, Blackledge M, Santhanam B, Liu W, Huang J, Freund SMV, Miller EA, Babu MM. Dynamic conformational changes of a tardigrade group-3 late embryogenesis abundant protein modulate membrane biophysical properties. PNAS NEXUS 2024; 3:pgae006. [PMID: 38269070 PMCID: PMC10808001 DOI: 10.1093/pnasnexus/pgae006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 12/26/2023] [Indexed: 01/26/2024]
Abstract
A number of intrinsically disordered proteins (IDPs) encoded in stress-tolerant organisms, such as tardigrade, can confer fitness advantage and abiotic stress tolerance when heterologously expressed. Tardigrade-specific disordered proteins including the cytosolic-abundant heat-soluble proteins are proposed to confer stress tolerance through vitrification or gelation, whereas evolutionarily conserved IDPs in tardigrades may contribute to stress tolerance through other biophysical mechanisms. In this study, we characterized the mechanism of action of an evolutionarily conserved, tardigrade IDP, HeLEA1, which belongs to the group-3 late embryogenesis abundant (LEA) protein family. HeLEA1 homologs are found across different kingdoms of life. HeLEA1 is intrinsically disordered in solution but shows a propensity for helical structure across its entire sequence. HeLEA1 interacts with negatively charged membranes via dynamic disorder-to-helical transition, mainly driven by electrostatic interactions. Membrane interaction of HeLEA1 is shown to ameliorate excess surface tension and lipid packing defects. HeLEA1 localizes to the mitochondrial matrix when expressed in yeast and interacts with model membranes mimicking inner mitochondrial membrane. Yeast expressing HeLEA1 shows enhanced tolerance to hyperosmotic stress under nonfermentative growth and increased mitochondrial membrane potential. Evolutionary analysis suggests that although HeLEA1 homologs have diverged their sequences to localize to different subcellular organelles, all homologs maintain a weak hydrophobic moment that is characteristic of weak and reversible membrane interaction. We suggest that such dynamic and weak protein-membrane interaction buffering alterations in lipid packing could be a conserved strategy for regulating membrane properties and represent a general biophysical solution for stress tolerance across the domains of life.
Collapse
Affiliation(s)
- Xiao-Han Li
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Conny W H Yu
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | | | | | - Hongni Zhu
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Andal Murthy
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Michael Wozny
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Ketan Malhotra
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | | | - Martin Blackledge
- Université Grenoble Alpes, CNRS, Commissariat à l’Energie Atomique et aux Energies Alternatives, Institut de Biologie Structurale, 38000 Grenoble, France
| | - Balaji Santhanam
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
- Department of Structural Biology, Center of Excellence for Data-Driven Discovery, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Wei Liu
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Jinqing Huang
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | | | | | - M Madan Babu
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
- Department of Structural Biology, Center of Excellence for Data-Driven Discovery, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| |
Collapse
|
20
|
Moses D, Ginell GM, Holehouse AS, Sukenik S. Intrinsically disordered regions are poised to act as sensors of cellular chemistry. Trends Biochem Sci 2023; 48:1019-1034. [PMID: 37657994 PMCID: PMC10840941 DOI: 10.1016/j.tibs.2023.08.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 09/03/2023]
Abstract
Intrinsically disordered proteins and protein regions (IDRs) are abundant in eukaryotic proteomes and play a wide variety of essential roles. Instead of folding into a stable structure, IDRs exist in an ensemble of interconverting conformations whose structure is biased by sequence-dependent interactions. The absence of a stable 3D structure, combined with high solvent accessibility, means that IDR conformational biases are inherently sensitive to changes in their environment. Here, we argue that IDRs are ideally poised to act as sensors and actuators of cellular physicochemistry. We review the physical principles that underlie IDR sensitivity, the molecular mechanisms that translate this sensitivity to function, and recent studies where environmental sensing by IDRs may play a key role in their downstream function.
Collapse
Affiliation(s)
- David Moses
- Department of Chemistry and Biochemistry, University of California, Merced, CA, USA
| | - Garrett M Ginell
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA; Center for Biomolecular Condensates (CBC), Washington University in St. Louis, St. Louis, MO, USA
| | - Alex S Holehouse
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA; Center for Biomolecular Condensates (CBC), Washington University in St. Louis, St. Louis, MO, USA.
| | - Shahar Sukenik
- Department of Chemistry and Biochemistry, University of California, Merced, CA, USA; Quantitative Systems Biology Program, University of California, Merced, CA, USA.
| |
Collapse
|
21
|
Lv A, Su L, Fan N, Wen W, Wang Z, Zhou P, An Y. Chloroplast-targeted late embryogenesis abundant 1 increases alfalfa tolerance to drought and aluminum. PLANT PHYSIOLOGY 2023; 193:2750-2767. [PMID: 37647543 DOI: 10.1093/plphys/kiad477] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 08/04/2023] [Accepted: 08/08/2023] [Indexed: 09/01/2023]
Abstract
Late embryogenesis-abundant (LEA) proteins are important stress-response proteins that participate in protecting plants against abiotic stresses. Here, we investigated LEA group 3 protein MsLEA1, containing the typically disordered and α-helix structure, via overexpression and RNA interference (RNAi) approaches in alfalfa (Medicago sativa L.) under drought and aluminum (Al) stresses. MsLEA1 was highly expressed in leaves and localized in chloroplasts. Overexpressing MsLEA1 increased alfalfa tolerance to drought and Al stresses, but downregulating MsLEA1 decreased the tolerance. We observed a larger stomatal aperture and a lower water use efficiency in MsLEA1 RNAi lines compared with wild-type plants under drought stress. Photosynthetic rate, Rubisco activity, and superoxide dismutase (SOD) activity increased or decreased in MsLEA1-OE or MsLEA1-RNAi lines, respectively, under drought and Al stress. Copper/zinc SOD (Cu/Zn-SOD), iron SOD (Fe-SOD), and Rubisco large subunit proteins (Ms1770) were identified as binding partners of MsLEA1, which protected chloroplast structure and function under drought and Al stress. These results indicate that MsLEA1 recruits and protects its target proteins (SOD and Ms1770) and increases alfalfa tolerance against drought and Al stresses.
Collapse
Affiliation(s)
- Aimin Lv
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Liantai Su
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Nana Fan
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wuwu Wen
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zheng Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Peng Zhou
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yuan An
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
- Key Laboratory of Urban Agriculture, Ministry of Agriculture, Shanghai 201101, China
| |
Collapse
|
22
|
Zhou C, Niu S, El-Kassaby YA, Li W. Genome-wide identification of late embryogenesis abundant protein family and their key regulatory network in Pinus tabuliformis cold acclimation. TREE PHYSIOLOGY 2023; 43:1964-1985. [PMID: 37565812 DOI: 10.1093/treephys/tpad095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 07/16/2023] [Accepted: 08/03/2023] [Indexed: 08/12/2023]
Abstract
Cold acclimation is a crucial biological process that enables conifers to overwinter safely. The late embryogenesis abundant (LEA) protein family plays a pivotal role in enhancing freezing tolerance during this process. Despite its importance, the identification, molecular functions and regulatory networks of the LEA protein family have not been extensively studied in conifers or gymnosperms. Pinus tabuliformis, a conifer with high ecological and economic values and with high-quality genome sequence, is an ideal candidate for such studies. Here, a total of 104 LEA genes were identified from P. tabuliformis, and we renamed them according to their subfamily group: PtLEA1-PtLEA92 (group LEA1-LEA6), PtSMP1-PtSMP6 (group seed maturation protein) and PtDHN1-PtDHN6 (group Dehydrin). While the sequence structure of P. tabuliformis LEA genes are conserved, their physicochemical properties exhibit unique characteristics within different subfamily groupings. Notably, the abundance of low-temperature responsive elements in PtLEA genes was observed. Using annual rhythm and temperature gradient transcriptome data, PtLEA22 was identified as a key gene that responds to low-temperature induction while conforming to the annual cycle of cold acclimation. Overexpression of PtLEA22 enhanced Arabidopsis freezing tolerance. Furthermore, several transcription factors potentially co-expressed with PtLEA22 were validated using yeast one-hybrid and dual-luciferase assays, revealing that PtDREB1 could directly bind PtLEA22 promoter to positively regulate its expression. These findings reveal the genome-wide characterization of P. tabuliformis LEA genes and their importance in the cold acclimation, while providing a theoretical basis for studying the molecular mechanisms of cold acclimation in conifers.
