1
|
Deciphering carbohydrate metabolism during wheat grain development via integrated transcriptome and proteome dynamics. Mol Biol Rep 2020; 47:5439-5449. [PMID: 32627139 DOI: 10.1007/s11033-020-05634-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 06/27/2020] [Indexed: 10/23/2022]
Abstract
Grain development of Triticum aestivum is being studied extensively using individual OMICS tools. However, integrated transcriptome and proteome studies are limited mainly due to complexity of genome. Current study focused to unravel the transcriptome-proteome coordination of key mechanisms underlying carbohydrate metabolism during whole wheat grain development. Wheat grains were manually dissected to obtain grain tissues for proteomics and transcriptomics analyses. Differentially expressed proteins and transcripts at the 11 stages of grain development were compared. Computational workflow for integration of two datasets related to carbohydrate metabolism was designed. For CM proteins, output peptide sequences of proteomic analyses (via LC-MS/MS) were used as source to search corresponding transcripts. The transcript that turned out with higher number of peptides was selected as bona fide ribonucleotide sequence for respective protein synthesis. More than 90% of hits resulted in successful identification of respective transcripts. Comparative analysis of protein and transcript expression profiles resulted in overall 32% concordance between these two series of data. However, during grain development correlation of two datasets gradually increased up to ~ tenfold from 152 to 655 °Cd and then dropped down. Proteins involved in carbohydrate metabolism were divided in five categories in accordance with their functions. Enzymes involved in starch and sucrose biosynthesis showed the highest correlations between proteome-transcriptome profiles. High percentage of identification and validation of protein-transcript hits highlighted the power of omics data integration approach over existing gene functional annotation tools. We found that correlation of two datasets is highly influenced by stage of grain development. Further, gene regulatory networks would be helpful in unraveling the mechanisms underlying the complex and significant traits such as grain weight and yield.
Collapse
|
2
|
Shokat S, Sehgal D, Vikram P, Liu F, Singh S. Molecular Markers Associated with Agro-Physiological Traits under Terminal Drought Conditions in Bread Wheat. Int J Mol Sci 2020; 21:E3156. [PMID: 32365765 PMCID: PMC7247584 DOI: 10.3390/ijms21093156] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/19/2020] [Accepted: 04/28/2020] [Indexed: 11/25/2022] Open
Abstract
Terminal drought stress poses a big challenge to sustain wheat grain production in rain-fed environments. This study aimed to utilize the genetically diverse pre-breeding lines for identification of genomic regions associated with agro-physiological traits at terminal stage drought stress in wheat. A total of 339 pre-breeding lines panel derived from three-way crosses of 'exotics × elite × elite' lines were evaluated in field conditions at Obregon, Mexico for two years under well irrigated as well as drought stress environments. Drought stress was imposed at flowering by skipping the irrigations at pre and post anthesis stage. Results revealed that drought significantly reduced grain yield (Y), spike length (SL), number of grains spikes-1 (NGS) and thousand kernel weight (TKW), while kernel abortion (KA) was increased. Population structure analysis in this panel uncovered three sub-populations. Genome wide linkage disequilibrium (LD) decay was observed at 2.5 centimorgan (cM). The haplotypes-based genome wide association study (GWAS) identified significant associations of Y, SL, and TKW on three chromosomes; 4A (HB10.7), 2D (HB6.10) and 3B (HB8.12), respectively. Likewise, associations on chromosomes 6B (HB17.1) and 3A (HB7.11) were found for NGS while on chromosome 3A (HB7.12) for KA. The genomic analysis information generated in the study can be efficiently utilized to improve Y and/or related parameters under terminal stage drought stress through marker-assisted breeding.
Collapse
Affiliation(s)
- Sajid Shokat
- Department of Plant and Environmental Sciences, University of Copenhagen, Højbakkegård Allé 13, 2630 Taastrup, Denmark;
- Wheat Breeding Group, Plant Breeding and Genetics Division, Nuclear Institute for Agriculture and Biology, Faisalabad 38000, Pakistan
| | - Deepmala Sehgal
- International Maize and Wheat Improvement Centre (CIMMYT) km, 45, Carretera Mex-Veracruz, El-Batan, Texcoco CP 56237, Mexico;
| | - Prashant Vikram
- International Potato Center, NASC Complex, Pusa, New Delhi 110012, India;
| | - Fulai Liu
- Department of Plant and Environmental Sciences, University of Copenhagen, Højbakkegård Allé 13, 2630 Taastrup, Denmark;
| | - Sukhwinder Singh
- International Maize and Wheat Improvement Centre (CIMMYT) km, 45, Carretera Mex-Veracruz, El-Batan, Texcoco CP 56237, Mexico;
- Geneshifters, 222 Mary Jena Lane, Pullman, WA 99163, USA
| |
Collapse
|
3
|
Asif MA, Schilling RK, Tilbrook J, Brien C, Dowling K, Rabie H, Short L, Trittermann C, Garcia A, Barrett-Lennard EG, Berger B, Mather DE, Gilliham M, Fleury D, Tester M, Roy SJ, Pearson AS. Mapping of novel salt tolerance QTL in an Excalibur × Kukri doubled haploid wheat population. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2018; 131:2179-2196. [PMID: 30062653 PMCID: PMC6154029 DOI: 10.1007/s00122-018-3146-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 07/14/2018] [Indexed: 05/04/2023]
Abstract
