1
|
Mao J, Shen B, Li W, Liu L, Li J. Post-translational Regulation of BRI1-EMS Suppressor 1 and Brassinazole-Resistant 1. PLANT & CELL PHYSIOLOGY 2024; 65:1544-1551. [PMID: 38896040 DOI: 10.1093/pcp/pcae066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 05/28/2024] [Accepted: 06/15/2024] [Indexed: 06/21/2024]
Abstract
Brassinosteroid-insensitive 1 (BRI1)-EMS suppressor 1 (BES1) and Brassinazole-resistant 1 (BZR1) are two highly similar master transcription factors of the brassinosteroid (BR) signaling pathway that regulates a variety of plant growth and development processes as well as stress responses. Previous genetic and biochemical analyses have established a complex regulatory network to control the two transcription factors. This network includes coordination with other transcription factors and interactors, multiple post-translational modifications (PTMs) and differential subcellular localizations. In this review, we systematically detail the functions and regulatory mechanisms of various PTMs: phosphorylation/dephosphorylation, ubiquitination/deubiquitination, SUMOylation/deSUMOylation and oxidation/reduction, in regulating the subcellular localization, protein stability and the transcriptional activity of BES1/BZR1. We also discuss the current knowledge about the BES1/BZR1 interactors mediating the dynamic nucleocytoplasmic shuttling of BES1 and BZR1.
Collapse
Affiliation(s)
- Juan Mao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, 483 Wusan Road, Tianhe District, Guangzhou 510642, China
| | - Biaodi Shen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, 483 Wusan Road, Tianhe District, Guangzhou 510642, China
| | - Wenxin Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, 483 Wusan Road, Tianhe District, Guangzhou 510642, China
| | - Linchuan Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, 483 Wusan Road, Tianhe District, Guangzhou 510642, China
| | - Jianming Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, 483 Wusan Road, Tianhe District, Guangzhou 510642, China
- Department of Biology, Hong Kong Baptist University, Kowloon, Hong Kong
| |
Collapse
|
2
|
Furuya T, Ohashi-Ito K, Kondo Y. Multiple Roles of Brassinosteroid Signaling in Vascular Development. PLANT & CELL PHYSIOLOGY 2024; 65:1601-1607. [PMID: 38590039 DOI: 10.1093/pcp/pcae037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/29/2024] [Accepted: 04/03/2024] [Indexed: 04/10/2024]
Abstract
Brassinosteroids (BRs) are plant steroid hormones that control growth and stress responses. In the context of development, BRs play diverse roles in controlling cell differentiation and tissue patterning. The vascular system, which is essential for transporting water and nutrients throughout the plant body, initially establishes a tissue pattern during primary development and then dramatically increases the number of vascular cells during secondary development. This complex developmental process is properly regulated by a network consisting of various hormonal signaling pathways. Genetic studies have revealed that mutants that are defective in BR biosynthesis or the BR signaling cascade exhibit a multifaceted vascular development phenotype. Furthermore, BR crosstalk with other plant hormones, including peptide hormones, coordinately regulates vascular development. Recently, the involvement of BR in vascular development, especially in xylem differentiation, has also been suggested in plant species other than the model plant Arabidopsis thaliana. In this review, we briefly summarize the recent findings on the roles of BR in primary and secondary vascular development in Arabidopsis and other species.
Collapse
Affiliation(s)
- Tomoyuki Furuya
- College of Life Sciences, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, 525-8577 Japan
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, 560-0043 Japan
| | - Kyoko Ohashi-Ito
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
| | - Yuki Kondo
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, 560-0043 Japan
- Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodai, Kobe, 657-8501 Japan
| |
Collapse
|
3
|
Guo B, Kim EJ, Zhu Y, Wang K, Russinova E. Shaping Brassinosteroid Signaling through Scaffold Proteins. PLANT & CELL PHYSIOLOGY 2024; 65:1608-1617. [PMID: 38590034 DOI: 10.1093/pcp/pcae040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/06/2024] [Accepted: 04/04/2024] [Indexed: 04/10/2024]
Abstract
Cellular responses to internal and external stimuli are orchestrated by intricate intracellular signaling pathways. To ensure an efficient and specific information flow, cells employ scaffold proteins as critical signaling organizers. With the ability to bind multiple signaling molecules, scaffold proteins can sequester signaling components within specific subcellular domains or modulate the efficiency of signal transduction. Scaffolds can also tune the output of signaling pathways by serving as regulatory targets. This review focuses on scaffold proteins associated with the plant GLYCOGEN SYNTHASE KINASE3-like kinase, BRASSINOSTEROID-INSENSITIVE2 (BIN2), that serves as a key negative regulator of brassinosteroid (BR) signaling. Here, we summarize current understanding of how scaffold proteins actively shape BR signaling outputs and cross-talk in plant cells via interactions with BIN2.
Collapse
Affiliation(s)
- Boyu Guo
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technolgiepark 71, Ghent 9052, Belgium
- Center for Plant Systems Biology, VIB, Technolgiepark 71, Ghent 9052, Belgium
- College of Life Sciences, Wuhan University, 299 Bayi Road, Wuchang District, Wuhan 430072, China
| | - Eun-Ji Kim
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technolgiepark 71, Ghent 9052, Belgium
- Center for Plant Systems Biology, VIB, Technolgiepark 71, Ghent 9052, Belgium
| | - Yuxian Zhu
- College of Life Sciences, Wuhan University, 299 Bayi Road, Wuchang District, Wuhan 430072, China
| | - Kun Wang
- College of Life Sciences, Wuhan University, 299 Bayi Road, Wuchang District, Wuhan 430072, China
| | - Eugenia Russinova
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technolgiepark 71, Ghent 9052, Belgium
- Center for Plant Systems Biology, VIB, Technolgiepark 71, Ghent 9052, Belgium
| |
Collapse
|
4
|
Kim Y, Kim SH, Lim J, Kim SH. ATBS1-INTERACTING FACTOR 2 Positively Regulates Freezing Tolerance via INDUCER OF CBF EXPRESSION 1/C-REPEAT BINDING FACTOR-Induced Cold Acclimation Pathway. PLANT & CELL PHYSIOLOGY 2024; 65:1363-1376. [PMID: 38957969 DOI: 10.1093/pcp/pcae072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 07/02/2024] [Indexed: 07/04/2024]
Abstract
The INDUCER OF CBF EXPRESSION 1/C-REPEAT BINDING FACTOR (ICE1/CBF) pathway plays a crucial role in plant responses to cold stress, impacting growth and development. Here, we demonstrated that ATBS1-INTERACTING FACTOR 2 (AIF2), a non-DNA-binding basic helix-loop-helix transcription factor, positively regulates freezing tolerance through the ICE1/CBF-induced cold tolerance pathway in Arabidopsis. Cold stress transcriptionally upregulated AIF2 expression and induced AIF2 phosphorylation, thereby stabilizing the AIF2 protein during early stages of cold acclimation. The AIF2 loss-of-function mutant, aif2-1, exhibited heightened sensitivity to freezing before and after cold acclimation. In contrast, ectopic expression of AIF2, but not the C-terminal-deleted AIF2 variant, restored freezing tolerance. AIF2 enhanced ICE1 stability during cold acclimation and promoted the transcriptional expression of CBFs and downstream cold-responsive genes, ultimately enhancing plant tolerance to freezing stress. MITOGEN-ACTIVATED PROTEIN KINASES 3 and 6 (MPK3/6), known negative regulators of freezing tolerance, interacted with and phosphorylated AIF2, subjecting it to protein degradation. Furthermore, transient co-expression of MPK3/6 with AIF2 and ICE1 downregulated AIF2/ICE1-induced transactivation of CBF2 expression. AIF2 interacted preferentially with BRASSINOSTEROID-INSENSITIVE 2 (BIN2) and MPK3/6 during the early and later stages of cold acclimation, respectively, thereby differentially regulating AIF2 activity in a cold acclimation time-dependent manner. Moreover, AIF2 acted additively in a gain-of-function mutant of BRASSINAZOLE-RESISTANT 1 (BZR1; bzr1-1D) and a triple knockout mutant of BIN2 and its homologs (bin2bil1bil2) to induce CBFs-mediated freezing tolerance. This suggests that cold-induced AIF2 coordinates freezing tolerance along with BZR1 and BIN2, key positive and negative components, respectively, of brassinosteroid signaling pathways.
Collapse
Affiliation(s)
- Yoon Kim
- Division of Biological Science and Technology, Yonsei University, 1 Yonseidae-Gil, Wonju-Si 220-710, Republic of Korea
| | - Sun-Ho Kim
- Division of Biological Science and Technology, Yonsei University, 1 Yonseidae-Gil, Wonju-Si 220-710, Republic of Korea
| | - Jun Lim
- Department of Systems Biotechnology, Konkuk University, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Soo-Hwan Kim
- Division of Biological Science and Technology, Yonsei University, 1 Yonseidae-Gil, Wonju-Si 220-710, Republic of Korea
| |
Collapse
|
5
|
Zebosi B, Vollbrecht E, Best NB. Brassinosteroid biosynthesis and signaling: Conserved and diversified functions of core genes across multiple plant species. PLANT COMMUNICATIONS 2024; 5:100982. [PMID: 38816993 DOI: 10.1016/j.xplc.2024.100982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/13/2024] [Accepted: 05/28/2024] [Indexed: 06/01/2024]
Abstract
Brassinosteroids (BRs) are important regulators that control myriad aspects of plant growth and development, including biotic and abiotic stress responses, such that modulating BR homeostasis and signaling presents abundant opportunities for plant breeding and crop improvement. Enzymes and other proteins involved in the biosynthesis and signaling of BRs are well understood from molecular genetics and phenotypic analysis in Arabidopsis thaliana; however, knowledge of the molecular functions of these genes in other plant species, especially cereal crop plants, is minimal. In this manuscript, we comprehensively review functional studies of BR genes in Arabidopsis, maize, rice, Setaria, Brachypodium, and soybean to identify conserved and diversified functions across plant species and to highlight cases for which additional research is in order. We performed phylogenetic analysis of gene families involved in the biosynthesis and signaling of BRs and re-analyzed publicly available transcriptomic data. Gene trees coupled with expression data provide a valuable guide to supplement future research on BRs in these important crop species, enabling researchers to identify gene-editing targets for BR-related functional studies.
Collapse
Affiliation(s)
- Brian Zebosi
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA; Interdepartmental Genetics and Genomics Graduate Program, Iowa State University, Ames, IA 50011, USA
| | - Erik Vollbrecht
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA; Interdepartmental Genetics and Genomics Graduate Program, Iowa State University, Ames, IA 50011, USA.
| | - Norman B Best
- USDA-ARS, Plant Genetics Research Unit, Columbia, MO 65201, USA.
| |
Collapse
|
6
|
Lee SH, Kim SH, Park TK, Kim YP, Lee JW, Kim TW. Transcription factors BZR1 and PAP1 cooperate to promote anthocyanin biosynthesis in Arabidopsis shoots. THE PLANT CELL 2024; 36:3654-3673. [PMID: 38869214 PMCID: PMC11371145 DOI: 10.1093/plcell/koae172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 05/17/2024] [Accepted: 06/04/2024] [Indexed: 06/14/2024]
Abstract
Anthocyanins play critical roles in protecting plant tissues against diverse stresses. The complicated regulatory networks induced by various environmental factors modulate the homeostatic level of anthocyanins. Here, we show that anthocyanin accumulation is induced by brassinosteroids (BRs) in Arabidopsis (Arabidopsis thaliana) shoots and shed light on the underlying regulatory mechanism. We observed that anthocyanin levels are altered considerably in BR-related mutants, and BRs induce anthocyanin accumulation by upregulating the expression of anthocyanin biosynthetic genes. Our genetic analysis indicated that BRASSINAZOLE RESISTANT 1 (BZR1) and PRODUCTION OF ANTHOCYANIN PIGMENT 1 (PAP1) are essential for BR-induced anthocyanin accumulation. The BR-responsive transcription factor BZR1 directly binds to the PAP1 promoter, regulating its expression. In addition, we found that intense anthocyanin accumulation caused by the pap1-D-dominant mutation is significantly reduced in BR mutants, implying that BR activity is required for PAP1 function after PAP1 transcription. Moreover, we demonstrated that BZR1 physically interacts with PAP1 to cooperatively regulate the expression of PAP1-target genes, such as TRANSPARENT TESTA 8, DIHYDROFLAVONOL 4-REDUCTASE, and LEUKOANTHOCYANIDIN DIOXYGENASE. Our findings indicate that BZR1 functions as an integral component of the PAP1-containing transcription factor complex, contributing to increased anthocyanin biosynthesis. Notably, we also show that functional interaction of BZR1 with PAP1 is required for anthocyanin accumulation induced by low nitrogen stress. Taken together, our results demonstrate that BR-regulated BZR1 promotes anthocyanin biosynthesis through cooperative interaction with PAP1 of the MBW complex.
Collapse
Affiliation(s)
- Se-Hwa Lee
- Department of Life Science, Hanyang University, Seoul 04763, Republic of Korea
- Research Institute for Convergence of Basic Science, Hanyang University, Seoul 04763, Republic of Korea
| | - So-Hee Kim
- Department of Life Science, Hanyang University, Seoul 04763, Republic of Korea
- Research Institute for Convergence of Basic Science, Hanyang University, Seoul 04763, Republic of Korea
| | - Tae-Ki Park
- Department of Life Science, Hanyang University, Seoul 04763, Republic of Korea
- Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul 04763, Republic of Korea
| | - Young-Pil Kim
- Department of Life Science, Hanyang University, Seoul 04763, Republic of Korea
- Research Institute for Convergence of Basic Science, Hanyang University, Seoul 04763, Republic of Korea
- Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul 04763, Republic of Korea
| | - Jin-Won Lee
- Department of Life Science, Hanyang University, Seoul 04763, Republic of Korea
- Research Institute for Convergence of Basic Science, Hanyang University, Seoul 04763, Republic of Korea
- Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul 04763, Republic of Korea
| | - Tae-Wuk Kim
- Department of Life Science, Hanyang University, Seoul 04763, Republic of Korea
- Research Institute for Convergence of Basic Science, Hanyang University, Seoul 04763, Republic of Korea
- Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul 04763, Republic of Korea
| |
Collapse
|
7
|
Yang R, Dong H, Xie X, Zhang Y, Sun J. GSK3s promote the phyB-ELF3-HMR complex formation to regulate plant thermomorphogenesis. THE NEW PHYTOLOGIST 2024. [PMID: 39192577 DOI: 10.1111/nph.20064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 08/01/2024] [Indexed: 08/29/2024]
Abstract
Although elevated ambient temperature causes many effects on plant growth and development, the mechanisms of plant high-ambient temperature sensing remain unknown. In this study, we show that GLYCOGEN SYNTHASE KINASE 3s (GSK3s) negatively regulate high-ambient temperature response and oligomerize upon high-temperature treatment. We demonstrate that GSK3 kinase BIN2 specifically interacts with the high-temperature sensor phytochrome B (phyB) but not the high-temperature sensor EARLY FLOWER 3 (ELF3) to phosphorylate and promote phyB photobody formation. Furthermore, we show that phosphorylation of phyB by GSK3s promotes its interaction with ELF3. Subsequently, we find that ELF3 recruits the phyB photobody facilitator HEMERA (HMR) to promote its association with phyB. Taken together, our data reveal a mechanism that GSK3s promote the phyB-ELF3-HMR complex formation in regulating plant thermomorphogenesis.
