1
|
Jiang GF, Qin BT, Pang YK, Qin LL, Pereira L, Roddy AB. Limited effects of xylem anatomy on embolism resistance in cycad leaves. THE NEW PHYTOLOGIST 2024; 243:1329-1346. [PMID: 38898642 DOI: 10.1111/nph.19914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 06/01/2024] [Indexed: 06/21/2024]
Abstract
Drought-induced xylem embolism is a primary cause of plant mortality. Although c. 70% of cycads are threatened by extinction and extant cycads diversified during a period of increasing aridification, the vulnerability of cycads to embolism spread has been overlooked. We quantified the vulnerability to drought-induced embolism, pressure-volume curves, in situ water potentials, and a suite of xylem anatomical traits of leaf pinnae and rachises for 20 cycad species. We tested whether anatomical traits were linked to hydraulic safety in cycads. Compared with other major vascular plant clades, cycads exhibited similar embolism resistance to angiosperms and pteridophytes but were more vulnerable to embolism than noncycad gymnosperms. All 20 cycads had both tracheids and vessels, the proportions of which were unrelated to embolism resistance. Only vessel pit membrane fraction was positively correlated to embolism resistance, contrary to angiosperms. Water potential at turgor loss was significantly correlated to embolism resistance among cycads. Our results show that cycads exhibit low resistance to xylem embolism and that xylem anatomical traits - particularly vessels - may influence embolism resistance together with tracheids. This study highlights the importance of understanding the mechanisms of drought resistance in evolutionarily unique and threatened lineages like the cycads.
Collapse
Affiliation(s)
- Guo-Feng Jiang
- Guangxi Key Laboratory of Forest Ecology and Conservation, Guangxi Colleges and Universities Key Laboratory for Cultivation and Utilization of Subtropical Forest Plantation, and State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Daxuedonglu 100, Nanning, Guangxi, 530004, China
| | - Bo-Tao Qin
- Guangxi Key Laboratory of Forest Ecology and Conservation, Guangxi Colleges and Universities Key Laboratory for Cultivation and Utilization of Subtropical Forest Plantation, and State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Daxuedonglu 100, Nanning, Guangxi, 530004, China
| | - Yu-Kun Pang
- Guangxi Key Laboratory of Forest Ecology and Conservation, Guangxi Colleges and Universities Key Laboratory for Cultivation and Utilization of Subtropical Forest Plantation, and State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Daxuedonglu 100, Nanning, Guangxi, 530004, China
| | - Lan-Li Qin
- Guangxi Key Laboratory of Forest Ecology and Conservation, Guangxi Colleges and Universities Key Laboratory for Cultivation and Utilization of Subtropical Forest Plantation, and State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Daxuedonglu 100, Nanning, Guangxi, 530004, China
- College of Chemistry and Bioengineering, Hechi University, Yizhou, Guangxi, 546300, China
| | - Luciano Pereira
- Institute of Botany, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Adam B Roddy
- Department of Biological Sciences, Institute of Environment, Florida International University, Miami, FL, 33199, USA
| |
Collapse
|
2
|
Zhang G, Fortunel C, Niu S, Zuo J, Maeght JL, Yang X, Xia S, Mao Z. Root topological order drives variation of fine root vessel traits and hydraulic strategies in tropical trees. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:2951-2964. [PMID: 38426564 DOI: 10.1093/jxb/erae083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 02/28/2024] [Indexed: 03/02/2024]
Abstract
Vessel traits contribute to plant water transport from roots to leaves and thereby influence how plants respond to soil water availability, but the sources of variation in fine root anatomical traits remain poorly understood. Here, we explore the variations of fine root vessel traits along topological orders within and across tropical tree species. Anatomical traits were measured along five root topological orders in 80 individual trees of 20 species from a tropical forest in southwestern China. We found large variations for most root anatomical traits across topological orders, and strong co-variations between vessel traits. Within species, theoretical specific xylem hydraulic conductivity (Kth) increased with topological order due to increased mean vessel diameter, size heterogeneity, and decreased vessel density. Across species, Kth was associated with vessel fraction in low-order roots and correlated with mean vessel diameter and vessel density in high-order roots, suggesting a shift in relative anatomical contributors to Kth from the second- to fifth-order roots. We found no clear relationship between Kth and stele: root diameter ratios. Our study shows strong variations in root vessel traits across topological orders and species, and highlights shifts in the anatomical underpinnings by varying vessel-related anatomical structures for an optimized water supply.
Collapse
Affiliation(s)
- Guangqi Zhang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China
- AMAP (Botanique et Modélisation de l'Architecture des Plantes et des Végétations), Université de Montpellier, CIRAD, CNRS, INRAE, IRD, 34000 Montpellier, France
| | - Claire Fortunel
- AMAP (Botanique et Modélisation de l'Architecture des Plantes et des Végétations), Université de Montpellier, CIRAD, CNRS, INRAE, IRD, 34000 Montpellier, France
| | - Shan Niu
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China
| | - Juan Zuo
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Jean-Luc Maeght
- AMAP (Botanique et Modélisation de l'Architecture des Plantes et des Végétations), Université de Montpellier, CIRAD, CNRS, INRAE, IRD, 34000 Montpellier, France
| | - Xiaodong Yang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China
| | - Shangwen Xia
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China
| | - Zhun Mao
- AMAP (Botanique et Modélisation de l'Architecture des Plantes et des Végétations), Université de Montpellier, CIRAD, CNRS, INRAE, IRD, 34000 Montpellier, France
| |
Collapse
|
3
|
Férriz M, Martin-Benito D, Fernández-de-Simón MB, Conde M, García-Cervigón AI, Aranda I, Gea-Izquierdo G. Functional phenotypic plasticity mediated by water stress and [CO2] explains differences in drought tolerance of two phylogenetically close conifers. TREE PHYSIOLOGY 2023; 43:909-924. [PMID: 36809504 PMCID: PMC10255776 DOI: 10.1093/treephys/tpad021] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 02/15/2023] [Indexed: 06/11/2023]
Abstract
Forests are threatened globally by increased recurrence and intensity of hot droughts. Functionally close coexisting species may exhibit differences in drought vulnerability large enough to cause niche differentiation and affect forest dynamics. The effect of rising atmospheric [CO2], which could partly alleviate the negative effects of drought, may also differ between species. We analysed functional plasticity in seedlings of two taxonomically close pine species (Pinus pinaster Ait., Pinus pinea L.) under different [CO2] and water stress levels. The multidimensional functional trait variability was more influenced by water stress (preferentially xylem traits) and [CO2] (mostly leaf traits) than by differences between species. However, we observed differences between species in the strategies followed to coordinate their hydraulic and structural traits under stress. Leaf 13C discrimination decreased with water stress and increased under elevated [CO2]. Under water stress both species increased their sapwood area to leaf area ratios, tracheid density and xylem cavitation, whereas they reduced tracheid lumen area and xylem conductivity. Pinus pinea was more anisohydric than P. pinaster. Pinus pinaster produced larger conduits under well-watered conditions than P. pinea. Pinus pinea was more tolerant to water stress and more resistant to xylem cavitation under low water potentials. The higher xylem plasticity in P. pinea, particularly in tracheid lumen area, expressed a higher capacity of acclimation to water stress than P. pinaster. In contrast, P. pinaster coped with water stress comparatively more by increasing plasticity of leaf hydraulic traits. Despite the small differences observed in the functional response to water stress and drought tolerance between species, these interspecific differences agreed with ongoing substitution of P. pinaster by P. pinea in forests where both species co-occur. Increased [CO2] had little effect on the species-specific relative performance. Thus, a competitive advantage under moderate water stress of P. pinea compared with P. pinaster is expected to continue in the future.
Collapse
Affiliation(s)
- M Férriz
- ICIFOR-INIA, CSIC. Ctra La Coruña km 7.5, 28040 Madrid, Spain
| | - D Martin-Benito
- ICIFOR-INIA, CSIC. Ctra La Coruña km 7.5, 28040 Madrid, Spain
| | | | - M Conde
- ICIFOR-INIA, CSIC. Ctra La Coruña km 7.5, 28040 Madrid, Spain
| | - A I García-Cervigón
- Department of Biology and Geology, Physics and Inorganic Chemistry Rey Juan Carlos University, c/Tulipán s/n, 28933 Móstoles, Spain
| | - I Aranda
- ICIFOR-INIA, CSIC. Ctra La Coruña km 7.5, 28040 Madrid, Spain
| | - G Gea-Izquierdo
- ICIFOR-INIA, CSIC. Ctra La Coruña km 7.5, 28040 Madrid, Spain
| |
Collapse
|
4
|
An YD, Roddy AB, Zhang TH, Jiang GF. Hydraulic differences between flowers and leaves are driven primarily by pressure-volume traits and water loss. FRONTIERS IN PLANT SCIENCE 2023; 14:1130724. [PMID: 37324689 PMCID: PMC10264769 DOI: 10.3389/fpls.2023.1130724] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 05/16/2023] [Indexed: 06/17/2023]
Abstract
Flowers are critical for successful reproduction and have been a major axis of diversification among angiosperms. As the frequency and severity of droughts are increasing globally, maintaining water balance of flowers is crucial for food security and other ecosystem services that rely on flowering. Yet remarkably little is known about the hydraulic strategies of flowers. We characterized hydraulic strategies of leaves and flowers of ten species by combining anatomical observations using light and scanning electron microscopy with measurements of hydraulic physiology (minimum diffusive conductance (g min) and pressure-volume (PV) curves parameters). We predicted that flowers would exhibit higher g min and higher hydraulic capacitance than leaves, which would be associated with differences in intervessel pit traits because of their different hydraulic strategies. We found that, compared to leaves, flowers exhibited: 1) higher g min, which was associated with higher hydraulic capacitance (C T); 2) lower variation in intervessel pit traits and differences in pit membrane area and pit aperture shape; and 3) independent coordination between intervessel pit traits and other anatomical and physiological traits; 4) independent evolution of most traits in flowers and leaves, resulting in 5) large differences in the regions of multivariate trait space occupied by flowers and leaves. Furthermore, across organs intervessel pit trait variation was orthogonal to variation in other anatomical and physiological traits, suggesting that pit traits represent an independent axis of variation that have as yet been unquantified in flowers. These results suggest that flowers, employ a drought-avoidant strategy of maintaining high capacitance that compensates for their higher g min to prevent excessive declines in water potentials. This drought-avoidant strategy may have relaxed selection on intervessel pit traits and allowed them to vary independently from other anatomical and physiological traits. Furthermore, the independent evolution of floral and foliar anatomical and physiological traits highlights their modular development despite being borne from the same apical meristem.
Collapse
Affiliation(s)
- Yi-Dong An
- Guangxi Key Laboratory of Forest Ecology and Conservation, Guangxi Colleges and Universities Key Laboratory for Cultivation and Utilization of Subtropical Forest Plantation, and State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning, Guangxi, China
| | - Adam B. Roddy
- Institute of Environment, Department of Biological Sciences, Florida International University, Miami, FL, United States
| | - Tian-Hao Zhang
- Guangxi Key Laboratory of Forest Ecology and Conservation, Guangxi Colleges and Universities Key Laboratory for Cultivation and Utilization of Subtropical Forest Plantation, and State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning, Guangxi, China
| | - Guo-Feng Jiang
- Guangxi Key Laboratory of Forest Ecology and Conservation, Guangxi Colleges and Universities Key Laboratory for Cultivation and Utilization of Subtropical Forest Plantation, and State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning, Guangxi, China
| |
Collapse
|
5
|
Salladay RA, Pittermann J. Using heat plumes to simulate post-fire effects on cambial viability and hydraulic performance in Sequoia sempervirens stems. TREE PHYSIOLOGY 2023; 43:769-780. [PMID: 36715648 DOI: 10.1093/treephys/tpad006] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 12/15/2022] [Accepted: 01/20/2023] [Indexed: 05/13/2023]
Abstract
Injury to the xylem and vascular cambium is proposed to explain mortality following low severity fires. These tissues have been assessed independently, but the relative significance of the xylem and cambium is still uncertain. The goal of this study is to evaluate the xylem dysfunction hypothesis and cambium necrosis hypothesis simultaneously. The hot dry conditions of a low severity fire were simulated in a drying oven, exposing Sequoia sempervirens (Lamb. ex D. Don) shoots to 70 and 100 °C for 6-60 min. Cambial viability was measured with Neutral Red stain and water transport capacity was assessed by calculating the loss of hydraulic conductivity. Vulnerability curves were also constructed to determine susceptibility to drought-induced embolism following heat exposure. The vascular cambium died completely at 100 °C after only 6 min of heat exposure, while cells remained viable at 70 °C temperatures for up to 15 min. Sixty minutes of exposure to 70 °C reduced stem hydraulic conductivity by 40%, while 45 min at 100 °C caused complete loss of conductivity. The heat treatments dropped hydraulic conductivity irrecoverably but did not significantly impact post-fire vulnerability to embolism. Overall, the damaging effects of high temperature occurred more rapidly in the vascular cambium than xylem following heat exposure. Importantly, the xylem remained functional until the most extreme treatments, long after the vascular cambium had died. Our results suggest that the viability of the vascular cambium may be more critical to post-fire survival than xylem function in S. sempervirens. Given the complexity of fire, we recommend ground-truthing the cambial and xylem post-fire response on a diverse range of species.