Collapse
Affiliation(s)
- Chengcheng Zhou
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, 85 Qinghua East Road, Beijing, 100083, China
| | - Shihui Niu
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, 85 Qinghua East Road, Beijing, 100083, China
| | - Yousry A El-Kassaby
- Department of Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia, 2424 Main Mall, Vancouver, BC V6T 1Z4, Canada
| | - Wei Li
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, 85 Qinghua East Road, Beijing, 100083, China
| |
Collapse
|
23
|
Luo Z, Jones D, Philp-Wright S, Putterill J, Snowden KC. Transcriptomic analysis implicates ABA signaling and carbon supply in the differential outgrowth of petunia axillary buds. BMC PLANT BIOLOGY 2023; 23:482. [PMID: 37814235 PMCID: PMC10563266 DOI: 10.1186/s12870-023-04505-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/03/2023] [Indexed: 10/11/2023]
Abstract
BACKGROUND Shoot branching of flowering plants exhibits phenotypic plasticity and variability. This plasticity is determined by the activity of axillary meristems, which in turn is influenced by endogenous and exogenous cues such as nutrients and light. In many species, not all buds on the main shoot develop into branches despite favorable growing conditions. In petunia, basal axillary buds (buds 1-3) typically do not grow out to form branches, while more apical axillary buds (buds 6 and 7) are competent to grow. RESULTS The genetic regulation of buds was explored using transcriptome analyses of petunia axillary buds at different positions on the main stem. To suppress or promote bud outgrowth, we grew the plants in media with differing phosphate (P) levels. Using RNA-seq, we found many (> 5000) differentially expressed genes between bud 6 or 7, and bud 2. In addition, more genes were differentially expressed when we transferred the plants from low P to high P medium, compared with shifting from high P to low P medium. Buds 6 and 7 had increased transcript abundance of cytokinin and auxin-related genes, whereas the basal non-growing buds (bud 2 and to a lesser extent bud 3) had higher expression of strigolactone, abscisic acid, and dormancy-related genes, suggesting the outgrowth of these basal buds was actively suppressed. Consistent with this, the expression of ABA associated genes decreased significantly in apical buds after stimulating growth by switching the medium from low P to high P. Furthermore, comparisons between our data and transcriptome data from other species suggest that the suppression of outgrowth of bud 2 was correlated with a limited supply of carbon to these axillary buds. Candidate genes that might repress bud outgrowth were identified by co-expression analysis. CONCLUSIONS Plants need to balance growth of axillary buds into branches to fit with available resources while allowing some buds to remain dormant to grow after the loss of plant parts or in response to a change in environmental conditions. Here we demonstrate that different buds on the same plant with different developmental potentials have quite different transcriptome profiles.
Collapse
Affiliation(s)
- Zhiwei Luo
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Dan Jones
- NetValue Limited, Hamilton, New Zealand
| | - Sarah Philp-Wright
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Joanna Putterill
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | | |
Collapse
|
24
|
Guo B, Zhang J, Yang C, Dong L, Ye H, Valliyodan B, Nguyen HT, Song L. The Late Embryogenesis Abundant Proteins in Soybean: Identification, Expression Analysis, and the Roles of GmLEA4_19 in Drought Stress. Int J Mol Sci 2023; 24:14834. [PMID: 37834282 PMCID: PMC10573439 DOI: 10.3390/ijms241914834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 09/28/2023] [Accepted: 09/29/2023] [Indexed: 10/15/2023] Open
Abstract
Late embryogenesis abundant (LEA) proteins play important roles in regulating plant growth and responses to various abiotic stresses. In this research, a genome-wide survey was conducted to recognize the LEA genes in Glycine max. A total of 74 GmLEA was identified and classified into nine subfamilies based on their conserved domains and the phylogenetic analysis. Subcellular localization, the duplication of genes, gene structure, the conserved motif, and the prediction of cis-regulatory elements and tissue expression pattern were then conducted to characterize GmLEAs. The expression profile analysis indicated that the expression of several GmLEAs was a response to drought and salt stress. The co-expression-based gene network analysis suggested that soybean LEA proteins may exert regulatory effects through the metabolic pathways. We further explored GnLEA4_19 function in Arabidopsis and the results suggests that overexpressed GmLEA4_19 in Arabidopsis increased plant height under mild or serious drought stress. Moreover, the overexpressed GmLEA4_19 soybean also showed a drought tolerance phenotype. These results indicated that GmLEA4_19 plays an important role in the tolerance to drought and will contribute to the development of the soybean transgenic with enhanced drought tolerance and better yield. Taken together, this study provided insight for better understanding the biological roles of LEA genes in soybean.
Collapse
Affiliation(s)
- Binhui Guo
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (B.G.); (J.Z.); (C.Y.); (L.D.)
- Zhongshan Biological Breeding Laboratory, No. 50 Zhongling Street, Nanjing 210014, China
| | - Jianhua Zhang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (B.G.); (J.Z.); (C.Y.); (L.D.)
| | - Chunhong Yang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (B.G.); (J.Z.); (C.Y.); (L.D.)
| | - Lu Dong
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (B.G.); (J.Z.); (C.Y.); (L.D.)
| | - Heng Ye
- Division of Plant Sciences, University of Missouri, Columbia, MO 65211, USA; (H.Y.); (H.T.N.)
| | - Babu Valliyodan
- Department of Agriculture and Environmental Sciences, Lincoln University, Jefferson City, MO 65101, USA;
| | - Henry T. Nguyen
- Division of Plant Sciences, University of Missouri, Columbia, MO 65211, USA; (H.Y.); (H.T.N.)
| | - Li Song
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (B.G.); (J.Z.); (C.Y.); (L.D.)
- Zhongshan Biological Breeding Laboratory, No. 50 Zhongling Street, Nanjing 210014, China
| |
Collapse
|
25
|
Straube J, Suvarna S, Chen YH, Khanal BP, Knoche M, Debener T. Time course of changes in the transcriptome during russet induction in apple fruit. BMC PLANT BIOLOGY 2023; 23:457. [PMID: 37775771 PMCID: PMC10542230 DOI: 10.1186/s12870-023-04483-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 09/22/2023] [Indexed: 10/01/2023]
Abstract
BACKGROUND Russeting is a major problem in many fruit crops. Russeting is caused by environmental factors such as wounding or moisture exposure of the fruit surface. Despite extensive research, the molecular sequence that triggers russet initiation remains unclear. Here, we present high-resolution transcriptomic data by controlled russet induction at very early stages of fruit development. During Phase I, a patch of the fruit surface is exposed to surface moisture. For Phase II, moisture exposure is terminated, and the formerly exposed surface remains dry. We targeted differentially expressed transcripts as soon as 24 h after russet induction. RESULTS During moisture exposure (Phase I) of 'Pinova' apple, transcripts associated with the cell cycle, cell wall, and cuticle synthesis (SHN3) decrease, while those related to abiotic stress increase. NAC35 and MYB17 were the earliest induced genes during Phase I. They are therefore linked to the initial processes of cuticle microcracking. After moisture removal (Phase II), the expression of genes related to meristematic activity increased (WOX4 within 24 h, MYB84 within 48 h). Genes related to lignin synthesis (MYB52) and suberin synthesis (MYB93, WRKY56) were upregulated within 3 d after moisture removal. WOX4 and AP2B3 are the earliest differentially expressed genes induced in Phase II. They are therefore linked to early events in periderm formation. The expression profiles were consistent between two different seasons and mirrored differences in russet susceptibility in a comparison of cultivars. Furthermore, expression profiles during Phase II of moisture induction were largely identical to those following wounding. CONCLUSIONS The combination of a unique controlled russet induction technique with high-resolution transcriptomic data allowed for the very first time to analyse the formation of cuticular microcracks and periderm in apple fruit immediately after the onset of triggering factors. This data provides valuable insights into the spatial-temporal dynamics of russeting, including the synthesis of cuticles, dedifferentiation of cells, and impregnation of cell walls with suberin and lignin.
Collapse
Affiliation(s)
- Jannis Straube
- Institute of Plant Genetics, Molecular Plant Breeding Section, Leibniz University Hannover, Herrenhäuser Straße 2, 30419, Hannover, Germany
- Institute of Horticultural Production Systems, Fruit Science Section, Leibniz University Hannover, Herrenhäuser Straße 2, 30419, Hannover, Germany
| | - Shreya Suvarna
- Institute of Plant Genetics, Molecular Plant Breeding Section, Leibniz University Hannover, Herrenhäuser Straße 2, 30419, Hannover, Germany
| | - Yun-Hao Chen
- Institute of Horticultural Production Systems, Fruit Science Section, Leibniz University Hannover, Herrenhäuser Straße 2, 30419, Hannover, Germany
| | - Bishnu P Khanal
- Institute of Horticultural Production Systems, Fruit Science Section, Leibniz University Hannover, Herrenhäuser Straße 2, 30419, Hannover, Germany
| | - Moritz Knoche
- Institute of Horticultural Production Systems, Fruit Science Section, Leibniz University Hannover, Herrenhäuser Straße 2, 30419, Hannover, Germany
| | - Thomas Debener
- Institute of Plant Genetics, Molecular Plant Breeding Section, Leibniz University Hannover, Herrenhäuser Straße 2, 30419, Hannover, Germany.
| |
Collapse
|
26
|
Field S, Jang GJ, Dean C, Strader LC, Rhee SY. Plants use molecular mechanisms mediated by biomolecular condensates to integrate environmental cues with development. THE PLANT CELL 2023; 35:3173-3186. [PMID: 36879427 PMCID: PMC10473230 DOI: 10.1093/plcell/koad062] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 02/01/2023] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
This review highlights recent literature on biomolecular condensates in plant development and discusses challenges for fully dissecting their functional roles. Plant developmental biology has been inundated with descriptive examples of biomolecular condensate formation, but it is only recently that mechanistic understanding has been forthcoming. Here, we discuss recent examples of potential roles biomolecular condensates play at different stages of the plant life cycle. We group these examples based on putative molecular functions, including sequestering interacting components, enhancing dwell time, and interacting with cytoplasmic biophysical properties in response to environmental change. We explore how these mechanisms could modulate plant development in response to environmental inputs and discuss challenges and opportunities for further research into deciphering molecular mechanisms to better understand the diverse roles that biomolecular condensates exert on life.
