1
|
Manna M, Rengasamy B, Sinha AK. Nutrient and Water Availability Influence Rice Physiology, Root Architecture and Ionomic Balance via Auxin Signalling. PLANT, CELL & ENVIRONMENT 2025; 48:2691-2705. [PMID: 39315660 DOI: 10.1111/pce.15171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 09/09/2024] [Accepted: 09/11/2024] [Indexed: 09/25/2024]
Abstract
Water and soil nutrients are the vital ingredients of crop production, and their efficient uptake is essentially dependent on root development, majorly regulated by auxin. For a water-loving crop like rice, how water availability regulates nutrient acquisition, additionally, how ambient nutrient level modulates water uptake, and the role of auxin therein is not well studied. While investigating the cross-talks among these components, we found water to be essential for auxin re-distribution in roots and shaping the root architecture. We also found that supplementing rice seedlings with moderate concentrations of mineral nutrients facilitated faster water uptake and greater nutrient enrichment in leaves compared to adequate nutrient supplementation. Additionally, moderate nutrient availability favoured greater stomatal density, stomatal conductance, photosynthesis, transpiration rate and water use efficiency when water was not limiting. Further, auxin supplementation enhanced root formation in rice, while affecting their water uptake ability, photosynthesis and transpiration causing differential mineral-specific uptake trends. The present study uncovers the existence of an intricate crosstalk among water, nutrients and auxin signalling the knowledge of which will enable optimizing the growth conditions for speed breeding of rice and harnessing the components of auxin signalling to improve water and nutrient use efficiency of rice.
Collapse
Affiliation(s)
- Mrinalini Manna
- National Institute of Plant Genome Research, New Delhi, India
| | | | | |
Collapse
|
2
|
Cho Y, Kim Y, Lee H, Kim S, Kang J, Kadam US, Ju Park S, Sik Chung W, Chan Hong J. Cellular and physiological functions of SGR family in gravitropic response in higher plants. J Adv Res 2025; 67:43-60. [PMID: 38295878 PMCID: PMC11725163 DOI: 10.1016/j.jare.2024.01.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/29/2023] [Accepted: 01/24/2024] [Indexed: 02/05/2024] Open
Abstract
BACKGROUND In plants, gravity directs bidirectional growth; it specifies upward growth of shoots and downward growth of roots. Due to gravity, roots establish robust anchorage and shoot, which enables to photosynthesize. It sets optimum posture and develops plant architecture to efficiently use resources like water, nutrients, CO2, and gaseous exchange. Hence, gravitropism is crucial for crop productivity as well as for the growth of plants in challenging climate. Some SGR members are known to affect tiller and shoot angle, organ size, and inflorescence stem in plants. AIM OF REVIEW Although the SHOOT GRAVITROPISM (SGR) family plays a key role in regulating the fate of shoot gravitropism, little is known about its function compared to other proteins involved in gravity response in plant cells and tissues. Moreover, less information on the SGR family's physiological activities and biochemical responses in shoot gravitropism is available. This review scrutinizes and highlights the recent developments in shoot gravitropism and provides an outlook for future crop development, multi-application scenarios, and translational research to improve agricultural productivity. KEY SCIENTIFIC CONCEPTS OF REVIEW Plants have evolved multiple gene families specialized in gravitropic responses, of which the SGR family is highly significant. The SGR family regulates the plant's gravity response by regulating specific physiological and biochemical processes such as transcription, cell division, amyloplast sedimentation, endodermis development, and vacuole formation. Here, we analyze the latest discoveries in shoot gravitropism with particular attention to SGR proteins in plant cell biology, cellular physiology, and homeostasis. Plant cells detect gravity signals by sedimentation of amyloplast (starch granules) in the direction of gravity, and the signaling cascade begins. Gravity sensing, signaling, and auxin redistribution (organ curvature) are the three components of plant gravitropism. Eventually, we focus on the role of multiple SGR genes in shoot and present a complete update on the participation of SGR family members in gravity.
Collapse
Affiliation(s)
- Yuhan Cho
- Division of Life Science and Division of Applied Life Science (BK21 Four), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Gyeongnam, 52828, Republic of Korea
| | - Yujeong Kim
- Division of Life Science and Division of Applied Life Science (BK21 Four), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Gyeongnam, 52828, Republic of Korea
| | - Hyebi Lee
- Division of Life Science and Division of Applied Life Science (BK21 Four), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Gyeongnam, 52828, Republic of Korea
| | - Sundong Kim
- Division of Life Science and Division of Applied Life Science (BK21 Four), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Gyeongnam, 52828, Republic of Korea
| | - Jaehee Kang
- Division of Life Science and Division of Applied Life Science (BK21 Four), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Gyeongnam, 52828, Republic of Korea
| | - Ulhas S Kadam
- Division of Life Science and Division of Applied Life Science (BK21 Four), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Gyeongnam, 52828, Republic of Korea.
| | - Soon Ju Park
- Division of Life Science and Division of Applied Life Science (BK21 Four), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Gyeongnam, 52828, Republic of Korea
| | - Woo Sik Chung
- Division of Life Science and Division of Applied Life Science (BK21 Four), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Gyeongnam, 52828, Republic of Korea
| | - Jong Chan Hong
- Division of Life Science and Division of Applied Life Science (BK21 Four), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Gyeongnam, 52828, Republic of Korea.
| |
Collapse
|
3
|
Cho HT, Lee M, Choi HS, Maeng KH, Lee K, Lee HY, Ganguly A, Park H, Ho CH. A dose-dependent bimodal switch by homologous Aux/IAA transcriptional repressors. MOLECULAR PLANT 2024; 17:1407-1422. [PMID: 39095993 DOI: 10.1016/j.molp.2024.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/15/2024] [Accepted: 07/30/2024] [Indexed: 08/04/2024]
Abstract
Combinatorial interactions between different regulators diversify and enrich the chance of transcriptional regulation in eukaryotic cells. However, a dose-dependent functional switch of homologous transcriptional repressors has rarely been reported. Here, we show that SHY2, an auxin/indole-3-acetic acid (Aux/IAA) repressor, exhibits a dose-dependent bimodal role in auxin-sensitive root-hair growth and gene transcription in Arabidopsis, whereas other Aux/IAA homologs consistently repress the auxin responses. The co-repressor (TOPLESS [TPL])-binding affinity of a bimodal Aux/IAA was lower than that of a consistently repressing Aux/IAA. The switch of a single amino acid residue in the TPL-binding motif between the bimodal form and the consistently repressing form switched their TPL-binding affinity and transcriptional and biological roles in auxin responses. Based on these data, we propose a model whereby competition between homologous repressors with different co-repressor-binding affinities could generate a bimodal output at the transcriptional and developmental levels.
Collapse
Affiliation(s)
- Hyung-Taeg Cho
- Department of Biological Sciences, Seoul National University, Seoul, Korea.
| | - Minsu Lee
- Department of Biological Sciences, Seoul National University, Seoul, Korea
| | - Hee-Seung Choi
- Department of Biological Sciences, Seoul National University, Seoul, Korea
| | - Kwang-Ho Maeng
- Department of Biological Sciences, Seoul National University, Seoul, Korea
| | - Kyeonghoon Lee
- Department of Biological Sciences, Seoul National University, Seoul, Korea
| | - Ha-Yeon Lee
- Department of Biological Sciences, Seoul National University, Seoul, Korea
| | - Anindya Ganguly
- Department of Biological Sciences, Seoul National University, Seoul, Korea
| | - Hoonyoung Park
- School of Earth and Environmental Sciences, Seoul National University, Seoul, Korea
| | - Chang-Hoi Ho
- School of Earth and Environmental Sciences, Seoul National University, Seoul, Korea; Department of Climate and Energy Systems Engineering, Ewha Womans University, Seoul, Korea
| |
Collapse
|
4
|
Mendarte-Alquisira C, Ferrera-Cerrato R, Mendoza-López MR, Alarcón A. Biochemical responses of Echinochloa polystachya inoculated with a Trichoderma consortium during the removal of a pyrethroid-based pesticide. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2024; 26:1839-1846. [PMID: 38825879 DOI: 10.1080/15226514.2024.2357641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
The biochemical response of plants exposed to pesticides and inoculated with microorganisms is of great importance to explore cleaning up strategies for contaminated sites with pyrethroid-based pesticides. We evaluated the effects of a Trichoderma consortium on the biochemical responses of Echinochloa polystachya plants during the removal of a pyrethroid-based pesticide. Plants were inoculated or not with the Trichoderma consortium and exposed to commercial pesticide H24®, based on pyrethroids. Pesticide application resulted in significant reduction in root protein content (58%), but enhanced content of malondialdehyde (MDA) in shoots, superoxide dismutase (SOD) activity in shoots and roots, and catalase (CAT) activity in roots. Inoculation of Trichoderma consortium in E. polystachya exposed to the pesticide resulted in increased protein content in roots and MDA content in shoots (2-fold). Trichoderma consortium improved protein content and SOD activity (140-fold) in plants. Fungal inoculation increased the removal (97.9%) of the pesticide in comparison to the sole effect of plants (33.9%). Results allow further understanding about the responses of the interaction between plants and root-associated fungi to improving the assisted-phytoremediation of solid matrices contaminated with organic pesticides.
Collapse
Affiliation(s)
| | - Ronald Ferrera-Cerrato
- Microbiología de Suelos, Postgrado de Edafología, Colegio de Postgraduados, Montecillo, México
| | | | - Alejandro Alarcón
- Microbiología de Suelos, Postgrado de Edafología, Colegio de Postgraduados, Montecillo, México
| |
Collapse
|
5
|
Seifu YW, Pukyšová V, Rýdza N, Bilanovičová V, Zwiewka M, Sedláček M, Nodzyński T. Mapping the membrane orientation of auxin homeostasis regulators PIN5 and PIN8 in Arabidopsis thaliana root cells reveals their divergent topology. PLANT METHODS 2024; 20:84. [PMID: 38825682 PMCID: PMC11145782 DOI: 10.1186/s13007-024-01182-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 04/10/2024] [Indexed: 06/04/2024]
Abstract
PIN proteins establish the auxin concentration gradient, which coordinates plant growth. PIN1-4 and 7 localized at the plasma membrane (PM) and facilitate polar auxin transport while the endoplasmic reticulum (ER) localized PIN5 and PIN8 maintain the intracellular auxin homeostasis. Although an antagonistic activity of PIN5 and PIN8 proteins in regulating the intracellular auxin homeostasis and other developmental events have been reported, the membrane topology of these proteins, which might be a basis for their antagonistic function, is poorly understood. In this study we optimized digitonin based PM-permeabilizing protocols coupled with immunocytochemistry labeling to map the membrane topology of PIN5 and PIN8 in Arabidopsis thaliana root cells. Our results indicate that, except for the similarities in the orientation of the N-terminus, PIN5 and PIN8 have an opposite orientation of the central hydrophilic loop and the C-terminus, as well as an unequal number of transmembrane domains (TMDs). PIN8 has ten TMDs with groups of five alpha-helices separated by the central hydrophilic loop (HL) residing in the ER lumen, and its N- and C-terminals are positioned in the cytoplasm. However, the topology of PIN5 comprises nine TMDs. Its N-terminal end and the central HL face the cytoplasm while its C-terminus resides in the ER lumen. Overall, this study shows that PIN5 and PIN8 proteins have a divergent membrane topology while introducing a toolkit of methods for studying membrane topology of integral proteins including those localized at the ER membrane.
Collapse
Affiliation(s)
- Yewubnesh Wendimu Seifu
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, Brno, CZ-625 00, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, Brno, CZ-625 00, Czech Republic
| | - Vendula Pukyšová
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, Brno, CZ-625 00, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, Brno, CZ-625 00, Czech Republic
| | - Nikola Rýdza
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, Brno, CZ-625 00, Czech Republic
| | - Veronika Bilanovičová
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, Brno, CZ-625 00, Czech Republic
| | - Marta Zwiewka
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, Brno, CZ-625 00, Czech Republic
| | - Marek Sedláček
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, Brno, CZ-625 00, Czech Republic
| | - Tomasz Nodzyński
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, Brno, CZ-625 00, Czech Republic.
| |
Collapse
|
6
|
Yang G, Pan Y, Pan W, Song Q, Zhang R, Tong W, Cui L, Ji W, Song W, Song B, Deng P, Nie X. Combined GWAS and eGWAS reveals the genetic basis underlying drought tolerance in emmer wheat (Triticum turgidum L.). THE NEW PHYTOLOGIST 2024; 242:2115-2131. [PMID: 38358006 DOI: 10.1111/nph.19589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/25/2024] [Indexed: 02/16/2024]
Abstract
Drought is one of the major environmental constraints for wheat production world-wide. As the progenitor and genetic reservoir of common wheat, emmer wheat is considered as an invaluable gene pool for breeding drought-tolerant wheat. Combining GWAS and eGWAS analysis of 107 accessions, we identified 86 QTLs, 105 462 eQTLs as well as 68 eQTL hotspots associating with drought tolerance (DT) in emmer wheat. A complex regulatory network composed of 185 upstream regulator and 2432 downstream drought-responsive candidates was developed, of which TtOTS1 was found to play a negative effect in determining DT through affecting root development. This study sheds light on revealing the genetic basis underlying DT, which will provide the indispensable genes and germplasm resources for elite drought tolerance wheat improvement and breeding.
Collapse
Affiliation(s)
- Guang Yang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang, 261325, Shandong, China
| | - Yan Pan
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Wenqiu Pan
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Qingting Song
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Ruoyu Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Wei Tong
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Licao Cui
- College of Biological Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China
| | - Wanquan Ji
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Weining Song
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Baoxing Song
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang, 261325, Shandong, China
| | - Pingchuan Deng
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xiaojun Nie
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Pioneering Innovation Center for Wheat Stress Tolerance Improvement, State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, 712100, Shaanxi, China
| |
Collapse
|
7
|
Liu S, An X, Xu C, Guo B, Li X, Chen C, He D, Xu D, Li Y. Exploring the dynamic adaptive responses of Epimedium pubescens to phosphorus deficiency by Integrated transcriptome and miRNA analysis. BMC PLANT BIOLOGY 2024; 24:480. [PMID: 38816792 PMCID: PMC11138043 DOI: 10.1186/s12870-024-05063-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 04/25/2024] [Indexed: 06/01/2024]
Abstract
Phosphorus, a crucial macronutrient essential for plant growth and development. Due to widespread phosphorus deficiency in soils, phosphorus deficiency stress has become one of the major abiotic stresses that plants encounter. Despite the evolution of adaptive mechanisms in plants to address phosphorus deficiency, the specific strategies employed by species such as Epimedium pubescens remain elusive. Therefore, this study observed the changes in the growth, physiological reponses, and active components accumulation in E. pubescensunder phosphorus deficiency treatment, and integrated transcriptome and miRNA analysis, so as to offer comprehensive insights into the adaptive mechanisms employed by E. pubescens in response to phosphorus deficiency across various stages of phosphorus treatment. Remarkably, our findings indicate that phosphorus deficiency induces root growth stimulation in E. pubescens, while concurrently inhibiting the growth of leaves, which are of medicinal value. Surprisingly, this stressful condition results in an augmented accumulation of active components in the leaves. During the early stages (30 days), leaves respond by upregulating genes associated with carbon metabolism, flavonoid biosynthesis, and hormone signaling. This adaptive response facilitates energy production, ROS scavenging, and morphological adjustments to cope with short-term phosphorus deficiency and sustain its growth. As time progresses (90 days), the expression of genes related to phosphorus cycling and recycling in leaves is upregulated, and transcriptional and post-transcriptional regulation (miRNA regulation and protein modification) is enhanced. Simultaneously, plant growth is further suppressed, and it gradually begins to discard and decompose leaves to resist the challenges of long-term phosphorus deficiency stress and sustain survival. In conclusion, our study deeply and comprehensively reveals adaptive strategies utilized by E. pubescens in response to phosphorus deficiency, demonstrating its resilience and thriving potential under stressful conditions. Furthermore, it provides valuable information on potential target genes for the cultivation of E. pubescens genotypes tolerant to low phosphorus.