Collapse
Affiliation(s)
- Ryan A Salladay
- Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, CA 95060, USA
| | - Jarmila Pittermann
- Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, CA 95060, USA
| |
Collapse
|
6
|
Johnson KM, Brodribb TJ. Evidence for a trade-off between growth rate and xylem cavitation resistance in Callitris rhomboidea. TREE PHYSIOLOGY 2023:tpad037. [PMID: 36947141 DOI: 10.1093/treephys/tpad037] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 03/14/2023] [Indexed: 06/18/2023]
Abstract
The ideal plant water transport system is one that features high efficiency and resistance to drought-induced damage (xylem cavitation), however species rarely possess both. This may be explained by trade-offs between traits, yet thus far, no proposed trade-off has offered a universal explanation for the lack water transport systems that are both highly drought-resistant and highly efficient. Here we find evidence for a new trade-off, between growth rate and resistance to xylem cavitation, in the canopies of a drought-resistant tree species (Callitris rhomboidea). Wide variation in cavitation resistance (P50) was found in distal branch tips (< 2 mm in diameter), converging to low variation in P50 in larger diameter stems (> 2 mm). We found a significant correlation between cavitation resistance and distal branchlet internode length across branch tips in C. rhomboidea canopies. Branchlets with long internodes (8 mm or longer) were significantly more vulnerable to drought-induced xylem cavitation than shorter internodes (4 mm or shorter). This suggests that varying growth rates, leading to differences in internode length, drive differences in cavitation resistance in C. rhomboidea trees. The only distinct anatomical difference found between internodes was the pith size, with the average pith to xylem area in long internodes, 5x greater than in short internodes. Understanding whether this trade-off exists within and between species will help us to uncover what drives and limits drought resistance across the world's flora.
Collapse
|
7
|
McCulloh KA, Augustine SP, Goke A, Jordan R, Krieg CP, O’Keefe K, Smith DD. At least it is a dry cold: the global distribution of freeze-thaw and drought stress and the traits that may impart poly-tolerance in conifers. TREE PHYSIOLOGY 2023; 43:1-15. [PMID: 36094836 PMCID: PMC9833871 DOI: 10.1093/treephys/tpac102] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 07/20/2022] [Accepted: 08/30/2022] [Indexed: 05/25/2023]
Abstract
Conifers inhabit some of the most challenging landscapes where multiple abiotic stressors (e.g., aridity, freezing temperatures) often co-occur. Physiological tolerance to multiple stressors ('poly-tolerance') is thought to be rare because exposure to one stress generally limits responses to another through functional trade-offs. However, the capacity to exhibit poly-tolerance may be greater when combined abiotic stressors have similar physiological impacts, such as the disruption of hydraulic function imposed by drought or freezing. Here, we reviewed empirical data in light of theoretical expectations for conifer adaptations to drought and freeze-thaw cycles with particular attention to hydraulic traits of the stem and leaf. Additionally, we examined the commonality and spatial distribution of poly-stress along indices of these combined stressors. We found that locations with the highest values of our poly-stress index (PSi) are characterized by moderate drought and moderate freeze-thaw, and most of the global conifer distribution occupies areas of moderate poly-stress. Among traits examined, we found diverse responses to the stressors. Turgor loss point did not correlate with freeze-thaw or drought stress individually, but did with the PSi, albeit inverse to what was hypothesized. Leaf mass per area was more strongly linked with drought stress than the poly-stress and not at all with freeze-thaw stress. In stems, the water potential causing 50% loss of hydraulic conductivity became more negative with increasing drought stress and poly-stress but did not correlate with freeze-thaw stress. For these traits, we identified a striking lack of coverage for substantial portions of species ranges, particularly at the upper boundaries of their respective PSis, demonstrating a critical gap in our understanding of trait prevalence and plasticity along these stress gradients. Future research should investigate traits that confer tolerance to both freeze-thaw and drought stress in a wide range of species across broad geographic scales.
Collapse
Affiliation(s)
| | - Steven P Augustine
- Department of Botany, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Alex Goke
- Department of Botany, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Rachel Jordan
- Department of Botany, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Christopher P Krieg
- Department of Botany, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Kimberly O’Keefe
- Department of Biological Sciences, Saint Edward’s University, Austin, TX 78704, USA
| | - Duncan D Smith
- Department of Botany, University of Wisconsin-Madison, Madison, WI, 53706, USA
| |
Collapse
|
8
|
Zhang C, Khan A, Duan CY, Cao Y, Wu DD, Hao GY. Xylem hydraulics strongly influence the niche differentiation of tree species along the slope of a river valley in a water-limited area. PLANT, CELL & ENVIRONMENT 2023; 46:106-118. [PMID: 36253806 DOI: 10.1111/pce.14467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/03/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Xylem hydraulic characteristics govern plant water transport, affecting both drought resistance and photosynthetic gas exchange. Therefore, they play critical roles in determining the adaptation of different species to environments with various water regimes. Here, we tested the hypothesis that variation in xylem traits associated with a trade-off between hydraulic efficiency and safety against drought-induced embolism contributes to niche differentiation of tree species along a sharp water availability gradient on the slope of a unique river valley located in a semi-humid area. We found that tree species showed clear niche differentiation with decreasing water availability from the bottom towards the top of the valley. Tree species occupying different positions, in terms of vertical distribution distance from the bottom of the valley, showed a strong trade-off between xylem water transport efficiency and safety, as evidenced by variations in xylem structural traits at both the tissue and pit levels. This optimized their xylem hydraulics in their respective water regimes. Thus, the trade-off between hydraulic efficiency and safety contributes to clear niche differentiation and, thereby, to the coexistence of tree species in the valley with heterogeneous water availability.
Collapse
Affiliation(s)
- Chi Zhang
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
- Daqinggou Ecological Research Station, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Attaullah Khan
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
- Daqinggou Ecological Research Station, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Chun-Yang Duan
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
- Daqinggou Ecological Research Station, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yu Cao
- Institute of Sand Land Control and Utilization, Liaoning Province, Fuxin, China
| | - De-Dong Wu
- Institute of Sand Land Control and Utilization, Liaoning Province, Fuxin, China
| | - Guang-You Hao
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
- Daqinggou Ecological Research Station, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| |
Collapse
|
9
|
Song Y, Poorter L, Horsting A, Delzon S, Sterck F. Pit and tracheid anatomy explain hydraulic safety but not hydraulic efficiency of 28 conifer species. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:1033-1048. [PMID: 34626106 PMCID: PMC8793876 DOI: 10.1093/jxb/erab449] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 10/07/2021] [Indexed: 05/16/2023]
Abstract
Conifers face increased drought mortality risks because of drought-induced embolism in their vascular system. Variation in embolism resistance may result from species differences in pit structure and function, as pits control the air seeding between water-transporting conduits. This study quantifies variation in embolism resistance and hydraulic conductivity for 28 conifer species grown in a 50-year-old common garden experiment and assesses the underlying mechanisms. Conifer species with a small pit aperture, high pit aperture resistance, and large valve effect were more resistant to embolism, as they all may reduce air seeding. Surprisingly, hydraulic conductivity was only negatively correlated with tracheid cell wall thickness. Embolism resistance and its underlying pit traits related to pit size and sealing were more strongly phylogenetically controlled than hydraulic conductivity and anatomical tracheid traits. Conifers differed in hydraulic safety and hydraulic efficiency, but there was no trade-off between safety and efficiency because they are driven by different xylem anatomical traits that are under different phylogenetic control.
Collapse
Affiliation(s)
- Yanjun Song
- Forest Ecology and Forest Management Group, Wageningen University and Research, PO Box 47, 6700 AA, Wageningen, The Netherlands
| | - Lourens Poorter
- Forest Ecology and Forest Management Group, Wageningen University and Research, PO Box 47, 6700 AA, Wageningen, The Netherlands
| | - Angelina Horsting
- Forest Ecology and Forest Management Group, Wageningen University and Research, PO Box 47, 6700 AA, Wageningen, The Netherlands
| | - Sylvain Delzon
- University of Bordeaux, INRA, UMR BIOGECO, 33450 Talence, France
| | - Frank Sterck
- Forest Ecology and Forest Management Group, Wageningen University and Research, PO Box 47, 6700 AA, Wageningen, The Netherlands
| |
Collapse
|
10
|
Hydraulic Function Analysis of Conifer Xylem Based on a Model Incorporating Tracheids, Bordered Pits, and Cross-Field Pits. FORESTS 2022. [DOI: 10.3390/f13020171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Wood has a highly complex and anisotropic structure. Its xylem characteristics are key in determining the hydraulic properties of plants to transport water efficiently and safely, as well as the permeability in the process of wood impregnation modification. Previous studies on the relationship between the xylem structure and hydraulic conductivity of conifer have mainly focused on tracheids and bordered pits, with only a few focusing on the conduction model of cross-field pits which connect tracheids and rays. This study takes the xylem structure of conifer as an example, drawing an analogy between water flow under tension and electric current, and extends the model to the tissue scale, including cross-field pits by establishing isometric scaling. The structure parameters were collected by scanning electron microscopy and transmission electron microscopy. The improved model can quantify the important hydraulic functional characteristics of xylem only by measuring the more easily obtained tracheid section size. Then, this model was applied to quantify the relationship between the xylem anatomical structure and hydraulic properties in the pine (Pinus sylvestris L. var. mongholica Litv.) and the spruce (Picea koraiensis Nakai), and also to evaluate the effects of the number and size of cross-field pits on xylem conduction. The results showed that the growth ring conduction value of the pine was more than twice that of the spruce for the two tree species with similar growth widths in this study. The tracheid wall resistance of the pine reflected the result of the interaction of the size and number of cross-field pits, in comparison, the wall resistance of the spruce was more sensitive to the number of cross-field pits. Finally, the calculation output of the new model was cross-validated with the literature, which verified the accuracy and effectiveness of the model. This study provides an effective and complete solution for xylem conductivity measurement and the study of wood ecophysiological diversity and processing.
Collapse
|
11
|
Johnson KM, Lucani C, Brodribb TJ. In vivo monitoring of drought-induced embolism in Callitris rhomboidea trees reveals wide variation in branchlet vulnerability and high resistance to tissue death. THE NEW PHYTOLOGIST 2022; 233:207-218. [PMID: 34625973 DOI: 10.1111/nph.17786] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 10/01/2021] [Indexed: 06/13/2023]
Abstract
Damage to the plant water transport system through xylem cavitation is known to be a driver of plant death in drought conditions. However, a lack of techniques to continuously monitor xylem embolism in whole plants in vivo has hampered our ability to investigate both how this damage propagates and the possible mechanistic link between xylem damage and tissue death. Using optical and fluorescence sensors, we monitored drought-induced xylem embolism accumulation and photosynthetic damage in vivo throughout the canopy of a drought-resistant conifer, Callitris rhomboidea, during drought treatments of c. 1 month duration. We show that drought-induced damage to the xylem can be monitored in vivo in whole trees during extended periods of water stress. Under these conditions, vulnerability of the xylem to cavitation varied widely among branchlets, with photosynthetic damage only recorded once > 90% of the xylem was cavitated. The variation in branchlet vulnerability has important implications for understanding how trees like C. rhomboidea survive drought, and the high resistance of branchlets to tissue damage points to runaway cavitation as a likely driver of tissue death in C. rhomboidea branch tips.
Collapse
Affiliation(s)
- Kate M Johnson
- Discipline of Biological Sciences, School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, TAS, 7001, Australia
| | - Christopher Lucani
- Discipline of Biological Sciences, School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, TAS, 7001, Australia
| | - Timothy J Brodribb
- Discipline of Biological Sciences, School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, TAS, 7001, Australia
| |
Collapse
|
12
|
Osone Y, Hashimoto S, Kenzo T. Verification of our empirical understanding of the physiology and ecology of two contrasting plantation species using a trait database. PLoS One 2021; 16:e0254599. [PMID: 34843472 PMCID: PMC8629320 DOI: 10.1371/journal.pone.0254599] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 10/12/2021] [Indexed: 11/18/2022] Open
Abstract
The effects of climate change on forest ecosystems take on increasing importance more than ever. Information on plant traits is a powerful predictor of ecosystem dynamics and functioning. We reviewed the major ecological traits, such as foliar gas exchange and nutrients, xylem morphology and drought tolerance, of Cryptomeria japonica and Chamaecyparis obtusa, which are major timber species in East Asia, especially in Japan, by using a recently developed functional trait database for both species (SugiHinokiDB). Empirically, C. obtusa has been planted under drier conditions, whereas C. japonica, which grows faster but thought to be less drought tolerant, has been planted under wetter conditions. Our analysis generally support the empirical knowledge: The maximum photosynthetic rate, stomatal conductance, foliar nutrient content and soil-to-foliage hydraulic conductance were higher in C. japonica than in C. obtusa. In contrast, the foliar turgor loss point and xylem pressure corresponding to 50% conductivity, which indicate drought tolerance, were lower in C. obtusa and are consistent with the drier habitat of C. obtusa. Ontogenetic shifts were also observed; as the age and height of the trees increased, foliar nutrient concentrations, foliar minimum midday water potential and specific leaf area decreased in C. japonica, suggesting that nutrient and water limitation occurs with the growth. In C. obtusa, the ontogenetic shits of these foliar traits were less pronounced. Among the Cupressaceae worldwide, the drought tolerance of C. obtusa, as well as C. japonica, was not as high. This may be related to the fact that the Japanese archipelago has historically not been subjected to strong dryness. The maximum photosynthetic rate showed intermediate values within the family, indicating that C. japonica and C. obtusa exhibit relatively high growth rates in the Cupressaceae family, and this is thought to be the reason why they have been selected as economically suitable timber species in Japanese forestry. This study clearly demonstrated that the plant trait database provides us a promising opportunity to verify out empirical knowledge of plantation management and helps us to understand effect of climate change on plantation forests by using trait-based modelling.