Collapse
Affiliation(s)
- Sterling Field
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA
| | - Geng-Jen Jang
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Caroline Dean
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Lucia C Strader
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Seung Y Rhee
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA
| |
Collapse
|
27
|
Szlachtowska Z, Rurek M. Plant dehydrins and dehydrin-like proteins: characterization and participation in abiotic stress response. FRONTIERS IN PLANT SCIENCE 2023; 14:1213188. [PMID: 37484455 PMCID: PMC10358736 DOI: 10.3389/fpls.2023.1213188] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 06/12/2023] [Indexed: 07/25/2023]
Abstract
Abiotic stress has a significant impact on plant growth and development. It causes changes in the subcellular organelles, which, due to their stress sensitivity, can be affected. Cellular components involved in the abiotic stress response include dehydrins, widely distributed proteins forming a class II of late embryogenesis abundant protein family with characteristic properties including the presence of evolutionarily conserved sequence motifs (including lysine-rich K-segment, N-terminal Y-segment, and often phosphorylated S motif) and high hydrophilicity and disordered structure in the unbound state. Selected dehydrins and few poorly characterized dehydrin-like proteins participate in cellular stress acclimation and are also shown to interact with organelles. Through their functioning in stabilizing biological membranes and binding reactive oxygen species, dehydrins and dehydrin-like proteins contribute to the protection of fragile organellar structures under adverse conditions. Our review characterizes the participation of plant dehydrins and dehydrin-like proteins (including some organellar proteins) in plant acclimation to diverse abiotic stress conditions and summarizes recent updates on their structure (the identification of dehydrin less conserved motifs), classification (new proposed subclasses), tissue- and developmentally specific accumulation, and key cellular activities (including organellar protection under stress acclimation). Recent findings on the subcellular localization (with emphasis on the mitochondria and plastids) and prospective applications of dehydrins and dehydrin-like proteins in functional studies to alleviate the harmful stress consequences by means of plant genetic engineering and a genome editing strategy are also discussed.
Collapse
|
28
|
Wang X, Liu H, Yu Z, Zhu W, Zhang L, Wang B. Characterization of wheat Wrab18 gene promoter and expression analysis under abiotic stress. Mol Biol Rep 2023; 50:5777-5789. [PMID: 37219670 DOI: 10.1007/s11033-023-08485-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 04/25/2023] [Indexed: 05/24/2023]
Abstract
BACKGROUND Promoters play key roles in plant gene expression in complex and varied natural environments. The type and amount of cis-acting elements in the promoter sequence tend to indicate the response of genes to induction factors. WRAB18 is a group III member of the late embryogenesis abundant (LEA) protein family that performs multiple functions in plant stress physiology. To elucidate the particularly biological effects of WRAB18 on stress, exploration of its promoter sequence is necessary. METHODS AND RESULTS In this study, the full-length and promoter sequences of Wrab18 were isolated from the Zhengyin 1 cultivar of Triticum aestivum. The gene sequences and cis-acting elements in the promoter were analyzed using the Plant Promoter Database and bioinformatics methods. The results showed that Wrab18 possessed one intron with 100 bp, the promoter sequence contained various stress-related cis-acting elements, and the functionality of the promoter was checked using green fluorescent protein (GFP) marker protein expression by transient assay in Nicotiana benthamiana. Furthermore, based on promoter prediction analysis, quantitative real-time fluorescent PCR results confirmed the response of gene expression levels to stress factors. CONCLUSIONS In summary, the promoter sequence of Wrab18 plays a role in plant stress responses, contains multiple cis-acting elements, and provides insights into the role of WRAB18 in plant resilience to stress. This study has guiding significance for further studies of gene function and mechanism of action, and lays a theoretical foundation for improving wheat quality.
Collapse
Affiliation(s)
- Xiaoyu Wang
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, Shandong, P. R. China
| | - Hao Liu
- College of Life Sciences, State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest Agriculture & Forestry University, Yangling, Shannxi, P. R. China
| | - Zhengyang Yu
- College of Life Sciences, State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest Agriculture & Forestry University, Yangling, Shannxi, P. R. China
| | - Weining Zhu
- College of Life Sciences, Northwest University, Xi'an, Shannxi, P. R. China
| | - Linsheng Zhang
- College of Life Sciences, State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest Agriculture & Forestry University, Yangling, Shannxi, P. R. China
| | - Bo Wang
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, Shandong, P. R. China.
| |
Collapse
|
29
|
Feng X, Li G, Wu W, Lyu H, Wang J, Liu C, Zhong C, Shi S, He Z. Expansion and adaptive evolution of the WRKY transcription factor family in Avicennia mangrove trees. MARINE LIFE SCIENCE & TECHNOLOGY 2023; 5:155-168. [PMID: 37275537 PMCID: PMC10232687 DOI: 10.1007/s42995-023-00177-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 04/26/2023] [Indexed: 06/07/2023]
Abstract
Mangroves are adapted to intertidal zones, which present extreme environmental conditions. WRKYs are among the most prominent transcription factors (TFs) in higher plants and act through various interconnected networks to regulate responses to multiple abiotic stressors. Here, based on omic data, we investigated the landscape and evolutionary patterns of WRKYs in the main mangrove genus Avicennia. We found that both the number and the proportion of TFs and WRKYs in Avicennia species exceeded their inland relatives, indicating a significant expansion of WRKYs in Avicennia. We identified 109 WRKY genes in the representative species Avicennia marina. Comparative genomic analysis showed that two recent whole-genome duplication (WGD) events played a critical role in the expansion of WRKYs, and 88% of Avicennia marina WRKYs (AmWRKYs) have been retained following these WGDs. Applying comparative transcriptomics on roots under experimental salt gradients, we inferred that there is high divergence in the expression of WGD-retained AmWRKYs. Moreover, we found that the expression of 16 AmWRKYs was stable between freshwater and moderately saline water but increased when the trees were exposed to high salinity. In particular, 14 duplicates were retained following the two recent WGD events, indicating potential neo- and sub-functionalization. We also found that WRKYs could interact with other upregulated genes involved in signalling pathways and natural antioxidant biosynthesis to enhance salt tolerance, contributing to the adaptation to intertidal zones. Our omic data of the WRKY family in A. marina broadens the understanding of how a TF family relates to the adaptive evolution of mangroves. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-023-00177-y.
Collapse
Affiliation(s)
- Xiao Feng
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, 510275 China
- Greater Bay Area Institute of Precision Medicine (Guangzhou), Fudan University, Guangzhou, 511458 China
| | - Guohong Li
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, 510275 China
| | - Weihong Wu
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, 510275 China
| | - Haomin Lyu
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, 510275 China
| | - Jiexin Wang
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, 510275 China
| | - Cong Liu
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, 510275 China
| | - Cairong Zhong
- Hainan Academy of Forestry (Hainan Academy of Mangrove), Haikou, 571100 China
| | - Suhua Shi
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, 510275 China
| | - Ziwen He
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, 510275 China
| |
Collapse
|
30
|
Pagano A, Macovei A, Balestrazzi A. Molecular dynamics of seed priming at the crossroads between basic and applied research. PLANT CELL REPORTS 2023; 42:657-688. [PMID: 36780009 PMCID: PMC9924218 DOI: 10.1007/s00299-023-02988-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
The potential of seed priming is still not fully exploited. Our limited knowledge of the molecular dynamics of seed pre-germinative metabolism is the main hindrance to more effective new-generation techniques. Climate change and other recent global crises are disrupting food security. To cope with the current demand for increased food, feed, and biofuel production, while preserving sustainability, continuous technological innovation should be provided to the agri-food sector. Seed priming, a pre-sowing technique used to increase seed vigor, has become a valuable tool due to its potential to enhance germination and stress resilience under changing environments. Successful priming protocols result from the ability to properly act on the seed pre-germinative metabolism and stimulate events that are crucial for seed quality. However, the technique still requires constant optimization, and researchers are committed to addressing some key open questions to overcome such drawbacks. In this review, an update of the current scientific and technical knowledge related to seed priming is provided. The rehydration-dehydration cycle associated with priming treatments can be described in terms of metabolic pathways that are triggered, modulated, or turned off, depending on the seed physiological stage. Understanding the ways seed priming affects, either positively or negatively, such metabolic pathways and impacts gene expression and protein/metabolite accumulation/depletion represents an essential step toward the identification of novel seed quality hallmarks. The need to expand the basic knowledge on the molecular mechanisms ruling the seed response to priming is underlined along with the strong potential of applied research on primed seeds as a source of seed quality hallmarks. This route will hasten the implementation of seed priming techniques needed to support sustainable agriculture systems.
Collapse
Affiliation(s)
- Andrea Pagano
- Department of Biology and Biotechnology 'L. Spallanzani', Via Ferrata 1, 27100, Pavia, Italy
| | - Anca Macovei
- Department of Biology and Biotechnology 'L. Spallanzani', Via Ferrata 1, 27100, Pavia, Italy
- National Biodiversity Future Center (NBFC), 90133, Palermo, Italy
| | - Alma Balestrazzi
- Department of Biology and Biotechnology 'L. Spallanzani', Via Ferrata 1, 27100, Pavia, Italy.
- National Biodiversity Future Center (NBFC), 90133, Palermo, Italy.
| |
Collapse
|
31
|
VanBuren R, Wai CM, Giarola V, Župunski M, Pardo J, Kalinowski M, Grossmann G, Bartels D. Core cellular and tissue-specific mechanisms enable desiccation tolerance in Craterostigma. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:231-245. [PMID: 36843450 DOI: 10.1111/tpj.16165] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 01/12/2023] [Accepted: 02/17/2023] [Indexed: 05/10/2023]
Abstract
Resurrection plants can survive prolonged life without water (anhydrobiosis) in regions with seasonal drying. This desiccation tolerance requires the coordination of numerous cellular processes across space and time, and individual plant tissues face unique constraints related to their function. Here, we analyzed the complex, octoploid genome of the model resurrection plant Craterostigma (C. plantagineum), and surveyed spatial and temporal expression dynamics to identify genetic elements underlying desiccation tolerance. Homeologous genes within the Craterostigma genome have divergent expression profiles, suggesting the subgenomes contribute differently to desiccation tolerance traits. The Craterostigma genome contains almost 200 tandemly duplicated early light-induced proteins, a hallmark trait of desiccation tolerance, with massive upregulation under water deficit. We identified a core network of desiccation-responsive genes across all tissues, but observed almost entirely unique expression dynamics in each tissue during recovery. Roots and leaves have differential responses related to light and photoprotection, autophagy and nutrient transport, reflecting their divergent functions. Our findings highlight a universal set of likely ancestral desiccation tolerance mechanisms to protect cellular macromolecules under anhydrobiosis, with secondary adaptations related to tissue function.