Collapse
Affiliation(s)
- Shangnian Liu
- School of Pharmacy, State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicines, Ministry of Education & National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100193, China
| | - Xiaojing An
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicines, Ministry of Education & National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100193, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, 10063, China
| | - Chaoqun Xu
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicines, Ministry of Education & National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100193, China
| | - Baolin Guo
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicines, Ministry of Education & National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100193, China
| | - Xianen Li
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicines, Ministry of Education & National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100193, China
| | - Caixia Chen
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicines, Ministry of Education & National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100193, China.
| | - Dongmei He
- School of Pharmacy, State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - De Xu
- Dazhou Academy of Agricultural Sciences, Dazhou, 635000, China
| | - Yi Li
- Dazhou Academy of Agricultural Sciences, Dazhou, 635000, China
| |
Collapse
|
8
|
Cowling CL, Homayouni AL, Callwood JB, McReynolds MR, Khor J, Ke H, Draves MA, Dehesh K, Walley JW, Strader LC, Kelley DR. ZmPILS6 is an auxin efflux carrier required for maize root morphogenesis. Proc Natl Acad Sci U S A 2024; 121:e2313216121. [PMID: 38781209 PMCID: PMC11145266 DOI: 10.1073/pnas.2313216121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 03/25/2024] [Indexed: 05/25/2024] Open
Abstract
Plant root systems play a pivotal role in plant physiology and exhibit diverse phenotypic traits. Understanding the genetic mechanisms governing root growth and development in model plants like maize is crucial for enhancing crop resilience to drought and nutrient limitations. This study focused on identifying and characterizing ZmPILS6, an annotated auxin efflux carrier, as a key regulator of various crown root traits in maize. ZmPILS6-modified roots displayed reduced network area and suppressed lateral root formation, which are desirable traits for the "steep, cheap, and deep" ideotype. The research revealed that ZmPILS6 localizes to the endoplasmic reticulum and plays a vital role in controlling the spatial distribution of indole-3-acetic acid (IAA or "auxin") in primary roots. The study also demonstrated that ZmPILS6 can actively efflux IAA when expressed in yeast. Furthermore, the loss of ZmPILS6 resulted in significant proteome remodeling in maize roots, particularly affecting hormone signaling pathways. To identify potential interacting partners of ZmPILS6, a weighted gene coexpression analysis was performed. Altogether, this research contributes to the growing knowledge of essential genetic determinants governing maize root morphogenesis, which is crucial for guiding agricultural improvement strategies.
Collapse
Affiliation(s)
- Craig L. Cowling
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA50011
| | | | - Jodi B. Callwood
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA50011
| | - Maxwell R. McReynolds
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, IA50011
| | - Jasper Khor
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA50011
| | - Haiyan Ke
- Botany and Plant Sciences Department, University of California, Riverside, CA92521
| | - Melissa A. Draves
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA50011
| | - Katayoon Dehesh
- Botany and Plant Sciences Department, University of California, Riverside, CA92521
| | - Justin W. Walley
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, IA50011
| | | | - Dior R. Kelley
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA50011
| |
Collapse
|
9
|
Maeng KH, Lee H, Cho HT. FAB1C, a phosphatidylinositol 3-phosphate 5-kinase, interacts with PIN-FORMEDs and modulates their lytic trafficking in Arabidopsis. Proc Natl Acad Sci U S A 2023; 120:e2310126120. [PMID: 37934824 PMCID: PMC10655590 DOI: 10.1073/pnas.2310126120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 10/10/2023] [Indexed: 11/09/2023] Open
Abstract
PIN-FORMEDs (PINs) are auxin efflux carriers that asymmetrically target the plasma membrane (PM) and are critical for forming local auxin gradients and auxin responses. While the cytoplasmic hydrophilic loop domain of PIN (PIN-HL) is known to include some molecular cues (e.g., phosphorylation) for the modulation of PIN's intracellular trafficking and activity, the complexity of auxin responses suggests that additional regulatory modules may operate in the PIN-HL domain. Here, we have identified and characterized a PIN-HL-interacting protein (PIP) called FORMATION OF APLOID AND BINUCLEATE CELL 1C (FAB1C), a phosphatidylinositol-3-phosphate 5-kinase, which modulates PIN's lytic trafficking. FAB1C directly interacts with PIN-HL and is required for the polarity establishment and vacuolar trafficking of PINs. Unphosphorylated forms of PIN2 interact more readily with FAB1C and are more susceptible to vacuolar lytic trafficking compared to phosphorylated forms. FAB1C also affected lateral root formation by modulating the abundance of periclinally localized PIN1 and auxin maximum in the growing lateral root primordium. These findings suggest that a membrane-lipid modifier can target the cargo-including vesicle by directly interacting with the cargo and modulate its trafficking depending on the cargo's phosphorylation status.
Collapse
Affiliation(s)
- Kwang-Ho Maeng
- Department of Biological Sciences, Seoul National University, Seoul08826, South Korea
| | - Hyodong Lee
- Department of Biological Sciences, Seoul National University, Seoul08826, South Korea
| | - Hyung-Taeg Cho
- Department of Biological Sciences, Seoul National University, Seoul08826, South Korea
| |
Collapse
|
10
|
Pacheco JM, Gabarain VB, Lopez LE, Lehuedé TU, Ocaranza D, Estevez JM. Understanding signaling pathways governing the polar development of root hairs in low-temperature, nutrient-deficient environments. CURRENT OPINION IN PLANT BIOLOGY 2023; 75:102386. [PMID: 37352652 DOI: 10.1016/j.pbi.2023.102386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 05/04/2023] [Accepted: 05/07/2023] [Indexed: 06/25/2023]
Abstract
Plants exposed to freezing and above-freezing low temperatures must employ a variety of strategies to minimize fitness loss. There is a considerable knowledge gap regarding how mild low temperatures (around 10 °C) affect plant growth and developmental processes, even though the majority of the molecular mechanisms that plants use to adapt to extremely low temperatures are well understood. Root hairs (RH) have become a useful model system for studying how plants regulate their growth in response to both cell-intrinsic cues and environmental inputs. Here, we'll focus on recent advances in the molecular mechanisms underpinning Arabidopsis thaliana RH growth at mild low temperatures and how these discoveries may influence our understanding of nutrient sensing mechanisms by the roots. This highlights how intricately linked mechanisms are necessary for plant development to take place under specific circumstances and to produce a coherent response, even at the level of a single RH cell.
Collapse
Affiliation(s)
- Javier Martínez Pacheco
- Fundación Instituto Leloir and IIBBA-CONICET. Av. Patricias Argentinas 435, Buenos Aires C1405BWE, Argentina; ANID - Millennium Science Initiative Program - Millennium Nucleus for the DeveIopment of Super Adaptable Plants (MN-SAP), Santiago 8370146, Chile
| | - Victoria Berdion Gabarain
- Fundación Instituto Leloir and IIBBA-CONICET. Av. Patricias Argentinas 435, Buenos Aires C1405BWE, Argentina; ANID - Millennium Science Initiative Program - Millennium Nucleus for the DeveIopment of Super Adaptable Plants (MN-SAP), Santiago 8370146, Chile
| | - Leonel E Lopez
- Fundación Instituto Leloir and IIBBA-CONICET. Av. Patricias Argentinas 435, Buenos Aires C1405BWE, Argentina; ANID - Millennium Science Initiative Program - Millennium Nucleus for the DeveIopment of Super Adaptable Plants (MN-SAP), Santiago 8370146, Chile
| | - Tomás Urzúa Lehuedé
- ANID - Millennium Science Initiative Program - Millennium Nucleus for the DeveIopment of Super Adaptable Plants (MN-SAP), Santiago 8370146, Chile; ANID - Millennium Science Initiative Program - Millennium Institute for Integrative Biology (iBio), Santiago 8331150, Chile; Centro de Biotecnología Vegetal (CBV), Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370146, Chile
| | - Darío Ocaranza
- ANID - Millennium Science Initiative Program - Millennium Nucleus for the DeveIopment of Super Adaptable Plants (MN-SAP), Santiago 8370146, Chile; Centro de Biotecnología Vegetal (CBV), Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370146, Chile
| | - José M Estevez
- Fundación Instituto Leloir and IIBBA-CONICET. Av. Patricias Argentinas 435, Buenos Aires C1405BWE, Argentina; ANID - Millennium Science Initiative Program - Millennium Nucleus for the DeveIopment of Super Adaptable Plants (MN-SAP), Santiago 8370146, Chile; ANID - Millennium Science Initiative Program - Millennium Institute for Integrative Biology (iBio), Santiago 8331150, Chile; Centro de Biotecnología Vegetal (CBV), Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370146, Chile.
| |
Collapse
|
11
|
Kim SH, Zebro M, Jang DC, Sim JE, Park HK, Kim KY, Bae HM, Tilahun S, Park SM. Optimization of Plant Growth Regulators for In Vitro Mass Propagation of a Disease-Free 'Shine Muscat' Grapevine Cultivar. Curr Issues Mol Biol 2023; 45:7721-7733. [PMID: 37886931 PMCID: PMC10605919 DOI: 10.3390/cimb45100487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 10/28/2023] Open
Abstract
This study addresses the propagation challenges faced by 'Shine Muscat', a newly introduced premium grapevine cultivar in South Korea, where multiple viral infections pose considerable economic loss. The primary objective was to establish a robust in vitro propagation method for producing disease-free grapes and to identify effective plant growth regulators to facilitate large-scale mass cultivation. After experimentation, 2.0 µM 6-benzyladenine (BA) exhibited superior shoot formation in the Murashige and Skoog medium compared with kinetin and thidiazuron. Conversely, α-naphthaleneacetic acid (NAA) hindered shoot growth and induced callus formation, while indole-3-butyric acid (IBA) and indole-3-acetic acid (IAA) demonstrated favorable root formation, with IBA showing better results overall. Furthermore, inter simple sequence repeat analysis confirmed the genetic stability of in vitro-cultivated seedlings using 2.0 μM BA and 1.0 μM IBA, validating the suitability of the developed propagation method for generating disease-free 'Shine Muscat' grapes. These findings offer promising prospects for commercial grape cultivation, ensuring a consistent supply of healthy grapes in the market.
Collapse
Affiliation(s)
- Si-Hong Kim
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341, Republic of Korea; (S.-H.K.); (D.-C.J.); (H.-K.P.); (K.-Y.K.)
- Smart Farm Research Center, KIST Gangneung, Institute of National Products, 679 Saimdang-ro, Gangneung 25451, Republic of Korea
| | - Mewuleddeg Zebro
- Department of Plant Science, Gangneung-Wonju National University, Gangneung 25457, Republic of Korea; (M.Z.); (J.-E.S.)
| | - Dong-Cheol Jang
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341, Republic of Korea; (S.-H.K.); (D.-C.J.); (H.-K.P.); (K.-Y.K.)
- Department of Horticulture, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Jeong-Eun Sim
- Department of Plant Science, Gangneung-Wonju National University, Gangneung 25457, Republic of Korea; (M.Z.); (J.-E.S.)
| | - Han-Kyeol Park
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341, Republic of Korea; (S.-H.K.); (D.-C.J.); (H.-K.P.); (K.-Y.K.)
| | - Kyeong-Yeon Kim
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341, Republic of Korea; (S.-H.K.); (D.-C.J.); (H.-K.P.); (K.-Y.K.)
| | - Hyung-Min Bae
- Novagreen Business Centre, Kangwon National University, Chunchen 24341, Republic of Korea;
| | - Shimeles Tilahun
- Agriculture and Life Science Research Institute, Kangwon National University, Chuncheon 24341, Republic of Korea
- Department of Horticulture and Plant Sciences, Jimma University, Jimma 378, Ethiopia
| | - Sung-Min Park
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341, Republic of Korea; (S.-H.K.); (D.-C.J.); (H.-K.P.); (K.-Y.K.)
- Department of Horticulture, Kangwon National University, Chuncheon 24341, Republic of Korea
| |
Collapse
|
12
|
Hu R, Li X, Hu Y, Zhang R, Lv Q, Zhang M, Sheng X, Zhao F, Chen Z, Ding Y, Yuan H, Wu X, Xing S, Yan X, Bao F, Wan P, Xiao L, Wang X, Xiao W, Decker EL, van Gessel N, Renault H, Wiedemann G, Horst NA, Haas FB, Wilhelmsson PKI, Ullrich KK, Neumann E, Lv B, Liang C, Du H, Lu H, Gao Q, Cheng Z, You H, Xin P, Chu J, Huang CH, Liu Y, Dong S, Zhang L, Chen F, Deng L, Duan F, Zhao W, Li K, Li Z, Li X, Cui H, Zhang YE, Ma C, Zhu R, Jia Y, Wang M, Hasebe M, Fu J, Goffinet B, Ma H, Rensing SA, Reski R, He Y. Adaptive evolution of the enigmatic Takakia now facing climate change in Tibet. Cell 2023; 186:3558-3576.e17. [PMID: 37562403 DOI: 10.1016/j.cell.2023.07.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 03/23/2023] [Accepted: 07/03/2023] [Indexed: 08/12/2023]
Abstract
The most extreme environments are the most vulnerable to transformation under a rapidly changing climate. These ecosystems harbor some of the most specialized species, which will likely suffer the highest extinction rates. We document the steepest temperature increase (2010-2021) on record at altitudes of above 4,000 m, triggering a decline of the relictual and highly adapted moss Takakia lepidozioides. Its de-novo-sequenced genome with 27,467 protein-coding genes includes distinct adaptations to abiotic stresses and comprises the largest number of fast-evolving genes under positive selection. The uplift of the study site in the last 65 million years has resulted in life-threatening UV-B radiation and drastically reduced temperatures, and we detected several of the molecular adaptations of Takakia to these environmental changes. Surprisingly, specific morphological features likely occurred earlier than 165 mya in much warmer environments. Following nearly 400 million years of evolution and resilience, this species is now facing extinction.