Collapse
Affiliation(s)
- Yoko Osone
- Forestry and Forest Products Research Institute, Tsukuba, Japan
| | - Shoji Hashimoto
- Forestry and Forest Products Research Institute, Tsukuba, Japan
| | - Tanaka Kenzo
- Forestry and Forest Products Research Institute, Tsukuba, Japan
- Japan International Research Center for Agricultural Sciences, Tsukuba, Japan
| |
Collapse
|
13
|
Xu H, Wang H, Prentice IC, Harrison SP, Wright IJ. Coordination of plant hydraulic and photosynthetic traits: confronting optimality theory with field measurements. THE NEW PHYTOLOGIST 2021; 232:1286-1296. [PMID: 34324717 PMCID: PMC9291854 DOI: 10.1111/nph.17656] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 07/26/2021] [Indexed: 05/13/2023]
Abstract
Close coupling between water loss and carbon dioxide uptake requires coordination of plant hydraulics and photosynthesis. However, there is still limited information on the quantitative relationships between hydraulic and photosynthetic traits. We propose a basis for these relationships based on optimality theory, and test its predictions by analysis of measurements on 107 species from 11 sites, distributed along a nearly 3000-m elevation gradient. Hydraulic and leaf economic traits were less plastic, and more closely associated with phylogeny, than photosynthetic traits. The two sets of traits were linked by the sapwood to leaf area ratio (Huber value, vH ). The observed coordination between vH and sapwood hydraulic conductivity (KS ) and photosynthetic capacity (Vcmax ) conformed to the proposed quantitative theory. Substantial hydraulic diversity was related to the trade-off between KS and vH . Leaf drought tolerance (inferred from turgor loss point, -Ψtlp ) increased with wood density, but the trade-off between hydraulic efficiency (KS ) and -Ψtlp was weak. Plant trait effects on vH were dominated by variation in KS , while effects of environment were dominated by variation in temperature. This research unifies hydraulics, photosynthesis and the leaf economics spectrum in a common theoretical framework, and suggests a route towards the integration of photosynthesis and hydraulics in land-surface models.
Collapse
Affiliation(s)
- Huiying Xu
- Ministry of Education Key Laboratory for Earth System ModelingDepartment of Earth System ScienceTsinghua UniversityBeijing100084China
- Joint Center for Global Change Studies (JCGCS)Beijing100875China
| | - Han Wang
- Ministry of Education Key Laboratory for Earth System ModelingDepartment of Earth System ScienceTsinghua UniversityBeijing100084China
- Joint Center for Global Change Studies (JCGCS)Beijing100875China
| | - I. Colin Prentice
- Ministry of Education Key Laboratory for Earth System ModelingDepartment of Earth System ScienceTsinghua UniversityBeijing100084China
- Department of Life SciencesGeorgina Mace Centre for the Living PlanetImperial College LondonSilwood Park Campus, Buckhurst RoadAscotSL5 7PYUK
- Department of Biological SciencesMacquarie UniversityNorth RydeNSW2109Australia
| | - Sandy P. Harrison
- Ministry of Education Key Laboratory for Earth System ModelingDepartment of Earth System ScienceTsinghua UniversityBeijing100084China
- School of Archaeology, Geography and Environmental Sciences (SAGES)University of ReadingReadingRG6 6AHUK
| | - Ian J. Wright
- Department of Biological SciencesMacquarie UniversityNorth RydeNSW2109Australia
| |
Collapse
|
14
|
Peters JMR, López R, Nolf M, Hutley LB, Wardlaw T, Cernusak LA, Choat B. Living on the edge: A continental-scale assessment of forest vulnerability to drought. GLOBAL CHANGE BIOLOGY 2021; 27:3620-3641. [PMID: 33852767 DOI: 10.1111/gcb.15641] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/12/2021] [Indexed: 06/12/2023]
Abstract
Globally, forests are facing an increasing risk of mass tree mortality events associated with extreme droughts and higher temperatures. Hydraulic dysfunction is considered a key mechanism of drought-triggered dieback. By leveraging the climate breadth of the Australian landscape and a national network of research sites (Terrestrial Ecosystem Research Network), we conducted a continental-scale study of physiological and hydraulic traits of 33 native tree species from contrasting environments to disentangle the complexities of plant response to drought across communities. We found strong relationships between key plant hydraulic traits and site aridity. Leaf turgor loss point and xylem embolism resistance were correlated with minimum water potential experienced by each species. Across the data set, there was a strong coordination between hydraulic traits, including those linked to hydraulic safety, stomatal regulation and the cost of carbon investment into woody tissue. These results illustrate that aridity has acted as a strong selective pressure, shaping hydraulic traits of tree species across the Australian landscape. Hydraulic safety margins were constrained across sites, with species from wetter sites tending to have smaller safety margin compared with species at drier sites, suggesting trees are operating close to their hydraulic thresholds and forest biomes across the spectrum may be susceptible to shifts in climate that result in the intensification of drought.
Collapse
Affiliation(s)
- Jennifer M R Peters
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, Australia
| | - Rosana López
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, Australia
| | - Markus Nolf
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, Australia
| | - Lindsay B Hutley
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, NT, Australia
| | - Tim Wardlaw
- ARC Centre for Forest Value, University of Tasmania, Hobart, Tas, Australia
| | - Lucas A Cernusak
- College of Science and Engineering, James Cook University, Cairns, Qld, Australia
| | - Brendan Choat
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, Australia
| |
Collapse
|
15
|
Park J, Ryu J, Park SH, Lee SJ. Air spread through a wetted deformable membrane: Implications for the mechanism of soft valves in plants. Phys Rev E 2021; 103:062407. [PMID: 34271721 DOI: 10.1103/physreve.103.062407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/22/2021] [Indexed: 11/07/2022]
Abstract
Plants have a special structure, torus-margo (TM) pit, which comprises a thickened torus at the center encircled by a highly porous margo. It is regarded as a key evolutionary structure to enable stable water transport, minimizing the air spread in the vessels. However, its valve-like dynamics to regulate two-phase flows still remains unclear even at a single pit level. Here, we study the air spreading dynamics using a bioinspired model of this soft pit valve. We divide it into the initial onset and the consecutive air-spreads, and propose the criteria of TM structures as the valve-like function. To delay the onset of air spread, the margo region should be thin and deformable enough to seal the pit aperture with the torus before the air penetration. Even after the onset, the membranes whose maximum pore size is smaller than its thickness can avoid continuous air-spread. The criteria also fit properly into botanical data on the morphologies of TM pits, implying that their valve-like behaviors may alleviate the tradeoff between hydraulic safety and efficiency at the single pit level. Our study would help to understand of the mechanistic pit-level strategy and also can provide insight into fluidic systems to control interfacial phenomena.
Collapse
Affiliation(s)
- Jooyoung Park
- Department of Mechanical Engineering, Pohang University of Science and Technology, San 31, Hyoja-dong, Pohang 37673, South Korea
| | - Jeongeun Ryu
- Department of Mechanical Engineering, Pohang University of Science and Technology, San 31, Hyoja-dong, Pohang 37673, South Korea
| | - Sung Ho Park
- Department of Mechanical Engineering, Pohang University of Science and Technology, San 31, Hyoja-dong, Pohang 37673, South Korea
| | - Sang Joon Lee
- Department of Mechanical Engineering, Pohang University of Science and Technology, San 31, Hyoja-dong, Pohang 37673, South Korea
| |
Collapse
|
16
|
Jacobsen AL. Diversity in conduit and pit structure among extant gymnosperm taxa. AMERICAN JOURNAL OF BOTANY 2021; 108:559-570. [PMID: 33861866 DOI: 10.1002/ajb2.1641] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 12/04/2020] [Indexed: 06/12/2023]
Abstract
Gymnosperm taxa are incredibly diverse in many traits, including taxa with evergreen or deciduous leaves; broad, compound, needle-like or scale-like leaves; trees, shrubs, and lianas; and taxa with seed cones that range from fleshy to woody. Although less appreciated, xylem conduits are also diverse in structure among extant gymnosperm taxa. Within the xylem of gymnosperms, axial transport occurs predominantly via tracheids, although 10-40% of gymnosperm taxa, particularly within the Gnetophyta and Cycadophyta, also contain vessels. Gymnosperm taxa vary greatly in their inter-conduit pit structure, with different types of pit membranes and pitting arrangements. While some taxa display torus-margo bordered pits (60%), many others do not contain tori (40%), and at least some taxa without tori occur within each of the four extant phyla (Coniferophyta, Cycadophyta, Ginkgophyta, and Gnetophyta). Pit membrane types vary within families but appear relatively conserved within genera. Woody species with torus-bearing pit membranes occur in colder environments (lower mean annual temperature) compared to those without tori; but occurrence does not differ with mean annual precipitation. Detailed descriptions of pit membrane types are lacking for many species and genera, indicating a need for increased anatomical study. Increased knowledge of these traits could provide a unique experimental context in which to study the evolution of conduit networks, the hydraulic implications of conduit and pit structure, and the diverse structural and functional strategies utilized by gymnosperms. There are myriad potential study questions and research opportunities within this unique and diverse group of plants.
Collapse
Affiliation(s)
- Anna L Jacobsen
- Department of Biology, California State University, 9001 Stockdale Hwy, Bakersfield, CA, 93311, USA
| |
Collapse
|
17
|
Sviderskaya IV, Vaganov EA, Fonti MV, Fonti P. Isometric scaling to model water transport in conifer tree rings across time and environments. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:2672-2685. [PMID: 33367718 PMCID: PMC8006552 DOI: 10.1093/jxb/eraa595] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 12/17/2020] [Indexed: 05/30/2023]
Abstract
The hydraulic properties of xylem determine the ability of plants to efficiently and safely provide water to their leaves. These properties are key to understanding plant responses to environmental conditions and evaluating their fate under a rapidly changing climate. However, their assessment is hindered by the challenges of quantifying basic hydraulic components such as bordered pits and tracheids. Here, we use isometric scaling between tracheids and pit morphology to merge partial hydraulic models of the tracheid component and to upscale these properties to the tree-ring level in conifers. Our new model output is first cross-validated with the literature and then applied to cell anatomical measurements from Larix sibirica tree rings formed under harsh conditions in southern Siberia to quantify the intra- and inter-annual variability in hydraulic properties. The model provides a means of assessing how different-sized tracheid components contribute to the hydraulic properties of the ring. Upscaled results indicate that natural inter- and intra-ring anatomical variations have a substantial impact on the tree's hydraulic properties. Our model facilitates the assessment of important xylem functional attributes because it requires only the more accessible measures of cross-sectional tracheid size. This approach, if applied to dated tree rings, provides a novel way to investigate xylem structure-function relationships across time and environmental conditions.
