1
|
Jiang H, Peng J, Li Q, Geng S, Zhang H, Shu Y, Wang R, Zhang B, Li C, Xiang X. Genome-wide identification and analysis of monocot-specific chimeric jacalins (MCJ) genes in Maize (Zea mays L.). BMC PLANT BIOLOGY 2024; 24:636. [PMID: 38971734 PMCID: PMC11227246 DOI: 10.1186/s12870-024-05354-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 06/27/2024] [Indexed: 07/08/2024]
Abstract
BACKGROUND The monocot chimeric jacalins (MCJ) proteins, which contain a jacalin-related lectin (JRL) domain and a dirigent domain (DIR), are specific to Poaceae. MCJ gene family is reported to play an important role in growth, development and stress response. However, their roles in maize have not been thoroughly investigated. RESULTS In this study, eight MCJ genes in the maize genome (designated as ZmMCJs) were identified, which displayed unequal distribution across four chromosomes. Phylogenetic relationships between the ZmMCJs were evident through the identification of highly conserved motifs and gene structures. Analysis of transcriptome data revealed distinct expression patterns among the ZmMCJ genes, leading to their classification into four different modules, which were subsequently validated using RT-qPCR. Protein structures of the same module are found to be relatively similar. Subcellular localization experiments indicated that the ZmMCJs are mainly located on the cell membrane. Additionally, hemagglutination and inhibition experiments show that only part of the ZmMCJs protein has lectin activity, which is mediated by the JRL structure, and belongs to the mannose-binding type. The cis-acting elements in the promoter region of ZmMCJ genes predicted their involvement response to phytohormones, such as abscisic acid and jasmonic acid. This suggests that ZmMCJ genes may play a significant role in both biotic and abiotic stress responses. CONCLUSIONS Overall, this study adds new insights into our understanding of the gene-protein architecture, evolutionary characteristics, expression profiles, and potential functions of MCJ genes in maize.
Collapse
Affiliation(s)
- Hailong Jiang
- The National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei, China
| | - Jiajian Peng
- The National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei, China
| | - Qian Li
- The National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei, China
| | - Siqian Geng
- The National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei, China
| | - Hualei Zhang
- The National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei, China
| | - Yuting Shu
- The National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei, China
| | - Rui Wang
- The National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei, China
| | - Bin Zhang
- The National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei, China
| | - Changsheng Li
- The National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei, China
| | - Xiaoli Xiang
- The National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei, China.
| |
Collapse
|
2
|
Gao Q, Yin X, Wang F, Zhang C, Xiao F, Wang H, Hu S, Liu W, Zhou S, Chen L, Dai X, Liang M. Jacalin-related lectin 45 (OsJRL45) isolated from 'sea rice 86' enhances rice salt tolerance at the seedling and reproductive stages. BMC PLANT BIOLOGY 2023; 23:553. [PMID: 37940897 PMCID: PMC10634080 DOI: 10.1186/s12870-023-04533-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 10/17/2023] [Indexed: 11/10/2023]
Abstract
BACKGROUND Rice (Oryza sativa L.) is one of the most widely cultivated grain crops in the world that meets the caloric needs of more than half the world's population. Salt stress seriously affects rice production and threatens food security. Therefore, mining salt tolerance genes in salt-tolerant germplasm and elucidating their molecular mechanisms in rice are necessary for the breeding of salt tolerant cultivars. RESULTS In this study, a salt stress-responsive jacalin-related lectin (JRL) family gene, OsJRL45, was identified in the salt-tolerant rice variety 'sea rice 86' (SR86). OsJRL45 showed high expression level in leaves, and the corresponding protein mainly localized to the endoplasmic reticulum. The knockout mutant and overexpression lines of OsJRL45 revealed that OsJRL45 positively regulates the salt tolerance of rice plants at all growth stages. Compared with the wild type (WT), the OsJRL45 overexpression lines showed greater salt tolerance at the reproductive stage, and significantly higher seed setting rate and 1,000-grain weight. Moreover, OsJRL45 expression significantly improved the salt-resistant ability and yield of a salt-sensitive indica cultivar, L6-23. Furthermore, OsJRL45 enhanced the antioxidant capacity of rice plants and facilitated the maintenance of Na+-K+ homeostasis under salt stress conditions. Five proteins associated with OsJRL45 were screened by transcriptome and interaction network analysis, of which one, the transmembrane transporter Os10g0210500 affects the salt tolerance of rice by regulating ion transport-, salt stress-, and hormone-responsive proteins. CONCLUSIONS The OsJRL45 gene isolated from SR86 positively regulated the salt tolerance of rice plants at all growth stages, and significantly increased the yield of salt-sensitive rice cultivar under NaCl treatment. OsJRL45 increased the activity of antioxidant enzyme of rice and regulated Na+/K+ dynamic equilibrium under salinity conditions. Our data suggest that OsJRL45 may improve the salt tolerance of rice by mediating the expression of ion transport-, salt stress response-, and hormone response-related genes.
Collapse
Affiliation(s)
- Qinmei Gao
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, College of Life Science, Hunan Normal University, Changsha, 410081, China
- College of Chemistry and Chemical Engineering, Jishou University, Hunan, 416000, China
| | - Xiaolin Yin
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Feng Wang
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Congzhi Zhang
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Feicui Xiao
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Hongyan Wang
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Shuchang Hu
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Weihao Liu
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Shiqi Zhou
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Liangbi Chen
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Xiaojun Dai
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, College of Life Science, Hunan Normal University, Changsha, 410081, China.
| | - Manzhong Liang
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, College of Life Science, Hunan Normal University, Changsha, 410081, China.
| |
Collapse
|
3
|
Rachowka J, Anielska-Mazur A, Bucholc M, Stephenson K, Kulik A. SnRK2.10 kinase differentially modulates expression of hub WRKY transcription factors genes under salinity and oxidative stress in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2023; 14:1135240. [PMID: 37621885 PMCID: PMC10445769 DOI: 10.3389/fpls.2023.1135240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 05/30/2023] [Indexed: 08/26/2023]
Abstract
In nature, all living organisms must continuously sense their surroundings and react to the occurring changes. In the cell, the information about these changes is transmitted to all cellular compartments, including the nucleus, by multiple phosphorylation cascades. Sucrose Non-Fermenting 1 Related Protein Kinases (SnRK2s) are plant-specific enzymes widely distributed across the plant kingdom and key players controlling abscisic acid (ABA)-dependent and ABA-independent signaling pathways in the plant response to osmotic stress and salinity. The main deleterious effects of salinity comprise water deficiency stress, disturbances in ion balance, and the accompanying appearance of oxidative stress. The reactive oxygen species (ROS) generated at the early stages of salt stress are involved in triggering intracellular signaling required for the fast stress response and modulation of gene expression. Here we established in Arabidopsis thaliana that salt stress or induction of ROS accumulation by treatment of plants with H2O2 or methyl viologen (MV) induces the expression of several genes encoding transcription factors (TFs) from the WRKY DNA-Binding Protein (WRKY) family. Their induction by salinity was dependent on SnRK2.10, an ABA non-activated kinase, as it was strongly reduced in snrk2.10 mutants. The effect of ROS was clearly dependent on their source. Following the H2O2 treatment, SnRK2.10 was activated in wild-type (wt) plants and the induction of the WRKY TFs expression was only moderate and was enhanced in snrk2.10 lines. In contrast, MV did not activate SnRK2.10 and the WRKY induction was very strong and was similar in wt and snrk2.10 plants. A bioinformatic analysis indicated that the WRKY33, WRKY40, WRKY46, and WRKY75 transcription factors have a similar target range comprising numerous stress-responsive protein kinases. Our results indicate that the stress-related functioning of SnRK2.10 is fine-tuned by the source and intracellular distribution of ROS and the co-occurrence of other stress factors.
Collapse
Affiliation(s)
| | | | | | | | - Anna Kulik
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
4
|
Sun E, Yu H, Chen Z, Cai M, Mao X, Li Y, Zuo C. The enhanced Valsa canker resistance conferred by MdLecRK-S.4.3 in Pyrus betulifolia can be largely suppressed by PbePUB36. JOURNAL OF EXPERIMENTAL BOTANY 2023:erad126. [PMID: 37013998 DOI: 10.1093/jxb/erad126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Indexed: 06/19/2023]
Abstract
L-type lectin receptor-like kinases (L-LecRKs) act as a sensor of extracellular signals and an initiator for plant immune responses. However, the function of LecRK-S.4 on plant immunity has not been extensively investigated. At present, in the apple (Malus domestica) genome, we identified that MdLecRK-S.4.3, a homologous gene of LecRK-S.4, was differentially expressed during the occursion of Valsa canker. Over-expression of MdLecRK-S.4.3 facilitated the induction of immune response and enhanced the Valsa canker resistance of apple and pear fruit, and 'Duli-G03' (Pyrus betulifolia) suspension cells. On the contrary, the expression of PbePUB36, RLCK XI subfamily member, was significantly repressed in the MdLecRK-S.4.3 overexpressed cell lines. Over-expression of PbePUB36 interfered with the Valsa canker resistance and immune response caused by up-regulation of MdLecRK-S.4.3. Furthermore, MdLecRK-S.4.3 interacted with BAK1 or PbePUB36 in vivo. In conclusion, MdLecRK-S.4.3 activated various immune responses and positively regulate Valsa canker resistance, which could be largely compromised by PbePUB36. MdLecRK-S.4.3 interacted with PbePUB36 and/or MdBAK1 to mediate the immune responses. This finding provides a reference for studying the molecular mechanism of resistance to Valsa canker and resistance breeding.
Collapse
Affiliation(s)
- E Sun
- College of Horticulture, Gansu Agricultural University, Lanzhou, Gansu, 730070, China
| | - Hongqiang Yu
- College of Horticulture, Gansu Agricultural University, Lanzhou, Gansu, 730070, China
| | - Zhongjian Chen
- Agro-Biological Gene Research Center, Guangdong Academy of Agriculture, Guangzhou 510640, China
| | - Minrui Cai
- College of Horticulture, Gansu Agricultural University, Lanzhou, Gansu, 730070, China
| | - Xia Mao
- College of Horticulture, Gansu Agricultural University, Lanzhou, Gansu, 730070, China
| | - Yanyan Li
- College of Horticulture, Gansu Agricultural University, Lanzhou, Gansu, 730070, China
| | - Cunwu Zuo
- College of Horticulture, Gansu Agricultural University, Lanzhou, Gansu, 730070, China
- State Key Laboratory of Aridland Crop Science, Lanzhou 730070, China
| |
Collapse
|
5
|
Zuo R, Xie M, Gao F, Liu J, Tang M, Cheng X, Liu Y, Bai Z, Liu S. Genome-wide identification and functional exploration of the legume lectin genes in Brassica napus and their roles in Sclerotinia disease resistance. FRONTIERS IN PLANT SCIENCE 2022; 13:963263. [PMID: 35968144 PMCID: PMC9374194 DOI: 10.3389/fpls.2022.963263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
As one of the largest classes of lectins, legume lectins have a variety of desirable features such as antibacterial and insecticidal activities as well as anti-abiotic stress ability. The Sclerotinia disease (SD) caused by the soil-borne fungus Sclerotinia sclerotiorum is a devastating disease affecting most oil crops such as Brassica napus. Here, we identified 130 legume lectin (LegLu) genes in B. napus, which could be phylogenetically classified into seven clusters. The BnLegLu gene family has been significantly expanded since the whole-genome duplication (WGD) or segmental duplication. Gene structure and conserved motif analysis suggested that the BnLegLu genes were well conserved in each cluster. Moreover, relative to those genes only containing the legume lectin domain in cluster VI-VII, the genes in cluster I-V harbored a transmembrane domain and a kinase domain linked to the legume lectin domain in the C terminus. The expression of most BnLegLu genes was relatively low in various tissues. Thirty-five BnLegLu genes were responsive to abiotic stress, and 40 BnLegLu genes were strongly induced by S. sclerotiorum, with a most significant up-regulation of 715-fold, indicating their functional roles in SD resistance. Four BnLegLu genes were located in the candidate regions of genome-wide association analysis (GWAS) results which resulted from a worldwide rapeseed population consisting of 324 accessions associated with SD. Among them, the positive role of BnLegLus-16 in SD resistance was validated by transient expression in tobacco leaves. This study provides important information on BnLegLu genes, particularly about their roles in SD resistance, which may help targeted functional research and genetic improvement in the breeding of B. napus.
Collapse
Affiliation(s)
- Rong Zuo
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs of PRC, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Meili Xie
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs of PRC, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Feng Gao
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs of PRC, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Jie Liu
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs of PRC, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | | | - Xiaohui Cheng
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs of PRC, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Yueying Liu
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs of PRC, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Zetao Bai
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs of PRC, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Shengyi Liu
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs of PRC, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| |
Collapse
|
6
|
Biswas S, Mondal R, Srivastava A, Trivedi M, Singh SK, Mishra Y. In silico characterization, molecular phylogeny, and expression profiling of genes encoding legume lectin-like proteins under various abiotic stresses in Arabidopsis thaliana. BMC Genomics 2022; 23:480. [PMID: 35768782 PMCID: PMC9241310 DOI: 10.1186/s12864-022-08708-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 06/20/2022] [Indexed: 11/18/2022] Open
Abstract
Background Lectin receptor-like kinases (Lec-RLKs), a subfamily of RLKs, have been demonstrated to play an important role in signal transduction from cell wall to the plasma membrane during biotic stresses. Lec-RLKs include legume lectin-like proteins (LLPs), an important group of apoplastic proteins that are expressed in regenerating cell walls and play a role in immune-related responses. However, it is unclear whether LLPs have a function in abiotic stress mitigation and related signaling pathways. Therefore, in this study, we examined the possible role of LLPs in Arabidopsis thaliana (AtLLPs) under various abiotic stresses. Results The study was initiated by analyzing the chromosomal localization, gene structure, protein motif, peptide sequence, phylogeny, evolutionary divergence, and sub-cellular localization of AtLLPs. Furthermore, the expression profiling of these AtLLPs was performed using publicly accessible microarray datasets under various abiotic stresses, which indicated that all AtLLPs were differently expressed in both root and shoot tissues in response to abiotic stresses. The cis-regulatory elements (CREs) analysis in 500 bp promoter sequences of AtLLPs suggested the presence of multiple important CREs implicated for regulating abiotic stress responses, which was further supported by expressional correlation analysis between AtLLPs and their CREs cognate transcription factors (TFs). qRT-PCR analysis of these AtLLPs after 2, 6, and 12 h of cold, high light, oxidative (MV), UV-B, wound, and ozone stress revealed that all AtLLPs displayed differential expression patterns in most of the tested stresses, supporting their roles in abiotic stress response and signaling again. Out of these AtLLPs, AT1g53070 and AT5g03350 appeared to be important players. Furthermore, the mutant line of AT5g03350 exhibited higher levels of ROS than wild type plants till 12 h of exposure to high light, MV, UV-B, and wound, whereas its overexpression line exhibited comparatively lower levels of ROS, indicating a positive role of this gene in abiotic stress response in A. thaliana. Conclusions This study provides basic insights in the involvement of two important representative AtLLPs, AT1g53070 and AT5g03350, in abiotic stress response. However, further research is needed to determine the specific molecular mechanism of these AtLLPs in abiotic stress mitigation and related signaling pathways in A. thaliana. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08708-0.