Collapse
Affiliation(s)
- Ruoyang Hu
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University (CNU), Beijing 100048, China; State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xuedong Li
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University (CNU), Beijing 100048, China
| | - Yong Hu
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University (CNU), Beijing 100048, China
| | - Runjie Zhang
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University (CNU), Beijing 100048, China
| | - Qiang Lv
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University (CNU), Beijing 100048, China
| | - Min Zhang
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University (CNU), Beijing 100048, China
| | - Xianyong Sheng
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University (CNU), Beijing 100048, China
| | - Feng Zhao
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University (CNU), Beijing 100048, China
| | - Zhijia Chen
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University (CNU), Beijing 100048, China
| | - Yuhan Ding
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University (CNU), Beijing 100048, China
| | - Huan Yuan
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University (CNU), Beijing 100048, China
| | - Xiaofeng Wu
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University (CNU), Beijing 100048, China
| | - Shuang Xing
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University (CNU), Beijing 100048, China
| | - Xiaoyu Yan
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University (CNU), Beijing 100048, China
| | - Fang Bao
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University (CNU), Beijing 100048, China
| | - Ping Wan
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University (CNU), Beijing 100048, China
| | - Lihong Xiao
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University (CNU), Beijing 100048, China; State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Xiaoqin Wang
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University (CNU), Beijing 100048, China
| | - Wei Xiao
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University (CNU), Beijing 100048, China
| | - Eva L Decker
- Plant Biotechnology, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Nico van Gessel
- Plant Biotechnology, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Hugues Renault
- Plant Biotechnology, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany; Institut de Biologie Moléculaire des Plantes (IBMP), CNRS, University of Strasbourg, 67084 Strasbourg, France
| | - Gertrud Wiedemann
- Plant Biotechnology, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany; Inselspital, University of Bern, 3010 Bern, Switzerland
| | - Nelly A Horst
- Plant Biotechnology, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany; MetaSystems Hard & Software GmbH, 68804 Altlussheim, Germany
| | - Fabian B Haas
- Department of Biology, University of Marburg, 35043 Marburg, Germany
| | | | - Kristian K Ullrich
- Department of Biology, University of Marburg, 35043 Marburg, Germany; Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, 24306 Plön, Germany
| | - Eva Neumann
- Department of Biology, University of Marburg, 35043 Marburg, Germany
| | - Bin Lv
- Department of Integrative Biology, University of Guelph, Guelph, ON N1G 2W1, Canada; Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan 610041, China
| | - Chengzhi Liang
- National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huilong Du
- National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, Hebei 071002, China
| | - Hongwei Lu
- National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Qiang Gao
- National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Genomics and Genetic Engineering Laboratory of Ornamental Plants, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Zhukuan Cheng
- National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Hanli You
- National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Peiyong Xin
- National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jinfang Chu
- National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chien-Hsun Huang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Ministry of Education Key Laboratory of Biodiversity and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai 200433, China; Key Laboratory of Forage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010031, China
| | - Yang Liu
- Department of Ecology and Evolutionary Biology, University of Connecticut, Unit 3043, Storrs, CT 06269, USA; Key Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen, Guangdong 518004, China; State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, Guangdong 518085, China
| | - Shanshan Dong
- Key Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen, Guangdong 518004, China
| | - Liangsheng Zhang
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Fei Chen
- Sanya Nanfan Research Institute from Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan 572025, China
| | - Lei Deng
- College of Resource Environment and Tourism, CNU, Beijing 100048, China
| | - Fuzhou Duan
- College of Resource Environment and Tourism, CNU, Beijing 100048, China
| | - Wenji Zhao
- College of Resource Environment and Tourism, CNU, Beijing 100048, China
| | - Kai Li
- Department of Chemistry, CNU, Beijing 100048, China
| | - Zhongfeng Li
- Department of Chemistry, CNU, Beijing 100048, China
| | - Xingru Li
- Department of Chemistry, CNU, Beijing 100048, China
| | - Hengjian Cui
- School of Mathematical Sciences, CNU, Beijing 100048, China
| | - Yong E Zhang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Chuan Ma
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ruiliang Zhu
- Department of Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Yu Jia
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Meizhi Wang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Mitsuyasu Hasebe
- Division of Evolutionary Biology, National Institute for Basic Biology, Okazaki, Aichi 444-8585, Japan; Department of Basic Biology, The Graduate School for Advanced Studies (SOKENDAI), Okazaki 444-8585, Japan
| | - Jinzhong Fu
- Department of Integrative Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Bernard Goffinet
- Department of Ecology and Evolutionary Biology, University of Connecticut, Unit 3043, Storrs, CT 06269, USA
| | - Hong Ma
- Department of Biology, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Stefan A Rensing
- Department of Biology, University of Marburg, 35043 Marburg, Germany; Faculty of Chemistry and Pharmacy, University of Freiburg, 79104 Freiburg, Germany
| | - Ralf Reski
- Plant Biotechnology, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany; Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104 Freiburg, Germany.
| | - Yikun He
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University (CNU), Beijing 100048, China.
| |
Collapse
|
13
|
Su SH, Levine HG, Masson PH. Brachypodium distachyon Seedlings Display Accession-Specific Morphological and Transcriptomic Responses to the Microgravity Environment of the International Space Station. Life (Basel) 2023; 13:life13030626. [PMID: 36983782 PMCID: PMC10058394 DOI: 10.3390/life13030626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/06/2023] [Accepted: 02/16/2023] [Indexed: 03/06/2023] Open
Abstract
Plants have been recognized as key components of bioregenerative life support systems for space exploration, and many experiments have been carried out to evaluate their adaptability to spaceflight. Unfortunately, few of these experiments have involved monocot plants, which constitute most of the crops used on Earth as sources of food, feed, and fiber. To better understand the ability of monocot plants to adapt to spaceflight, we germinated and grew Brachypodium distachyon seedlings of the Bd21, Bd21-3, and Gaz8 accessions in a customized growth unit on the International Space Station, along with 1-g ground controls. At the end of a 4-day growth period, seedling organ’s growth and morphologies were quantified, and root and shoot transcriptomic profiles were investigated using RNA-seq. The roots of all three accessions grew more slowly and displayed longer root hairs under microgravity conditions relative to ground control. On the other hand, the shoots of Bd21-3 and Gaz-8 grew at similar rates between conditions, whereas those of Bd21 grew more slowly under microgravity. The three Brachypodium accessions displayed dramatically different transcriptomic responses to microgravity relative to ground controls, with the largest numbers of differentially expressed genes (DEGs) found in Gaz8 (4527), followed by Bd21 (1353) and Bd21-3 (570). Only 47 and six DEGs were shared between accessions for shoots and roots, respectively, including DEGs encoding wall-associated proteins and photosynthesis-related DEGs. Furthermore, DEGs associated with the “Oxidative Stress Response” GO group were up-regulated in the shoots and down-regulated in the roots of Bd21 and Gaz8, indicating that Brachypodium roots and shoots deploy distinct biological strategies to adapt to the microgravity environment. A comparative analysis of the Brachypodium oxidative-stress response DEGs with the Arabidopsis ROS wheel suggests a connection between retrograde signaling, light response, and decreased expression of photosynthesis-related genes in microgravity-exposed shoots. In Gaz8, DEGs were also found to preferentially associate with the “Plant Hormonal Signaling” and “MAP Kinase Signaling” KEGG pathways. Overall, these data indicate that Brachypodium distachyon seedlings exposed to the microgravity environment of ISS display accession- and organ-specific responses that involve oxidative stress response, wall remodeling, photosynthesis inhibition, expression regulation, ribosome biogenesis, and post-translational modifications. The general characteristics of these responses are similar to those displayed by microgravity-exposed Arabidopsis thaliana seedlings. However, organ- and accession-specific components of the response dramatically differ both within and between species. These results suggest a need to directly evaluate candidate-crop responses to microgravity to better understand their specific adaptability to this novel environment and develop cultivation strategies allowing them to strive during spaceflight.
Collapse
Affiliation(s)
- Shih-Heng Su
- Laboratory of Genetics, University of Wisconsin-Madison, 425 G Henry Mall, Madison, WI 53706, USA
- Correspondence: (S.-H.S.); (P.H.M.)
| | - Howard G. Levine
- NASA John F. Kennedy Space Center, Kennedy Space Center, Merritt Island, FL 32899, USA
| | - Patrick H. Masson
- Laboratory of Genetics, University of Wisconsin-Madison, 425 G Henry Mall, Madison, WI 53706, USA
- Correspondence: (S.-H.S.); (P.H.M.)
| |
Collapse
|
14
|
Gupta K, Garg R. Unravelling Differential DNA Methylation Patterns in Genotype Dependent Manner under Salinity Stress Response in Chickpea. Int J Mol Sci 2023; 24:ijms24031863. [PMID: 36768187 PMCID: PMC9915442 DOI: 10.3390/ijms24031863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/31/2022] [Accepted: 01/03/2023] [Indexed: 01/19/2023] Open
Abstract
DNA methylation is one of the epigenetic mechanisms that govern gene regulation in response to abiotic stress in plants. Here, we analyzed the role of epigenetic variations by exploring global DNA methylation and integrating it with differential gene expression in response to salinity stress in tolerant and sensitive chickpea genotypes. Genome-wide DNA methylation profiles showed higher CG methylation in the gene body regions and higher CHH methylation in the TE body regions. The analysis of differentially methylated regions (DMRs) suggested more hyper-methylation in response to stress in the tolerant genotype compared to the sensitive genotype. We observed higher enrichment of CG DMRs in genes and CHH DMRs in transposable elements (TEs). A positive correlation of gene expression with CG gene body methylation was observed. The enrichment analysis of DMR-associated differentially expressed genes revealed they are involved in biological processes, such as lateral root development, transmembrane transporter activity, GTPase activity, and regulation of gene expression. Further, a high correlation of CG methylation with CHG and CHH methylation under salinity stress was revealed, suggesting crosstalk among the methylation contexts. Further, we observed small RNA-mediated CHH hypermethylation in TEs. Overall, the interplay between DNA methylation, small RNAs, and gene expression provides new insights into the regulatory mechanism underlying salinity stress response in chickpeas.
Collapse
|
15
|
Wang Y, Zhou G, Luo H, Li X, Zhang K, Wan Y. Genome-Wide Identification of PIN and PILS Gene Families in Areca catechu and the Potential Role of AcPIN6 in Lateral Brace Root Formation. PLANTS (BASEL, SWITZERLAND) 2022; 12:33. [PMID: 36616161 PMCID: PMC9824567 DOI: 10.3390/plants12010033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/06/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
PIN-FORMED (PIN) and PIN-LIKES (PILS) are two families of auxin transporters that control the directional cell-to-cell transport and intracellular accumulation of auxin, thereby influencing plant growth and development. Most knowledge of PINs and PILSs was obtained from the dicot model plant Arabidopsis thaliana. Here, we focus on the distribution and expression of the PIN and PILS gene families in areca palm (Areca catechu), a monocot tree. The whole genomic dataset of areca palm was used to identify twelve AcPINs and eight AcPILSs, and a phylogenetic tree was constructed of PINS and PILS together with several other palm species, including the date palm (Phoenix dactylifera), oil palm (Elaeis guineensis), and coconut (Cocos nucifera). We further analyzed the expression patterns of AcPIN and AcPILS in areca palm, and found that AcPIN6 displayed an extremely high transcriptional abundance in the brace roots and was extremely stimulated in the lateral root primordium. This result implies that AcPIN6 plays an important role in the growth and formation of brace roots, especially in lateral root initiation. We also overexpressed AcPIN6 and AcPIN6-eGFP in Arabidopsis, and the results revealed that the PIN6 localized on the plasma membrane and affected auxin-related phenomena. Taken together, we analyzed the evolutionary relationships of PINs and PILSs in palm species, and the roles of PIN6 in areca palm root formation. The results will improve the understanding of root system construction in large palm trees.
Collapse
Affiliation(s)
| | | | | | | | | | - Yinglang Wan
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou 570228, China
| |
Collapse
|
16
|
Cui Z, Liu S, Ge C, Shen Q, Zhang S, Ma H, Liu R, Zhao X, Liu R, Li P, Wang H, Wu Q, Pang C, Chen J. Genome-wide association study reveals that GhTRL1 and GhPIN8 affect cotton root development. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:3161-3176. [PMID: 35965278 DOI: 10.1007/s00122-022-04177-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
Two regions located at chromosome A05 and D04 were found to be significantly associated with 0-0.5 mm and 0.5-2 mm diameter roots, respectively, and two candidate genes related to root development were identified. Roots absorb water and nutrients, and play an important role in plant growth. However, there are few genetic developmental studies on cotton root structural traits. In this study, we used 200 upland cotton (Gossypium hirsutum L.) varieties to analyze the phenotypic variation of 43 traits. A total of 2001 related single-nucleotide polymorphism (SNP) sites located within or near 1046 genes were detected through a genome-wide association study (GWAS). The 32 root traits were linked to SNPs that corresponded to 317 nonrepetitive genes. For SNPs associated with root length and 0-0.5 mm diameter root traits, a significant peak appeared on chromosome A05 (between 21.91 and 22.24 Mb). For SNPs associated with root surface area, root volume and 0.5-2 mm diameter root traits, a significant peak appeared on chromosome D04 (between 7.35 and 7.70 Mb). Within these two key regions, SNPs were detected in the promoter and coding regions of two candidate genes, GhTRL1-A05 and GhPIN8-D04. The expression levels of these two genes also changed significantly according to transcriptome sequencing and quantitative real-time PCR (qRT-PCR). After silencing the GhTRL1 and GhPIN8 genes via virus-induced gene silencing (VIGS), we found that the plants expressing TRV2::GhTRL1 and TRV2::GhPIN8 had a reduced root length, surface area. Moreover, the contents of cis-12-oxo-phytodienoic acid (cis-OPDA), isopentenyl adenosine (iPR) and cis-zeatin (cZ) in the roots of the plants expressing TRV2::GhTRL1 decreased. This study contributes to the cultivation and improvement of cotton varieties.
Collapse
Affiliation(s)
- Ziqian Cui
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Zhengzhou Research Station, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
| | - Shaodong Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Zhengzhou Research Station, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
| | - Changwei Ge
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Zhengzhou Research Station, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
| | - Qian Shen
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Zhengzhou Research Station, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
| | - Siping Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Zhengzhou Research Station, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
| | - Huijuan Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Zhengzhou Research Station, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
| | - Ruihua Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Zhengzhou Research Station, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
| | - Xinhua Zhao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Zhengzhou Research Station, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
| | - Ruida Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Zhengzhou Research Station, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
| | - Pengzhen Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Zhengzhou Research Station, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
| | - Hongchen Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Zhengzhou Research Station, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
| | - Qidi Wu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Zhengzhou Research Station, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
| | - Chaoyou Pang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China.
- Zhengzhou Research Station, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China.
- Institute of Economic Crops, Xinjiang Academy of Agricultural Sciences, Ürümqi, China.
| | - Jing Chen
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China.
- Zhengzhou Research Station, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
17
|
Huang X, Maisch J, Hayashi KI, Nick P. Fluorescent Auxin Analogs Report Two Auxin Binding Sites with Different Subcellular Distribution and Affinities: A Cue for Non-Transcriptional Auxin Signaling. Int J Mol Sci 2022; 23:ijms23158593. [PMID: 35955725 PMCID: PMC9369420 DOI: 10.3390/ijms23158593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/01/2022] [Accepted: 08/01/2022] [Indexed: 02/04/2023] Open
Abstract
The complexity of auxin signaling is partially due to multiple auxin receptors that trigger differential signaling. To obtain insight into the subcellular localization of auxin-binding sites, we used fluorescent auxin analogs that can undergo transport but do not deploy auxin signaling. Using fluorescent probes for different subcellular compartments, we can show that the fluorescent analog of 1-naphthaleneacetic acid (NAA) associates with the endoplasmic reticulum (ER) and tonoplast, while the fluorescent analog of indole acetic acid (IAA) binds to the ER. The binding of the fluorescent NAA analog to the ER can be outcompeted by unlabeled NAA, which allows us to estimate the affinity of NAA for this binding site to be around 1 μM. The non-transportable auxin 2,4-dichlorophenoxyacetic acid (2,4-D) interferes with the binding site for the fluorescent NAA analog at the tonoplast but not with the binding site for the fluorescent IAA analog at the ER. We integrate these data into a working model, where the tonoplast hosts a binding site with a high affinity for 2,4-D, while the ER hosts a binding site with high affinity for NAA. Thus, the differential subcellular localization of binding sites reflects the differential signaling in response to these artificial auxins.
Collapse
Affiliation(s)
- Xiang Huang
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, 76133 Karlsruhe, Germany; (X.H.); (J.M.)
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Jan Maisch
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, 76133 Karlsruhe, Germany; (X.H.); (J.M.)
| | - Ken-Ichiro Hayashi
- Department of Biochemistry, Okayama University of Science, 1-1 Ridai-cho, Okayama 700-0005, Japan;
| | - Peter Nick
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, 76133 Karlsruhe, Germany; (X.H.); (J.M.)