Collapse
Affiliation(s)
| | - Eugene A Vaganov
- Siberian Federal University, Krasnoyarsk, Russian Federation
- V.N. Sukachev Institute of Forest, Siberian Branch of the Russian Academy of Sciences, Krasnoyarsk, Russian Federation
| | - Marina V Fonti
- Siberian Federal University, Krasnoyarsk, Russian Federation
| | - Patrick Fonti
- Dendrosciences, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse, Birmensdorf, Switzerland
| |
Collapse
|
18
|
Skelton RP, Anderegg LDL, Diaz J, Kling MM, Papper P, Lamarque LJ, Delzon S, Dawson TE, Ackerly DD. Evolutionary relationships between drought-related traits and climate shape large hydraulic safety margins in western North American oaks. Proc Natl Acad Sci U S A 2021; 118:e2008987118. [PMID: 33649205 PMCID: PMC7958251 DOI: 10.1073/pnas.2008987118] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Quantitative knowledge of xylem physical tolerance limits to dehydration is essential to understanding plant drought tolerance but is lacking in many long-vessel angiosperms. We examine the hypothesis that a fundamental association between sustained xylem water transport and downstream tissue function should select for xylem that avoids embolism in long-vessel trees by quantifying xylem capacity to withstand air entry of western North American oaks (Quercus spp.). Optical visualization showed that 50% of embolism occurs at water potentials below -2.7 MPa in all 19 species, and -6.6 MPa in the most resistant species. By mapping the evolution of xylem vulnerability to embolism onto a fossil-dated phylogeny of the western North American oaks, we found large differences between clades (sections) while closely related species within each clade vary little in their capacity to withstand air entry. Phylogenetic conservatism in xylem physical tolerance, together with a significant correlation between species distributions along rainfall gradients and their dehydration tolerance, suggests that closely related species occupy similar climatic niches and that species' geographic ranges may have shifted along aridity gradients in accordance with their physical tolerance. Such trends, coupled with evolutionary associations between capacity to withstand xylem embolism and other hydraulic-related traits, yield wide margins of safety against embolism in oaks from diverse habitats. Evolved responses of the vascular system to aridity support the embolism avoidance hypothesis and reveal the importance of quantifying plant capacity to withstand xylem embolism for understanding function and biogeography of some of the Northern Hemisphere's most ecologically and economically important plants.
Collapse
Affiliation(s)
- Robert P Skelton
- Department of Integrative Biology, University of California, Berkeley, CA 94720;
- Fynbos Node, South African Environmental Observation Network, Newlands 7735, Cape Town, South Africa
| | - Leander D L Anderegg
- Department of Integrative Biology, University of California, Berkeley, CA 94720
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA 93117
| | - Jessica Diaz
- Department of Integrative Biology, University of California, Berkeley, CA 94720
| | - Matthew M Kling
- Department of Integrative Biology, University of California, Berkeley, CA 94720
| | - Prahlad Papper
- Department of Integrative Biology, University of California, Berkeley, CA 94720
| | - Laurent J Lamarque
- Département des Sciences de l'Environnement, Université du Québec à Trois-Rivières, Trois-Rivières, QC G9A 5H7, Canada
- Université de Bordeaux, INRAE (Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement), UMR BIOGECO, 33615 Pessac, France
| | - Sylvain Delzon
- Université de Bordeaux, INRAE (Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement), UMR BIOGECO, 33615 Pessac, France
| | - Todd E Dawson
- Department of Integrative Biology, University of California, Berkeley, CA 94720
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA 94720
| | - David D Ackerly
- Department of Integrative Biology, University of California, Berkeley, CA 94720
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA 94720
| |
Collapse
|
19
|
Olson ME, Anfodillo T, Gleason SM, McCulloh KA. Tip-to-base xylem conduit widening as an adaptation: causes, consequences, and empirical priorities. THE NEW PHYTOLOGIST 2021; 229:1877-1893. [PMID: 32984967 DOI: 10.1111/nph.16961] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 08/14/2020] [Indexed: 06/11/2023]
Abstract
In the stems of terrestrial vascular plants studied to date, the diameter of xylem water-conducting conduits D widens predictably with distance from the stem tip L approximating D ∝ Lb , with b ≈ 0.2. Because conduit diameter is central for conductance, it is essential to understand the cause of this remarkably pervasive pattern. We give reason to suspect that tip-to-base conduit widening is an adaptation, favored by natural selection because widening helps minimize the increase in hydraulic resistance that would otherwise occur as an individual stem grows longer and conductive path length increases. Evidence consistent with adaptation includes optimality models that predict the 0.2 exponent. The fact that this prediction can be made with a simple model of a single capillary, omitting much biological detail, itself makes numerous important predictions, e.g. that pit resistance must scale isometrically with conduit resistance. The idea that tip-to-base conduit widening has a nonadaptive cause, with temperature, drought, or turgor limiting the conduit diameters that plants are able to produce, is less consistent with the data than an adaptive explanation. We identify empirical priorities for testing the cause of tip-to-base conduit widening and underscore the need to study plant hydraulic systems leaf to root as integrated wholes.
Collapse
Affiliation(s)
- Mark E Olson
- Instituto de Biología, Universidad Nacional Autónoma de México, Tercer Circuito s/n de Ciudad Universitaria, Mexico City, 04510, Mexico
| | - Tommaso Anfodillo
- Department Territorio e Sistemi Agro-Forestali, University of Padova, Legnaro (PD), 35020, Italy
| | - Sean M Gleason
- Water Management and Systems Research Unit, United States Department of Agriculture, Agricultural Research Service, Fort Collins, CO, 80526, USA
- Department of Forest and Rangeland Stewardship, Colorado State University, Fort Collins, CO, 80523, USA
| | | |
Collapse
|
20
|
Fan D, Wang X, Zhang W, Zhang X, Zhang S, Xie Z. Does Cathaya argyrophylla, an ancient and threatened Pinaceae species endemic to China, show eco-physiological outliers to its Pinaceae relatives? CONSERVATION PHYSIOLOGY 2020; 8:coaa094. [PMID: 33093958 PMCID: PMC7566968 DOI: 10.1093/conphys/coaa094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 09/08/2020] [Accepted: 09/24/2020] [Indexed: 06/11/2023]
Abstract
Cathaya argyrophylla is an ancient and threatened Pinaceae species endemic to China, but its eco-physiological traits are rarely reported. We hypothesized that Cathaya showed eco-physiological outliers to its Pinaceae relatives, which lead to its current endangered status. Here we collected the photosynthetic capacity (P n, maximum photosynthesis rate) and branchlet hydraulic safety (P 50, the water potential at which a 50% loss in conductivity occurs) of Pinaceae species globally, including our measurements on Cathaya. We applied the phylogenetic comparative methods to investigate: (i) the phylogenetic signal of the two key traits across Pinaceae species, and (ii) the trait-climate relationships and the photosynthesis-cavitation resistance relationship across Pinaceae species. We applied the polygenetic quantile regression (PQR) method to assess whether Cathaya showed eco-physiological outliers to its Pinaceae relatives in terms of cavitation resistance and photosynthetic capacity. It was found that P 50, and to a less extent, P n, had a strong phylogenetic signal consistent with niche conservation among Pinaceae species. Hydraulic safety largely determined non-threatened Pinaceae species' distribution across moisture gradients at the global scale. There was also an adaptive trade-off relationship between P n and P 50. Cathaya is a high cavitation resistant, low photosynthetic capacity species. It showed eco-physiological outliers to its Pinaceae relatives because it had lower P 50 and P n below the 10% quantile boundaries along moisture and/or temperature gradients; also, it was above the 90% quantile boundary of the P n and P 50 relationship across non-endangered Pinaceae species. The PQR output demonstrated that in the subtropical area of China characterized by abundant rainfall, Cathaya has extra high hydraulic safety, suggesting inefficiency of carbon economy associated with either competition or other life history strategies, which lead to its current endangered status.
Collapse
Affiliation(s)
- Dayong Fan
- College of Forestry, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Xiangping Wang
- College of Forestry, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Wangfeng Zhang
- The Key Laboratory of Oasis Eco-Agriculture, Xinjiang Production and Construction Corps, Shihezi University, No. 221, Beisi Road, Shihezi 832000, China
| | - Xiangying Zhang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, No. 20, Xiangshan Nanxin Cun, Haidian District, Beijing 100093, China
| | - Shouren Zhang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, No. 20, Xiangshan Nanxin Cun, Haidian District, Beijing 100093, China
| | - Zongqiang Xie
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, No. 20, Xiangshan Nanxin Cun, Haidian District, Beijing 100093, China
| |
Collapse
|
21
|
Louf JF, Knoblauch J, Jensen KH. Bending and Stretching of Soft Pores Enable Passive Control of Fluid Flows. PHYSICAL REVIEW LETTERS 2020; 125:098101. [PMID: 32915604 DOI: 10.1103/physrevlett.125.098101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 07/13/2020] [Indexed: 06/11/2023]
Abstract
Programmable valves and actuators are widely used in man-made systems to provide sophisticated control of fluid flows. In nature, however, this process is frequently achieved using passive soft materials. Here we study how elastic deformations of cylindrical pores embedded in a flexible membrane enable passive flow control. We develop biomimetic valves with variable pore radius, membrane radius, and thickness. Our experiments reveal a mechanism where small deformations bend the membrane and constrict the pore-thus reducing flow-while larger deformations stretch the membrane, expand the pore, and enhance flow. We develop a theory capturing this highly nonmonotonic behavior, and validate the scaling across a broad range of material and geometric parameters. Our results suggest that intercompartmental flow control in living systems can be encoded entirely in the physical attributes of soft materials. Moreover, this design could enable autonomous flow control in man-made systems.
Collapse
Affiliation(s)
- Jean-François Louf
- Department of Physics, Technical University of Denmark, DK-2800 Kgs, Lyngby, Denmark
| | - Jan Knoblauch
- Department of Physics, Technical University of Denmark, DK-2800 Kgs, Lyngby, Denmark
| | - Kaare H Jensen
- Department of Physics, Technical University of Denmark, DK-2800 Kgs, Lyngby, Denmark
| |
Collapse
|
22
|
Cary KL, Ranieri GM, Pittermann J. Xylem form and function under extreme nutrient limitation: an example from California's pygmy forest. THE NEW PHYTOLOGIST 2020; 226:760-769. [PMID: 31900931 DOI: 10.1111/nph.16405] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 12/19/2019] [Indexed: 06/10/2023]
Abstract
Xylem anatomy and function have large implications for plant growth as well as survival during drought, but the impact of nutrient limitation on xylem is not fully understood. This study examines the pygmy forest in California, a plant community that experiences negligible water stress but is severely stunted by low-nutrient and acidic soil, to investigate how nutrient limitation affects xylem function. Thirteen key anatomical and hydraulic traits of stems of four species were compared between pygmy forest plants and nearby conspecifics growing on richer soil. Resistance to cavitation (P50 ), a critical trait for predicting survival during drought, had highly species-specific responses: in one species, pygmy plants had a 26% decrease in cavitation resistance compared to higher-nutrient conspecifics, while in another species, pygmy plants had a 56% increase in cavitation resistance. Other traits responded to nutrient limitation more consistently: pygmy plants had smaller xylem conduits and higher leaf-specific conductivity (KL ) than conspecific controls. Edaphic stress, even in the absence of water stress, altered xylem structure and thus had substantial impacts on water transport. Importantly, nutrient limitation shifted cavitation resistance in a species-specific and unpredictable manner; this finding has implications for the assessment of cavitation resistance in other natural systems.
Collapse
Affiliation(s)
- Katharine L Cary
- University of California, Santa Cruz, 1156 High Street, Santa Cruz, CA, 95064, USA
| | - Gina M Ranieri
- University of California, Santa Cruz, 1156 High Street, Santa Cruz, CA, 95064, USA
| | - Jarmila Pittermann
- University of California, Santa Cruz, 1156 High Street, Santa Cruz, CA, 95064, USA
| |
Collapse
|
23
|
Li S, Wang J, Yin Y, Li X, Deng L, Jiang X, Chen Z, Li Y. Investigating Effects of Bordered Pit Membrane Morphology and Properties on Plant Xylem Hydraulic Functions-A Case Study from 3D Reconstruction and Microflow Modelling of Pit Membranes in Angiosperm Xylem. PLANTS (BASEL, SWITZERLAND) 2020; 9:E231. [PMID: 32054100 PMCID: PMC7076482 DOI: 10.3390/plants9020231] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/18/2020] [Accepted: 02/08/2020] [Indexed: 01/12/2023]
Abstract
Pit membranes in between neighboring conduits of xylem play a crucial role in plant water transport. In this review, the morphological characteristics, chemical composition and mechanical properties of bordered pit membranes were summarized and linked with their functional roles in xylem hydraulics. The trade-off between xylem hydraulic efficiency and safety was closely related with morphology and properties of pit membranes, and xylem embolism resistance was also determined by the pit membrane morphology and properties. Besides, to further investigate the effects of bordered pit membranes morphology and properties on plant xylem hydraulic functions, here we modelled three-dimensional structure of bordered pit membranes by applying a deposition technique. Based on reconstructed 3D pit membrane structures, a virtual fibril network was generated to model the microflow pattern across inter-vessel pit membranes. Moreover, the mechanical behavior of intervessel pit membranes was estimated from a single microfibril's mechanical property. Pit membranes morphology varied among different angiosperm and gymnosperm species. Our modelling work suggested that larger pores of pit membranes do not necessarily contribute to major flow rate across pit membranes; instead, the obstructed degree of flow pathway across the pit membranes plays a more important role. Our work provides useful information for studying the mechanism of microfluid flow transport across pit membranes and also sheds light on investigating the response of pit membranes both at normal and stressed conditions, thus improving our understanding on functional roles of pit membranes in xylem hydraulic function. Further work could be done to study the morphological and mechanical response of bordered pit membranes under different dehydrated conditions, as well as the related microflow behavior, based on our constructed model.
Collapse
Affiliation(s)
- Shan Li
- Department of Wood Anatomy and Utilization, Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing 100091, China; (S.L.); (J.W.); (Y.Y.); (L.D.); (X.J.)
