1
|
Huang Y, Sun Z, Zhou X. WRKY Transcription Factors in Response to Metal Stress in Plants: A Review. Int J Mol Sci 2024; 25:10952. [PMID: 39456735 PMCID: PMC11506853 DOI: 10.3390/ijms252010952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
Heavy metals in soil can inflict direct damage on plants growing within it, adversely affecting their growth height, root development, leaf area, and other physiological traits. To counteract the toxic impacts of heavy metals on plant growth and development, plants mitigate heavy metal stress through mechanisms such as metal chelation, vacuolar compartmentalization, regulation of transporters, and enhancement of antioxidant functions. WRKY transcription factors (TFs) play a crucial role in plant growth and development as well as in responses to both biotic and abiotic stresses; notably, heavy metal stress is classified as an abiotic stressor. An increasing number of studies have highlighted the significant role of WRKY proteins in regulating heavy metal stress across various levels. Upon the entry of heavy metal ions into plant root cells, the production of reactive oxygen species (ROS) is triggered, leading to the phosphorylation and activation of WRKY TFs through MAPK cascade signaling. Activated WRKY TFs then modulate various physiological processes by upregulating or downregulating the expression of downstream genes to confer heavy metal tolerance to plants. This review provides an overview of the research advancements regarding WRKY TFs in regulating heavy metal ion stress-including cadmium (Cd), arsenic (As), copper (Cu)-and aluminum (Al) toxicity.
Collapse
Affiliation(s)
| | | | - Xiangui Zhou
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518000, China; (Y.H.); (Z.S.)
| |
Collapse
|
2
|
Shourie A, Mazahar S, Singh A. Biotechnological approaches for enhancement of heavy metal phytoremediation capacity of plants. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:789. [PMID: 39105824 DOI: 10.1007/s10661-024-12940-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 07/24/2024] [Indexed: 08/07/2024]
Abstract
Heavy metals are extremely hazardous for human health due to their toxic effects. They are non-biodegradable in nature, thus remain in the environment and enter and accumulate in the human body through biomagnification; hence, there is a serious need of their remediation. Phytoremediation has emerged as a green, sustainable, and effective solution for heavy metal removal and many plant species could be employed for this purpose. Plants are able to sequester substantial quantity of heavy metals, in some cases thousands of ppm, due to their robust physiology enabling high metal tolerance and anatomy supporting metal ion accumulation. Identification and modification of potential target genes involved in heavy metal accumulation have led to improved phytoremediation capacity of plants at the molecular level. The introduction of foreign genes through genetic engineering approaches has further enhanced phytoremediation capacity manifolds. This review gives an insight towards improving the phytoremediation efficiency through a better understanding of molecular mechanisms involved, expression of different proteins, genetic engineering approaches for transgenic production, and genetic modifications. It also comprehends novel omics tools such as genomics, metabolomics, proteomics, transcriptomics, and genome editing technologies for improvement of phytoremediation ability of plants.
Collapse
Affiliation(s)
- Abhilasha Shourie
- Department of Biotechnology, School of Engineering and Technology, Manav Rachna International Institute of Research and Studies, Faridabad, India
| | - Samina Mazahar
- Department of Botany, Dyal Singh College, University of Delhi, New Delhi, India.
| | - Anamika Singh
- Department of Botany, Maitreyi College, University of Delhi, New Delhi, India.
| |
Collapse
|
3
|
Luo Y, Zhang Y, Xiong Z, Chen X, Sha A, Xiao W, Peng L, Zou L, Han J, Li Q. Peptides Used for Heavy Metal Remediation: A Promising Approach. Int J Mol Sci 2024; 25:6717. [PMID: 38928423 PMCID: PMC11203628 DOI: 10.3390/ijms25126717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/28/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
In recent years, heavy metal pollution has become increasingly prominent, severely damaging ecosystems and biodiversity, and posing a serious threat to human health. However, the results of current methods for heavy metal restoration are not satisfactory, so it is urgent to find a new and effective method. Peptides are the units that make up proteins, with small molecular weights and strong biological activities. They can effectively repair proteins by forming complexes, reducing heavy metal ions, activating the plant's antioxidant defense system, and promoting the growth and metabolism of microorganisms. Peptides show great potential for the remediation of heavy metal contamination due to their special structure and properties. This paper reviews the research progress in recent years on the use of peptides to remediate heavy metal pollution, describes the mechanisms and applications of remediation, and provides references for the remediation of heavy metal pollution.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jialiang Han
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610000, China; (Y.L.); (Y.Z.); (Z.X.); (X.C.); (A.S.); (W.X.); (L.P.); (L.Z.)
| | - Qiang Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610000, China; (Y.L.); (Y.Z.); (Z.X.); (X.C.); (A.S.); (W.X.); (L.P.); (L.Z.)
| |
Collapse
|
4
|
Luo D, Lu H, Wang C, Mubeen S, Cao S, Yue J, Pan J, Wu X, Wu Q, Zhang H, Chen C, Rehman M, Li R, Chen P. Physiological and DNA methylation analysis provides epigenetic insights into kenaf cadmium tolerance heterosis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 331:111663. [PMID: 36841339 DOI: 10.1016/j.plantsci.2023.111663] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/19/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Soil heavy metal pollution is one of the most challenging problems. Kenaf is an important natural fiber crop with strong heterosis and a higher tolerance to heavy metals. However, little is known about the molecular mechanisms of kenaf heavy metal tolerance, especially the mechanism of genomic DNA methylation regulating heterosis. In this study, kenaf cultivars CP085, CP089, and their hybrid F1 seedlings were subjected to 300 µM cadmium stress and found obvious heterosis of cadmium resistance in morphology and antioxidant enzyme activity of F1 hybrid seedlings. Through methylation-sensitive amplification polymorphism (MSAP) analysis, we highlighted that the total DNA methylation level under cadmium decreased by 16.9 % in F1 and increased by 14.0 % and 3.0 % in parents CP085 and CP089, respectively. The hypomethylation rate was highest (21.84 %), but hypermethylation was lowest (17.24 %) in F1 compared to parent cultivars. In particular, principal coordinates analysis (PCoA) indicates a significant epigenetic differentiation between F1 and its parents under cadmium. Furthermore, 21 differentially methylated DNA fragments (DMFs) were analyzed. Especially, the expression of NPF2.7, NADP-ME, NAC71, TPP-D, LRR-RLKs, and DHX51 genes were changed due to cadmium stress and related to cytosine methylation regulation. Finally, the knocked-down of the differentially methylated gene NPF2.7 by virus-induced gene silencing (VIGS) resulted in increased sensitivity of kenaf seedlings under cadmium stress. It is speculated that low DNA methylation levels can regulate gene expression that led to the heterosis of cadmium tolerance in kenaf.
Collapse
Affiliation(s)
- Dengjie Luo
- Guangxi Key Laboratory of Agro-environment and Agric-products safety, Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Hai Lu
- Guangxi Key Laboratory of Agro-environment and Agric-products safety, Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Caijin Wang
- Guangxi Key Laboratory of Agro-environment and Agric-products safety, Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Samavia Mubeen
- Guangxi Key Laboratory of Agro-environment and Agric-products safety, Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Shan Cao
- Guangxi Key Laboratory of Agro-environment and Agric-products safety, Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Jiao Yue
- Guangxi Key Laboratory of Agro-environment and Agric-products safety, Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Jiao Pan
- Guangxi Key Laboratory of Agro-environment and Agric-products safety, Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Xia Wu
- Guangxi Key Laboratory of Agro-environment and Agric-products safety, Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Qijing Wu
- Guangxi Key Laboratory of Agro-environment and Agric-products safety, Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Hui Zhang
- Guangxi Key Laboratory of Agro-environment and Agric-products safety, Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Canni Chen
- Guangxi Key Laboratory of Agro-environment and Agric-products safety, Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Muzammal Rehman
- Guangxi Key Laboratory of Agro-environment and Agric-products safety, Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Ru Li
- College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Peng Chen
- Guangxi Key Laboratory of Agro-environment and Agric-products safety, Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning 530004, China.
| |
Collapse
|
5
|
Rai GK, Kumar P, Choudhary SM, Singh H, Adab K, Kosser R, Magotra I, Kumar RR, Singh M, Sharma R, Corrado G, Rouphael Y. Antioxidant Potential of Glutathione and Crosstalk with Phytohormones in Enhancing Abiotic Stress Tolerance in Crop Plants. PLANTS (BASEL, SWITZERLAND) 2023; 12:1133. [PMID: 36903992 PMCID: PMC10005112 DOI: 10.3390/plants12051133] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/19/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
Glutathione (GSH) is an abundant tripeptide that can enhance plant tolerance to biotic and abiotic stress. Its main role is to counter free radicals and detoxify reactive oxygen species (ROS) generated in cells under unfavorable conditions. Moreover, along with other second messengers (such as ROS, calcium, nitric oxide, cyclic nucleotides, etc.), GSH also acts as a cellular signal involved in stress signal pathways in plants, directly or along with the glutaredoxin and thioredoxin systems. While associated biochemical activities and roles in cellular stress response have been widely presented, the relationship between phytohormones and GSH has received comparatively less attention. This review, after presenting glutathione as part of plants' feedback to main abiotic stress factors, focuses on the interaction between GSH and phytohormones, and their roles in the modulation of the acclimatation and tolerance to abiotic stress in crops plants.
Collapse
Affiliation(s)
- Gyanendra Kumar Rai
- School of Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Jammu 180009, India
| | - Pradeep Kumar
- Division of Integrated Farming System, ICAR—Central Arid Zone Research Institute, Jodhpur 342003, India
| | - Sadiya M. Choudhary
- School of Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Jammu 180009, India
| | - Hira Singh
- Department of Vegetable Science, Punjab Agricultural University, Ludhiana 141004, India
| | - Komal Adab
- Department of Biotechnology, BGSB University, Rajouri 185131, India
| | - Rafia Kosser
- School of Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Jammu 180009, India
| | - Isha Magotra
- School of Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Jammu 180009, India
| | - Ranjeet Ranjan Kumar
- Division of Biochemistry, ICAR—Indian Agricultural Research Institute, New Delhi 110001, India
| | - Monika Singh
- GLBajaj Institute of Technology and Management, Greater Noida 201306, India
| | - Rajni Sharma
- Department of Agronomy, Punjab Agricultural University, Ludhiana 141004, India
| | - Giandomenico Corrado
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
| | - Youssef Rouphael
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
| |
Collapse
|
6
|
Seregin IV, Kozhevnikova AD. Phytochelatins: Sulfur-Containing Metal(loid)-Chelating Ligands in Plants. Int J Mol Sci 2023; 24:2430. [PMID: 36768751 PMCID: PMC9917255 DOI: 10.3390/ijms24032430] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 01/28/2023] Open
Abstract
Phytochelatins (PCs) are small cysteine-rich peptides capable of binding metal(loid)s via SH-groups. Although the biosynthesis of PCs can be induced in vivo by various metal(loid)s, PCs are mainly involved in the detoxification of cadmium and arsenic (III), as well as mercury, zinc, lead, and copper ions, which have high affinities for S-containing ligands. The present review provides a comprehensive account of the recent data on PC biosynthesis, structure, and role in metal(loid) transport and sequestration in the vacuoles of plant cells. A comparative analysis of PC accumulation in hyperaccumulator plants, which accumulate metal(loid)s in their shoots, and in the excluders, which accumulate metal(loid)s in their roots, investigates the question of whether the endogenous PC concentration determines a plant's tolerance to metal(loid)s. Summarizing the available data, it can be concluded that PCs are not involved in metal(loid) hyperaccumulation machinery, though they play a key role in metal(loid) homeostasis. Unraveling the physiological role of metal(loid)-binding ligands is a fundamental problem of modern molecular biology, plant physiology, ionomics, and toxicology, and is important for the development of technologies used in phytoremediation, biofortification, and phytomining.
Collapse
Affiliation(s)
- Ilya V. Seregin
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya St., 35, 127276 Moscow, Russia
| | | |
Collapse
|
7
|
Esmaielzadeh S, Fallah H, Niknejad Y, Mahmoudi M, Tari DB. Methyl jasmonate increases aluminum tolerance in rice by augmenting the antioxidant defense system, maintaining ion homeostasis, and increasing nonprotein thiol compounds. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:46708-46720. [PMID: 35171418 DOI: 10.1007/s11356-022-19201-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 02/09/2022] [Indexed: 06/14/2023]
Abstract
Aluminum (Al) stress is known as a serious threat to the growth and production of crops in acidic soils. Here, the effects of different concentrations of methyl jasmonate (MJ, 0.5 and 1 µM) on rice plants were investigated hydroponically under different concentrations of Al (0.5 and 1 mM). Aluminum treatments injured membrane lipids and photosynthetic apparatus by reducing the leaf contents of mineral nutrients and increasing the accumulation of free radicals (hydrogen peroxide, methylglyoxal, and superoxide anion), resulting in reduced growth and biomass of rice. In comparison to control plants, 0.5 and 1 μM Al treatments lowered height by 21 and 37% and total dry weight by 24 and 41%, respectively. Exogenously added methyl diminished the inhibitory effects of Al stress on growth and photosynthetic apparatus by restoring ion homeostasis and improving chlorophyll metabolism. The application of MJ, by inducing the activity of antioxidant enzymes and the glyoxalase cycle, lessened the levels of the toxic compounds hydrogen peroxide, methylglyoxal, and superoxide anion and, as a result, dwindled the toxic Al-induced oxidative stress. Methyl jasmonate enhanced the leaf accumulation of nonprotein thiol compounds and improved plant tolerance under Al stress by increasing the activity of enzymes involved in the synthesis of thiol compounds. Methyl jasmonate increased the leaf accumulation of glutathione and phytochelatins in Al-stressed plants by increasing the expression of GSH1, PCS, and ABCC1, which reduced the toxicity of toxic Al accumulated in leaves by sequestering toxic Al in vacuoles. Together, the results revealed that MJ increased the tolerance of rice under Al toxicity by maintaining ion homeostasis, improving the activity of antioxidant enzymes and the glyoxalase system, and increasing the level of non-protein thiol compounds. This research adds to our understanding of how MJ may be used in the future to improve Al stress tolerance in sustainable agriculture.