- Correspondence: ; Tel.: +49-721-608-42144
| |
Collapse
|
18
|
Avilez-Montalvo JR, Quintana-Escobar AO, Méndez-Hernández HA, Aguilar-Hernández V, Brito-Argáez L, Galaz-Ávalos RM, Uc-Chuc MA, Loyola-Vargas VM. Auxin-Cytokinin Cross Talk in Somatic Embryogenesis of Coffea canephora. PLANTS 2022; 11:plants11152013. [PMID: 35956493 PMCID: PMC9370429 DOI: 10.3390/plants11152013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/01/2022] [Accepted: 07/28/2022] [Indexed: 11/16/2022]
Abstract
Cytokinins (CK) are plant growth regulators involved in multiple physiological processes in plants. One less studied aspect is CK homeostasis (HM). The primary genes related to HM are involved in biosynthesis (IPT), degradation (CKX), and signaling (ARR). This paper demonstrates the effect of auxin (Aux) and CK and their cross talk in a Coffea canephora embryogenic system. The transcriptome and RT-qPCR suggest that Aux in pre-treatment represses biosynthesis, degradation, and signal CK genes. However, in the induction, there is an increase of genes implicated in the CK perception/signal, indicating perhaps, as in other species, Aux is repressing CK, and CK are inducing per se genes involved in its HM. This is reflected in the endogenous concentration of CK; pharmacology experiments helped study the effect of each plant growth regulator in our SE system. We conclude that the Aux–CK balance is crucial to directing somatic embryogenesis in C. canephora.
Collapse
Affiliation(s)
- Johny R. Avilez-Montalvo
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Calle 43, No. 130 × 32 y 34, Mérida 97205, Mexico; (J.R.A.-M.); (A.O.Q.-E.); (H.A.M.-H.); (L.B.-A.); (R.M.G.-Á.); (M.A.U.-C.)
| | - Ana O. Quintana-Escobar
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Calle 43, No. 130 × 32 y 34, Mérida 97205, Mexico; (J.R.A.-M.); (A.O.Q.-E.); (H.A.M.-H.); (L.B.-A.); (R.M.G.-Á.); (M.A.U.-C.)
| | - Hugo A. Méndez-Hernández
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Calle 43, No. 130 × 32 y 34, Mérida 97205, Mexico; (J.R.A.-M.); (A.O.Q.-E.); (H.A.M.-H.); (L.B.-A.); (R.M.G.-Á.); (M.A.U.-C.)
| | - Víctor Aguilar-Hernández
- Catedrático CONACYT, Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Mérida 97205, Mexico;
| | - Ligia Brito-Argáez
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Calle 43, No. 130 × 32 y 34, Mérida 97205, Mexico; (J.R.A.-M.); (A.O.Q.-E.); (H.A.M.-H.); (L.B.-A.); (R.M.G.-Á.); (M.A.U.-C.)
| | - Rosa M. Galaz-Ávalos
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Calle 43, No. 130 × 32 y 34, Mérida 97205, Mexico; (J.R.A.-M.); (A.O.Q.-E.); (H.A.M.-H.); (L.B.-A.); (R.M.G.-Á.); (M.A.U.-C.)
| | - Miguel A. Uc-Chuc
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Calle 43, No. 130 × 32 y 34, Mérida 97205, Mexico; (J.R.A.-M.); (A.O.Q.-E.); (H.A.M.-H.); (L.B.-A.); (R.M.G.-Á.); (M.A.U.-C.)
| | - Víctor M. Loyola-Vargas
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Calle 43, No. 130 × 32 y 34, Mérida 97205, Mexico; (J.R.A.-M.); (A.O.Q.-E.); (H.A.M.-H.); (L.B.-A.); (R.M.G.-Á.); (M.A.U.-C.)
- Correspondence: ; Tel.: +52-999-942-83-30 (ext. 243)
| |
Collapse
|
19
|
Zhang Q, Deng A, Xiang M, Lan Q, Li X, Yuan S, Gou X, Hao S, Du J, Xiao C. The Root Hair Development of Pectin Polygalacturonase PGX2 Activation Tagging Line in Response to Phosphate Deficiency. FRONTIERS IN PLANT SCIENCE 2022; 13:862171. [PMID: 35586221 PMCID: PMC9108675 DOI: 10.3389/fpls.2022.862171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 04/19/2022] [Indexed: 06/15/2023]
Abstract
Pectin, cellulose, and hemicellulose constitute the primary cell wall in eudicots and function in multiple developmental processes in plants. Root hairs are outgrowths of specialized epidermal cells that absorb water and nutrients from the soil. Cell wall architecture influences root hair development, but how cell wall remodeling might enable enhanced root hair formation in response to phosphate (P) deficiency remains relatively unclear. Here, we found that POLYGALACTURONASE INVOLVED IN EXPANSION 2 (PGX2) functions in conditional root hair development. Under low P conditions, a PGX2 activation tagged line (PGX2AT ) displays bubble-like root hairs and abnormal callose deposition and superoxide accumulation in roots. We found that the polar localization and trafficking of PIN2 are altered in PGX2AT roots in response to P deficiency. We also found that actin filaments were less compact but more stable in PGX2AT root hair cells and that actin filament skewness in PGX2AT root hairs was recovered by treatment with 1-N-naphthylphthalamic acid (NPA), an auxin transport inhibitor. These results demonstrate that activation tagging of PGX2 affects cell wall remodeling, auxin signaling, and actin microfilament orientation, which may cooperatively regulate root hair development in response to P starvation.
Collapse
|
20
|
Tripathi P, Tayade R, Mun BG, Yun BW, Kim Y. Silicon Application Differentially Modulates Root Morphology and Expression of PIN and YUCCA Family Genes in Soybean ( Glycine max L.). FRONTIERS IN PLANT SCIENCE 2022; 13:842832. [PMID: 35371163 PMCID: PMC8975267 DOI: 10.3389/fpls.2022.842832] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 02/18/2022] [Indexed: 06/14/2023]
Abstract
Silicon (Si) is absorbed and accumulated by some plant species; it has been shown to improve plant growth and performance. The beneficial role of Si in plants is based on the fundamental assumptions, and the biological function of Si is still being researched due to its complex nature, distinctiveness, and interaction. The present study included two distinct experiment sets: a screening test and an advanced test. In the initial examination, we used 21 soybean (Glycine max L.) cultivars. Following the evaluation, we chose four cultivars to investigate further. In particular, the positive response cultivars, Taeseon and Geomjeongsaeol, showed a 14% increase in net photosynthesis (P N ), and a 19-26% increase in transpiration in Si-treated plants when compared to the control plants. Si-treated Taeseon, Geomjeongsaeol, and Somyongkong, Mallikong cultivars showed significant differences in root morphological traits (RMTs) and root system architecture (RSA) when compared to the control plants. Taeseon and Geomjeongsaeol showed a 26 and 46% increase in total root length (TRL) after Si application, respectively, compared to the control, whereas Mallikong and Somyongkong showed 26 and 20% decrease in TRL after Si treatment, respectively, compared to the control. The Si application enhanced the overall RMTs and RSA traits in Taeseon and Geomjeongsaeol; however, the other two cultivars, Somyongkong and Mallikong, showed a decrease in such RMTs and RATs. Furthermore, to understand the underlying molecular mechanism and the response of various cultivars, we measured the Si content and analyzed the gene expression of genes involved in auxin transport and root formation and development. We showed that the Si content significantly increased in the Si-treated Somyongkong (28%) and Taeseon (30%) compared to the control cultivars. Overall, our results suggested that Si affects root development as well as the genes involved in the auxin synthesis, transport pathway, and modulates root growth leading to cultivar-dependent variation in soybeans.
Collapse
|
21
|
Liu J, Shi X, Chang Z, Ding Y, Ding C. Auxin Efflux Transporters OsPIN1c and OsPIN1d Function Redundantly in Regulating Rice (Oryza sativa L.) Panicle Development. PLANT & CELL PHYSIOLOGY 2022; 63:305-316. [PMID: 34888695 DOI: 10.1093/pcp/pcab172] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 12/09/2021] [Indexed: 06/13/2023]
Abstract
The essential role of auxin in plant growth and development is well known. Pathways related to auxin synthesis, transport and signaling have been extensively studied in recent years, and the PIN-FORMED (PIN) protein family has been identified as being pivotal for polar auxin transport and distribution. However, research focused on the functional characterization of PIN proteins in rice is still lacking. In this study, we investigated the expression and function of OsPIN1c and OsPIN1d in the japonica rice variety (Nipponbare) using gene knockout and high-throughput RNA sequencing analysis. The results showed that OsPIN1c and OsPIN1d were mainly expressed in young panicles and exhibited a redundant function. Furthermore, OsPIN1c or OsPIN1d loss-of-function mutants presented a mild phenotype compared with the wild type. However, in addition to significantly decreased plant height and tiller number, panicle development was severely disrupted in double-mutant lines of OsPIN1c and OsPIN1d. Severe defects included smaller inflorescence meristem and panicle sizes, fewer primary branches, elongated bract leaves, non-degraded hair and no spikelet growth. Interestingly, ospin1cd-3, a double-mutant line with functional retention of OsPIN1d, showed milder defects than those observed in other mutants. Additionally, several critical regulators of reproductive development, such as OsPID, LAX1, OsMADS1 and OsSPL14/IPA1, were differentially expressed in ospin1c-1 ospin1d-1, supporting the hypothesis that OsPIN1c and OsPIN1d are involved in regulating panicle development. Therefore, this study provides novel insights into the auxin pathways that regulate plant reproductive development in monocots.
Collapse
Affiliation(s)
- Jiajun Liu
- College of Agriculture, Nanjing Agricultural University, No.1 Weigang, Nanjing 210095, People's Republic of China
| | - Xi'an Shi
- College of Agriculture, Nanjing Agricultural University, No.1 Weigang, Nanjing 210095, People's Republic of China
| | - Zhongyuan Chang
- College of Agriculture, Nanjing Agricultural University, No.1 Weigang, Nanjing 210095, People's Republic of China
| | - Yanfeng Ding
- College of Agriculture, Nanjing Agricultural University, No.1 Weigang, Nanjing 210095, People's Republic of China
- Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture, No.1 Weigang, Nanjing 210095, People's Republic of China
- Collaborative Innovation Center for Modern Crop Production co-sponsored by Province and Ministry, Nanjing Agricultural University, No.1 Weigang, Nanjing 210095, People's Republic of China
| | - Chengqiang Ding
- College of Agriculture, Nanjing Agricultural University, No.1 Weigang, Nanjing 210095, People's Republic of China
- Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture, No.1 Weigang, Nanjing 210095, People's Republic of China
- Collaborative Innovation Center for Modern Crop Production co-sponsored by Province and Ministry, Nanjing Agricultural University, No.1 Weigang, Nanjing 210095, People's Republic of China
| |
Collapse
|
22
|
Villaécija-Aguilar JA, Körösy C, Maisch L, Hamon-Josse M, Petrich A, Magosch S, Chapman P, Bennett T, Gutjahr C. KAI2 promotes Arabidopsis root hair elongation at low external phosphate by controlling local accumulation of AUX1 and PIN2. Curr Biol 2021; 32:228-236.e3. [PMID: 34758285 DOI: 10.1016/j.cub.2021.10.044] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 09/17/2021] [Accepted: 10/20/2021] [Indexed: 11/30/2022]
Abstract
Root hair (RH) growth to increase the absorptive root surface area is a key adaptation of plants to limiting phosphate availability in soils. Despite the importance of this trait, especially for seedling survival, little is known about the molecular events connecting phosphate starvation sensing and RH growth regulation. KARRIKIN INSENSITIVE2 (KAI2), an α/β-hydrolase receptor of a yet-unknown plant hormone ("KAI2-ligand" [KL]), is required for RH elongation.1 KAI2 interacts with the F-box protein MORE AXILLIARY BRANCHING2 (MAX2) to target regulatory proteins of the SUPPRESSOR of MAX2 1 (SMAX1) family for degradation.2 Here, we demonstrate that Pi starvation increases KL signaling in Arabidopsis roots through transcriptional activation of KAI2 and MAX2. Both genes are required for RH elongation under these conditions, while smax1 smxl2 mutants have constitutively long RHs, even at high Pi availability. Attenuated RH elongation in kai2 mutants is explained by reduced shootward auxin transport from the root tip resulting in reduced auxin signaling in the RH zone, caused by an inability to increase localized accumulation of the auxin importer AUXIN TRANSPORTER PROTEIN1 (AUX1) and the auxin exporter PIN-FORMED2 (PIN2) upon Pi starvation. Consistent with AUX1 and PIN2 accumulation being mediated via ethylene signaling,3 expression of 1-AMINOCYCLOPROPANE-1-CARBOXYLATE SYNTHASE 7 (ACS7) is increased at low Pi in a KAI2-dependent manner, and treatment with an ethylene precursor restores RH elongation of acs7, but not of aux1 and pin2. Thus, KAI2 signaling is increased by phosphate starvation to trigger an ethylene- AUX1/PIN2-auxin cascade required for RH elongation.
Collapse
Affiliation(s)
- José Antonio Villaécija-Aguilar
- Plant Genetics, TUM School of Life Sciences, Technical University of Munich (TUM), Emil Ramann Str. 4, 85354 Freising, Germany
| | - Caroline Körösy
- Plant Genetics, TUM School of Life Sciences, Technical University of Munich (TUM), Emil Ramann Str. 4, 85354 Freising, Germany
| | - Lukas Maisch
- Plant Genetics, TUM School of Life Sciences, Technical University of Munich (TUM), Emil Ramann Str. 4, 85354 Freising, Germany
| | - Maxime Hamon-Josse
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Andrea Petrich
- Plant Genetics, TUM School of Life Sciences, Technical University of Munich (TUM), Emil Ramann Str. 4, 85354 Freising, Germany
| | - Sonja Magosch
- Plant Genetics, TUM School of Life Sciences, Technical University of Munich (TUM), Emil Ramann Str. 4, 85354 Freising, Germany
| | - Philipp Chapman
- Plant Genetics, TUM School of Life Sciences, Technical University of Munich (TUM), Emil Ramann Str. 4, 85354 Freising, Germany
| | - Tom Bennett
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Caroline Gutjahr
- Plant Genetics, TUM School of Life Sciences, Technical University of Munich (TUM), Emil Ramann Str. 4, 85354 Freising, Germany.
| |
Collapse
|
23
|
Lee H, Ganguly A, Baik S, Cho HT. Calcium-dependent protein kinase 29 modulates PIN-FORMED polarity and Arabidopsis development via its own phosphorylation code. THE PLANT CELL 2021; 33:3513-3531. [PMID: 34402905 PMCID: PMC8566293 DOI: 10.1093/plcell/koab207] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 08/12/2021] [Indexed: 05/15/2023]
Abstract
PIN-FORMED (PIN)-mediated polar auxin transport (PAT) is involved in key developmental processes in plants. Various internal and external cues influence plant development via the modulation of intracellular PIN polarity and, thus, the direction of PAT, but the mechanisms underlying these processes remain largely unknown. PIN proteins harbor a hydrophilic loop (HL) that has important regulatory functions; here, we used the HL as bait in protein pulldown screening for modulators of intracellular PIN trafficking in Arabidopsis thaliana. Calcium-dependent protein kinase 29 (CPK29), a Ca2+-dependent protein kinase, was identified and shown to phosphorylate specific target residues on the PIN-HL that were not phosphorylated by other kinases. Furthermore, loss of CPK29 or mutations of the phospho-target residues in PIN-HLs significantly compromised intracellular PIN trafficking and polarity, causing defects in PIN-mediated auxin redistribution and biological processes such as lateral root formation, root twisting, hypocotyl gravitropism, phyllotaxis, and reproductive development. These findings indicate that CPK29 directly interprets Ca2+ signals from internal and external triggers, resulting in the modulation of PIN trafficking and auxin responses.