- Wood Collections (WOODPEDIA), Chinese Academy of Forestry, Beijing 100091, China
| | - Jie Wang
- Department of Wood Anatomy and Utilization, Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing 100091, China; (S.L.); (J.W.); (Y.Y.); (L.D.); (X.J.)
- Wood Collections (WOODPEDIA), Chinese Academy of Forestry, Beijing 100091, China
| | - Yafang Yin
- Department of Wood Anatomy and Utilization, Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing 100091, China; (S.L.); (J.W.); (Y.Y.); (L.D.); (X.J.)
- Wood Collections (WOODPEDIA), Chinese Academy of Forestry, Beijing 100091, China
| | - Xin Li
- College of Forestry, Beijing Forestry University, Beijing 100083, China;
| | - Liping Deng
- Department of Wood Anatomy and Utilization, Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing 100091, China; (S.L.); (J.W.); (Y.Y.); (L.D.); (X.J.)
- International Center for Bamboo and Rattan, Beijing 100102, China
| | - Xiaomei Jiang
- Department of Wood Anatomy and Utilization, Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing 100091, China; (S.L.); (J.W.); (Y.Y.); (L.D.); (X.J.)
- Wood Collections (WOODPEDIA), Chinese Academy of Forestry, Beijing 100091, China
| | - Zhicheng Chen
- Institute of New Forestry Technology, Chinese Academy of Forestry, Beijing 100083, China;
| | - Yujun Li
- School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an 710072, China
| |
Collapse
|
24
|
Smith‐Martin CM, Skelton RP, Johnson KM, Lucani C, Brodribb TJ. Lack of vulnerability segmentation among woody species in a diverse dry sclerophyll woodland community. Funct Ecol 2020. [DOI: 10.1111/1365-2435.13519] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Chris M. Smith‐Martin
- Department of Ecology, Evolution and Evolutionary Biology Columbia University New York NY USA
| | - Robert Paul Skelton
- South African Environmental Observation NetworkKirstenbosch Botanical Gardens Cape Town South Africa
| | - Kate M. Johnson
- School of Biological Sciences University of Tasmania Hobart TAS Australia
| | - Christopher Lucani
- School of Biological Sciences University of Tasmania Hobart TAS Australia
| | | |
Collapse
|
25
|
Bernard C, Compagnoni A, Salguero‐Gómez R. Testing Finch's hypothesis: The role of organismal modularity on the escape from actuarial senescence. Funct Ecol 2020. [DOI: 10.1111/1365-2435.13486] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Aldo Compagnoni
- Martin Luther University Halle‐Wittenberg German Centre for Integrative Biodiversity Research Leipzig Germany
| | - Roberto Salguero‐Gómez
- Department of Zoology University of Oxford Oxford UK
- Centre for Biodiversity and Conservation Science University of Queensland St. Lucia QLD Australia
- Evolutionary Demography laboratory Max Plank Institute for Demographic Research Rostock Germany
| |
Collapse
|
26
|
Cardoso AA, Batz TA, McAdam SAM. Xylem Embolism Resistance Determines Leaf Mortality during Drought in Persea americana. PLANT PHYSIOLOGY 2020; 182:547-554. [PMID: 31624082 PMCID: PMC6945834 DOI: 10.1104/pp.19.00585] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 10/10/2019] [Indexed: 05/08/2023]
Abstract
The driver of leaf mortality during drought stress is a critical unknown. We used the commercially important tree Persea americana, in which there is a large variation in the degree of drought-induced leaf death across the canopy, to test whether embolism formation in the xylem during drought drives this leaf mortality. A large range in the number of embolized vessels in the petioles of leaves was observed across the canopy of plants that had experienced drought. Despite considerable variation between leaves, the amount of embolized vessels in the xylem of the petiole strongly correlated with area of drought-induced tissue death in individual leaves. Consistent with this finding was a large interleaf variability in xylem resistance to embolism, with a 1.45 MPa variation in the water potential at which 50% of the xylem in the leaf midrib embolized across leaves. Our results implicate xylem embolism as a driver of leaf mortality during drought. Moreover, we propose that heterogeneity in drought-induced leaf mortality across a canopy is caused by high interleaf variability in xylem resistance to embolism, which may act as a buffer against complete canopy death during prolonged drought in P. americana.
Collapse
Affiliation(s)
- Amanda A Cardoso
- Purdue Center for Plant Biology, Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907
| | - Timothy A Batz
- Purdue Center for Plant Biology, Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907
| | - Scott A M McAdam
- Purdue Center for Plant Biology, Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907
| |
Collapse
|
27
|
Li S, Hao GY, Niinemets Ü, Harley PC, Wanke S, Lens F, Zhang YJ, Cao KF. The effects of intervessel pit characteristics on xylem hydraulic efficiency and photosynthesis in hemiepiphytic and non-hemiepiphytic Ficus species. PHYSIOLOGIA PLANTARUM 2019; 167:661-675. [PMID: 30637766 DOI: 10.1111/ppl.12923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 12/21/2018] [Accepted: 01/08/2019] [Indexed: 06/09/2023]
Abstract
Xylem vulnerability to cavitation and hydraulic efficiency are directly linked to fine-scale bordered pit features in water-conducting cells of vascular plants. However, it is unclear how pit characteristics influence water transport and carbon economy in tropical species. The primary aim of this study was to evaluate functional implications of changes in pit characteristics for water relations and photosynthetic traits in tropical Ficus species with different growth forms (i.e. hemiepiphytic and non-hemiepiphytic) grown under common conditions. Intervessel pit characteristics were measured using scanning electron microscopy in five hemiepiphytic and five non-hemiepiphytic Ficus species to determine whether these traits were related to hydraulics, leaf photosynthesis, stomatal conductance and wood density. Ficus species varied greatly in intervessel pit structure, hydraulic conductivity and leaf physiology, and clear differences were observed between the two growth forms. The area and diameter of pit aperture were negatively correlated with sapwood-specific hydraulic conductivity, mass-based net assimilation rate, stomatal conductance (gs ), intercellular CO2 concentration (Ci ) and the petiole vessel lumen diameters (Dv ), but positively correlated with wood density. Pit morphology was only negatively correlated with sapwood- and leaf-specific hydraulic conductivity and Dv . Pit density was positively correlated with gs , Ci and Dv , but negatively with intrinsic leaf water-use efficiency. Pit and pit aperture shape were not significantly correlated with any of the physiological traits. These findings indicate a significant role of pit characteristics in xylem water transport, carbon assimilation and ecophysiological adaptation of Ficus species in tropical rain forests.
Collapse
Affiliation(s)
- Shuai Li
- Department of Plant Physiology, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu, 51014, Estonia
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
| | - Guang-You Hao
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Liaoning, Shenyang, 110016, China
| | - Ülo Niinemets
- Department of Plant Physiology, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu, 51014, Estonia
| | - Peter C Harley
- Department of Plant Physiology, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu, 51014, Estonia
| | - Stefan Wanke
- Institut für Botanik, Technische Universität Dresden, Dresden, 01062, Germany
| | - Frederic Lens
- Naturalis Biodiversity Center, Leiden University, PO Box 9517, 2300RA, Leiden, The Netherlands
| | - Yong-Jiang Zhang
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
- School of Biology and Ecology, University of Maine, Orono, ME, 04469, USA
| | - Kun-Fang Cao
- College of Forestry, Guangxi University, Plant Ecophysiology and Evolution Group, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Forest Ecology and Conservation, Nanning, Guangxi, 530004, China
| |
Collapse
|
28
|
Park J, Go T, Ryu J, Lee SJ. Air spreading through wetted cellulose membranes: Implications for the safety function of hydraulic valves in plants. Phys Rev E 2019; 100:032409. [PMID: 31640020 DOI: 10.1103/physreve.100.032409] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Indexed: 06/10/2023]
Abstract
Plants transport water against the risk of cavitation inside xylem vessels, called "embolism." As one of their hydraulic strategies, pit membranes composed of cellulose fibers have been known as safety valves that prevent the spreading of embolism towards adjacent xylem vessels. However, detailed observation of embolism spreading through a pit membrane is still lacking. Here, we hypothesized that the pit membranes normally remain to be wetted in xylem vessels and noticed in particular the hydraulic role of water film on air spreading that has been overlooked previously. For the hydrodynamic study of the embolism spreading through a wetted pit membrane, we investigated the penetration and spreading dynamics of air plugs through the wetted cellulose membrane in a channel flow. Air spreading exhibits two types of dynamics: continuous and discrete spreading. We elucidated the correlation of dynamic characteristics of air flow and pressure variations according to membrane thickness. Our study speculates that the thickness of pit membranes affects the behaviors of water film captured by cellulose fibers, and it is a crucial criterion for the reversible gating of further spreading of embolism throughout xylem networks.
Collapse
Affiliation(s)
- JooYoung Park
- Department of Mechanical Engineering, Pohang University of Science and Technology, San 31, Hyoja-dong, Pohang 37673, South Korea
| | - Taesik Go
- Department of Mechanical Engineering, Pohang University of Science and Technology, San 31, Hyoja-dong, Pohang 37673, South Korea
| | - Jeongeun Ryu
- Department of Mechanical Engineering, Pohang University of Science and Technology, San 31, Hyoja-dong, Pohang 37673, South Korea
| | - Sang Joon Lee
- Department of Mechanical Engineering, Pohang University of Science and Technology, San 31, Hyoja-dong, Pohang 37673, South Korea
| |
Collapse
|
29
|
Dória LC, Meijs C, Podadera DS, Del Arco M, Smets E, Delzon S, Lens F. Embolism resistance in stems of herbaceous Brassicaceae and Asteraceae is linked to differences in woodiness and precipitation. ANNALS OF BOTANY 2019; 124:1-14. [PMID: 30590483 PMCID: PMC6676380 DOI: 10.1093/aob/mcy233] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 12/05/2018] [Indexed: 05/16/2023]
Abstract
BACKGROUND AND AIMS Plant survival under extreme drought events has been associated with xylem vulnerability to embolism (the disruption of water transport due to air bubbles in conduits). Despite the ecological and economic importance of herbaceous species, studies focusing on hydraulic failure in herbs remain scarce. Here, we assess the vulnerability to embolism and anatomical adaptations in stems of seven herbaceous Brassicaceae species occurring in different vegetation zones of the island of Tenerife, Canary Islands, and merged them with a similar hydraulic-anatomical data set for herbaceous Asteraceae from Tenerife. METHODS Measurements of vulnerability to xylem embolism using the in situ flow centrifuge technique along with light and transmission electron microscope observations were performed in stems of the herbaceous species. We also assessed the link between embolism resistance vs. mean annual precipitation and anatomical stem characters. KEY RESULTS The herbaceous species show a 2-fold variation in stem P50 from -2.1 MPa to -4.9 MPa. Within Hirschfeldia incana and Sisymbrium orientale, there is also a significant stem P50 difference between populations growing in contrasting environments. Variation in stem P50 is mainly explained by mean annual precipitation as well as by the variation in the degree of woodiness (calculated as the proportion of lignified area per total stem area) and to a lesser extent by the thickness of intervessel pit membranes. Moreover, mean annual precipitation explains the total variance in embolism resistance and stem anatomical traits. CONCLUSIONS The degree of woodiness and thickness of intervessel pit membranes are good predictors of embolism resistance in the herbaceous Brassicaceae and Asteraceae species studied. Differences in mean annual precipitation across the sampling sites affect embolism resistance and stem anatomical characters, both being important characters determining survival and distribution of the herbaceous eudicots.
Collapse
Affiliation(s)
| | - Cynthia Meijs
- Naturalis Biodiversity Center, Leiden University, RA Leiden, The Netherlands
| | | | - Marcelino Del Arco
- Department of Plant Biology (Botany), La Laguna University, La Laguna, Tenerife, Spain
| | - Erik Smets
- Naturalis Biodiversity Center, Leiden University, RA Leiden, The Netherlands
| | | | - Frederic Lens
- Naturalis Biodiversity Center, Leiden University, RA Leiden, The Netherlands
| |
Collapse
|
30
|
Pits with aspiration explain life expectancy of a conifer species. Proc Natl Acad Sci U S A 2019; 116:14794-14796. [PMID: 31289227 DOI: 10.1073/pnas.1909866116] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
31
|
Trueba S, Delzon S, Isnard S, Lens F. Similar hydraulic efficiency and safety across vesselless angiosperms and vessel-bearing species with scalariform perforation plates. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:3227-3240. [PMID: 30921455 DOI: 10.1093/jxb/erz133] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 03/14/2019] [Indexed: 06/09/2023]
Abstract
The evolution of xylem vessels from tracheids is put forward as a key innovation that boosted hydraulic conductivity and photosynthetic capacities in angiosperms. Yet, the role of xylem anatomy and interconduit pits in hydraulic performance across vesselless and vessel-bearing angiosperms is incompletely known, and there is a lack of functional comparisons of ultrastructural pits between species with different conduit types. We assessed xylem hydraulic conductivity and vulnerability to drought-induced embolism in 12 rain forest species from New Caledonia, including five vesselless species, and seven vessel-bearing species with scalariform perforation plates. We measured xylem conduit traits, along with ultrastructural features of the interconduit pits, to assess the relationships between conduit traits and hydraulic efficiency and safety. In spite of major differences in conduit diameter, conduit density, and the presence/absence of perforation plates, the species studied showed similar hydraulic conductivity and vulnerability to drought-induced embolism, indicating functional similarity between both types of conduits. Interconduit pit membrane thickness (Tm) was the only measured anatomical feature that showed a relationship to significant vulnerability to embolism. Our results suggest that the incidence of drought in rain forest ecosystems can have similar effects on species bearing water-conducting cells with different morphologies.