KEY MESSAGE Novel QTL for salinity tolerance traits have been detected using non-destructive and destructive phenotyping in bread wheat and were shown to be linked to improvements in yield in saline fields. Soil salinity is a major limitation to cereal production. Breeding new salt-tolerant cultivars has the potential to improve cereal crop yields. In this study, a doubled haploid bread wheat mapping population, derived from the bi-parental cross of Excalibur × Kukri, was grown in a glasshouse under control and salinity treatments and evaluated using high-throughput non-destructive imaging technology. Quantitative trait locus (QTL) analysis of this population detected multiple QTL under salt and control treatments. Of these, six QTL were detected in the salt treatment including one for maintenance of shoot growth under salinity (QG(1-5).asl-7A), one for leaf Na+ exclusion (QNa.asl-7A) and four for leaf K+ accumulation (QK.asl-2B.1, QK.asl-2B.2, QK.asl-5A and QK:Na.asl-6A). The beneficial allele for QG(1-5).asl-7A (the maintenance of shoot growth under salinity) was present in six out of 44 mainly Australian bread and durum wheat cultivars. The effect of each QTL allele on grain yield was tested in a range of salinity concentrations at three field sites across 2 years. In six out of nine field trials with different levels of salinity stress, lines with alleles for Na+ exclusion and/or K+ maintenance at three QTL (QNa.asl-7A, QK.asl-2B.2 and QK:Na.asl-6A) excluded more Na+ or accumulated more K+ compared to lines without these alleles. Importantly, the QK.asl-2B.2 allele for higher K+ accumulation was found to be associated with higher grain yield at all field sites. Several alleles at other QTL were associated with higher grain yields at selected field sites.
Collapse
Affiliation(s)
- Muhammad A Asif
- Australian Centre for Plant Functional Genomics, PMB 1, Glen Osmond, SA, 5064, Australia
- School of Agriculture, Food and Wine, The University of Adelaide, PMB 1, Glen Osmond, SA, 5064, Australia
| | - Rhiannon K Schilling
- Australian Centre for Plant Functional Genomics, PMB 1, Glen Osmond, SA, 5064, Australia
- School of Agriculture, Food and Wine, The University of Adelaide, PMB 1, Glen Osmond, SA, 5064, Australia
| | - Joanne Tilbrook
- Australian Centre for Plant Functional Genomics, PMB 1, Glen Osmond, SA, 5064, Australia
- School of Agriculture, Food and Wine, The University of Adelaide, PMB 1, Glen Osmond, SA, 5064, Australia
- Plant Industries Development, Department of Primary Industry and Resources, PO Box 3000, Darwin, NT, 0801, Australia
| | - Chris Brien
- Australian Centre for Plant Functional Genomics, PMB 1, Glen Osmond, SA, 5064, Australia
- The Plant Accelerator, Australian Plant Phenomics Facility, The University of Adelaide, Urrbrae, SA, 5064, Australia
- Phenomics and Bioinformatics Research Center, The University of South Australia, GPO Box 2471, Mawson Lakes, 5001, SA, Australia
| | - Kate Dowling
- Australian Centre for Plant Functional Genomics, PMB 1, Glen Osmond, SA, 5064, Australia
- The Plant Accelerator, Australian Plant Phenomics Facility, The University of Adelaide, Urrbrae, SA, 5064, Australia
| | - Huwaida Rabie
- Phenomics and Bioinformatics Research Center, The University of South Australia, GPO Box 2471, Mawson Lakes, 5001, SA, Australia
- Bethlehem University, Rue de Freres #9, Bethlehem, West Bank, Palestine
| | - Laura Short
- Australian Centre for Plant Functional Genomics, PMB 1, Glen Osmond, SA, 5064, Australia
- School of Agriculture, Food and Wine, The University of Adelaide, PMB 1, Glen Osmond, SA, 5064, Australia
| | - Christine Trittermann
- Australian Centre for Plant Functional Genomics, PMB 1, Glen Osmond, SA, 5064, Australia
- School of Agriculture, Food and Wine, The University of Adelaide, PMB 1, Glen Osmond, SA, 5064, Australia
| | - Alexandre Garcia
- Australian Centre for Plant Functional Genomics, PMB 1, Glen Osmond, SA, 5064, Australia
- School of Agriculture, Food and Wine, The University of Adelaide, PMB 1, Glen Osmond, SA, 5064, Australia
- The Plant Accelerator, Australian Plant Phenomics Facility, The University of Adelaide, Urrbrae, SA, 5064, Australia
| | - Edward G Barrett-Lennard
- School of Agriculture and Environment (M084), The University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia
- Department of Primary Industries and Regional Development, 3 Baron-Hay Court, South Perth, 6151, WA, Australia
| | - Bettina Berger
- School of Agriculture, Food and Wine, The University of Adelaide, PMB 1, Glen Osmond, SA, 5064, Australia
- The Plant Accelerator, Australian Plant Phenomics Facility, The University of Adelaide, Urrbrae, SA, 5064, Australia
| | - Diane E Mather
- School of Agriculture, Food and Wine, The University of Adelaide, PMB 1, Glen Osmond, SA, 5064, Australia
| | - Matthew Gilliham
- School of Agriculture, Food and Wine, The University of Adelaide, PMB 1, Glen Osmond, SA, 5064, Australia
- ARC Centre of Excellence in Plant Energy Biology, The University of Adelaide, PMB 1, Glen Osmond, SA, 5064, Australia
| | - Delphine Fleury
- Australian Centre for Plant Functional Genomics, PMB 1, Glen Osmond, SA, 5064, Australia
- School of Agriculture, Food and Wine, The University of Adelaide, PMB 1, Glen Osmond, SA, 5064, Australia
| | - Mark Tester
- Australian Centre for Plant Functional Genomics, PMB 1, Glen Osmond, SA, 5064, Australia
- School of Agriculture, Food and Wine, The University of Adelaide, PMB 1, Glen Osmond, SA, 5064, Australia
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Stuart J Roy
- Australian Centre for Plant Functional Genomics, PMB 1, Glen Osmond, SA, 5064, Australia.