Collapse
Affiliation(s)
- Subhankar Biswas
- Department of Botany, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, 221005, Varanasi, Uttar Pradesh, India
| | - Raju Mondal
- Department of Botany, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, 221005, Varanasi, Uttar Pradesh, India.,Mulberry Tissue Culture Lab, Central Sericultural Germplasm Resources Center, Central Silk Board-Ministry of Textiles (GoI), 635109, Hosur, Tamil Nadu, India
| | - Akanksha Srivastava
- Department of Botany, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, 221005, Varanasi, Uttar Pradesh, India
| | - Maitri Trivedi
- Plant Cell and Molecular Biology Lab, Department of Botany, Faculty of Science, The Maharaja Sayajirao University of Baroda, 390 002, Vadodara, Gujarat, India
| | - Sunil Kumar Singh
- Plant Cell and Molecular Biology Lab, Department of Botany, Faculty of Science, The Maharaja Sayajirao University of Baroda, 390 002, Vadodara, Gujarat, India
| | - Yogesh Mishra
- Department of Botany, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, 221005, Varanasi, Uttar Pradesh, India.
| |
Collapse
|
7
|
Guo L, Qi Y, Mu Y, Zhou J, Lu W, Tian Z. Potato StLecRK-IV.1 negatively regulates late blight resistance by affecting the stability of a positive regulator StTET8. HORTICULTURE RESEARCH 2022; 9:uhac010. [PMID: 35147183 PMCID: PMC9016858 DOI: 10.1093/hr/uhac010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 12/12/2021] [Indexed: 05/13/2023]
Abstract
Plant receptor-like kinases (RLKs) regulate many processes in plants. Many RLKs perform significant roles in plant immunity. Lectin receptor-like kinases (LecRLKs) are a large family of RLKs. However, the function of most of LecRLKs is poorly understood. In this study, we show that a potato LecRLK, StLecRK-IV.1, is involved in plant immunity against Phytophthora infestans. As a negative regulator of immunity, StLecRK-IV.1 is down-regulated by P. infestans and activated by abscisic acid (ABA). The transient expression of StLecRK-IV.1 in Nicotiana benthamiana enhanced P. infestans leaf colonization significantly. In contrast, the disease lesion size caused by P. infestans was reduced in Virus-induced gene silencing (VIGS) of StLecRK-IV.1 orthologue in N. benthamiana, NbLecRK-IV.1, as well as in potato plants with stable RNA interference of StLecRK-IV.1. Tetraspanin-8 (StTET8) was identified to be interacting with StLecRK-IV.1 using a membrane yeast-2-hybrid system, which was further verified by co-immunoprecipitation, a luciferase complementation assay, and a bimolecular fluorescence complementary (BiFC) test. StTET8 is a positive immune regulator that restrains P. infestans infection. The co-expression of StLecRK-IV.1 with StTET8 antagonized the positive roles of StTET8 against P. infestans. Moreover, the co-expression of StTET8 with StLecRK-IV.1 affected the stability of StTET8, which was confirmed by a Western blot assay and confocal assay. Taken together, our work firstly revealed that a potato L-type Lectin RLK, StLecRK-IV.1, negatively regulates plant immunity by targeting a positive regulator, StTET8, through affecting its stability.
Collapse
Affiliation(s)
- Lei Guo
- College of Agronomy, Northeast Agricultural University, Harbin, 150030, China
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Huazhong Agricultural University (HZAU),Wuhan, 430070, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University,Wuhan, 430070, China
| | - Yetong Qi
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Huazhong Agricultural University (HZAU),Wuhan, 430070, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University,Wuhan, 430070, China
- Potato Engineering and Technology Research Center
of Hubei Province, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yang Mu
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Huazhong Agricultural University (HZAU),Wuhan, 430070, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University,Wuhan, 430070, China
- Potato Engineering and Technology Research Center
of Hubei Province, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jing Zhou
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Huazhong Agricultural University (HZAU),Wuhan, 430070, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University,Wuhan, 430070, China
- Potato Engineering and Technology Research Center
of Hubei Province, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wenhe Lu
- College of Agronomy, Northeast Agricultural University, Harbin, 150030, China
| | - Zhendong Tian
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Huazhong Agricultural University (HZAU),Wuhan, 430070, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University,Wuhan, 430070, China
- Potato Engineering and Technology Research Center
of Hubei Province, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory. Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
8
|
Zhang Z, Huang B, Chen J, Jiao Y, Guo H, Liu S, Ramakrishnan M, Qi G. Genome-Wide Identification of JRL Genes in Moso Bamboo and Their Expression Profiles in Response to Multiple Hormones and Abiotic Stresses. FRONTIERS IN PLANT SCIENCE 2022; 12:809666. [PMID: 35095981 PMCID: PMC8795371 DOI: 10.3389/fpls.2021.809666] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 12/27/2021] [Indexed: 05/13/2023]
Abstract
Jacalin-related lectins (JRLs) are a new subfamily of plant lectins that has recently been recognized and plays an important role in plant growth, development, and abiotic stress response. Although moso bamboo (Phyllostachys edulis) is an economically and industrially important bamboo worldwide, there has been no systematic identification of JRLs in this species. Here, we identified 25 JRL genes in moso bamboo, and these genes are unequally distributed among 10 genome scaffolds. Phylogenetic analysis showed that the moso bamboo JRLs were clustered into four JRL subgroups: I, II, V, and VII. Numerous stress-responsive and hormone-regulated cis-elements were detected in the upstream promoter regions of the JRLs. Genome collinearity analyses showed that the JRL genes of moso bamboo are more closely related to those of Brachypodium distachyon than to those of Oryza sativa and Zea mays. Sixty-four percent of the PeJRL genes are present as segmental and tandem duplicates. qRT-PCR expression analysis showed that JRL genes in the same subgroup were significantly downregulated in response to salicylic acid (SA), abscisic acid (ABA), and methyl jasmonate (MeJA) treatments and significantly upregulated under low temperature, drought, and salt stress; they also exhibited tissue-specific expression patterns. Subcellular localization experiments revealed that PeJRL04 and PeJRL13 were localized to the cell membrane, nucleus, and cytoplasm. Three dimensional structure prediction and yeast two-hybrid assays were used to verify that PeJRL13 exists as a self-interacting homodimer in vivo. These findings provide an important reference for understanding the functions of specific moso bamboo JRL genes and for the effective selection of stress-related genes.
Collapse
Affiliation(s)
- Zhijun Zhang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- Zhejiang Provincial Collaborative Innovation Centre for Bamboo Resources and High-Efficiency Utilization, Zhejiang A&F University, Hangzhou, China
| | - Bin Huang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- Zhejiang Provincial Collaborative Innovation Centre for Bamboo Resources and High-Efficiency Utilization, Zhejiang A&F University, Hangzhou, China
| | - Jialu Chen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- Zhejiang Provincial Collaborative Innovation Centre for Bamboo Resources and High-Efficiency Utilization, Zhejiang A&F University, Hangzhou, China
| | - Yang Jiao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- Zhejiang Provincial Collaborative Innovation Centre for Bamboo Resources and High-Efficiency Utilization, Zhejiang A&F University, Hangzhou, China
| | - Hui Guo
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- Zhejiang Provincial Collaborative Innovation Centre for Bamboo Resources and High-Efficiency Utilization, Zhejiang A&F University, Hangzhou, China
| | - Shenkui Liu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- Zhejiang Provincial Collaborative Innovation Centre for Bamboo Resources and High-Efficiency Utilization, Zhejiang A&F University, Hangzhou, China
| | - Muthusamy Ramakrishnan
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Guoning Qi
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- Zhejiang Provincial Collaborative Innovation Centre for Bamboo Resources and High-Efficiency Utilization, Zhejiang A&F University, Hangzhou, China
| |
Collapse
|
9
|
De Coninck T, Van Damme EJM. Review: The multiple roles of plant lectins. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 313:111096. [PMID: 34763880 DOI: 10.1016/j.plantsci.2021.111096] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 10/14/2021] [Accepted: 10/18/2021] [Indexed: 06/13/2023]
Abstract
For decades, the biological roles of plant lectins remained obscure and subject to speculation. With the advent of technological and scientific progress, researchers have compiled a vast amount of information regarding the structure, biological activities and functionality of hundreds of plant lectins. Data mining of genomes and transcriptome sequencing and high-throughput analyses have resulted in new insights. This review aims to provide an overview of what is presently known about plant lectins, highlighting their versatility and the importance of plant lectins for a multitude of biological processes, such as plant development, immunity, stress signaling and regulation of gene expression. Though lectins primarily act as readers of the glycocode, the multiple roles of plant lectins suggest that their functionality goes beyond carbohydrate-recognition.
Collapse
Affiliation(s)
- Tibo De Coninck
- Laboratory of Glycobiology & Biochemistry, Dept. of Biotechnology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium.
| | - Els J M Van Damme
- Laboratory of Glycobiology & Biochemistry, Dept. of Biotechnology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium.
| |
Collapse
|
10
|
Naithani S, Komath SS, Nonomura A, Govindjee G. Plant lectins and their many roles: Carbohydrate-binding and beyond. JOURNAL OF PLANT PHYSIOLOGY 2021; 266:153531. [PMID: 34601337 DOI: 10.1016/j.jplph.2021.153531] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/18/2021] [Accepted: 09/19/2021] [Indexed: 06/13/2023]
Abstract
Lectins are ubiquitous proteins that reversibly bind to specific carbohydrates and, thus, serve as readers of the sugar code. In photosynthetic organisms, lectin family proteins play important roles in capturing and releasing photosynthates via an endogenous lectin cycle. Often, lectin proteins consist of one or more lectin domains in combination with other types of domains. This structural diversity of lectins is the basis for their current classification, which is consistent with their diverse functions in cell signaling associated with growth and development, as well as in the plant's response to biotic, symbiotic, and abiotic stimuli. Furthermore, the lectin family shows evolutionary expansion that has distinct clade-specific signatures. Although the function(s) of many plant lectin family genes are unknown, studies in the model plant Arabidopsis thaliana have provided insights into their diverse roles. Here, we have used a biocuration approach rooted in the critical review of scientific literature and information available in the public genomic databases to summarize the expression, localization, and known functions of lectins in Arabidopsis. A better understanding of the structure and function of lectins is expected to aid in improving agricultural productivity through the manipulation of candidate genes for breeding climate-resilient crops, or by regulating metabolic pathways by applications of plant growth regulators.
Collapse
Affiliation(s)
- Sushma Naithani
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, 97333, USA.
| | - Sneha Sudha Komath
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Arthur Nonomura
- Department of Chemistry, Northern Arizona University, South San Francisco Street, Flagstaff, AZ, 86011, USA
| | - Govindjee Govindjee
- Department of Plant Biology, Department of Biochemistry, and Center of Biophysics & Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| |
Collapse
|
11
|
Xiao W, Hu S, Zou X, Cai R, Liao R, Lin X, Yao R, Guo X. Lectin receptor-like kinase LecRK-VIII.2 is a missing link in MAPK signaling-mediated yield control. PLANT PHYSIOLOGY 2021; 187:303-320. [PMID: 34618128 PMCID: PMC8418426 DOI: 10.1093/plphys/kiab241] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 05/01/2021] [Indexed: 05/13/2023]
Abstract
The energy allocation for vegetative and reproductive growth is regulated by developmental signals and environmental cues, which subsequently affects seed output. However, the molecular mechanism underlying how plants coordinate yield-related traits to control yield in changing source-sink relationships remains largely unknown. Here, we discovered the lectin receptor-like kinase LecRK-VIII.2 as a specific receptor-like kinase that coordinates silique number, seed size, and seed number to determine seed yield in Arabidopsis (Arabidopsis thaliana). The lecrk-VIII.2 mutants develop smaller seeds, but more siliques and seeds, leading to increased yield. In contrast, the plants overexpressing LecRK-VIII.2 form bigger seeds, but less siliques and seeds, which results in similar yield to that of wild-type plants. Interestingly, LecRK-VIII.2 promotes the growth of the rosette, root, and stem by coordinating the source-sink relationship. Additionally, LecRK-VIII.2 positively regulates cell expansion and proliferation in the seed coat, and maternally controls seed size. The genetic and biochemical analyses demonstrated that LecRK-VIII.2 acts upstream of the mitogen-activated protein kinase (MAPK) gene MPK6 to regulate silique number, seed size, and seed number. Collectively, these findings uncover LecRK-VIII.2 as an upstream component of the MAPK signaling pathway to control yield-related traits and suggest its potential for crop improvement aimed at developing plants with stable yield, a robust root system, and improved lodging resistance.
Collapse
Affiliation(s)
- Wenjun Xiao
- College of Biology, Hunan University, Changsha 410082, China
| | - Shuai Hu
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xiaoxiao Zou
- College of Biology, Hunan University, Changsha 410082, China
| | - Ruqiong Cai
- College of Biology, Hunan University, Changsha 410082, China
| | - Rui Liao
- College of Biology, Hunan University, Changsha 410082, China
| | - Xiaoxia Lin
- College of Biology, Hunan University, Changsha 410082, China
| | - Ruifeng Yao
- College of Biology, Hunan University, Changsha 410082, China
| | - Xinhong Guo
- College of Biology, Hunan University, Changsha 410082, China
| |
Collapse
|
12
|
Hao N, Zou X, Lin X, Cai R, Xiao W, Tong T, Yin H, Sun A, Guo X. LecRK-Ⅷ.2 mediates the cross-talk between sugar and brassinosteroid during hypocotyl elongation in Arabidopsis. REPRODUCTION AND BREEDING 2021. [DOI: 10.1016/j.repbre.2021.03.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
13
|
De Tender C, Vandecasteele B, Verstraeten B, Ommeslag S, De Meyer T, De Visscher J, Dawyndt P, Clement L, Kyndt T, Debode J. Chitin in Strawberry Cultivation: Foliar Growth and Defense Response Promotion, but Reduced Fruit Yield and Disease Resistance by Nutrient Imbalances. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:227-239. [PMID: 33135964 DOI: 10.1094/mpmi-08-20-0223-r] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Strawberry cultivation is associated with high mineral fertilizer doses and extensive use of chemical plant protection products. Based on previous research, we expected that chitin application to peat substrate would increase the nutrient availability and activate the plant systemic defense response, resulting in higher strawberry yields and fewer disease symptoms. We set up two experiments in which the temporal variability and differences in initial nutrient concentrations of the growing media were taken into account. Chitin treatment resulted in the attraction of plant growth-promoting fungi toward the plant root, such as species from genera Mortierella and Umbelopsis. In addition, by the end of the experiments 87 mg of mineral nitrogen (N) per liter of substrate was mineralized, which can be related to the observed increase in plant shoot biomass. This, however, led to nutrient imbalances in plant shoots and fruit; N concentration in the leaves increased over 30%, exceeding the optimal range, while phosphorous (P) and potassium (K) deficiencies occurred, with concentrations lower than 50% of the optimal range. This may explain the decreased fruit yield and disease resistance of the fruit toward Botrytis cinerea. In contrast, chitin caused a clear defense priming effect in the strawberry leaves, with a strong induction of the jasmonic acid response, resulting in fewer foliar disease symptoms. Chitin causes positive effects on shoot growth and foliar disease resistance, but caution needs to be taken for nutrient imbalances leading to negative influences on root growth, fruit production, and disease susceptibility toward B. cinerea.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- C De Tender
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food, Burgemeester Van Gansberghelaan 92, 9820 Merelbeke, Belgium
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Krijgslaan 281 S9, 9000 Ghent, Belgium
| | - B Vandecasteele
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food, Burgemeester Van Gansberghelaan 92, 9820 Merelbeke, Belgium
| | - B Verstraeten
- Epigenetics & Defence Research Group, Department Biotechnology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - S Ommeslag
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food, Burgemeester Van Gansberghelaan 92, 9820 Merelbeke, Belgium
| | - T De Meyer
- Department of Data Analysis & Mathematical Modelling, Ghent University, Ghent, Belgium
- Bioinformatics Institute Ghent From Nucleotides to Networks, Ghent University, 9000 Ghent, Belgium
| | - J De Visscher
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food, Burgemeester Van Gansberghelaan 92, 9820 Merelbeke, Belgium
- Epigenetics & Defence Research Group, Department Biotechnology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - P Dawyndt
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Krijgslaan 281 S9, 9000 Ghent, Belgium
| | - L Clement
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Krijgslaan 281 S9, 9000 Ghent, Belgium
- Bioinformatics Institute Ghent From Nucleotides to Networks, Ghent University, 9000 Ghent, Belgium
| | - T Kyndt
- Epigenetics & Defence Research Group, Department Biotechnology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - J Debode
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food, Burgemeester Van Gansberghelaan 92, 9820 Merelbeke, Belgium
| |
Collapse
|
14
|
Jemmat AM, Ranocha P, Le Ru A, Neel M, Jauneau A, Raggi S, Ferrari S, Burlat V, Dunand C. Coordination of five class III peroxidase-encoding genes for early germination events of Arabidopsis thaliana. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 298:110565. [PMID: 32771166 DOI: 10.1016/j.plantsci.2020.110565] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 06/10/2020] [Accepted: 06/12/2020] [Indexed: 06/11/2023]
Abstract
The Class III peroxidases (CIII Prxs) belong to a plant-specific multigene family. Thanks to their double catalytic cycle they can oxidize compounds or release reactive oxygen species (ROS). They are either involved in different cell wall stiffening processes such as lignification and suberization, in cell wall loosening or defense mechanisms. Germination is an important developmental stage requiring specific peroxidase activity. However, little is known about which isoforms are involved. Five CIII Prx encoding genes: AtPrx04, AtPrx16, AtPrx62, AtPrx69, and AtPrx71 were identified from published microarray data mining. Delayed or induced testa and endosperm rupture were observed for the corresponding CIII Prx mutant lines indicating either a gene-specific inducing or repressing role during germination, respectively. Via in situ hybridization AtPrx16, AtPrx62, AtPrx69 and AtPrx71 transcripts were exclusively localized to the micropylar endosperm facing the radicle, and transcriptomic data analysis enabled positioning the five CIII Prxs in a co-expression network enriched in germination, cell wall, cell wall proteins and xyloglucan hits. Evidence were produced showing that the five CIII Prxs were cell wall-targeted proteins and that the micropylar endosperm displayed a complex cell wall domain topochemistry. Finally, we drew a spatio-temporal model highlighting the fine sequential gene expression and the possible involvement of micropylar endosperm cell wall domains to explain the non-redundant cell wall stiffening and loosening functions of the CIII Prxs in a single cell type. We also highlighted the necessity of a peroxidase homeostasis to accurately control the micropylar endosperm cell wall dynamics during Arabidopsis germination events.