Collapse
Affiliation(s)
- Santiago Trueba
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, 621 Charles E. Young Dr. South, Los Angeles, CA, USA
- AMAP, IRD, CIRAD, CNRS, INRA, Université de Montpellier, Nouméa, New Caledonia
| | | | - Sandrine Isnard
- AMAP, IRD, CIRAD, CNRS, INRA, Université de Montpellier, Nouméa, New Caledonia
| | - Frederic Lens
- Naturalis Biodiversity Center, Leiden University, Leiden, The Netherlands
| |
Collapse
|
32
|
Conflicting functional effects of xylem pit structure relate to the growth-longevity trade-off in a conifer species. Proc Natl Acad Sci U S A 2019; 116:15282-15287. [PMID: 31209057 DOI: 10.1073/pnas.1900734116] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Consistent with a ubiquitous life history trade-off, trees exhibit a negative relationship between growth and longevity both among and within species. However, the mechanistic basis of this life history trade-off is not well understood. In addition to resource allocation conflicts among multiple traits, functional conflicts arising from individual morphological traits may also contribute to life history trade-offs. We hypothesized that conflicting functional effects of xylem structural traits contribute to the growth-longevity trade-off in trees. We tested this hypothesis by examining the extent to which xylem morphological traits (i.e., wood density, tracheid diameters, and pit structure) relate to growth rates and longevity in two natural populations of the conifer species Pinus ponderosa Hydraulic constraints arise as trees grow larger and xylem anatomical traits adjust to compensate. We disentangled the effects of size through ontogeny in individual trees and growth rates among trees on xylem traits by sampling each tree at multiple trunk diameters. We found that the oldest trees had slower lifetime growth rates compared with younger trees in the studied populations, indicating a growth-longevity trade-off. We further provide evidence that a single xylem trait, pit structure, with conflicting effects on xylem function (hydraulic safety and efficiency) relates to the growth-longevity trade-off in a conifer species. This study highlights that, in addition to trade-offs among multiple traits, functional constraints based on individual morphological traits like that of pit structure provide mechanistic insight into how and when life history trade-offs arise.
Collapse
|
33
|
Verma ML, Kumar P, Sharma D, Verma AD, Jana AK. Advances in Nanobiotechnology with Special Reference to Plant Systems. ACTA ACUST UNITED AC 2019. [DOI: 10.1007/978-3-030-12496-0_13] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
|
34
|
Recovery of Functional Diversity Following Shifting Cultivation in Tropical Monsoon Forests. FORESTS 2018. [DOI: 10.3390/f9090506] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The relationship between biodiversity and ecosystem functioning is an important issue in ecology. Plant functional traits and their diversity are key determinants of ecosystem function in changing environments. Understanding the successional dynamics of functional features in forest ecosystems is a first step to their sustainable management. In this study, we tested the changes in functional community composition with succession in tropical monsoon forests in Xishuangbanna, China. We sampled 33 plots at three successional stages—~40-year-old secondary forests, ~60-year-old secondary forests, and old growth forests—following the abandonment of the shifting cultivation land. Community-level functional traits were calculated based on measurements of nine functional traits for 135 woody plant species. The results show that the community structures and species composition of the old-growth forests were significantly different to those of the secondary stands. The species diversity, including species richness (S), the Shannon–Weaver index (H), and Pielou’s evenness (J), significantly increased during the recovery process after shifting cultivation. The seven studied leaf functional traits (deciduousness, specific leaf area, leaf dry matter content, leaf nitrogen content, leaf phosphorus content, leaf potassium content and leaf carbon content) changed from conservative to acquisitive syndromes during the recovery process, whereas wood density showed the opposite pattern, and seed mass showed no significant change, suggesting that leaf traits are more sensitive to environmental changes than wood or seed traits. The functional richness increased during the recovery process, whereas the functional evenness and divergence had the highest values in the 60-year-old secondary communities. Soil nutrients significantly influenced functional traits, but their effects on functional diversity were less obvious during the secondary succession after shifting cultivation. Our study indicates that the recovery of tropical monsoon forests is rather slow; secondary stands recover far less than the old growth stands in terms of community structure and species and functional diversity, even after about half a century of recovery, highlighting the importance of the conservation of old growth tropical monsoon forest ecosystems.
Collapse
|
35
|
Sevanto S, Ryan M, Dickman LT, Derome D, Patera A, Defraeye T, Pangle RE, Hudson PJ, Pockman WT. Is desiccation tolerance and avoidance reflected in xylem and phloem anatomy of two coexisting arid-zone coniferous trees? PLANT, CELL & ENVIRONMENT 2018; 41:1551-1564. [PMID: 29569276 DOI: 10.1111/pce.13198] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 02/28/2018] [Accepted: 03/06/2018] [Indexed: 06/08/2023]
Abstract
Plants close their stomata during drought to avoid excessive water loss, but species differ in respect to the drought severity at which stomata close. The stomatal closure point is related to xylem anatomy and vulnerability to embolism, but it also has implications for phloem transport and possibly phloem anatomy to allow sugar transport at low water potentials. Desiccation-tolerant plants that close their stomata at severe drought should have smaller xylem conduits and/or fewer and smaller interconduit pits to reduce vulnerability to embolism but more phloem tissue and larger phloem conduits compared with plants that avoid desiccation. These anatomical differences could be expected to increase in response to long-term reduction in precipitation. To test these hypotheses, we used tridimensional synchroton X-ray microtomograph and light microscope imaging of combined xylem and phloem tissues of 2 coniferous species: one-seed juniper (Juniperus monosperma) and piñon pine (Pinus edulis) subjected to precipitation manipulation treatments. These species show different xylem vulnerability to embolism, contrasting desiccation tolerance, and stomatal closure points. Our results support the hypothesis that desiccation tolerant plants require higher phloem transport capacity than desiccation avoiding plants, but this can be gained through various anatomical adaptations in addition to changing conduit or tissue size.
Collapse
Affiliation(s)
- Sanna Sevanto
- Earth and Environmental Sciences Division, Los Alamos National Laboratory, Bikini Atoll Road MS J535, Los Alamos, NM, 87545, USA
| | - Max Ryan
- Earth and Environmental Sciences Division, Los Alamos National Laboratory, Bikini Atoll Road MS J535, Los Alamos, NM, 87545, USA
| | - L Turin Dickman
- Earth and Environmental Sciences Division, Los Alamos National Laboratory, Bikini Atoll Road MS J535, Los Alamos, NM, 87545, USA
| | - Dominique Derome
- Laboratory for Multiscale Studies in Building Physics, Swiss Federal Laboratories for Material Science and Technology (Empa), Ueberlandstrasse 129, 8600, Duebendorf, Switzerland
| | - Alessandra Patera
- Swiss Light Source, Paul Scherrer Institute, 5232, Villigen, Switzerland
- Centre d'Imagerie BioMedicale, Ecole Polytechnique Federale de Lausanne, 1015, Lausanne, Switzerland
| | - Thijs Defraeye
- Laboratory for Multiscale Studies in Building Physics, Swiss Federal Laboratories for Material Science and Technology (Empa), Ueberlandstrasse 129, 8600, Duebendorf, Switzerland
- Chair of Building Physics, ETH Zurich, Stefano-Franscini-Platz 5, 8093, Zurich, Switzerland
| | - Robert E Pangle
- Department of Biology, University of New Mexico, Castetter Hall 1480, Yale Boulevard NE, Albuquerque, NM, 87131, USA
| | - Patrick J Hudson
- Department of Biology, University of New Mexico, Castetter Hall 1480, Yale Boulevard NE, Albuquerque, NM, 87131, USA
| | - William T Pockman
- Department of Biology, University of New Mexico, Castetter Hall 1480, Yale Boulevard NE, Albuquerque, NM, 87131, USA
| |
Collapse
|
36
|
Choat B, Brodribb TJ, Brodersen CR, Duursma RA, López R, Medlyn BE. Triggers of tree mortality under drought. Nature 2018; 558:531-539. [DOI: 10.1038/s41586-018-0240-x] [Citation(s) in RCA: 647] [Impact Index Per Article: 107.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 05/02/2018] [Indexed: 01/08/2023]
|
37
|
González-Muñoz N, Sterck F, Torres-Ruiz JM, Petit G, Cochard H, von Arx G, Lintunen A, Caldeira MC, Capdeville G, Copini P, Gebauer R, Grönlund L, Hölttä T, Lobo-do-Vale R, Peltoniemi M, Stritih A, Urban J, Delzon S. Quantifying in situ phenotypic variability in the hydraulic properties of four tree species across their distribution range in Europe. PLoS One 2018; 13:e0196075. [PMID: 29715289 PMCID: PMC5929519 DOI: 10.1371/journal.pone.0196075] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 04/05/2018] [Indexed: 01/29/2023] Open
Abstract
Many studies have reported that hydraulic properties vary considerably between tree species, but little is known about their intraspecific variation and, therefore, their capacity to adapt to a warmer and drier climate. Here, we quantify phenotypic divergence and clinal variation for embolism resistance, hydraulic conductivity and branch growth, in four tree species, two angiosperms (Betula pendula, Populus tremula) and two conifers (Picea abies, Pinus sylvestris), across their latitudinal distribution in Europe. Growth and hydraulic efficiency varied widely within species and between populations. The variability of embolism resistance was in general weaker than that of growth and hydraulic efficiency, and very low for all species but Populus tremula. In addition, no and weak support for a safety vs. efficiency trade-off was observed for the angiosperm and conifer species, respectively. The limited variability of embolism resistance observed here for all species except Populus tremula, suggests that forest populations will unlikely be able to adapt hydraulically to drier conditions through the evolution of embolism resistance.
Collapse
Affiliation(s)
| | - F. Sterck
- Forest Ecology and Forest Management Group, Wageningen University & Research, Wageningen, The Netherlands
| | | | - G. Petit
- Università degli Studi di Padova, Dep. TeSAF, Legnaro (PD), Italy
| | - H. Cochard
- PIAF, INRA, Université Clermont-Auvergne, Clermont-Ferrand, France
| | - G. von Arx
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
- Climatic Change and Climate Impacts, Institute for Environmental Sciences, Geneva, Switzerland
| | - A. Lintunen
- Department of Forest Sciences, University of Helsinki, Helsinki, Finland
| | - M. C. Caldeira
- Forest Research Centre, School of Agriculture, University of Lisbon, Tapada da Ajuda, Lisboa, Portugal
| | - G. Capdeville
- BIOGECO, INRA, Université de Bordeaux, Pessac, France
| | - P. Copini
- Forest Ecology and Forest Management Group, Wageningen University & Research, Wageningen, The Netherlands
- Wageningen Environmental Research (Alterra), Wageningen, The Netherlands
| | - R. Gebauer
- Department of Forest Botany, Dendrology and Geobiocoenology, Mendel University, Zemědělská 3, Brno, Czech Republic
| | - L. Grönlund
- Department of Forest Sciences, University of Helsinki, Helsinki, Finland
| | - T. Hölttä
- Department of Forest Sciences, University of Helsinki, Helsinki, Finland
| | - R. Lobo-do-Vale
- Forest Research Centre, School of Agriculture, University of Lisbon, Tapada da Ajuda, Lisboa, Portugal
| | - M. Peltoniemi
- Natural Resources Institute Finland (Luke), Latokartanonkaari 9, Helsinki, Finland
| | - A. Stritih
- Swiss Federal Institute of Technology ETH, Planning of Landscape and Urban Systems, Zurich, Switzerland
| | - J. Urban
- Department of Forest Botany, Dendrology and Geobiocoenology, Mendel University, Zemědělská 3, Brno, Czech Republic
| | - S. Delzon
- BIOGECO, INRA, Université de Bordeaux, Pessac, France
| |
Collapse
|
38
|
Pittermann J, Cowan J, Kaufman N, Baer A, Zhang E, Kuty D. The water relations and xylem attributes of albino redwood shoots (Sequioa sempervirens (D. Don.) Endl.). PLoS One 2018; 13:e0191836. [PMID: 29590113 PMCID: PMC5873723 DOI: 10.1371/journal.pone.0191836] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 01/11/2018] [Indexed: 11/18/2022] Open
Abstract
Plants that lack chlorophyll are rare and typically restricted to holoparasites that obtain their carbon, water and mineral resources from a host plant. Although not parasites in the traditional sense, albino foliage, such as the sprouts that sometimes develop from redwood tree trunks, are comparable in function. They occur sporadically, and can reach the size of shrubs and in rare cases, trees. Albino redwoods are interesting because in addition to their reduced carbon resources, the absence of chloroplasts may impede proper stomatal function, and both aspects may have upstream consequences on water transport and xylem quality. We examined the water relations, water transport and xylem anatomical attributes of albino redwoods and show that similar to achlorophyllous and parasitic plants, albino redwoods have notably higher stomatal conductance than green sprouts. Given that stem xylem tracheid size as well as water transport efficiency are nearly equivalent in both albino and green individuals, we attribute the increased leaf water loss in albino sprouts to lower leaf to xylem area ratios, which favour improved hydration relative to green sprouts. The stems of albino redwoods were more vulnerable to drought-induced embolism than green stems, and this was consistent with the albino's weaker tracheids, as characterized by wall thickness to lumen diameter measures. Our results are both complementary and consistent with previous research on achlorophyllous plants, and suggest that the loss of stomatal control and photosynthetic capacity results in substantial vascular and anatomical adjustments.