Collapse
Affiliation(s)
- Robert VanBuren
- Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA
- Plant Resilience Institute, Michigan State University, East Lansing, MI, 48824, USA
| | - Ching Man Wai
- Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA
- Plant Resilience Institute, Michigan State University, East Lansing, MI, 48824, USA
| | | | - Milan Župunski
- Institute of Cell and Interaction Biology, CEPLAS, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Jeremy Pardo
- Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA
- Plant Resilience Institute, Michigan State University, East Lansing, MI, 48824, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Michael Kalinowski
- Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA
| | - Guido Grossmann
- Institute of Cell and Interaction Biology, CEPLAS, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Dorothea Bartels
- IMBIO, University of Bonn, Kirschallee 1, D-53115, Bonn, Germany
| |
Collapse
|
32
|
Jia JS, Ge N, Wang QY, Zhao LT, Chen C, Chen JW. Genome-wide identification and characterization of members of the LEA gene family in Panax notoginseng and their transcriptional responses to dehydration of recalcitrant seeds. BMC Genomics 2023; 24:126. [PMID: 36932328 PMCID: PMC10024439 DOI: 10.1186/s12864-023-09229-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 03/06/2023] [Indexed: 03/19/2023] Open
Abstract
BACKGROUND Late embryogenesis abundant (LEA) proteins play an important role in dehydration process of seed maturation. The seeds of Panax notoginseng (Burkill) F. H. Chen are typically characterized with the recalcitrance and are highly sensitive to dehydration. However, it is not very well known about the role of LEA proteins in response to dehydration stress in P. notoginseng seeds. We will perform a genome-wide analysis of the LEA gene family and their transcriptional responses to dehydration stress in recalcitrant P. notoginseng seeds. RESULTS In this study, 61 LEA genes were identified from the P. notoginseng genome, and they were renamed as PnoLEA. The PnoLEA genes were classified into seven subfamilies based on the phylogenetic relationships, gene structure and conserved domains. The PnoLEA genes family showed relatively few introns and was highly conserved. Unexpectedly, the LEA_6 subfamily was not found, and the LEA_2 subfamily contained 46 (75.4%) members. Within 19 pairs of fragment duplication events, among them 17 pairs were LEA_2 subfamily. In addition, the expression of the PnoLEA genes was obviously induced under dehydration stress, but the germination rate of P. notoginseng seeds decreased as the dehydration time prolonged. CONCLUSIONS We found that the lack of the LEA_6 subfamily, the expansion of the LEA_2 subfamily and low transcriptional levels of most PnoLEA genes might be implicated in the recalcitrant formation of P. notoginseng seeds. LEA proteins are essential in the response to dehydration stress in recalcitrant seeds, but the protective effect of LEA protein is not efficient. These results could improve our understanding of the function of LEA proteins in the response of dehydration stress and their contributions to the formation of seed recalcitrance.
Collapse
Affiliation(s)
- Jin-Shan Jia
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
- National & Local Joint Engineering Research Center On Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Fengyuan Road, Panlong District, Kunming, 650201, Yunnan, China
| | - Na Ge
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
- National & Local Joint Engineering Research Center On Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Fengyuan Road, Panlong District, Kunming, 650201, Yunnan, China
| | - Qing-Yan Wang
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
- National & Local Joint Engineering Research Center On Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Fengyuan Road, Panlong District, Kunming, 650201, Yunnan, China
| | - Li-Ting Zhao
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
- National & Local Joint Engineering Research Center On Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Fengyuan Road, Panlong District, Kunming, 650201, Yunnan, China
| | - Cui Chen
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
- National & Local Joint Engineering Research Center On Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Fengyuan Road, Panlong District, Kunming, 650201, Yunnan, China
| | - Jun-Wen Chen
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, 650201, Yunnan, China.
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, Yunnan, China.
- National & Local Joint Engineering Research Center On Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Fengyuan Road, Panlong District, Kunming, 650201, Yunnan, China.
| |
Collapse
|
33
|
Rizzo AJ, Palacios MB, Vale EM, Zelada AM, Silveira V, Burrieza HP. Snapshot of four mature quinoa ( Chenopodium quinoa) seeds: a shotgun proteomics analysis with emphasis on seed maturation, reserves and early germination. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:319-334. [PMID: 37033760 PMCID: PMC10073371 DOI: 10.1007/s12298-023-01295-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 02/10/2023] [Accepted: 03/08/2023] [Indexed: 06/19/2023]
Abstract
Chenopodium quinoa Willd. is a crop species domesticated over 5000 years ago. This species is highly diverse, with a geographical distribution that covers more than 5000 km from Colombia to Chile, going through a variety of edaphoclimatic conditions. Quinoa grains have great nutritional quality, raising interest at a worldwide level. In this work, by using shotgun proteomics and in silico analysis, we present an overview of mature quinoa seed proteins from a physiological context and considering the process of seed maturation and future seed germination. For this purpose, we selected grains from four contrasting quinoa cultivars (Amarilla de Maranganí, Chadmo, Sajama and Nariño) with different edaphoclimatic and geographical origins. The results give insight on the most important metabolic pathways for mature quinoa seeds including: starch synthesis, protein bodies and lipid bodies composition, reserves and their mobilization, redox homeostasis, and stress related proteins like heat-shock proteins (HSPs) and late embryogenesis abundant proteins (LEAs), as well as evidence for capped and uncapped mRNA translation. LEAs present in our analysis show a specific pattern of expression matching that of other species. Overall, this work presents a complete snapshot of quinoa seeds physiological context, providing a reference point for further studies. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-023-01295-8.
Collapse
Affiliation(s)
- Axel Joel Rizzo
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
- Laboratorio de Biología del Desarrollo de las Plantas, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - María Belén Palacios
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
- Laboratorio de Biología del Desarrollo de las Plantas, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Ellen Moura Vale
- Laboratório de Biotecnologia, Centro de Biociências e Biotecnologia (CBB), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos Dos Goytacazes, RJ Brazil
- Unidade de Biologia Integrativa, Setor de Genômica e Proteômica, UENF, Campos Dos Goytacazes, RJ Brazil
| | - Alicia Mercedes Zelada
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
- Laboratorio de Agrobiotecnología, Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Vanildo Silveira
- Laboratório de Biotecnologia, Centro de Biociências e Biotecnologia (CBB), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos Dos Goytacazes, RJ Brazil
- Unidade de Biologia Integrativa, Setor de Genômica e Proteômica, UENF, Campos Dos Goytacazes, RJ Brazil
| | - Hernán Pablo Burrieza
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
- Laboratorio de Biología del Desarrollo de las Plantas, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
34
|
Late Embryogenesis Abundant Proteins Contribute to the Resistance of Toxoplasma gondii Oocysts against Environmental Stresses. mBio 2023; 14:e0286822. [PMID: 36809045 PMCID: PMC10128015 DOI: 10.1128/mbio.02868-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023] Open
Abstract
Toxoplasma gondii oocysts, which are shed in large quantities in the feces from infected felines, are very stable in the environment, resistant to most inactivation procedures, and highly infectious. The oocyst wall provides an important physical barrier for sporozoites contained inside oocysts, protecting them from many chemical and physical stressors, including most inactivation procedures. Furthermore, sporozoites can withstand large temperature changes, even freeze-thawing, as well as desiccation, high salinity, and other environmental insults; however, the genetic basis for this environmental resistance is unknown. Here, we show that a cluster of four genes encoding Late Embryogenesis Abundant (LEA)-related proteins are required to provide Toxoplasma sporozoites resistance to environmental stresses. Toxoplasma LEA-like genes (TgLEAs) exhibit the characteristic features of intrinsically disordered proteins, explaining some of their properties. Our in vitro biochemical experiments using recombinant TgLEA proteins show that they have cryoprotective effects on the oocyst-resident lactate dehydrogenase enzyme and that induced expression in E. coli of two of them leads to better survival after cold stress. Oocysts from a strain in which the four LEA genes were knocked out en bloc were significantly more susceptible to high salinity, freezing, and desiccation compared to wild-type oocysts. We discuss the evolutionary acquisition of LEA-like genes in Toxoplasma and other oocyst-producing apicomplexan parasites of the Sarcocystidae family and discuss how this has likely contributed to the ability of sporozoites within oocysts to survive outside the host for extended periods. Collectively, our data provide a first molecular detailed view on a mechanism that contributes to the remarkable resilience of oocysts against environmental stresses. IMPORTANCE Toxoplasma gondii oocysts are highly infectious and may survive in the environment for years. Their resistance against disinfectants and irradiation has been attributed to the oocyst and sporocyst walls by acting as physical and permeability barriers. However, the genetic basis for their resistance against stressors like changes in temperature, salinity, or humidity, is unknown. We show that a cluster of four genes encoding Toxoplasma Late Embryogenesis Abundant (TgLEA)-related proteins are important for this resistance to environmental stresses. TgLEAs have features of intrinsically disordered proteins, explaining some of their properties. Recombinant TgLEA proteins show cryoprotective effects on the parasite's lactate dehydrogenase, an abundant enzyme in oocysts, and expression in E. coli of two TgLEAs has a beneficial effect on growth after cold stress. Moreover, oocysts from a strain lacking all four TgLEA genes were more susceptible to high salinity, freezing, and desiccation compared to wild-type oocysts, highlighting the importance of the four TgLEAs for oocyst resilience.