- School of Agriculture, Food and Wine, The University of Adelaide, PMB 1, Glen Osmond, SA, 5064, Australia.
| | - Allison S Pearson
- Australian Centre for Plant Functional Genomics, PMB 1, Glen Osmond, SA, 5064, Australia
- School of Agriculture, Food and Wine, The University of Adelaide, PMB 1, Glen Osmond, SA, 5064, Australia
- ARC Centre of Excellence in Plant Energy Biology, The University of Adelaide, PMB 1, Glen Osmond, SA, 5064, Australia
| |
Collapse
|
4
|
Transcriptome Analysis Identifies a 140 kb Region of Chromosome 3B Containing Genes Specific to Fusarium Head Blight Resistance in Wheat. Int J Mol Sci 2018. [PMID: 29538315 PMCID: PMC5877713 DOI: 10.3390/ijms19030852] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Fusarium head blight (FHB), mainly caused by Fusarium graminearum, is one of the most destructive fungal diseases of wheat (Triticum aestivum L.). Because of the quantitative nature of FHB resistance, its mechanism is poorly understood. We conducted a comparative transcriptome analysis to identify genes that are differentially expressed in FHB-resistant and FHB-susceptible wheat lines grown under field conditions for various periods after F. graminearum infection and determined the chromosomal distribution of the differentially expressed genes (DEGs). For each line, the expression in the spike (which exhibits symptoms in the infected plants) was compared with that in the flag leaves (which do not exhibit symptoms in the infected plants). We identified an island of 53 constitutive DEGs in a 140 kb region with high homology to the FhbL693b region on chromosome 3B. Of these genes, 13 were assigned to specific chloroplast-related pathways. Furthermore, one gene encoded inositol monophosphate (IMPa) and two genes encoded ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO). Our findings suggest that the temporary susceptibility in locally infected spikes results from the cross-talk between RuBisCO and IMPa, which blocks secondary signaling pathways mediated by salicylic acid and induces a systemic acquired resistance in the distant leaf tissue.
Collapse
|
5
|
Mohanta TK, Bashir T, Hashem A, Abd Allah EF. Systems biology approach in plant abiotic stresses. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 121:58-73. [PMID: 29096174 DOI: 10.1016/j.plaphy.2017.10.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Revised: 09/28/2017] [Accepted: 10/20/2017] [Indexed: 05/05/2023]
Abstract
Plant abiotic stresses are the major constraint on plant growth and development, causing enormous crop losses across the world. Plants have unique features to defend themselves against these challenging adverse stress conditions. They modulate their phenotypes upon changes in physiological, biochemical, molecular and genetic information, thus making them tolerant against abiotic stresses. It is of paramount importance to determine the stress-tolerant traits of a diverse range of genotypes of plant species and integrate those traits for crop improvement. Stress-tolerant traits can be identified by conducting genome-wide analysis of stress-tolerant genotypes through the highly advanced structural and functional genomics approach. Specifically, whole-genome sequencing, development of molecular markers, genome-wide association studies and comparative analysis of interaction networks between tolerant and susceptible crop varieties grown under stress conditions can greatly facilitate discovery of novel agronomic traits that protect plants against abiotic stresses.
Collapse
Affiliation(s)
- Tapan Kumar Mohanta
- Department of Biotechnology, Yeungnam University, Gyeongsan, 38541, Republic of Korea.