Collapse
Affiliation(s)
- Hyodong Lee
- Department of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Anindya Ganguly
- Department of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Song Baik
- Department of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Hyung-Taeg Cho
- Department of Biological Sciences, Seoul National University, Seoul 08826, Korea
- Author for correspondence:
| |
Collapse
|
24
|
Genome-Wide Identification and Characterization of PIN-FORMED (PIN) Gene Family Reveals Role in Developmental and Various Stress Conditions in Triticum aestivum L. Int J Mol Sci 2021; 22:ijms22147396. [PMID: 34299014 PMCID: PMC8303626 DOI: 10.3390/ijms22147396] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/30/2021] [Accepted: 07/05/2021] [Indexed: 12/17/2022] Open
Abstract
PIN-FORMED (PIN) genes play a crucial role in regulating polar auxin distribution in diverse developmental processes, including tropic responses, embryogenesis, tissue differentiation, and organogenesis. However, the role of PIN-mediated auxin transport in various plant species is poorly understood. Currently, no information is available about this gene family in wheat (Triticum aestivum L.). In the present investigation, we identified the PIN gene family in wheat to understand the evolution of PIN-mediated auxin transport and its role in various developmental processes and under different biotic and abiotic stress conditions. In this study, we performed genome-wide analysis of the PIN gene family in common wheat and identified 44 TaPIN genes through a homology search, further characterizing them to understand their structure, function, and distribution across various tissues. Phylogenetic analyses led to the classification of TaPIN genes into seven different groups, providing evidence of an evolutionary relationship with Arabidopsis thaliana and Oryza sativa. A gene exon/intron structure analysis showed a distinct evolutionary path and predicted the possible gene duplication events. Further, the physical and biochemical properties, conserved motifs, chromosomal, subcellular localization, transmembrane domains, and three-dimensional (3D) structure were also examined using various computational approaches. Cis-elements analysis of TaPIN genes showed that TaPIN promoters consist of phytohormone, plant growth and development, and stress-related cis-elements. In addition, expression profile analysis also revealed that the expression patterns of the TaPIN genes were different in different tissues and developmental stages. Several members of the TaPIN family were induced during biotic and abiotic stress. Moreover, the expression patterns of TaPIN genes were verified by qRT-PCR. The qRT-PCR results also show a similar expression with slight variation. Therefore, the outcome of this study provides basic genomic information on the expression of the TaPIN gene family and will pave the way for dissecting the precise role of TaPINs in plant developmental processes and different stress conditions.
Collapse
|
25
|
Jaeger R, Moody LA. A fundamental developmental transition in Physcomitrium patens is regulated by evolutionarily conserved mechanisms. Evol Dev 2021; 23:123-136. [PMID: 33822471 DOI: 10.1111/ede.12376] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 03/09/2021] [Accepted: 03/11/2021] [Indexed: 01/15/2023]
Abstract
One of the most defining moments in history was the colonization of land by plants approximately 470 million years ago. The transition from water to land was accompanied by significant changes in the plant body plan, from those than resembled filamentous representatives of the charophytes, the sister group to land plants, to those that were morphologically complex and capable of colonizing harsher habitats. The moss Physcomitrium patens (also known as Physcomitrella patens) is an extant representative of the bryophytes, the earliest land plant lineage. The protonema of P. patens emerges from spores from a chloronemal initial cell, which can divide to self-renew to produce filaments of chloronemal cells. A chloronemal initial cell can differentiate into a caulonemal initial cell, which can divide and self-renew to produce filaments of caulonemal cells, which branch extensively and give rise to three-dimensional shoots. The process by which a chloronemal initial cell differentiates into a caulonemal initial cell is tightly regulated by auxin-induced remodeling of the actin cytoskeleton. Studies have revealed that the genetic mechanisms underpinning this transition also regulate tip growth and differentiation in diverse plant taxa. This review summarizes the known cellular and molecular mechanisms underpinning the chloronema to caulonema transition in P. patens.
Collapse
Affiliation(s)
- Richard Jaeger
- Department of Plant Sciences, University of Oxford, Oxford, UK
| | - Laura A Moody
- Department of Plant Sciences, University of Oxford, Oxford, UK
| |
Collapse
|
26
|
Casal JJ, Estevez JM. Auxin-Environment Integration in Growth Responses to Forage for Resources. Cold Spring Harb Perspect Biol 2021; 13:a040030. [PMID: 33431585 PMCID: PMC8015692 DOI: 10.1101/cshperspect.a040030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Plant fitness depends on the adequate morphological adjustment to the prevailing conditions of the environment. Therefore, plants sense environmental cues through their life cycle, including the presence of full darkness, light, or shade, the range of ambient temperatures, the direction of light and gravity vectors, and the presence of water and mineral nutrients (such as nitrate and phosphate) in the soil. The environmental information impinges on different aspects of the auxin system such as auxin synthesis, degradation, transport, perception, and downstream transcriptional regulation to modulate organ growth. Although a single environmental cue can affect several of these points, the relative impacts differ significantly among the various growth processes and cues. While stability in the generation of precise auxin gradients serves to guide the basic developmental pattern, dynamic changes in the auxin system fine-tune body shape to optimize the capture of environmental resources.
Collapse
Affiliation(s)
- Jorge J Casal
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA), Facultad de Agronomía, Buenos Aires 1417, Argentina
- Fundación Instituto Leloir and IIBBA-CONICET, Buenos Aires C1405BWE, Argentina
| | - José M Estevez
- Fundación Instituto Leloir and IIBBA-CONICET, Buenos Aires C1405BWE, Argentina
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andres Bello and Millennium Institute for Integrative Biology (iBio), Santiago 8370146, Chile
| |
Collapse
|
27
|
Retzer K, Weckwerth W. The TOR-Auxin Connection Upstream of Root Hair Growth. PLANTS (BASEL, SWITZERLAND) 2021; 10:150. [PMID: 33451169 PMCID: PMC7828656 DOI: 10.3390/plants10010150] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/09/2021] [Accepted: 01/11/2021] [Indexed: 12/11/2022]
Abstract
Plant growth and productivity are orchestrated by a network of signaling cascades involved in balancing responses to perceived environmental changes with resource availability. Vascular plants are divided into the shoot, an aboveground organ where sugar is synthesized, and the underground located root. Continuous growth requires the generation of energy in the form of carbohydrates in the leaves upon photosynthesis and uptake of nutrients and water through root hairs. Root hair outgrowth depends on the overall condition of the plant and its energy level must be high enough to maintain root growth. TARGET OF RAPAMYCIN (TOR)-mediated signaling cascades serve as a hub to evaluate which resources are needed to respond to external stimuli and which are available to maintain proper plant adaptation. Root hair growth further requires appropriate distribution of the phytohormone auxin, which primes root hair cell fate and triggers root hair elongation. Auxin is transported in an active, directed manner by a plasma membrane located carrier. The auxin efflux carrier PIN-FORMED 2 is necessary to transport auxin to root hair cells, followed by subcellular rearrangements involved in root hair outgrowth. This review presents an overview of events upstream and downstream of PIN2 action, which are involved in root hair growth control.
Collapse
Affiliation(s)
- Katarzyna Retzer
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Czech Academy of Sciences, 165 02 Prague, Czech Republic
| | - Wolfram Weckwerth
- Molecular Systems Biology (MOSYS), Department of Functional and Evolutionary Ecology, University of Vienna, 1010 Vienna, Austria;
- Vienna Metabolomics Center (VIME), University of Vienna, 1010 Vienna, Austria
| |
Collapse
|
28
|
Dai B, Chen C, Liu Y, Liu L, Qaseem MF, Wang J, Li H, Wu AM. Physiological, Biochemical, and Transcriptomic Responses of Neolamarckia cadamba to Aluminum Stress. Int J Mol Sci 2020; 21:E9624. [PMID: 33348765 PMCID: PMC7767006 DOI: 10.3390/ijms21249624] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/04/2020] [Accepted: 12/08/2020] [Indexed: 12/23/2022] Open
Abstract
Aluminum is the most abundant metal of the Earth's crust accounting for 7% of its mass, and release of toxic Al3+ in acid soils restricts plant growth. Neolamarckia cadamba, a fast-growing tree, only grows in tropical regions with acidic soils. In this study, N. cadamba was treated with high concentrations of aluminum under acidic condition (pH 4.5) to study its physiological, biochemical, and molecular response mechanisms against high aluminum stress. High aluminum concentration resulted in significant inhibition of root growth with time in N. cadamba. The concentration of Al3+ ions in the root tip increased significantly and the distribution of absorbed Al3+ was observed in the root tip after Al stress. Meanwhile, the concentration of Ca, Mg, Mn, and Fe was significantly decreased, but P concentration increased. Aluminum stress increased activities of antioxidant enzymes such as superoxide dismutase (SOD), catalase from micrococcus lysodeiktic (CAT), and peroxidase (POD) in the root tip, while the content of MDA was decreased. Transcriptome analysis showed 37,478 differential expression genes (DEGs) and 4096 GOs terms significantly associated with treatments. The expression of genes regulating aluminum transport and abscisic acid synthesis was significantly upregulated; however, the genes involved in auxin synthesis were downregulated. Of note, the transcripts of several key enzymes affecting lignin monomer synthesis in phenylalanine pathway were upregulated. Our results shed light on the physiological and molecular mechanisms of aluminum stress tolerance in N. cadamba.
Collapse
Affiliation(s)
- Baojia Dai
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (B.D.); (C.C.); (Y.L.); (M.F.Q.)
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou 510642, China
| | - Chen Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (B.D.); (C.C.); (Y.L.); (M.F.Q.)
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou 510642, China
| | - Yi Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (B.D.); (C.C.); (Y.L.); (M.F.Q.)
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou 510642, China
| | - Lijun Liu
- State Forestry and Grassland Administration Key Laboratory of Silviculture in downstream areas of the Yellow River, College of Forestry, Shandong Agriculture University, Taian 271018, Shandong, China;
| | - Mirza Faisal Qaseem
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (B.D.); (C.C.); (Y.L.); (M.F.Q.)
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou 510642, China
| | - Jinxiang Wang
- Root Biology Center & College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China;
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Huiling Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (B.D.); (C.C.); (Y.L.); (M.F.Q.)
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou 510642, China
| | - Ai-Min Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (B.D.); (C.C.); (Y.L.); (M.F.Q.)
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangzhou 510642, China
| |
Collapse
|
29
|
Genome-wide identification of polar auxin transporter gene families reveals a possible new polar auxin flow in inverted cuttings of Populus yunnanensis. Gene 2020; 772:145349. [PMID: 33338511 DOI: 10.1016/j.gene.2020.145349] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 10/30/2020] [Accepted: 12/01/2020] [Indexed: 12/14/2022]
Abstract
Inverted cuttings of Populus yunnanensis are characterized by enlarged stems and dwarfed new shoots, and phytohormones play a crucial role in the response to inversion. The polar auxin transport (PAT) system is distinct from the transport systems of other hormones and is controlled by three major transporter gene families: pin-formed (PIN), auxin-resistant/like aux (AUX/LAX) and ATP-binding cassette transporters of the B class (ABCB). Here, we identified these three families in P. trichocarpa, P. euphratica and P. yunnanensis through a genome-wide analysis. The Populus PIN, AUX/LAX and ABCB gene families comprised 15, 8 and 31 members, respectively. Most PAT genes in Populus and Arabidopsis were identified as clear sister pairs, and some had unique motifs. Transcriptome profiling revealed that the expression of most PAT genes was unrelated to cutting inversion and that only several genes showed altered expression when cuttings were inverted. The auxin content difference at positions was opposite in upright and inverted cutting bodies during rooting, which obeyed the original plant polarity. However, during plant growth, the two direction types exhibited similar auxin movements in the cutting bodies, and the opposite auxin changes were observed in new shoots. Four PAT genes with a positive response to cutting inversion, PyuPIN10, PyuPIN11, PyuLAX6 and PyuABCB27, showed diverse expression patterns between upright and inverted cuttings during rooting and plant growth. Furthermore, PAT gene expression retained its polarity, which differs from the results found for auxin flow during plant growth. The inconformity indicated that a new downward auxin flow in addition to the old upward flow might be established during the growth of inverted cuttings. Some highly polar PAT genes were involved in the maintenance of original auxin polarity, which might cause the enlarged stems of inverted cuttings. This work lays a foundation for understanding the roles of auxin transport in plant responses to inversion.
Collapse
|
30
|
Abdollahi Sisi N, Růžička K. ER-Localized PIN Carriers: Regulators of Intracellular Auxin Homeostasis. PLANTS 2020; 9:plants9111527. [PMID: 33182545 PMCID: PMC7697564 DOI: 10.3390/plants9111527] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 10/31/2020] [Accepted: 11/04/2020] [Indexed: 12/30/2022]
Abstract
The proper distribution of the hormone auxin is essential for plant development. It is channeled by auxin efflux carriers of the PIN family, typically asymmetrically located on the plasma membrane (PM). Several studies demonstrated that some PIN transporters are also located at the endoplasmic reticulum (ER). From the PM-PINs, they differ in a shorter internal hydrophilic loop, which carries the most important structural features required for their subcellular localization, but their biological role is otherwise relatively poorly known. We discuss how ER-PINs take part in maintaining intracellular auxin homeostasis, possibly by modulating the internal levels of IAA; it seems that the exact identity of the metabolites downstream of ER-PINs is not entirely clear as well. We further review the current knowledge about their predicted structure, evolution and localization. Finally, we also summarize their role in plant development.
Collapse
Affiliation(s)
- Nayyer Abdollahi Sisi
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Czech Academy of Sciences, 16502 Prague, Czech Republic;
- Department of Experimental Plant Biology, Faculty of Science, Charles University, 12844 Prague, Czech Republic
| | - Kamil Růžička
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Czech Academy of Sciences, 16502 Prague, Czech Republic;
- Correspondence: ; Tel.: +420-225-106-429
| |
Collapse
|
31
|
Sharma P, Kumar V, Khosla R, Guleria P. Exogenous naringenin improved digestible protein accumulation and altered morphology via VrPIN and auxin redistribution in Vigna radiata. 3 Biotech 2020; 10:431. [PMID: 32999809 DOI: 10.1007/s13205-020-02428-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 09/05/2020] [Indexed: 01/15/2023] Open
Abstract
Naringenin exposure altered auxin redistribution via VrPIN1 leading to morphological alterations and significantly reduced the protein precipitable tannins that further enhanced the protein accumulation and bioavailability. Flavonoid exposure is known to affect the antioxidant profile of legumes. However, a detailed study evaluating the effect of flavonoid naringenin on morphology and biochemical profile of legume is lacking. The present study is a novel report of improved in planta protein bioavailability and antioxidant potential of legume mungbean on naringenin exposure. The quantitative evaluation revealed significant protein accumulation (64-122 μg/g FW) on naringenin exposure. Further, an increase in protein solubility and digestibility compared to control was evident. Naringenin mediated altered α-amylase activity improved the mungbean seed germination rate. Naringenin induced auxin redistribution and altered PIN formed transcript expression reduced lateral root density and increased stem length that was subsequently reverted on exogenous indole acetic acid application. Naringenin enhanced polyphenolic accumulation and improved the antioxidant potential of mungbean. Additionally, the responsiveness of the early gene of the flavonoid biosynthetic pathway, Chalcone isomerase to naringenin concentration was revealed indicating a probable feedback regulation. Further, the presence of alternate liquiritigenin biosynthesis was also evident. The present study, thus reveals the probable potential of phytochemical naringenin towards agricultural sustainability in the changing environmental conditions.