Collapse
Affiliation(s)
- Jarmila Pittermann
- Department of Ecology and Evolutionary Biology, University of California, United States of America
| | - Joshua Cowan
- Department of Ecology and Evolutionary Biology, University of California, United States of America
| | - Nathan Kaufman
- Urban Adamah, Berkeley, California, United States of America
| | - Alex Baer
- Department of Biology, California State University, California, United States of America
| | - Elaine Zhang
- College of Arts and Science, University of San Francisco, San Francisco, California, United States of America
| | - David Kuty
- Henry Cowell Redwoods State Park, Felton, California, United States of America
| |
Collapse
|
39
|
Losso A, Anfodillo T, Ganthaler A, Kofler W, Markl Y, Nardini A, Oberhuber W, Purin G, Mayr S. Robustness of xylem properties in conifers: analyses of tracheid and pit dimensions along elevational transects. TREE PHYSIOLOGY 2018; 38:212-222. [PMID: 29309674 DOI: 10.1093/treephys/tpx168] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 11/30/2017] [Indexed: 06/07/2023]
Abstract
In alpine regions, tree hydraulics are limited by low temperatures that restrict xylem growth and induce winter frost drought and freezing stress. While several studies have dealt with functional limitations, data on elevational changes in functionally relevant xylem anatomical parameters are still scarce. In wood cores of Pinus cembra L. and Picea abies (L.) Karst. trunks, harvested along five elevational transects, xylem anatomical parameters (tracheid hydraulic diameter dh, wall reinforcement (t/b)2), pit dimensions (pit aperture Da, pit membrane Dm and torus Dt diameters) and respective functional indices (torus overlap O, margo flexibility) were measured. In both species, tracheid diameters decreased and (t/b)2 increased with increasing elevation, while pit dimensions and functional indices remained rather constant (P. cembra: Dt 10.3 ± 0.2 μm, O 0.477 ± 0.005; P. abies: Dt 9.30 ± 0.18 μm, O 0.492 ± 0.005). However, dh increased with tree height following a power trajectory with an exponent of 0.21, and also pit dimensions increased with tree height (exponents: Dm 0.18; Dt 0.14; Da 0.11). Observed elevational trends in xylem structures were predominantly determined by changes in tree size. Tree height-related changes in anatomical traits showed a remarkable robustness, regardless of the distributional ranges of study species. Despite increasing stress intensities towards the timberline, no adjustment in hydraulic safety at the pit level was observed.
Collapse
Affiliation(s)
- Adriano Losso
- Department of Botany, University of Innsbruck, Sternwartestraße 15, 6020 Innsbruck, Austria
| | - Tommaso Anfodillo
- Dipartimento Territorio e Sistemi Agro Forestali, Università degli Studi di Padova, 35020 Legnaro, PD, Italy
| | - Andrea Ganthaler
- Department of Botany, University of Innsbruck, Sternwartestraße 15, 6020 Innsbruck, Austria
| | - Werner Kofler
- Department of Botany, University of Innsbruck, Sternwartestraße 15, 6020 Innsbruck, Austria
| | - Yvonne Markl
- Department of Botany, University of Innsbruck, Sternwartestraße 15, 6020 Innsbruck, Austria
| | - Andrea Nardini
- Dipartimento di Scienze della Vita, Università di Trieste, Via L. Giorgieri 10, 34127 Trieste, Italy
| | - Walter Oberhuber
- Department of Botany, University of Innsbruck, Sternwartestraße 15, 6020 Innsbruck, Austria
| | - Gerhard Purin
- Sportgymnasium Dornbirn, Messestraße 4, 6850 Dornbirn, Austria
| | - Stefan Mayr
- Department of Botany, University of Innsbruck, Sternwartestraße 15, 6020 Innsbruck, Austria
| |
Collapse
|
40
|
Schenk HJ, Espino S, Rich-Cavazos SM, Jansen S. From the sap's perspective: The nature of vessel surfaces in angiosperm xylem. AMERICAN JOURNAL OF BOTANY 2018; 105:172-185. [PMID: 29578294 DOI: 10.1002/ajb2.1034] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 12/14/2017] [Indexed: 06/08/2023]
Abstract
PREMISE OF THE STUDY Xylem sap in angiosperms moves under negative pressure in conduits and cell wall pores that are nanometers to micrometers in diameter, so sap is always very close to surfaces. Surfaces matter for water transport because hydrophobic ones favor nucleation of bubbles, and surface chemistry can have strong effects on flow. Vessel walls contain cellulose, hemicellulose, lignin, pectins, proteins, and possibly lipids, but what is the nature of the inner, lumen-facing surface that is in contact with sap? METHODS Vessel lumen surfaces of five angiosperms from different lineages were examined via transmission electron microscopy and confocal and fluorescence microscopy, using fluorophores and autofluorescence to detect cell wall components. Elemental composition was studied by energy-dispersive X-ray spectroscopy, and treatments with phospholipase C (PLC) were used to test for phospholipids. KEY RESULTS Vessel surfaces consisted mainly of lignin, with strong cellulose signals confined to pit membranes. Proteins were found mainly in inter-vessel pits and pectins only on outer rims of pit membranes and in vessel-parenchyma pits. Continuous layers of lipids were detected on most vessel surfaces and on most pit membranes and were shown by PLC treatment to consist at least partly of phospholipids. CONCLUSIONS Vessel surfaces appear to be wettable because lignin is not strongly hydrophobic and a coating with amphiphilic lipids would render any surface hydrophilic. New questions arise about these lipids and their possible origins from living xylem cells, especially about their effects on surface tension, surface bubble nucleation, and pit membrane function.
Collapse
Affiliation(s)
- H Jochen Schenk
- Department of Biological Science, California State University Fullerton, Fullerton, CA 92831, USA
| | - Susana Espino
- Department of Biological Science, California State University Fullerton, Fullerton, CA 92831, USA
| | - Sarah M Rich-Cavazos
- Department of Biological Science, California State University Fullerton, Fullerton, CA 92831, USA
| | - Steven Jansen
- Institute of Systematic Botany and Ecology, Ulm University, Albert-Einstein-Allee 11, D-89081, Ulm, Germany
| |
Collapse
|
41
|
Olano JM, González-Muñoz N, Arzac A, Rozas V, von Arx G, Delzon S, García-Cervigón AI. Sex determines xylem anatomy in a dioecious conifer: hydraulic consequences in a drier world. TREE PHYSIOLOGY 2017; 37:1493-1502. [PMID: 28575521 DOI: 10.1093/treephys/tpx066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 05/18/2017] [Indexed: 05/13/2023]
Abstract
Increased drought frequency and severity may reshape tree species distribution in arid environments. Dioecious tree species may be more sensitive to climate warming if sex-related vulnerability to drought occurs, since lower performance of one sex may drive differential stress tolerance, sex-related mortality rates and biased sex ratios. We explored the effect of sex and environment on branch hydraulic (hydraulic conductivity and vulnerability to embolism) and trunk anatomical traits in both sexes of the dioecious conifer Juniperus thurifera L. at two sites with contrasting water availability. Additionally, we tested for a trade-off between hydraulic safety (vulnerability to embolism) and efficiency (hydraulic conductivity). Vulnerability to embolism and hydraulic conductivity were unaffected by sex or site at branch level. In contrast, sex played a significant role in xylem anatomy. We found a trade-off between hydraulic safety and efficiency, with larger conductivities related to higher vulnerabilities to embolism. At the anatomical level, females' trunk showed xylem anatomical traits related to greater hydraulic efficiency (higher theoretical hydraulic conductivity) over safety (thinner tracheid walls, lower Mork's Index), whereas males' trunk anatomy followed a more conservative strategy, especially in the drier site. Reconciling the discrepancy between branch hydraulic function and trunk xylem anatomy would require a thorough and integrated understanding of the tree structure-function relationship at the whole-plant level. Nevertheless, lower construction costs and higher efficiency in females' xylem anatomy at trunk level might explain the previously observed higher growth rates in mesic habitats. However, prioritizing efficiency over safety in trunk construction might make females more sensitive to drought, endangering the species' persistence in a drier world.
Collapse
Affiliation(s)
- José M Olano
- Área de Botánica, Departamento de Ciencias Agroforestales, EU de Ingenierías Agrarias, iuFOR-Universidad de Valladolid, Campus Duques de Soria, 42004 Soria, Spain
| | | | - Alberto Arzac
- Institute of Ecology and Geography, Siberian Federal University, 79 Svobodny pr., 660041 Krasnoyarsk, Russia
| | - Vicente Rozas
- Área de Botánica, Departamento de Ciencias Agroforestales, EU de Ingenierías Agrarias, iuFOR-Universidad de Valladolid, Campus Duques de Soria, 42004 Soria, Spain
| | - Georg von Arx
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf 8903, Switzerland
- Climatic Change and Climate Impacts, Institute for Environmental Sciences, 66 Blvd Carl Vogt, CH-1205 Geneva, Switzerland
| | - Sylvain Delzon
- BIOGECO, INRA, University of Bordeaux, 33615 Pessac, France
| | - Ana I García-Cervigón
- CASEM - Facultad de Ciencias del Mar y Ambientales,Campus Universitario de Puerto Real, 11510 Puerto Real (Cádiz), Spain
| |
Collapse
|
42
|
Wilson JP, Montañez IP, White JD, DiMichele WA, McElwain JC, Poulsen CJ, Hren MT. Dynamic Carboniferous tropical forests: new views of plant function and potential for physiological forcing of climate. THE NEW PHYTOLOGIST 2017; 215:1333-1353. [PMID: 28742257 DOI: 10.1111/nph.14700] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 05/22/2017] [Indexed: 05/05/2023]
Abstract
Contents 1333 I. 1334 II. 1335 III. 1339 IV. 1344 V. 1347 VI. 1347 1348 1348 References 1348 SUMMARY: The Carboniferous, the time of Earth's penultimate icehouse and widespread coal formation, was dominated by extinct lineages of early-diverging vascular plants. Studies of nearest living relatives of key Carboniferous plants suggest that their physiologies and growth forms differed substantially from most types of modern vegetation, particularly forests. It remains a matter of debate precisely how differently and to what degree these long-extinct plants influenced the environment. Integrating biophysical analysis of stomatal and vascular conductivity with geochemical analysis of fossilized tissues and process-based ecosystem-scale modeling yields a dynamic and unique perspective on these paleoforests. This integrated approach indicates that key Carboniferous plants were capable of growth and transpiration rates that approach values found in extant crown-group angiosperms, differing greatly from comparatively modest rates found in their closest living relatives. Ecosystem modeling suggests that divergent stomatal conductance, leaf sizes and stem life span between dominant clades would have shifted the balance of soil-atmosphere water fluxes, and thus surface runoff flux, during repeated, climate-driven, vegetation turnovers. This synthesis highlights the importance of 'whole plant' physiological reconstruction of extinct plants and the potential of vascular plants to have influenced the Earth system hundreds of millions of years ago through vegetation-climate feedbacks.