Collapse
|
35
|
Romero-Pérez SP, Covarrubias AA, Campos F. A simple method to purify intrinsically disordered proteins by adjusting trichloroacetic acid concentration. Protein Expr Purif 2023; 202:106183. [PMID: 36182030 DOI: 10.1016/j.pep.2022.106183] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 09/09/2022] [Accepted: 09/19/2022] [Indexed: 10/14/2022]
Abstract
Late embryogenic abundant proteins (LEA) are a group of proteins that accumulate during the desiccation phase of the seed and in response to water deficit in the plant. Most LEA proteins are highly hydrophilic and have physicochemical characteristics similar to those of intrinsically disordered proteins (IDPs). Although the function of LEA proteins is not fully understood, there is evidence indicating that these proteins have an important role in reducing the effects caused by water limitation. The analysis of the biochemical and physicochemical characteristics of LEA proteins is crucial to determine their function, for which it is necessary to obtain large amounts of pure protein. Within this current work, we have improved our previous TCA purification method used for basic recombinant LEA proteins to obtain acidic IDPs, the method reported here is fast and simple and is based on the enrichment of the protein of interest by boiling of the bacterial extract followed by a precipitation with different concentrations of TCA and salt. This protocol was applied to acidic and basic IDPs, represented by eight recombinant LEAs, resulting in milligram quantities of highly enriched proteins, which keep their in vitro functionality.
Collapse
Affiliation(s)
- Sofía P Romero-Pérez
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Cuernavaca, Morelos, 62210, México
| | - Alejandra A Covarrubias
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Cuernavaca, Morelos, 62210, México
| | - Francisco Campos
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Cuernavaca, Morelos, 62210, México.
| |
Collapse
|
36
|
Kasianchuk N, Rzymski P, Kaczmarek Ł. The biomedical potential of tardigrade proteins: A review. Biomed Pharmacother 2023; 158:114063. [PMID: 36495665 DOI: 10.1016/j.biopha.2022.114063] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 11/25/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Tardigrades are ubiquitous microinvertebrates exhibiting extreme tolerance to various environmental stressors like low and high temperatures, lack of water, or high radiation. Although exact pathways behind the tardigrade extremotolerance are yet to be elucidated, some molecules involved have been identified. Their evidenced properties may lead to novel opportunities in biomedical and pharmacological development. This review aims to present the general characteristics of tardigrade intrinsically disordered proteins (TDPs: Dsup, CAHS, SAHS, MAHS) and late embryogenesis-abundant proteins (LEA) and provide an updated overview of their features and relevance for potential use in biomedicine and pharmacology. The Dsup reveals a promising action in attenuating oxidative stress, DNA damage, and pyrimidine dimerization, as well as increasing radiotolerance in transfected human cells. Whether Dsup can perform these functions when delivered externally is yet to be understood by in vivo preclinical testing. In turn, CAHS and SAHS demonstrate properties that could benefit the preservation of pharmaceuticals (e.g., vaccines) and biomaterials (e.g., cells). Selected CAHS proteins can also serve as inspiration for designing novel anti-apoptotic agents. The LEA proteins also reveal promising properties to preserve desiccated biomaterials and can act as anti-osmotic agents. In summary, tardigrade molecules reveal several potential biomedical applications advocating further research and development. The challenge of extracting larger amounts of these molecules can be solved with genetic engineering and synthetic biology tools. With new species identified each year and ongoing studies on their extremotolerance, progress in the medical use of tardigrade proteins is expected shortly.
Collapse
Affiliation(s)
- Nadiia Kasianchuk
- Department of Animal Taxonomy and Ecology, Faculty of Biology, Adam Mickiewicz University in Poznań, Poznań, Poland; Faculty of Pharmacy, Bogomolets Nationals Medical University, Kyiv, Ukraine.
| | - Piotr Rzymski
- Department of Environmental Medicine, Poznan University of Medical Sciences, Poznan, Poland; Integrated Science Association (ISA), Universal Scientific Education and Research Network (USERN), Poznań, Poland
| | - Łukasz Kaczmarek
- Department of Animal Taxonomy and Ecology, Faculty of Biology, Adam Mickiewicz University in Poznań, Poznań, Poland
| |
Collapse
|
37
|
Genome-wide study and functional characterization elucidates the potential association of late embryogenesis abundant (LEA) genes with lotus seed development. Int J Biol Macromol 2023; 226:1-13. [PMID: 36481329 DOI: 10.1016/j.ijbiomac.2022.11.301] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 11/18/2022] [Accepted: 11/25/2022] [Indexed: 12/12/2022]
Abstract
Late embryogenesis abundant (LEA) proteins are extremely hydrophilic proteins imperatively associated with plant growth and development, as well as cell protection from abiotic stress. However, the genome-wide characterization of LEA gene family remains limited, especially in aquatic species such as lotus (Nelumbo spp.). Here, 57 putative LEA genes, including 28 NnLEAs and 29 NlLEAs were identified in the N.nucifera and N.lutea genomes, respectively. A total of 27 homologous LEA gene pairs were identified, indicating high degree of sequence homologies between the two Nelumbo species. Secondary structure prediction indicated high prevalence of alpha (α) helix structure among LEA proteins in the LEA_1, LEA_4, and SMP groups. Screening of putative promoter cis-elements revealed that NnLEA genes were involved in diverse biological processes. Most NnLEA genes were predominantly expressed in the late cotyledons and plumules development stages, suggesting their potential vital roles in lotus seed maturation. In addition, genes co-expressed with NnLEAs were involved in ABA signaling, seed maturation, and development processes. Overall, this study provides new insights for the in-depth understanding of the functions of NnLEA proteins in lotus seed development, and could act as a useful reference for the molecular breeding of seeds with prolonged lifespan.
Collapse
|
38
|
Dirk LMA, Zhao T, May J, Li T, Han Q, Zhang Y, Sahib MR, Downie AB. Alterations in Carbohydrate Quantities in Freeze-Dried, Relative to Fresh or Frozen Maize Leaf Disks. Biomolecules 2023; 13:biom13010148. [PMID: 36671533 PMCID: PMC9855396 DOI: 10.3390/biom13010148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/27/2022] [Accepted: 01/09/2023] [Indexed: 01/13/2023] Open
Abstract
For various reasons, leaves are occasionally lyophilized prior to storage at -80 °C and preparing extracts. Soluble carbohydrate identity and quantity from maize leaf disks were ascertained in two separate years using anion exchange HPLC with pulsed electrochemical detection. Analyses were made from disks after freezing in liquid nitrogen with or without subsequent lyophilization (both years) or directly after removal from plants with or without lyophilization (only in the second year). By adding the lyophilizing step, galactose content consistently increased and, frequently, so did galactoglycerols. The source of the galactose increase with the added lyophilizing step was not due to metabolizing raffinose, as the raffinose synthase (rafs) null mutant leaves, which do not make that trisaccharide, also had a similar increase in galactose content with lyophilization. Apparently, the ester linkages attaching free fatty acids to galactoglycerolipids of the chloroplast are particularly sensitive to cleavage during lyophilization, resulting in increases in galactoglycerols. Regardless of the galactose source, a systematic error is introduced for carbohydrate (and, most likely, also chloroplast mono- or digalactosyldiacylglycerol) amounts when maize leaf samples are lyophilized prior to extraction. The recognition of lyophilization as a source of galactose increase provides a cautionary note for investigators of soluble carbohydrates.
Collapse
Affiliation(s)
- Lynnette M. A. Dirk
- Department of Horticulture, Seed Biology Group, College of Agriculture, Food and Environment, University of Kentucky, 1405 Veterans Drive, Lexington, KY 40546, USA
| | - Tianyong Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, Department of Biochemistry and Molecular Biology, College of Life Science, Northwest Agriculture and Forestry University, Yangling, Xianyang 712100, China
| | - John May
- Department of Plant and Soil Sciences, College of Agriculture, Food and Environment, University of Kentucky, N-222A Ag Science North, Lexington, KY 40546, USA
| | - Tao Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, Department of Biochemistry and Molecular Biology, College of Life Science, Northwest Agriculture and Forestry University, Yangling, Xianyang 712100, China
- Collaborative Innovation Center of Henan Grain Crops, State Key Laboratory of Wheat and Maize Crop Science, College of Life Science, Henan Agriculture University, Zhengzhou 450002, China
| | - Qinghui Han
- State Key Laboratory of Crop Stress Biology for Arid Areas, Department of Biochemistry and Molecular Biology, College of Life Science, Northwest Agriculture and Forestry University, Yangling, Xianyang 712100, China
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Agriculture and Food Science, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Yumin Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Department of Biochemistry and Molecular Biology, College of Life Science, Northwest Agriculture and Forestry University, Yangling, Xianyang 712100, China
| | - Mohammad R. Sahib
- Department of Horticulture, Seed Biology Group, College of Agriculture, Food and Environment, University of Kentucky, 1405 Veterans Drive, Lexington, KY 40546, USA
- College of Agriculture, Al-Qasim Green University, Babylon 00964, Iraq
| | - Allan Bruce Downie
- Department of Horticulture, Seed Biology Group, College of Agriculture, Food and Environment, University of Kentucky, 1405 Veterans Drive, Lexington, KY 40546, USA
- Correspondence: ; Tel.: +1-(859)-257-5237
| |
Collapse
|
39
|
Ng YK, Ikeno S, Kadhim Almansoori AK, Muhammad I, Abdul Rahim R. Characterization of Sphingobacterium sp. Ab3 Lipase and Its Coexpression with LEA Peptides. Microbiol Spectr 2022; 10:e0142221. [PMID: 36314920 PMCID: PMC9769720 DOI: 10.1128/spectrum.01422-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 09/23/2022] [Indexed: 12/24/2022] Open
Abstract
Sphingobacterium sp. is a yellowish Gram-negative bacterium that is usually characterized by high concentrations of sphingophospholipids as lipid components. As microbial enzymes have been in high demand in industrial fields in the past few decades, this study hopes to provide significant information on lipase activities of Sphingobacterium sp., since limited studies have been conducted on the Sphingobacterium sp. lipase. A microbe from one collected Artic soil sample, ARC4, was identified as psychrotolerant Sphingobacterium sp., and it could grow in temperatures ranging from 0°C to 24°C. The expression of Sphingobacterium sp. lipase was successfully performed through an efficient approach of utilizing mutated group 3 late embryogenesis abundant (G3LEA) proteins developed from Polypedilum vanderplanki. Purified enzyme was characterized using a few parameters, such as temperature, pH, metal ion cofactors, organic solvents, and detergents. The expressed enzyme is reported to be cold adapted and has the capability to work efficiently under neutral pH (pH 5.0 to 7.0), cofactors like Na+ ion, and the water-like solvent methanol. Addition of nonionic detergents greatly enhanced the activity of purified enzyme. IMPORTANCE The mechanism of action of LEA proteins has remained unknown to many; in this study we reveal their presence and improved protein expression due to the molecular shielding effect reported by others. This paper should be regarded as a useful example of using such proteins to influence an existing expression system to produce difficult-to-express proteins.