Collapse
Affiliation(s)
- Priya Sharma
- Plant Biotechnology and Genetic Engineering Lab, Department of Biotechnology, DAV University, Jalandhar, Punjab 144012 India
| | - Vineet Kumar
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab 144111 India
| | - Rajiv Khosla
- Department of Biotechnology, Doaba College, Jalandhar, Punjab 144001 India
| | - Praveen Guleria
- Plant Biotechnology and Genetic Engineering Lab, Department of Biotechnology, DAV University, Jalandhar, Punjab 144012 India
| |
Collapse
|
32
|
Lin D, Yao H, Jia L, Tan J, Xu Z, Zheng W, Xue H. Phospholipase D-derived phosphatidic acid promotes root hair development under phosphorus deficiency by suppressing vacuolar degradation of PIN-FORMED2. THE NEW PHYTOLOGIST 2020; 226:142-155. [PMID: 31745997 PMCID: PMC7065129 DOI: 10.1111/nph.16330] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 11/10/2019] [Indexed: 05/03/2023]
Abstract
Root hair development is crucial for phosphate absorption, but how phosphorus deficiency affects root hair initiation and elongation remains unclear. We demonstrated the roles of auxin efflux carrier PIN-FORMED2 (PIN2) and phospholipase D (PLD)-derived phosphatidic acid (PA), a key signaling molecule, in promoting root hair development in Arabidopsis thaliana under a low phosphate (LP) condition. Root hair elongation under LP conditions was greatly suppressed in pin2 mutant or under treatment with a PLDζ2-specific inhibitor, revealing that PIN2 and polar auxin transport and PLDζ2-PA are crucial in LP responses. PIN2 was accumulated and degraded in the vacuole under a normal phosphate (NP) condition, whereas its vacuolar accumulation was suppressed under the LP or NP plus PA conditions. Vacuolar accumulation of PIN2 was increased in pldζ2 mutants under LP conditions. Increased or decreased PIN2 vacuolar accumulation is not observed in sorting nexin1 (snx1) mutant, indicating that vacuolar accumulation of PIN2 is mediated by SNX1 and the relevant trafficking process. PA binds to SNX1 and promotes its accumulation at the plasma membrane, especially under LP conditions, and hence promotes root hair development by suppressing the vacuolar degradation of PIN2. We uncovered a link between PLD-derived PA and SNX1-dependent vacuolar degradation of PIN2 in regulating root hair development under phosphorus deficiency.
Collapse
Affiliation(s)
- De‐Li Lin
- Collaborative Innovation Center of Henan Grain Crops/State Key Laboratory of Wheat and Maize Crop ScienceCollege of Life SciencesHenan Agricultural University450002ZhengzhouChina
| | - Hong‐Yan Yao
- National Key Laboratory of Plant Molecular GeneticsCAS Center for Excellence in Molecular Plant SciencesShanghai Institute of Plant Physiology and EcologyChinese academy of Sciences200032ShanghaiChina
| | - Li‐Hua Jia
- Collaborative Innovation Center of Henan Grain Crops/State Key Laboratory of Wheat and Maize Crop ScienceCollege of Life SciencesHenan Agricultural University450002ZhengzhouChina
| | - Jin‐Fang Tan
- College of Resource and EnvironmentHenan Agricultural University450002ZhengzhouChina
| | - Zhi‐Hong Xu
- National Key Laboratory of Plant Molecular GeneticsCAS Center for Excellence in Molecular Plant SciencesShanghai Institute of Plant Physiology and EcologyChinese academy of Sciences200032ShanghaiChina
| | - Wen‐Ming Zheng
- Collaborative Innovation Center of Henan Grain Crops/State Key Laboratory of Wheat and Maize Crop ScienceCollege of Life SciencesHenan Agricultural University450002ZhengzhouChina
| | - Hong‐Wei Xue
- National Key Laboratory of Plant Molecular GeneticsCAS Center for Excellence in Molecular Plant SciencesShanghai Institute of Plant Physiology and EcologyChinese academy of Sciences200032ShanghaiChina
- Joint Center for Single Cell BiologySchool of Agriculture and BiologyShanghai Jiao Tong University200240ShanghaiChina
| |
Collapse
|
33
|
Characterization of the Auxin Efflux Transporter PIN Proteins in Pear. PLANTS 2020; 9:plants9030349. [PMID: 32164258 PMCID: PMC7154836 DOI: 10.3390/plants9030349] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/03/2020] [Accepted: 03/04/2020] [Indexed: 01/12/2023]
Abstract
PIN-FORMED (PIN) encodes a key auxin polar transport family that plays a crucial role in the outward transport of auxin and several growth and development processes, including dwarfing trees. We identified a dwarfing pear rootstock 'OHF51' (Pyrus communis), which limits the growth vigor of the 'Xueqing' (Pyrus bretschneideri × Pyrus pyrifolia) scion, and isolated 14 putative PbPINs from the pear Pyrus bretschneideri. The phylogenic relationships, structure, promoter regions, and expression patterns were analyzed. PbPINs were classified into two main groups based on the protein domain structure and categorized into three major groups using the neighbor-joining algorithm. Promoter analysis demonstrated that PbPINs might be closely related to plant growth and development. Through quantitative real-time PCR (qRT-PCR) analysis, we found that the expression patterns of 14 PbPINs varied upon exposure to different organs in dwarfing and vigorous stocks, 'OHF51' and 'QN101' (Pyrus betulifolia), indicating that they might play varying roles in different tissues and participated in the regulation of growth vigor. These results provide fundamental insights into the characteristics and evolution of the PINs family, as well as the possible relationship between dwarfing ability and auxin polar transport.
Collapse
|
34
|
Lee H, Ganguly A, Lee RD, Park M, Cho HT. Intracellularly Localized PIN-FORMED8 Promotes Lateral Root Emergence in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2020; 10:1808. [PMID: 32082353 PMCID: PMC7005106 DOI: 10.3389/fpls.2019.01808] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 12/24/2019] [Indexed: 05/28/2023]
Abstract
PIN-FORMED (PIN) auxin efflux carriers with a long central hydrophilic loop (long PINs) have been implicated in organogenesis. However, the role of short hydrophilic loop PINs (short PINs) in organogenesis is largely unknown. In this study, we investigated the role of a short PIN, PIN8, in lateral root (LR) development in Arabidopsis thaliana. The loss-of-function mutation in PIN8 significantly decreased LR density, mostly by affecting the emergence stage. PIN8 showed a sporadic expression pattern along the root vascular cells in the phloem, where the PIN8 protein predominantly localized to intracellular compartments. During LR primordium development, PIN8 was expressed at the late stage. Plasma membrane (PM)-localized long PINs suppressed LR formation when expressed in the PIN8 domain. Conversely, an auxin influx carrier, AUX1, restored the wild-type (WT) LR density when expressed in the PIN8 domain of the pin8 mutant root. Moreover, LR emergence was considerably inhibited when AXR2-1, the dominant negative form of Aux/IAA7, compromised auxin signaling in the PIN8 domain. Consistent with these observations, the expression of many genes implicated in late LR development was suppressed in the pin8 mutant compared with the WT. Our results suggest that the intracellularly localized PIN8 affects LR development most likely by modulating intracellular auxin translocation. Thus, the function of PIN8 is distinctive from that of PM-localized long PINs, where they generate local auxin gradients for organogenesis by conducting cell-to-cell auxin reflux.
Collapse
|
35
|
Deletion in the Promoter of PcPIN-L Affects the Polar Auxin Transport in Dwarf Pear (Pyrus communis L.). Sci Rep 2019; 9:18645. [PMID: 31819123 PMCID: PMC6901534 DOI: 10.1038/s41598-019-55195-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 11/25/2019] [Indexed: 12/31/2022] Open
Abstract
Dwarf cultivars or dwarfing rootstocks enable high-density planting and are therefore highly desirable in modern pear production. Previously, we found that the dwarf growth habit of pear is controlled by a single dominant gene PcDw. In this study, PcPIN-L (PCP021016) was cloned from dwarf-type and standard-type pears. PcPIN-L expression was significantly lower in the dwarf-type pears than in standard-type pears, which was caused by the CT repeat deletion in the promoter of dwarf-type pears. PcPIN-L overexpression in tobacco plants enhanced the growth of the stems and the roots. Notably, the indole acetic acid (IAA) content decreased in the shoot tips and increased in the stems of transgenic lines compared with wild type, which is consistent with the greater IAA content in the shoot tips and lower IAA content in the stems of dwarf-type pears than in standard-type pears. The CT repeat deletion in the promoter that causes a decrease in promoter activity is associated with lower PcPIN-L expression in the dwarf-type pears, which might limit the polar auxin transport and in turn result in the dwarf phenotype. Taken together, the results provide a novel dwarfing molecular mechanism in perennial woody plants.
Collapse
|
36
|
Skokan R, Medvecká E, Viaene T, Vosolsobě S, Zwiewka M, Müller K, Skůpa P, Karady M, Zhang Y, Janacek DP, Hammes UZ, Ljung K, Nodzyński T, Petrášek J, Friml J. PIN-driven auxin transport emerged early in streptophyte evolution. NATURE PLANTS 2019; 5:1114-1119. [PMID: 31712756 DOI: 10.1038/s41477-019-0542-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 10/07/2019] [Indexed: 05/27/2023]
Abstract
PIN-FORMED (PIN) transporters mediate directional, intercellular movement of the phytohormone auxin in land plants. To elucidate the evolutionary origins of this developmentally crucial mechanism, we analysed the single PIN homologue of a simple green alga Klebsormidium flaccidum. KfPIN functions as a plasma membrane-localized auxin exporter in land plants and heterologous models. While its role in algae remains unclear, PIN-driven auxin export is probably an ancient and conserved trait within streptophytes.
Collapse
Affiliation(s)
- Roman Skokan
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czech Republic
- The Czech Academy of Sciences, Institute of Experimental Botany, Prague, Czech Republic
| | - Eva Medvecká
- CEITEC, Masaryk University, Mendel Centre for Genomics and Proteomics of Plants Systems, Brno, Czech Republic
| | - Tom Viaene
- Department of Plant Systems Biology, VIB, and Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Stanislav Vosolsobě
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Marta Zwiewka
- CEITEC, Masaryk University, Mendel Centre for Genomics and Proteomics of Plants Systems, Brno, Czech Republic
| | - Karel Müller
- The Czech Academy of Sciences, Institute of Experimental Botany, Prague, Czech Republic
| | - Petr Skůpa
- The Czech Academy of Sciences, Institute of Experimental Botany, Prague, Czech Republic
| | - Michal Karady
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå, Sweden
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | | | - Dorina P Janacek
- School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Ulrich Z Hammes
- School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Karin Ljung
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Tomasz Nodzyński
- CEITEC, Masaryk University, Mendel Centre for Genomics and Proteomics of Plants Systems, Brno, Czech Republic
| | - Jan Petrášek
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czech Republic
- The Czech Academy of Sciences, Institute of Experimental Botany, Prague, Czech Republic
| | | |
Collapse
|
37
|
Crombez H, Motte H, Beeckman T. Tackling Plant Phosphate Starvation by the Roots. Dev Cell 2019; 48:599-615. [PMID: 30861374 DOI: 10.1016/j.devcel.2019.01.002] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 10/16/2018] [Accepted: 12/31/2018] [Indexed: 12/17/2022]
Abstract
Plant responses to phosphate deprivation encompass a wide range of strategies, varying from altering root system architecture, entering symbiotic interactions to excreting root exudates for phosphorous release, and recycling of internal phosphate. These processes are tightly controlled by a complex network of proteins that are specifically upregulated upon phosphate starvation. Although the different effects of phosphate starvation have been intensely studied, the full extent of its contribution to altered root system architecture remains unclear. In this review, we focus on the effect of phosphate starvation on the developmental processes that shape the plant root system and their underlying molecular pathways.
Collapse
Affiliation(s)
- Hanne Crombez
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Ghent 9052, Belgium; VIB Center for Plant Systems Biology, Technologiepark 71, Ghent 9052, Belgium
| | - Hans Motte
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Ghent 9052, Belgium; VIB Center for Plant Systems Biology, Technologiepark 71, Ghent 9052, Belgium
| | - Tom Beeckman
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Ghent 9052, Belgium; VIB Center for Plant Systems Biology, Technologiepark 71, Ghent 9052, Belgium.
| |
Collapse
|
38
|
Barone V, Bertoldo G, Magro F, Broccanello C, Puglisi I, Baglieri A, Cagnin M, Concheri G, Squartini A, Pizzeghello D, Nardi S, Stevanato P. Molecular and Morphological Changes Induced by Leonardite-based Biostimulant in Beta vulgaris L. PLANTS 2019; 8:plants8060181. [PMID: 31216763 PMCID: PMC6630732 DOI: 10.3390/plants8060181] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 06/11/2019] [Accepted: 06/14/2019] [Indexed: 11/16/2022]
Abstract
Humic substances extracted from leonardite are widely considered to be bioactive compounds, influencing the whole-plant physiology and the crop yield. The aim of this work was to evaluate the effect of a new formulate based on leonardite in the early stage of growth of sugar beet (Beta vulgaris L.). A commercial preparation of leonardite (BLACKJAK) was characterized by ionomic analysis, solid-state 13C MAS NMR spectroscopy. Seedlings of sugar beet were grown in Hoagland's solution under controlled conditions. After five days of growth, an aliquot of the concentrated BLACKJAK was added to the solution to obtain a final dilution of 1:1000 (0.5 mg C L-1). The sugar beet response in the early stage of growth was determined by evaluating root morphological traits as well as the changes in the expression of 53 genes related to key morphophysiological processes. Root morphological traits, such as total root length, fine root length (average diameter < 0.5 mm), and number of root tips, were significantly (p < 0.001) increased in plants treated with BLACKJAK, compared to the untreated plants at all sampling times. At the molecular level, BLACKJAK treatment upregulated many of the evaluated genes. Moreover, both Real Time PCR and digital PCR showed that genes involved in hormonal response, such as PIN, ARF3, LOGL 10, GID1, and BRI1, were significantly (p < 0.05) upregulated by treatment with BLACKJAK. Our study provides essential information to understand the effect of a leonardite-based formulate on plant growth hormone metabolism, although the molecular and physiological basis for these complicated regulatory mechanisms deserve further investigations.
Collapse
Affiliation(s)
- Valeria Barone
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Viale Università, 16, 35020 Legnaro (PD), Italy.
| | - Giovanni Bertoldo
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Viale Università, 16, 35020 Legnaro (PD), Italy.
| | | | - Chiara Broccanello
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Viale Università, 16, 35020 Legnaro (PD), Italy.
| | - Ivana Puglisi
- Department of Agriculture, Food and Environment, University of Catania, Via S. Sofia 98, 95123 Catania, Italy.
| | - Andrea Baglieri
- Department of Agriculture, Food and Environment, University of Catania, Via S. Sofia 98, 95123 Catania, Italy.
| | - Massimo Cagnin
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Viale Università, 16, 35020 Legnaro (PD), Italy.
| | - Giuseppe Concheri
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Viale Università, 16, 35020 Legnaro (PD), Italy.
| | - Andrea Squartini
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Viale Università, 16, 35020 Legnaro (PD), Italy.
| | - Diego Pizzeghello
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Viale Università, 16, 35020 Legnaro (PD), Italy.
| | - Serenella Nardi
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Viale Università, 16, 35020 Legnaro (PD), Italy.
| | - Piergiorgio Stevanato
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Viale Università, 16, 35020 Legnaro (PD), Italy.
| |
Collapse
|
39
|
Oochi A, Hajny J, Fukui K, Nakao Y, Gallei M, Quareshy M, Takahashi K, Kinoshita T, Harborough SR, Kepinski S, Kasahara H, Napier R, Friml J, Hayashi KI. Pinstatic Acid Promotes Auxin Transport by Inhibiting PIN Internalization. PLANT PHYSIOLOGY 2019; 180:1152-1165. [PMID: 30936248 PMCID: PMC6548234 DOI: 10.1104/pp.19.00201] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 03/21/2019] [Indexed: 05/09/2023]
Abstract
Polar auxin transport plays a pivotal role in plant growth and development. PIN-FORMED (PIN) auxin efflux carriers regulate directional auxin movement by establishing local auxin maxima, minima, and gradients that drive multiple developmental processes and responses to environmental signals. Auxin has been proposed to modulate its own transport by regulating subcellular PIN trafficking via processes such as clathrin-mediated PIN endocytosis and constitutive recycling. Here, we further investigated the mechanisms by which auxin affects PIN trafficking by screening auxin analogs and identified pinstatic acid (PISA) as a positive modulator of polar auxin transport in Arabidopsis (Arabidopsis thaliana). PISA had an auxin-like effect on hypocotyl elongation and adventitious root formation via positive regulation of auxin transport. PISA did not activate SCFTIR1/AFB signaling and yet induced PIN accumulation at the cell surface by inhibiting PIN internalization from the plasma membrane. This work demonstrates PISA to be a promising chemical tool to dissect the regulatory mechanisms behind subcellular PIN trafficking and auxin transport.