Collapse
Affiliation(s)
- Achraf M Jemmat
- Université de Toulouse, UPS, UMR 5546, Laboratoire de Recherche en Sciences Végétales, BP 42617, F-31326, Castanet-Tolosan, France.
| | - Philippe Ranocha
- Université de Toulouse, UPS, UMR 5546, Laboratoire de Recherche en Sciences Végétales, BP 42617, F-31326, Castanet-Tolosan, France.
| | - Aurélie Le Ru
- Fédération de Recherche 3450, Plateforme Imagerie, Pôle de Biotechnologie Végétale, Castanet-Tolosan, 31326, France.
| | - Maxime Neel
- Université de Toulouse, UPS, UMR 5546, Laboratoire de Recherche en Sciences Végétales, BP 42617, F-31326, Castanet-Tolosan, France.
| | - Alain Jauneau
- Fédération de Recherche 3450, Plateforme Imagerie, Pôle de Biotechnologie Végétale, Castanet-Tolosan, 31326, France
| | - Sara Raggi
- Institute Pasteur-Fondazione Cenci Bolognetti and Dipartimento di Biologia e Biotecnologie "Charles Darwin", Sapienza Università di Roma, 00185, Rome, Italy.
| | - Simone Ferrari
- Institute Pasteur-Fondazione Cenci Bolognetti and Dipartimento di Biologia e Biotecnologie "Charles Darwin", Sapienza Università di Roma, 00185, Rome, Italy.
| | - Vincent Burlat
- Université de Toulouse, UPS, UMR 5546, Laboratoire de Recherche en Sciences Végétales, BP 42617, F-31326, Castanet-Tolosan, France; Fédération de Recherche 3450, Plateforme Imagerie, Pôle de Biotechnologie Végétale, Castanet-Tolosan, 31326, France; Institute Pasteur-Fondazione Cenci Bolognetti and Dipartimento di Biologia e Biotecnologie "Charles Darwin", Sapienza Università di Roma, 00185, Rome, Italy.
| | - Christophe Dunand
- Université de Toulouse, UPS, UMR 5546, Laboratoire de Recherche en Sciences Végétales, BP 42617, F-31326, Castanet-Tolosan, France; Fédération de Recherche 3450, Plateforme Imagerie, Pôle de Biotechnologie Végétale, Castanet-Tolosan, 31326, France; Institute Pasteur-Fondazione Cenci Bolognetti and Dipartimento di Biologia e Biotecnologie "Charles Darwin", Sapienza Università di Roma, 00185, Rome, Italy.
| |
Collapse
|
15
|
Peng X, Wang M, Li Y, Yan W, Chang Z, Chen Z, Xu C, Yang C, Deng XW, Wu J, Tang X. Lectin receptor kinase OsLecRK-S.7 is required for pollen development and male fertility. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2020; 62:1227-1245. [PMID: 31833176 DOI: 10.1111/jipb.12897] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 12/10/2019] [Indexed: 05/29/2023]
Abstract
Pollen grains are covered by exine that protects the pollen from stress and facilitates pollination. Here we isolated a male sterile mutant s13283 in rice exhibiting aborted pollen with abnormal exine and defective aperture. The mutant gene encodes a novel plasma membrane-localized legume-lectin receptor kinase that we named OsLecRK-S.7. OsLecRK-S.7 was expressed at different levels in all tested tissues and throughout anther development. In vitro kinase assay showed OsLecRK-S.7 capable of autophosporylation. Mutation in s13283 (E560K) and mutation of the conserved ATP binding site (K418E) both knocked out the kinase activity. Mass spectrometry showed Thr376 , Ser378 , Thr386 , Thr403 , and Thr657 to be the autophosphorylation sites. Mutation of individual autophosphorylation site affected the in vitro kinase activity to different degrees, but did not abolish the gene function in fertility complementation. oslecrk-s.7 mutant plant overexpressing OsLecRK-S.7 recovered male fertility but showed severe growth retardation with reduced number of tillers, and these phenotypes were abolished by E560K or K418E mutation. The results indicated that OsLecRK-S.7 was a key regulator of pollen development.
Collapse
Affiliation(s)
- Xiaoqun Peng
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
- Shenzhen Institute of Molecular Crop Design, Shenzhen, 518107, China
| | - Menglong Wang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
- Shenzhen Institute of Molecular Crop Design, Shenzhen, 518107, China
| | - Yiqi Li
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Wei Yan
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
- Shenzhen Institute of Molecular Crop Design, Shenzhen, 518107, China
| | - Zhenyi Chang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Zhufeng Chen
- Shenzhen Institute of Molecular Crop Design, Shenzhen, 518107, China
| | - Chunjue Xu
- Shenzhen Institute of Molecular Crop Design, Shenzhen, 518107, China
| | - Chengwei Yang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Xing Wang Deng
- Shenzhen Institute of Molecular Crop Design, Shenzhen, 518107, China
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jianxin Wu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Xiaoyan Tang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
- Shenzhen Institute of Molecular Crop Design, Shenzhen, 518107, China
| |
Collapse
|
16
|
Wang B, Fang R, Zhang J, Han J, Chen F, He F, Liu YG, Chen L. Rice LecRK5 phosphorylates a UGPase to regulate callose biosynthesis during pollen development. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:4033-4041. [PMID: 32270203 PMCID: PMC7475243 DOI: 10.1093/jxb/eraa180] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 04/08/2020] [Indexed: 05/19/2023]
Abstract
The temporary callose layer surrounding the tetrads of microspores is critical for male gametophyte development in flowering plants, as abnormal callose deposition can lead to microspore abortion. A sophisticated signaling network regulates callose biosynthesis but these pathways are poorly understood. In this study, we characterized a rice male-sterile mutant, oslecrk5, which showed defective callose deposition during meiosis. OsLecRK5 encodes a plasma membrane-localized lectin receptor-like kinase, which can form a dimer with itself. Moreover, normal anther development requires the K-phosphorylation site (a conserved residue at the ATP-binding site) of OsLecRK5. In vitro assay showed that OsLecRK5 phosphorylates the callose synthesis enzyme UGP1, enhancing callose biosynthesis during anther development. Together, our results demonstrate that plasma membrane-localized OsLecRK5 phosphorylates UGP1 and promotes its activity in callose biosynthesis in rice. This is the first evidence that a receptor-like kinase positively regulates callose biosynthesis.
Collapse
Affiliation(s)
- Bin Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Ruiqiu Fang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Dongyang Institute of Maize Research, Zhejiang Academy of Agricultural Sciences, Dongyang, Zhejiang, China
| | - Jia Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Jingluan Han
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Faming Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Furong He
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Yao-Guang Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Letian Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- College of Life Sciences, South China Agricultural University, Guangzhou, China
- Correspondence:
| |
Collapse
|
17
|
Zhang W, Chen Z, Kang Y, Fan Y, Liu Y, Yang X, Shi M, Yao K, Qin S. Genome-wide analysis of lectin receptor-like kinases family from potato ( Solanum tuberosum L.). PeerJ 2020; 8:e9310. [PMID: 32566405 PMCID: PMC7293193 DOI: 10.7717/peerj.9310] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 05/17/2020] [Indexed: 12/29/2022] Open
Abstract
Lectin receptor-like kinases (LecRLKs) are involved in responses to diverse environmental stresses and pathogenic microbes. A comprehensive acknowledgment of the family members in potato (Solanum tuberosum) genome is largely limited until now. In total, 113 potato LecRLKs (StLecRLKs) were first identified, including 85 G-type, 26 L-type and 2 C-type members. Based on phylogenetic analysis, StLecRLKs were sub-grouped into seven clades, including C-type, L-type, G-I, G-II, G-III G-IV and G-V. Chromosomal distribution and gene duplication analysis revealed the expansion of StLecRLKs occurred majorly through tandem duplication although the whole-genome duplication (WGD)/segmental duplication events were found. Cis-elements in the StLecRLKs promoter region responded mainly to signals of defense and stress, phytohormone, biotic or abiotic stress. Moreover, expressional investigations indicated that the family members of the clades L-type, G-I, G-IV and G-V were responsive to both bacterial and fungal infection. Based on qRT-PCR analysis, the expressions of PGSC0003DMP400055136 and PGSC0003DMP400067047 were strongly induced in all treatments by both Fusarium sulphureum (Fs) and Phytophthora infestans (Pi) inoculation. The present study provides valuable information for LecRLKs gene family in potato genome, and establishes a foundation for further research into the functional analysis.
Collapse
Affiliation(s)
- Weina Zhang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Zhongjian Chen
- Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Yichen Kang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Yanling Fan
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Yuhui Liu
- Gansu Key Laboratory of Crop Improvement and Germplasm Enhancement, Gansu Agricultural University, Lanzhou, China
| | - Xinyu Yang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Mingfu Shi
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Kai Yao
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Shuhao Qin
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
18
|
Li Q, Wang C, Mou Z. Perception of Damaged Self in Plants. PLANT PHYSIOLOGY 2020; 182:1545-1565. [PMID: 31907298 PMCID: PMC7140957 DOI: 10.1104/pp.19.01242] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 12/16/2019] [Indexed: 05/04/2023]
Abstract
Plants use specific receptor proteins on the cell surface to detect host-derived danger signals released in response to attacks by pathogens or herbivores and activate immune responses against them.
Collapse
Affiliation(s)
- Qi Li
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida 32611
| | - Chenggang Wang
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida 32611
| | - Zhonglin Mou
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida 32611
| |
Collapse
|
19
|
Sun Y, Qiao Z, Muchero W, Chen JG. Lectin Receptor-Like Kinases: The Sensor and Mediator at the Plant Cell Surface. FRONTIERS IN PLANT SCIENCE 2020; 11:596301. [PMID: 33362827 PMCID: PMC7758398 DOI: 10.3389/fpls.2020.596301] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 11/19/2020] [Indexed: 05/17/2023]
Abstract
Lectin receptor-like kinases (LecRLKs), a plant-specific receptor-like kinase (RLK) sub-family, have been recently found to play crucial roles in plant development and responses to abiotic and biotic stresses. In this review, we first describe the classification and structures of Lectin RLKs. Then we focus on the analysis of functions of LecRLKs in various biological processes and discuss the status of LecRLKs from the ligands they recognize, substrate they target, signaling pathways they are involved in, to the overall regulation of growth-defense tradeoffs. LecRLKs and the signaling components they interact with constitute recognition and protection systems at the plant cell surface contributing to the detection of environmental changes monitoring plant fitness.
Collapse
|
20
|
Extracellular pyridine nucleotides trigger plant systemic immunity through a lectin receptor kinase/BAK1 complex. Nat Commun 2019; 10:4810. [PMID: 31641112 PMCID: PMC6805918 DOI: 10.1038/s41467-019-12781-7] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 10/01/2019] [Indexed: 02/07/2023] Open
Abstract
Systemic acquired resistance (SAR) is a long-lasting broad-spectrum plant immunity induced by mobile signals produced in the local leaves where the initial infection occurs. Although multiple structurally unrelated signals have been proposed, the mechanisms responsible for perception of these signals in the systemic leaves are unknown. Here, we show that exogenously applied nicotinamide adenine dinucleotide (NAD+) moves systemically and induces systemic immunity. We demonstrate that the lectin receptor kinase (LecRK), LecRK-VI.2, is a potential receptor for extracellular NAD+ (eNAD+) and NAD+ phosphate (eNADP+) and plays a central role in biological induction of SAR. LecRK-VI.2 constitutively associates with BRASSINOSTEROID INSENSITIVE1-ASSOCIATED KINASE1 (BAK1) in vivo. Furthermore, BAK1 and its homolog BAK1-LIKE1 are required for eNAD(P)+ signaling and SAR, and the kinase activities of LecR-VI.2 and BAK1 are indispensable to their function in SAR. Our results indicate that eNAD+ is a putative mobile signal, which triggers SAR through its receptor complex LecRK-VI.2/BAK1 in Arabidopsis thaliana. Systemic signals allows plants to mount immune responses in sites that are distal from the local infection site. Here, the authors provide evidence that nicotinamide adenine dinucleotide (NAD + ) is a potential systemic signal that induces immunity via the lectin receptor kinase LecRK-VI.2 and BAK1.
Collapse
|
21
|
Peng H, Pu Y, Yang X, Wu G, Qing L, Ma L, Sun X. Overexpression of a pathogenesis-related gene NbHIN1 confers resistance to Tobacco Mosaic Virus in Nicotiana benthamiana by potentially activating the jasmonic acid signaling pathway. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 283:147-156. [PMID: 31128684 DOI: 10.1016/j.plantsci.2019.02.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 01/18/2019] [Accepted: 02/25/2019] [Indexed: 05/02/2023]
Abstract
Harpin proteins secreted by plant-pathogenic gram-negative bacteria induce diverse plant defenses against different pathogens. Harpin-induced 1 (HIN1) gene highly induced in tobacco after application of Harpin protein is involved in a common plant defense pathway. However, the role of HIN1 against Tobacco mosaic virus (TMV) remains unknown. In this study, we functionally characterized the Nicotiana benthamiana HIN1 (NbHIN1) gene and generated the transgenic tobacco overexpressing the NbHIN1 gene. In a subcellular localization experiment, we found that NbHIN1 localized in the plasma membrane and cytosol. Overexpression of NbHIN1 did not lead to observed phenotype compared to wild type tobacco plant. However, the NbHIN1 overexpressing tobacco plant exhibited significantly enhanced resistance to TMV infection. Moreover, RNA-sequencing revealed the transcriptomic profiling of NbHIN1 overexpression and highlighted the primary effects on the genes in the processes related to biosynthesis of amino acids, plant-pathogen interaction and RNA transport. We also found that overexpression of NbHIN1 highly induced the expression of NbRAB11, suggesting that jasmonic acid signaling pathway might be involved in TMV resistance. Taken together, for the first time we demonstrated that overexpressing a pathogenesis-related gene NbHIN1 in N. benthamiana significantly enhances the TMV resistance, providing a potential mechanism that will enable us to engineer tobacco with improved TMV resistance in the future.