Collapse
Affiliation(s)
- Soodabe Esmaielzadeh
- Department of Agronomy, Islamic Azad University of Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran
| | - Hormoz Fallah
- Department of Agronomy, Islamic Azad University of Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran.
| | - Yosoof Niknejad
- Department of Agronomy, Islamic Azad University of Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran
| | - Mehran Mahmoudi
- Department of Agronomy, Islamic Azad University of Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran
| | - Davood Barari Tari
- Department of Agronomy, Islamic Azad University of Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran
| |
Collapse
|
8
|
Kochoni E, Aharchaou I, Ohlund L, Rosabal M, Sleno L, Fortin C. New insights in copper handling strategies in the green alga Chlamydomonas reinhardtii under low-iron condition. Metallomics 2022; 14:6582230. [PMID: 35524697 DOI: 10.1093/mtomcs/mfac033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 04/14/2022] [Indexed: 11/13/2022]
Abstract
Copper (Cu) is a redox-active transition element critical to various metabolic processes. These functions are accomplished in tandem with Cu binding ligands, mainly proteins. The main goal of this work was to understand the mechanisms that govern the intracellular fate of Cu in the freshwater green alga, Chlamydomonas reinhardtii, and more specifically to understand the mechanisms underlying Cu detoxification by algal cells in low-Fe conditions. We show that Cu accumulation was up to 51-fold greater for algae exposed to Cu in low-Fe medium as compared to the replete-Fe growth medium. Using the stable isotope 65Cu as a tracer, we studied the subcellular distribution of Cu within the various cell compartments of C. reinhardtii. These data were coupled with metallomic and proteomic approaches to identify potential Cu-binding ligands in the heat-stable protein and peptide fractions of the cytosol. Cu was mostly found in the organelles (78%), and in the heat-stable proteins and peptides (21%) fractions. The organelle fraction appeared to also be the main target compartment of Cu accumulation in Fe-depleted cells. As Fe levels in the medium were shown to influence Cu homeostasis, we found that C. reinhardtii can cope with this additional stress by utilizing different Cu-binding ligands. Indeed, in addition to expected Cu-binding ligands such as glutathione and phytochelatins, 25 proteins were detected that may also play a role in the Cu detoxification processes in C. reinhardtii. Our results shed new light on the coping mechanisms of C. reinhardtii when exposed to environmental conditions that induce high rates of Cu accumulation.
Collapse
Affiliation(s)
- Emeric Kochoni
- Institut national de la recherche scientifique, Centre Eau Terre Environnement, 490, rue de la Couronne, Québec, QC, G1K 9A9, Canada.,EcotoQ, 490, rue de la Couronne, Québec, QC, G1K 9A9, Canada
| | - Imad Aharchaou
- Institut national de la recherche scientifique, Centre Eau Terre Environnement, 490, rue de la Couronne, Québec, QC, G1K 9A9, Canada.,EcotoQ, 490, rue de la Couronne, Québec, QC, G1K 9A9, Canada
| | - Leanne Ohlund
- Département de Chimie, Université du Québec à Montréal (UQAM), 2101, rue Jeanne-Mance, Montréal, QC, H2×2J6, Canada
| | - Maikel Rosabal
- EcotoQ, 490, rue de la Couronne, Québec, QC, G1K 9A9, Canada.,Département des Sciences biologiques, Université du Québec à Montréal (UQAM), 141 Avenue du Président-Kennedy, Montréal, QC, H2×1Y4, Canada
| | - Lekha Sleno
- EcotoQ, 490, rue de la Couronne, Québec, QC, G1K 9A9, Canada.,Département de Chimie, Université du Québec à Montréal (UQAM), 2101, rue Jeanne-Mance, Montréal, QC, H2×2J6, Canada
| | - Claude Fortin
- Institut national de la recherche scientifique, Centre Eau Terre Environnement, 490, rue de la Couronne, Québec, QC, G1K 9A9, Canada.,EcotoQ, 490, rue de la Couronne, Québec, QC, G1K 9A9, Canada
| |
Collapse
|
9
|
Muratova A, Lyubun Y, Sungurtseva I, Turkovskaya O, Nurzhanova A. Physiological and biochemical characteristic of Miscanthus × giganteus grown in heavy metal - oil sludge co-contaminated soil. J Environ Sci (China) 2022; 115:114-125. [PMID: 34969442 DOI: 10.1016/j.jes.2021.07.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 07/13/2021] [Accepted: 07/13/2021] [Indexed: 06/14/2023]
Abstract
The effect of oil sludge and zinc, present in soil both separately and as a mixture on the physiological and biochemical parameters of Miscanthus × giganteus plant was examined in a pot experiment. The opposite effect of pollutants on the accumulation of plant biomass was established: in comparison with uncontaminated control the oil sludge increased, and Zn reduced the root and shoot biomass. Oil sludge had an inhibitory effect on the plant photosynthetic apparatus, which intensified in the presence of Zn. The specific antioxidant response of M. × giganteus to the presence of both pollutants was a marked increase in the activity of superoxide dismutase (mostly owing to oil sludge) and glutathione-S-transferase (mostly owing to zinc) in the shoots. The participation of glutathione-S-transferase in the detoxification of both the organic and the inorganic pollutants was assumed. Zn inhibited the activity of laccase-like oxidase, whereas oil sludge promoted laccase and ascorbate oxidase activities. This finding suggests that these enzymes play a part in the oxidative detoxification of the organic pollutаnt. With both pollutants used jointly, Zn accumulation in the roots increased 6-fold, leading to increase in the efficiency of soil clean-up from the metal. In turn, Zn did not significantly affect the soil clean-up from oil sludge. This study shows for the first time the effect of co-contamination of soil with oil sludge and Zn on the physiological and biochemical characteristics of the bioenergetic plant M. × giganteus. The data obtained are important for understanding the mechanisms of phytoremediation with this plant.
Collapse
Affiliation(s)
- Anna Muratova
- Institute of Biochemistry and Physiology of Plants and Microorganisms RAS, Saratov 410015, Russia.
| | - Yelena Lyubun
- Institute of Biochemistry and Physiology of Plants and Microorganisms RAS, Saratov 410015, Russia
| | - Irina Sungurtseva
- Institute of Biochemistry and Physiology of Plants and Microorganisms RAS, Saratov 410015, Russia
| | - Olga Turkovskaya
- Institute of Biochemistry and Physiology of Plants and Microorganisms RAS, Saratov 410015, Russia
| | - Asil Nurzhanova
- Institute of Plant Biology and Biotechnology, Almaty 050040, Kazakhstan
| |
Collapse
|
10
|
Liu T, Man Y, Li P, Zhang H, Cheng H. A Hydroponic Study on Effect of Zinc Against Mercury Uptake by Triticale: Kinetic Process and Accumulation. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 108:359-365. [PMID: 34181031 DOI: 10.1007/s00128-021-03298-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 06/09/2021] [Indexed: 06/13/2023]
Abstract
We investigated the ability of triticale uptake of Mercury (Hg), clarified whether triticale root uptake of Hg2+ via Zinc (Zn2+) transports, using hydroponic experiments. At 25℃, when Hg exposure in solution was lower than 20 μM, Hg concentration in the roots can be better described by a hyperbolic function, which shows a saturable characteristic. Under ice-cold (< 2℃) conditions, a nonsaturable (linear) component was found. Low exposure of Zn2+ (0-1 μM) inhibited plant Hg uptake when Hg exposure in the solution ranged from 1 to 10 μM, it showed an antagonistic effect of Zn on plant uptake of Hg. When Hg exposure was 20 μM, it revealed a synergistic effect of Zn on plant uptake of Hg, Hg in the root increased at the Zn (1 μM) exposure in the solution. Our results will deepen the understanding of Hg transfer in the soil-plant system.
Collapse
Affiliation(s)
- Ting Liu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yi Man
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ping Li
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, People's Republic of China
| | - Hua Zhang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, People's Republic of China
| | | |
Collapse
|
11
|
Seregin IV, Kozhevnikova AD. Low-molecular-weight ligands in plants: role in metal homeostasis and hyperaccumulation. PHOTOSYNTHESIS RESEARCH 2021; 150:51-96. [PMID: 32653983 DOI: 10.1007/s11120-020-00768-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 06/22/2020] [Indexed: 06/11/2023]
Abstract
Mineral nutrition is one of the key factors determining plant productivity. In plants, metal homeostasis is achieved through the functioning of a complex system governing metal uptake, translocation, distribution, and sequestration, leading to the maintenance of a regulated delivery of micronutrients to metal-requiring processes as well as detoxification of excess or non-essential metals. Low-molecular-weight ligands, such as nicotianamine, histidine, phytochelatins, phytosiderophores, and organic acids, play an important role in metal transport and detoxification in plants. Nicotianamine and histidine are also involved in metal hyperaccumulation, which determines the ability of some plant species to accumulate a large amount of metals in their shoots. In this review we extensively summarize and discuss the current knowledge of the main pathways for the biosynthesis of these ligands, their involvement in metal uptake, radial and long-distance transport, as well as metal influx, isolation and sequestration in plant tissues and cell compartments. It is analyzed how diverse endogenous ligand levels in plants can determine their different tolerance to metal toxic effects. This review focuses on recent advances in understanding the physiological role of these compounds in metal homeostasis, which is an essential task of modern ionomics and plant physiology. It is of key importance in studying the influence of metal deficiency or excess on various physiological processes, which is a prerequisite to the improvement of micronutrient uptake efficiency and crop productivity and to the development of a variety of applications in phytoremediation, phytomining, biofortification, and nutritional crop safety.
Collapse
Affiliation(s)
- I V Seregin
- K.A. Timiryazev Institute of Plant Physiology RAS, IPPRAS, Botanicheskaya st., 35, Moscow, Russian Federation, 127276.
| | - A D Kozhevnikova
- K.A. Timiryazev Institute of Plant Physiology RAS, IPPRAS, Botanicheskaya st., 35, Moscow, Russian Federation, 127276
| |
Collapse
|
12
|
Ghorbani A, Pishkar L, Roodbari N, Pehlivan N, Wu C. Nitric oxide could allay arsenic phytotoxicity in tomato (Solanum lycopersicum L.) by modulating photosynthetic pigments, phytochelatin metabolism, molecular redox status and arsenic sequestration. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 167:337-348. [PMID: 34392046 DOI: 10.1016/j.plaphy.2021.08.019] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 08/10/2021] [Accepted: 08/10/2021] [Indexed: 05/21/2023]
Abstract
Plants do not always have the genetic capacity to tolerate high levels of arsenic (As), which may not only arrest their growth but pose potential health risks through dietary bioaccumulation. Meanwhile, the interplay between the tomato plants and As-NO-driven molecular cell dynamics is obscure. Accordingly, seedlings were treated with As (10 mg/L) alone or in combination with 100 μM sodium nitroprusside (SNP, NO donor) and 200 μM 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO, NO scavenger). Sodium nitroprusside immobilized As in the roots and reduced the shoot translocation by up-regulating the transcriptional expression of the PCS, GSH1, MT2, and ABC1. SNP further restored the growth retardation through modulating the chlorophyll and proline metabolism, increasing NO accumulation and stomatal conductance along with clear crosstalk between the antioxidant activity as well as glyoxalase I and II leading to endogenous H2O2 and MG reduction. Higher PCs and glutathione accumulation helped protect photosynthetic apparatus; however, cPTIO reversed the protective effects of SNP, confirming the role of NO in the As toxicity alleviation.
Collapse
Affiliation(s)
- Abazar Ghorbani
- Department of Biology, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil, Islamic Republic of Iran; College of Horticulture and Gardening, Yangtze University, Jingzhou, China.
| | - Leila Pishkar
- Department of Biology, Islamshahr Branch, Islamic Azad University, Islamshahr, Iran.
| | - Nasim Roodbari
- Department of Biology, Kahnooj Branch, Islamic Azad University, Kahnooj, Iran
| | - Necla Pehlivan
- Department of Biology, Faculty of Arts and Sciences, Recep Tayyip Erdogan University, 53100, Rize, Turkey
| | - Chu Wu
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
| |
Collapse
|
13
|
Xu F, Chen P, Li H, Qiao S, Wang J, Wang Y, Wang X, Wu B, Liu H, Wang C, Xu H. Comparative transcriptome analysis reveals the differential response to cadmium stress of two Pleurotus fungi: Pleurotus cornucopiae and Pleurotus ostreatus. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125814. [PMID: 33866290 DOI: 10.1016/j.jhazmat.2021.125814] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 03/24/2021] [Accepted: 04/02/2021] [Indexed: 06/12/2023]
Abstract
Pleurotus has great potential for heavy metal mycoremediation. Using comparative transcriptome analysis, the response of Pleurotus ostreatus and Pleurotus cornucopiae under Cd contamination was evaluated. P. ostreatus and P. cornucopia accumulated 0.34 and 0.46 mg/g Cd in mycelium, respectively. Cd removal elevated with its concentration elevation, which reached 56.47% and 54.60% for P. ostreatus and P. cornucopia with Cd at 20 mg/L. Low-level Cd (≤ 1 mg/L) had no significant influence on either fungus, while varied response was observed under high-level Cd. 705 differentially expressed genes (DEGs) were identified in P. cornucopia at Cd1 and Cd20, whereas 12,551 DEGs in P. ostreatus. Differentially regulated functional categories and pathways were also identified. ATP-binding cassette transporters were involved in Cd transport in P. cornucopia, whereas the endocytosis and phagosome pathways were more enhanced in P. ostreatus. 26 enzymes including peroxisomal enzymes catalase and superoxide dismutase were upregulated in P. ostreatus, whereas only cytosolic catalase was overexpressed in P. cornucopia, suggesting their different Cd detoxification pathways. Also, the mitogen-activated protein kinase signaling pathway involved in Cd resistance in both species instead of glutathione metabolism, although more active in P. ostreatus. These findings provided new insight into the molecular mechanism of mycoremediation and accumulator screening.