Collapse
Affiliation(s)
- Akihiro Oochi
- Department of Biochemistry, Okayama University of Science, Okayama 700-0005, Japan
| | - Jakub Hajny
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
- Laboratory of Growth Regulators, The Czech Academy of Sciences, Institute of Experimental Botany & Palacký University, CZ-78371 Olomouc, Czech Republic
| | - Kosuke Fukui
- Department of Biochemistry, Okayama University of Science, Okayama 700-0005, Japan
| | - Yukio Nakao
- Department of Biochemistry, Okayama University of Science, Okayama 700-0005, Japan
| | - Michelle Gallei
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| | - Mussa Quareshy
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - Koji Takahashi
- Graduate School of Science, Nagoya University, Chikusa, Nagoya, 464-8602 Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya, 464-8601, Japan
| | - Toshinori Kinoshita
- Graduate School of Science, Nagoya University, Chikusa, Nagoya, 464-8602 Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya, 464-8601, Japan
| | - Sigurd Ramans Harborough
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Stefan Kepinski
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Hiroyuki Kasahara
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo 183-8509, Japan
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045 Japan
| | - Richard Napier
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - Jiří Friml
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| | - Ken-Ichiro Hayashi
- Department of Biochemistry, Okayama University of Science, Okayama 700-0005, Japan
| |
Collapse
|
40
|
Chen X, Li L, Xu B, Zhao S, Lu P, He Y, Ye T, Feng YQ, Wu Y. Phosphatidylinositol-specific phospholipase C2 functions in auxin-modulated root development. PLANT, CELL & ENVIRONMENT 2019; 42:1441-1457. [PMID: 30496625 DOI: 10.1111/pce.13492] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 11/08/2018] [Accepted: 11/24/2018] [Indexed: 05/11/2023]
Abstract
Nine phosphatidylinositol-specific phospholipases C (PLCs) have been identified in the Arabidopsis genome; among the importance of PLC2 in reproductive development is significant. However, the role of PLC2 in vegetative development such as in root growth is elusive. Here, we report that plc2 mutants displayed multiple auxin-defective phenotypes in root development, including short primary root, impaired root gravitropism, and inhibited root hair growth. The DR5:GUS expression and the endogenous indole-3-acetic acid (IAA) content, as well as the responses of a set of auxin-related genes to exogenous IAA treatment, were all decreased in plc2 seedlings, suggesting the influence of PLC2 on auxin accumulation and signalling. The root elongation of plc2 mutants was less sensitive to the high concentration of exogenous auxins, and the application of 1-naphthaleneacetic acid or the auxin transport inhibitor N-1-naphthylphthalamic acid could rescue the root hair growth of plc2 mutants. In addition, the PIN2 polarity and cycling in plc2 root epidermis cells were altered. These results demonstrate a critical role of PLC2 in auxin-mediated root development in Arabidopsis, in which PLC2 influences the polar distribution of PIN2.
Collapse
Affiliation(s)
- Xi Chen
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Lin Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Buxian Xu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Shujuan Zhao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Piaoying Lu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yuqing He
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Tiantian Ye
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan, China
| | - Yu-Qi Feng
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan, China
| | - Yan Wu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
41
|
Gan Z, Feng Y, Wu T, Wang Y, Xu X, Zhang X, Han Z. Downregulation of the auxin transporter gene SlPIN8 results in pollen abortion in tomato. PLANT MOLECULAR BIOLOGY 2019; 99:561-573. [PMID: 30734902 DOI: 10.1007/s11103-019-00836-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 02/02/2019] [Indexed: 05/12/2023]
Abstract
SlPIN8 is expressed specifically within tomato pollen, and that it is involved in tomato pollen development and intracellular auxin homeostasis. The auxin (IAA) transport protein PIN-FORMED (PIN) plays key roles in various aspects of plant development. The biological role of the auxin transporter SlPIN8 in tomato development remains unclear. Here, we examined the expression pattern of the SlPIN8 gene in vegetative and reproductive organs of tomato. RNA interference (RNAi) transgenic lines specifically silenced for the SlPIN8 gene were generated to identify the role of SlPIN8 in pollen development. We found that SlPIN8 mRNA is expressed specifically within tomato pollen. In the anthers, the highest mRNA expression and β-glucuronidase (GUS) activity of promoter-SlPIN8-GUS was detected during late stages of anther development, when pollen maturation occurred. The downregulation of SlPIN8 did not drastically affect the vegetative growth of tomato. However, in SlPIN8-RNAi transgenic plants, approximately 80% of the pollen grains were identified to be abnormal and lack viability; they were shriveled and flattened. Furthermore, the downregulation of SlPIN8 affected the gene expression of some anther development-specific proteins. SlPIN8-RNAi transgenic plants induced seedless fruits because of defective pollen function rather than defective female gametophyte function. In addition, SlPIN8 was found to localize to the endoplasmic reticulum, consistent with the changes in the auxin levels of SlPIN8-RNAi lines, whereas the level of free IAA was increased in SlPIN8-overexpressing protoplasts, indicating that SlPIN8 is involved in intracellular auxin homeostasis.
Collapse
Affiliation(s)
- Zengyu Gan
- Institute of Horticultural Plants, College of Horticulture, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Yi Feng
- Institute of Horticultural Plants, College of Horticulture, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Ting Wu
- Institute of Horticultural Plants, College of Horticulture, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Yi Wang
- Institute of Horticultural Plants, College of Horticulture, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Xuefeng Xu
- Institute of Horticultural Plants, College of Horticulture, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Xinzhong Zhang
- Institute of Horticultural Plants, College of Horticulture, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Zhenhai Han
- Institute of Horticultural Plants, College of Horticulture, China Agricultural University, Beijing, 100193, People's Republic of China.
| |
Collapse
|
42
|
Shirley NJ, Aubert MK, Wilkinson LG, Bird DC, Lora J, Yang X, Tucker MR. Translating auxin responses into ovules, seeds and yield: Insight from Arabidopsis and the cereals. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2019; 61:310-336. [PMID: 30474296 DOI: 10.1111/jipb.12747] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 11/16/2018] [Indexed: 05/27/2023]
Abstract
Grain production in cereal crops depends on the stable formation of male and female gametes in the flower. In most angiosperms, the female gamete is produced from a germline located deep within the ovary, protected by several layers of maternal tissue, including the ovary wall, ovule integuments and nucellus. In the field, germline formation and floret fertility are major determinants of yield potential, contributing to traits such as seed number, weight and size. As such, stimuli affecting the timing and duration of reproductive phases, as well as the viability, size and number of cells within reproductive organs can significantly impact yield. One key stimulant is the phytohormone auxin, which influences growth and morphogenesis of female tissues during gynoecium development, gametophyte formation, and endosperm cellularization. In this review we consider the role of the auxin signaling pathway during ovule and seed development, first in the context of Arabidopsis and then in the cereals. We summarize the gene families involved and highlight distinct expression patterns that suggest a range of roles in reproductive cell specification and fate. This is discussed in terms of seed production and how targeted modification of different tissues might facilitate improvements.
Collapse
Affiliation(s)
- Neil J Shirley
- School of Agriculture, Food and Wine, Waite Research Institute, The University of Adelaide, Glen Osmond, SA, Australia
| | - Matthew K Aubert
- School of Agriculture, Food and Wine, Waite Research Institute, The University of Adelaide, Glen Osmond, SA, Australia
| | - Laura G Wilkinson
- School of Agriculture, Food and Wine, Waite Research Institute, The University of Adelaide, Glen Osmond, SA, Australia
| | - Dayton C Bird
- School of Agriculture, Food and Wine, Waite Research Institute, The University of Adelaide, Glen Osmond, SA, Australia
| | - Jorge Lora
- School of Agriculture, Food and Wine, Waite Research Institute, The University of Adelaide, Glen Osmond, SA, Australia
| | - Xiujuan Yang
- School of Agriculture, Food and Wine, Waite Research Institute, The University of Adelaide, Glen Osmond, SA, Australia
| | - Matthew R Tucker
- School of Agriculture, Food and Wine, Waite Research Institute, The University of Adelaide, Glen Osmond, SA, Australia
| |
Collapse
|
43
|
Skalický V, Kubeš M, Napier R, Novák O. Auxins and Cytokinins-The Role of Subcellular Organization on Homeostasis. Int J Mol Sci 2018; 19:E3115. [PMID: 30314316 PMCID: PMC6213326 DOI: 10.3390/ijms19103115] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 10/05/2018] [Accepted: 10/09/2018] [Indexed: 12/18/2022] Open
Abstract
Plant hormones are master regulators of plant growth and development. Better knowledge of their spatial signaling and homeostasis (transport and metabolism) on the lowest structural levels (cellular and subcellular) is therefore crucial to a better understanding of developmental processes in plants. Recent progress in phytohormone analysis at the cellular and subcellular levels has greatly improved the effectiveness of isolation protocols and the sensitivity of analytical methods. This review is mainly focused on homeostasis of two plant hormone groups, auxins and cytokinins. It will summarize and discuss their tissue- and cell-type specific distributions at the cellular and subcellular levels.
Collapse
Affiliation(s)
- Vladimír Skalický
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany of the Czech Academy of Sciences & Faculty of Science of Palacký University, Šlechtitelů 27, 78371 Olomouc, Czech Republic.
| | - Martin Kubeš
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science of Palacký University, Šlechtitelů 27, 78371 Olomouc, Czech Republic.
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK.
| | - Richard Napier
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK.
| | - Ondřej Novák
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany of the Czech Academy of Sciences & Faculty of Science of Palacký University, Šlechtitelů 27, 78371 Olomouc, Czech Republic.
| |
Collapse
|
44
|
Zhao X, Liu Y, Liu X, Jiang J. Comparative Transcriptome Profiling of Two Tomato Genotypes in Response to Potassium-Deficiency Stress. Int J Mol Sci 2018; 19:ijms19082402. [PMID: 30110976 PMCID: PMC6121555 DOI: 10.3390/ijms19082402] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 08/09/2018] [Accepted: 08/10/2018] [Indexed: 02/01/2023] Open
Abstract
Tomato is a crop that requires a sufficient supply of potassium (K) for optimal productivity and quality. K+-deficiency stress decreases tomato yield and quality. To further delve into the mechanism of the response to K+-deficiency and to screen out low-K+ tolerant genes in tomatoes, BGISEQ-500-based RNA sequencing was performed using two tomato genotypes (low-K+ tolerant JZ34 and low-K+ sensitive JZ18). We identified 1936 differentially expressed genes (DEGs) in JZ18 and JZ34 at 12 and 24 h after K+-deficiency treatment. According to the Gene Ontology (GO) and Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathway analyses, the DEGs that changed significantly primarily included transcription factors, transporters, kinases, oxidative stress proteins, and hormone signaling-and glycometabolism-related genes. The experimental results confirmed the induced expression of the responsive genes in the low-K+ signaling pathway. The largest group of DEGs comprised up to 110 oxidative stress-related genes. In total, 19 ethylene response factors (ERFs) demonstrated differential expression between JZ18 and JZ34 in response to K+-deficiency. Furthermore, we confirmed 20 DEGs closely related to K+-deficiency stress by quantitative RT-PCR (qRT-PCR), some of which affected the root configuration, these DEGs could be further studied for use as molecular targets to explore novel approaches, and to acquire more effective K acquisition efficiencies for tomatoes. A hypothesis involving possible cross-talk between phytohormone signaling cues and reactive oxygen species (ROS) leading to root growth in JZ34 is proposed. The results provide a comprehensive foundation for the molecular mechanisms involved in the response of tomatoes to low K+ stress.
Collapse
Affiliation(s)
- Xiaoming Zhao
- The Key Laboratory of Protected Horticulture Ministry of Education, College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China.
- College of Agriculture, Jilin Agriculture Science and Technology College, Jilin 132101, China.
| | - Yang Liu
- The Key Laboratory of Protected Horticulture Ministry of Education, College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China.
| | - Xin Liu
- The Key Laboratory of Protected Horticulture Ministry of Education, College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China.
| | - Jing Jiang
- The Key Laboratory of Protected Horticulture Ministry of Education, College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China.
| |
Collapse
|
45
|
Zhang C, Dong W, Huang ZA, Cho M, Yu Q, Wu C, Yu C. Genome-wide identification and expression analysis of the CaLAX and CaPIN gene families in pepper (Capsicum annuum L.) under various abiotic stresses and hormone treatments. Genome 2018; 61:121-130. [PMID: 29304291 DOI: 10.1139/gen-2017-0163] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Auxin plays key roles in regulating plant growth and development as well as in response to environmental stresses. The intercellular transport of auxin is mediated by the following four gene families: ATP-binding cassette family B (ABCB), auxin resistant1/like aux1 (AUX/LAX), PIN-formed (PIN), and PIN-like (PILS). Here, the latest assembled pepper (Capsicum annuum L.) genome was used to characterise and analyse the CaLAX and CaPIN gene families. Genome-wide investigations into these families, including chromosomal distributions, phytogenic relationships, and intron/exon structures, were performed. In total, 4 CaLAX and 10 CaPIN genes were mapped to 10 chromosomes. Most of these genes exhibited varied tissue-specific expression patterns assessed by quantitative real-time PCR. The expression profiles of the CaLAX and CaPIN genes under various abiotic stresses (salt, drought, and cold), exogenous phytohormones (IAA, 6-BA, ABA, SA, and MeJA), and polar auxin transport inhibitor treatments were evaluated. Most CaLAX and CaPIN genes were altered by abiotic stress at the transcriptional level in both shoots and roots, and many CaLAX and CaPIN genes were regulated by exogenous phytohormones. Our study helps to identify candidate auxin transporter genes and to further analyse their biological functions in pepper development and in its adaptation to environmental stresses.
Collapse
Affiliation(s)
- Chenghao Zhang
- a Vegetable Research Institute, Key Labortatory of Creative Agricultrue, Ministry of Agricultrue, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Wenqi Dong
- a Vegetable Research Institute, Key Labortatory of Creative Agricultrue, Ministry of Agricultrue, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Zong-An Huang
- b Institute of Vegetable Sciences, Wenzhou Academy of Agricultural Sciences, Wenzhou Vocational College of Science and Technology, Key Lab of Crop breeding in South Zhejiang Wenzhou 325014, China
| | - MyeongCheoul Cho
- c Vegetable Research Division, National Institute of Horticultural & Herbal Science, Rural Development Administration, Suwon 440-706, Republic of Korea
| | - Qingcang Yu
- d College of Faculty of Informatics, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Chuanyu Wu
- d College of Faculty of Informatics, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Chenliang Yu
- a Vegetable Research Institute, Key Labortatory of Creative Agricultrue, Ministry of Agricultrue, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| |
Collapse
|
46
|
Barbosa ICR, Hammes UZ, Schwechheimer C. Activation and Polarity Control of PIN-FORMED Auxin Transporters by Phosphorylation. TRENDS IN PLANT SCIENCE 2018; 23:523-538. [PMID: 29678589 DOI: 10.1016/j.tplants.2018.03.009] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Revised: 03/11/2018] [Accepted: 03/14/2018] [Indexed: 05/09/2023]
Abstract
Auxin controls almost every aspect of plant development. Auxin is distributed within the plant by passive diffusion and active cell-to-cell transport. PIN-FORMED (PIN) auxin efflux transporters are polarly distributed in the plasma membranes of many cells, and knowledge about their distribution can predict auxin transport and explain auxin distribution patterns, even in complex tissues. Recent studies have revealed that phosphorylation is essential for PIN activation, suggesting that PIN phosphorylation needs to be taken into account in understanding auxin transport. These findings also ask for a re-examination of previously proposed mechanisms for phosphorylation-dependent PIN polarity control. We provide a comprehensive summary of the current knowledge on PIN regulation by phosphorylation, and discuss possible mechanisms of PIN polarity control in the context of recent findings.