| | - Tufail Bashir
- Department of Biotechnology, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Abeer Hashem
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia
| | - Elsayed Fathi Abd Allah
- Plant Production Department, College of Food and Agricultural Science, King Saud University, P.O. Box 24160, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
6
|
Yan J, Su P, Wei Z, Nevo E, Kong L. Genome-wide identification, classification, evolutionary analysis and gene expression patterns of the protein kinase gene family in wheat and Aegilops tauschii. PLANT MOLECULAR BIOLOGY 2017; 95:227-242. [PMID: 28918554 DOI: 10.1007/s11103-017-0637-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 07/16/2017] [Indexed: 05/19/2023]
Abstract
In this study we systematically identified and classified PKs in Triticum aestivum, Triticum urartu and Aegilops tauschii. Domain distribution and exon-intron structure analyses of PKs were performed, and we found conserved exon-intron structures within the exon phases in the kinase domain. Collinearity events were determined, and we identified various T. aestivum PKs from polyploidizations and tandem duplication events. Global expression pattern analysis of T. aestivum PKs revealed that some PKs might participate in the signaling pathways of stress response and developmental processes. QRT-PCR of 15 selected PKs were performed under drought treatment and with infection of Fusarium graminearum to validate the prediction of microarray. The protein kinase (PK) gene superfamily is one of the largest families in plants and participates in various plant processes, including growth, development, and stress response. To better understand wheat PKs, we conducted genome-wide identification, classification, evolutionary analysis and expression profiles of wheat and Ae. tauschii PKs. We identified 3269, 1213 and 1448 typical PK genes in T. aestivum, T. urartu and Ae. tauschii, respectively, and classified them into major groups and subfamilies. Domain distributions and gene structures were analyzed and visualized. Some conserved intron-exon structures within the conserved kinase domain were found in T. aestivum, T. urartu and Ae. tauschii, as well as the primitive land plants Selaginella moellendorffii and Physcomitrella patens, revealing the important roles and conserved evolutionary history of these PKs. We analyzed the collinearity events of T. aestivum PKs and identified PKs from polyploidizations and tandem duplication events. Global expression pattern analysis of T. aestivum PKs revealed tissue-specific and stress-specific expression profiles, hinting that some wheat PKs may regulate abiotic and biotic stress response signaling pathways. QRT-PCR of 15 selected PKs were performed under drought treatment and with infection of F. graminearum to validate the prediction of microarray. Our results will provide the foundational information for further studies on the molecular functions of wheat PKs.
Collapse
Affiliation(s)
- Jun Yan
- College of Information Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Peisen Su
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Zhaoran Wei
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Eviatar Nevo
- Institute of Evolution, University of Haifa, 199 Aba Khoushy Ave., Mount Carmel, 3498838, Haifa, Israel.
| | - Lingrang Kong
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, Shandong, China.
| |
Collapse
|
7
|
Ariyarathna HACK, Oldach KH, Francki MG. A comparative gene analysis with rice identified orthologous group II HKT genes and their association with Na(+) concentration in bread wheat. BMC PLANT BIOLOGY 2016; 16:21. [PMID: 26786911 PMCID: PMC4719669 DOI: 10.1186/s12870-016-0714-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 01/14/2016] [Indexed: 05/08/2023]
Abstract
BACKGROUND Although the HKT transporter genes ascertain some of the key determinants of crop salt tolerance mechanisms, the diversity and functional role of group II HKT genes are not clearly understood in bread wheat. The advanced knowledge on rice HKT and whole genome sequence was, therefore, used in comparative gene analysis to identify orthologous wheat group II HKT genes and their role in trait variation under different saline environments. RESULTS The four group II HKTs in rice identified two orthologous gene families from bread wheat, including the known TaHKT2;1 gene family and a new distinctly different gene family designated as TaHKT2;2. A single copy of TaHKT2;2 was found on each homeologous chromosome arm 7AL, 7BL and 7DL and each gene was expressed in leaf blade, sheath and root tissues under non-stressed and at 200 mM salt stressed conditions. The proteins encoded by genes of the TaHKT2;2 family revealed more than 93% amino acid sequence identity but ≤52% amino acid identity compared to the proteins encoded by TaHKT2;1 family. Specifically, variations in known critical domains predicted functional differences between the two protein families. Similar to orthologous rice genes on chromosome 6L, TaHKT2;1 and TaHKT2;2 genes were located approximately 3 kb apart on wheat chromosomes 7AL, 7BL and 7DL, forming a static syntenic block in the two species. The chromosomal region on 7AL containing TaHKT2;1 7AL-1 co-located with QTL for shoot Na(+) concentration and yield in some saline environments. CONCLUSION The differences in copy number, genes sequences and encoded proteins between TaHKT2;2 homeologous genes and other group II HKT gene families within and across species likely reflect functional diversity for ion selectivity and transport in plants. Evidence indicated that neither TaHKT2;2 nor TaHKT2;1 were associated with primary root Na(+) uptake but TaHKT2;1 may be associated with trait variation for Na(+) exclusion and yield in some but not all saline environments.
Collapse
Affiliation(s)
- H A Chandima K Ariyarathna
- School of Plant Biology and Institute of Agriculture, The University of Western Australia, Crawley, 6009, Western Australia.
- State Agricultural Biotechnology Centre, Murdoch University, Murdoch, 6150, Western Australia.
| | - Klaus H Oldach
- South Australia Research Development Institute, Plant Genomics Centre, Waite Research Precinct, Urrbrae, 5064, South Australia.
| | - Michael G Francki
- State Agricultural Biotechnology Centre, Murdoch University, Murdoch, 6150, Western Australia.
- Department of Agriculture and Food Western Australia, South Perth, 6151, Western Australia.