Collapse
Affiliation(s)
- Fei Xu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China; Key Laboratory of Environment Protection, Soil ecological protection and pollution control, Sichuan University & Department of Ecology and Environment of Sichuan, Chengdu 610065, Sichuan, PR China
| | - Peng Chen
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China; Key Laboratory of Environment Protection, Soil ecological protection and pollution control, Sichuan University & Department of Ecology and Environment of Sichuan, Chengdu 610065, Sichuan, PR China
| | - Hao Li
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China; Key Laboratory of Environment Protection, Soil ecological protection and pollution control, Sichuan University & Department of Ecology and Environment of Sichuan, Chengdu 610065, Sichuan, PR China
| | - Suyu Qiao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China; Key Laboratory of Environment Protection, Soil ecological protection and pollution control, Sichuan University & Department of Ecology and Environment of Sichuan, Chengdu 610065, Sichuan, PR China
| | - Jiaxin Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Ying Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China; Key Laboratory of Environment Protection, Soil ecological protection and pollution control, Sichuan University & Department of Ecology and Environment of Sichuan, Chengdu 610065, Sichuan, PR China
| | - Xitong Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China; Key Laboratory of Environment Protection, Soil ecological protection and pollution control, Sichuan University & Department of Ecology and Environment of Sichuan, Chengdu 610065, Sichuan, PR China
| | - Bohan Wu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China; Key Laboratory of Environment Protection, Soil ecological protection and pollution control, Sichuan University & Department of Ecology and Environment of Sichuan, Chengdu 610065, Sichuan, PR China
| | - Huangkang Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China; Key Laboratory of Environment Protection, Soil ecological protection and pollution control, Sichuan University & Department of Ecology and Environment of Sichuan, Chengdu 610065, Sichuan, PR China
| | - Can Wang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, PR China.
| | - Heng Xu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China; Key Laboratory of Environment Protection, Soil ecological protection and pollution control, Sichuan University & Department of Ecology and Environment of Sichuan, Chengdu 610065, Sichuan, PR China.
| |
Collapse
|
14
|
Liu J, Zhang J, Kim SH, Lee HS, Marinoia E, Song WY. Characterization of Brassica rapa metallothionein and phytochelatin synthase genes potentially involved in heavy metal detoxification. PLoS One 2021; 16:e0252899. [PMID: 34086824 PMCID: PMC8177407 DOI: 10.1371/journal.pone.0252899] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 05/24/2021] [Indexed: 11/18/2022] Open
Abstract
Brassica rapa is an important leafy vegetable that can potentially accumulate high concentrations of cadmium (Cd), posing a risk to human health. The aim of the present study was to identify cadmium detoxifying molecular mechanisms in B. rapa using a functional cloning strategy. A cDNA library constructed from roots of B. rapa plants treated with Cd was transformed into the Cd sensitive yeast mutant strain DTY167 that lacks the yeast cadmium factor (YCF1), and resistant yeast clones were selected on Cd containing media. Two hundred genes potentially conferring cadmium resistance were rescued from the surviving yeast clones and sequenced. Sequencing analysis revealed that genes encoding for metallothionein (MT)1, MT2a, MT2b and MT3, and phytochelatin synthase (PCS)1 and PCS2 accounted for 35.5%, 28.5%, 4%, 11.3%, 18.7% and 2%, respectively of the genes identified. MTs and PCSs expressing DTY167 cells showed resistance to Cd as well as to Zn. PCS1 expressing yeast cells were also more resistant to Pb compared to those expressing MTs or PCS2. RT-PCR results showed that Cd treatment strongly induced the expression levels of MTs in the root and shoot. Furthermore, the different MTs and PCSs exhibited tissue specific expression. The results indicate that MTs and PCS genes potentially play a central role in detoxifying Cd and other toxic metals in B. rapa.
Collapse
Affiliation(s)
- Jiayou Liu
- International Research Center for Environmental Membrane Biology, Department of Horticulture, Foshan University, Foshan, Guangdong, China
| | - Jie Zhang
- International Research Center for Environmental Membrane Biology, Department of Horticulture, Foshan University, Foshan, Guangdong, China
| | - Sun Ha Kim
- College of Agriculture and Life Sciences, Chungnam National University, Daejeon, Korea
| | - Hyun-Sook Lee
- College of Agriculture and Life Sciences, Chungnam National University, Daejeon, Korea
| | - Enrico Marinoia
- International Research Center for Environmental Membrane Biology, Department of Horticulture, Foshan University, Foshan, Guangdong, China
| | - Won-Yong Song
- International Research Center for Environmental Membrane Biology, Department of Horticulture, Foshan University, Foshan, Guangdong, China
- College of Agriculture and Life Sciences, Chungnam National University, Daejeon, Korea
- * E-mail:
| |
Collapse
|
15
|
Luo JS, Zhang Z. Mechanisms of cadmium phytoremediation and detoxification in plants. ACTA ACUST UNITED AC 2021. [DOI: 10.1016/j.cj.2021.02.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
16
|
Wątły J, Łuczkowski M, Padjasek M, Krężel A. Phytochelatins as a Dynamic System for Cd(II) Buffering from the Micro- to Femtomolar Range. Inorg Chem 2021; 60:4657-4675. [PMID: 33736430 PMCID: PMC8041291 DOI: 10.1021/acs.inorgchem.0c03639] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Indexed: 01/30/2023]
Abstract
Phytochelatins (PCs) are short Cys-rich peptides with repeating γ-Glu-Cys motifs found in plants, algae, certain fungi, and worms. Their biosynthesis has been found to be induced by heavy metals-both biogenic and toxic. Among all metal inducers, Cd(II) has been the most explored from a biological and chemical point of view. Although Cd(II)-induced PC biosynthesis has been widely examined, still little is known about the structure of Cd(II) complexes and their thermodynamic stability. Here, we systematically investigated glutathione (GSH) and PC2-PC6 systems, with regard to their complex stoichiometries and spectroscopic and thermodynamic properties. We paid special attention to the determination of stability constants using several complementary techniques. All peptides form CdL complexes, but CdL2 was found for GSH, PC2, and partially for PC3. Moreover, binuclear species CdxLy were identified for the series PC3-PC6 in an excess of Cd(II). Potentiometric and competition spectroscopic studies showed that the affinity of Cd(II) complexes increases from GSH to PC4 almost linearly from micromolar (log K7.4GSH = 5.93) to the femtomolar range (log K7.4PC4 = 13.39) and additional chain elongation does not increase the stability significantly. Data show that PCs form an efficient system which buffers free Cd(II) ions in the pico- to femtomolar range under cellular conditions, avoiding significant interference with Zn(II) complexes. Our study confirms that the favorable entropy change is the factor governing the elevation of phytochelatins' stability and illuminates the importance of the chelate effect in shifting the free Gibbs energy.
Collapse
Affiliation(s)
| | | | - Michał Padjasek
- Department of Chemical Biology, Faculty
of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383 Wrocław, Poland
| | - Artur Krężel
- Department of Chemical Biology, Faculty
of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383 Wrocław, Poland
| |
Collapse
|
17
|
Wang HR, Che YH, Wang ZH, Zhang BN, Huang D, Feng F, Ao H. The multiple effects of hydrogen sulfide on cadmium toxicity in tobacco may be interacted with CaM signal transduction. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:123651. [PMID: 32818834 DOI: 10.1016/j.jhazmat.2020.123651] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/17/2020] [Accepted: 08/04/2020] [Indexed: 06/11/2023]
Abstract
Soilless culture experiments with tobacco were conducted to explore how the signal molecule H2S (0.3, 0.6, 0.9, and 1.2 μM) alleviated the toxicity of Cd2+ (50 mg/L). The results suggested that photosynthesis was enhanced as H2S improved the tobacco ΦPSII, ETR, Photo, Cond, and Tr, and that by increasing the NPQ, it consumed considerable amount of energy to enhance plant resistances during Cd2+ exposure. Furthermore, H2S increased the gene transcription of NtSOD3, NtPOD1, and CAT1, to enhance antioxidant enzyme activity, which reduces the generation of the reactive oxygen protective membrane integrity. Additionally, H2S increased the gene expression of the tobacco PC genes, Pr2 and Pr8 promoted the formation of the Cd2+ complexes and transportation to the vacuole, resulting in improved Cd-ATPase gene expression, away from organelles, to alleviate the Cd2+ poison. Furthermore, H2S regulated the relative absorption of K+ and Ca2+, which antagonized the Cd2+, and reduced its transportation to the aboveground plant material. Finally, the expression level of CaM increased with the application of H2S, and was highly correlated with the fitted results of a variety of resistance indicators, thereby indicating that H2S regulatory resistance mechanisms might be associated with Ca2+ signal transduction.
Collapse
Affiliation(s)
- Hong-Rui Wang
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Yan-Hui Che
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, China
| | - Zi-Han Wang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, China
| | - Bei-Ning Zhang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, China
| | - Dan Huang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, China
| | - Fujuan Feng
- College of Life Science, Northeast Forestry University, Harbin, China.
| | - Hong Ao
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, China.
| |
Collapse
|
18
|
SÜrdem S, DoĞan H. Extraction of heavy metal complexes from a biofilm colony for biomonitoring the pollution. Turk J Chem 2021; 44:712-725. [PMID: 33488188 PMCID: PMC7671218 DOI: 10.3906/kim-1912-38] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 04/06/2020] [Indexed: 11/30/2022] Open
Abstract
An extraction method was tested for biomonitoring the biofilm samples containing heavy metals. The fractionation of metal complexes was performed via C-18-HPLC-ICP-MS and MALDI-MS, respectively. The extraction power of some reagents was determined for the heavy metal extraction from biofilm samples collected in Erdemli coast in the Mediterranean Sea. The ammonium acetate solution giving the highest extraction results was found as a suitable extraction reagent. The concentration and pH of the ammonium acetate solution were optimized and found as 1 M and 5, respectively. The chromatograms of metal complexes with the C-18-HPLC-ICP-MS system were taken to determine the effect of the pH of the metal complexes. After performing the extraction, metal bounded biomolecules were characterized by MALDI-MS for the fractions in the C18-HPLC system. It was seen that ammonium acetate extraction (1M, pH 5) might be used in biomonitoring studies due to relatively simple procedure, short analysis period, and low cost. The evaluation of the applicability of the method in biomonitoring studies might be supported by further studies with biofilms having similar characteristics.
Collapse
Affiliation(s)
- Sedat SÜrdem
- National Boron Research Institute, Ankara Turkey
| | - HacıMehmet DoĞan
- Department of Chemistry, Faculty of Science, Hacettepe University, Ankara Turkey
| |
Collapse
|
19
|
Jung HI, Lee TG, Lee J, Chae MJ, Lee EJ, Kim MS, Jung GB, Emmanuel A, Jeon S, Lee BR. Foliar-Applied Glutathione Mitigates Cadmium-Induced Oxidative Stress by Modulating Antioxidant-Scavenging, Redox-Regulating, and Hormone-Balancing Systems in Brassica napus. FRONTIERS IN PLANT SCIENCE 2021; 12:700413. [PMID: 34589095 PMCID: PMC8473890 DOI: 10.3389/fpls.2021.700413] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 08/18/2021] [Indexed: 05/16/2023]
Abstract
The antioxidant glutathione (GSH) mitigates adverse physio-metabolic effects and defends against abiotic types of stress, such as cadmium (Cd) stress. However, its function and role in resisting Cd phytotoxicity by leveraging plant antioxidant-scavenging, redox-regulating, and hormone-balancing systems have not been comprehensively and systematically demonstrated in the Cd-hyperaccumulating plant Brassica napus L. cv. Tammi (oilseed rape). In this study, the effects of exogenously applied GSH to the leaves of B. napus seedlings exposed to Cd (10 μM) were investigated. As a result, Cd stress alone significantly inhibited growth and increased the levels of reactive oxygen species (ROS) and the bioaccumulation of Cd in the seedlings compared with those in unstressed controls. Furthermore, Cd stress induced an imbalance in plant stress hormone levels and decreases in endogenous GSH levels and GSH redox ratios, which were correlated with reductions in ascorbate (AsA) and/or nicotinamide adenine dinucleotide phosphate (NADPH) redox states. However, the exogenous application of GSH to Cd-stressed B. napus seedlings reduced Cd-induced ROS levels and enhanced antioxidant-scavenging defenses and redox regulation by both increasing seedling AsA, GSH, and NADPH concentrations and rebalancing stress hormones, thereby enhancing Cd uptake and accumulation. These results demonstrate that GSH improved plant redox status by upregulating the AsA-GSH-NADPH cycle and reestablishing normal hormonal balance. This indicates that exogenously applied GSH can mitigate Cd phytotoxicity in B. napus and possibly other plants. Therefore, GSH can potentially be applied to Cd-polluted soil for plant remediation.
Collapse
Affiliation(s)
- Ha-il Jung
- Division of Soil and Fertilizer, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, South Korea
| | - Tae-Gu Lee
- Division of Soil and Fertilizer, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, South Korea
| | - Jinwook Lee
- Department of Plant Science and Technology, Chung-Ang University, Anseong, South Korea
| | - Mi-Jin Chae
- Crop Cultivation and Environment Research Division, National Institute of Crop Science, Rural Development Administration, Suwon, South Korea
| | - Eun-Jin Lee
- Division of Soil and Fertilizer, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, South Korea
| | - Myung-Sook Kim
- Division of Soil and Fertilizer, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, South Korea
| | - Goo-Bok Jung
- Division of Climate Change and Agroecology, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, South Korea
| | - Amoakwah Emmanuel
- Division of Soil and Fertilizer, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, South Korea
- Council for Scientific and Industrial Research-Soil Research Institute, Academy Post Office, Kwadaso, Ghana
| | - Sangho Jeon
- Division of Soil and Fertilizer, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, South Korea
- *Correspondence: Sangho Jeon
| | - Bok-Rye Lee
- Asian Pear Research Institute, Chonnam National University, Gwangju, South Korea
- Bok-Rye Lee
| |
Collapse
|
20
|
The E3 ubiquitin ligase gene SlRING1 is essential for plant tolerance to cadmium stress in Solanum lycopersicum. J Biotechnol 2020; 324:239-247. [PMID: 33186659 DOI: 10.1016/j.jbiotec.2020.11.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/24/2020] [Accepted: 11/04/2020] [Indexed: 12/11/2022]
Abstract
The E3 ubiquitin ligases participate in the degradation of plant proteins and play a regulatory role in stress response. However, the role of tomato E3 ubiquitin ligase genes in plant response to heavy metal stress remains elusive. Here, we identified 17 tomato E3 ubiquitin ligase genes using blast analysis of highly expressed E3 ubiquitin ligase genes of Arabidopsis thaliana. Through organ expression analysis, three E3 ubiquitin ligase genes with higher expression levels in roots were further screened out, and they were named Sl1, SlRHE1, and SlRING1. Among these three genes, SlRING1 expression was the highest in response to cadmium (Cd) stress. Silencing SlRING1 significantly decreased chlorophyll content, Fv/Fm, photosynthetic rate, and biomass accumulation under Cd stress. The levels of H2O2, electrolyte leakage, and malondialdehyde significantly increased in SlRING1-silenced plants under Cd stress compared with that in non-silenced tomato plants. Cd stress-induced increases in the transcript levels of antioxidant and detoxification genes such as CAT, DHAR, MDHAR, GSH, and PCS were compromised by SlRING1 silencing. Moreover, Cd accumulation in shoots and roots significantly increased in SlRING1-silenced plants compared with non-silenced tomato plants. These findings suggest that SlRING1 plays a positive role in plant tolerance to Cd stress in tomato.