Collapse
Affiliation(s)
- You Kiat Ng
- School of Biological Sciences, Universiti Sains Malaysia, Penang, Malaysia
| | - Shinya Ikeno
- Department of Biological Functions and Engineering, Graduate School of Life Science and System Engineering, Kyushu Institute of Technology, Kitakyushu, Japan
| | | | - Ibrahim Muhammad
- School of Biological Sciences, Universiti Sains Malaysia, Penang, Malaysia
- Department of Science Lab. Technology, Ramat Polytechnic Maiduguri, Maiduguri, Nigeria
| | | |
Collapse
|
40
|
Jia C, Guo B, Wang B, Li X, Yang T, Li N, Wang J, Yu Q. The LEA gene family in tomato and its wild relatives: genome-wide identification, structural characterization, expression profiling, and role of SlLEA6 in drought stress. BMC PLANT BIOLOGY 2022; 22:596. [PMID: 36536303 PMCID: PMC9762057 DOI: 10.1186/s12870-022-03953-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Late embryogenesis abundant (LEA) proteins are widely distributed in higher plants and play crucial roles in regulating plant growth and development processes and resisting abiotic stress. Cultivated tomato (Solanum lycopersicum) is an important vegetable crop worldwide; however, its growth, development, yield, and quality are currently severely constrained by abiotic stressors. In contrast, wild tomato species are more tolerant to abiotic stress and can grow normally in extreme environments. The main objective of this study was to identify, characterize, and perform gene expression analysis of LEA protein families from cultivated and wild tomato species to mine candidate genes and determine their potential role in abiotic stress tolerance in tomatoes. RESULTS Total 60, 69, 65, and 60 LEA genes were identified in S. lycopersicum, Solanum pimpinellifolium, Solanum pennellii, and Solanum lycopersicoides, respectively. Characterization results showed that these genes could be divided into eight clusters, with the LEA_2 cluster having the most members. Most LEA genes had few introns and were non-randomly distributed on chromosomes; the promoter regions contained numerous cis-acting regulatory elements related to abiotic stress tolerance and phytohormone responses. Evolutionary analysis showed that LEA genes were highly conserved and that the segmental duplication event played an important role in evolution of the LEA gene family. Transcription and expression pattern analyses revealed different regulatory patterns of LEA genes between cultivated and wild tomato species under normal conditions. Certain S. lycopersicum LEA (SlLEA) genes showed similar expression patterns and played specific roles under different abiotic stress and phytohormone treatments. Gene ontology and protein interaction analyses showed that most LEA genes acted in response to abiotic stimuli and water deficit. Five SlLEA proteins were found to interact with 11 S. lycopersicum WRKY proteins involved in development or resistance to stress. Virus-induced gene silencing of SlLEA6 affected the antioxidant and reactive oxygen species defense systems, increased the degree of cellular damage, and reduced drought resistance in S. lycopersicum. CONCLUSION These findings provide comprehensive information on LEA proteins in cultivated and wild tomato species and their possible functions under different abiotic and phytohormone stresses. The study systematically broadens our current understanding of LEA proteins and candidate genes and provides a theoretical basis for future functional studies aimed at improving stress resistance in tomato.
Collapse
Affiliation(s)
- Chunping Jia
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences (Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables), Urumqi, China
- College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Bin Guo
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences (Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables), Urumqi, China
- College of Computer and Information Engineering, Xinjiang Agricultural University, Urumqi, China
| | - Baike Wang
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences (Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables), Urumqi, China
| | - Xin Li
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences (Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables), Urumqi, China
- College of Computer and Information Engineering, Xinjiang Agricultural University, Urumqi, China
| | - Tao Yang
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences (Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables), Urumqi, China
| | - Ning Li
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences (Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables), Urumqi, China
| | - Juan Wang
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences (Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables), Urumqi, China.
| | - Qinghui Yu
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences (Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables), Urumqi, China.
- College of Life Science and Technology, Xinjiang University, Urumqi, China.
| |
Collapse
|
41
|
Vuosku J, Martz F, Hallikainen V, Rautio P. Changing winter climate and snow conditions induce various transcriptional stress responses in Scots pine seedlings. FRONTIERS IN PLANT SCIENCE 2022; 13:1050903. [PMID: 36570907 PMCID: PMC9780549 DOI: 10.3389/fpls.2022.1050903] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
In northern boreal forests the warming winter climate leads to more frequent snowmelt, rain-on-snow events and freeze-thaw cycles. This may be harmful or even lethal for tree seedlings that spend even a half of the year under snow. We conducted a snow cover manipulation experiment in a natural forest to find out how changing snow conditions affect young Scots pine (Pinus sylvestris L.) seedlings. The ice encasement (IE), absence of snow (NoSNOW) and snow compaction (COMP) treatments affected ground level temperature, ground frost and subnivean gas concentrations compared to the ambient snow cover (AMB) and led to the increased physical damage and mortality of seedlings. The expression responses of 28 genes related to circadian clock, aerobic and anaerobic energy metabolism, carbohydrate metabolism and stress protection revealed that seedlings were exposed to different stresses in a complex way depending on the thickness and quality of the snow cover. The IE treatment caused hypoxic stress and probably affected roots which resulted in reduced water uptake in the beginning of the growing season. Without protective snowpack in NoSNOW seedlings suffered from cold and drought stresses. The combination of hypoxic and cold stresses in COMP evoked unique transcriptional responses including oxidative stress. Snow cover manipulation induced changes in the expression of several circadian clock related genes suggested that photoreceptors and the circadian clock system play an essential role in the adaptation of Scots pine seedlings to stresses under different snow conditions. Our findings show that warming winter climate alters snow conditions and consequently causes Scots pine seedlings various abiotic stresses, whose effects extend from overwintering to the following growing season.
Collapse
Affiliation(s)
- Jaana Vuosku
- Natural Resources Unit, Natural Resources Institute Finland, Rovaniemi, Finland
- Ecology and Genetics Research Unit, University of Oulu, Oulu, Finland
| | - Françoise Martz
- Natural Resources Unit, Natural Resources Institute Finland, Rovaniemi, Finland
| | - Ville Hallikainen
- Natural Resources Unit, Natural Resources Institute Finland, Rovaniemi, Finland
| | - Pasi Rautio
- Natural Resources Unit, Natural Resources Institute Finland, Rovaniemi, Finland
| |
Collapse
|
42
|
A YSK-Type Dehydrin from Nicotiana tabacum Enhanced Copper Tolerance in Escherichia coli. Int J Mol Sci 2022; 23:ijms232315162. [PMID: 36499485 PMCID: PMC9737620 DOI: 10.3390/ijms232315162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/25/2022] [Accepted: 11/26/2022] [Indexed: 12/04/2022] Open
Abstract
Copper is an essential micronutrient for the maintenance of normal cell function but is toxic in excess. Dehydrins are group two late embryogenesis abundant proteins, which facilitate plant survival in harsh environmental conditions. Here, a YSK-type dehydrin, NtDhn17, was cloned from Nicotiana tabacum under copper toxicity and characterized using a heterologous expression system and in vitro or in vivo experiments and exhibited characteristics of intrinsic disorder during in vitro analyses. Heterologous expression of NtDHN17 enhanced the tolerance of E. coli to various metals, osmotic, and oxidative stress. NtDHN17 showed no Cu2+-binding properties in vivo or in vitro, indicating that metal ion binding is not universal among dehydrins. In vitro and in vivo experiments suggested that NtDHN17 behaved as a potent anti-aggregation agent providing strong protection to aggregated proteins induced by excess copper ions, an effect dependent on the K-segment but not on the Y- or S-segments. In summary, the protective role of NtDHN17 towards E. coli under conditions of copper toxicity may be related to anti-aggregation ability rather than its acting as an ion scavenger, which might be a valuable target for the genetic improvement of resistance to heavy metal stresses in plants.