Collapse
Affiliation(s)
- Ruizhen Yang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Huixue Dong
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xianzhi Xie
- Shandong Rice Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Yunwei Zhang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jiaqiang Sun
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
8
|
Zhao C, Cui X, Xie M, Zhang Y, Zeng L, Liu Y, Huang J, Zhang X, Tong C, Hu Q, Liu L, Liu S. Chromosome-scale genome assembly-assisted identification of Brassica napus BnDCPA1 for improvement of plant architecture and yield heterosis. PLANT COMMUNICATIONS 2024; 5:100854. [PMID: 38419333 PMCID: PMC11287117 DOI: 10.1016/j.xplc.2024.100854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/25/2024] [Accepted: 02/26/2024] [Indexed: 03/02/2024]
Affiliation(s)
- Chuanji Zhao
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Xiaobo Cui
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Meili Xie
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Yi Zhang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Lingyi Zeng
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Yueying Liu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Junyan Huang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Xiong Zhang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Chaobo Tong
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Qiong Hu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Lijiang Liu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Shengyi Liu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, China.
| |
Collapse
|
9
|
Guo X, Zhang J, Sun S, Huang L, Niu Y, Zhao P, Zhang Y, Shi X, Ji W, Xu S. TaGSK3 regulates wheat development and stress adaptation through BR-dependent and BR-independent pathways. PLANT, CELL & ENVIRONMENT 2024; 47:2443-2458. [PMID: 38557938 DOI: 10.1111/pce.14890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 01/28/2024] [Accepted: 03/07/2024] [Indexed: 04/04/2024]
Abstract
The GSK3/SHAGGY-like kinase plays critical roles in plant development and response to stress, but its specific function remains largely unknown in wheat (Triticum aestivum L.). In this study, we investigated the function of TaGSK3, a GSK3/SHAGGY-like kinase, in wheat development and response to stress. Our findings demonstrated that TaGSK3 mutants had significant effects on wheat seedling development and brassinosteroid (BR) signalling. Quadruple and quintuple mutants showed amplified BR signalling, promoting seedling development, while a sextuple mutant displayed severe developmental defects but still responded to exogenous BR signals, indicating redundancy and non-BR-related functions of TaGSK3. A gain-of-function mutation in TaGSK3-3D disrupted BR signalling, resulting in compact and dwarf plant architecture. Notably, this mutation conferred significant drought and heat stress resistance of wheat, and enhanced heat tolerance independent of BR signalling, unlike knock-down mutants. Further research revealed that this mutation maintains a higher relative water content by regulating stomatal-mediated water loss and maintains a lower ROS level to reduces cell damage, enabling better growth under stress. Our study provides comprehensive insights into the role of TaGSK3 in wheat development, stress response, and BR signal transduction, offering potential for modifying TaGSK3 to improve agronomic traits and enhance stress resistance in wheat.
Collapse
Affiliation(s)
- Xiaolong Guo
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Jialiang Zhang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Shuyang Sun
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Liuying Huang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Yaxin Niu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Peng Zhao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Yuanfei Zhang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Xue Shi
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Wanquan Ji
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Shengbao Xu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
10
|
Li S, Yan J, Chen LG, Meng G, Zhou Y, Wang CM, Jiang L, Luo J, Jiang Y, Li QF, Tang W, He JX. Brassinosteroid regulates stomatal development in etiolated Arabidopsis cotyledons via transcription factors BZR1 and BES1. PLANT PHYSIOLOGY 2024; 195:1382-1400. [PMID: 38345866 DOI: 10.1093/plphys/kiae068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 12/19/2023] [Indexed: 06/02/2024]
Abstract
Brassinosteroids (BRs) are phytohormones that regulate stomatal development. In this study, we report that BR represses stomatal development in etiolated Arabidopsis (Arabidopsis thaliana) cotyledons via transcription factors BRASSINAZOLE RESISTANT 1 (BZR1) and bri1-EMS SUPPRESSOR1 (BES1), which directly target MITOGEN-ACTIVATED PROTEIN KINASE KINASE 9 (MKK9) and FAMA, 2 important genes for stomatal development. BZR1/BES1 bind MKK9 and FAMA promoters in vitro and in vivo, and mutation of the BZR1/BES1 binding motif in MKK9/FAMA promoters abolishes their transcription regulation by BZR1/BES1 in plants. Expression of a constitutively active MKK9 (MKK9DD) suppressed overproduction of stomata induced by BR deficiency, while expression of a constitutively inactive MKK9 (MKK9KR) induced high-density stomata in bzr1-1D. In addition, bzr-h, a sextuple mutant of the BZR1 family of proteins, produced overabundant stomata, and the dominant bzr1-1D and bes1-D mutants effectively suppressed the stomata-overproducing phenotype of brassinosteroid insensitive 1-116 (bri1-116) and brassinosteroid insensitive 2-1 (bin2-1). In conclusion, our results revealed important roles of BZR1/BES1 in stomatal development, and their transcriptional regulation of MKK9 and FAMA expression may contribute to BR-regulated stomatal development in etiolated Arabidopsis cotyledons.
Collapse
Affiliation(s)
- Shuo Li
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong SAR 00000, China
- Ministry of Education Key Laboratory of Plant Development and Environmental Adaptation Biology, School of Life Sciences, Shandong University, Qingdao 266237, Shandong, China
| | - Jin Yan
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, Hebei, China
| | - Lian-Ge Chen
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, Hebei, China
| | - Guanghua Meng
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong SAR 00000, China
| | - Yuling Zhou
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong SAR 00000, China
| | - Chun-Ming Wang
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong SAR 00000, China
| | - Lei Jiang
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong SAR 00000, China
| | - Juan Luo
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong SAR 00000, China
| | - Yueming Jiang
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, Guangdong, China
| | - Qian-Feng Li
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong SAR 00000, China
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Wenqiang Tang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, Hebei, China
| | - Jun-Xian He
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong SAR 00000, China
| |
Collapse
|
11
|
Wiese C, Abele M, Al B, Altmann M, Steiner A, Kalbfuß N, Strohmayr A, Ravikumar R, Park CH, Brunschweiger B, Meng C, Facher E, Ehrhardt DW, Falter-Braun P, Wang ZY, Ludwig C, Assaad FF. Regulation of adaptive growth decisions via phosphorylation of the TRAPPII complex in Arabidopsis. J Cell Biol 2024; 223:e202311125. [PMID: 38558238 PMCID: PMC10983811 DOI: 10.1083/jcb.202311125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/31/2024] [Accepted: 02/15/2024] [Indexed: 04/04/2024] Open
Abstract
Plants often adapt to adverse or stress conditions via differential growth. The trans-Golgi network (TGN) has been implicated in stress responses, but it is not clear in what capacity it mediates adaptive growth decisions. In this study, we assess the role of the TGN in stress responses by exploring the previously identified interactome of the Transport Protein Particle II (TRAPPII) complex required for TGN structure and function. We identified physical and genetic interactions between AtTRAPPII and shaggy-like kinases (GSK3/AtSKs) and provided in vitro and in vivo evidence that the TRAPPII phosphostatus mediates adaptive responses to abiotic cues. AtSKs are multifunctional kinases that integrate a broad range of signals. Similarly, the AtTRAPPII interactome is vast and considerably enriched in signaling components. An AtSK-TRAPPII interaction would integrate all levels of cellular organization and instruct the TGN, a central and highly discriminate cellular hub, as to how to mobilize and allocate resources to optimize growth and survival under limiting or adverse conditions.
Collapse
Affiliation(s)
- Christian Wiese
- Biotechnology of Natural Products, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
- Botany, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Miriam Abele
- Botany, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
- Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS), TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Benjamin Al
- Botany, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Melina Altmann
- Institute of Network Biology (INET), Molecular Targets and Therapeutics Center (MTTC), Helmholtz Center Munich, German Research Center for Environmental Health, Munich-Neuherberg, Germany
| | - Alexander Steiner
- Botany, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Nils Kalbfuß
- Botany, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Alexander Strohmayr
- Biotechnology of Natural Products, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
- Botany, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Raksha Ravikumar
- Botany, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Chan Ho Park
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, USA
| | - Barbara Brunschweiger
- Botany, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Chen Meng
- Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS), TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Eva Facher
- Systematic Botany and Mycology, Faculty of Biology, Ludwig-Maximilians-Universität (LMU) München, Planegg-Martinsried, Germany
| | - David W. Ehrhardt
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, USA
| | - Pascal Falter-Braun
- Institute of Network Biology (INET), Molecular Targets and Therapeutics Center (MTTC), Helmholtz Center Munich, German Research Center for Environmental Health, Munich-Neuherberg, Germany
| | - Zhi-Yong Wang
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, USA
| | - Christina Ludwig
- Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS), TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Farhah F. Assaad
- Biotechnology of Natural Products, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
- Botany, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| |
Collapse
|
12
|
Li C, Zhang S, Li J, Huang S, Zhao T, Lv S, Liu J, Wang S, Liu X, He S, Zhang Y, Xiao F, Wang F, Gao J, Wang X. PHB3 interacts with BRI1 and BAK1 to mediate brassinosteroid signal transduction in Arabidopsis and tomato. THE NEW PHYTOLOGIST 2024; 241:1510-1524. [PMID: 38130037 DOI: 10.1111/nph.19469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 11/07/2023] [Indexed: 12/23/2023]
Abstract
Brassinosteroids (BRs) are plant hormones that are essential in plant growth and development. BRASSINOSTEROID-INSENSITIVE 1 (BRI1) and BRI1 ASSOCIATED RECEPTOR KINASE 1 (BAK1), which are located on the plasma membrane, function as co-receptors that accept and transmit BR signals. PROHIBITIN 3 (PHB3) was identified in both BRI1 and BAK1 complexes by affinity purification and LC-MS/MS analysis. Biochemical data showed that BRI1/BAK1 interacted with PHB3 in vitro and in vivo. BRI1/BAK1 phosphorylated PHB3 in vitro. When the Thr-80 amino acid in PHB3 was mutated to Ala, the mutant protein was not phosphorylated by BRI1 and the mutant protein interaction with BRI1 was abolished in the yeast two-hybrid assay. BAK1 did not phosphorylate the mutant protein PHB3T54A . The loss-of-function phb3 mutant showed a weaker BR signal than the wild-type. Genetic analyses revealed that PHB3 is a BRI1/BAK1 downstream substrate that participates in BR signalling. PHB3 has five homozygous in tomato, and we named the closest to AtPHB3 as SlPHB3.1. Biochemical data showed that SlBRI1/SlSERK3A/SlSERK3B interacted with SlPHB3.1 and SlPHB3.3. The CRISPR-Cas9 method generated slphb3.1 mutant led to a BR signal stunted relatively in tomatoes. PHB3 is a new component of the BR signal pathway in both Arabidopsis and tomato.
Collapse
Affiliation(s)
- Cheng Li
- Institute of Vegetables, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Shan Zhang
- Institute of Vegetables, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Shandong Institute of Innovation and Development, Jinan, 250101, China
| | - Jingjuan Li
- Institute of Vegetables, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Shuhua Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Hybrid Rapeseed Research Center of Shaanxi Province, Yangling, Shaanxi, 712100, China
| | - Tong Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Siqi Lv
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jianwei Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Shufen Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiaohui Liu
- Xian Highness Agricultural Science & Technology Co. Ltd, Xian, Shaanxi, 710086, China
| | - Shen He
- Xian Highness Agricultural Science & Technology Co. Ltd, Xian, Shaanxi, 710086, China
| | - Yanfeng Zhang
- Hybrid Rapeseed Research Center of Shaanxi Province, Yangling, Shaanxi, 712100, China
| | - Fangming Xiao
- Department of Plant Sciences, University of Idaho, Moscow, ID, 83844, USA
| | - Fengde Wang
- Institute of Vegetables, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Jianwei Gao
- Institute of Vegetables, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Xiaofeng Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
13
|
Kloc Y, Dmochowska-Boguta M, Żebrowska-Różańska P, Łaczmański Ł, Nadolska-Orczyk A, Orczyk W. HvGSK1.1 Controls Salt Tolerance and Yield through the Brassinosteroid Signaling Pathway in Barley. Int J Mol Sci 2024; 25:998. [PMID: 38256072 PMCID: PMC10815662 DOI: 10.3390/ijms25020998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/08/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Brassinosteroids (BRs) are a class of plant steroid hormones that are essential for plant growth and development. BRs control important agronomic traits and responses to abiotic stresses. Through the signaling pathway, BRs control the expression of thousands of genes, resulting in a variety of biological responses. The key effectors of the BR pathway are two transcription factors (TFs): BRASSINAZOLE RESISTANT 1 (BZR1) and BRI1-EMSSUPPRESSOR 1 (BES1). Both TFs are phosphorylated and inactivated by the Glycogen synthase kinase 3 BRASSINOSTEROID INSENSITIVE2 (BIN2), which acts as a negative regulator of the BR pathway. In our study, we describe the functional characteristics of HvGSK1.1, which is one of the GSK3/SHAGGY-like orthologs in barley. We generated mutant lines of HvGSK1.1 using CRISPR/Cas9 genome editing technology. Next Generation Sequencing (NGS) of the edited region of the HvGSK1.1 showed a wide variety of mutations. Most of the changes (frameshift, premature stop codon, and translation termination) resulted in the knock-out of the target gene. The molecular and phenotypic characteristics of the mutant lines showed that the knock-out mutation of HvGSK1.1 improved plant growth performance under salt stress conditions and increased the thousand kernel weight of the plants grown under normal conditions. The inactivation of HvGSK1.1 enhanced BR-dependent signaling, as indicated by the results of the leaf inclination assay in the edited lines. The plant traits under investigation are consistent with those known to be regulated by BRs. These results, together with studies of other GSK3 gene members in other plant species, suggest that targeted editing of these genes may be useful in creating plants with improved agricultural traits.