Collapse
|
21
|
Huihui Z, Xin L, Zisong X, Yue W, Zhiyuan T, Meijun A, Yuehui Z, Wenxu Z, Nan X, Guangyu S. Toxic effects of heavy metals Pb and Cd on mulberry (Morus alba L.) seedling leaves: Photosynthetic function and reactive oxygen species (ROS) metabolism responses. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 195:110469. [PMID: 32179235 DOI: 10.1016/j.ecoenv.2020.110469] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/06/2020] [Accepted: 03/09/2020] [Indexed: 05/03/2023]
Abstract
To explore the mechanism of how lead (Pb) and cadmium (Cd) stress affects photosynthesis of mulberry (Morus alba L.), we looked at the effects of different concentrations of Pb and Cd stress (at 100 and 200 μmol L-1), which are two heavy metal elements, on leaf chlorophyll (Chl), photosynthesis gas exchange, Chl fluorescence, and reactive oxygen species (ROS) metabolism in mulberry leaves. The results showed that higher concentrations of Pb and Cd reduced leaf Chl content, especially in Chl a where content was more sensitive than in Chl b. Under Pb and Cd stress, the photosynthetic carbon assimilation capacity of mulberry leaves was reduced, which was a consequence of combined limitations of stomatal and non-stomatal factors. The main non-stomatal factors were decreased photosystem II (PSII) and photosystem I (PSI) activity and carboxylation efficiency (CE). Damage to the donor side of the PSII reaction center was greater than the acceptor side. After being treated with 100 μmol L-1 of Pb and Cd, mulberry leaves continued to be able to dissipate excess excitation energy by starting non-photochemical quenching (NPQ), but when Pb and Cd concentrations were increased to 200 μmol L-1, the protection mechanism that depends on NPQ was impaired. Excessive excitation energy from chloroplasts promoted a great increase of ROS, such as superoxide anion (O2•-) and H2O2. Moreover, under high Pb and Cd stress, superoxide dismutase (SOD) and ascorbate peroxidase (APX) were also inhibited to some extent, and excessive ROS also resulted in a significantly higher degree of oxidative damage. Compared with Cd, the effect of Pb stress at the same concentration level displayed a significantly lower impact on Chl content, photosynthetic carbon assimilation, and stomatal conductance. Meanwhile, Pb stress mainly damaged activity of the oxygen-evolving complex (OEC) located on PSII donor side, but it reduced the electronic pressure on the PSII acceptor side and PSI. Furthermore, under Pb stress, the NPQ, SOD, and APX activity were all significantly higher than those under Cd stress. Thus under Pb stress, the degree of photoinhibition and oxidative damage of PSII and PSI in mulberry leaves were significantly lower than under Cd stress.
Collapse
Affiliation(s)
- Zhang Huihui
- College of Resources and Environment, Northeast Agricultural University, Harbin, Heilongjiang, China; Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, Heilongjiang, China
| | - Li Xin
- College of Resources and Environment, Northeast Agricultural University, Harbin, Heilongjiang, China; Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, Heilongjiang, China
| | - Xu Zisong
- College of Resources and Environment, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Wang Yue
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, Heilongjiang, China
| | - Teng Zhiyuan
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, Heilongjiang, China
| | - An Meijun
- Developmental Center of Heilongjiang Provincial Sericulture and Bee Industry, Harbin, Heilongjiang, China
| | - Zhang Yuehui
- Developmental Center of Heilongjiang Provincial Sericulture and Bee Industry, Harbin, Heilongjiang, China
| | - Zhu Wenxu
- School of Forestry, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Xu Nan
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, Heilongjiang, China; Natural Resources and Ecology Institute, Heilongjiang Sciences Academy, Harbin, Heilongjiang, China.
| | - Sun Guangyu
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, Heilongjiang, China.
| |
Collapse
|
22
|
Santoyo-Martínez M, Mussali-Galante P, Hernández-Plata I, Valencia-Cuevas L, Flores-Morales A, Ortiz-Hernández L, Flores-Trujillo K, Ramos-Quintana F, Tovar-Sánchez E. Heavy metal bioaccumulation and morphological changes in Vachellia campechiana (Fabaceae) reveal its potential for phytoextraction of Cr, Cu, and Pb in mine tailings. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:11260-11276. [PMID: 31960245 DOI: 10.1007/s11356-020-07730-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 01/12/2020] [Indexed: 06/10/2023]
Abstract
Vachellia campechiana (Mill Seigler & Ebinger) is widely distributed in Mexico and is a dominant species of tailings in Huautla, in the state of Morelos, Mexico. Mining activities carried out in this region generated about 780 thousand tons of bioavailable heavy metal waste (HMs) that were deposited in the environment without any treatment. This study evaluates the bioaccumulation capacity and morphological changes of V. campechiana growing during 1 year in control or tailing substrates (treatments) under greenhouse conditions. The concentration of six HMs was also measured in roots, leaves, and seeds by atomic absorption spectrophotometry. Five metals showed a similar bioaccumulation pattern in the roots and leaves of V. campechiana grown in both substrates: Pb > Fe > Cr > Cu > Zn. The concentrations of Cr, Cu, and Pb were significantly higher in the roots and leaves of individuals growing on the exposed substrate. The presence of essential metals (Cu, Fe, Zn) was only recorded in the seeds, with similar concentrations in both treatments. Seventeen of 18 morphological characters evaluated in V. campechiana decreased in plants exposed to metals. Pb, Cu, and Fe showed a bioconcentration factor greater than one in roots and leaves. The translocation factor showed the following pattern: Cr > Cu = Pb. In conclusion, V. campechiana is a candidate species to phytoremediate environments contaminated with Pb, Cr, and Cu due to its ability to establish itself and turn into the dominant plant species in polluted sites, its ability to bioaccumulate non-essential metals in roots and leaves, and its high rate of HMs translocation.
Collapse
Affiliation(s)
- Miguel Santoyo-Martínez
- Doctorado en Ciencias Naturales, Universidad Autónoma del Estado de Morelos, Av. Universidad No. 1001, Col. Chamilpa, 62209, Cuernavaca, Morelos, Mexico
| | - Patricia Mussali-Galante
- Laboratorio de Investigaciones Ambientales, Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Av. Universidad No. 1001, Col. Chamilpa, 62209, Cuernavaca, Morelos, Mexico
| | - Isela Hernández-Plata
- Laboratorio de Investigaciones Ambientales, Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Av. Universidad No. 1001, Col. Chamilpa, 62209, Cuernavaca, Morelos, Mexico
| | - Leticia Valencia-Cuevas
- Centro de Investigación en Biodiversidad y Conservación, Universidad Autónoma del Estado de Morelos, Av. Universidad No. 1001, Col. Chamilpa, 62209, Cuernavaca, Morelos, Mexico
| | - Alejandro Flores-Morales
- Laboratorio de Sistemática y Morfología, Facultad de Ciencias Biológicas, Universidad Autónoma del Estado de Morelos, Av. Universidad No. 1001, Col. Chamilpa, 62209, Cuernavaca, Morelos, Mexico
| | | | - Karen Flores-Trujillo
- Laboratorio de Investigaciones Ambientales, Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Av. Universidad No. 1001, Col. Chamilpa, 62209, Cuernavaca, Morelos, Mexico
| | - Fernando Ramos-Quintana
- Dirección General de Desarrollo Sustentable, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, 62209, Cuernavaca, Morelos, Mexico
| | - Efraín Tovar-Sánchez
- Centro de Investigación en Biodiversidad y Conservación, Universidad Autónoma del Estado de Morelos, Av. Universidad No. 1001, Col. Chamilpa, 62209, Cuernavaca, Morelos, Mexico.
| |
Collapse
|
23
|
Dennis KK, Uppal K, Liu KH, Ma C, Liang B, Go YM, Jones DP. Phytochelatin database: a resource for phytochelatin complexes of nutritional and environmental metals. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2020; 2019:5527149. [PMID: 31267134 PMCID: PMC6606759 DOI: 10.1093/database/baz083] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 05/27/2019] [Accepted: 05/29/2019] [Indexed: 12/28/2022]
Abstract
Phytochelatins (PyCs) are a diverse set of plant compounds that chelate metals, protect against metal toxicity and function in metal homeostasis. PyCs are present in plants consumed as food by humans and could, in principle, impact absorption and utilization of essential and toxic metals such as selenium and cadmium, respectively. PyCs vary in terminal amino acid composition and chain length, exist in multiple oxidation states and reversibly bind multiple metals; consequently, PyCs include a large set of possible structures. Although individual PyC-metal complexes have been studied, no resource exists to characterize the diversity of PyCs and PyC-metal complexes. We used the scientific literature to develop a database of elemental formulas for polymer forms varying in chain length from 2 to 11 glutamyl-cysteine repeats. Using elemental formulas, we calculated monoisotopic masses using the most abundant isotopes of each element and calculated masses for complexes with 13 metals of nutritional and toxicological significance. The resulting phytochelatin database (PyCDB) contains 46 260 unique elemental formulas for PyC and PyC-metal complexes. The database is available online for download as well as for direct mass queries for mass spectrometry using an accurate mass annotation tool for user-selected PyC types, metals and adducts of interest. We performed studies of a commonly consumed food—onion—to validate the database and test utility of the tool. Onion samples were analyzed using ultra-high resolution mass spectrometry-based metabolomics. Mass spectral features were annotated using the PyCDB web tool and the R package, xMSannotator; annotated features were further validated by collision-induced dissociation mass spectrometry. The results establish use and a workflow for PyCDB as a resource for characterization of PyCs and PyC-metal complexes.
Collapse
Affiliation(s)
- Kristine K Dennis
- Nutrition and Health Sciences, Laney Graduate School, Emory University, Atlanta, GA, USA.,Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Emory University, Atlanta, GA, USA
| | - Karan Uppal
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Emory University, Atlanta, GA, USA
| | - Ken H Liu
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Emory University, Atlanta, GA, USA
| | - Chunyu Ma
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Emory University, Atlanta, GA, USA
| | - Bill Liang
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Emory University, Atlanta, GA, USA
| | - Young-Mi Go
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Emory University, Atlanta, GA, USA
| | - Dean P Jones
- Nutrition and Health Sciences, Laney Graduate School, Emory University, Atlanta, GA, USA.,Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Emory University, Atlanta, GA, USA
| |
Collapse
|
24
|
Dong F, Zhu X, Qian W, Wang P, Wang J. Combined effects of CO 2-driven ocean acidification and Cd stress in the marine environment: Enhanced tolerance of Phaeodactylum tricornutum to Cd exposure. MARINE POLLUTION BULLETIN 2020; 150:110594. [PMID: 31727316 DOI: 10.1016/j.marpolbul.2019.110594] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 09/10/2019] [Accepted: 09/11/2019] [Indexed: 06/10/2023]
Abstract
Ocean acidification (OA) and heavy metals are common stress factors for marine ecosystems subject to anthropogenic impacts. OA coupled with the heavy metal is likely to affect marine species. This study investigated the single and combined effects of OA (1500 ppm) and cadmium (Cd; 0.4, 1.2 mg/L) on the marine diatom Phaeodactylum tricornutum under 7 d exposure. The results clearly indicated that either OA or Cd stress (1.2 mg/L) alone inhibited the growth of P. tricornutum. However, under the combined OA-Cd stress, the growth inhibition disappeared, and the intracellular oxidative damage was mitigated. These results indicated a significantly enhanced tolerance of P. tricornutum to Cd while under OA conditions, which could be beneficial to the survival of this diatom. This study will ultimately help us understand the responses of marine organisms to multiple stressors and have broad implications for the potential ecological risks of Cd under future OA conditions.
Collapse
Affiliation(s)
- Fang Dong
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, PR China; Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, PR China; Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China
| | - Xiaoshan Zhu
- Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China.
| | - Wei Qian
- Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China
| | - Pu Wang
- Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China
| | - Jiangxin Wang
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, PR China.
| |
Collapse
|
25
|
Huang Y, Zu L, Zhang M, Yang T, Zhou M, Shi C, Shi F, Zhang W. Tolerance and distribution of cadmium in an ornamental species Althaea rosea Cavan. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2019; 22:713-724. [PMID: 31885282 DOI: 10.1080/15226514.2019.1707771] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The ornamental plants of Althaea rosea Cavan. were exposed to cadmium (Cd) at concentrations of 0, 5, 10, 50 and 100 mg·kg-1 to evaluate the potential of accumulation capacity and tolerance ability. The results showed that A. rosea was a Cd tolerance plant, and Cd accumulation was 4.57 mg·kg-1 in shoot and 9.43 mg·kg-1 in root at 100 mg·kg-1 Cd concentration. The high tolerance ability could be explained by the distribution characteristics and the defense mechanism. The accumulated Cd was allocated in root, older leaves, and subcellular level of the cell wall and supernatant soluble fraction to protect the physiological leaves from damage. The defense systems included the enzyme systems of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT) and ascorbate peroxidase (APX) that could effectively eliminate the excessive ROS, and the non-enzymes system of total soluble proteins and non-protein thiols (NP-SH) that played an important role in detoxification. Thus, A. rosea could be used as a potential species for phytoremediation in Cd contaminated areas and beautify the environment.