Collapse
|
43
|
Hernández-Sánchez IE, Maruri-López I, Martinez-Martinez C, Janis B, Jiménez-Bremont JF, Covarrubias AA, Menze MA, Graether SP, Thalhammer A. LEAfing through literature: late embryogenesis abundant proteins coming of age-achievements and perspectives. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:6525-6546. [PMID: 35793147 DOI: 10.1093/jxb/erac293] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
To deal with increasingly severe periods of dehydration related to global climate change, it becomes increasingly important to understand the complex strategies many organisms have developed to cope with dehydration and desiccation. While it is undisputed that late embryogenesis abundant (LEA) proteins play a key role in the tolerance of plants and many anhydrobiotic organisms to water limitation, the molecular mechanisms are not well understood. In this review, we summarize current knowledge of the physiological roles of LEA proteins and discuss their potential molecular functions. As these are ultimately linked to conformational changes in the presence of binding partners, post-translational modifications, or water deprivation, we provide a detailed summary of current knowledge on the structure-function relationship of LEA proteins, including their disordered state in solution, coil to helix transitions, self-assembly, and their recently discovered ability to undergo liquid-liquid phase separation. We point out the promising potential of LEA proteins in biotechnological and agronomic applications, and summarize recent advances. We identify the most relevant open questions and discuss major challenges in establishing a solid understanding of how these intriguing molecules accomplish their tasks as cellular sentinels at the limits of surviving water scarcity.
Collapse
Affiliation(s)
- Itzell E Hernández-Sánchez
- Center for Desert Agriculture, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Israel Maruri-López
- Center for Desert Agriculture, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Coral Martinez-Martinez
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, 62210, Mexico
| | - Brett Janis
- Department of Biology, University of Louisville, Louisville, KY 40292, USA
| | - Juan Francisco Jiménez-Bremont
- Laboratorio de Biotecnología Molecular de Plantas, División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, 78216, San Luis Potosí, Mexico
| | - Alejandra A Covarrubias
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, 62210, Mexico
| | - Michael A Menze
- Department of Biology, University of Louisville, Louisville, KY 40292, USA
| | - Steffen P Graether
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Anja Thalhammer
- Department of Physical Biochemistry, University of Potsdam, D-14476 Potsdam, Germany
| |
Collapse
|
44
|
Weng W, Lu X, Zhou M, Gao A, Yao X, Tang Y, Wu W, Ma C, Bai Q, Xiong R, Ruan J. FtbZIP12 Positively Regulates Responses to Osmotic Stress in Tartary Buckwheat. Int J Mol Sci 2022; 23:ijms232113072. [PMID: 36361858 PMCID: PMC9658761 DOI: 10.3390/ijms232113072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/21/2022] [Accepted: 10/24/2022] [Indexed: 11/16/2022] Open
Abstract
ABFs play a key role in regulating plant osmotic stress. However, in Tartary buckwheat, data on the role of ABF genes in osmotic stress remain limited and its associated mechanism in osmoregulation remain nebulous. Herein, a novel ABF family in Tartary buckwheat, FtbZIP12, was cloned and characterized. FtbZIP12 is a transcriptional activator located in the nucleus; its expression is induced by NaCl, mannitol, and abscisic acid (ABA). Atopic expression of FtbZIP12 in Arabidopsis promoted seed germination, reduced damage to primary roots, and improved the tolerance of seedlings to osmotic stress. The quantitative realtime polymerase chain reaction (RT-qPCR) results showed that the expressions of the typical genes related to stress, the SOS pathway, and the proline synthesis pathway in Arabidopsis were significantly (p < 0.05) upregulated under osmotic stress. FtbZIP12 improved the osmotic pressure resistance by reducing the damage caused by reactive oxygen species to plants and maintained plant homeostasis by upregulating the expression of genes related to stress, osmotic regulation, and ion homeostasis. This study identified a key candidate gene for understanding the mechanism underlying osmotic-stress-regulated function in Tartary buckwheat, thereby providing a theoretical basis for improving its yield and quality.
Collapse
Affiliation(s)
- Wenfeng Weng
- College of Agronomy, Guizhou University, Guiyang 550025, China
| | - Xiang Lu
- College of Agronomy, Guizhou University, Guiyang 550025, China
| | - Meiliang Zhou
- Institute of Crop Science, Chinese Academy of Agriculture Science, Beijing 100081, China
| | - Anjing Gao
- College of Agronomy, Guizhou University, Guiyang 550025, China
| | - Xin Yao
- College of Agronomy, Guizhou University, Guiyang 550025, China
| | - Yong Tang
- College of Agronomy, Guizhou University, Guiyang 550025, China
| | - Weijiao Wu
- College of Agronomy, Guizhou University, Guiyang 550025, China
| | - Chao Ma
- College of Agronomy, Guizhou University, Guiyang 550025, China
| | - Qing Bai
- College of Agronomy, Guizhou University, Guiyang 550025, China
| | - Ruiqi Xiong
- College of Agronomy, Guizhou University, Guiyang 550025, China
| | - Jingjun Ruan
- College of Agronomy, Guizhou University, Guiyang 550025, China
- Correspondence:
| |
Collapse
|
45
|
Zhou M, Peng N, Yang C, Wang C. The Poplar ( Populus trichocarpa) Dehydrin Gene PtrDHN-3 Enhances Tolerance to Salt Stress in Arabidopsis. PLANTS (BASEL, SWITZERLAND) 2022; 11:2700. [PMID: 36297724 PMCID: PMC9611832 DOI: 10.3390/plants11202700] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/05/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Dehydrin (DHN), a member of the late embryogenesis abundant protein (LEA) family, was recently found to play a role in physiological responses to salt and drought stress. In this study, we identified and cloned the PtrDHN-3 gene from Populus trichocarpa. The PtrDHN-3 protein encoded 226 amino acids, having a molecular weight of 25.78 KDa and an isoelectric point of 5.18. It was identified as a SKn-type DHN and was clustered with other resistance-related DHN proteins. Real-time fluorescent quantitative PCR showed that transcription levels of PtrDHN-3 were induced by mannitol stress, and more significantly by salt stress. Meanwhile, in a yeast transgenic assay, salt tolerance increased in the PtrDHN-3 transgenic yeast, while the germination rate, fresh weight and chlorophyll content increased in PtrDHN-3-overexpressing transgenic Arabidopsis plants (OE) under salt stress. Significant increases in expression levels of six antioxidant enzymes genes, and SOD and POD enzyme activity was also observed in the OE lines, resulting in a decrease in O2- and H2O2 accumulation. The proline content also increased significantly compared with the wild-type, along with expression of proline synthesis-related genes P5CS1 and P5CS2. These findings suggest that PtrDHN-3 plays an important role in salt resistance in plants.
Collapse
|
46
|
Niemeyer PW, Irisarri I, Scholz P, Schmitt K, Valerius O, Braus GH, Herrfurth C, Feussner I, Sharma S, Carlsson AS, de Vries J, Hofvander P, Ischebeck T. A seed-like proteome in oil-rich tubers. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:518-534. [PMID: 36050843 DOI: 10.1111/tpj.15964] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 08/09/2022] [Accepted: 08/26/2022] [Indexed: 06/15/2023]
Abstract
There are numerous examples of plant organs or developmental stages that are desiccation-tolerant and can withstand extended periods of severe water loss. One prime example are seeds and pollen of many spermatophytes. However, in some plants, also vegetative organs can be desiccation-tolerant. One example are the tubers of yellow nutsedge (Cyperus esculentus), which also store large amounts of lipids similar to seeds. Interestingly, the closest known relative, purple nutsedge (Cyperus rotundus), generates tubers that do not accumulate oil and are not desiccation-tolerant. We generated nanoLC-MS/MS-based proteomes of yellow nutsedge in five replicates of four stages of tuber development and compared them to the proteomes of roots and leaves, yielding 2257 distinct protein groups. Our data reveal a striking upregulation of hallmark proteins of seeds in the tubers. A deeper comparison to the tuber proteome of the close relative purple nutsedge (C. rotundus) and a previously published proteome of Arabidopsis seeds and seedlings indicates that indeed a seed-like proteome was found in yellow but not purple nutsedge. This was further supported by an analysis of the proteome of a lipid droplet-enriched fraction of yellow nutsedge, which also displayed seed-like characteristics. One reason for the differences between the two nutsedge species might be the expression of certain transcription factors homologous to ABSCISIC ACID INSENSITIVE3, WRINKLED1, and LEAFY COTYLEDON1 that drive gene expression in Arabidopsis seed embryos.