Collapse
Affiliation(s)
- Haoran Peng
- College of Plant Protection, Southwest University, Chongqing 400716, China
| | - Yundan Pu
- College of Plant Protection, Southwest University, Chongqing 400716, China
| | - Xue Yang
- College of Plant Protection, Southwest University, Chongqing 400716, China
| | - Gentu Wu
- College of Plant Protection, Southwest University, Chongqing 400716, China
| | - Ling Qing
- College of Plant Protection, Southwest University, Chongqing 400716, China
| | - Lisong Ma
- College of Plant Protection, Hebei Agriculture University, Baoding 071001, China; Division of Plant Science, Research School of Biology, The Australian National University, ACT, Acton, 2601, Australia.
| | - Xianchao Sun
- College of Plant Protection, Southwest University, Chongqing 400716, China.
| |
Collapse
|
22
|
Zhang C, Guo X, Xie H, Li J, Liu X, Zhu B, Liu S, Li H, Li M, He M, Chen P. Quantitative phosphoproteomics of lectin receptor-like kinase VI.4 dependent abscisic acid response in Arabidopsis thaliana. PHYSIOLOGIA PLANTARUM 2019; 165:728-745. [PMID: 29797451 DOI: 10.1111/ppl.12763] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 05/14/2018] [Accepted: 05/15/2018] [Indexed: 06/08/2023]
Abstract
Lectin receptor-like kinases (LecRKs) play important roles in the responses to adverse environment stress. Abscisic acid (ABA) is a plant hormone involved in plant growth, development and adverse environmental stress responses. Although some studies of ABA response LecRK genes have been reported, the molecular mechanisms of LecRKs regulation of downstream pathways under ABA induction are not well understood. The present study showed that LecRK-VI.4 responded to ABA and negatively regulated stomatal closure. Here, a quantitative phosphoproteomics approach based on mass spectrometry was employed to study the roles of LecRK-VI.4 in the ABA signaling pathway. Metal oxide affinity beads and C18 chromatography were used for phosphopeptide enrichment and separation. The isobaric tags for relative and absolute quantitation were used for profiling the phosphoproteome of mutant lecrk-vi.4-1 and wild-type Col-0 Arabidopsis under normal growth conditions or ABA treatments. In total, 475 unique phosphopeptides were quantified, including 81 phosphopeptides related to LecRK-VI.4 regulation. Gene ontology, protein-protein interaction and motif analysis were performed. The bioinformatics data showed that phosphorylated proteins regulated by LecRK-VI.4 had close relations with factors of stomatal function, which included aquaporin activity, H+ pump activity and the Ca2+ concentration in the cytoplasm. These data have expanded our understanding of how LecRK-VI.4 regulates ABA-mediated stomatal movements.
Collapse
Affiliation(s)
- Cheng Zhang
- College of Life Sciences, Hunan University, Changsha, 410082, China
| | - Xinhong Guo
- College of Life Sciences, Hunan University, Changsha, 410082, China
| | - Huali Xie
- Key Laboratory of Protein Chemistry and Developmental Biology of the Ministry of Education, Hunan Normal University, Changsha, 410081, China
| | - Jinyan Li
- College of Life Sciences, Hunan University, Changsha, 410082, China
| | - Xiaoqian Liu
- Key Laboratory of Protein Chemistry and Developmental Biology of the Ministry of Education, Hunan Normal University, Changsha, 410081, China
| | - Baode Zhu
- Key Laboratory of Protein Chemistry and Developmental Biology of the Ministry of Education, Hunan Normal University, Changsha, 410081, China
| | - Shucan Liu
- College of Life Sciences, Hunan University, Changsha, 410082, China
| | - Huili Li
- College of Life Sciences, Hunan University, Changsha, 410082, China
| | - Meiling Li
- College of Life Sciences, Hunan University, Changsha, 410082, China
| | - Mingqi He
- College of Life Sciences, Hunan University, Changsha, 410082, China
| | - Ping Chen
- Key Laboratory of Protein Chemistry and Developmental Biology of the Ministry of Education, Hunan Normal University, Changsha, 410081, China
| |
Collapse
|
23
|
Ma N, Liu C, Li H, Wang J, Zhang B, Lin J, Chang Y. Genome-wide identification of lectin receptor kinases in pear: Functional characterization of the L-type LecRLK gene PbLRK138. Gene 2018; 661:11-21. [PMID: 29601951 DOI: 10.1016/j.gene.2018.03.077] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 03/13/2018] [Accepted: 03/26/2018] [Indexed: 12/31/2022]
Abstract
Lectin receptor-like kinases (LecRLKs) are membrane-bound receptors that are believed to be involved in biotic and abiotic stress responses. However, little is known about the LecRLK family in pear. In this study, a total of 172 LecRLK genes were first identified in the entire pear genome. The 172 LecRLKs were divided into three types (111 G-, 59 L- and two C-types) based on their structure and phylogenetic relationships. LecRLKs gene expressions were detected in different pear tissues including roots, stems, leaves, flowers and fruits, and the most of the 11 selected LecRLKs exhibited similar expression patterns. Furthermore, six selected LecRLKs were shown to be involved in salt stress response. Overexpression of PbLRK138, an L-type LecRLK, caused cell death and induced expression of defense-related genes in Nicotiana benthamiana. Two deletion mutants containing lectin or transmembrane and serine/threonine kinase domains did not trigger cell death. In addition, only the mutant with the transmembrane domain was localized to the plasma membrane.
Collapse
Affiliation(s)
- Na Ma
- Institute of Pomology, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China
| | - Chunxiao Liu
- Institute of Pomology, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China
| | - Hui Li
- Institute of Pomology, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China
| | - Jinyan Wang
- Institute of Germplasm and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Baolong Zhang
- Institute of Germplasm and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Jing Lin
- Institute of Pomology, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China
| | - Youhong Chang
- Institute of Pomology, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China.
| |
Collapse
|
24
|
Combining population genomics and fitness QTLs to identify the genetics of local adaptation in Arabidopsis thaliana. Proc Natl Acad Sci U S A 2018; 115:5028-5033. [PMID: 29686078 PMCID: PMC5948977 DOI: 10.1073/pnas.1719998115] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Local adaptation can occur due to individual genetic variants that increase the fitness of individuals in their home environments but decrease fitness in other environments [genetic trade-offs (GTs)] or genetic variants that increase fitness in one environment but have no effect in other environments [conditional neutrality (CN)]. Here, we show that GT quantitative trait loci (QTLs) for fitness between Italian and Swedish Arabidopsis thaliana exhibit strong population genomic signatures of local adaptation, including elevated levels of allele frequency differentiation, correlations to climatic variables, and recent sweeps. Highly divergent genes between Italy and Sweden populations show evidence of more recent selection in Sweden than Italy, and the biological annotations of these genes suggest interesting mechanisms underlying local adaptation. Evidence for adaptation to different climates in the model species Arabidopsis thaliana is seen in reciprocal transplant experiments, but the genetic basis of this adaptation remains poorly understood. Field-based quantitative trait locus (QTL) studies provide direct but low-resolution evidence for the genetic basis of local adaptation. Using high-resolution population genomic approaches, we examine local adaptation along previously identified genetic trade-off (GT) and conditionally neutral (CN) QTLs for fitness between locally adapted Italian and Swedish A. thaliana populations [Ågren J, et al. (2013) Proc Natl Acad Sci USA 110:21077–21082]. We find that genomic regions enriched in high FST SNPs colocalize with GT QTL peaks. Many of these high FST regions also colocalize with regions enriched for SNPs significantly correlated to climate in Eurasia and evidence of recent selective sweeps in Sweden. Examining unfolded site frequency spectra across genes containing high FST SNPs suggests GTs may be due to more recent adaptation in Sweden than Italy. Finally, we collapse a list of thousands of genes spanning GT QTLs to 42 genes that likely underlie the observed GTs and explore potential biological processes driving these trade-offs, from protein phosphorylation, to seed dormancy and longevity. Our analyses link population genomic analyses and field-based QTL studies of local adaptation, and emphasize that GTs play an important role in the process of local adaptation.
Collapse
|
25
|
Liu PL, Huang Y, Shi PH, Yu M, Xie JB, Xie L. Duplication and diversification of lectin receptor-like kinases (LecRLK) genes in soybean. Sci Rep 2018; 8:5861. [PMID: 29651041 PMCID: PMC5897391 DOI: 10.1038/s41598-018-24266-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 03/29/2018] [Indexed: 01/12/2023] Open
Abstract
Lectin receptor-like kinases (LecRLKs) play important roles in plant development and stress responses. Although genome-wide studies of LecRLKs have been performed in several species, a comprehensive analysis including evolutionary, structural and functional analysis has not been carried out in soybean (Glycine max). In this study, we identified 185 putative LecRLK genes in the soybean genome, including 123 G-type, 60 L-type and 2 C-type LecRLK genes. Tandem duplication and segmental duplication appear to be the main mechanisms of gene expansion in the soybean LecRLK (GmLecRLK) gene family. According to our phylogenetic analysis, G-type and L-type GmLecRLK genes can be organized into fourteen and eight subfamilies, respectively. The subfamilies within the G-type GmLecRLKs differ from each other in gene structure and/or protein domains and motifs, which indicates that the subfamilies have diverged. The evolution of L-type GmLecRLKs has been more conservative: most genes retain the same gene structures and nearly the same protein domain and motif architectures. Furthermore, the expression profiles of G-type and L-type GmLecRLK genes show evidence of functional redundancy and divergence within each group. Our results contribute to a better understanding of the evolution and function of soybean LecRLKs and provide a framework for further functional investigation of them.
Collapse
Affiliation(s)
- Ping-Li Liu
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Yuan Huang
- Institute of Hutchison Whampoa Guangzhou Baiyunshan Chinese Medicine Co., Ltd, Guangzhou, 510515, China
| | - Peng-Hao Shi
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Meng Yu
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Jian-Bo Xie
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China.
| | - LuLu Xie
- Department of Chinese Cabbage, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
26
|
Yekondi S, Liang FC, Okuma E, Radziejwoski A, Mai HW, Swain S, Singh P, Gauthier M, Chien HC, Murata Y, Zimmerli L. Nonredundant functions of Arabidopsis LecRK-V.2 and LecRK-VII.1 in controlling stomatal immunity and jasmonate-mediated stomatal closure. THE NEW PHYTOLOGIST 2018; 218:253-268. [PMID: 29250804 DOI: 10.1111/nph.14953] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 11/12/2017] [Indexed: 05/24/2023]
Abstract
Stomatal immunity restricts bacterial entry to leaves through the recognition of microbe-associated molecular patterns (MAMPs) by pattern-recognition receptors (PRRs) and downstream abscisic acid and salicylic acid signaling. Through a reverse genetics approach, we characterized the function of the L-type lectin receptor kinase-V.2 (LecRK-V.2) and -VII.1 (LecRK-VII.1). Analyses of interactions with the PRR FLAGELLIN SENSING2 (FLS2) were performed by co-immunoprecipitation and bimolecular fluorescence complementation and whole-cell patch-clamp analyses were used to evaluate guard cell Ca2+ -permeable cation channels. The Arabidopsis thaliana LecRK-V.2 and LecRK-VII.1 and notably their kinase activities were required for full activation of stomatal immunity. Knockout lecrk-V.2 and lecrk-VII.1 mutants were hyper-susceptible to Pseudomonas syringae infection and showed defective stomatal closure in response to bacteria or to the MAMPs flagellin and EF-Tu. By contrast, Arabidopsis over-expressing LecRK-V.2 or LecRK-VII.1 demonstrated a potentiated stomatal immunity. LecRK-V.2 and LecRK-VII.1 are shown to be part of the FLS2 PRR complex. In addition, LecRK-V.2 and LecRK-VII.1 were critical for methyl jasmonate (MeJA)-mediated stomatal closure, notably for MeJA-induced activation of guard cell Ca2+ -permeable cation channels. This study highlights the role of LecRK-V.2 and LecRK-VII.1 in stomatal immunity at the FLS2 PRR complex and in MeJA-mediated stomatal closure.
Collapse
Affiliation(s)
- Shweta Yekondi
- Department of Life Science and Institute of Plant Biology, National Taiwan University, Taipei, 106, Taiwan
| | - Fu-Chun Liang
- Department of Life Science and Institute of Plant Biology, National Taiwan University, Taipei, 106, Taiwan
| | - Eiji Okuma
- Graduate School of Environmental and Life Science, Okayama University, Okayama, 700-8530, Japan
| | - Amandine Radziejwoski
- Department of Life Science and Institute of Plant Biology, National Taiwan University, Taipei, 106, Taiwan
| | - Hsien-Wei Mai
- Department of Life Science and Institute of Plant Biology, National Taiwan University, Taipei, 106, Taiwan
| | - Swadhin Swain
- Department of Life Science and Institute of Plant Biology, National Taiwan University, Taipei, 106, Taiwan
| | - Prashant Singh
- Department of Life Science and Institute of Plant Biology, National Taiwan University, Taipei, 106, Taiwan
| | - Mathieu Gauthier
- Department of Life Science and Institute of Plant Biology, National Taiwan University, Taipei, 106, Taiwan
| | - Hsiao-Chiao Chien
- Department of Life Science and Institute of Plant Biology, National Taiwan University, Taipei, 106, Taiwan
| | - Yoshiyuki Murata
- Graduate School of Environmental and Life Science, Okayama University, Okayama, 700-8530, Japan
| | - Laurent Zimmerli
- Department of Life Science and Institute of Plant Biology, National Taiwan University, Taipei, 106, Taiwan
| |
Collapse
|
27
|
Qin T, Zhao H, Cui P, Albesher N, Xiong L. A Nucleus-Localized Long Non-Coding RNA Enhances Drought and Salt Stress Tolerance. PLANT PHYSIOLOGY 2017; 175:1321-1336. [PMID: 28887353 PMCID: PMC5664461 DOI: 10.1104/pp.17.00574] [Citation(s) in RCA: 184] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 08/31/2017] [Indexed: 05/20/2023]
Abstract
Long noncoding RNAs (lncRNAs) affect gene expression through a wide range of mechanisms and are considered as important regulators in many essential biological processes. A large number of lncRNA transcripts have been predicted or identified in plants in recent years. However, the biological functions for most of them are still unknown. In this study, we identified an Arabidopsis (Arabidopsis thaliana) lncRNA, DROUGHT INDUCED lncRNA (DRIR), as a novel positive regulator of the plant response to drought and salt stress. DRIR was expressed at a low level under nonstress conditions but can be significantly activated by drought and salt stress as well as by abscisic acid (ABA) treatment. We identified a T-DNA insertion mutant, drirD , which had higher expression of the DRIR gene than the wild-type plants. The drirD mutant exhibits increased tolerance to drought and salt stress. Overexpressing DRIR in Arabidopsis also increased tolerance to drought and salt stress of the transgenic plants. The drirD mutant and the overexpressing seedlings are more sensitive to ABA than the wild type in stomata closure and seedling growth. Genome-wide transcriptome analysis demonstrated that the expression of a large number of genes was altered in drirD and the overexpressing plants. These include genes involved in ABA signaling, water transport, and other stress-relief processes. Our study reveals a mechanism whereby DRIR regulates the plant response to abiotic stress by modulating the expression of a series of genes involved in the stress response.