Collapse
Affiliation(s)
- Yaping Huang
- College of Life Science, Nankai University, Tianjin, China
- National Engineering Laboratory for Improving Quality of Arable Land, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lihong Zu
- College of Life Science, Nankai University, Tianjin, China
| | - Mei Zhang
- College of Life Science, Nankai University, Tianjin, China
| | - Tong Yang
- College of Life Science, Nankai University, Tianjin, China
| | - Meili Zhou
- College of Life Science, Nankai University, Tianjin, China
| | - Cong Shi
- School of Environment and Energy, Shenzhen Graduate School of Peking University, Shenzhen, China
| | - Fuchen Shi
- College of Life Science, Nankai University, Tianjin, China
| | - Wenju Zhang
- National Engineering Laboratory for Improving Quality of Arable Land, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
26
|
Fu Y, Mason AS, Zhang Y, Lin B, Xiao M, Fu D, Yu H. MicroRNA-mRNA expression profiles and their potential role in cadmium stress response in Brassica napus. BMC PLANT BIOLOGY 2019; 19:570. [PMID: 31856702 PMCID: PMC6923997 DOI: 10.1186/s12870-019-2189-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 12/08/2019] [Indexed: 05/18/2023]
Abstract
BACKGROUND Oilseed rape is an excellent candidate for phytoremediation of cadmium (Cd) contaminated soils given its advantages of high biomass, fast growth, moderate metal accumulation, ease of harvesting, and metal tolerance, but the cadmium response pathways in this species (Brassica napus) have yet to be fully elucidated. A combined analysis of miRNA and mRNA expression to infer Cd-induced regulation has not been reported in B. napus. RESULTS We characterized concurrent changes in miRNA and mRNA profiles in the roots and shoots of B. napus seedlings after 10 days of 10 mg/L Cd2+ treatment. Cd treatment significantly affected the expression of 22 miRNAs belonging to 11 families in the root and 29 miRNAs belonging to 14 miRNA families in the shoot. Five miRNA families (MIR395, MIR397, MIR398, MIR408 and MIR858) and three novel miRNAs were differentially expressed in both tissues. A total of 399 differentially expressed genes (DEGs) in the root and 389 DEGs in the shoot were identified, with very little overlap between tissue types. Eight anti-regulation miRNA-mRNA interaction pairs in the root and eight in the shoot were identified in response to Cd and were involved in key plant stress response pathways: for example, four genes targeted by miR398 were involved in a pathway for detoxification of superoxide radicals. Cd stress significantly impacted the photosynthetic pathway. Transcription factor activation, antioxidant response pathways and secondary metabolic processes such as glutathione (GSH) and phenylpropanoid metabolism were identified as major components for Cd-induced response in both roots and shoots. CONCLUSIONS Combined miRNA and mRNA profiling revealed miRNAs, genes and pathways involved in Cd response which are potentially critical for adaptation to Cd stress in B. napus. Close crosstalk between several Cd-induced miRNAs and mRNAs was identified, shedding light on possible mechanisms for response to Cd stress in underground and aboveground tissues in B. napus. The pathways, genes, and miRNAs identified here will be valuable targets for future improvement of cadmium tolerance in B. napus.
Collapse
Affiliation(s)
- Ying Fu
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Annaliese S. Mason
- Department of Plant Breeding, IFZ for Biosystems, Land Use and Nutrition, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - Yaofeng Zhang
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Baogang Lin
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Meili Xiao
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Agronomy College, Jiangxi Agricultural University, Nanchang, 330045 China
| | - Donghui Fu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Agronomy College, Jiangxi Agricultural University, Nanchang, 330045 China
| | - Huasheng Yu
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
27
|
Jan R, Khan MA, Asaf S, Lubna, Lee IJ, Kim KM. Metal Resistant Endophytic Bacteria Reduces Cadmium, Nickel Toxicity, and Enhances Expression of Metal Stress Related Genes with Improved Growth of Oryza Sativa, via Regulating Its Antioxidant Machinery and Endogenous Hormones. PLANTS (BASEL, SWITZERLAND) 2019; 8:E363. [PMID: 31547575 PMCID: PMC6844085 DOI: 10.3390/plants8100363] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/09/2019] [Accepted: 09/19/2019] [Indexed: 11/18/2022]
Abstract
The tolerance of plant growth-promoting endophytes (PGPEs) against various concentrations of cadmium (Cd) and nickel (Ni) was investigated. Two glutathione-producing bacterial strains (Enterobacter ludwigii SAK5 and Exiguobacterium indicum SA22) were screened for Cd and Ni accumulation and tolerance in contaminated media, which showed resistance up to 1.0 mM. Both strains were further evaluated by inoculating specific plants with the bacteria for five days prior to heavy metal treatment (0.5 and 1.0 mM). The enhancement of biomass and growth attributes such as the root length, shoot length, root fresh weight, shoot fresh weight, and chlorophyll content were compared between treated inoculated plants and treated non-inoculated plants. Both strains significantly increased the accumulation of Cd and Ni in inoculated plants. The accumulation of both heavy metals was higher in the roots than in the shoots, however; Ni accumulation was greater than Cd. Heavy metal stress-responsive genes such as OsGST, OsMTP1, and OsPCS1 were significantly upregulated in treated non-inoculated plants compared with treated inoculated plants, suggesting that both strains reduced heavy metal stress. Similarly, abscisic acid (ABA) was increased with increased heavy metal concentration; however, it was reduced in inoculated plants compared with non-inoculated plants. Salicylic acid (SA) was found to exert synergistic effects with ABA. The application of suitable endophytic bacteria can protect against heavy metal hyperaccumulation by enhancing detoxification mechanisms.
Collapse
Affiliation(s)
- Rahmatullah Jan
- School of Applied Biosciences, Kyungpook National University, Daegu 41566, Korea; (R.J.); (M.A.K.); (I.-J.L.)
| | - Muhammad Aaqil Khan
- School of Applied Biosciences, Kyungpook National University, Daegu 41566, Korea; (R.J.); (M.A.K.); (I.-J.L.)
| | - Sajjad Asaf
- Natural and Medical Science Research Center, University of Nizwa 616, Nizwa 611, Oman;
| | - Lubna
- Department of Botany, Garden Campus, Abdul Wali Khan University, Mardan 23200, Pakistan;
| | - In-Jung Lee
- School of Applied Biosciences, Kyungpook National University, Daegu 41566, Korea; (R.J.); (M.A.K.); (I.-J.L.)
| | - Kyung Min Kim
- School of Applied Biosciences, Kyungpook National University, Daegu 41566, Korea; (R.J.); (M.A.K.); (I.-J.L.)
| |
Collapse
|
28
|
Motaharpoor Z, Taheri H, Nadian H. Rhizophagus irregularis modulates cadmium uptake, metal transporter, and chelator gene expression in Medicago sativa. MYCORRHIZA 2019; 29:389-395. [PMID: 31218402 DOI: 10.1007/s00572-019-00900-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 05/28/2019] [Indexed: 06/09/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) are considered a potential biotechnological tool for mitigating heavy metal (HM) toxicity. A greenhouse experiment was conducted to evaluate the impacts of the AM fungus Rhizophagus irregularis on cadmium (Cd) uptake, mycorrhizal colonization, and some plant growth parameters of Medicago sativa (alfalfa) in Cd-polluted soils. In addition, expression of two metal chelators (MsPCS1 (phytochelatin synthase) and MsMT2 (metallothionein)) and two metal transporter genes (MsIRT1 and MsNramp1) was analyzed using quantitative real-time PCR (qRT-PCR). Cd addition had a significant negative effect on mycorrhizal colonization. However, AMF symbiosis promoted the accumulation of biomass under both stressed and unstressed conditions compared with non-mycorrhizal (NM) plants. Results also showed that inoculation with R. irregularis significantly reduced shoot Cd concentration in polluted soils. Transcripts abundance of MsPCS1, MsMT2, MsIRT1, and MsNRAMP1 genes were downregulated compared with NM plants indicating that metal sequestration within hyphal fungi probably made Cd concentration insufficient in root cells for induction of these genes. These results suggest that reduction of shoot Cd concentration in M. sativa colonized by R. irregularis could be a promising strategy for safe production of this plant in Cd-polluted soils.
Collapse
Affiliation(s)
- Zahra Motaharpoor
- Department of Plant Production and Genetics, Faculty of Agriculture, Agricultural Sciences and Natural Resources University of Khuzestan, Mollasani, Iran
| | - Hengameh Taheri
- Department of Plant Production and Genetics, Faculty of Agriculture, Agricultural Sciences and Natural Resources University of Khuzestan, Mollasani, Iran.
| | - Habibollah Nadian
- Department of Soil Science, Faculty of Agriculture, Agricultural Sciences and Natural Resources University of Khuzestan, Mollasani, Iran
| |
Collapse
|
29
|
Scenedesnus rotundus isolated from the petroleum effluent employs alternate mechanisms of tolerance to elevated levels of Cadmium and Zinc. Sci Rep 2019; 9:8485. [PMID: 31186431 PMCID: PMC6560090 DOI: 10.1038/s41598-019-44374-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 02/19/2019] [Indexed: 01/24/2023] Open
Abstract
Scenedesmus rotundus was isolated from metal contaminated petroleum industry effluent and its tolerance to Cadmium and Zinc was tested using different concentrations of CdCl2 and ZnCl2 ranging from 0.001 mM to 1.0 mM of Cd and 0.03 mM to 1.21 mM of Zn amended in Bolds Basal medium. The changes in cell count recorded at regular intervals upto a period of 24 days revealed a concentration dependent inhibition in growth. Concentration of the metal, at which 50% of the cells are live and metabolically active referred to as EC50 was calculated as 0.04 mM for Cd and 0.2 mM for Zn. Further, the effect of EC50 of the metals on the protein content, uptake of metals at varying pH, oxidative stress markers including lipid peroxidation, protein oxidation andnd oxygen uptake, levels of enzymatic antioxidants such as catalase and superoxide dismutase and non-enzymatic antioxidants namely, GSH and PC4 were determined. Though a direct correlation could not be drawn between pH and metal uptake, the compartmentalization of the metal during the lag phase and exponential phase was evident, most of the metal was present in extracellular fractions in the former, while in the later it was internalized. Our study shows a clear correlation between toxicity of Cd and the ability of the algae to synthesize PC4 from GSH and chelate it leading to detoxification, while Zn treatment led to an increase in the activity of catalase and superoxide dismutase and replete GSH pools. Further the changes in the cell wall structure at EC50 of Cd and Zn were studied. This is the first report on effect of heavy metals on the structural modifications of the cell wall of Scenedesmus in general and Scenedesmus rotundus in particular, indicating appearance of granules on the entire cell surface in both Cd and Zn treatments, with the degree of granulation increasing in the order of pH 12 > 10 > 8 in Cd treatment. Further structures of higher order resembling minute wheels are observed in Cd treated cells are also reported.
Collapse
|
30
|
Nakamura SI, Wongkaew A, Nakai Y, Rai H, Ohkama-Ohtsu N. Foliar-applied glutathione activates zinc transport from roots to shoots in oilseed rape. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 283:424-434. [PMID: 31128714 DOI: 10.1016/j.plantsci.2018.10.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 08/24/2018] [Accepted: 10/21/2018] [Indexed: 05/28/2023]
Abstract
Glutathione is a tripeptide involved in diverse aspects of plant metabolism. We investigated how the reduced form of glutathione, GSH, applied site-specifically to plants, affects zinc (Zn) distribution and behavior in oilseed rape plants (Brassica napus) cultured hydroponically. Foliar-applied GSH significantly increased the Zn content in shoots and the root-to-shoot Zn translocation ratio; furthermore, this treatment raised the Zn concentration in the cytosol of root cells and substantially enhanced Zn xylem loading. Notably, microarray analysis revealed that the gene encoding pectin methylesterase was upregulated in roots following foliar GSH treatment. We conclude that certain physiological signals triggered in response to foliar-applied GSH were transported via sieve tubes and functioned in root cells, which, in turn, increased Zn availability in roots by releasing Zn from their cell wall. Consequently, root-to-shoot translocation of Zn was activated and Zn accumulation in the shoot was markedly increased.
Collapse
Affiliation(s)
- Shin-Ichi Nakamura
- Department of Bioscience, Faculty of Life Sciences, Tokyo University of Agriculture, 1-1-1 Sakuragaoka Setagaya-ku, Tokyo, 156-8502, Japan; Department of Biological Production, Faculty of Bioresource Sciences, Akita Prefectural University, 241-438 Kaidobata-Nishi, Shimoshinjo-Nakano, Akita-shi, Akita, 010-0195, Japan.
| | - Arunee Wongkaew
- United Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan
| | - Yuji Nakai
- Institute for Food Sciences, Hirosaki University, 2-1-1 Yanagawa, Aomori-shi, Aomori, 038-0012, Japan
| | - Hiroki Rai
- Department of Biological Production, Faculty of Bioresource Sciences, Akita Prefectural University, 241-438 Kaidobata-Nishi, Shimoshinjo-Nakano, Akita-shi, Akita, 010-0195, Japan
| | - Naoko Ohkama-Ohtsu
- Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan
| |
Collapse
|
31
|
Han Y, Fan T, Zhu X, Wu X, Ouyang J, Jiang L, Cao S. WRKY12 represses GSH1 expression to negatively regulate cadmium tolerance in Arabidopsis. PLANT MOLECULAR BIOLOGY 2019; 99:149-159. [PMID: 30617455 DOI: 10.1007/s11103-018-0809-7] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 12/06/2018] [Indexed: 05/18/2023]
Abstract
The WRKY transcription factor WRKY12 negatively regulates Cd tolerance in Arabidopsis via the glutathione-dependent phytochelatin synthesis pathway by directly targeting GSH1 and indirectly repressing phytochelatin synthesis-related gene expression. Cadmium (Cd) is a widespread pollutant toxic to plants. The glutathione (GSH)-dependent phytochelatin (PC) synthesis pathway plays key roles in Cd detoxification. However, its regulatory mechanism remains largely unknown. Here, we showed a previously unknown function of the WRKY transcription factor WRKY12 in the regulation of Cd tolerance by repressing the expression of PC synthesis-related genes. The expression of WRKY12 was inhibited by Cd stress. Enhanced Cd tolerance was observed in the WRKY12 loss-of-function mutants, whereas increased Cd sensitivity was found in the WRKY12-overexpressing plants. Overexpression and loss-of-function of WRKY12 were associated respectively with increased and decreased Cd accumulation by repressing or releasing the expression of the genes involved in the PC synthesis pathway. Transient expression assay showed that WRKY12 repressed the expression of GSH1, GSH2, PCS1, and PCS2. Further analysis indicated that WRKY12 could directly bind to the W-box of the promoter in GSH1 but not in GSH2, PCS1, and PCS2 in vivo. Together, our results suggest that WRKY12 directly targets GSH1 and indirectly represses PC synthesis-related gene expression to negatively regulate Cd accumulation and tolerance in Arabidopsis.