Collapse
Affiliation(s)
- Yuliya Kloc
- Plant Breeding and Acclimatization Institute—National Research Institute, Radzikow, 05-870 Blonie, Poland; (M.D.-B.); (A.N.-O.); (W.O.)
| | - Marta Dmochowska-Boguta
- Plant Breeding and Acclimatization Institute—National Research Institute, Radzikow, 05-870 Blonie, Poland; (M.D.-B.); (A.N.-O.); (W.O.)
| | - Paulina Żebrowska-Różańska
- Laboratory of Genomics and Bioinformatics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland; (P.Ż.-R.); (Ł.Ł.)
| | - Łukasz Łaczmański
- Laboratory of Genomics and Bioinformatics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland; (P.Ż.-R.); (Ł.Ł.)
| | - Anna Nadolska-Orczyk
- Plant Breeding and Acclimatization Institute—National Research Institute, Radzikow, 05-870 Blonie, Poland; (M.D.-B.); (A.N.-O.); (W.O.)
| | - Wacław Orczyk
- Plant Breeding and Acclimatization Institute—National Research Institute, Radzikow, 05-870 Blonie, Poland; (M.D.-B.); (A.N.-O.); (W.O.)
| |
Collapse
|
14
|
Vert G, Chory J. Author Correction: Downstream nuclear events in brassinosteroid signaling. Nature 2024; 625:E8-E10. [PMID: 38110577 DOI: 10.1038/s41586-023-06766-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Affiliation(s)
- Grégory Vert
- Plant Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California, USA
| | - Joanne Chory
- Plant Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California, USA.
- Howard Hughes Medical Institute, The Salk Institute for Biological Studies, La Jolla, California, USA.
| |
Collapse
|
15
|
Abdeeva IA, Panina YS, Maloshenok LG. Synthetic Biology Approaches to Posttranslational Regulation in Plants. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:S278-S289. [PMID: 38621756 DOI: 10.1134/s0006297924140165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/10/2023] [Accepted: 10/16/2023] [Indexed: 04/17/2024]
Abstract
To date synthetic biology approaches involving creation of functional genetic modules are used in a wide range of organisms. In plants, such approaches are used both for research in the field of functional genomics and to increase the yield of agricultural crops. Of particular interest are methods that allow controlling genetic apparatus of the plants at post-translational level, which allow reducing non-targeted effects from interference with the plant genome. This review discusses recent advances in the plant synthetic biology for regulation of the plant metabolism at posttranslational level and highlights their future directions.
Collapse
Affiliation(s)
- Inna A Abdeeva
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, 119991, Russia.
| | - Yulia S Panina
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Liliya G Maloshenok
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, 119991, Russia.
- Bach Institute of Biochemistry, Federal Research Center of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia
| |
Collapse
|
16
|
Li J, Zhou X, Wang Y, Song S, Ma L, He Q, Lu M, Zhang K, Yang Y, Zhao Q, Jin W, Jiang C, Guo Y. Inhibition of the maize salt overly sensitive pathway by ZmSK3 and ZmSK4. J Genet Genomics 2023; 50:960-970. [PMID: 37127254 DOI: 10.1016/j.jgg.2023.04.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/13/2023] [Accepted: 04/21/2023] [Indexed: 05/03/2023]
Abstract
Soil salinity is a worldwide problem that adversely affects plant growth and crop productivity. The salt overly sensitive (SOS) pathway is evolutionarily conserved and essential for plant salt tolerance. In this study, we reveal how the maize shaggy/glycogen synthase kinase 3-like kinases ZmSK3 and ZmSK4, orthologs of brassinosteroid insensitive 2 in Arabidopsis thaliana, regulate the maize SOS pathway. ZmSK3 and ZmSK4 interact with and phosphorylate ZmSOS2, a core member of the maize SOS pathway. The mutants defective in ZmSK3 or ZmSK4 are hyposensitive to salt stress, with higher salt-induced activity of ZmSOS2 than that in the wild type. Furthermore, the Ca2+ sensors ZmSOS3 and ZmSOS3-like calcium binding protein 8 (ZmSCaBP8) activate ZmSOS2 to maintain Na+/K+ homeostasis under salt stress and may participate in the regulation of ZmSOS2 by ZmSK3 and ZmSK4. These findings discover the regulation of the maize SOS pathway and provide important gene targets for breeding salt-tolerant maize.
Collapse
Affiliation(s)
- Jianfang Li
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xueyan Zhou
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yan Wang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Shu Song
- College of Life Sciences, Qingdao Agricultural University, Qingdao, Shandong 266109, China
| | - Liang Ma
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Qian He
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Minhui Lu
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100093, China
| | - Kaina Zhang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yongqing Yang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Qian Zhao
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Weiwei Jin
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China; Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100093, China; National Maize Improvement Center of China, China Agricultural University, Beijing 100193, China
| | - Caifu Jiang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China; Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100093, China
| | - Yan Guo
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China; Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100093, China.
| |
Collapse
|
17
|
Liu S, Cai C, Li L, Wen H, Liu J, Li L, Wang Q, Wang X. StSN2 interacts with the brassinosteroid signaling suppressor StBIN2 to maintain tuber dormancy. HORTICULTURE RESEARCH 2023; 10:uhad228. [PMID: 38156286 PMCID: PMC10753161 DOI: 10.1093/hr/uhad228] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/29/2023] [Indexed: 12/30/2023]
Abstract
After harvest, potato tubers undergo an important period of dormancy, which significantly impacts potato quality and seed vigor. StSN2 has been reported as a key gene for maintaining tuber dormancy; in this study, we explored the molecular mechanism by which StSN2 maintains dormancy. StBIN2 was first identified as a candidate protein that interacts with StSN2 by co-immunoprecipitation/mass spectrometry, and both qPCR and enzyme activity experiments showed that StSN2 can promote the StBIN2 expression and activity. In addition, the interaction between StSN2 and StBIN2 was verified by yeast two-hybrid, luciferase complementation experiments and co-immunoprecipitation. Bioinformatics analysis and site-directed mutagenesis confirmed the critical role of cysteine residues of StBIN2 in its binding to StSN2. Similar to that of StSN2, overexpression of StBIN2 extended the dormancy of potato tuber. Interaction between StSN2 and StBIN2 increased the activity of the StBIN2 enzyme, inhibited the expression of StBZR1, and suppressed BR signaling. On the contrary, this interaction promoted the expression of StSnRK2.2/2.3/2.4/2.6 and StABI5, key genes of ABA signaling, and the phosphorylation of StSnRK2.3, thereby promoting ABA signaling. Altogether, our results indicate that StSN2 interacts with StBIN2 through key cysteine residues and StBIN2 maintains tuber dormancy by affecting ABA and BR signaling. Findings of this research offer new insights into the molecular mechanism by which StSN2 maintains potato tuber dormancy through interaction with StSIN2 and provide guidance for potato improvement.
Collapse
Affiliation(s)
- Shifeng Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Chengcheng Cai
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Luopin Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - He Wen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Jie Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Liqin Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Qiang Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiyao Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
18
|
Wiese C, Abele M, Al B, Altmann M, Steiner A, Kalbfuß N, Strohmayr A, Ravikumar R, Park CH, Brunschweiger B, Meng C, Facher E, Ehrhardt DW, Falter-Braun P, Wang ZY, Ludwig C, Assaad FF. Regulation of adaptive growth decisions via phosphorylation of the TRAPPII complex in Arabidopsis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.24.537966. [PMID: 37986925 PMCID: PMC10659361 DOI: 10.1101/2023.04.24.537966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Plants often adapt to adverse or stress conditions via differential growth. The trans-Golgi Network (TGN) has been implicated in stress responses, but it is not clear in what capacity it mediates adaptive growth decisions. In this study, we assess the role of the TGN in stress responses by exploring the interactome of the Transport Protein Particle II (TRAPPII) complex, required for TGN structure and function. We identified physical and genetic interactions between TRAPPII and shaggy-like kinases (GSK3/AtSKs). Kinase assays and pharmacological inhibition provided in vitro and in vivo evidence that AtSKs target the TRAPPII-specific subunit AtTRS120/TRAPPC9. GSK3/AtSK phosphorylation sites in AtTRS120/TRAPPC9 were mutated, and the resulting AtTRS120 phosphovariants subjected to a variety of single and multiple stress conditions in planta . The non-phosphorylatable TRS120 mutant exhibited enhanced adaptation to multiple stress conditions and to osmotic stress whereas the phosphomimetic version was less resilient. Higher order inducible trappii atsk mutants had a synthetically enhanced defect in root gravitropism. Our results suggest that the TRAPPII phosphostatus mediates adaptive responses to abiotic cues. AtSKs are multifunctional kinases that integrate a broad range of signals. Similarly, the TRAPPII interactome is vast and considerably enriched in signaling components. An AtSK-TRAPPII interaction would integrate all levels of cellular organization and instruct the TGN, a central and highly discriminate cellular hub, as to how to mobilize and allocate resources to optimize growth and survival under limiting or adverse conditions.
Collapse
|
19
|
Zhu T, Li B, Chen Y, Jing Y, Wang S, Li W, Gao N, Liao C, Wang L, Xiao F, Li T. BRASSINOSTEROID-INSENSITIVE 2 regulates salt stress tolerance in Arabidopsis by promoting AGL16 activity. Biochem Biophys Res Commun 2023; 678:17-23. [PMID: 37611348 DOI: 10.1016/j.bbrc.2023.08.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 08/25/2023]
Abstract
Salt stress is a negative environmental factors to affecting plants. Salinity inhibits seed germination and root growth, which reduces the biomass of agricultural plants. BRASSINOSTEROID-INSENSITIVE2 (BIN2) functions as a signalling hub to integrate the perception and transduction of plant growth and stress tolerance by the phosphorylation of target proteins. However, only a small number of target molecules have been discovered thus far. In this study, we present evidence that BIN2 controls the post-transcriptional activity of AGL16. BIN2 interacts and phosphorylates AGL16, which increases AGL16 stability and transcriptional activity. Genetic testing showed that the agl16 mutant can restore the reduction in the seed germination rate and primary root growth of the bin2-1 mutant, while the overexpression of AGL16 in the bin2-3bil1bil2 mutant reduced the salt tolerance compared with bin2-3bil1bil2 in response to salt stress. Taken together, our data identify a BIN2-AGL16 core protein module that is mediates the inhibition of seed germination and primary root growth under salt stress.
Collapse
Affiliation(s)
- Tao Zhu
- College of Life Sciences and Engineering, Henan University of Urban Construction, Pingdingshan, 467036, Henan, China; Center of Healthy Food Engineering and Technology of Henan, Henan University of Urban Construction, Pingdingshan, 467036, Henan, China
| | - Bingbing Li
- College of Life Sciences and Engineering, Henan University of Urban Construction, Pingdingshan, 467036, Henan, China; Center of Healthy Food Engineering and Technology of Henan, Henan University of Urban Construction, Pingdingshan, 467036, Henan, China
| | - Yanyan Chen
- College of Life Sciences and Engineering, Henan University of Urban Construction, Pingdingshan, 467036, Henan, China; Center of Healthy Food Engineering and Technology of Henan, Henan University of Urban Construction, Pingdingshan, 467036, Henan, China
| | - Yi Jing
- College of Life Sciences and Engineering, Henan University of Urban Construction, Pingdingshan, 467036, Henan, China; Center of Healthy Food Engineering and Technology of Henan, Henan University of Urban Construction, Pingdingshan, 467036, Henan, China
| | - Suxuan Wang
- College of Life Sciences and Engineering, Henan University of Urban Construction, Pingdingshan, 467036, Henan, China; Center of Healthy Food Engineering and Technology of Henan, Henan University of Urban Construction, Pingdingshan, 467036, Henan, China
| | - Wenxin Li
- College of Life Sciences and Engineering, Henan University of Urban Construction, Pingdingshan, 467036, Henan, China; Center of Healthy Food Engineering and Technology of Henan, Henan University of Urban Construction, Pingdingshan, 467036, Henan, China
| | - Ningya Gao
- College of Life Sciences and Engineering, Henan University of Urban Construction, Pingdingshan, 467036, Henan, China; Center of Healthy Food Engineering and Technology of Henan, Henan University of Urban Construction, Pingdingshan, 467036, Henan, China
| | - Chunli Liao
- College of Life Sciences and Engineering, Henan University of Urban Construction, Pingdingshan, 467036, Henan, China; Center of Healthy Food Engineering and Technology of Henan, Henan University of Urban Construction, Pingdingshan, 467036, Henan, China
| | - Lianzhe Wang
- College of Life Sciences and Engineering, Henan University of Urban Construction, Pingdingshan, 467036, Henan, China; Center of Healthy Food Engineering and Technology of Henan, Henan University of Urban Construction, Pingdingshan, 467036, Henan, China
| | - Fei Xiao
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830046, China.
| | - Taotao Li
- College of Life Sciences and Engineering, Henan University of Urban Construction, Pingdingshan, 467036, Henan, China; Center of Healthy Food Engineering and Technology of Henan, Henan University of Urban Construction, Pingdingshan, 467036, Henan, China.
| |
Collapse
|
20
|
Zhang J, Chen W, Li X, Shi H, Lv M, He L, Bai W, Cheng S, Chu J, He K, Gou X, Li J. Jasmonates regulate apical hook development by repressing brassinosteroid biosynthesis and signaling. PLANT PHYSIOLOGY 2023; 193:1561-1579. [PMID: 37467431 PMCID: PMC10517256 DOI: 10.1093/plphys/kiad399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 05/31/2023] [Indexed: 07/21/2023]
Abstract
An apical hook is a special structure formed during skotomorphogenesis in dicotyledonous plant species. It is critical for protecting the shoot apical meristem from mechanical damage during seed germination and hypocotyl elongation in soil. Brassinosteroid (BR) and jasmonate (JA) phytohormones antagonistically regulate apical hook formation. However, the interrelationship between BRs and JAs in this process has not been well elucidated. Here, we reveal that JAs repress BRs to regulate apical hook development in Arabidopsis (Arabidopsis thaliana). Exogenous application of methyl jasmonate (MeJA) repressed the expression of the rate-limiting BR biosynthetic gene DWARF4 (DWF4) in a process relying on 3 key JA-dependent transcription factors, MYC2, MYC3, and MYC4. We demonstrated that MYC2 interacts with the critical BR-activated transcription factor BRASSINAZOLE RESISTANT 1 (BZR1), disrupting the association of BZR1 with its partner transcription factors, such as those of the PHYTOCHROME INTERACTING FACTOR (PIF) family and downregulating the expression of their target genes, such as WAVY ROOT GROWTH 2 (WAG2), encoding a protein kinase essential for apical hook development. Our results indicate that JAs not only repress the expression of BR biosynthetic gene DWF4 but, more importantly, attenuate BR signaling by inhibiting the transcriptional activation of BZR1 by MYC2 during apical hook development.