Collapse
Affiliation(s)
- Tao Qin
- Texas A&M AgriLife Research Center, Dallas, Texas 75252
| | - Huayan Zhao
- Applied Biotechnology Center, Wuhan Institute of Bioengineering, Wuhan 430415, China
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Peng Cui
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Nour Albesher
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Liming Xiong
- Texas A&M AgriLife Research Center, Dallas, Texas 75252
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
- Department of Horticultural Sciences, Texas A&M University, College Station, Texas 77843
| |
Collapse
|
28
|
Fusari CM, Kooke R, Lauxmann MA, Annunziata MG, Enke B, Hoehne M, Krohn N, Becker FFM, Schlereth A, Sulpice R, Stitt M, Keurentjes JJB. Genome-Wide Association Mapping Reveals That Specific and Pleiotropic Regulatory Mechanisms Fine-Tune Central Metabolism and Growth in Arabidopsis. THE PLANT CELL 2017; 29:2349-2373. [PMID: 28954812 PMCID: PMC5774568 DOI: 10.1105/tpc.17.00232] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 08/30/2017] [Accepted: 09/25/2017] [Indexed: 05/18/2023]
Abstract
Central metabolism is a coordinated network that is regulated at multiple levels by resource availability and by environmental and developmental cues. Its genetic architecture has been investigated by mapping metabolite quantitative trait loci (QTL). A more direct approach is to identify enzyme activity QTL, which distinguishes between cis-QTL in structural genes encoding enzymes and regulatory trans-QTL. Using genome-wide association studies, we mapped QTL for 24 enzyme activities, nine metabolites, three structural components, and biomass in Arabidopsis thaliana We detected strong cis-QTL for five enzyme activities. A cis-QTL for UDP-glucose pyrophosphorylase activity in the UGP1 promoter is maintained through balancing selection. Variation in acid invertase activity reflects multiple evolutionary events in the promoter and coding region of VAC-INVcis-QTL were also detected for ADP-glucose pyrophosphorylase, fumarase, and phosphoglucose isomerase activity. We detected many trans-QTL, including transcription factors, E3 ligases, protein targeting components, and protein kinases, and validated some by knockout analysis. trans-QTL are more frequent but tend to have smaller individual effects than cis-QTL. We detected many colocalized QTL, including a multitrait QTL on chromosome 4 that affects six enzyme activities, three metabolites, protein, and biomass. These traits are coordinately modified by different ACCELERATED CELL DEATH6 alleles, revealing a trade-off between metabolism and defense against biotic stress.
Collapse
Affiliation(s)
- Corina M Fusari
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Rik Kooke
- Laboratory of Genetics, Wageningen University, 6708 PB Wageningen, The Netherlands
- Centre for Biosystems Genomics, Wageningen Campus, 6708 PB Wageningen, The Netherlands
| | - Martin A Lauxmann
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | | | - Beatrice Enke
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Melanie Hoehne
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Nicole Krohn
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Frank F M Becker
- Laboratory of Genetics, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Armin Schlereth
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Ronan Sulpice
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Mark Stitt
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Joost J B Keurentjes
- Laboratory of Genetics, Wageningen University, 6708 PB Wageningen, The Netherlands
- Centre for Biosystems Genomics, Wageningen Campus, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
29
|
Affiliation(s)
- Yan Wang
- Laboratory of Phytopathology, Wageningen University, Wageningen, The Netherlands
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Klaas Bouwmeester
- Laboratory of Phytopathology, Wageningen University, Wageningen, The Netherlands
- Plant-Microbe Interactions, Department of Biology, Utrecht University, Utrecht, The Netherlands
- * E-mail:
| |
Collapse
|
30
|
Eggermont L, Verstraeten B, Van Damme EJM. Genome-Wide Screening for Lectin Motifs in Arabidopsis thaliana. THE PLANT GENOME 2017; 10. [PMID: 28724081 DOI: 10.3835/plantgenome2017.02.0010] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
For more than three decades, served as a model for plant biology research. At present only a few protein families have been studied in detail in . This study focused on all sequences with lectin motifs in the genome of . Based on amino acid sequence similarity (BLASTp searches), 217 putative lectin genes were retrieved belonging to 9 out of 12 different lectin families. The domain organization and genomic distribution for each lectin family were analyzed. Domain architecture analysis revealed that most of these lectin gene sequences are linked to other domains, often belonging to protein families with catalytic activity. Many protein domains identified are known to play a role in stress signaling and defense, suggesting a major contribution of the putative lectins in development and plant defense. This genome-wide screen for different lectin motifs will help to unravel the functional characteristics of lectins. In addition, phylogenetic trees and WebLogos were created and showed that most lectin sequences that share the same domain architecture evolved together. Furthermore, the amino acids responsible for carbohydrate binding are largely conserved. Our results provide information about the evolutionary relationships and functional divergence of the lectin motifs in .
Collapse
|
31
|
Plant Lectins and Lectin Receptor-Like Kinases: How Do They Sense the Outside? Int J Mol Sci 2017; 18:ijms18061164. [PMID: 28561754 PMCID: PMC5485988 DOI: 10.3390/ijms18061164] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 05/26/2017] [Accepted: 05/28/2017] [Indexed: 11/17/2022] Open
Abstract
Lectins are fundamental to plant life and have important roles in cell-to-cell communication; development and defence strategies. At the cell surface; lectins are present both as soluble proteins (LecPs) and as chimeric proteins: lectins are then the extracellular domains of receptor-like kinases (LecRLKs) and receptor-like proteins (LecRLPs). In this review; we first describe the domain architectures of proteins harbouring G-type; L-type; LysM and malectin carbohydrate-binding domains. We then focus on the functions of LecPs; LecRLKs and LecRLPs referring to the biological processes they are involved in and to the ligands they recognize. Together; LecPs; LecRLKs and LecRLPs constitute versatile recognition systems at the cell surface contributing to the detection of symbionts and pathogens; and/or involved in monitoring of the cell wall structure and cell growth.
Collapse
|
32
|
Passricha N, Saifi S, Ansari MW, Tuteja N. Prediction and validation of cis-regulatory elements in 5' upstream regulatory regions of lectin receptor-like kinase gene family in rice. PROTOPLASMA 2017; 254:669-684. [PMID: 27193099 DOI: 10.1007/s00709-016-0979-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 04/29/2016] [Indexed: 05/10/2023]
Abstract
Lectin receptor-like kinases (LecRLKs) play crucial roles in regulating plant growth and developmental processes in response to stress. In transcriptional gene regulation for normal cellular functions, cis-acting regulatory elements (CREs) direct the temporal and spatial gene expression with respect to environmental stimuli. A complete insightful of the transcriptional gene regulation system relies on effective functional analysis of CREs. Here, we analyzed the potential putative CREs present in the promoters of rice LecRLKs genes by using PlantCARE database. The CREs in LecRLKs promoters are associated with plant growth/development, light response, plant hormonal regulation processes, various stress responses, hormonal response like ABA, root-specific expression responsive, drought responsive, and cell and organ specific regulatory elements. The effect of methylation on these cis-regulatory elements was also analyzed. Real-time analysis of rice seedling under various stress conditions showed the expression levels of selected LecRLK genes superimposing the number of different CREs present in 5' upstream region. The overall results showed that the possible CREs function in the selective expression/regulation of LecRLKs gene family and during rice plant development under stress.
Collapse
MESH Headings
- Base Sequence
- Computer Simulation
- CpG Islands/genetics
- Databases, Genetic
- Gene Expression Profiling
- Gene Expression Regulation, Plant/radiation effects
- Genes, Plant
- Light
- Models, Biological
- Multigene Family
- Oligonucleotide Array Sequence Analysis
- Oryza/drug effects
- Oryza/enzymology
- Oryza/genetics
- Oryza/radiation effects
- Plant Development/drug effects
- Plant Development/genetics
- Plant Development/radiation effects
- Plant Growth Regulators/pharmacology
- Plant Proteins/genetics
- Plant Proteins/metabolism
- Promoter Regions, Genetic
- Protein Kinases/genetics
- Protein Kinases/metabolism
- Receptors, Mitogen/genetics
- Receptors, Mitogen/metabolism
- Regulatory Sequences, Nucleic Acid/genetics
- Reproducibility of Results
- Stress, Physiological/drug effects
- Stress, Physiological/genetics
- Stress, Physiological/radiation effects
Collapse
Affiliation(s)
- Nishat Passricha
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology, ArunaAsaf Ali Marg, New Delhi, 110067, India
| | - Shabnam Saifi
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology, ArunaAsaf Ali Marg, New Delhi, 110067, India
| | - Mohammad W Ansari
- Zakir Husain Delhi College, University of Delhi, Jawahar Lal Nehru Marg, New Delhi, 110002, India
| | - Narendra Tuteja
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology, ArunaAsaf Ali Marg, New Delhi, 110067, India.
- Amity Institute of Microbial Technology, Amity University, Noida, 201313, India.
| |
Collapse
|
33
|
Genome-wide analysis of lectin receptor-like kinases in Populus. BMC Genomics 2016; 17:699. [PMID: 27580945 PMCID: PMC5007699 DOI: 10.1186/s12864-016-3026-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 08/20/2016] [Indexed: 11/11/2022] Open
Abstract
Background Receptor-like kinases (RLKs) belong to a large protein family with over 600 members in Arabidopsis and over 1000 in rice. Among RLKs, the lectin receptor-like kinases (LecRLKs) possess a characteristic extracellular carbohydrate-binding lectin domain and play important roles in plant development and innate immunity. There are 75 and 173 LecRLKs in Arabidopsis and rice, respectively. However, little is known about LecRLKs in perennial woody plants. Results Here we report the genome-wide analysis of classification, domain architecture and expression of LecRLKs in the perennial woody model plant Populus. We found that the LecRLK family has expanded in Populus to a total of 231, including 180 G-type, 50 L-type and 1 C-type LecRLKs. Expansion of the Populus LecRLKs (PtLecRLKs) occurred partially through tandem duplication. Based on domain architecture and orientation features, we classified PtLecRLKs into eight different classes. RNA-seq-based transcriptomics analysis revealed diverse expression patterns of PtLecRLK genes among leaves, stems, roots, buds and reproductive tissues and organs. Conclusions This study offers a comprehensive view of LecRLKs in the perennial woody model plant Populus and provides a foundation for functional characterization of this important family of receptor-like kinases. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3026-2) contains supplementary material, which is available to authorized users.
Collapse
|
34
|
Lu K, Liang S, Wu Z, Bi C, Yu YT, Wang XF, Zhang DP. Overexpression of an Arabidopsis cysteine-rich receptor-like protein kinase, CRK5, enhances abscisic acid sensitivity and confers drought tolerance. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:5009-27. [PMID: 27406784 PMCID: PMC5014153 DOI: 10.1093/jxb/erw266] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Receptor-like kinases (RLKs) have been reported to regulate many developmental and defense process, but only a few members have been functionally characterized. In the present study, our observations suggest that one of the RLKs, a membrane-localized cysteine-rich receptor-like protein kinase, CRK5, is involved in abscisic acid (ABA) signaling in Arabidopsis thaliana Overexpression of CRK5 increases ABA sensitivity in ABA-induced early seedling growth arrest and promotion of stomatal closure and inhibition of stomatal opening. Interestingly, and importantly, overexpression of CRK5 enhances plant drought tolerance without affecting plant growth at the mature stages and plant productivity. Transgenic lines overexpressing a mutated form of CRK5, CRK5 (K372E) with the change of the 372nd conserved amino acid residue from lysine to glutamic acid in its kinase domain, result in wild-type ABA and drought responses, supporting the role of CRK5 in ABA signaling. The loss-of-function mutation of the CRK5 gene does not affect the ABA response, while overexpression of two homologs of CRK5, CRK4 and CRK19, confers ABA responses, suggesting that these CRK members function redundantly. We further showed that WRKY18, WRKY40 and WRKY60 transcription factors repress the expression of CRK5, and that CRK5 likely functions upstream of ABI2 in ABA signaling. These findings help in understanding the complex ABA signaling network.
Collapse
Affiliation(s)
- Kai Lu
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Shan Liang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Zhen Wu
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Chao Bi
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yong-Tao Yu
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xiao-Fang Wang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Da-Peng Zhang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
35
|
Hofberger JA, Nsibo DL, Govers F, Bouwmeester K, Schranz ME. A complex interplay of tandem- and whole-genome duplication drives expansion of the L-type lectin receptor kinase gene family in the brassicaceae. Genome Biol Evol 2015; 7:720-34. [PMID: 25635042 PMCID: PMC5322546 DOI: 10.1093/gbe/evv020] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2015] [Indexed: 11/15/2022] Open
Abstract
The comparative analysis of plant gene families in a phylogenetic framework has greatly accelerated due to advances in next generation sequencing. In this study, we provide an evolutionary analysis of the L-type lectin receptor kinase and L-type lectin domain proteins (L-type LecRKs and LLPs) that are considered as components in plant immunity, in the plant family Brassicaceae and related outgroups. We combine several lines of evidence provided by sequence homology, HMM-driven protein domain annotation, phylogenetic analysis, and gene synteny for large-scale identification of L-type LecRK and LLP genes within nine core-eudicot genomes. We show that both polyploidy and local duplication events (tandem duplication and gene transposition duplication) have played a major role in L-type LecRK and LLP gene family expansion in the Brassicaceae. We also find significant differences in rates of molecular evolution based on the mode of duplication. Additionally, we show that LLPs share a common evolutionary origin with L-type LecRKs and provide a consistent gene family nomenclature. Finally, we demonstrate that the largest and most diverse L-type LecRK clades are lineage-specific. Our evolutionary analyses of these plant immune components provide a framework to support future plant resistance breeding.
Collapse
Affiliation(s)
- Johannes A Hofberger
- Biosystematics Group, Wageningen University, The Netherlands Chinese Academy of Sciences/Max Planck Partner Institute for Computational Biology, Shanghai, People's Republic of China
| | - David L Nsibo
- Biosystematics Group, Wageningen University, The Netherlands
| | - Francine Govers
- Laboratory of Phytopathology, Wageningen University, The Netherlands
| | - Klaas Bouwmeester
- Laboratory of Phytopathology, Wageningen University, The Netherlands Plant-Microbe Interactions, Department of Biology, Faculty of Science, Utrecht University, The Netherlands
| | - M Eric Schranz
- Biosystematics Group, Wageningen University, The Netherlands
| |
Collapse
|
36
|
Wang Y, Bouwmeester K, Beseh P, Shan W, Govers F. Phenotypic analyses of Arabidopsis T-DNA insertion lines and expression profiling reveal that multiple L-type lectin receptor kinases are involved in plant immunity. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2014; 27:1390-1402. [PMID: 25083911 DOI: 10.1094/mpmi-06-14-0191-r] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
L-type lectin receptor kinases (LecRK) are membrane-spanning receptor-like kinases with putative roles in biotic and abiotic stress responses and in plant development. In Arabidopsis, 45 LecRK were identified but their functions are largely unknown. Here, a systematic functional analysis was carried out by evaluating phenotypic changes of Arabidopsis LecRK T-DNA insertion lines in plant development and upon exposure to various external stimuli. None of the LecRK T-DNA insertion lines showed clear developmental changes, either under normal conditions or upon abiotic stress treatment. However, many of the T-DNA insertion lines showed altered resistance to Phytophthora brassicae, Phytophthora capsici, Pseudomonas syringae, or Alternaria brassicicola. One mutant defective in LecRK-V.5 expression was compromised in resistance to two Phytophthora spp. but showed enhanced resistance to Pseudomonas syringae. LecRK-V.5 overexpression confirmed its dual role in resistance and susceptibility depending on the pathogen. Combined analysis of these phenotypic data and LecRK expression profiles retrieved from public datasets revealed that LecRK which are hardly induced upon infection or even suppressed are also involved in pathogen resistance. Computed coexpression analysis revealed that LecRK with similar function displayed diverse expression patterns. Because LecRK are widespread in plants, the results presented here provide invaluable information for exploring the potential of LecRK as novel sources of resistance in crops.
Collapse
|
37
|
Huang PY, Zimmerli L. Enhancing crop innate immunity: new promising trends. FRONTIERS IN PLANT SCIENCE 2014; 5:624. [PMID: 25414721 PMCID: PMC4222232 DOI: 10.3389/fpls.2014.00624] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 10/22/2014] [Indexed: 05/23/2023]
Abstract
Plants are constantly exposed to potentially pathogenic microbes present in their surrounding environment. Due to the activation of the pattern-triggered immunity (PTI) response that largely relies on accurate detection of pathogen- or microbe-associated molecular patterns by pattern-recognition receptors (PRRs), plants are resistant to the majority of potential pathogens. However, adapted pathogens may avoid recognition or repress plant PTI and resulting diseases significantly affect crop yield worldwide. PTI provides protection against a wide range of pathogens. Reinforcement of PTI through genetic engineering may thus generate crops with broad-spectrum field resistance. In this review, new approaches based on fundamental discoveries in PTI to improve crop immunity are discussed. Notably, we highlight recent studies describing the interfamily transfer of PRRs or key regulators of PTI signaling.