Collapse
Affiliation(s)
- Yangyang Han
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Tingting Fan
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Xiangyu Zhu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Xi Wu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Jian Ouyang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Li Jiang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Shuqing Cao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China.
| |
Collapse
|
32
|
Gamain P, Feurtet-Mazel A, Maury-Brachet R, Auby I, Pierron F, Belles A, Budzinski H, Daffe G, Gonzalez P. Can pesticides, copper and seasonal water temperature explain the seagrass Zostera noltei decline in the Arcachon bay? MARINE POLLUTION BULLETIN 2018; 134:66-74. [PMID: 29106936 DOI: 10.1016/j.marpolbul.2017.10.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 10/03/2017] [Accepted: 10/10/2017] [Indexed: 06/07/2023]
Abstract
Dwarf eelgrasses (Zostera noltei) populations have decreased since 2005 in Arcachon Bay (southwest France). Various stressors have been pointed out, however the role of xenobiotics like pesticides or copper (Cu) and of parameters like water temperature warming have not yet been explored. To determine their impact, Z. noltei individuals were collected in a pollution-free site and transferred to the laboratory in seawater microcosms. This dwarf eelgrass was exposed to a pesticide cocktail and copper, alone or simultaneously, at temperatures (10°C, 20°C, 28°C) representative of different seasons. After a two-week contamination, leaf growth, leaf bioaccumulation of Cu, and differential expression of target genes were studied. Eelgrasses bioaccumulated Cu regardless of the temperature, with reduced efficiency in the presence of the Cu and pesticide cocktail at the two higher temperatures. High temperature also exacerbated the effect of contaminants, leading to growth inhibition and differential gene expression. Mitochondrial activity was strongly impacted and higher mortality rates occurred. Experimental results have been confirmed during field survey. This is the first report on the impacts on Z. noltei of pesticides and Cu associate to temperature.
Collapse
Affiliation(s)
- Perrine Gamain
- Univ. Bordeaux, UMR EPOC CNRS 5805, Aquatic ecotoxicology team, 33120 Arcachon, France
| | - Agnès Feurtet-Mazel
- Univ. Bordeaux, UMR EPOC CNRS 5805, Aquatic ecotoxicology team, 33120 Arcachon, France
| | - Régine Maury-Brachet
- Univ. Bordeaux, UMR EPOC CNRS 5805, Aquatic ecotoxicology team, 33120 Arcachon, France
| | - Isabelle Auby
- IFREMER Arcachon, Laboratoire Environnement Ressources, Quai du Cdt Silhouette, 33120 Arcachon, France
| | - Fabien Pierron
- Univ. Bordeaux, UMR EPOC CNRS 5805, Aquatic ecotoxicology team, 33120 Arcachon, France
| | - Angel Belles
- Univ. Bordeaux, UMR EPOC CNRS 5805, LPTC team, 33615 Pessac, France
| | - Hélène Budzinski
- Univ. Bordeaux, UMR EPOC CNRS 5805, LPTC team, 33615 Pessac, France
| | - Guillemine Daffe
- Univ. Bordeaux, UMR EPOC CNRS 5805, Aquatic ecotoxicology team, 33120 Arcachon, France
| | - Patrice Gonzalez
- Univ. Bordeaux, UMR EPOC CNRS 5805, Aquatic ecotoxicology team, 33120 Arcachon, France.
| |
Collapse
|
33
|
Šestáková I, Skalová Š, Navrátil T. Labile lead phytochelatin complex could enhance transport of lead ions across biological membrane. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2017.11.052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
34
|
Spanu A, Valente M, Langasco I, Barracu F, Orlandoni AM, Sanna G. Sprinkler irrigation is effective in reducing cadmium concentration in rice (Oryza sativa L.) grain: A new twist on an old tale? THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 628-629:1567-1581. [PMID: 30045574 DOI: 10.1016/j.scitotenv.2018.02.157] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 02/12/2018] [Accepted: 02/13/2018] [Indexed: 06/08/2023]
Affiliation(s)
- Antonino Spanu
- Dipartimento di Agraria, Università degli Studi di Sassari, Via E. De Nicola 1, I-07100 - Sassari, Italy
| | - Massimiliano Valente
- Dipartimento di Chimica e Farmacia, Università degli Studi di Sassari, Via Vienna 2, I-07100 - Sassari, Italy
| | - Ilaria Langasco
- Dipartimento di Chimica e Farmacia, Università degli Studi di Sassari, Via Vienna 2, I-07100 - Sassari, Italy
| | - Francesco Barracu
- Dipartimento di Agraria, Università degli Studi di Sassari, Via E. De Nicola 1, I-07100 - Sassari, Italy
| | | | - Gavino Sanna
- Dipartimento di Chimica e Farmacia, Università degli Studi di Sassari, Via Vienna 2, I-07100 - Sassari, Italy.
| |
Collapse
|
35
|
Meta-analysis of soil mercury accumulation by vegetables. Sci Rep 2018; 8:1261. [PMID: 29352200 PMCID: PMC5775204 DOI: 10.1038/s41598-018-19519-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 01/04/2018] [Indexed: 11/16/2022] Open
Abstract
Mercury pollution in soil poses serious risks to human health through consumption of contaminated vegetables. We used a meta-analysis to examine the mercury enrichment ability of different vegetables and the main factors affecting mercury uptake. We drew the following conclusions. (1) Plants with a lower bioconcentration factor (BCF) include cowpea, long bean, and radish, whereas plants with a higher BCF include green pepper, spinach, cabbage, and Chinese cabbage. (2) Leaf and cucurbit have the highest and lowest capacity, respectively, for mercury enrichment. (3) When soil pH is <6.5, mercury level uptake by the plant increases, whereas it decreases when the pH is >7.5, meaning that increased soil pH reduces mercury uptake in soil. (4) When soil organic matter (SOM) is lower than 20 g/kg, tuber plants have the highest and eggplant has the lowest mercury adsorption capacity, respectively. When SOM is 20–30 g/kg, cucurbit has the lowest and leaf the highest adsorption capacity, respectively. When SOM is higher than 30 g/kg, however, eggplant has the highest mercury adsorption capacity, but there were no significant differences among the five types of vegetables. We argue that this meta-analysis aids in selecting vegetables suitable for absorption of heavy metals from polluted soil.
Collapse
|
36
|
Jain S, Muneer S, Guerriero G, Liu S, Vishwakarma K, Chauhan DK, Dubey NK, Tripathi DK, Sharma S. Tracing the role of plant proteins in the response to metal toxicity: a comprehensive review. PLANT SIGNALING & BEHAVIOR 2018; 13:e1507401. [PMID: 30188762 PMCID: PMC6204846 DOI: 10.1080/15592324.2018.1507401] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Plants are sessile in nature, but are capable to evade from high level concentration of heavy metals like Cd, Hg, Cu, through various metabolic pathways. Some of the pathways regulate normal metabolism in plants, whereas others are required for for their survival under metal toxicity. Different plant proteins act as transporters to transfer metal from one organelle to the other and further eliminate it out from the plants. Initially, exposure of heavy metals/metalloids to plants lead to over expression of proteins which in turn stimulate other stress-related genes. Further, they activate signalling mechanism like MAPK cascade, Cd-Calmodulin signalling pathway, and oxidation signalling pathway that lead to generation of ROS (reactive oxygen species). Once these ROS (highly unstable) are formed, they generate free radicals which react with macromolecules like proteins and DNA. This has negative impact on plant growth and leads to ageing and, eventually, cell death. The uncontrolled, destructive processes damage plants physiologically and ultimately lead to oxidative stress. Activation of antioxidant enzymes like SOD (superoxide dismutase) and CAT (catalase) allows plants to cope under oxidative stress conditions. Among plant proteins, some of the antioxidant enzymes like glutathione, and APX (ascorbate peroxidase) play defensive roles against abiotic stress in plants. Chaperones help in protein folding to maintain protein stability under stress conditions. With this background, the present review gives a brief account of the functions, localization and expression pattern of plant proteins against metal/metalloid toxicity. Moreover, the aim of this review is also to summarize the cutting edge research of plant protein and metal interfaces and their future prospects.
Collapse
Affiliation(s)
- Shruti Jain
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Allahabad, India
| | - Sowbiya Muneer
- Department of Horticulture, Gyeongsang National University, Jinju, Korea
- Department of Agriculture Engineering, Centre for Agricultural Innovations and Advanced Learning, Vellore Institute of Technology, Vellore, India
| | - Gea Guerriero
- Environmental Research and Innovation Department, Luxembourg Institute of Science and Technology, Esch/Alzette, Luxembourg
| | - Shiliang Liu
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Kanchan Vishwakarma
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Allahabad, India
| | - Devendra Kumar Chauhan
- D D Pant Interdisciplinary Research Laboratory, Department of Botany, University of Allahabad, Allahabad, India
| | - Nawal Kishore Dubey
- Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi, India
| | - Durgesh Kumar Tripathi
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Allahabad, India
- Amity Institute of Organic Agriculture (AIOA), Amity University, Noida, Uttar Pradesh
- CONTACT Durgesh Kumar Tripathi ; Shivesh Sharma ; Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, 211004 Allahabad, India
| | - Shivesh Sharma
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Allahabad, India
| |
Collapse
|
37
|
Qian G, Bao Y, Li C, Xie Q, Lu M, Lin Z. Nfu1 Mediated ROS Removal Caused by Cd Stress in Tegillarca granosa. Front Physiol 2017; 8:1061. [PMID: 29326599 PMCID: PMC5741617 DOI: 10.3389/fphys.2017.01061] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 12/04/2017] [Indexed: 11/18/2022] Open
Abstract
The blood clam Tegillarca granosa, a eukaryotic bottom-dwelling bivalve species has a strong ability to tolerate and accumulate cadmium. In our previous study, Nfu1 (iron-sulfur cluster scaffold protein), which is involved in Fe-S cluster biogenesis, was shown to be significantly up-regulated under Cd stress, as determined by proteomic analysis. To investigate the function of Nfu1 in cadmium (Cd) detoxification, the function of blood clam Nfu1 (designated as Tg-Nfu1) was investigated by integrated molecular and protein approaches. The full-length cDNA of Tg-Nfu1 is 1167 bp and encodes a protein of 272 amino acid residues. The deduced Tg-Nfu1 protein is 30 kDa contains a conserved Nfu-N domain and a Fe-S cluster binding motif (C-X-X-C). qRT-PCR analysis revealed that Tg-Nfu1 was ubiquitously expressed in all examined tissues; it was up-regulated in the hepatopancreas and gill, and kept a high level from 9 to 24 h after Cd exposure (250 μg/L). Western blot analysis further revealed that the Tg-Nfu1 protein was also highly expressed in the hepatopancreas and gill after 24 h of Cd stress. Further functional analysis showed that the production of ROS was increased and Cu/ZnSOD activity was inhibited in blood clam, treated with the specific Nfu1 siRNA and Cd stress, respectively. These results suggest that Tg-Nfu1 could protect blood clam from oxidative damage caused by Cd stress.
Collapse
Affiliation(s)
- Guang Qian
- School of Marine Sciences, Ningbo University, Ningbo, China.,Zhejiang Key Laboratory of Aquatic Germplasm Resources, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, China
| | - Yongbo Bao
- Zhejiang Key Laboratory of Aquatic Germplasm Resources, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, China
| | - Chenghua Li
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Qingqing Xie
- School of Marine Sciences, Ningbo University, Ningbo, China.,Zhejiang Key Laboratory of Aquatic Germplasm Resources, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, China
| | - Meng Lu
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Zhihua Lin
- Zhejiang Key Laboratory of Aquatic Germplasm Resources, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, China
| |
Collapse
|
38
|
Negrin VL, Teixeira B, Godinho RM, Mendes R, Vale C. Phytochelatins and monothiols in salt marsh plants and their relation with metal tolerance. MARINE POLLUTION BULLETIN 2017; 121:78-84. [PMID: 28554828 DOI: 10.1016/j.marpolbul.2017.05.045] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 05/12/2017] [Accepted: 05/17/2017] [Indexed: 06/07/2023]
Abstract
Phytochelatins (PCs) and monothiols and their relation with trace element concentrations were studied in three plant species from two Portuguese salt marshes. Belowground tissues showed always higher element concentrations, while enhanced values of monothiols were found in aboveground biomass. Glutathione was usually the most abundant monothiol. The concentration of total PCs was higher in leaves or stems than in roots of Halimione portulacoides and Sarcocornia perennis, while in Spartina maritima the highest concentrations were reported in large roots. PC2 was synthesized by all tissues and species and was higher in large roots of S. maritima. PC4 and PC5 were in high levels in small roots of S. maritima. PC2 was positively correlated with As, Zn and Pb. Although being the first evidence of PCs and monothiols in these species under natural conditions, our results do not point to a simple relationship with elements concentrations, suggesting a complex mechanism involved.