| |
Collapse
|
8
|
Kobayashi F, Wu J, Kanamori H, Tanaka T, Katagiri S, Karasawa W, Kaneko S, Watanabe S, Sakaguchi T, Hanawa Y, Fujisawa H, Kurita K, Abe C, Iehisa JCM, Ohno R, Šafář J, Šimková H, Mukai Y, Hamada M, Saito M, Ishikawa G, Katayose Y, Endo TR, Takumi S, Nakamura T, Sato K, Ogihara Y, Hayakawa K, Doležel J, Nasuda S, Matsumoto T, Handa H. A high-resolution physical map integrating an anchored chromosome with the BAC physical maps of wheat chromosome 6B. BMC Genomics 2015; 16:595. [PMID: 26265254 PMCID: PMC4534020 DOI: 10.1186/s12864-015-1803-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 07/31/2015] [Indexed: 11/10/2022] Open
Abstract
Background A complete genome sequence is an essential tool for the genetic improvement of wheat. Because the wheat genome is large, highly repetitive and complex due to its allohexaploid nature, the International Wheat Genome Sequencing Consortium (IWGSC) chose a strategy that involves constructing bacterial artificial chromosome (BAC)-based physical maps of individual chromosomes and performing BAC-by-BAC sequencing. Here, we report the construction of a physical map of chromosome 6B with the goal of revealing the structural features of the third largest chromosome in wheat. Results We assembled 689 informative BAC contigs (hereafter reffered to as contigs) representing 91 % of the entire physical length of wheat chromosome 6B. The contigs were integrated into a radiation hybrid (RH) map of chromosome 6B, with one linkage group consisting of 448 loci with 653 markers. The order and direction of 480 contigs, corresponding to 87 % of the total length of 6B, were determined. We also characterized the contigs that contained a part of the nucleolus organizer region or centromere based on their positions on the RH map and the assembled BAC clone sequences. Analysis of the virtual gene order along 6B using the information collected for the integrated map revealed the presence of several chromosomal rearrangements, indicating evolutionary events that occurred on chromosome 6B. Conclusions We constructed a reliable physical map of chromosome 6B, enabling us to analyze its genomic structure and evolutionary progression. More importantly, the physical map should provide a high-quality and map-based reference sequence that will serve as a resource for wheat chromosome 6B. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1803-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Fuminori Kobayashi
- Plant Genome Research Unit, National Institute of Agrobiological Sciences, Tsukuba, 305-8602, Japan.
| | - Jianzhong Wu
- Plant Genome Research Unit, National Institute of Agrobiological Sciences, Tsukuba, 305-8602, Japan. .,Advanced Genomics Laboratory, National Institute of Agrobiological Sciences, Tsukuba, 305-8602, Japan.
| | - Hiroyuki Kanamori
- Plant Genome Research Unit, National Institute of Agrobiological Sciences, Tsukuba, 305-8602, Japan.
| | - Tsuyoshi Tanaka
- Bioinformatics Research Unit, National Institute of Agrobiological Sciences, Tsukuba, 305-8602, Japan.
| | - Satoshi Katagiri
- Advanced Genomics Laboratory, National Institute of Agrobiological Sciences, Tsukuba, 305-8602, Japan.
| | - Wataru Karasawa
- Advanced Genomics Laboratory, National Institute of Agrobiological Sciences, Tsukuba, 305-8602, Japan.
| | - Satoko Kaneko
- Laboratory of Plant Genetics, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan.
| | - Shota Watanabe
- Laboratory of Plant Genetics, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan.
| | - Toyotaka Sakaguchi
- Laboratory of Plant Genetics, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan.
| | - Yumiko Hanawa
- Advanced Genomics Laboratory, National Institute of Agrobiological Sciences, Tsukuba, 305-8602, Japan.
| | - Hiroko Fujisawa
- Advanced Genomics Laboratory, National Institute of Agrobiological Sciences, Tsukuba, 305-8602, Japan.
| | - Kanako Kurita
- Plant Genome Research Unit, National Institute of Agrobiological Sciences, Tsukuba, 305-8602, Japan.
| | - Chikako Abe
- Cereal Science Research Center of Tsukuba, Nisshin Flour Milling Inc., Tsukuba, 300-2611, Japan.
| | - Julio C M Iehisa
- Laboratory of Plant Genetics, Graduate School of Agricultural Science, Kobe University, Kobe, 657-8501, Japan.
| | - Ryoko Ohno
- Core Research Division, Organization of Advanced Science and Technology, Kobe University, Kobe, 657-8501, Japan.
| | - Jan Šafář
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, CZ-78371, Olomouc, Czech Republic.
| | - Hana Šimková
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, CZ-78371, Olomouc, Czech Republic.
| | - Yoshiyuki Mukai
- Advanced Genomics Laboratory, National Institute of Agrobiological Sciences, Tsukuba, 305-8602, Japan.
| | - Masao Hamada
- Advanced Genomics Laboratory, National Institute of Agrobiological Sciences, Tsukuba, 305-8602, Japan.
| | - Mika Saito
- Wheat Breeding Group, NARO Tohoku Agricultural Research Center, Morioka, 020-0198, Japan.
| | - Goro Ishikawa
- Wheat Breeding Group, NARO Tohoku Agricultural Research Center, Morioka, 020-0198, Japan.
| | - Yuichi Katayose
- Advanced Genomics Laboratory, National Institute of Agrobiological Sciences, Tsukuba, 305-8602, Japan.
| | - Takashi R Endo
- Laboratory of Plant Genetics, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan.
| | - Shigeo Takumi
- Laboratory of Plant Genetics, Graduate School of Agricultural Science, Kobe University, Kobe, 657-8501, Japan.
| | - Toshiki Nakamura
- Wheat Breeding Group, NARO Tohoku Agricultural Research Center, Morioka, 020-0198, Japan.
| | - Kazuhiro Sato
- Institute of Plant Science and Resources, Okayama University, Kurashiki, 710-0046, Japan.
| | - Yasunari Ogihara
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, 244-0813, Japan.
| | - Katsuyuki Hayakawa
- Cereal Science Research Center of Tsukuba, Nisshin Flour Milling Inc., Tsukuba, 300-2611, Japan.