Collapse
Affiliation(s)
- Pin-Yao Huang
- Department of Life Science, National Taiwan UniversityTaipei, Taiwan
- Institute of Plant Biology, National Taiwan UniversityTaipei, Taiwan
| | - Laurent Zimmerli
- Department of Life Science, National Taiwan UniversityTaipei, Taiwan
- Institute of Plant Biology, National Taiwan UniversityTaipei, Taiwan
| |
Collapse
|
38
|
Hok S, Allasia V, Andrio E, Naessens E, Ribes E, Panabières F, Attard A, Ris N, Clément M, Barlet X, Marco Y, Grill E, Eichmann R, Weis C, Hückelhoven R, Ammon A, Ludwig-Müller J, Voll LM, Keller H. The receptor kinase IMPAIRED OOMYCETE SUSCEPTIBILITY1 attenuates abscisic acid responses in Arabidopsis. PLANT PHYSIOLOGY 2014; 166:1506-18. [PMID: 25274985 PMCID: PMC4226379 DOI: 10.1104/pp.114.248518] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 09/30/2014] [Indexed: 05/18/2023]
Abstract
In plants, membrane-bound receptor kinases are essential for developmental processes, immune responses to pathogens and the establishment of symbiosis. We previously identified the Arabidopsis (Arabidopsis thaliana) receptor kinase IMPAIRED OOMYCETE SUSCEPTIBILITY1 (IOS1) as required for successful infection with the downy mildew pathogen Hyaloperonospora arabidopsidis. We report here that IOS1 is also required for full susceptibility of Arabidopsis to unrelated (hemi)biotrophic filamentous oomycete and fungal pathogens. Impaired susceptibility in the absence of IOS1 appeared to be independent of plant defense mechanism. Instead, we found that ios1-1 plants were hypersensitive to the plant hormone abscisic acid (ABA), displaying enhanced ABA-mediated inhibition of seed germination, root elongation, and stomatal opening. These findings suggest that IOS1 negatively regulates ABA signaling in Arabidopsis. The expression of ABA-sensitive COLD REGULATED and RESISTANCE TO DESICCATION genes was diminished in Arabidopsis during infection. This effect on ABA signaling was alleviated in the ios1-1 mutant background. Accordingly, ABA-insensitive and ABA-hypersensitive mutants were more susceptible and resistant to oomycete infection, respectively, showing that the intensity of ABA signaling affects the outcome of downy mildew disease. Taken together, our findings suggest that filamentous (hemi)biotrophs attenuate ABA signaling in Arabidopsis during the infection process and that IOS1 participates in this pathogen-mediated reprogramming of the host.
Collapse
Affiliation(s)
- Sophie Hok
- Institut Sophia Agrobiotech, Unité Mixte de Recherche 1355 Institut National de la Recherche Agronomique-Centre National de la Recherche Scientifique-Université Nice-Sophia Antipolis, 06903 Sophia Antipolis, France (S.H., V.A., E.A., E.N., E.R., F.P., Ag.A., N.R., H.K.);Unité Mixte de Recherche 6191 Commissariat à l'Energie Atomique, Centre National de la Recherche Scientifique, Laboratoire de Biologie du Développement des Plantes, Université d'Aix-Marseille, 13108 Saint-Paul-lez-Durance, France (M.C.);Laboratoire des Interactions Plantes Microorganismes, Unité Mixte de Recherche Centre National de la Recherche Scientifique-Institut National de la Recherche Agronomique 2594/441, 31326 Castanet-Tolosan, France (X.B., Y.M.);Technische Universität München, Lehrstuhl für Botanik (E.G.) and Lehrstuhl für Phytopathologie (R.E., C.W., R.H.), 85350 Freising-Weihenstephan, Germany;Institut für Botanik, Technische Universität Dresden, 01062 Dresden, Germany (J.L.-M.); andFriedrich-Alexander-Universität Erlangen-Nürnberg, Lehrstuhl für Biochemie, 91058 Erlangen, Germany (Al.A., L.M.V.)
| | - Valérie Allasia
- Institut Sophia Agrobiotech, Unité Mixte de Recherche 1355 Institut National de la Recherche Agronomique-Centre National de la Recherche Scientifique-Université Nice-Sophia Antipolis, 06903 Sophia Antipolis, France (S.H., V.A., E.A., E.N., E.R., F.P., Ag.A., N.R., H.K.);Unité Mixte de Recherche 6191 Commissariat à l'Energie Atomique, Centre National de la Recherche Scientifique, Laboratoire de Biologie du Développement des Plantes, Université d'Aix-Marseille, 13108 Saint-Paul-lez-Durance, France (M.C.);Laboratoire des Interactions Plantes Microorganismes, Unité Mixte de Recherche Centre National de la Recherche Scientifique-Institut National de la Recherche Agronomique 2594/441, 31326 Castanet-Tolosan, France (X.B., Y.M.);Technische Universität München, Lehrstuhl für Botanik (E.G.) and Lehrstuhl für Phytopathologie (R.E., C.W., R.H.), 85350 Freising-Weihenstephan, Germany;Institut für Botanik, Technische Universität Dresden, 01062 Dresden, Germany (J.L.-M.); andFriedrich-Alexander-Universität Erlangen-Nürnberg, Lehrstuhl für Biochemie, 91058 Erlangen, Germany (Al.A., L.M.V.)
| | - Emilie Andrio
- Institut Sophia Agrobiotech, Unité Mixte de Recherche 1355 Institut National de la Recherche Agronomique-Centre National de la Recherche Scientifique-Université Nice-Sophia Antipolis, 06903 Sophia Antipolis, France (S.H., V.A., E.A., E.N., E.R., F.P., Ag.A., N.R., H.K.);Unité Mixte de Recherche 6191 Commissariat à l'Energie Atomique, Centre National de la Recherche Scientifique, Laboratoire de Biologie du Développement des Plantes, Université d'Aix-Marseille, 13108 Saint-Paul-lez-Durance, France (M.C.);Laboratoire des Interactions Plantes Microorganismes, Unité Mixte de Recherche Centre National de la Recherche Scientifique-Institut National de la Recherche Agronomique 2594/441, 31326 Castanet-Tolosan, France (X.B., Y.M.);Technische Universität München, Lehrstuhl für Botanik (E.G.) and Lehrstuhl für Phytopathologie (R.E., C.W., R.H.), 85350 Freising-Weihenstephan, Germany;Institut für Botanik, Technische Universität Dresden, 01062 Dresden, Germany (J.L.-M.); andFriedrich-Alexander-Universität Erlangen-Nürnberg, Lehrstuhl für Biochemie, 91058 Erlangen, Germany (Al.A., L.M.V.)
| | - Elodie Naessens
- Institut Sophia Agrobiotech, Unité Mixte de Recherche 1355 Institut National de la Recherche Agronomique-Centre National de la Recherche Scientifique-Université Nice-Sophia Antipolis, 06903 Sophia Antipolis, France (S.H., V.A., E.A., E.N., E.R., F.P., Ag.A., N.R., H.K.);Unité Mixte de Recherche 6191 Commissariat à l'Energie Atomique, Centre National de la Recherche Scientifique, Laboratoire de Biologie du Développement des Plantes, Université d'Aix-Marseille, 13108 Saint-Paul-lez-Durance, France (M.C.);Laboratoire des Interactions Plantes Microorganismes, Unité Mixte de Recherche Centre National de la Recherche Scientifique-Institut National de la Recherche Agronomique 2594/441, 31326 Castanet-Tolosan, France (X.B., Y.M.);Technische Universität München, Lehrstuhl für Botanik (E.G.) and Lehrstuhl für Phytopathologie (R.E., C.W., R.H.), 85350 Freising-Weihenstephan, Germany;Institut für Botanik, Technische Universität Dresden, 01062 Dresden, Germany (J.L.-M.); andFriedrich-Alexander-Universität Erlangen-Nürnberg, Lehrstuhl für Biochemie, 91058 Erlangen, Germany (Al.A., L.M.V.)
| | - Elsa Ribes
- Institut Sophia Agrobiotech, Unité Mixte de Recherche 1355 Institut National de la Recherche Agronomique-Centre National de la Recherche Scientifique-Université Nice-Sophia Antipolis, 06903 Sophia Antipolis, France (S.H., V.A., E.A., E.N., E.R., F.P., Ag.A., N.R., H.K.);Unité Mixte de Recherche 6191 Commissariat à l'Energie Atomique, Centre National de la Recherche Scientifique, Laboratoire de Biologie du Développement des Plantes, Université d'Aix-Marseille, 13108 Saint-Paul-lez-Durance, France (M.C.);Laboratoire des Interactions Plantes Microorganismes, Unité Mixte de Recherche Centre National de la Recherche Scientifique-Institut National de la Recherche Agronomique 2594/441, 31326 Castanet-Tolosan, France (X.B., Y.M.);Technische Universität München, Lehrstuhl für Botanik (E.G.) and Lehrstuhl für Phytopathologie (R.E., C.W., R.H.), 85350 Freising-Weihenstephan, Germany;Institut für Botanik, Technische Universität Dresden, 01062 Dresden, Germany (J.L.-M.); andFriedrich-Alexander-Universität Erlangen-Nürnberg, Lehrstuhl für Biochemie, 91058 Erlangen, Germany (Al.A., L.M.V.)
| | - Franck Panabières
- Institut Sophia Agrobiotech, Unité Mixte de Recherche 1355 Institut National de la Recherche Agronomique-Centre National de la Recherche Scientifique-Université Nice-Sophia Antipolis, 06903 Sophia Antipolis, France (S.H., V.A., E.A., E.N., E.R., F.P., Ag.A., N.R., H.K.);Unité Mixte de Recherche 6191 Commissariat à l'Energie Atomique, Centre National de la Recherche Scientifique, Laboratoire de Biologie du Développement des Plantes, Université d'Aix-Marseille, 13108 Saint-Paul-lez-Durance, France (M.C.);Laboratoire des Interactions Plantes Microorganismes, Unité Mixte de Recherche Centre National de la Recherche Scientifique-Institut National de la Recherche Agronomique 2594/441, 31326 Castanet-Tolosan, France (X.B., Y.M.);Technische Universität München, Lehrstuhl für Botanik (E.G.) and Lehrstuhl für Phytopathologie (R.E., C.W., R.H.), 85350 Freising-Weihenstephan, Germany;Institut für Botanik, Technische Universität Dresden, 01062 Dresden, Germany (J.L.-M.); andFriedrich-Alexander-Universität Erlangen-Nürnberg, Lehrstuhl für Biochemie, 91058 Erlangen, Germany (Al.A., L.M.V.)
| | - Agnès Attard
- Institut Sophia Agrobiotech, Unité Mixte de Recherche 1355 Institut National de la Recherche Agronomique-Centre National de la Recherche Scientifique-Université Nice-Sophia Antipolis, 06903 Sophia Antipolis, France (S.H., V.A., E.A., E.N., E.R., F.P., Ag.A., N.R., H.K.);Unité Mixte de Recherche 6191 Commissariat à l'Energie Atomique, Centre National de la Recherche Scientifique, Laboratoire de Biologie du Développement des Plantes, Université d'Aix-Marseille, 13108 Saint-Paul-lez-Durance, France (M.C.);Laboratoire des Interactions Plantes Microorganismes, Unité Mixte de Recherche Centre National de la Recherche Scientifique-Institut National de la Recherche Agronomique 2594/441, 31326 Castanet-Tolosan, France (X.B., Y.M.);Technische Universität München, Lehrstuhl für Botanik (E.G.) and Lehrstuhl für Phytopathologie (R.E., C.W., R.H.), 85350 Freising-Weihenstephan, Germany;Institut für Botanik, Technische Universität Dresden, 01062 Dresden, Germany (J.L.-M.); andFriedrich-Alexander-Universität Erlangen-Nürnberg, Lehrstuhl für Biochemie, 91058 Erlangen, Germany (Al.A., L.M.V.)
| | - Nicolas Ris
- Institut Sophia Agrobiotech, Unité Mixte de Recherche 1355 Institut National de la Recherche Agronomique-Centre National de la Recherche Scientifique-Université Nice-Sophia Antipolis, 06903 Sophia Antipolis, France (S.H., V.A., E.A., E.N., E.R., F.P., Ag.A., N.R., H.K.);Unité Mixte de Recherche 6191 Commissariat à l'Energie Atomique, Centre National de la Recherche Scientifique, Laboratoire de Biologie du Développement des Plantes, Université d'Aix-Marseille, 13108 Saint-Paul-lez-Durance, France (M.C.);Laboratoire des Interactions Plantes Microorganismes, Unité Mixte de Recherche Centre National de la Recherche Scientifique-Institut National de la Recherche Agronomique 2594/441, 31326 Castanet-Tolosan, France (X.B., Y.M.);Technische Universität München, Lehrstuhl für Botanik (E.G.) and Lehrstuhl für Phytopathologie (R.E., C.W., R.H.), 85350 Freising-Weihenstephan, Germany;Institut für Botanik, Technische Universität Dresden, 01062 Dresden, Germany (J.L.-M.); andFriedrich-Alexander-Universität Erlangen-Nürnberg, Lehrstuhl für Biochemie, 91058 Erlangen, Germany (Al.A., L.M.V.)
| | - Mathilde Clément
- Institut Sophia Agrobiotech, Unité Mixte de Recherche 1355 Institut National de la Recherche Agronomique-Centre National de la Recherche Scientifique-Université Nice-Sophia Antipolis, 06903 Sophia Antipolis, France (S.H., V.A., E.A., E.N., E.R., F.P., Ag.A., N.R., H.K.);Unité Mixte de Recherche 6191 Commissariat à l'Energie Atomique, Centre National de la Recherche Scientifique, Laboratoire de Biologie du Développement des Plantes, Université d'Aix-Marseille, 13108 Saint-Paul-lez-Durance, France (M.C.);Laboratoire des Interactions Plantes Microorganismes, Unité Mixte de Recherche Centre National de la Recherche Scientifique-Institut National de la Recherche Agronomique 2594/441, 31326 Castanet-Tolosan, France (X.B., Y.M.);Technische Universität München, Lehrstuhl für Botanik (E.G.) and Lehrstuhl für Phytopathologie (R.E., C.W., R.H.), 85350 Freising-Weihenstephan, Germany;Institut für Botanik, Technische Universität Dresden, 01062 Dresden, Germany (J.L.-M.); andFriedrich-Alexander-Universität Erlangen-Nürnberg, Lehrstuhl für Biochemie, 91058 Erlangen, Germany (Al.A., L.M.V.)
| | - Xavier Barlet
- Institut Sophia Agrobiotech, Unité Mixte de Recherche 1355 Institut National de la Recherche Agronomique-Centre National de la Recherche Scientifique-Université Nice-Sophia Antipolis, 06903 Sophia Antipolis, France (S.H., V.A., E.A., E.N., E.R., F.P., Ag.A., N.R., H.K.);Unité Mixte de Recherche 6191 Commissariat à l'Energie Atomique, Centre National de la Recherche Scientifique, Laboratoire de Biologie du Développement des Plantes, Université d'Aix-Marseille, 13108 Saint-Paul-lez-Durance, France (M.C.);Laboratoire des Interactions Plantes Microorganismes, Unité Mixte de Recherche Centre National de la Recherche Scientifique-Institut National de la Recherche Agronomique 2594/441, 31326 Castanet-Tolosan, France (X.B., Y.M.);Technische Universität München, Lehrstuhl für Botanik (E.G.) and Lehrstuhl für Phytopathologie (R.E., C.W., R.H.), 85350 Freising-Weihenstephan, Germany;Institut für Botanik, Technische Universität Dresden, 01062 Dresden, Germany (J.L.-M.); andFriedrich-Alexander-Universität Erlangen-Nürnberg, Lehrstuhl für Biochemie, 91058 Erlangen, Germany (Al.A., L.M.V.)