Collapse
Affiliation(s)
- Jingjie Zhang
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Weiyue Chen
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Xiaopeng Li
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Hongyong Shi
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Minghui Lv
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Liming He
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Wenhua Bai
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Shujing Cheng
- National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jinfang Chu
- National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kai He
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Xiaoping Gou
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jia Li
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
21
|
An JP, Li HL, Liu ZY, Wang DR, You CX, Han Y. The E3 ubiquitin ligase SINA1 and the protein kinase BIN2 cooperatively regulate PHR1 in apple anthocyanin biosynthesis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:2175-2193. [PMID: 37272713 DOI: 10.1111/jipb.13538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 06/02/2023] [Indexed: 06/06/2023]
Abstract
PHR1 (PHOSPHATE STARVATION RESPONSE1) plays key roles in the inorganic phosphate (Pi) starvation response and in Pi deficiency-induced anthocyanin biosynthesis in plants. However, the post-translational regulation of PHR1 is unclear, and the molecular basis of PHR1-mediated anthocyanin biosynthesis remains elusive. In this study, we determined that MdPHR1 was essential for Pi deficiency-induced anthocyanin accumulation in apple (Malus × domestica). MdPHR1 interacted with MdWRKY75, a positive regulator of anthocyanin biosynthesis, to enhance the MdWRKY75-activated transcription of MdMYB1, leading to anthocyanin accumulation. In addition, the E3 ubiquitin ligase SEVEN IN ABSENTIA1 (MdSINA1) negatively regulated MdPHR1-promoted anthocyanin biosynthesis via the ubiquitination-mediated degradation of MdPHR1. Moreover, the protein kinase apple BRASSINOSTEROID INSENSITIVE2 (MdBIN2) phosphorylated MdPHR1 and positively regulated MdPHR1-mediated anthocyanin accumulation by attenuating the MdSINA1-mediated ubiquitination degradation of MdPHR1. Taken together, these findings not only demonstrate the regulatory role of MdPHR1 in Pi starvation induced anthocyanin accumulation, but also provide an insight into the post-translational regulation of PHR1.
Collapse
Affiliation(s)
- Jian-Ping An
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Hubei Hongshan Laboratory, The Innovative Academy of Seed Design of Chinese Academy of Sciences, Wuhan, 430074, China
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, China
| | - Hong-Liang Li
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, China
| | - Zhi-Ying Liu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, China
| | - Da-Ru Wang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, China
| | - Chun-Xiang You
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, China
| | - Yuepeng Han
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Hubei Hongshan Laboratory, The Innovative Academy of Seed Design of Chinese Academy of Sciences, Wuhan, 430074, China
| |
Collapse
|
22
|
Liu C, Lin JZ, Wang Y, Tian Y, Zheng HP, Zhou ZK, Zhou YB, Tang XD, Zhao XH, Wu T, Xu SL, Tang DY, Zuo ZC, He H, Bai LY, Yang YZ, Liu XM. The protein phosphatase PC1 dephosphorylates and deactivates CatC to negatively regulate H2O2 homeostasis and salt tolerance in rice. THE PLANT CELL 2023; 35:3604-3625. [PMID: 37325884 PMCID: PMC10473223 DOI: 10.1093/plcell/koad167] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/27/2023] [Accepted: 06/02/2023] [Indexed: 06/17/2023]
Abstract
Catalase (CAT) is often phosphorylated and activated by protein kinases to maintain hydrogen peroxide (H2O2) homeostasis and protect cells against stresses, but whether and how CAT is switched off by protein phosphatases remains inconclusive. Here, we identified a manganese (Mn2+)-dependent protein phosphatase, which we named PHOSPHATASE OF CATALASE 1 (PC1), from rice (Oryza sativa L.) that negatively regulates salt and oxidative stress tolerance. PC1 specifically dephosphorylates CatC at Ser-9 to inhibit its tetramerization and thus activity in the peroxisome. PC1 overexpressing lines exhibited hypersensitivity to salt and oxidative stresses with a lower phospho-serine level of CATs. Phosphatase activity and seminal root growth assays indicated that PC1 promotes growth and plays a vital role during the transition from salt stress to normal growth conditions. Our findings demonstrate that PC1 acts as a molecular switch to dephosphorylate and deactivate CatC and negatively regulate H2O2 homeostasis and salt tolerance in rice. Moreover, knockout of PC1 not only improved H2O2-scavenging capacity and salt tolerance but also limited rice grain yield loss under salt stress conditions. Together, these results shed light on the mechanisms that switch off CAT and provide a strategy for breeding highly salt-tolerant rice.
Collapse
Affiliation(s)
- Cong Liu
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, National Center of Technology Innovation for Saline-Alkali Tolerant Rice, College of Biology, Hunan University, Changsha 410082, China
| | - Jian-Zhong Lin
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, National Center of Technology Innovation for Saline-Alkali Tolerant Rice, College of Biology, Hunan University, Changsha 410082, China
| | - Yan Wang
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, National Center of Technology Innovation for Saline-Alkali Tolerant Rice, College of Biology, Hunan University, Changsha 410082, China
| | - Ye Tian
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, National Center of Technology Innovation for Saline-Alkali Tolerant Rice, College of Biology, Hunan University, Changsha 410082, China
| | - He-Ping Zheng
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, National Center of Technology Innovation for Saline-Alkali Tolerant Rice, College of Biology, Hunan University, Changsha 410082, China
| | - Zheng-Kun Zhou
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, National Center of Technology Innovation for Saline-Alkali Tolerant Rice, College of Biology, Hunan University, Changsha 410082, China
| | - Yan-Biao Zhou
- Key Laboratory of Southern Rice Innovation & Improvement, Ministry of Agriculture and Rural Affairs/Hunan Engineering Laboratory of Disease and Pest Resistant Rice Breeding, Yuan Longping High-Tech Agriculture Co., Ltd, Changsha 410001, China
| | - Xiao-Dan Tang
- Key Laboratory of Southern Rice Innovation & Improvement, Ministry of Agriculture and Rural Affairs/Hunan Engineering Laboratory of Disease and Pest Resistant Rice Breeding, Yuan Longping High-Tech Agriculture Co., Ltd, Changsha 410001, China
| | - Xin-Hui Zhao
- Key Laboratory of Southern Rice Innovation & Improvement, Ministry of Agriculture and Rural Affairs/Hunan Engineering Laboratory of Disease and Pest Resistant Rice Breeding, Yuan Longping High-Tech Agriculture Co., Ltd, Changsha 410001, China
| | - Ting Wu
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, National Center of Technology Innovation for Saline-Alkali Tolerant Rice, College of Biology, Hunan University, Changsha 410082, China
| | - Shi-Long Xu
- Key Laboratory of Southern Rice Innovation & Improvement, Ministry of Agriculture and Rural Affairs/Hunan Engineering Laboratory of Disease and Pest Resistant Rice Breeding, Yuan Longping High-Tech Agriculture Co., Ltd, Changsha 410001, China
| | - Dong-Ying Tang
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, National Center of Technology Innovation for Saline-Alkali Tolerant Rice, College of Biology, Hunan University, Changsha 410082, China
| | - Ze-Cheng Zuo
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun 130062, China
| | - Hang He
- School of Advanced Agricultural Sciences and School of Life Sciences, State Key Laboratory of Protein and Plant Gene Research, Peking University, Beijing 100871, China
| | - Lian-Yang Bai
- Hunan Agricultural Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Yuan-Zhu Yang
- Key Laboratory of Southern Rice Innovation & Improvement, Ministry of Agriculture and Rural Affairs/Hunan Engineering Laboratory of Disease and Pest Resistant Rice Breeding, Yuan Longping High-Tech Agriculture Co., Ltd, Changsha 410001, China
| | - Xuan-Ming Liu
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, National Center of Technology Innovation for Saline-Alkali Tolerant Rice, College of Biology, Hunan University, Changsha 410082, China
| |
Collapse
|
23
|
Vranić M, Perochon A, Doohan FM. Transcriptional Profiling Reveals the Wheat Defences against Fusarium Head Blight Disease Regulated by a NAC Transcription Factor. PLANTS (BASEL, SWITZERLAND) 2023; 12:2708. [PMID: 37514322 PMCID: PMC10383764 DOI: 10.3390/plants12142708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/30/2023]
Abstract
The wheat NAC transcription factor TaNACL-D1 enhances resistance to the economically devastating Fusarium head blight (FHB) disease. The objective of this study was to decipher the alterations in gene expression, pathways and biological processes that led to enhanced resistance as a result of the constitutive expression of TaNACL-D1 in wheat. Transcriptomic analysis was used to determine the genes and processes enhanced in wheat due to TaNACL-D1 overexpression, both in the presence and absence of the causal agent of FHB, Fusarium graminearum (0- and 1-day post-treatment). The overexpression of TaNACL-D1 resulted in more pronounced transcriptional reprogramming as a response to fungal infection, leading to the enhanced expression of genes involved in detoxification, immune responses, secondary metabolism, hormone biosynthesis, and signalling. The regulation and response to JA and ABA were differentially regulated between the OE and the WT. Furthermore, the results suggest that the OE may more efficiently: (i) regulate the oxidative burst; (ii) modulate cell death; and (iii) induce both the phenylpropanoid pathway and lignin synthesis. Thus, this study provides insights into the mode of action and downstream target pathways for this novel NAC transcription factor, further validating its potential as a gene to enhance FHB resistance in wheat.
Collapse
Affiliation(s)
- Monika Vranić
- UCD School of Biology and Environmental Science and Earth Institute, College of Science, University College Dublin, D04 V1W8 Dublin, Ireland
| | - Alexandre Perochon
- UCD School of Biology and Environmental Science and Earth Institute, College of Science, University College Dublin, D04 V1W8 Dublin, Ireland
| | - Fiona M Doohan
- UCD School of Biology and Environmental Science and Earth Institute, College of Science, University College Dublin, D04 V1W8 Dublin, Ireland
| |
Collapse
|
24
|
Zhou B, Luo Q, Shen Y, Wei L, Song X, Liao H, Ni L, Shen T, Du X, Han J, Jiang M, Feng S, Wu G. Coordinated regulation of vegetative phase change by brassinosteroids and the age pathway in Arabidopsis. Nat Commun 2023; 14:2608. [PMID: 37147280 PMCID: PMC10163027 DOI: 10.1038/s41467-023-38207-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 04/18/2023] [Indexed: 05/07/2023] Open
Abstract
Vegetative phase change in plants is regulated by a gradual decline in the level of miR156 and a corresponding increase in the expression of its targets, SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) genes. Gibberellin (GA), jasmonic acid (JA), and cytokinin (CK) regulate vegetative phase change by affecting genes in the miR156-SPL pathway. However, whether other phytohormones play a role in vegetative phase change remains unknown. Here, we show that a loss-of-function mutation in the brassinosteroid (BR) biosynthetic gene, DWARF5 (DWF5), delays vegetative phase change, and the defective phenotype is primarily attributable to reduced levels of SPL9 and miR172, and a corresponding increase in TARGET OF EAT1 (TOE1). We further show that GLYCOGEN SYNTHASE KINASE3 (GSK3)-like kinase BRASSINOSTEROID INSENSITIVE2 (BIN2) directly interacts with and phosphorylates SPL9 and TOE1 to cause subsequent proteolytic degradation. Therefore, BRs function to stabilize SPL9 and TOE1 simultaneously to regulate vegetative phase change in plants.
Collapse
Affiliation(s)
- Bingying Zhou
- College of Plant Sciences, Jilin University, Jilin, 130062, China
- The State Key Laboratory of Subtropical Silviculture, The Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vege-table, Ministry of Agriculture and Rural Affairs, College of Horticultural Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Qing Luo
- College of Plant Sciences, Jilin University, Jilin, 130062, China
- The State Key Laboratory of Subtropical Silviculture, The Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vege-table, Ministry of Agriculture and Rural Affairs, College of Horticultural Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Yanghui Shen
- The State Key Laboratory of Subtropical Silviculture, The Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vege-table, Ministry of Agriculture and Rural Affairs, College of Horticultural Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Liang Wei
- The State Key Laboratory of Subtropical Silviculture, The Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vege-table, Ministry of Agriculture and Rural Affairs, College of Horticultural Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Xia Song
- The State Key Laboratory of Subtropical Silviculture, The Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vege-table, Ministry of Agriculture and Rural Affairs, College of Horticultural Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Hangqian Liao
- The State Key Laboratory of Subtropical Silviculture, The Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vege-table, Ministry of Agriculture and Rural Affairs, College of Horticultural Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Lan Ni
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Tao Shen
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Xinglin Du
- College of Plant Sciences, Jilin University, Jilin, 130062, China
| | - Junyou Han
- College of Plant Sciences, Jilin University, Jilin, 130062, China
| | - Mingyi Jiang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Shengjun Feng
- The State Key Laboratory of Subtropical Silviculture, The Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vege-table, Ministry of Agriculture and Rural Affairs, College of Horticultural Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China.
| | - Gang Wu
- The State Key Laboratory of Subtropical Silviculture, The Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vege-table, Ministry of Agriculture and Rural Affairs, College of Horticultural Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China.
| |
Collapse
|
25
|
Ahmar S, Zolkiewicz K, Gruszka D. Analyses of genes encoding the Glycogen Synthase Kinases in rice and Arabidopsis reveal mechanisms which regulate their expression during development and responses to abiotic stresses. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 332:111724. [PMID: 37142096 DOI: 10.1016/j.plantsci.2023.111724] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 04/11/2023] [Accepted: 05/01/2023] [Indexed: 05/06/2023]
Abstract
Plant Glycogen Synthase Kinases (GSKs) enable a crosstalk among the brassinosteroid signaling and phytohormonal- and stress-response pathways to regulate various physiological processes. Initial information about regulation of the GSK proteins' activity was obtained, however, mechanisms that modulate expression of the GSK genes during plant development and stress responses remain largely unknown. Taking into account the importance of the GSK proteins, combined with the lack of in-depth knowledge about modulation of their expression, research in this area may provide a significant insight into mechanisms regulating these aspects of plant biology. In the current study, a detailed analysis of the GSK promoters in rice and Arabidopsis was performed, including identification of the CpG/CpNpG islands, tandem repeats, cis-acting regulatory elements, conserved motifs, and transcription factor-binding sites. Moreover, characterization of expression profiles of the GSK genes in different tissues, organs and under various abiotic stress conditions was perfomed. Additionally, protein-protein interactions between products of the GSK genes were predicted. Results of this study provided intriguing information about these aspects and insight into various regulatory mechanisms that influence non-redundant and diverse functions of the GSK genes during development and stress responses.Therefore, they may constitute a reference for future research in other plant species.