Collapse
Affiliation(s)
- Vanesa L Negrin
- IPMA - Portuguese Institute for the Sea and Atmosphere, R. Alfredo Magalhães Ramalho, 6, 1495-006 Lisbon, Portugal.
| | - Bárbara Teixeira
- IPMA - Portuguese Institute for the Sea and Atmosphere, R. Alfredo Magalhães Ramalho, 6, 1495-006 Lisbon, Portugal
| | - Rita M Godinho
- IPMA - Portuguese Institute for the Sea and Atmosphere, R. Alfredo Magalhães Ramalho, 6, 1495-006 Lisbon, Portugal
| | - Rogério Mendes
- IPMA - Portuguese Institute for the Sea and Atmosphere, R. Alfredo Magalhães Ramalho, 6, 1495-006 Lisbon, Portugal
| | - Carlos Vale
- IPMA - Portuguese Institute for the Sea and Atmosphere, R. Alfredo Magalhães Ramalho, 6, 1495-006 Lisbon, Portugal; CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| |
Collapse
|
39
|
Turull M, Grmanova G, Dago À, Ariño C, Díez S, Díaz-Cruz JM, Esteban M. Phytochelatin synthesis in response to Hg uptake in aquatic plants near a chlor-alkali factory. CHEMOSPHERE 2017; 176:74-80. [PMID: 28259081 DOI: 10.1016/j.chemosphere.2017.02.092] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 02/16/2017] [Accepted: 02/17/2017] [Indexed: 06/06/2023]
Abstract
The effects of mercury (Hg) released from a chlor-alkali factory in aquatic plants along the Ebro River basin (NE Spain) were analysed considering the phytochelatins (PCn) and their isoforms content in these plants. These compounds were analyzed using HPLC with amperometric detection, and the macrophytes species Ceratophyllum demersum and Myriopyllum spicatum were collected in two sampling campaigns, autumn and spring, respectively. To correlate the PCn content in macrophytes with the Hg contamination, analysis of total Hg (THg) content in plants and suspended particulate matter, as well as the dissolved-bioavailable fraction of Hg in water measured by the diffusive gradient in thin film (DGT) technique were done. The results confirm the presence of PC2-Ala in extracts of C. demersum and PC2-desGly in M. spicatum, and the concentration of these thiol compounds depends clearly on the distance between the hot spot and the downstream sites: the higher the levels are, the closer the hot spot is. Since most of the Hg is hypothesized to be associated with SPM and transported downstream, our results of the DGT suggest that trace amounts of Hg in water can be released as free metal ions yielding a certain accumulation in plants (reaching the ppb level) that are enough for activation of induction of PCs. A few PCs species have been determined, at different seasons, indicating that they can be used as good indicators of the presence of bioavailable Hg in aquatic media throughout the year.
Collapse
Affiliation(s)
- Marta Turull
- Environmental Chemistry Department, Institute of Environmental Assessment and Water Research, IDÆA-CSIC, E-08034, Barcelona, Spain
| | - Gabriela Grmanova
- Departament de Química Analítica, Facultat de Química, Universitat de Barcelona, Martí i Franquès, 1-11, 08028, Barcelona, Spain
| | - Àngela Dago
- Departament de Química Analítica, Facultat de Química, Universitat de Barcelona, Martí i Franquès, 1-11, 08028, Barcelona, Spain
| | - Cristina Ariño
- Departament de Química Analítica, Facultat de Química, Universitat de Barcelona, Martí i Franquès, 1-11, 08028, Barcelona, Spain.
| | - Sergi Díez
- Environmental Chemistry Department, Institute of Environmental Assessment and Water Research, IDÆA-CSIC, E-08034, Barcelona, Spain
| | - José Manuel Díaz-Cruz
- Departament de Química Analítica, Facultat de Química, Universitat de Barcelona, Martí i Franquès, 1-11, 08028, Barcelona, Spain
| | - Miquel Esteban
- Departament de Química Analítica, Facultat de Química, Universitat de Barcelona, Martí i Franquès, 1-11, 08028, Barcelona, Spain
| |
Collapse
|
40
|
Das N, Bhattacharya S, Bhattacharyya S, Maiti MK. Identification of alternatively spliced transcripts of rice phytochelatin synthase 2 gene OsPCS2 involved in mitigation of cadmium and arsenic stresses. PLANT MOLECULAR BIOLOGY 2017; 94:167-183. [PMID: 28283922 DOI: 10.1007/s11103-017-0600-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Accepted: 02/28/2017] [Indexed: 05/22/2023]
Abstract
The OsPCS2 exhibits root- and shoot-specific differential ratios of alternatively spliced transcripts in indica rice under Cd stress, and plays role in Cd and As stress tolerance and accumulation. Enzymatic activity of phytochelatin synthase (PCS) in plant produces phytochelatins, which help in sequestration of heavy metal(loid)s inside the cell vacuole to alleviate toxicity. Here we report that among the two PCS genes-OsPCS1 and OsPCS2 in indica rice (Oryza sativa) cultivar, the OsPCS2 produces an alternatively spliced OsPCS2b transcript that bears the unusual premature termination codon besides the canonically spliced OsPCS2a transcript. Root- and shoot-specific differential ratios of alternatively spliced OsPCS2a and OsPCS2b transcript expressions were observed under cadmium stress. Saccharomyces cerevisiae cells transformed with OsPCS2a exhibited increased cadmium (Cd) and arsenic (As) tolerance and accumulation, unlike the OsPCS2b transformed yeast cells. An intron-containing hairpin RNA-mediated gene silencing was carried out in endosperm-specific manner for efficient down-regulation of OsPCS genes in rice grains. Analysis of the transgenic rice lines grown under metal(loid) stress revealed almost complete absence of both OsPCS1 and OsPCS2 transcripts in the developing seeds coupled with the significant reduction in the content of Cd (~51%) and As (~35%) in grains compared with the non-transgenic plant. Taken together, the findings indicate towards a crucial role played by the tissue-specific alternative splicing and relative abundance of the OsPCS2 gene during heavy metal(loid) stress mitigation in rice plant.
Collapse
Affiliation(s)
- Natasha Das
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Surajit Bhattacharya
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
- Plant Molecular Biology and Biotechnology Laboratory, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Somnath Bhattacharyya
- Department of Genetics, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, 741252, India
| | - Mrinal K Maiti
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
| |
Collapse
|
41
|
Rahoui S, Martinez Y, Sakouhi L, Ben C, Rickauer M, El Ferjani E, Gentzbittel L, Chaoui A. Cadmium-induced changes in antioxidative systems and differentiation in roots of contrasted Medicago truncatula lines. PROTOPLASMA 2017; 254:473-489. [PMID: 27055657 DOI: 10.1007/s00709-016-0968-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 03/29/2016] [Indexed: 05/09/2023]
Abstract
Defense pathways and stress responses induced under Cd stress were illustrated in roots of hydroponically grown Medicago truncatula seedlings. Actually, the ascorbate-glutathione and antioxidative system, secondary metabolism events including peroxidases, phenolic compounds, and lignification launching, and developmental modifications were described. Cd (100 μM) initially increased reactive oxygen species, enhanced antioxidative (total SOD, CAT, and PRX) and ascorbate-glutathione-related metabolism enzymes (APX and MDAR), except in A17 and TN1.11. In agreement with peroxidase enhancement, physiological measurement and in situ observation illustrated soluble phenolic compound accumulation under Cd treatment. However, lignification was restricted to recently created protoxylem elements established in the root tip area, usually constituting the elongation zone. Cell death was increased. In the absence of necrotic reactions, developmental changes including lignin deposition, increase in cellulose and pectin contents, intercellular meatus, and condensed and deformed hairs were noticed in Cd-treated roots.
Collapse
Affiliation(s)
- Sondès Rahoui
- Laboratoire de Toxicologie Végétale et Biologie Moléculaire des Microorganismes, Faculté des Sciences de Bizerte, Université de Carthage, 7021, Jarzouna, Tunisia.
- INP, UPS, Ecolab (Ecologie Fonctionnelle et Environnement), ENSAT, Université de Toulouse, 18, Chemin de Borde Rouge, 31326, Castanet-Tolosan, France.
| | - Yves Martinez
- Fédération de Recherche «Agrobiosciences Interactions et Biodiversité», 24 Chemin de Borde Rouge-BP 42617 Auzeville, 31326, Castanet-Tolosan Cedex, France
| | - Lamia Sakouhi
- Laboratoire de Toxicologie Végétale et Biologie Moléculaire des Microorganismes, Faculté des Sciences de Bizerte, Université de Carthage, 7021, Jarzouna, Tunisia
| | - Cécile Ben
- INP, UPS, Ecolab (Ecologie Fonctionnelle et Environnement), ENSAT, Université de Toulouse, 18, Chemin de Borde Rouge, 31326, Castanet-Tolosan, France
- CNRS, EcoLab, 31326, Castanet-Tolosan, France
| | - Martina Rickauer
- INP, UPS, Ecolab (Ecologie Fonctionnelle et Environnement), ENSAT, Université de Toulouse, 18, Chemin de Borde Rouge, 31326, Castanet-Tolosan, France
- CNRS, EcoLab, 31326, Castanet-Tolosan, France
| | - Ezzeddine El Ferjani
- Laboratoire de Toxicologie Végétale et Biologie Moléculaire des Microorganismes, Faculté des Sciences de Bizerte, Université de Carthage, 7021, Jarzouna, Tunisia
| | - Laurent Gentzbittel
- INP, UPS, Ecolab (Ecologie Fonctionnelle et Environnement), ENSAT, Université de Toulouse, 18, Chemin de Borde Rouge, 31326, Castanet-Tolosan, France
- CNRS, EcoLab, 31326, Castanet-Tolosan, France
| | - Abdelilah Chaoui
- Laboratoire de Toxicologie Végétale et Biologie Moléculaire des Microorganismes, Faculté des Sciences de Bizerte, Université de Carthage, 7021, Jarzouna, Tunisia
| |
Collapse
|
42
|
Kumar V, Sharma A, Dhunna G, Chawla A, Bhardwaj R, Thukral AK. A tabulated review on distribution of heavy metals in various plants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:2210-2260. [PMID: 27726084 DOI: 10.1007/s11356-016-7747-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 09/18/2016] [Indexed: 06/06/2023]
Abstract
Plants are a rich source of elements, and knowledge of their elemental composition determines their use for various purposes, especially for food and medicine. Therefore, it is necessary to create a database of the elemental composition of plants. The present review focuses on the concentration of various heavy metals as reported by various workers from time to time by using different sophisticated techniques. Cluster analysis was applied on the basis of mean values of heavy metals in plants. Co, Cu, and Cr have similar proximities. Cluster analysis was also applied to different families on the basis of their heavy metal contents. Elaeagnaceae, Adoxaceae, Thymelaeaceae, Cupressaceae, and Acoraceae had close proximities with each other. First three components of principal component analysis explained 95.7 % of the total variance. Factor analysis explained four underlying factors for heavy metal analysis. Factor 1 explained for 26.5 % of the total variance and had maximum loadings on Co, Cu, and Cr. Of the total variance, 21.7 % was explained by factor 2 and had maximum loadings on Zn and Cd. Factor 3 accounted for 19.2 % of the total variance and had maximum loadings on Ni and Pb. Mn had maximum loading on factor 4. The mean values of heavy metals as listed in this paper are Cu (18.7 μg/g dw), Mn (99.67 μg/g dw), Cr (22.9 μg/g dw), Co (19.7 μg/g dw), As (1.25 μg/g dw), Hg (0.17 μg/g dw), Zn (94.0 μg/g dw), Pb (6.93 μg/g dw), Cd (26.9 μg/g dw), Ni (19.9 μg/g dw), and Sb (0.25 μg/g dw).
Collapse
Affiliation(s)
- Vinod Kumar
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India.
| | - Anket Sharma
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Geeta Dhunna
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Amit Chawla
- High Altitude Biology Division, CSIR Institute of Himalayan Bioresource Technology (Council for Scientific and Industrial Research), Palampur, Himachal Pradesh, 176061, India
| | - Renu Bhardwaj
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India.
| | - Ashwani Kumar Thukral
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| |
Collapse
|
43
|
Gao L, Chang J, Chen R, Li H, Lu H, Tao L, Xiong J. Comparison on cellular mechanisms of iron and cadmium accumulation in rice: prospects for cultivating Fe-rich but Cd-free rice. RICE (NEW YORK, N.Y.) 2016; 9:39. [PMID: 27502932 PMCID: PMC4977236 DOI: 10.1186/s12284-016-0112-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 07/31/2016] [Indexed: 05/09/2023]
Abstract
Iron (Fe) is essential for rice growth and humans consuming as their staple food but is often deficient because of insoluble Fe(III) in soil for rice growth and limited assimilation for human bodies, while cadmium (Cd) is non-essential and toxic for rice growth and humans if accumulating at high levels. Over-accumulated Cd can cause damage to human bodies. Selecting and breeding Fe-rich but Cd-free rice cultivars are ambitious, challenging and meaningful tasks for researchers. Although evidences show that the mechanisms of Fe/Cd uptake and accumulation in rice are common to some extent as a result of similar entry routes within rice, an increasing number of researchers have discovered distinct mechanisms between Fe/Cd uptake and accumulation in rice. This comprehensive review systematically elaborates and compares cellular mechanisms of Fe/Cd uptake and accumulation in rice, respectively. Mechanisms for maintaining Fe homeostasis and Cd detoxicification are also elucidated. Then, effects of different fertilizer management on Fe/Cd accumulation in rice are discussed. Finally, this review enumerates various approaches for reducing grain Cd accumulation and enhancing Fe content in rice. In summary, understanding of discrepant cellular mechanisms of Fe/Cd accumulation in rice provides guidance for cultivating Fe-fortified rice and has paved the way to develop rice that are tolerant to Cd stress, aiming at breeding Fe-rich but Cd-free rice.
Collapse
Affiliation(s)
- Lei Gao
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, 310018, People's Republic of China
- Zhejinag Province Key Laboratory of Plant Secondary Metabolism and Regulation, Hangzhou, 310018, People's Republic of China
| | - Jiadong Chang
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, 310018, People's Republic of China
- Zhejinag Province Key Laboratory of Plant Secondary Metabolism and Regulation, Hangzhou, 310018, People's Republic of China
| | - Ruijie Chen
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, 310018, People's Republic of China
- Zhejinag Province Key Laboratory of Plant Secondary Metabolism and Regulation, Hangzhou, 310018, People's Republic of China
| | - Hubo Li
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, 310018, People's Republic of China
- Zhejinag Province Key Laboratory of Plant Secondary Metabolism and Regulation, Hangzhou, 310018, People's Republic of China
| | - Hongfei Lu
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, 310018, People's Republic of China
- Zhejinag Province Key Laboratory of Plant Secondary Metabolism and Regulation, Hangzhou, 310018, People's Republic of China
| | - Longxing Tao
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, People's Republic of China
| | - Jie Xiong
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, 310018, People's Republic of China.