| | - Yves Marco
- Institut Sophia Agrobiotech, Unité Mixte de Recherche 1355 Institut National de la Recherche Agronomique-Centre National de la Recherche Scientifique-Université Nice-Sophia Antipolis, 06903 Sophia Antipolis, France (S.H., V.A., E.A., E.N., E.R., F.P., Ag.A., N.R., H.K.);Unité Mixte de Recherche 6191 Commissariat à l'Energie Atomique, Centre National de la Recherche Scientifique, Laboratoire de Biologie du Développement des Plantes, Université d'Aix-Marseille, 13108 Saint-Paul-lez-Durance, France (M.C.);Laboratoire des Interactions Plantes Microorganismes, Unité Mixte de Recherche Centre National de la Recherche Scientifique-Institut National de la Recherche Agronomique 2594/441, 31326 Castanet-Tolosan, France (X.B., Y.M.);Technische Universität München, Lehrstuhl für Botanik (E.G.) and Lehrstuhl für Phytopathologie (R.E., C.W., R.H.), 85350 Freising-Weihenstephan, Germany;Institut für Botanik, Technische Universität Dresden, 01062 Dresden, Germany (J.L.-M.); andFriedrich-Alexander-Universität Erlangen-Nürnberg, Lehrstuhl für Biochemie, 91058 Erlangen, Germany (Al.A., L.M.V.)
| | - Erwin Grill
- Institut Sophia Agrobiotech, Unité Mixte de Recherche 1355 Institut National de la Recherche Agronomique-Centre National de la Recherche Scientifique-Université Nice-Sophia Antipolis, 06903 Sophia Antipolis, France (S.H., V.A., E.A., E.N., E.R., F.P., Ag.A., N.R., H.K.);Unité Mixte de Recherche 6191 Commissariat à l'Energie Atomique, Centre National de la Recherche Scientifique, Laboratoire de Biologie du Développement des Plantes, Université d'Aix-Marseille, 13108 Saint-Paul-lez-Durance, France (M.C.);Laboratoire des Interactions Plantes Microorganismes, Unité Mixte de Recherche Centre National de la Recherche Scientifique-Institut National de la Recherche Agronomique 2594/441, 31326 Castanet-Tolosan, France (X.B., Y.M.);Technische Universität München, Lehrstuhl für Botanik (E.G.) and Lehrstuhl für Phytopathologie (R.E., C.W., R.H.), 85350 Freising-Weihenstephan, Germany;Institut für Botanik, Technische Universität Dresden, 01062 Dresden, Germany (J.L.-M.); andFriedrich-Alexander-Universität Erlangen-Nürnberg, Lehrstuhl für Biochemie, 91058 Erlangen, Germany (Al.A., L.M.V.)
| | - Ruth Eichmann
- Institut Sophia Agrobiotech, Unité Mixte de Recherche 1355 Institut National de la Recherche Agronomique-Centre National de la Recherche Scientifique-Université Nice-Sophia Antipolis, 06903 Sophia Antipolis, France (S.H., V.A., E.A., E.N., E.R., F.P., Ag.A., N.R., H.K.);Unité Mixte de Recherche 6191 Commissariat à l'Energie Atomique, Centre National de la Recherche Scientifique, Laboratoire de Biologie du Développement des Plantes, Université d'Aix-Marseille, 13108 Saint-Paul-lez-Durance, France (M.C.);Laboratoire des Interactions Plantes Microorganismes, Unité Mixte de Recherche Centre National de la Recherche Scientifique-Institut National de la Recherche Agronomique 2594/441, 31326 Castanet-Tolosan, France (X.B., Y.M.);Technische Universität München, Lehrstuhl für Botanik (E.G.) and Lehrstuhl für Phytopathologie (R.E., C.W., R.H.), 85350 Freising-Weihenstephan, Germany;Institut für Botanik, Technische Universität Dresden, 01062 Dresden, Germany (J.L.-M.); andFriedrich-Alexander-Universität Erlangen-Nürnberg, Lehrstuhl für Biochemie, 91058 Erlangen, Germany (Al.A., L.M.V.)
| | - Corina Weis
- Institut Sophia Agrobiotech, Unité Mixte de Recherche 1355 Institut National de la Recherche Agronomique-Centre National de la Recherche Scientifique-Université Nice-Sophia Antipolis, 06903 Sophia Antipolis, France (S.H., V.A., E.A., E.N., E.R., F.P., Ag.A., N.R., H.K.);Unité Mixte de Recherche 6191 Commissariat à l'Energie Atomique, Centre National de la Recherche Scientifique, Laboratoire de Biologie du Développement des Plantes, Université d'Aix-Marseille, 13108 Saint-Paul-lez-Durance, France (M.C.);Laboratoire des Interactions Plantes Microorganismes, Unité Mixte de Recherche Centre National de la Recherche Scientifique-Institut National de la Recherche Agronomique 2594/441, 31326 Castanet-Tolosan, France (X.B., Y.M.);Technische Universität München, Lehrstuhl für Botanik (E.G.) and Lehrstuhl für Phytopathologie (R.E., C.W., R.H.), 85350 Freising-Weihenstephan, Germany;Institut für Botanik, Technische Universität Dresden, 01062 Dresden, Germany (J.L.-M.); andFriedrich-Alexander-Universität Erlangen-Nürnberg, Lehrstuhl für Biochemie, 91058 Erlangen, Germany (Al.A., L.M.V.)
| | - Ralph Hückelhoven
- Institut Sophia Agrobiotech, Unité Mixte de Recherche 1355 Institut National de la Recherche Agronomique-Centre National de la Recherche Scientifique-Université Nice-Sophia Antipolis, 06903 Sophia Antipolis, France (S.H., V.A., E.A., E.N., E.R., F.P., Ag.A., N.R., H.K.);Unité Mixte de Recherche 6191 Commissariat à l'Energie Atomique, Centre National de la Recherche Scientifique, Laboratoire de Biologie du Développement des Plantes, Université d'Aix-Marseille, 13108 Saint-Paul-lez-Durance, France (M.C.);Laboratoire des Interactions Plantes Microorganismes, Unité Mixte de Recherche Centre National de la Recherche Scientifique-Institut National de la Recherche Agronomique 2594/441, 31326 Castanet-Tolosan, France (X.B., Y.M.);Technische Universität München, Lehrstuhl für Botanik (E.G.) and Lehrstuhl für Phytopathologie (R.E., C.W., R.H.), 85350 Freising-Weihenstephan, Germany;Institut für Botanik, Technische Universität Dresden, 01062 Dresden, Germany (J.L.-M.); andFriedrich-Alexander-Universität Erlangen-Nürnberg, Lehrstuhl für Biochemie, 91058 Erlangen, Germany (Al.A., L.M.V.)
| | - Alexandra Ammon
- Institut Sophia Agrobiotech, Unité Mixte de Recherche 1355 Institut National de la Recherche Agronomique-Centre National de la Recherche Scientifique-Université Nice-Sophia Antipolis, 06903 Sophia Antipolis, France (S.H., V.A., E.A., E.N., E.R., F.P., Ag.A., N.R., H.K.);Unité Mixte de Recherche 6191 Commissariat à l'Energie Atomique, Centre National de la Recherche Scientifique, Laboratoire de Biologie du Développement des Plantes, Université d'Aix-Marseille, 13108 Saint-Paul-lez-Durance, France (M.C.);Laboratoire des Interactions Plantes Microorganismes, Unité Mixte de Recherche Centre National de la Recherche Scientifique-Institut National de la Recherche Agronomique 2594/441, 31326 Castanet-Tolosan, France (X.B., Y.M.);Technische Universität München, Lehrstuhl für Botanik (E.G.) and Lehrstuhl für Phytopathologie (R.E., C.W., R.H.), 85350 Freising-Weihenstephan, Germany;Institut für Botanik, Technische Universität Dresden, 01062 Dresden, Germany (J.L.-M.); andFriedrich-Alexander-Universität Erlangen-Nürnberg, Lehrstuhl für Biochemie, 91058 Erlangen, Germany (Al.A., L.M.V.)
| | - Jutta Ludwig-Müller
- Institut Sophia Agrobiotech, Unité Mixte de Recherche 1355 Institut National de la Recherche Agronomique-Centre National de la Recherche Scientifique-Université Nice-Sophia Antipolis, 06903 Sophia Antipolis, France (S.H., V.A., E.A., E.N., E.R., F.P., Ag.A., N.R., H.K.);Unité Mixte de Recherche 6191 Commissariat à l'Energie Atomique, Centre National de la Recherche Scientifique, Laboratoire de Biologie du Développement des Plantes, Université d'Aix-Marseille, 13108 Saint-Paul-lez-Durance, France (M.C.);Laboratoire des Interactions Plantes Microorganismes, Unité Mixte de Recherche Centre National de la Recherche Scientifique-Institut National de la Recherche Agronomique 2594/441, 31326 Castanet-Tolosan, France (X.B., Y.M.);Technische Universität München, Lehrstuhl für Botanik (E.G.) and Lehrstuhl für Phytopathologie (R.E., C.W., R.H.), 85350 Freising-Weihenstephan, Germany;Institut für Botanik, Technische Universität Dresden, 01062 Dresden, Germany (J.L.-M.); andFriedrich-Alexander-Universität Erlangen-Nürnberg, Lehrstuhl für Biochemie, 91058 Erlangen, Germany (Al.A., L.M.V.)
| | - Lars M Voll
- Institut Sophia Agrobiotech, Unité Mixte de Recherche 1355 Institut National de la Recherche Agronomique-Centre National de la Recherche Scientifique-Université Nice-Sophia Antipolis, 06903 Sophia Antipolis, France (S.H., V.A., E.A., E.N., E.R., F.P., Ag.A., N.R., H.K.);Unité Mixte de Recherche 6191 Commissariat à l'Energie Atomique, Centre National de la Recherche Scientifique, Laboratoire de Biologie du Développement des Plantes, Université d'Aix-Marseille, 13108 Saint-Paul-lez-Durance, France (M.C.);Laboratoire des Interactions Plantes Microorganismes, Unité Mixte de Recherche Centre National de la Recherche Scientifique-Institut National de la Recherche Agronomique 2594/441, 31326 Castanet-Tolosan, France (X.B., Y.M.);Technische Universität München, Lehrstuhl für Botanik (E.G.) and Lehrstuhl für Phytopathologie (R.E., C.W., R.H.), 85350 Freising-Weihenstephan, Germany;Institut für Botanik, Technische Universität Dresden, 01062 Dresden, Germany (J.L.-M.); andFriedrich-Alexander-Universität Erlangen-Nürnberg, Lehrstuhl für Biochemie, 91058 Erlangen, Germany (Al.A., L.M.V.)
| | - Harald Keller
- Institut Sophia Agrobiotech, Unité Mixte de Recherche 1355 Institut National de la Recherche Agronomique-Centre National de la Recherche Scientifique-Université Nice-Sophia Antipolis, 06903 Sophia Antipolis, France (S.H., V.A., E.A., E.N., E.R., F.P., Ag.A., N.R., H.K.);Unité Mixte de Recherche 6191 Commissariat à l'Energie Atomique, Centre National de la Recherche Scientifique, Laboratoire de Biologie du Développement des Plantes, Université d'Aix-Marseille, 13108 Saint-Paul-lez-Durance, France (M.C.);Laboratoire des Interactions Plantes Microorganismes, Unité Mixte de Recherche Centre National de la Recherche Scientifique-Institut National de la Recherche Agronomique 2594/441, 31326 Castanet-Tolosan, France (X.B., Y.M.);Technische Universität München, Lehrstuhl für Botanik (E.G.) and Lehrstuhl für Phytopathologie (R.E., C.W., R.H.), 85350 Freising-Weihenstephan, Germany;Institut für Botanik, Technische Universität Dresden, 01062 Dresden, Germany (J.L.-M.); andFriedrich-Alexander-Universität Erlangen-Nürnberg, Lehrstuhl für Biochemie, 91058 Erlangen, Germany (Al.A., L.M.V.)
| |
Collapse
|
39
|
Cao Y, Tanaka K, Nguyen CT, Stacey G. Extracellular ATP is a central signaling molecule in plant stress responses. CURRENT OPINION IN PLANT BIOLOGY 2014; 20:82-7. [PMID: 24865948 DOI: 10.1016/j.pbi.2014.04.009] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 04/16/2014] [Accepted: 04/24/2014] [Indexed: 05/27/2023]
Abstract
Because of their sessile nature, plants have developed a number of sophisticated signaling systems to adapt to environmental changes. Previous research has shown that extracellular ATP is an important signaling molecule used by plants and functions in a variety of processes, including growth, development, and stress responses. Recently, DORN1 was identified as the first plant purinoceptor, essential for the plant response to ATP. The identification of the receptor is a milestone for our overall understanding of various physiological events regulated by extracellular ATP. In this review, we will discuss the possible roles of DORN1 providing future direction for research into the role of extracellular ATP in plants.
Collapse
Affiliation(s)
- Yangrong Cao
- Divisions of Plant Sciences and Biochemistry, National Center for Soybean Biotechnology, C.S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Kiwamu Tanaka
- Divisions of Plant Sciences and Biochemistry, National Center for Soybean Biotechnology, C.S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Cuong T Nguyen
- Divisions of Plant Sciences and Biochemistry, National Center for Soybean Biotechnology, C.S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Gary Stacey
- Divisions of Plant Sciences and Biochemistry, National Center for Soybean Biotechnology, C.S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
40
|
Mahmood K, Kannangara R, Jørgensen K, Fuglsang AT. Analysis of peptide PSY1 responding transcripts in the two Arabidopsis plant lines: wild type and psy1r receptor mutant. BMC Genomics 2014; 15:441. [PMID: 24906416 PMCID: PMC4070568 DOI: 10.1186/1471-2164-15-441] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 05/20/2014] [Indexed: 11/21/2022] Open
Abstract
Background Small-secreted peptides are emerging as important components in cell-cell communication during basic developmental stages of plant cell growth and development. Plant peptide containing sulfated tyrosine 1 (PSY1) has been reported to promote cell expansion and differentiation in the elongation zone of roots. PSY1 action is dependent on a receptor PSY1R that triggers a signaling cascade leading to cell elongation. However little is known about cellular functions and the components involved in PSY1-based signaling cascade. Results Differentially expressed genes were identified in a wild type plant line and in a psy1r receptor mutant line of Arabidopsis thaliana after treatment with PSY1. Seventy-seven genes were found to be responsive to the PSY1 peptide in wild type plants while 154 genes were responsive in the receptor mutant plants. PSY1 activates the transcripts of genes involved in cell wall modification. Gene enrichment analysis revealed that PSY1-responsive genes are involved in responses to stimuli, metabolic processes and biosynthetic processes. The significant enrichment terms of PSY1-responsive genes were higher in psy1r mutant plants compared to in wild type plants. Two parallel responses to PSY1 were identified, differing in their dependency on the PSY1R receptor. Promoter analysis of the differentially expressed genes identified a light regulatory motif in some of these. Conclusion PSY1-responsive genes are involved in cellular functions and stimuli responses suggesting a crosstalk between developmental cues and environmental stimuli. Possibly, two parallel responses to PSY1 exist. A motif involved in light regulation was identified in the promoter region of the differentially expressed genes. Reduced hypocotyl growth was observed in etiolated receptor mutant seedlings. Electronic supplementary material The online version of this article (doi: 10.1186/1471-2164-15-441) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | - Anja T Fuglsang
- Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
41
|
Zhang B, Pasini R, Dan H, Joshi N, Zhao Y, Leustek T, Zheng ZL. Aberrant gene expression in the Arabidopsis SULTR1;2 mutants suggests a possible regulatory role for this sulfate transporter in response to sulfur nutrient status. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 77:185-97. [PMID: 24308460 DOI: 10.1111/tpj.12376] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 10/17/2013] [Accepted: 11/04/2013] [Indexed: 05/18/2023]
Abstract
Sulfur is required for the biosynthesis of cysteine, methionine and numerous other metabolites, and thus is critical for cellular metabolism and various growth and developmental processes. Plants are able to sense their physiological state with respect to sulfur availability, but the sensor remains to be identified. Here we report the isolation and characterization of two novel allelic mutants of Arabidopsis thaliana, sel1-15 and sel1-16, which show increased expression of a sulfur deficiency-activated gene β-glucosidase 28 (BGLU28). The mutants, which represent two different missense alleles of SULTR1;2, which encodes a high-affinity sulfate transporter, are defective in sulfate transport and as a result have a lower cellular sulfate level. However, when treated with a very high dose of sulfate, sel1-15 and sel1-16 accumulated similar amounts of internal sulfate and its metabolite glutathione (GSH) to wild-type, but showed higher expression of BGLU28 and other sulfur deficiency-activated genes than wild-type. Reduced sensitivity to inhibition of gene expression was also observed in the sel1 mutants when fed with the sulfate metabolites Cys and GSH. In addition, a SULTR1;2 knockout allele also exhibits reduced inhibition in response to sulfate, Cys and GSH, consistent with the phenotype of sel1-15 and sel1-16. Taken together, the genetic evidence suggests that, in addition to its known function as a high-affinity sulfate transporter, SULTR1;2 may have a regulatory role in response to sulfur nutrient status. The possibility that SULTR1;2 may function as a sensor of sulfur status or a component of a sulfur sensory mechanism is discussed.