Collapse
Affiliation(s)
- Sunny Ahmar
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Jagiellonska 28, 40-032 Katowice, Poland.
| | - Karolina Zolkiewicz
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Jagiellonska 28, 40-032 Katowice, Poland.
| | - Damian Gruszka
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Jagiellonska 28, 40-032 Katowice, Poland.
| |
Collapse
|
26
|
Cai H, Huang Y, Liu L, Zhang M, Chai M, Xi X, Aslam M, Wang L, Ma S, Su H, Liu K, Tian Y, Zhu W, Qi J, Dresselhaus T, Qin Y. Signaling by the EPFL-ERECTA family coordinates female germline specification through the BZR1 family in Arabidopsis. THE PLANT CELL 2023; 35:1455-1473. [PMID: 36748257 PMCID: PMC10118260 DOI: 10.1093/plcell/koad032] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
In most flowering plants, the female germline is initiated in the subepidermal L2 layer of ovule primordia forming a single megaspore mother cell (MMC). How signaling from the L1 (epidermal) layer could contribute to the gene regulatory network (GRN) restricting MMC formation to a single cell is unclear. We show that EPIDERMAL PATTERNING FACTOR-like (EPFL) peptide ligands are expressed in the L1 layer, together with their ERECTA family (ERf) receptor kinases, to control female germline specification in Arabidopsis thaliana. EPFL-ERf dependent signaling restricts multiple subepidermal cells from acquiring MMC-like cell identity by activating the expression of the major brassinosteroid (BR) receptor kinase BRASSINOSTEROID INSENSITIVE 1 and the BR-responsive transcription factor BRASSINOZOLE RESISTANT 1 (BZR1). Additionally, BZR1 coordinates female germline specification by directly activating the expression of a nucleolar GTP-binding protein, NUCLEOSTEMIN-LIKE 1 (NSN1), which is expressed in early-stage ovules excluding the MMC. Mutants defective in this GRN form multiple MMCs resulting in a strong reduction of seed set. In conclusion, we uncovered a ligand/receptor-like kinase-mediated signaling pathway acting upstream and coordinating BR signaling via NSN1 to restrict MMC differentiation to a single subepidermal cell.
Collapse
Affiliation(s)
- Hanyang Cai
- College of Life Sciences, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Youmei Huang
- College of Life Sciences, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Liping Liu
- Cell Biology and Plant Biochemistry, University of Regensburg, 93053 Regensburg, Germany
| | - Man Zhang
- College of Life Sciences, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Tea Research Institute, Guangdong Academy of Agricultural Sciences & Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation and Utilization, Dafeng Road 6, Tianhe District, Guangzhou 510640, China
| | - Mengnan Chai
- College of Life Sciences, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xinpeng Xi
- College of Life Sciences, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Mohammad Aslam
- College of Life Sciences, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lulu Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Lab of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Suzhuo Ma
- College of Life Sciences, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Han Su
- College of Life Sciences, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Kaichuang Liu
- College of Life Sciences, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yaru Tian
- College of Life Sciences, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wenhui Zhu
- College of Life Sciences, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jingang Qi
- College of Life Sciences, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Thomas Dresselhaus
- Cell Biology and Plant Biochemistry, University of Regensburg, 93053 Regensburg, Germany
| | - Yuan Qin
- College of Life Sciences, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Lab of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning 530004, China
| |
Collapse
|
27
|
Liao CY, Pu Y, Nolan TM, Montes C, Guo H, Walley JW, Yin Y, Bassham DC. Brassinosteroids modulate autophagy through phosphorylation of RAPTOR1B by the GSK3-like kinase BIN2 in Arabidopsis. Autophagy 2023; 19:1293-1310. [PMID: 36151786 PMCID: PMC10012961 DOI: 10.1080/15548627.2022.2124501] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Macroautophagy/autophagy is a conserved recycling process that maintains cellular homeostasis during environmental stress. Autophagy is negatively regulated by TOR (target of rapamycin), a nutrient-regulated protein kinase that in plants is activated by several phytohormones, leading to increased growth. However, the detailed molecular mechanisms by which TOR integrates autophagy and hormone signaling are poorly understood. Here, we show that TOR modulates brassinosteroid (BR)-regulated plant growth and stress-response pathways. Active TOR was required for full BR-mediated growth in Arabidopsis thaliana. Autophagy was constitutively up-regulated upon blocking BR biosynthesis or signaling, and down-regulated by increasing the activity of the BR pathway. BIN2 (brassinosteroid-insensitive 2) kinase, a GSK3-like kinase functioning as a negative regulator in BR signaling, directly phosphorylated RAPTOR1B (regulatory-associated protein of TOR 1B), a substrate-recruiting subunit in the TOR complex, at a conserved serine residue within a typical BIN2 phosphorylation motif. Mutation of RAPTOR1B serine 916 to alanine, to block phosphorylation by BIN2, repressed autophagy and increased phosphorylation of the TOR substrate ATG13a (autophagy-related protein 13a). By contrast, this mutation had only a limited effect on growth. We present a model in which RAPTOR1B is phosphorylated and inhibited by BIN2 when BRs are absent, activating the autophagy pathway. When BRs signal and inhibit BIN2, RAPTOR1B is thus less inhibited by BIN2 phosphorylation. This leads to increased TOR activity and ATG13a phosphorylation, and decreased autophagy activity. Our studies define a new mechanism by which coordination between BR and TOR signaling pathways helps to maintain the balance between plant growth and stress responses.
Collapse
Affiliation(s)
- Ching-Yi Liao
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA
| | - Yunting Pu
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA
| | - Trevor M Nolan
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA
| | - Christian Montes
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, USA
| | - Hongqing Guo
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA
| | - Justin W Walley
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, USA
| | - Yanhai Yin
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA
| | - Diane C Bassham
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA
| |
Collapse
|
28
|
Hu LQ, Yu SX, Xu WY, Zu SH, Jiang YT, Shi HT, Zhang YJ, Xue HW, Wang YX, Lin WH. Spatiotemporal formation of the large vacuole regulated by the BIN2-VLG module is required for female gametophyte development in Arabidopsis. THE PLANT CELL 2023; 35:1241-1258. [PMID: 36648110 PMCID: PMC10052386 DOI: 10.1093/plcell/koad007] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
In Arabidopsis thaliana, female gametophyte (FG) development is accompanied by the formation and expansion of the large vacuole in the FG; this is essential for FG expansion, nuclear polar localization, and cell fate determination. Arabidopsis VACUOLELESS GAMETOPHYTES (VLG) facilitates vesicular fusion to form large vacuole in the FG, but the regulation of VLG remains largely unknown. Here, we found that gain-of-function mutation of BRASSINOSTEROID INSENSITIVE2 (BIN2) (bin2-1) increases VLG abundance to induce the vacuole formation at stage FG1, and leads to abortion of FG. Loss-of-function mutation of BIN2 and its homologs (bin2-3 bil1 bil2) reduced VLG abundance and mimicked vlg/VLG phenotypes. Knocking down VLG in bin2-1 decreased the ratio of aberrant vacuole formation at stage FG1, whereas FG1-specific overexpression of VLG mimicked the bin2-1 phenotype. VLG partially rescued the bin2-3 bil1 bil2 phenotype, demonstrating that VLG acts downstream of BIN2. Mutation of VLG residues that are phosphorylated by BIN2 altered VLG stability and a phosphorylation mimic of VLG causes similar defects as did bin2-1. Therefore, BIN2 may function by interacting with and phosphorylating VLG in the FG to enhance its stability and abundance, thus facilitating vacuole formation. Our findings provide mechanistic insight into how the BIN2-VLG module regulates the spatiotemporal formation of the large vacuole in FG development.
Collapse
Affiliation(s)
- Li-Qin Hu
- School of Life Sciences and Biotechnology, The Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Collaborative Innovation Center of Agri-Seeds/Joint Center for Single Cell Biology, Shanghai Jiao Tong University, Shanghai 200240, China
- School of Agriculture and Biology, Joint Center for Single Cell Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shi-Xia Yu
- School of Life Sciences and Biotechnology, The Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Collaborative Innovation Center of Agri-Seeds/Joint Center for Single Cell Biology, Shanghai Jiao Tong University, Shanghai 200240, China
- School of Agriculture and Biology, Joint Center for Single Cell Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wan-Yue Xu
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Science and Ecological Engineering and Institute of Biodiversity Sciences, Institute of Plant Biology, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai 200240, China
| | - Song-Hao Zu
- School of Life Sciences and Biotechnology, The Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yu-Tong Jiang
- School of Life Sciences and Biotechnology, The Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hao-Tian Shi
- Shanghai Collaborative Innovation Center of Agri-Seeds/Joint Center for Single Cell Biology, Shanghai Jiao Tong University, Shanghai 200240, China
- School of Agriculture and Biology, Joint Center for Single Cell Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yan-Jie Zhang
- School of Life Sciences and Biotechnology, The Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hong-Wei Xue
- Shanghai Collaborative Innovation Center of Agri-Seeds/Joint Center for Single Cell Biology, Shanghai Jiao Tong University, Shanghai 200240, China
- School of Agriculture and Biology, Joint Center for Single Cell Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ying-Xiang Wang
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Science and Ecological Engineering and Institute of Biodiversity Sciences, Institute of Plant Biology, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai 200240, China
| | - Wen-Hui Lin
- School of Life Sciences and Biotechnology, The Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Collaborative Innovation Center of Agri-Seeds/Joint Center for Single Cell Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
29
|
Shimadzu S, Furuya T, Kondo Y. Molecular Mechanisms Underlying the Establishment and Maintenance of Vascular Stem Cells in Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2023; 64:274-283. [PMID: 36398989 PMCID: PMC10599399 DOI: 10.1093/pcp/pcac161] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/07/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
The vascular system plays pivotal roles in transporting water and nutrients throughout the plant body. Primary vasculature is established as a continuous strand, which subsequently initiates secondary growth through cell division. Key factors regulating primary and secondary vascular developments have been identified in numerous studies, and the regulatory networks including these factors have been elucidated through omics-based approaches. However, the vascular system is composed of a variety of cells such as xylem and phloem cells, which are commonly generated from vascular stem cells. In addition, the vasculature is located deep inside the plant body, which makes it difficult to investigate the vascular development while distinguishing between vascular stem cells and developing xylem and phloem cells. Recent technical advances in the tissue-clearing method, RNA-seq analysis and tissue culture system overcome these problems by enabling the cell-type-specific analysis during vascular development, especially with a special focus on stem cells. In this review, we summarize the recent findings on the establishment and maintenance of vascular stem cells.
Collapse
Affiliation(s)
- Shunji Shimadzu
- Department of Biology, Graduate School of
Science, Kobe University, 1-1 Rokkodai, Kobe, 657-8501 Japan
- Department of Biological Sciences, Graduate
School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku,
Tokyo, 113-0033 Japan
| | - Tomoyuki Furuya
- Department of Biology, Graduate School of
Science, Kobe University, 1-1 Rokkodai, Kobe, 657-8501 Japan
- College of Life Sciences, Ritsumeikan
University, 1-1-1 Noji-higashi, Kusatsu, 525-8577 Japan
| | - Yuki Kondo
- Department of Biology, Graduate School of
Science, Kobe University, 1-1 Rokkodai, Kobe, 657-8501 Japan
| |
Collapse
|
30
|
Song Y, Wang Y, Yu Q, Sun Y, Zhang J, Zhan J, Ren M. Regulatory network of GSK3-like kinases and their role in plant stress response. FRONTIERS IN PLANT SCIENCE 2023; 14:1123436. [PMID: 36938027 PMCID: PMC10014926 DOI: 10.3389/fpls.2023.1123436] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Glycogen synthase kinase 3 (GSK3) family members are evolutionally conserved Ser/Thr protein kinases in mammals and plants. In plants, the GSK3s function as signaling hubs to integrate the perception and transduction of diverse signals required for plant development. Despite their role in the regulation of plant growth and development, emerging research has shed light on their multilayer function in plant stress responses. Here we review recent advances in the regulatory network of GSK3s and the involvement of GSK3s in plant adaptation to various abiotic and biotic stresses. We also discuss the molecular mechanisms underlying how plants cope with environmental stresses through GSK3s-hormones crosstalk, a pivotal biochemical pathway in plant stress responses. We believe that our overview of the versatile physiological functions of GSK3s and underlined molecular mechanism of GSK3s in plant stress response will not only opens further research on this important topic but also provide opportunities for developing stress-resilient crops through the use of genetic engineering technology.
Collapse
Affiliation(s)
- Yun Song
- School of Life Sciences, Liaocheng University, Liaocheng, China
| | - Ying Wang
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, China
| | - Qianqian Yu
- School of Life Sciences, Liaocheng University, Liaocheng, China
| | - Yueying Sun
- School of Life Sciences, Liaocheng University, Liaocheng, China
| | - Jianling Zhang
- School of Life Sciences, Liaocheng University, Liaocheng, China
| | - Jiasui Zhan
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Maozhi Ren
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, China
| |
Collapse
|
31
|
Ju L, Dong H, Yang R, Jing Y, Zhang Y, Liu L, Zhu Y, Chen KM, Ping J, Sun J. BIN2 phosphorylates the Thr280 of CO to restrict its function in promoting Arabidopsis flowering. FRONTIERS IN PLANT SCIENCE 2023; 14:1068949. [PMID: 36794216 PMCID: PMC9923014 DOI: 10.3389/fpls.2023.1068949] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/17/2023] [Indexed: 05/30/2023]
Abstract
CONSTANS (CO) is a central regulator of floral initiation in response to photoperiod. In this study, we show that the GSK3 kinase BIN2 physically interacts with CO and the gain-of-function mutant bin2-1 displays late flowering phenotype through down-regulation of FT transcription. Genetic analyses show that BIN2 genetically acts upstream of CO in regulating flowering time. Further, we illustrate that BIN2 phosphorylates the Thr280 residue of CO. Importantly, the BIN2 phosphorylation of Thr280 residue restricts the function of CO in promoting flowering through affecting its DNA-binding activity. Moreover, we reveal that the N-terminal part of CO harboring the B-Box domain mediates the interaction of both CO-CO and BIN2-CO. We find that BIN2 inhibits the formation of CO dimer/oligomer. Taken together, this study reveals that BIN2 regulates flowering time through phosphorylating the Thr280 of CO and inhibiting the CO-CO interaction in Arabidopsis.
Collapse
Affiliation(s)
- Lan Ju
- Shanxi Key Laboratory of Sorghum Genetic and Germplasm Innovation, Sorghum Research Institute, Shanxi Agricultural University, Jinzhong, China
| | - Huixue Dong
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ruizhen Yang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yexing Jing
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yunwei Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Liangyu Liu
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, and College of Life Sciences, Capital Normal University, Beijing, China
| | - Yingfang Zhu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Kun-Ming Chen
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, China
| | - Junai Ping
- Shanxi Key Laboratory of Sorghum Genetic and Germplasm Innovation, Sorghum Research Institute, Shanxi Agricultural University, Jinzhong, China
| | - Jiaqiang Sun
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
32
|
An S, Liu Y, Sang K, Wang T, Yu J, Zhou Y, Xia X. Brassinosteroid signaling positively regulates abscisic acid biosynthesis in response to chilling stress in tomato. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:10-24. [PMID: 36053143 DOI: 10.1111/jipb.13356] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
Brassinosteroids (BRs) and abscisic acid (ABA) are essential regulators of plant growth and stress tolerance. Although the antagonistic interaction of BRs and ABA is proposed to ensure the balance between growth and defense in model plants, the crosstalk between BRs and ABA in response to chilling in tomato (Solanum lycopersicum), a warm-climate horticultural crop, is unclear. Here, we determined that overexpression of the BR biosynthesis gene DWARF (DWF) or the key BR signaling gene BRASSINAZOLE-RESISTANT1 (BZR1) increases ABA levels in response to chilling stress via positively regulating the expression of the ABA biosynthesis gene 9-CIS-EPOXYCAROTENOID DIOXYGENASE1 (NCED1). BR-induced chilling tolerance was mostly dependent on ABA biosynthesis. Chilling stress or high BR levels decreased the abundance of BRASSINOSTEROID-INSENSITIVE2 (BIN2), a negative regulator of BR signaling. Moreover, we observed that chilling stress increases BR levels and results in the accumulation of BZR1. BIN2 negatively regulated both the accumulation of BZR1 protein and chilling tolerance by suppressing ABA biosynthesis. Our results demonstrate that BR signaling positively regulates chilling tolerance via ABA biosynthesis in tomato. The study has implications in production of warm-climate crops in horticulture.