Collapse
Affiliation(s)
- Inês C R Barbosa
- Department of Plant Molecular Biology, Biophore Building, Unil-Sorge, Université de Lausanne, 1015 Lausanne, Switzerland; These authors contributed equally to this review article and are listed in alphabetical order
| | - Ulrich Z Hammes
- Plant Systems Biology, Technical University Munich, Emil-Ramann-Strasse 8, 85354 Freising, Germany; These authors contributed equally to this review article and are listed in alphabetical order
| | - Claus Schwechheimer
- Plant Systems Biology, Technical University Munich, Emil-Ramann-Strasse 8, 85354 Freising, Germany; These authors contributed equally to this review article and are listed in alphabetical order.
| |
Collapse
|
47
|
Zhang M, Liu XK, Fan W, Yan DF, Zhong NS, Gao JY, Zhang WJ. Transcriptome analysis reveals hybridization-induced genome shock in an interspecific F 1 hybrid from Camellia. Genome 2018; 61:477-485. [PMID: 29718690 DOI: 10.1139/gen-2017-0105] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The combination of two divergent genomes during hybridization can result in "genome shock". Although genome shock has been reported in the hybrids of some herbaceous plants, the pattern and the principle it follows are far from understood, especially in woody plants. Here, the gene expression patterns were remodeled in the F1 hybrid from the crossing of Camellia azalea × Camellia amplexicaulis compared with the parents as revealed by RNA-seq. About 54.5% of all unigenes were differentially expressed between the F1 hybrid and at least one of the parents, including 6404 unigenes with the highest expression level in the F1 hybrid. A series of genes, related to flower development, essential for RNA-directed DNA methylation and histone methylation, as well as 223 transposable elements, were enriched; and most of them exhibited a higher level of expression in the F1 hybrid. These results indicated that the genome shock induced by interspecific hybridization in Camellia could indeed result in changes of gene expression patterns, potentially through regulating DNA methylation and histone methylation which may be helpful for the maintaining of genome stability and even related to the unique phenotype of the F1 hybrid.
Collapse
Affiliation(s)
- Min Zhang
- a Institute of Biodiversity Science, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Xin-Kai Liu
- b Palm Eco-Town Development Co., Ltd., Guangzhou, Guangdong 510627, China
| | - Wen Fan
- a Institute of Biodiversity Science, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Dan-Feng Yan
- b Palm Eco-Town Development Co., Ltd., Guangzhou, Guangdong 510627, China
| | - Nai-Sheng Zhong
- b Palm Eco-Town Development Co., Ltd., Guangzhou, Guangdong 510627, China
| | - Ji-Yin Gao
- b Palm Eco-Town Development Co., Ltd., Guangzhou, Guangdong 510627, China.,c Research Institute of Subtropical Forest, Chinese Academy of Forestry, Fuyang, Zhejiang 311400, China
| | - Wen-Ju Zhang
- a Institute of Biodiversity Science, School of Life Sciences, Fudan University, Shanghai 200438, China
| |
Collapse
|
48
|
Kirschner GK, Stahl Y, Imani J, von Korff M, Simon R. Fluorescent reporter lines for auxin and cytokinin signalling in barley (Hordeum vulgare). PLoS One 2018; 13:e0196086. [PMID: 29694399 PMCID: PMC5918912 DOI: 10.1371/journal.pone.0196086] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 04/05/2018] [Indexed: 11/18/2022] Open
Abstract
The phytohormones auxin and cytokinin control development and maintenance of plant meristems and stem cell systems. Fluorescent protein reporter lines that monitor phytohormone controlled gene expression programmes have been widely used to study development and differentiation in the model species Arabidopsis, but equivalent tools are still missing for the majority of crop species. Barley (Hordeum vulgare) is the fourth most abundant cereal crop plant, but knowledge on these important phytohormones in regard to the barley root and shoot stem cell niches is still negligible. We have now analysed the role of auxin and cytokinin in barley root meristem development, and present fluorescent protein reporter lines that allow to dissect auxin and cytokinin signalling outputs in vivo. We found that application of either auxin or cytokinin to barley seedlings negatively impacts root meristem growth. We further established a barley cytokinin reporter, TCSnew, which revealed significant cytokinin signalling in the stele cells proximal to the QC, and in the differentiated root cap cells. Application of exogenous cytokinin activated signalling in the root stem cell niche. Commonly employed auxin reporters DR5 or DR5v2 failed to respond to auxin in barley. However, analysis of putative auxin signalling targets barley PLETHORA1 (HvPLT1) is expressed in a similar pattern as its orthologue AtPLT1 from Arabidopsis, i.e. in the QC and the surrounding cells. Furthermore, the PINFORMED1 (HvPIN1) auxin efflux carrier was found to be expressed in root and shoot meristems, where it polarly localized to the plasma membrane. HvPIN1 expression is negatively regulated by cytokinin and its intracellular localisation is sensitive to brefeldinA (BFA). With this study, we provide the first fluorescent reporter lines as a tool to study auxin and cytokinin signalling and response pathways in barley.
Collapse
Affiliation(s)
- Gwendolyn K. Kirschner
- Institute for Developmental Genetics and Cluster of Excellence on Plant Sciences, Heinrich Heine University, Düsseldorf, Germany
| | - Yvonne Stahl
- Institute for Developmental Genetics and Cluster of Excellence on Plant Sciences, Heinrich Heine University, Düsseldorf, Germany
| | - Jafargholi Imani
- Research Centre for BioSystems, Land Use and Nutrition (IFZ), Justus Liebig University, Institute of Phytopathology and Applied Zoology, Giessen, Germany
| | - Maria von Korff
- Institute for Plant Genetics and Cluster of Excellence on Plant Sciences, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Rüdiger Simon
- Institute for Developmental Genetics and Cluster of Excellence on Plant Sciences, Heinrich Heine University, Düsseldorf, Germany
- * E-mail:
| |
Collapse
|
49
|
Bahieldin A, Atef A, Edris S, Gadalla NO, Ramadan AM, Hassan SM, Al Attas SG, Al-Kordy MA, Al-Hajar ASM, Sabir JSM, Nasr ME, Osman GH, El-Domyati FM. Multifunctional activities of ERF109 as affected by salt stress in Arabidopsis. Sci Rep 2018; 8:6403. [PMID: 29686365 PMCID: PMC5913302 DOI: 10.1038/s41598-018-24452-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 04/04/2018] [Indexed: 11/17/2022] Open
Abstract
Transcriptomic analysis was conducted in leaves of Arabidopsis T-DNA insertion ERF109-knocked out (KO) mutant or plants overexpressing (OE) the gene to detect its role in driving expression of programmed cell death- (PCD-) or growth-related genes under high salt (200 mM NaCl) stress. The analysis yielded ~22–24 million reads, of which 90% mapped to the Arabidopsis reference nuclear genome. Hierarchical cluster analysis of gene expression and principal component analysis (PCA) successfully separated transcriptomes of the two stress time points. Analysis indicated the occurrence of 65 clusters of gene expression with transcripts of four clusters differed at the genotype (e.g., WT (wild type), KOERF109 or OEERF109) level. Regulated transcripts involved DIAP1-like gene encoding a death-associated inhibitor of reactive oxygen species (ROS). Other ERF109-regulated transcripts belong to gene families encoding ROS scavenging enzymes and a large number of genes participating in three consecutive pathways, e.g., phenylalanine, tyrosine and tryptophan biosynthesis, tryptophan metabolism and plant hormone signal transduction. We investigated the possibility that ERF109 acts as a “master switch” mediator of a cascade of consecutive events across these three pathways initially by driving expression of ASA1 and YUC2 genes and possibly driving GST, IGPS and LAX2 genes. Action of downstream auxin-regulator, auxin-responsive as well as auxin carrier genes promotes plant cell growth under adverse conditions.
Collapse
Affiliation(s)
- Ahmed Bahieldin
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, Jeddah, 21589, Saudi Arabia.
| | - Ahmed Atef
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, Jeddah, 21589, Saudi Arabia
| | - Sherif Edris
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, Jeddah, 21589, Saudi Arabia.,Department of Genetics, Faculty of Agriculture, Ain Shams University, Cairo, Egypt.,Princess Al-Jawhara Al-Brahim Centre of Excellence in Research of Hereditary Disorders (PACER-HD), Faculty of Medicine, King Abdulaziz University (KAU), Jeddah, Saudi Arabia
| | - Nour O Gadalla
- Department of Arid Land Agriculture, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah, Saudi Arabia.,Genetics and Cytology Department, Genetic Engineering and Biotechnology Division, National Research Center, Dokki, Egypt
| | - Ahmed M Ramadan
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, Jeddah, 21589, Saudi Arabia.,Agricultural Genetic Engineering Research Institute (AGERI), Agriculture Research Center (ARC), Giza, Egypt
| | - Sabah M Hassan
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, Jeddah, 21589, Saudi Arabia.,Department of Genetics, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
| | - Sanaa G Al Attas
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, Jeddah, 21589, Saudi Arabia
| | - Magdy A Al-Kordy
- Genetics and Cytology Department, Genetic Engineering and Biotechnology Division, National Research Center, Dokki, Egypt
| | - Abdulrahman S M Al-Hajar
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, Jeddah, 21589, Saudi Arabia
| | - Jamal S M Sabir
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, Jeddah, 21589, Saudi Arabia
| | - Mahmoud E Nasr
- Faculty of Agriculture, Menofia University, Shebeen Elkom, Egypt
| | - Gamal H Osman
- Agricultural Genetic Engineering Research Institute (AGERI), Agriculture Research Center (ARC), Giza, Egypt. .,Department of Biology, Umm Al-Qura University, Makkah, Saudi Arabia.
| | - Fotouh M El-Domyati
- Department of Genetics, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
| |
Collapse
|
50
|
Ditengou FA, Gomes D, Nziengui H, Kochersperger P, Lasok H, Medeiros V, Paponov IA, Nagy SK, Nádai TV, Mészáros T, Barnabás B, Ditengou BI, Rapp K, Qi L, Li X, Becker C, Li C, Dóczi R, Palme K. Characterization of auxin transporter PIN6 plasma membrane targeting reveals a function for PIN6 in plant bolting. THE NEW PHYTOLOGIST 2018; 217:1610-1624. [PMID: 29218850 DOI: 10.1111/nph.14923] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 10/23/2017] [Indexed: 05/25/2023]
Abstract
Auxin gradients are sustained by series of influx and efflux carriers whose subcellular localization is sensitive to both exogenous and endogenous factors. Recently the localization of the Arabidopsis thaliana auxin efflux carrier PIN-FORMED (PIN) 6 was reported to be tissue-specific and regulated through unknown mechanisms. Here, we used genetic, molecular and pharmacological approaches to characterize the molecular mechanism(s) controlling the subcellular localization of PIN6. PIN6 localizes to endomembrane domains in tissues with low PIN6 expression levels such as roots, but localizes at the plasma membrane (PM) in tissues with increased PIN6 expression such as the inflorescence stem and nectary glands. We provide evidence that this dual localization is controlled by PIN6 phosphorylation and demonstrate that PIN6 is phosphorylated by mitogen-activated protein kinases (MAPKs) MPK4 and MPK6. The analysis of transgenic plants expressing PIN6 at PM or in endomembrane domains reveals that PIN6 subcellular localization is critical for Arabidopsis inflorescence stem elongation post-flowering (bolting). In line with a role for PIN6 in plant bolting, inflorescence stems elongate faster in pin6 mutant plants than in wild-type plants. We propose that PIN6 subcellular localization is under the control of developmental signals acting on tissue-specific determinants controlling PIN6-expression levels and PIN6 phosphorylation.
Collapse
Affiliation(s)
- Franck Anicet Ditengou
- Institute of Biology II, Faculty of Biology, University of Freiburg, Schänzlestrasse 1, D-79104, Freiburg, Germany
| | - Dulceneia Gomes
- Institute of Biology II, Faculty of Biology, University of Freiburg, Schänzlestrasse 1, D-79104, Freiburg, Germany
| | - Hugues Nziengui
- Institute of Biology II, Faculty of Biology, University of Freiburg, Schänzlestrasse 1, D-79104, Freiburg, Germany
| | - Philip Kochersperger
- Institute of Biology II, Faculty of Biology, University of Freiburg, Schänzlestrasse 1, D-79104, Freiburg, Germany
| | - Hanna Lasok
- Institute of Biology II, Faculty of Biology, University of Freiburg, Schänzlestrasse 1, D-79104, Freiburg, Germany
| | - Violante Medeiros
- Institute of Biology II, Faculty of Biology, University of Freiburg, Schänzlestrasse 1, D-79104, Freiburg, Germany
| | - Ivan A Paponov
- Institute of Biology II, Faculty of Biology, University of Freiburg, Schänzlestrasse 1, D-79104, Freiburg, Germany
- NIBIO, Norwegian Institute for Bioeconomy Research, Postvegen 213, 4353, Klepp Stasjon, Norway
| | - Szilvia Krisztina Nagy
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Tűzoltó u. 37-47, H-1094, Budapest, Hungary
| | - Tímea Virág Nádai
- Department of Plant Cell Biology, Centre for Agricultural Research of the Hungarian Academy of Sciences, Brunszvik u. 2, H-2462, Martonvásár, Hungary
| | - Tamás Mészáros
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Tűzoltó u. 37-47, H-1094, Budapest, Hungary
- Research Group for Technical Analytical Chemistry, Hungarian Academy of Sciences, Budapest University of Technology and Economics, Szt. Gellért tér 4, H-1111, Budapest, Hungary
| | - Beáta Barnabás
- Department of Plant Cell Biology, Centre for Agricultural Research of the Hungarian Academy of Sciences, Brunszvik u. 2, H-2462, Martonvásár, Hungary
| | - Beata Izabela Ditengou
- Institute of Biology II, Faculty of Biology, University of Freiburg, Schänzlestrasse 1, D-79104, Freiburg, Germany
| | - Katja Rapp
- Institute of Biology II, Faculty of Biology, University of Freiburg, Schänzlestrasse 1, D-79104, Freiburg, Germany
| | - Linlin Qi
- VIB-UGent, Center for Plant Systems Biology, Gent, Belgium
| | - Xugang Li
- Institute of Biology II, Faculty of Biology, University of Freiburg, Schänzlestrasse 1, D-79104, Freiburg, Germany
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Daizong Street 61, Tai'an, 271018, China
| | - Claude Becker
- Institute of Biology II, Faculty of Biology, University of Freiburg, Schänzlestrasse 1, D-79104, Freiburg, Germany
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna Biocenter (VBC), 1030, Vienna, Austria
| | - Chuanyou Li
- VIB-UGent, Center for Plant Systems Biology, Gent, Belgium
| | - Róbert Dóczi
- Department of Plant Cell Biology, Centre for Agricultural Research of the Hungarian Academy of Sciences, Brunszvik u. 2, H-2462, Martonvásár, Hungary
| | - Klaus Palme
- Institute of Biology II, Faculty of Biology, University of Freiburg, Schänzlestrasse 1, D-79104, Freiburg, Germany
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna Biocenter (VBC), 1030, Vienna, Austria
- Centre for Biological Systems Analysis, Albert-Ludwigs-University of Freiburg, Habsburgerstrasse 49, 79104, Freiburg, Germany
- Freiburg Institute for Advanced Sciences (FRIAS), Albert-Ludwigs-University of Freiburg, Albertstrasse 19, 79104, Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies, Albert-Ludwigs-University of Freiburg, Schänzlestrasse 18, 79104, Freiburg, Germany
| |
Collapse
|