| | - Jaroslav Doležel
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, CZ-78371, Olomouc, Czech Republic.
| | - Shuhei Nasuda
- Laboratory of Plant Genetics, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan.
| | - Takashi Matsumoto
- Plant Genome Research Unit, National Institute of Agrobiological Sciences, Tsukuba, 305-8602, Japan.
| | - Hirokazu Handa
- Plant Genome Research Unit, National Institute of Agrobiological Sciences, Tsukuba, 305-8602, Japan.
| |
Collapse
|
9
|
Akpinar BA, Magni F, Yuce M, Lucas SJ, Šimková H, Šafář J, Vautrin S, Bergès H, Cattonaro F, Doležel J, Budak H. The physical map of wheat chromosome 5DS revealed gene duplications and small rearrangements. BMC Genomics 2015; 16:453. [PMID: 26070810 PMCID: PMC4465308 DOI: 10.1186/s12864-015-1641-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 05/19/2015] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND The substantially large bread wheat genome, organized into highly similar three sub-genomes, renders genomic research challenging. The construction of BAC-based physical maps of individual chromosomes reduces the complexity of this allohexaploid genome, enables elucidation of gene space and evolutionary relationships, provides tools for map-based cloning, and serves as a framework for reference sequencing efforts. In this study, we constructed the first comprehensive physical map of wheat chromosome arm 5DS, thereby exploring its gene space organization and evolution. RESULTS The physical map of 5DS was comprised of 164 contigs, of which 45 were organized into 21 supercontigs, covering 176 Mb with an N50 value of 2,173 kb. Fifty-eight of the contigs were larger than 1 Mb, with the largest contig spanning 6,649 kb. A total of 1,864 molecular markers were assigned to the map at a density of 10.5 markers/Mb, anchoring 100 of the 120 contigs (>5 clones) that constitute ~95 % of the cumulative length of the map. Ordering of 80 contigs along the deletion bins of chromosome arm 5DS revealed small-scale breaks in syntenic blocks. Analysis of the gene space of 5DS suggested an increasing gradient of genes organized in islands towards the telomere, with the highest gene density of 5.17 genes/Mb in the 0.67-0.78 deletion bin, 1.4 to 1.6 times that of all other bins. CONCLUSIONS Here, we provide a chromosome-specific view into the organization and evolution of the D genome of bread wheat, in comparison to one of its ancestors, revealing recent genome rearrangements. The high-quality physical map constructed in this study paves the way for the assembly of a reference sequence, from which breeding efforts will greatly benefit.
Collapse
Affiliation(s)
- Bala Ani Akpinar
- Sabanci University Nanotechnology Research and Application Centre (SUNUM), Sabanci University, Universite Cad. Orta Mah. No: 27, Tuzla, 34956, Istanbul, Turkey.
| | - Federica Magni
- Instituto di Genomica Applicata, Via J.Linussio 51, Udine, 33100, Italy.
| | - Meral Yuce
- Sabanci University Nanotechnology Research and Application Centre (SUNUM), Sabanci University, Universite Cad. Orta Mah. No: 27, Tuzla, 34956, Istanbul, Turkey.
| | - Stuart J Lucas
- Sabanci University Nanotechnology Research and Application Centre (SUNUM), Sabanci University, Universite Cad. Orta Mah. No: 27, Tuzla, 34956, Istanbul, Turkey.
| | - Hana Šimková
- Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany, CZ-78371, Olomouc, Czech Republic.
| | - Jan Šafář
- Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany, CZ-78371, Olomouc, Czech Republic.
| | - Sonia Vautrin
- Centre Nationales Ressources Génomiques Végétales, INRA UPR 1258, 24 Chemin de Borde Rouge - Auzeville 31326, Castanet-Tolosan, France.
| | - Hélène Bergès
- Centre Nationales Ressources Génomiques Végétales, INRA UPR 1258, 24 Chemin de Borde Rouge - Auzeville 31326, Castanet-Tolosan, France.
| | - Federica Cattonaro
- Instituto di Genomica Applicata, Via J.Linussio 51, Udine, 33100, Italy.
| | - Jaroslav Doležel
- Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany, CZ-78371, Olomouc, Czech Republic.
| | - Hikmet Budak
- Sabanci University Nanotechnology Research and Application Centre (SUNUM), Sabanci University, Universite Cad. Orta Mah. No: 27, Tuzla, 34956, Istanbul, Turkey.
- Molecular Biology, Genetics and Bioengineering Program, Sabanci University, 34956, Istanbul, Turkey.