Collapse
Affiliation(s)
| | - Isabel P Montañez
- Department of Earth and Planetary Sciences, University of California, Davis, CA, 95616, USA
| | - Joseph D White
- Department of Biology, Baylor University, Waco, TX, 76798, USA
| | - William A DiMichele
- Department of Paleobiology, Smithsonian Museum of Natural History, Washington, DC, 20560, USA
| | - Jennifer C McElwain
- Earth Institute, School of Biology and Environmental Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Christopher J Poulsen
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Michael T Hren
- Center for Integrative Geosciences, University of Connecticut, Storrs, CT, 06269, USA
| |
Collapse
|
43
|
Reconstructing Extinct Plant Water Use for Understanding Vegetation–Climate Feedbacks: Methods, Synthesis, and a Case Study Using the Paleozoic-Era Medullosan Seed Ferns. ACTA ACUST UNITED AC 2017. [DOI: 10.1017/s1089332600003004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Vegetation affects feedbacks in Earth's hydrologic system, but is constrained by physiological adaptations. In extant ecosystems, the mechanisms controlling plant water used can be measured experimentally; for extinct plants in the recent geological past, water use can be inferred from nearest living relatives, assuming minimal evolutionary change. In deep time, where no close living relatives exist, fossil material provides the only information for inferring plant water use. However, mechanistic models for extinct plant water use must be built on first principles and tested on extant plants. Plants serve as a conduit for water movement from the soil to the atmosphere, constrained by tissue-level construction and gross architecture. No single feature, such as stomata or veins, encompasses enough of the complexity underpinning water-use physiology to serve as the basis of a model of functional water use in all (or perhaps any) extinct plants. Rather, a “functional whole plant” model must be used. To understand the interplay between plant and atmosphere, water use in relation to environmental conditions is investigated in an extinct plant, the seed fernMedullosa((Division Pteridospermatophyta), by reviewing methods for reconstructing physiological variables such as leaf and stem hydraulic capacity, photosynthetic rate, transpiration rate, stomatal conductance, and albedo. Medullosans had the potential for extremely high photosynthetic and assimilation rates, water transport, stomatal conductance, and transpiration—rates comparable to later angiosperms. When these high growth and gas exchange rates of medullosans are combined with the unique atmospheric gas composition of the late Paleozoic atmosphere, complex vegetation-environmental feedbacks are expected despite their basal phylogenetic position relative to post-Paleozoic seed plants.
Collapse
|
44
|
Abstract
Mathematical models of fluid flow thorough plant stems permit quantitative assessment of plant ecology using anatomy alone, allowing extinct and extant plants to be measured against one another. Through this process, a series of patterns and observations about plant ecology and evolution can be made. First, many plants evolved high rates of water transport through the evolution of a diverse suite of anatomical adaptations over the last four hundred million years. Second, adaptations to increase hydraulic supply to leaves tend to precede, in evolutionary time, adaptations to increase the safety margin of plant water transport. Third, anatomical breakthroughs in water transport function tend to occur in step with ecological breakthroughs, including the appearance of leaves during the Devonian, the evolution of high leaf areas in early seed plants during the Carboniferous, and the early radiation of flowering plants during the Cretaceous. Quantitative assessment of plant function not only opens up the plant fossil record to ecological comparison, but also provides data that can be used to model fluxes and dynamics of past ecosystems that are rooted in individual plant anatomy.
Collapse
|
45
|
Bourne AE, Creek D, Peters JMR, Ellsworth DS, Choat B. Species climate range influences hydraulic and stomatal traits in Eucalyptus species. ANNALS OF BOTANY 2017; 120:123-133. [PMID: 28369162 PMCID: PMC5737682 DOI: 10.1093/aob/mcx020] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 02/17/2017] [Indexed: 05/05/2023]
Abstract
BACKGROUND AND AIMS Plant hydraulic traits influence the capacity of species to grow and survive in water-limited environments, but their comparative study at a common site has been limited. The primary aim of this study was to determine whether selective pressures on species originating in drought-prone environments constrain hydraulic traits among related species grown under common conditions. METHODS Leaf tissue water relations, xylem anatomy, stomatal behaviour and vulnerability to drought-induced embolism were measured on six Eucalyptus species growing in a common garden to determine whether these traits were related to current species climate range and to understand linkages between the traits. KEY RESULTS Hydraulically weighted xylem vessel diameter, leaf turgor loss point, the water potential at stomatal closure and vulnerability to drought-induced embolism were significantly ( P < 0·05) correlated with climate parameters from the species range. There was a co-ordination between stem and leaf parameters with the water potential at turgor loss, 12 % loss of conductivity and the point of stomatal closure significantly correlated. CONCLUSIONS The correlation of hydraulic, stomatal and anatomical traits with climate variables from the species' original ranges suggests that these traits are genetically constrained. The conservative nature of xylem traits in Eucalyptus trees has important implications for the limits of species responses to changing environmental conditions and thus for species survival and distribution into the future, and yields new information for physiological models.
Collapse
Affiliation(s)
- Aimee E. Bourne
- Western Sydney University, Hawkesbury Institute for the Environment, Locked Bag 1797, Penrith, NSW 2751, Australia
| | - Danielle Creek
- Western Sydney University, Hawkesbury Institute for the Environment, Locked Bag 1797, Penrith, NSW 2751, Australia
| | - Jennifer M. R. Peters
- Western Sydney University, Hawkesbury Institute for the Environment, Locked Bag 1797, Penrith, NSW 2751, Australia
| | - David S. Ellsworth
- Western Sydney University, Hawkesbury Institute for the Environment, Locked Bag 1797, Penrith, NSW 2751, Australia
| | - Brendan Choat
- Western Sydney University, Hawkesbury Institute for the Environment, Locked Bag 1797, Penrith, NSW 2751, Australia
- For correspondence. E-mail
| |
Collapse
|
46
|
Larter M, Pfautsch S, Domec JC, Trueba S, Nagalingum N, Delzon S. Aridity drove the evolution of extreme embolism resistance and the radiation of conifer genus Callitris. THE NEW PHYTOLOGIST 2017; 215:97-112. [PMID: 28378882 DOI: 10.1111/nph.14545] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 02/26/2017] [Indexed: 06/07/2023]
Abstract
Xylem vulnerability to embolism is emerging as a major factor in drought-induced tree mortality events across the globe. However, we lack understanding of how and to what extent climate has shaped vascular properties or functions. We investigated the evolution of xylem hydraulic function and diversification patterns in Australia's most successful gymnosperm clade, Callitris, the world's most drought-resistant conifers. For all 23 species in this group, we measured embolism resistance (P50 ), xylem specific hydraulic conductivity (Ks ), wood density, and tracheary element size from natural populations. We investigated whether hydraulic traits variation linked with climate and the diversification of this clade using a time-calibrated phylogeny. Embolism resistance varied widely across the Callitris clade (P50 : -3.8 to -18.8 MPa), and was significantly related to water scarcity, as was tracheid diameter. We found no evidence of a safety-efficiency tradeoff; Ks and wood density were not related to rainfall. Callitris diversification coincides with the onset of aridity in Australia since the early Oligocene. Our results highlight the evolutionary lability of xylem traits with climate, and the leading role of aridity in the diversification of conifers. The uncoupling of safety from other xylem functions allowed Callitris to evolve extreme embolism resistance and diversify into xeric environments.
Collapse
Affiliation(s)
| | - Sebastian Pfautsch
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Jean-Christophe Domec
- Bordeaux Sciences AGRO, UMR 1391 ISPA INRA, 1 Cours du Général de Gaulle, Gradignan Cedex, 33175, France
- Nicholas School of the Environment, Duke University, Durham, NC, 27708, USA
| | - Santiago Trueba
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, UCLA, 621 Charles E. Young Dr. South, Los Angeles, CA, 90095, USA
- IRD, UMR AMAP, BPA5, Noumea, 98800, New Caledonia
| | - Nathalie Nagalingum
- National Herbarium of New South Wales, Royal Botanic Gardens & Domain Trust, Mrs Macquaries Rd, Sydney, NSW, 2000, Australia
| | | |
Collapse
|
47
|
Miller ML, Johnson DM. Vascular development in very young conifer seedlings: Theoretical hydraulic capacities and potential resistance to embolism. AMERICAN JOURNAL OF BOTANY 2017; 104:979-992. [PMID: 28724592 DOI: 10.3732/ajb.1700161] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 06/05/2017] [Indexed: 06/07/2023]
Abstract
PREMISE OF THE STUDY Conifers have the highest rates of mortality during their first year, often attributed to water stress; yet, this tree life stage is the least studied in terms of hydraulic properties. Previous work has revealed correlations between xylem anatomy to both hydraulic transport capacity and resistance to hydraulic dysfunction. In this study, we compared xylem anatomical and plant functional traits of Pseudotsuga menziesii, Larix occidentalis, and Pinus ponderosa seedlings over the first 10 wk of growth to evaluate potential maximum hydraulic capabilities and resistance to drought-induced embolism. We hypothesized that, based on key functional traits of the xylem, predicted xylem embolism resistance of the species will reflect their previously determined drought tolerances with L. occidentalis, P. menziesii, and P. ponderosa in order of least to most embolism-resistant xylem. METHODS Xylem and pit anatomical characteristics and additional hydraulic-related functional traits were compared at five times during the first 10 wk of growth using confocal laser scanning microscopy (CLSM). KEY RESULTS Based on thickness to span ratio, torus to pit aperture overlap, and torus thickness, primary xylem appeared to be not only more hydraulically conductive but also less embolism-resistant than secondary xylem. By week 10, P. menziesii was predicted to have the most embolism-resistant xylem followed by P. ponderosa and L. occidentalis. CONCLUSIONS Theoretical measurements suggest that hydraulic transport capacities and vulnerability to embolism varied for each species over the first 10 wk of growth; thus, the timing of germination and onset of limited soil moisture is critical for growth and survival of seedlings.
Collapse
Affiliation(s)
- Megan L Miller
- 875 Perimeter Drive MS 1133, College of Natural Resources, University of Idaho, Moscow, Idaho 83844 USA
| | - Daniel M Johnson
- 875 Perimeter Drive MS 1133, College of Natural Resources, University of Idaho, Moscow, Idaho 83844 USA
| |
Collapse
|
48
|
Brodribb TJ, McAdam SAM. Evolution of the Stomatal Regulation of Plant Water Content. PLANT PHYSIOLOGY 2017; 174:639-649. [PMID: 28404725 PMCID: PMC5462025 DOI: 10.1104/pp.17.00078] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 04/11/2017] [Indexed: 05/19/2023]
Abstract
Changes in the function of stomata from the earliest bryophytes to derived angiosperms are examined.
Collapse
Affiliation(s)
- Timothy J Brodribb
- School of Biological Sciences, University of Tasmania, Hobart TAS 7001, Australia
| | - Scott A M McAdam
- School of Biological Sciences, University of Tasmania, Hobart TAS 7001, Australia
| |
Collapse
|
49
|
Li Y, Chen W, Chen J, Shi H. Contrasting hydraulic strategies in Salix psammophila and Caragana korshinskii in the southern Mu Us Desert, China. Ecol Res 2016. [DOI: 10.1007/s11284-016-1396-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
50
|
López R, Cano FJ, Choat B, Cochard H, Gil L. Plasticity in Vulnerability to Cavitation of Pinus canariensis Occurs Only at the Driest End of an Aridity Gradient. FRONTIERS IN PLANT SCIENCE 2016; 7:769. [PMID: 27375637 PMCID: PMC4891331 DOI: 10.3389/fpls.2016.00769] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 05/17/2016] [Indexed: 05/17/2023]
Abstract
Water availability has been considered one of the crucial drivers of species distribution. However, the increasing of temperatures and more frequent water shortages could overcome the ability of long-lived species to cope with rapidly changing conditions. Growth and survival of natural populations adapted to a given site, transferred and tested in other environments as part of provenance trials, can be interpreted as a simulation of ambient changes at the original location. We compare the intraspecific variation and the relative contribution of plasticity to adaptation of key functional traits related to drought resistance: vulnerability to cavitation, efficiency of the xylem to conduct water and biomass allocation. We use six populations of Canary Island pine growing in three provenance trials (wet, dry, and xeric). We found that the variability for hydraulic traits was largely due to phenotypic plasticity, whereas, genetic variation was limited and almost restricted to hydraulic safety traits and survival. Trees responded to an increase in climate dryness by lowering growth, and increasing leaf-specific hydraulic conductivity by means of increasing the Huber value. Vulnerability to cavitation only showed a plastic response in the driest provenance trial located in the ecological limit of the species. This trait was more tightly correlated with annual precipitation, drought length, and temperature oscillation at the origin of the populations than hydraulic efficiency or the Huber value. Vulnerability to cavitation was directly related to survival in the dry and the xeric provenance trials, illustrating its importance in determining drought resistance. In a new climatic scenario where more frequent and intense droughts are predicted, the magnitude of extreme events together with the fact that plasticity of cavitation resistance is only shown in the very dry limit of the species could hamper the capacity to adapt and buffer against environmental changes of some populations growing in dry locations.
Collapse
Affiliation(s)
- Rosana López
- Forest Genetics and Physiology Research Group, Sistemas y Recursos Naturales, School of Forest Engineering, Technical University of MadridMadrid, Spain
| | - Francisco J. Cano
- Forest Genetics and Physiology Research Group, Sistemas y Recursos Naturales, School of Forest Engineering, Technical University of MadridMadrid, Spain
| | - Brendan Choat
- Hawkesbury Institute for the Environment, University of Western SydneyRichmond, NSW, Australia
| | - Hervé Cochard
- PIAF, INRA, Université Clermont AuvergneClermont-Ferrand, France
| | - Luis Gil
- Forest Genetics and Physiology Research Group, Sistemas y Recursos Naturales, School of Forest Engineering, Technical University of MadridMadrid, Spain
| |
Collapse
|