Collapse
Affiliation(s)
- Philipp William Niemeyer
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, 37077, Göttingen, Germany
| | - Iker Irisarri
- Department of Applied Bioinformatics, Göttingen Center for Molecular Biosciences (GZMB) and Campus Institute Data Science (CIDAS), Institute for Microbiology and Genetics, University of Göttingen, 37077, Göttingen, Germany
| | - Patricia Scholz
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, 37077, Göttingen, Germany
| | - Kerstin Schmitt
- Department for Molecular Microbiology and Genetics, Genetics and Göttingen Center for Molecular Biosciences (GZMB) and Service Unit LCMS Protein Analytics, Institute for Microbiology, University of Göttingen, 37077, Göttingen, Germany
| | - Oliver Valerius
- Department for Molecular Microbiology and Genetics, Genetics and Göttingen Center for Molecular Biosciences (GZMB) and Service Unit LCMS Protein Analytics, Institute for Microbiology, University of Göttingen, 37077, Göttingen, Germany
| | - Gerhard H Braus
- Department for Molecular Microbiology and Genetics, Genetics and Göttingen Center for Molecular Biosciences (GZMB) and Service Unit LCMS Protein Analytics, Institute for Microbiology, University of Göttingen, 37077, Göttingen, Germany
| | - Cornelia Herrfurth
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, 37077, Göttingen, Germany
- Department of Plant Biochemistry, Service Unit for Metabolomics and Lipidomics, Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, 37077, Göttingen, Germany
| | - Ivo Feussner
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, 37077, Göttingen, Germany
- Department of Plant Biochemistry, Service Unit for Metabolomics and Lipidomics, Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, 37077, Göttingen, Germany
| | - Shrikant Sharma
- Department of Plant Breeding, SLU Alnarp, Swedish University of Agricultural Sciences, Box 190, SE-234 22, Lomma, Sweden
| | - Anders S Carlsson
- Department of Plant Breeding, SLU Alnarp, Swedish University of Agricultural Sciences, Box 190, SE-234 22, Lomma, Sweden
| | - Jan de Vries
- Department of Applied Bioinformatics, Göttingen Center for Molecular Biosciences (GZMB) and Campus Institute Data Science (CIDAS), Institute for Microbiology and Genetics, University of Göttingen, 37077, Göttingen, Germany
| | - Per Hofvander
- Department of Plant Breeding, SLU Alnarp, Swedish University of Agricultural Sciences, Box 190, SE-234 22, Lomma, Sweden
| | - Till Ischebeck
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, 37077, Göttingen, Germany
- Green Biotechnology, Institute of Plant Biology and Biotechnology (IBBP), University of Münster, 48143, Münster, Germany
| |
Collapse
|
47
|
Jiao P, Ma R, Wang C, Chen N, Liu S, Qu J, Guan S, Ma Y. Integration of mRNA and microRNA analysis reveals the molecular mechanisms underlying drought stress tolerance in maize ( Zea mays L.). FRONTIERS IN PLANT SCIENCE 2022; 13:932667. [PMID: 36247625 PMCID: PMC9557922 DOI: 10.3389/fpls.2022.932667] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 09/02/2022] [Indexed: 05/24/2023]
Abstract
Drought is among the most serious environmental issue globally, and seriously affects the development, growth, and yield of crops. Maize (Zea mays L.), an important crop and industrial raw material, is planted on a large scale worldwide and drought can lead to large-scale reductions in maize corn production; however, few studies have focused on the maize root system mechanisms underlying drought resistance. In this study, miRNA-mRNA analysis was performed to deeply analyze the molecular mechanisms involved in drought response in the maize root system under drought stress. Furthermore, preliminary investigation of the biological function of miR408a in the maize root system was also conducted. The morphological, physiological, and transcriptomic changes in the maize variety "M8186" at the seedling stage under 12% PEG 6000 drought treatment (0, 7, and 24 h) were analyzed. With prolonged drought stress, seedlings gradually withered, the root system grew significantly, and abscisic acid, brassinolide, lignin, glutathione, and trehalose content in the root system gradually increased. Furthermore, peroxidase activity increased, while gibberellic acid and jasmonic acid gradually decreased. Moreover, 32 differentially expressed miRNAs (DEMIRs), namely, 25 known miRNAs and 7 new miRNAs, and 3,765 differentially expressed mRNAs (DEMRs), were identified in maize root under drought stress by miRNA-seq and mRNA-seq analysis, respectively. Through combined miRNA-mRNA analysis, 16 miRNA-target gene pairs, comprising 9 DEMIRs and 15 DEMRs, were obtained. In addition, four metabolic pathways, namely, "plant hormone signal transduction", "phenylpropane biosynthesis", "glutathione metabolism", and "starch and sucrose metabolism", were predicted to have important roles in the response of the maize root system to drought. MiRNA and mRNA expression results were verified by real-time quantitative PCR. Finally, miR408a was selected for functional analysis and demonstrated to be a negative regulator of drought response, mainly through regulation of reactive oxygen species accumulation in the maize root system. This study helps to elaborate the regulatory response mechanisms of the maize root system under drought stress and predicts the biological functions of candidate miRNAs and mRNAs, providing strategies for subsequent mining for, and biological breeding to select for, drought-responsive genes in the maize root system.
Collapse
Affiliation(s)
- Peng Jiao
- College of Life Sciences, Jilin Agricultural University, Changchun, China
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Ruiqi Ma
- College of Plant Science, Jilin University, Changchun, China
| | - Chunlai Wang
- College of Life Sciences, Jilin Agricultural University, Changchun, China
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Nannan Chen
- College of Life Sciences, Jilin Agricultural University, Changchun, China
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Siyan Liu
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Jing Qu
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Shuyan Guan
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Yiyong Ma
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Jilin Agricultural University, Changchun, China
| |
Collapse
|
48
|
Genomic Analysis of LEA Genes in Carica papaya and Insight into Lineage-Specific Family Evolution in Brassicales. Life (Basel) 2022; 12:life12091453. [PMID: 36143489 PMCID: PMC9502557 DOI: 10.3390/life12091453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/08/2022] [Accepted: 09/15/2022] [Indexed: 11/21/2022] Open
Abstract
Late embryogenesis abundant (LEA) proteins comprise a diverse superfamily involved in plant development and stress responses. This study presents a first genome-wide analysis of LEA genes in papaya (Carica papaya L., Caricaceae), an economically important tree fruit crop widely cultivated in the tropics and subtropics. A total of 28 members were identified from the papaya genome, which belong to eight families with defined Pfam domains, i.e., LEA_1 (3), LEA_2 (4), LEA_3 (5), LEA_4 (5), LEA_5 (2), LEA_6 (2), DHN (4), and SMP (3). The family numbers are comparable to those present in Ricinus communis (Euphorbiaceae, 28) and Moringa oleifera (Moringaceae, 29), but relatively less than that found in Moringa oleifera (Cleomaceae, 39) and Arabidopsis thaliana (Brassicaceae, 51), implying lineage-specific evolution in Brassicales. Indeed, best-reciprocal-hit-based sequence comparison and synteny analysis revealed the presence of 29 orthogroups, and significant gene expansion in Tarenaya and Arabidopsis was mainly contributed by whole-genome duplications that occurred sometime after their split with the papaya. Though a role of transposed duplication was also observed, tandem duplication was shown to be a key contributor in gene expansion of most species examined. Further comparative analyses of exon-intron structures and protein motifs supported fast evolution of this special superfamily, especially in Arabidopsis. Transcriptional profiling revealed diverse expression patterns of CpLEA genes over various tissues and different stages of developmental fruit. Moreover, the transcript level of most genes appeared to be significantly regulated by drought, cold, and salt stresses, corresponding to the presence of cis-acting elements associated with stress response in their promoter regions. These findings not only improve our knowledge on lineage-specific family evolution in Brassicales, but also provide valuable information for further functional analysis of LEA genes in papaya.
Collapse
|
49
|
Asakawa H, Hirano Y, Shindo T, Haraguchi T, Hiraoka Y. Fission yeast Ish1 and Les1 interact with each other in the lumen of the nuclear envelope. Genes Cells 2022; 27:643-656. [PMID: 36043331 DOI: 10.1111/gtc.12981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/09/2022] [Accepted: 08/24/2022] [Indexed: 11/28/2022]
Abstract
Nuclear envelope (NE) provides a permeable barrier that separates the eukaryotic genome from the cytoplasm. NE is a double membrane composed of inner and outer nuclear membranes. Ish1 is a stress-responsive NE protein in the fission yeast, Schizosaccharomyces pombe. Les1 is another NE protein that shares several similar domains with Ish1, but the relationship between them remains unknown. In this study, using fluorescence and electron microscopy, we found that most regions of these proteins were localized within the NE lumen. We also found that Ish1 interacted with Les1 via its C-terminal region in the NE lumen and that the NE localization of Ish1 depended on the C-terminal region of Les1. Ish1 and Les1 were co-localized at the NE in interphase cells, but when the nucleus divided at the end of mitosis (closed mitosis), they showed distinguishable localization at the midzone membrane domain. These results suggest the regulated interaction between Ish1 and Les1 in the NE lumen, although this interaction does not appear to be essential for cell survival. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Haruhiko Asakawa
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Japan
| | - Yasuhiro Hirano
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Japan
| | - Tomoko Shindo
- Keio University, School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Tokuko Haraguchi
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Japan
| | - Yasushi Hiraoka
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Japan
| |
Collapse
|
50
|
Transcriptional Stages of Conidia Germination and Associated Genes in Aspergillus flavus: An Essential Role for Redox Genes. Toxins (Basel) 2022; 14:toxins14080560. [PMID: 36006223 PMCID: PMC9412981 DOI: 10.3390/toxins14080560] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/04/2022] [Accepted: 08/12/2022] [Indexed: 12/03/2022] Open
Abstract
Aflatoxin is a threatening mycotoxin primarily present in the agricultural environment, especially in food and feedstuff, and poses significant global health risks. Aflatoxins are produced mainly by Aspergillus flavus. Conidia germination is the first step for A. flavus development. In this study, the transcriptome of A. flavus conidia was analyzed at three different stages of conidia germination, which were characterized by two different microscopes. Dormant conidia grew isotropically with the cell size increasing up to 5 h of after being inoculated in a liquid medium. Conidia changed towards polarized growth from 5 to 10 h of germination, during which germ tubes formed. Moreover, transcriptome analyses revealed that a larger number of genes changed in the isotropic growth stages compared to polarized growth, with 1910 differentially expressed genes (DEGs) up-regulated and 969 DEGs down-regulated in isotropic growth. GO and KEGG pathway analyses and pathway enrichment demonstrated that, in the isotropic growth stage, the top three pathways were translation, amino acid and carbohydrate metabolism. The ribosome was a key pathway in translation, as RPS28e, RPL53 and RPL36e were the top three DEGs. For polarized growth stage, lipid metabolism, amino acid metabolism and carbohydrate metabolism were the top three most active pathways. POX1 from alpha-linolenic acid metabolism was a DEG in lipid metabolism as well. Genes related to the antioxidant system were crucial for conidia germination. Furthermore, RT-PCR results showed the same trends as the transcriptome for redox genes, and essential oils have a significant inhibitory effect on germination rate and redox gene expression. Therefore, redox genes play an important role during germination, and the disruption of redox genes is involved in the mechanism of action of coumalic acid and geraniol against A. flavus spore germination.
Collapse
|