Collapse
Affiliation(s)
- Shengmin An
- Department of Horticulture, Zhejiang University, Hangzhou, 310058, China
| | - Yue Liu
- Department of Horticulture, Zhejiang University, Hangzhou, 310058, China
| | - Kangqi Sang
- Department of Horticulture, Zhejiang University, Hangzhou, 310058, China
| | - Ting Wang
- Department of Horticulture, Zhejiang University, Hangzhou, 310058, China
| | - Jingquan Yu
- Department of Horticulture, Zhejiang University, Hangzhou, 310058, China
- Hainan Institute, Zhejiang University, Sanya, 572025, China
- Key Laboratory of Horticultural Plants Growth, Development and Quality Improvement, Agricultural Ministry of China, Hangzhou, 310058, China
| | - Yanhong Zhou
- Department of Horticulture, Zhejiang University, Hangzhou, 310058, China
- Hainan Institute, Zhejiang University, Sanya, 572025, China
| | - Xiaojian Xia
- Department of Horticulture, Zhejiang University, Hangzhou, 310058, China
- Hainan Institute, Zhejiang University, Sanya, 572025, China
| |
Collapse
|
33
|
Zhang K, Duan M, Zhang L, Li J, Shan L, Zheng L, Liu J. HOP1 and HOP2 are involved in salt tolerance by facilitating the brassinosteroid-related nucleo-cytoplasmic partitioning of the HSP90-BIN2 complex. PLANT, CELL & ENVIRONMENT 2022; 45:3551-3565. [PMID: 36123951 DOI: 10.1111/pce.14441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/05/2022] [Accepted: 09/15/2022] [Indexed: 06/15/2023]
Abstract
The co-chaperone heat shock protein (HSP)70-HSP90 organizing protein (HOP) is involved in plant thermotolerance. However, its function in plant salinity tolerance was not yet studied. We found that Arabidopsis HOP1 and HOP2 play critical roles in salt tolerance by affecting the nucleo-cytoplasmic partitioning of HSP90 and brassinosteroid-insensitive 2 (BIN2). A hop1/2 double mutant was hypersensitive to salt-stress. Interestingly, this sensitivity was remedied by exogenous brassinolide application, while the application of brassinazole impeded growth of both wild-type (WT) and hop1/2 plants under normal and salt stress conditions. This suggested that the insufficient brassinosteroid (BR) content was responsible for the salt-sensitivity of hop1/2. After WT was transferred to salt stress conditions, HOP1/2, BIN2 and HSP90 accumulated in the nucleus, brassinazole-resistant 1 (BZR1) was phosphorylated and accumulated in the cytoplasm, and BR content significantly increased. This initial response resulted in dephosphorylation of BZR1 and BR response. This dynamic regulation of BR content was impeded in salt-stressed hop1/2. Thus, we propose that HOP1 and HOP2 are involved in salt tolerance by affecting BR signalling.
Collapse
Affiliation(s)
- Kaiyue Zhang
- College of Life Science, Shandong Normal University, Jinan, China
| | - Meijie Duan
- College of Life Science, Shandong Normal University, Jinan, China
| | - Limin Zhang
- College of Life Science, Shandong Normal University, Jinan, China
| | - Jinge Li
- College of Life Science, Shandong Normal University, Jinan, China
| | - Lele Shan
- College of Life Science, Shandong Normal University, Jinan, China
| | - Lina Zheng
- College of Life Science, Shandong Normal University, Jinan, China
| | - Jian Liu
- College of Life Science, Shandong Normal University, Jinan, China
| |
Collapse
|
34
|
Kalbfuß N, Strohmayr A, Kegel M, Le L, Grosse-Holz F, Brunschweiger B, Stöckl K, Wiese C, Franke C, Schiestl C, Prem S, Sha S, Franz-Oberdorf K, Hafermann J, Thiemé M, Facher E, Palubicki W, Bolle C, Assaad FF. A role for brassinosteroid signalling in decision-making processes in the Arabidopsis seedling. PLoS Genet 2022; 18:e1010541. [PMID: 36508461 PMCID: PMC9779667 DOI: 10.1371/journal.pgen.1010541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/22/2022] [Accepted: 11/23/2022] [Indexed: 12/14/2022] Open
Abstract
Plants often adapt to adverse conditions via differential growth, whereby limited resources are discriminately allocated to optimize the growth of one organ at the expense of another. Little is known about the decision-making processes that underly differential growth. In this study, we developed a screen to identify decision making mutants by deploying two tools that have been used in decision theory: a well-defined yet limited budget, as well as conflict-of-interest scenarios. A forward genetic screen that combined light and water withdrawal was carried out. This identified BRASSINOSTEROID INSENSITIVE 2 (BIN2) alleles as decision mutants with "confused" phenotypes. An assessment of organ and cell length suggested that hypocotyl elongation occurred predominantly via cellular elongation. In contrast, root growth appeared to be regulated by a combination of cell division and cell elongation or exit from the meristem. Gain- or loss- of function bin2 mutants were most severely impaired in their ability to adjust cell geometry in the hypocotyl or cell elongation as a function of distance from the quiescent centre in the root tips. This study describes a novel paradigm for root growth under limiting conditions, which depends not only on hypocotyl-versus-root trade-offs in the allocation of limited resources, but also on an ability to deploy different strategies for root growth in response to multiple stress conditions.
Collapse
Affiliation(s)
- Nils Kalbfuß
- Botany, School of Life Sciences, Technische Universität München, Freising, Germany
| | - Alexander Strohmayr
- Botany, School of Life Sciences, Technische Universität München, Freising, Germany
| | - Marcel Kegel
- Botany, School of Life Sciences, Technische Universität München, Freising, Germany
| | - Lien Le
- Botany, School of Life Sciences, Technische Universität München, Freising, Germany
| | | | | | - Katharina Stöckl
- Botany, School of Life Sciences, Technische Universität München, Freising, Germany
| | - Christian Wiese
- Botany, School of Life Sciences, Technische Universität München, Freising, Germany
| | - Carina Franke
- Botany, School of Life Sciences, Technische Universität München, Freising, Germany
| | - Caroline Schiestl
- Botany, School of Life Sciences, Technische Universität München, Freising, Germany
| | - Sophia Prem
- Botany, School of Life Sciences, Technische Universität München, Freising, Germany
| | - Shuyao Sha
- Botany, School of Life Sciences, Technische Universität München, Freising, Germany
| | | | - Juliane Hafermann
- Botany, School of Life Sciences, Technische Universität München, Freising, Germany
| | - Marc Thiemé
- Botany, School of Life Sciences, Technische Universität München, Freising, Germany
| | - Eva Facher
- Systematic Botany and Mycology, Faculty of Biology, Ludwig-Maximilians-University, Munich, Germany
| | - Wojciech Palubicki
- Mathematics and Computer Science, Adam Mickiewicz University, Poznań, Polen
| | - Cordelia Bolle
- Plant Molecular Biology (Botany), Ludwig-Maximilians-University Munich, Martinsried, Germany
| | - Farhah F. Assaad
- Botany, School of Life Sciences, Technische Universität München, Freising, Germany
| |
Collapse
|
35
|
Montes C, Wang P, Liao C, Nolan TM, Song G, Clark NM, Elmore JM, Guo H, Bassham DC, Yin Y, Walley JW. Integration of multi-omics data reveals interplay between brassinosteroid and Target of Rapamycin Complex signaling in Arabidopsis. THE NEW PHYTOLOGIST 2022; 236:893-910. [PMID: 35892179 PMCID: PMC9804314 DOI: 10.1111/nph.18404] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 07/16/2022] [Indexed: 06/01/2023]
Abstract
Brassinosteroids (BRs) and Target of Rapamycin Complex (TORC) are two major actors coordinating plant growth and stress responses. Brassinosteroids function through a signaling pathway to extensively regulate gene expression and TORC is known to regulate translation and autophagy. Recent studies have revealed connections between these two pathways, but a system-wide view of their interplay is still missing. We quantified the level of 23 975 transcripts, 11 183 proteins, and 27 887 phosphorylation sites in wild-type Arabidopsis thaliana and in mutants with altered levels of either BRASSINOSTEROID INSENSITIVE 2 (BIN2) or REGULATORY ASSOCIATED PROTEIN OF TOR 1B (RAPTOR1B), two key players in BR and TORC signaling, respectively. We found that perturbation of BIN2 or RAPTOR1B levels affects a common set of gene-products involved in growth and stress responses. Furthermore, we used the multi-omic data to reconstruct an integrated signaling network. We screened 41 candidate genes identified from the reconstructed network and found that loss of function mutants of many of these proteins led to an altered BR response and/or modulated autophagy activity. Altogether, these results establish a predictive network that defines different layers of molecular interactions between BR- or TORC-regulated growth and autophagy.
Collapse
Affiliation(s)
- Christian Montes
- Department of Plant Pathology and MicrobiologyIowa State UniversityAmesIA50011USA
| | - Ping Wang
- Department of Genetics, Development and Cell BiologyIowa State UniversityAmesIA50011USA
| | - Ching‐Yi Liao
- Department of Genetics, Development and Cell BiologyIowa State UniversityAmesIA50011USA
| | - Trevor M. Nolan
- Department of Genetics, Development and Cell BiologyIowa State UniversityAmesIA50011USA
- Department of BiologyDuke UniversityDurhamNC27708USA
| | - Gaoyuan Song
- Department of Plant Pathology and MicrobiologyIowa State UniversityAmesIA50011USA
| | - Natalie M. Clark
- Department of Plant Pathology and MicrobiologyIowa State UniversityAmesIA50011USA
| | - J. Mitch Elmore
- Department of Plant Pathology and MicrobiologyIowa State UniversityAmesIA50011USA
- USDA‐ARS Cereal Disease LaboratoryUniversity of MinnesotaSt PaulMN55108USA
| | - Hongqing Guo
- Department of Genetics, Development and Cell BiologyIowa State UniversityAmesIA50011USA
| | - Diane C. Bassham
- Department of Genetics, Development and Cell BiologyIowa State UniversityAmesIA50011USA
| | - Yanhai Yin
- Department of Genetics, Development and Cell BiologyIowa State UniversityAmesIA50011USA
- Plant Sciences InstituteIowa State UniversityAmesIA50011USA
| | - Justin W. Walley
- Department of Plant Pathology and MicrobiologyIowa State UniversityAmesIA50011USA
- Plant Sciences InstituteIowa State UniversityAmesIA50011USA
| |
Collapse
|
36
|
Han Q, Tan W, Zhao Y, Yang F, Yao X, Lin H, Zhang D. Salicylic acid-activated BIN2 phosphorylation of TGA3 promotes Arabidopsis PR gene expression and disease resistance. EMBO J 2022; 41:e110682. [PMID: 35950443 PMCID: PMC9531300 DOI: 10.15252/embj.2022110682] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 06/28/2022] [Accepted: 07/21/2022] [Indexed: 11/09/2022] Open
Abstract
The plant defense hormone, salicylic acid (SA), plays essential roles in immunity and systemic acquired resistance. Salicylic acid induced by the pathogen is perceived by the receptor nonexpressor of pathogenesis-related genes 1 (NPR1), which is recruited by TGA transcription factors to induce the expression of pathogenesis-related (PR) genes. However, the mechanism by which post-translational modifications affect TGA's transcriptional activity by salicylic acid signaling/pathogen infection is not well-established. Here, we report that the loss-of-function mutant of brassinosteroid insensitive2 (BIN2) and its homologs, bin2-3 bil1 bil2, causes impaired pathogen resistance and insensitivity to SA-induced PR gene expression, whereas the gain-of-function mutant, bin2-1, exhibited enhanced SA signaling and immunity against the pathogen. Our results demonstrate that salicylic acid activates BIN2 kinase, which in turn phosphorylates TGA3 at Ser33 to enhance TGA3 DNA binding ability and NPR1-TGA3 complex formation, leading to the activation of PR gene expression. These findings implicate BIN2 as a new component of salicylic acid signaling, functioning as a key node in balancing brassinosteroid-mediated plant growth and SA-induced immunity.
Collapse
Affiliation(s)
- Qing Han
- Ministry of Education Key Laboratory for Bio‐Resource and Eco‐Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River EngineeringSichuan UniversityChengduChina
| | - Wenrong Tan
- Ministry of Education Key Laboratory for Bio‐Resource and Eco‐Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River EngineeringSichuan UniversityChengduChina
- School of Life Science and EngineeringSouthwest University of Science and TechnologyMianyangChina
| | - Yuqing Zhao
- Ministry of Education Key Laboratory for Bio‐Resource and Eco‐Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River EngineeringSichuan UniversityChengduChina
| | - Feng Yang
- Ministry of Education Key Laboratory for Bio‐Resource and Eco‐Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River EngineeringSichuan UniversityChengduChina
| | - Xiuhong Yao
- Ministry of Education Key Laboratory for Bio‐Resource and Eco‐Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River EngineeringSichuan UniversityChengduChina
| | - Honghui Lin
- Ministry of Education Key Laboratory for Bio‐Resource and Eco‐Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River EngineeringSichuan UniversityChengduChina
| | - Dawei Zhang
- Ministry of Education Key Laboratory for Bio‐Resource and Eco‐Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River EngineeringSichuan UniversityChengduChina
| |
Collapse
|
37
|
Groszyk J, Przyborowski M. Inhibition of the Glycogen Synthase Kinase 3 Family by the Bikinin Alleviates the Long-Term Effects of Salinity in Barley. Int J Mol Sci 2022; 23:11644. [PMID: 36232941 PMCID: PMC9569769 DOI: 10.3390/ijms231911644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/25/2022] [Accepted: 09/28/2022] [Indexed: 11/09/2022] Open
Abstract
Crops grown under stress conditions show restricted growth and, eventually, reduced yield. Among others, brassinosteroids (BRs) mitigate the effects of stress and improve plant growth. We used two barley cultivars with differing sensitivities to BRs, as determined by the lamina joint inclination test. Barley plants with the 2nd unfolded leaf were sprayed with a diluted series of bikinin, an inhibitor of the Glycogen Synthase Kinase 3 (GSK3) family, which controls the BR signaling pathway. Barley was grown under salt stress conditions up to the start of the 5th leaf growth stage. The phenotypical, molecular, and physiological changes were determined. Our results indicate that the salt tolerance of barley depends on its sensitivity to BRs. We confirmed that barley treatment with bikinin reduced the level of the phosphorylated form of HvBZR1, the activity of which is regulated by GSK3. The use of two barley varieties with different responses to salinity led to the identification of the role of BR signaling in photosynthesis activity. These results suggest that salinity reduces the expression of the genes controlling the BR signaling pathway. Moreover, the results also suggest that the functional analysis of the GSK3 family in stress responses can be a tool for plant breeding in order to improve crops' resistance to salinity or to other stresses.