| |
Collapse
|
10
|
Vincent J, Martre P, Gouriou B, Ravel C, Dai Z, Petit JM, Pailloux M. RulNet: A Web-Oriented Platform for Regulatory Network Inference, Application to Wheat -Omics Data. PLoS One 2015; 10:e0127127. [PMID: 25993562 PMCID: PMC4437996 DOI: 10.1371/journal.pone.0127127] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Accepted: 01/20/2015] [Indexed: 12/19/2022] Open
Abstract
With the increasing amount of -omics data available, a particular effort has to be made to provide suitable analysis tools. A major challenge is that of unraveling the molecular regulatory networks from massive and heterogeneous datasets. Here we describe RulNet, a web-oriented platform dedicated to the inference and analysis of regulatory networks from qualitative and quantitative -omics data by means of rule discovery. Queries for rule discovery can be written in an extended form of the RQL query language, which has a syntax similar to SQL. RulNet also offers users interactive features that progressively adjust and refine the inferred networks. In this paper, we present a functional characterization of RulNet and compare inferred networks with correlation-based approaches. The performance of RulNet has been evaluated using the three benchmark datasets used for the transcriptional network inference challenge DREAM5. Overall, RulNet performed as well as the best methods that participated in this challenge and it was shown to behave more consistently when compared across the three datasets. Finally, we assessed the suitability of RulNet to analyze experimental -omics data and to infer regulatory networks involved in the response to nitrogen and sulfur supply in wheat (Triticum aestivum L.) grains. The results highlight putative actors governing the response to nitrogen and sulfur supply in wheat grains. We evaluate the main characteristics and features of RulNet as an all-in-one solution for RN inference, visualization and editing. Using simple yet powerful RulNet queries allowed RNs involved in the adaptation of wheat grain to N and S supply to be discovered. We demonstrate the effectiveness and suitability of RulNet as a platform for the analysis of RNs involving different types of -omics data. The results are promising since they are consistent with what was previously established by the scientific community.
Collapse
Affiliation(s)
- Jonathan Vincent
- Blaise Pascal University, UMR6158 CNRS LIMOS Laboratoire d'Informatique, de Modélisation et d'Optimisation des Systèmes, Aubière, F-63 173, France
- INRA, UMR1095 Genetics, Diversity and Ecophysiology of Cereals, Clermont-Ferrand, F-63 039, France
- Blaise Pascal University, UMR1095 Genetics, Diversity and Ecophysiology of Cereals, Aubière, F-63 177, France
| | - Pierre Martre
- INRA, UMR1095 Genetics, Diversity and Ecophysiology of Cereals, Clermont-Ferrand, F-63 039, France
- Blaise Pascal University, UMR1095 Genetics, Diversity and Ecophysiology of Cereals, Aubière, F-63 177, France
| | - Benjamin Gouriou
- Blaise Pascal University, UMR6158 CNRS LIMOS Laboratoire d'Informatique, de Modélisation et d'Optimisation des Systèmes, Aubière, F-63 173, France
| | - Catherine Ravel
- INRA, UMR1095 Genetics, Diversity and Ecophysiology of Cereals, Clermont-Ferrand, F-63 039, France
- Blaise Pascal University, UMR1095 Genetics, Diversity and Ecophysiology of Cereals, Aubière, F-63 177, France
| | - Zhanwu Dai
- INRA, UMR1095 Genetics, Diversity and Ecophysiology of Cereals, Clermont-Ferrand, F-63 039, France
- Blaise Pascal University, UMR1095 Genetics, Diversity and Ecophysiology of Cereals, Aubière, F-63 177, France
| | - Jean-Marc Petit
- INSA Lyon, UMR5205 CNRS LIRIS Laboratoire d’Informatique en Images et Systèmes d’Information, Villeurbanne, F-69 621, France
| | - Marie Pailloux
- Blaise Pascal University, UMR6158 CNRS LIMOS Laboratoire d'Informatique, de Modélisation et d'Optimisation des Systèmes, Aubière, F-63 173, France
| |
Collapse
|
11
|
Cviková K, Cattonaro F, Alaux M, Stein N, Mayer KF, Doležel J, Bartoš J. High-throughput physical map anchoring via BAC-pool sequencing. BMC PLANT BIOLOGY 2015; 15:99. [PMID: 25887276 PMCID: PMC4407875 DOI: 10.1186/s12870-015-0429-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 01/20/2015] [Indexed: 05/08/2023]
Abstract
BACKGROUND Physical maps created from large insert DNA libraries, typically cloned in BAC vector, are valuable resources for map-based cloning and de novo genome sequencing. The maps are most useful if contigs of overlapping DNA clones are anchored to chromosome(s), and ordered along them using molecular markers. Here we present a novel approach for anchoring physical maps, based on sequencing three-dimensional pools of BAC clones from minimum tilling path. RESULTS We used physical map of wheat chromosome arm 3DS to validate the method with two different DNA sequence datasets. The first comprised 567 genes ordered along the chromosome arm based on syntenic relationship of wheat with the sequenced genomes of Brachypodium, rice and sorghum. The second dataset consisted of 7,136 SNP-containing sequences, which were mapped genetically in Aegilops tauschii, the donor of the wheat D genome. Mapping of sequence reads from individual BAC pools to the first and the second datasets enabled unambiguous anchoring 447 and 311 3DS-specific sequences, respectively, or 758 in total. CONCLUSIONS We demonstrate the utility of the novel approach for BAC contig anchoring based on mass parallel sequencing of three-dimensional pools prepared from minimum tilling path of physical map. The existing genetic markers as well as any other DNA sequence could be mapped to BAC clones in a single in silico experiment. The approach reduces significantly the cost and time needed for anchoring and is applicable to any genomic project involving the construction of anchored physical map.