- Zhejinag Province Key Laboratory of Plant Secondary Metabolism and Regulation, Hangzhou, 310018, People's Republic of China.
| |
Collapse
|
44
|
Quantitative Relationship between Cadmium Uptake and the Kinetics of Phytochelatin Induction by Cadmium in a Marine Diatom. Sci Rep 2016; 6:35935. [PMID: 27779209 PMCID: PMC5078787 DOI: 10.1038/srep35935] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 10/06/2016] [Indexed: 11/28/2022] Open
Abstract
Heavy metals activate the synthesis of phytochelatins (PCs), while the induced PCs might affect metal uptake via chelating intracellular free metals. However, the relationship of PCs to metal uptake is poorly understood. In this study, we examined the kinetics of cadmium (Cd) accumulation and the synthesis of PCs in a marine diatom, Thalassiosira weissflogii, under different irradiance levels. Irradiance alone could not change the concentrations of PCs in the Cd-free treatments, while higher irradiance accelerated the induction of intracellular PCs at the same [Cd2+] level. PC-SH (2 × PC2 + 3 × PC3 + 4 × PC4) was bound with Cd at a stoichiometric ratio of 2 to 49 in our short-term uptake experiments, indicating that PC induction is sufficient to serve as the first line of defense against Cd stress. A positive linear correlation between the induction rate of PCs and the Cd uptake rate was observed, while the ratio of the PC content to intracellular Cd varied greatly when the irradiance was increased several fold. Because metal uptake has been successfully used in predicting acute metal toxicity, our findings are helpful for understanding the role of PCs in metal detoxification and developing PCs as biomarkers for metal sensitivity.
Collapse
|
45
|
Borisova G, Chukina N, Maleva M, Kumar A, Prasad MNV. Thiols as biomarkers of heavy metal tolerance in the aquatic macrophytes of Middle Urals, Russia. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2016; 18:1037-45. [PMID: 27167595 DOI: 10.1080/15226514.2016.1183572] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Aquatic macrophytes, viz. Sagittaria sagittifolia L., Lemna gibba L., Elodea canadensis Michx., Batrachium trichophyllum (Chaix.) Bosch., Ceratophyllum demersum L. and Potamogeton sp. (P. perfoliatus L., P. alpinus Balb., P. crispus L., P. berchtoldii Fieber, P. friesii Rupr., P. pectinatus L.) were collected from 11 sites for determining their metal accumulation and thiols content. Cu(2+), Ni(2+), Mn(2+), Zn(2+), and Fe(3+) exceeded maximum permissible concentrations in chosen sites. Significant transfer of metals from water to leaves is observed in the order of Ni(2+) < Cu(2+) < Zn(2+) < Fe(3+) < Mn(2+). The maximum variation of bioconcentration factor was noticed for manganese. The accumulation of heavy metals in leaves was correlated with non-protein and protein thiols, confirming their important role in metal tolerance. The largest contribution was provided by Cu(2+) (on the average r = 0.88, p < 0.05), which obviously can be explained as an important role of these ions in thiols synthesis. Increased synthesis of thiols in the leaves allows the usage of SH-containing compounds as biomarkers of metal tolerance. Considering accumulation of metals and tolerance, B. trichophyllum, C. demersum and L. gibba are the most suitable species for phytoremediation of highly multimetal contamination, while E. canadensis and some species of Potamageton are suitable for moderately metal-polluted sites.
Collapse
Affiliation(s)
- Galina Borisova
- a Department of Plant Physiology and Biochemistry , Faculty of Biology, Institute of Natural Sciences, Ural Federal University , Ekaterinburg , Russia
| | - Nadezda Chukina
- a Department of Plant Physiology and Biochemistry , Faculty of Biology, Institute of Natural Sciences, Ural Federal University , Ekaterinburg , Russia
| | - Maria Maleva
- a Department of Plant Physiology and Biochemistry , Faculty of Biology, Institute of Natural Sciences, Ural Federal University , Ekaterinburg , Russia
| | - Adarsh Kumar
- a Department of Plant Physiology and Biochemistry , Faculty of Biology, Institute of Natural Sciences, Ural Federal University , Ekaterinburg , Russia
| | - M N V Prasad
- a Department of Plant Physiology and Biochemistry , Faculty of Biology, Institute of Natural Sciences, Ural Federal University , Ekaterinburg , Russia
- b Department of Plant Sciences , University of Hyderabad , Hyderabad , India
| |
Collapse
|
46
|
Yan J, Wang P, Wang P, Yang M, Lian X, Tang Z, Huang CF, Salt DE, Zhao FJ. A loss-of-function allele of OsHMA3 associated with high cadmium accumulation in shoots and grain of Japonica rice cultivars. PLANT, CELL & ENVIRONMENT 2016; 39:1941-54. [PMID: 27038090 DOI: 10.1111/pce.12747] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 03/20/2016] [Accepted: 03/24/2016] [Indexed: 05/21/2023]
Abstract
Excessive cadmium (Cd) accumulation in rice poses a risk to food safety. OsHMA3 plays an important role in restricting Cd translocation from roots to shoots. A non-functional allele of OsHMA3 has been reported in some Indica rice cultivars with high Cd accumulation, but it is not known if OsHMA3 allelic variation is associated with Cd accumulation in Japonica cultivars. In this study, we identified a Japonica cultivar with consistently high Cd accumulation in shoots and grain in both field and greenhouse experiments. The cultivar possesses an OsHMA3 allele with a predicted amino acid mutation at the 380(th) position from Ser to Arg. The haplotype had no Cd transport activity when the gene was expressed in yeast, and the allele did not complement a known nonfunctional allele of OsHMA3 in F1 test. The allele is present only in temperate Japonica cultivars among diversity panels of 1483 rice cultivars. Different cultivars possessing this allele showed greatly increased root-to-shoot Cd translocation and a shift in root Cd speciation from Cd-S to Cd-O bonding determined by synchrotron X-ray absorption spectroscopy. Our study has identified a new loss-of-function allele of OsHMA3 in Japonica rice cultivars leading to high Cd accumulation in shoots and grain.
Collapse
Affiliation(s)
- Jiali Yan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Peitong Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Peng Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
- School of Agriculture and Food Sciences, Faculty of Science, The University of Queensland, St Lucia, Queensland, 4072, Australia
| | - Meng Yang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xingming Lian
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhong Tang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chao-Feng Huang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - David E Salt
- Institute of Biological and Environmental Sciences, University of Aberdeen, Cruickshank Building, St. Machar Drive, Aberdeen, UK
| | - Fang Jie Zhao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
- Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, UK
| |
Collapse
|
47
|
|
48
|
Das N, Bhattacharya S, Maiti MK. Enhanced cadmium accumulation and tolerance in transgenic tobacco overexpressing rice metal tolerance protein gene OsMTP1 is promising for phytoremediation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 105:297-309. [PMID: 27214086 DOI: 10.1016/j.plaphy.2016.04.049] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Revised: 04/17/2016] [Accepted: 04/28/2016] [Indexed: 05/20/2023]
Abstract
One of the most grievous heavy metal pollutants in the environment is cadmium (Cd), which is not only responsible for the crop yield loss owing to its phytotoxicity, but also for the human health hazards as the toxic elements usually accumulate in the consumable parts of crop plants. In the present study, we aimed to isolate and functionally characterize the OsMTP1 gene from indica rice (Oryza sativa L. cv. IR64) to study its potential application for efficient phytoremediation of Cd. The 1257 bp coding DNA sequence (CDS) of OsMTP1 encodes a ∼46 kDa protein belonging to the cation diffusion facilitator (CDF) or metal tolerance/transport protein (MTP) family. The OsMTP1 transcript in rice plant was found to respond during external Cd stress. Heterologous expression of OsMTP1 in tobacco resulted in the reduction of Cd stress-induced phytotoxic effects, including growth inhibition, lipid peroxidation, and cell death. Compared to untransformed control, the transgenic tobacco plants showed enhanced vacuolar thiol content, indicating vacuolar localization of the sequestered Cd. The transgenic tobacco plants exhibited significantly higher biomass growth (2.2-2.8-folds) and hyperaccumulation of Cd (1.96-2.22-folds) compared to untransformed control under Cd exposure. The transgenic plants also showed moderate tolerance and accumulation of arsenic (As) upon exogenous As stress, signifying broad substrate specificity of OsMTP1. Together, findings of our research suggest that the transgenic tobacco plants overexpressing OsMTP1 with its hyperaccumulating activity and increased growth rate could be useful for future phytoremediation applications to clean up the Cd-contaminated soil.
Collapse
Affiliation(s)
- Natasha Das
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Surajit Bhattacharya
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Mrinal K Maiti
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.
| |
Collapse
|
49
|
Fan T, Yang L, Wu X, Ni J, Jiang H, Zhang Q, Fang L, Sheng Y, Ren Y, Cao S. The PSE1 gene modulates lead tolerance in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:4685-95. [PMID: 27335453 PMCID: PMC4973742 DOI: 10.1093/jxb/erw251] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Lead (Pb) is a dangerous heavy metal contaminant with high toxicity to plants. However, the regulatory mechanism of plant Pb tolerance is poorly understood. Here, we showed that the PSE1 gene confers Pb tolerance in Arabidopsis. A novel Pb-sensitive mutant pse1-1 (Pb-sensitive1) was isolated by screening T-DNA insertion mutants. PSE1 encodes an unknown protein with an NC domain and was localized in the cytoplasm. PSE1 was induced by Pb stress, and the pse1-1 loss-of-function mutant showed enhanced Pb sensitivity; overexpression of PSE1 resulted in increased Pb tolerance. PSE1-overexpressing plants showed increased Pb accumulation, which was accompanied by the activation of phytochelatin (PC) synthesis and related gene expression. In contrast, the pse1-1 mutant showed reduced Pb accumulation, which was associated with decreased PC synthesis and related gene expression. In addition, the expression of PDR12 was also increased in PSE1-overexpressing plants subjected to Pb stress. Our results suggest that PSE1 regulates Pb tolerance mainly through glutathione-dependent PC synthesis by activating the expression of the genes involved in PC synthesis and at least partially through activating the expression of the ABC transporter PDR12/ABCG40.
Collapse
Affiliation(s)
- Tingting Fan
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, Anhui 230009, People's Republic of China
| | - Libo Yang
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, Anhui 230009, People's Republic of China
| | - Xi Wu
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, Anhui 230009, People's Republic of China
| | - Jiaojiao Ni
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, Anhui 230009, People's Republic of China
| | - Haikun Jiang
- Horticulture Institute, Anhui Academy of Agricultural Sciences, Hefei, Anhui 230031, People's Republic of China
| | - Qi'an Zhang
- Horticulture Institute, Anhui Academy of Agricultural Sciences, Hefei, Anhui 230031, People's Republic of China
| | - Ling Fang
- Horticulture Institute, Anhui Academy of Agricultural Sciences, Hefei, Anhui 230031, People's Republic of China
| | - Yibao Sheng
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, Anhui 230009, People's Republic of China
| | - Yongbing Ren
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, Anhui 230009, People's Republic of China
| | - Shuqing Cao
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, Anhui 230009, People's Republic of China
| |
Collapse
|
50
|
Heikal L, Starr A, Martin GP, Nandi M, Dailey LA. In vivo pharmacological activity and biodistribution of S-nitrosophytochelatins after intravenous and intranasal administration in mice. Nitric Oxide 2016; 59:1-9. [PMID: 27350118 PMCID: PMC5045922 DOI: 10.1016/j.niox.2016.06.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 06/23/2016] [Indexed: 01/21/2023]
Abstract
S-nitrosophytochelatins (SNOPCs) are novel analogues of S-nitrosoglutathione (GSNO) with the advantage of carrying varying ratios of S-nitrosothiol (SNO) moieties per molecule. Our aim was to investigate the in vivo pharmacological potency and biodistribution of these new GSNO analogues after intravenous (i.v.) and intranasal (i.n.) administration in mice. SNOPCs with either two or six SNO groups and GSNO were synthesized and characterized for purity. Compounds were administered i.v. or i.n. at 1 μmol NO/kg body weight to CD-1 mice. Blood pressure was measured and biodistribution studies of total nitrate and nitrite species (NOx) and phytochelatins were performed after i.v. administration. At equivalent doses of NO, it was observed that SNOPC-6 generated a rapid and significantly greater reduction in blood pressure (∼60% reduction compared to saline) whereas GSNO and SNOPC-2 only achieved a 30-35% decrease. The reduction in blood pressure was transient and recovered to baseline levels within ∼2 min for all compounds. NOx species were transiently elevated (over 5 min) in the plasma, lung, heart and liver. Interestingly, a size-dependent phytochelatin accumulation was observed in several tissues including the heart, lungs, kidney, brain and liver. Biodistribution profiles of NOx were also obtained after i.n. administration, showing significant lung retention of NOx over 15 min with minor systemic increases observed from 5 to 15 min. In summary, this study has revealed interesting in vivo pharmacological properties of SNOPCs, with regard to their dramatic hypotensive effects and differing biodistribution patterns following two different routes of administration.
Collapse
Affiliation(s)
- Lamia Heikal
- Institute of Pharmaceutical Sciences, Faculty of Life Science & Medicine, King's College London, 150 Stamford Street, London, SE1 9NH, UK
| | - Anna Starr
- Institute of Pharmaceutical Sciences, Faculty of Life Science & Medicine, King's College London, 150 Stamford Street, London, SE1 9NH, UK
| | - Gary P Martin
- Institute of Pharmaceutical Sciences, Faculty of Life Science & Medicine, King's College London, 150 Stamford Street, London, SE1 9NH, UK
| | - Manasi Nandi
- Institute of Pharmaceutical Sciences, Faculty of Life Science & Medicine, King's College London, 150 Stamford Street, London, SE1 9NH, UK.
| | - Lea Ann Dailey
- Institute of Pharmaceutical Sciences, Faculty of Life Science & Medicine, King's College London, 150 Stamford Street, London, SE1 9NH, UK
| |
Collapse
|