Collapse
Affiliation(s)
- Jolanta Groszyk
- Plant Breeding and Acclimatization Institute—National Research Institute, 05-870 Błonie, Poland
| | | |
Collapse
|
38
|
Shi H, Li X, Lv M, Li J. BES1/BZR1 Family Transcription Factors Regulate Plant Development via Brassinosteroid-Dependent and Independent Pathways. Int J Mol Sci 2022; 23:ijms231710149. [PMID: 36077547 PMCID: PMC9478962 DOI: 10.3390/ijms231710149] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/28/2022] [Accepted: 08/30/2022] [Indexed: 01/04/2023] Open
Abstract
The BES1/BZR1 family is a plant-specific small group of transcription factors possessing a non-canonical bHLH domain. Genetic and biochemical analyses within the last two decades have demonstrated that members of this family are key transcription factors in regulating the expression of brassinosteroid (BR) response genes. Several recent genetic and evolutionary studies, however, have clearly indicated that the BES1/BZR1 family transcription factors also function in regulating several aspects of plant development via BR-independent pathways, suggesting they are not BR specific. In this review, we summarize our current understanding of this family of transcription factors, the mechanisms regulating their activities, DNA binding motifs, and target genes. We selectively discuss a number of their biological functions via BR-dependent and particularly independent pathways, which were recently revealed by loss-of-function genetic analyses. We also highlight a few possible future directions.
Collapse
|
39
|
Zheng B, Bai Q, Li C, Wang L, Wei Q, Ali K, Li W, Huang S, Xu H, Li G, Ren H, Wu G. Pan-brassinosteroid signaling revealed by functional analysis of NILR1 in land plants. THE NEW PHYTOLOGIST 2022; 235:1455-1469. [PMID: 35570834 DOI: 10.1111/nph.18228] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 05/06/2022] [Indexed: 06/15/2023]
Abstract
Brassinosteroid (BR) signaling has been identified from the ligand BRs sensed by the receptor Brassinosteroid Insensitive 1 (BRI1) to the final activation of Brassinozole Resistant 1/bri1 EMS-Suppressor 1 through a series of transduction events. Extensive studies have been conducted to characterize the role of BR signaling in various biological processes. Our previous study has shown that Excess Microsporocytes 1 (EMS1) and BRI1 control different aspects of plant growth and development via conserved intracellular signaling. Here, we reveal that another receptor, NILR1, can complement the bri1 mutant in the absence of BRs, indicating a pathway that resembles BR signaling activated by NILR1. Genetic analysis confirms the intracellular domains of NILR1, BRI1 and EMS1 have a common signal output. Furthermore, we demonstrate that NILR1 and BRI1 share the coreceptor BRI1 Associated Kinase 1 and substrate BSKs. Notably, the NILR1-mediated downstream pathway is conserved across land plants. In summary, we provide evidence for the signaling cascade of NILR1, suggesting pan-brassinosteroid signaling initiated by a group of distant receptor-ligand pairs in land plants.
Collapse
Affiliation(s)
- Bowen Zheng
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Qunwei Bai
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Chenxi Li
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Lihaitian Wang
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Qiang Wei
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Khawar Ali
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Wenjuan Li
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Shengdi Huang
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Hongxing Xu
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Guishuang Li
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Hongyan Ren
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Guang Wu
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| |
Collapse
|
40
|
Li H, Luo L, Wang Y, Zhang J, Huang Y. Genome-Wide Characterization and Phylogenetic Analysis of GSK Genes in Maize and Elucidation of Their General Role in Interaction with BZR1. Int J Mol Sci 2022; 23:8056. [PMID: 35897632 PMCID: PMC9330802 DOI: 10.3390/ijms23158056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/08/2022] [Accepted: 07/20/2022] [Indexed: 02/01/2023] Open
Abstract
Glycogen synthase kinase-3 (GSK-3) is a nonreceptor serine/threonine protein kinase that is involved in diverse processes, including cell development, photomorphogenesis, biotic and abiotic stress responses, and hormone signaling. In contrast with the deeply researched GSK family in Arabidopsis and rice, maize GSKs' common bioinformatic features and protein functions are poorly understood. In this study, we identified 11 GSK genes in the maize (Zea mays L.) genome via homologous alignment, which we named Zeama;GSKs (ZmGSKs). The results of ZmGSK protein sequences, conserved motifs, and gene structures showed high similarities with each other. The phylogenetic analyses showed that a total of 11 genes from maize were divided into four clades. Furthermore, semi-quantitative RT-PCR analysis of the GSKs genes showed that ZmGSK1, ZmGSK2, ZmGSK4, ZmGSK5, ZmGSK8, ZmGSK9, ZmGSK10, and ZmGSK11 were expressed in all tissues; ZmGSK3, ZmGSK6, and ZmGSK7 were expressed in a specific organization. In addition, GSK expression profiles under hormone treatments demonstrated that the ZmGSK genes were induced under BR conditions, except for ZmGSK2 and ZmGSK5. ZmGSK genes were regulated under ABA conditions, except for ZmGSK1 and ZmGSK8. Finally, using the yeast two-hybrid and BiFC assay, we determined that clads II (ZmGSK1, ZmGSK4, ZmGSK7, ZmGSK8, and ZmGSK11) could interact with ZmBZR1. The results suggest that clade II of ZmGSKs is important for BR signaling and that ZmGSK1 may play a dominant role in BR signaling as the counterpart to BIN2. This study provides a foundation for the further study of GSK3 functions and could be helpful in devising strategies for improving maize.
Collapse
Affiliation(s)
- Hui Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China; (H.L.); (L.L.); (Y.W.)
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| | - Li Luo
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China; (H.L.); (L.L.); (Y.W.)
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| | - Yayun Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China; (H.L.); (L.L.); (Y.W.)
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| | - Junjie Zhang
- College of Life Science, Sichuan Agricultural University, Ya’an 625014, China
| | - Yubi Huang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China; (H.L.); (L.L.); (Y.W.)
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
41
|
Aziz U, Rehmani MS, Wang L, Xian B, Luo X, Shu K. Repressors: the gatekeepers of phytohormone signaling cascades. PLANT CELL REPORTS 2022; 41:1333-1341. [PMID: 35262769 DOI: 10.1007/s00299-022-02853-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 02/20/2022] [Indexed: 06/14/2023]
Abstract
Coordinated phytohormone signal transduction, in which repressors are the key players, is essential to balance plant development and stress response. In the absence of phytohormones, repressors interplay to terminate the transcription of phytohormone-responsive genes. For phytohormone signal transduction, degradation or inactivation of the repressors is a prerequisite, a process in which proteasomal degradation or protein modifications, such as phosphorylation, are involved. In this review, we summarize the various repressor proteins and their methods of regulation. In addition, we also shed light on other post-transcriptional modifications, including protein sumoylation, acetylation, methylation, and S-nitrosylation, which might be involved in repressor regulation. We conclude that repressors are the gatekeepers of phytohormone signaling, allowing transcription of phytohormone-responsive genes only when required and thus serving as a universal mechanism to conserve energy in plants. Finally, we strongly recommend that plant research should be focused further on elucidating the mechanisms regulating repressor abundance or activity, to improve our understanding of phytohormone signal transduction.
Collapse
Affiliation(s)
- Usman Aziz
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710012, China
- Research and Development Institute of Northwestern Polytechnical University, Shenzhen, 518057, China
| | - Muhammad Saad Rehmani
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710012, China
- Research and Development Institute of Northwestern Polytechnical University, Shenzhen, 518057, China
| | - Lei Wang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710012, China
- Research and Development Institute of Northwestern Polytechnical University, Shenzhen, 518057, China
| | - Baoshan Xian
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710012, China
- Research and Development Institute of Northwestern Polytechnical University, Shenzhen, 518057, China
| | - Xiaofeng Luo
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710012, China
- Research and Development Institute of Northwestern Polytechnical University, Shenzhen, 518057, China
| | - Kai Shu
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710012, China.
- Research and Development Institute of Northwestern Polytechnical University, Shenzhen, 518057, China.
| |
Collapse
|
42
|
Cao J, Liang Y, Yan T, Wang X, Zhou H, Chen C, Zhang Y, Zhang B, Zhang S, Liao J, Cheng S, Chu J, Huang X, Xu D, Li J, Deng XW, Lin F. The photomorphogenic repressors BBX28 and BBX29 integrate light and brassinosteroid signaling to inhibit seedling development in Arabidopsis. THE PLANT CELL 2022; 34:2266-2285. [PMID: 35294019 PMCID: PMC9134050 DOI: 10.1093/plcell/koac092] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 02/27/2022] [Indexed: 05/20/2023]
Abstract
B-box containing proteins (BBXs) integrate light and various hormonal signals to regulate plant growth and development. Here, we demonstrate that the photomorphogenic repressors BBX28 and BBX29 positively regulate brassinosteroid (BR) signaling in Arabidopsis thaliana seedlings. Treatment with the BR brassinolide stabilized BBX28 and BBX29, which partially depended on BR INSENSITIVE1 (BRI1) and BIN2. bbx28 bbx29 seedlings exhibited larger cotyledon aperture than the wild-type when treated with brassinazole in the dark, which partially suppressed the closed cotyledons of brassinazole resistant 1-1D (bzr1-1D). Consistently, overexpressing BBX28 and BBX29 partially rescued the short hypocotyls of bri1-5 and bin2-1 in both the dark and light, while the loss-of-function of BBX28 and BBX29 partially suppressed the long hypocotyls of bzr1-1D in the light. BBX28 and BBX29 physically interacted with BR-ENHANCED EXPRESSION1 (BEE1), BEE2, and BEE3 and enhanced their binding to and activation of their target genes. Moreover, BBX28 and BBX29 as well as BEE1, BEE2, and BEE3 increased BZR1 accumulation to promote the BR signaling pathway. Therefore, both BBX28 and BBX29 interact with BEE1, BEE2, and BEE3 to orchestrate light and BR signaling by facilitating the transcriptional activity of BEE target genes. Our study provides insights into the pivotal roles of BBX28 and BBX29 as signal integrators in ensuring normal seedling development.
Collapse
Affiliation(s)
| | | | | | - Xuncheng Wang
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Advanced Agriculture Sciences and School of Life Sciences, Peking University, Beijing 100871, China
| | - Hua Zhou
- Department of Biology, Institute of Plant and Food Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Chen Chen
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yingli Zhang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Beihong Zhang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Shuhao Zhang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Juncheng Liao
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Shujing Cheng
- National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jinfang Chu
- National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100039, China
| | - Xi Huang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Dongqing Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Jia Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Xing Wang Deng
- Department of Biology, Institute of Plant and Food Sciences, Southern University of Science and Technology, Shenzhen 518055, China
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Advanced Agriculture Sciences and School of Life Sciences, Peking University, Beijing 100871, China
| | | |
Collapse
|
43
|
Furuya T, Nishihama R, Ishizaki K, Kohchi T, Fukuda H, Kondo Y. A glycogen synthase kinase 3-like kinase MpGSK regulates cell differentiation in Marchantia polymorpha. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2022; 39:65-72. [PMID: 35800965 PMCID: PMC9200085 DOI: 10.5511/plantbiotechnology.21.1219a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/19/2021] [Indexed: 05/27/2023]
Abstract
Plants precisely coordinate the balance between cell proliferation and differentiation to ensure the continuous development. In Arabidopsis thaliana, members of glycogen synthase kinase 3 (GSK3) family, which are highly conserved serine/threonine protein kinases among eukaryotes, play important roles in regulating cell proliferation and differentiation during various developmental processes. However, functional roles of GSK3s in the plant lineages except angiosperms remain to be elucidated. Here, we utilized a model liverwort, Marchantia polymorpha, for studies of GSK3, because it has a single GSK3-like kinase, MpGSK. When M. polymorpha was treated with a chemical compound, bikinin, which is known as a specific inhibitor for GSK3-like kinases, growth and morphologies were altered with an expansion of the meristematic region. Similarly, Mpgsk loss-of-function mutants accumulated undifferentiated cell mass with no differentiated tissues. By contrast, overexpression of MpGSK reduced the size of the meristem region. These results suggest that MpGSK plays important roles as a regulator for the balance between cell differentiation and proliferation in M. polymorpha.
Collapse
Affiliation(s)
- Tomoyuki Furuya
- Graduate School of Science, Kobe University, Kobe, Hyogo 657-8501, Japan
- Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Ryuichi Nishihama
- Graduate School of Biostudies, Kyoto University, Kyoto, Kyoto 606-8502, Japan
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Kimitsune Ishizaki
- Graduate School of Science, Kobe University, Kobe, Hyogo 657-8501, Japan
| | - Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Kyoto, Kyoto 606-8502, Japan
| | - Hiroo Fukuda
- Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- Department of Bioscience and Biotechnology, Faculty of Bioenvironmental Science, Kyoto University of Advanced Science, Kyoto University of Advanced Science, Kameoka, Kyoto 621-8555, Japan
| | - Yuki Kondo
- Graduate School of Science, Kobe University, Kobe, Hyogo 657-8501, Japan
- Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
44
|
Kondo Y. Competitive action between Brassinosteroid and tracheary element differentiation inhibitory factor in controlling xylem cell differentiation. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2022; 39:59-64. [PMID: 35800962 PMCID: PMC9200088 DOI: 10.5511/plantbiotechnology.21.1109a] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/09/2021] [Indexed: 05/02/2023]
Abstract
For permanent secondary growth in plants, cell proliferation and differentiation should be strictly controlled in the vascular meristem consisting of (pro)cambial cells. A peptide hormone tracheary element differentiation inhibitory factor (TDIF) functions to inhibit xylem differentiation, while a plant hormone brassinosteroid (BR) promotes xylem differentiation in (pro)cambial cells. However, it remains unclear how TDIF and BR cooperate to regulate xylem differentiation for the proper maintenance of the vascular meristem. In this study, I developed an easy evaluation method for xylem differentiation frequency in a vascular induction system Vascular cell Induction culture System Using Arabidopsis Leaves (VISUAL) by utilizing a xylem-specific luciferase reporter line. In this quantitative system, TDIF suppressed and BR promoted xylem differentiation in a dose-dependent manner, respectively. Moreover, simultaneous treatment of TDIF and BR with (pro)cambial cells revealed that they can cancel their each other's effect on xylem differentiation, suggesting a competitive relationship between TDIF and BR. Thus, mutual inhibition of "ON" and "OFF" signal enables the fine-tuned regulation of xylem differentiation in the vascular meristem.