Collapse
Affiliation(s)
- Bo Zhang
- Department of Biological Sciences, Lehman College, City University of New York, Bronx, NY 10468, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Cheng X, Wu Y, Guo J, Du B, Chen R, Zhu L, He G. A rice lectin receptor-like kinase that is involved in innate immune responses also contributes to seed germination. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 76:687-98. [PMID: 24033867 PMCID: PMC4285754 DOI: 10.1111/tpj.12328] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 08/14/2013] [Accepted: 09/05/2013] [Indexed: 05/20/2023]
Abstract
Seed germination and innate immunity both have significant effects on plant life spans because they control the plant's entry into the ecosystem and provide defenses against various external stresses, respectively. Much ecological evidence has shown that seeds with high vigor are generally more tolerant of various environmental stimuli in the field than those with low vigor. However, there is little genetic evidence linking germination and immunity in plants. Here, we show that the rice lectin receptor-like kinase OslecRK contributes to both seed germination and plant innate immunity. We demonstrate that knocking down the OslecRK gene depresses the expression of α-amylase genes, reducing seed viability and thereby decreasing the rate of seed germination. Moreover, it also inhibits the expression of defense genes, and so reduces the resistance of rice plants to fungal and bacterial pathogens as well as herbivorous insects. Yeast two-hybrid and co-immunoprecipitation experiments revealed that OslecRK interacts with an actin-depolymerizing factor (ADF) in vivo via its kinase domain. Moreover, the rice adf mutant exhibited a reduced seed germination rate due to the suppression of α-amylase gene expression. This mutant also exhibited depressed immune responses and reduced resistance to biotic stresses. Our results thus provide direct genetic evidence for a common physiological pathway connecting germination and immunity in plants. They also partially explain the common observation that high-vigor seeds often perform well in the field. The dual effects of OslecRK may be indicative of progressive adaptive evolution in rice.
Collapse
Affiliation(s)
- Xiaoyan Cheng
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan UniversityWuhan, 430072, China
| | - Yan Wu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan UniversityWuhan, 430072, China
| | - Jianping Guo
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan UniversityWuhan, 430072, China
| | - Bo Du
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan UniversityWuhan, 430072, China
| | - Rongzhi Chen
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan UniversityWuhan, 430072, China
| | - Lili Zhu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan UniversityWuhan, 430072, China
| | - Guangcun He
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan UniversityWuhan, 430072, China
- For correspondence (e-mail )
| |
Collapse
|
43
|
Vaid N, Macovei A, Tuteja N. Knights in action: lectin receptor-like kinases in plant development and stress responses. MOLECULAR PLANT 2013; 6:1405-18. [PMID: 23430046 DOI: 10.1093/mp/sst033] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The Receptor-Like Kinase (RLK) is a vast protein family with over 600 genes in Arabidopsis and 1100 in rice. The Lectin RLK (LecRLK) family is believed to play crucial roles in saccharide signaling as well as stress perception. All the LecRLKs possess three domains: an N-terminal lectin domain, an intermediate transmembrane domain, and a C-terminal kinase domain. On the basis of lectin domain variability, LecRLKs have been subgrouped into three subclasses: L-, G-, and C-type LecRLKs. While the previous studies on LecRLKs were dedicated to classification, comparative structural analysis and expression analysis by promoter-based studies, most of the recent studies on LecRLKs have laid special emphasis on the potential of this gene family in regulating biotic/abiotic stress and developmental pathways in plants, thus making the prospects of studying the LecRLK-mediated regulatory mechanism exceptionally promising. In this review, we have described in detail the LecRLK gene family with respect to a historical, evolutionary, and structural point of view. Furthermore, we have laid emphasis on the LecRLKs roles in development, stress conditions, and hormonal response. We have also discussed the exciting research prospects offered by the current knowledge on the LecRLK gene family. The multitude of the LecRLK gene family members and their functional diversity mark these genes as both interesting and worthy candidates for further analysis, especially in the field of crop improvement.
Collapse
Affiliation(s)
- Neha Vaid
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | | | | |
Collapse
|
44
|
Sun X, Sun M, Luo X, Ding X, Ji W, Cai H, Bai X, Liu X, Zhu Y. A Glycine soja ABA-responsive receptor-like cytoplasmic kinase, GsRLCK, positively controls plant tolerance to salt and drought stresses. PLANTA 2013; 237:1527-45. [PMID: 23494614 DOI: 10.1007/s00425-013-1864-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2012] [Accepted: 02/25/2013] [Indexed: 05/27/2023]
Abstract
Receptor such as protein kinases are proposed to work as sensors to initiate signaling cascades in higher plants. However, little is known about the precise functions of receptor such as protein kinases in abiotic stress response in plants, especially in wild soybean. Here, we focused on characterization of the biological functions of a receptor-like cytoplasmic serine/threonine protein kinase gene, GsRLCK, which was previously identified as a putative salt-alkali stress-related gene from the transcriptome profiles of Glycine soja. Bioinformatic analysis showed that GsRLCK protein contained a conserved kinase catalytic domain and two transmembrane domains at the N-terminus, but no typical extracellular domain. Consistently, GsRLCK-eGFP fusion protein was observed on the plasma membrane, but eGFP alone was distributing throughout the cytoplasm in onion epidermal cells. Quantitative real-time PCR analysis revealed the induced expression of GsRLCK by ABA, salt, alkali, and drought stresses. However, the expression levels of GsRLCK seemed to be similar in different tissues, except soybean pod. Phenotypic assays demonstrated that GsRLCK overexpression decreased ABA sensitivity and altered expression levels of ABA-responsive genes. Furthermore, we also found that GsRLCK conferred increased tolerance to salt and drought stresses and increased expression levels of a handful of stress-responsive genes, when overexpressing in Arabidopsis. In a word, we gave exact evidence that GsRLCK was a novel receptor-like cytoplasmic protein kinase and played a crucial role in plant responses to ABA, salt, and drought stresses.
Collapse
MESH Headings
- Abscisic Acid/pharmacology
- Adaptation, Physiological/drug effects
- Adaptation, Physiological/genetics
- Amino Acid Sequence
- Arabidopsis/drug effects
- Arabidopsis/genetics
- Cell Membrane/drug effects
- Cell Membrane/metabolism
- Droughts
- Gene Expression Profiling
- Gene Expression Regulation, Plant/drug effects
- Genes, Plant/genetics
- Germination/drug effects
- Germination/genetics
- Molecular Sequence Data
- Phylogeny
- Plant Epidermis/cytology
- Plant Epidermis/drug effects
- Plant Proteins/chemistry
- Plant Proteins/genetics
- Plant Proteins/metabolism
- Plants, Genetically Modified
- Protein Transport/drug effects
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptor Protein-Tyrosine Kinases/chemistry
- Receptor Protein-Tyrosine Kinases/genetics
- Receptor Protein-Tyrosine Kinases/metabolism
- Salinity
- Sequence Alignment
- Sequence Analysis, DNA
- Sodium Chloride/pharmacology
- Glycine max/drug effects
- Glycine max/enzymology
- Glycine max/genetics
- Glycine max/physiology
- Stress, Physiological/drug effects
- Stress, Physiological/genetics
Collapse
Affiliation(s)
- XiaoLi Sun
- Plant Bioengineering Laboratory, Northeast Agricultural University, Harbin 150030, China
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Ho YP, Tan CM, Li MY, Lin H, Deng WL, Yang JY. The AvrB_AvrC domain of AvrXccC of Xanthomonas campestris pv. campestris is required to elicit plant defense responses and manipulate ABA homeostasis. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2013; 26:419-30. [PMID: 23252460 DOI: 10.1094/mpmi-06-12-0164-r] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Plant disease induced by Xanthomonas campestris pv. campestris depends on type III effectors but the molecular basis is poorly understood. Here, AvrXccC8004 was characterized, and it was found that the AvrB_AvrC domain was essential and sufficient to elicit defense responses in an Arabidopsis-resistant ecotype (Col-0). An upregulation of genes in responding to the AvrB_AvrC domain of AvrXccC8004 was shown in a profile of host gene expression. The molecular changes were correlated with morphological changes observed in phenotypic and ultrastructural characterizations. Interestingly, the abscisic acid (ABA)-signaling pathway was also a prominent target for the AvrB_AvrC domain of AvrXccC8004. The highly elicited NCED5, encoding a key enzyme of ABA biosynthesis, was increased in parallel with ABA levels in AvrXccC8004 transgenic plants. Consistently, the X. campestris pv. campestris 8004 ΔavrXccC mutant was severely impaired in the ability to manipulate the accumulation of ABA and induction of ABA-related genes in challenged leaves. Moreover, exogenous application of ABA also enhanced the susceptibility of Arabidopsis to the X. campestris pv. campestris strains. These results indicate that the AvrB_AvrC domain of AvrXccC8004 alone has the activity to manipulate ABA homeostasis, which plays an important role in regulating the interactions of X. campestris pv. campestris and Arabidopsis.
Collapse
Affiliation(s)
- Yi-Ping Ho
- Institute of Biochemistry, National ChungHsing University, Taichung, Taiwan
| | | | | | | | | | | |
Collapse
|
46
|
Huang P, Ju HW, Min JH, Zhang X, Kim SH, Yang KY, Kim CS. Overexpression of L-type lectin-like protein kinase 1 confers pathogen resistance and regulates salinity response in Arabidopsis thaliana. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2013; 203-204:98-106. [PMID: 23415333 DOI: 10.1016/j.plantsci.2012.12.019] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Revised: 12/17/2012] [Accepted: 12/18/2012] [Indexed: 05/29/2023]
Abstract
Plant receptor-like protein kinases are thought to be involved in various cellular processes mediated by signal transduction pathways. There are about 45 lectin receptor kinases in Arabidopsis, but only a few have been studied. Here, we investigated the effect of the disruption and overexpression of a plasma membrane-localized L-type lectin-like protein kinase 1, AtLPK1 (At4g02410), on plant responses to abiotic and biotic stress. Expression of AtLPK1 was strongly induced by abscisic acid, methyl jasmonate, salicylic acid and stress treatments. Overexpression of AtLPK1 in Arabidopsis resulted in enhanced seed germination and cotyledon greening under high salinity condition, while antisense transgenic lines were more sensitive to salt stress. Activity of three abiotic stress responsive genes, RD29A, RD29B and COR15A, was elevated in AtLPK1-overexpressing plants than that in wild type (WT) plants with salt treatment, whereas the transcript level of these genes in antisense plants decreased compared with WT. Furthermore, AtLPK1-overexpressing plants displayed increased resistance to infection by Botrytis cinerea and exhibited stronger expression of a group of defense-related genes than did WT. The data implicates AtLPK1 plays essential roles at both abiotic and biotic stress response in Arabidopsis thaliana.
Collapse
Affiliation(s)
- Ping Huang
- Department of Plant Biotechnology, Chonnam National University, Gwangju 500-757, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
47
|
Sun XL, Yu QY, Tang LL, Ji W, Bai X, Cai H, Liu XF, Ding XD, Zhu YM. GsSRK, a G-type lectin S-receptor-like serine/threonine protein kinase, is a positive regulator of plant tolerance to salt stress. JOURNAL OF PLANT PHYSIOLOGY 2013; 170:505-15. [PMID: 23276523 DOI: 10.1016/j.jplph.2012.11.017] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 11/13/2012] [Accepted: 11/17/2012] [Indexed: 05/23/2023]
Abstract
Receptor-like protein kinases (RLKs) play vital roles in sensing outside signals, yet little is known about RLKs functions and roles in stress signal perception and transduction in plants, especially in wild soybean. Through the microarray analysis, GsSRK was identified as an alkaline (NaHCO3)-responsive gene, and was subsequently isolated from Glycine soja by homologous cloning. GsSRK encodes a 93.22kDa protein with a highly conserved serine/threonine protein kinase catalytic domain, a G-type lectin region, and an S-locus region. Real-time PCR results showed that the expression levels of GsSRK were largely induced by ABA, salt, and drought stresses. Over expression of GsSRK in Arabidopsis promoted seed germination, as well as primary root and rosette leaf growth during the early stages of salt stress. Compared to the wild type Arabidopsis, GsSRK overexpressors exhibited enhanced salt tolerance and higher yields under salt stress, with higher chlorophyll content, lower ion leakage, higher plant height, and more siliques at the adult developmental stage. Our studies suggest that GsSRK plays a crucial role in plant response to salt stress.
Collapse
Affiliation(s)
- Xiao-Li Sun
- Plant Bioengineering Laboratory, Northeast Agricultural University, Harbin 150030, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Munné-Bosch S, Queval G, Foyer CH. The impact of global change factors on redox signaling underpinning stress tolerance. PLANT PHYSIOLOGY 2013; 161:5-19. [PMID: 23151347 PMCID: PMC3532280 DOI: 10.1104/pp.112.205690] [Citation(s) in RCA: 160] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 11/13/2012] [Indexed: 05/18/2023]
|
49
|
Singh P, Zimmerli L. Lectin receptor kinases in plant innate immunity. FRONTIERS IN PLANT SCIENCE 2013; 4:124. [PMID: 23675375 PMCID: PMC3646242 DOI: 10.3389/fpls.2013.00124] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 04/16/2013] [Indexed: 05/20/2023]
Abstract
A key feature of innate immunity is the ability to recognize and respond to potential pathogens in a highly sensitive and specific manner. In plants, the first layer of defense is induced after recognition by pattern recognition receptors of microbe-associated molecular patterns. This recognition elicits a defense program known as pattern-triggered immunity. Pathogen entry into host tissue is a critical early step in causing infection. For foliar bacterial pathogens, natural surface openings such as stomata, are important entry sites. Stomata in contact with bacteria rapidly close and can thus restrict bacterial entry into leaves. The molecular mechanisms regulating stomatal closure upon pathogen perception are not yet well-understood. Plant lectin receptor kinases are thought to play crucial roles during development and in the adaptive response to various stresses. Although the function of most plant lectin receptor kinases is still not clear, a role for this kinase family in plant innate immunity is emerging. Here, we summarize recent progresses in the identification of lectin receptor kinases involved in plant innate immunity. We also discuss the role of lectin receptor kinases in stomatal innate immunity signaling.
Collapse
Affiliation(s)
- Prashant Singh
- Department of Life Science, National Taiwan UniversityTaipei, Taiwan
- Institute of Plant Biology, National Taiwan UniversityTaipei, Taiwan
| | - Laurent Zimmerli
- Department of Life Science, National Taiwan UniversityTaipei, Taiwan
- Institute of Plant Biology, National Taiwan UniversityTaipei, Taiwan
- *Correspondence: Laurent Zimmerli, Institute of Plant Biology, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 106, Taiwan. e-mail:
| |
Collapse
|
50
|
Kovalchuk NV, Melnykova NM, Musatenko LI. Role of phytolectin in the life cycle of plants. ACTA ACUST UNITED AC 2012. [DOI: 10.7124/bc.00004a] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- N. V. Kovalchuk
- Australian Centre for Plant Functional Genomics, The University of Adelaide
- M. G. Kholodny Institute of Botany, National Academy of Sciences of Ukraine
| | - N. M. Melnykova
- Institute of Plant Physiology and Genetics, National Academy of Sciences of Ukraine
| | - L. I. Musatenko
- M. G. Kholodny Institute of Botany, National Academy of Sciences of Ukraine
| |
Collapse
|