Collapse
Affiliation(s)
- Yuki Kondo
- Department of Biology, Graduate School of Science, Kobe University, Kobe, Hyogo 657-8501, Japan
- E-mail: Tel: +81-78-803-5724
| |
Collapse
|
45
|
Gao Z, Guo L, Ramakrishnan M, Xiang Y, Jiao C, Jiang J, Vinod KK, Fei Z, Que F, Ding Y, Yu F, Chen T, Wei Q. Cellular and molecular characterizations of the irregular internode division zone formation of a slow-growing bamboo variant. TREE PHYSIOLOGY 2022; 42:570-584. [PMID: 34633049 DOI: 10.1093/treephys/tpab129] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 09/01/2021] [Accepted: 09/24/2021] [Indexed: 05/16/2023]
Abstract
The key molecular mechanisms underlying the sectionalized growth within bamboo or other grass internodes remain largely unknown. Here, we genetically and morphologically compared the culm and rhizome internode division zones (DZs) of a slow-growing bamboo variant (sgv) having dwarf internodes, with those of the corresponding wild type (WT). Histological analysis discovers that the sgv has an irregular internode DZ. However, the shoot apical meristems in height, width, outside shape, cell number and cell width of the sgv and the WT were all similar. The DZ irregularities first appeared post apical meristem development, in 1-mm sgv rhizome internodes. Thus, the sgv is a DZ irregularity bamboo variant, which has been first reported in bamboo according to our investigation. Transcriptome sequencing analysis finds that a number of cell wall biogenesis and cell division-related genes are dramatically downregulated in the sgv DZ. Interestingly, both transcriptomic and brassinosteroid (BR) contents detection, as well as quantitative real-time PCR analyses show that these irregularities have resulted from the BR signaling pathway defects. Brassinosteroid defect might also cause the erect leaves and branches as well as the irregular epidermis of the sgv. These results suggest that BR signaling pathway plays critical roles in bamboo internode DZ and leaf development from a mutant perspective and also explain the upstream mechanisms causing the dwarf internode of the sgv bamboo.
Collapse
Affiliation(s)
- Zhipeng Gao
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, 159 Longpan Road Nanjing, Jiangsu 210037, China
| | - Lin Guo
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, 159 Longpan Road Nanjing, Jiangsu 210037, China
| | - Muthusamy Ramakrishnan
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, 159 Longpan Road Nanjing, Jiangsu 210037, China
| | - Yu Xiang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, 159 Longpan Road Nanjing, Jiangsu 210037, China
| | - Chen Jiao
- Boyce Thompson Institute, Cornell University, 533 Tower Road, Ithaca, NY 14853, USA
- College of Agriculture and Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Jiaweng Jiang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, 159 Longpan Road Nanjing, Jiangsu 210037, China
| | - Kunnummal K Vinod
- Division of Genetics, ICAR-Indian Agricultural Research Institute, Sahyadri Ave New Delhi, 110012, India
| | - Zhangjun Fei
- Boyce Thompson Institute, Cornell University, 533 Tower Road, Ithaca, NY 14853, USA
| | - Feng Que
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, 159 Longpan Road Nanjing, Jiangsu 210037, China
| | - Yulong Ding
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, 159 Longpan Road Nanjing, Jiangsu 210037, China
| | - Fen Yu
- Jiangxi Provincial Key Laboratory for Bamboo Germplasm Resources and Utilization, Jiangxi Agriculture University, College of Forestry, 1101 Zhimin Road, Nanchang, Jiangxi 330045, China
| | - Tianguo Chen
- Changzhou Agricultural Technology Extension Center, 289-1 Changjiang Middle Road, Changzhou, Jiangsu 213000, China
| | - Qiang Wei
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, 159 Longpan Road Nanjing, Jiangsu 210037, China
- Jiangxi Provincial Key Laboratory for Bamboo Germplasm Resources and Utilization, Jiangxi Agriculture University, College of Forestry, 1101 Zhimin Road, Nanchang, Jiangxi 330045, China
| |
Collapse
|
46
|
Proteome-wide cellular thermal shift assay reveals unexpected cross-talk between brassinosteroid and auxin signaling. Proc Natl Acad Sci U S A 2022; 119:e2118220119. [PMID: 35254915 PMCID: PMC8931322 DOI: 10.1073/pnas.2118220119] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Chemical genetics, which investigates biological processes using small molecules, is gaining interest in plant research. However, a major challenge is to uncover the mode of action of the small molecules. Here, we applied the cellular thermal shift assay coupled with mass spectrometry (CETSA MS) to intact Arabidopsis cells and showed that bikinin, the plant-specific glycogen synthase kinase 3 (GSK3) inhibitor, changed the thermal stability of some of its direct targets and putative GSK3-interacting proteins. In combination with phosphoproteomics, we also revealed that GSK3s phosphorylated the auxin carrier PIN-FORMED1 and regulated its polarity that is required for the vascular patterning in the leaf. Despite the growing interest in using chemical genetics in plant research, small molecule target identification remains a major challenge. The cellular thermal shift assay coupled with high-resolution mass spectrometry (CETSA MS) that monitors changes in the thermal stability of proteins caused by their interactions with small molecules, other proteins, or posttranslational modifications, allows the discovery of drug targets or the study of protein–metabolite and protein–protein interactions mainly in mammalian cells. To showcase the applicability of this method in plants, we applied CETSA MS to intact Arabidopsis thaliana cells and identified the thermal proteome of the plant-specific glycogen synthase kinase 3 (GSK3) inhibitor, bikinin. A comparison between the thermal and the phosphoproteomes of bikinin revealed the auxin efflux carrier PIN-FORMED1 (PIN1) as a substrate of the Arabidopsis GSK3s that negatively regulate the brassinosteroid signaling. We established that PIN1 phosphorylation by the GSK3s is essential for maintaining its intracellular polarity that is required for auxin-mediated regulation of vascular patterning in the leaf, thus revealing cross-talk between brassinosteroid and auxin signaling.
Collapse
|
47
|
Zhang C, Lauster T, Tang W, Houbaert A, Zhu S, Eeckhout D, De Smet I, De Jaeger G, Jacobs TB, Xu T, Müller S, Russinova E. ROPGAP-dependent interaction between brassinosteroid and ROP2-GTPase signaling controls pavement cell shape in Arabidopsis. Curr Biol 2022; 32:518-531.e6. [PMID: 35085499 DOI: 10.1016/j.cub.2021.12.043] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 11/16/2021] [Accepted: 12/16/2021] [Indexed: 02/06/2023]
Abstract
The epidermal pavement cell shape in Arabidopsis is driven by chemical and mechanical cues that direct partitioning mechanisms required for the establishment of the lobe- and indentation-defining polar sites. Brassinosteroid (BR) hormones regulate pavement cell morphogenesis, but the underlying mechanism remains unclear. Here, we identified two PLECKSTRIN HOMOLOGY GTPase-ACTIVATING proteins (PHGAPs) as substrates of the GSK3-like kinase BR-INSENSITIVE2 (BIN2). The phgap1phgap2 mutant displayed severe epidermal cell shape phenotypes, and the PHGAPs were markedly enriched in the anticlinal face of the pavement cell indenting regions. BIN2 phosphorylation of PHGAPs was required for their stability and polarization. BIN2 inhibition activated ROP2-GTPase signaling specifically in the lobes because of PHGAP degradation, while the PHGAPs restrained ROP2 activity in the indentations. Hence, we connect BR and ROP2-GTPase signaling pathways via the regulation of PHGAPs and put forward the importance of spatiotemporal control of BR signaling for pavement cell interdigitation.
Collapse
Affiliation(s)
- Cheng Zhang
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Theresa Lauster
- Developmental Genetics, Centre for Plant Molecular Biology (ZMBP), University of Tübingen, 72076 Tübingen, Germany
| | - Wenxin Tang
- FAFU-UCR Joint Centre for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, P.R. China
| | - Anaxi Houbaert
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Shanshuo Zhu
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Dominique Eeckhout
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Ive De Smet
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Geert De Jaeger
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Thomas B Jacobs
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Tongda Xu
- FAFU-UCR Joint Centre for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, P.R. China
| | - Sabine Müller
- Developmental Genetics, Centre for Plant Molecular Biology (ZMBP), University of Tübingen, 72076 Tübingen, Germany; Department of Biology, Friedrich-Alexander University Erlangen-Nuremberg, 91054 Erlangen, Germany
| | - Eugenia Russinova
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium.
| |
Collapse
|
48
|
Genome-wide identification and expression analysis of the GSK gene family in wheat (Triticum aestivum L.). Mol Biol Rep 2022; 49:2899-2913. [PMID: 35083611 DOI: 10.1007/s11033-021-07105-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 12/17/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND Plant glycogen synthase kinase 3/shaggy kinase (GSK3) proteins contain the conserved kinase domain and play a pivotal role in the regulation of plant growth and abiotic stress responses. Nonetheless, genome-wide analysis of the GSK gene family in wheat (Triticum aestivum L.) has not been reported. METHODS AND RESULTS Using high-quality wheat genome sequences, a comprehensive genome-wide characterization of the GSK gene family in wheat was conducted. Their phylogenetics, chromosome location, gene structure, conserved domains, promoter cis-elements, gene duplications, and network interactions were systematically analyzed. In this study, we identified 22 GSK genes in wheat genome that were unevenly distributed on nine wheat chromosomes. Based on phylogenetic analysis, the GSK genes from Arabidopsis, rice, barley, and wheat were clustered into four subfamilies. Gene structure and conserved protein motif analysis revealed that GSK proteins in the same subfamily share similar motif structures and exon/intron organization. Results from gene duplication analysis indicate that four segmental duplications events contribute to the expansion of the wheat GSK gene family. Promoter analysis indicated the participation of TaSK genes in response to the hormone, light and abiotic stress, and plant growth and development. Furthermore, gene network analysis found that five TaSKs were involved in the regulatory network and 130 gene pairs of network interactions were identified. The heat map generated from the available transcriptomic data revealed that the TaSKs exhibited preferential expression in specific tissues and different expression patterns under abiotic stress conditions. Moreover, results from qRT-PCR analysis revealed that the randomly selected TaSK genes were abundantly expressed in spikes and grains at one specific developmental stage, as well as in responding to drought and salt stress. CONCLUSIONS These findings clearly depicted the evolutionary processes and the characteristics, and expression profiles of the GSK gene family in wheat, revealed their role in wheat development and response to abiotic stress responses.
Collapse
|
49
|
Ren H, Wu X, Zhao W, Wang Y, Sun D, Gao K, Tang W. Heat Shock-Induced Accumulation of the Glycogen Synthase Kinase 3-Like Kinase BRASSINOSTEROID INSENSITIVE 2 Promotes Early Flowering but Reduces Thermotolerance in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2022; 13:838062. [PMID: 35154235 PMCID: PMC8828572 DOI: 10.3389/fpls.2022.838062] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 01/04/2022] [Indexed: 05/28/2023]
Abstract
Brassinosteroids (BRs) are essential plant growth- and development-regulating phytohormones. When applied exogenously, BRs ameliorate heat shock (HS)-induced cell damage and enhance plant thermotolerance; however, the molecular mechanism by which BRs regulate plant thermotolerance is unknown. In this study, by analyzing the thermotolerance of a series of BR signaling mutants and plants that overexpressed different BR signaling components, we obtained comprehensive data showing that BRASSINOSTEROID INSENSITIVE 2 (BIN2) plays a major role in mediating the crosstalk between BR signaling and plant HS responses. By RNA-Seq, 608 HS- and BIN2-regulated genes were identified. An analysis of the 1-kb promoter sequences of these genes showed enrichment of an abscisic acid (ABA) INSENSITIVE 5 (ABI5)-binding cis-element. Physiological studies showed that thermotolerance was reduced in bin2-1 mutant and ABI5-OX plants but increased in the abi5 mutant, and that the abi5 mutation could recover the thermotolerance of bin2-1 plants to a wild-type level, suggesting that ABI5 functions downstream of BIN2 in regulating plant thermotolerance. Further, HS treatment increased the cellular abundance of BIN2. Both bin2-1 mutant and BIN2-OX plants showed early flowering, while the BIN2 loss-of-function mutant bin2-3 bil1 bil2 flowered late. Given these findings, we propose that under HS conditions plants increase BIN2 activity to promote early flowering and ensure species survival; however, this reduces the thermotolerance and survivability of individual plants partially by activating ABI5.
Collapse
|
50
|
Zolkiewicz K, Gruszka D. Glycogen synthase kinases in model and crop plants - From negative regulators of brassinosteroid signaling to multifaceted hubs of various signaling pathways and modulators of plant reproduction and yield. FRONTIERS IN PLANT SCIENCE 2022; 13:939487. [PMID: 35909730 PMCID: PMC9335153 DOI: 10.3389/fpls.2022.939487] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/01/2022] [Indexed: 05/15/2023]
Abstract
Glycogen synthase kinases, also known as SHAGGY-like Kinases (GSKs/SKs), are highly conserved serine/threonine protein kinases present both in animals and plants. Plant genomes contain multiple homologs of the GSK3 genes which participate in various biological processes. Plant GSKs/SKs, and their best known representative in Arabidopsis thaliana - Brassinosteroid Insentisive2 (BIN2/SK21) in particular, were first identified as components of the brassinosteroid (BR) signaling pathway. As phytohormones, BRs regulate a wide range of physiological processes in plants - from germination, cell division, elongation and differentiation to leaf senescence, and response to environmental stresses. The GSKs/SKs proteins belong to a group of several highly conserved components of the BR signaling which evolved early during evolution of this molecular relay. However, recent reports indicated that the GSKs/SKs proteins are also implicated in signaling pathways of other phytohormones and stress-response processes. As a consequence, the GSKs/SKs proteins became hubs of various signaling pathways and modulators of plant development and reproduction. Thus, it is very important to understand molecular mechanisms regulating activity of the GSKs/SKs proteins, but also to get insights into role of the GSKs/SKs proteins in modulation of stability and activity of various substrate proteins which participate in the numerous signaling pathways. Although elucidation of these aspects is still in progress, this review presents a comprehensive and detailed description of these processes and their implications for regulation of development, stress response, and reproduction of model and crop species. The GSKs/SKs proteins and their activity are modulated through phosphorylation and de-phosphorylation reactions which are regulated by various proteins. Importantly, both phosphorylations and de-phosphorylations may have positive and negative effects on the activity of the GSKs/SKs proteins. Additionally, the activity of the GSKs/SKs proteins is positively regulated by reactive oxygen species, whereas it is negatively regulated through ubiquitylation, deacetylation, and nitric oxide-mediated nitrosylation. On the other hand, the GSKs/SKs proteins interact with proteins representing various signaling pathways, and on the basis of the complicated network of interactions the GSKs/SKs proteins differentially regulate various physiological, developmental, stress response, and yield-related processes.
Collapse
|