Collapse
Affiliation(s)
- Kateřina Cviková
- Institute of Experimental Botany, Centre of Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, 78371, Olomouc-Holice, Czech Republic.
| | - Federica Cattonaro
- Istituto di Genomica Applicata, Via J. Linussio 51, 33100, Udine, Italy.
| | - Michael Alaux
- INRA, UR1164 URGI - Research Unit in Genomics-Info, INRA de Versailles, Route de Saint-Cyr, 78026, Versailles, France.
| | - Nils Stein
- Leibniz Institute of Plant Genetics and Crop Plant Research, Corrensstraße 3, 06466, Stadt Seeland, OT Gatersleben, Germany.
| | - Klaus Fx Mayer
- Plant Genome and Systems Biology, Helmholtz Zentrum München, 85764, Neuherberg, Germany.
| | - Jaroslav Doležel
- Institute of Experimental Botany, Centre of Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, 78371, Olomouc-Holice, Czech Republic.
| | - Jan Bartoš
- Institute of Experimental Botany, Centre of Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, 78371, Olomouc-Holice, Czech Republic.
| |
Collapse
|
12
|
Pingault L, Choulet F, Alberti A, Glover N, Wincker P, Feuillet C, Paux E. Deep transcriptome sequencing provides new insights into the structural and functional organization of the wheat genome. Genome Biol 2015; 16:29. [PMID: 25853487 PMCID: PMC4355351 DOI: 10.1186/s13059-015-0601-9] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 01/28/2015] [Indexed: 12/19/2022] Open
Abstract
Background Because of its size, allohexaploid nature, and high repeat content, the bread wheat genome is a good model to study the impact of the genome structure on gene organization, function, and regulation. However, because of the lack of a reference genome sequence, such studies have long been hampered and our knowledge of the wheat gene space is still limited. The access to the reference sequence of the wheat chromosome 3B provided us with an opportunity to study the wheat transcriptome and its relationships to genome and gene structure at a level that has never been reached before. Results By combining this sequence with RNA-seq data, we construct a fine transcriptome map of the chromosome 3B. More than 8,800 transcription sites are identified, that are distributed throughout the entire chromosome. Expression level, expression breadth, alternative splicing as well as several structural features of genes, including transcript length, number of exons, and cumulative intron length are investigated. Our analysis reveals a non-monotonic relationship between gene expression and structure and leads to the hypothesis that gene structure is determined by its function, whereas gene expression is subject to energetic cost. Moreover, we observe a recombination-based partitioning at the gene structure and function level. Conclusions Our analysis provides new insights into the relationships between gene and genome structure and function. It reveals mechanisms conserved with other plant species as well as superimposed evolutionary forces that shaped the wheat gene space, likely participating in wheat adaptation. Electronic supplementary material The online version of this article (doi:10.1186/s13059-015-0601-9) contains supplementary material, which is available to authorized users.
Collapse
|
13
|
Ma J, Stiller J, Wei Y, Zheng YL, Devos KM, Doležel J, Liu C. Extensive pericentric rearrangements in the bread wheat (Triticum aestivum L.) genotype "Chinese Spring" revealed from chromosome shotgun sequence data. Genome Biol Evol 2014; 6:3039-48. [PMID: 25349265 PMCID: PMC4255769 DOI: 10.1093/gbe/evu237] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The bread wheat (Triticum aestivum L.) genotype "Chinese Spring" ("CS") is the reference base in wheat genetics and genomics. Pericentric rearrangements in this genotype were systematically assessed by analyzing homoeoloci for a set of nonredundant genes from Brachypodium distachyon, Triticum urartu, and Aegilops tauschii in the CS chromosome shotgun sequence obtained from individual chromosome arms flow-sorted from CS aneuploid lines. Based on patterns of their homoeologous arm locations, 551 genes indicated the presence of pericentric inversions in at least 10 of the 21 chromosomes. Available data from deletion bin-mapped expressed sequence tags and genetic mapping in wheat indicated that all inversions had breakpoints in the low-recombinant gene-poor pericentromeric regions. The large number of putative intrachromosomal rearrangements suggests the presence of extensive structural differences among the three subgenomes, at least some of which likely occurred during the production of the aneuploid lines of this hexaploid wheat genotype. These differences could have significant implications in wheat genome research where comparative approaches are used such as in ordering and orientating sequence contigs and in gene cloning.
Collapse
Affiliation(s)
- Jian Ma
- CSIRO Agriculture Flagship, St Lucia, Queensland, Australia Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, China
| | - Jiri Stiller
- CSIRO Agriculture Flagship, St Lucia, Queensland, Australia
| | - Yuming Wei
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, China
| | - You-Liang Zheng
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, China
| | - Katrien M Devos
- Department of Crop & Soil Sciences, and Department of Plant Biology, University of Georgia
| | - Jaroslav Doležel
- Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany, Šlechtitelů, Olomouc, Czech Republic
| | - Chunji Liu
- CSIRO Agriculture Flagship, St Lucia, Queensland, Australia School of Plant Biology, The University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
14
|
Thomas M, Pingault L, Poulet A, Duarte J, Throude M, Faure S, Pichon JP, Paux E, Probst AV, Tatout C. Evolutionary history of Methyltransferase 1 genes in hexaploid wheat. BMC Genomics 2014; 15:922. [PMID: 25342325 PMCID: PMC4223845 DOI: 10.1186/1471-2164-15-922] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 10/13/2014] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Plant and animal methyltransferases are key enzymes involved in DNA methylation at cytosine residues, required for gene expression control and genome stability. Taking advantage of the new sequence surveys of the wheat genome recently released by the International Wheat Genome Sequencing Consortium, we identified and characterized MET1 genes in the hexaploid wheat Triticum aestivum (TaMET1). RESULTS Nine TaMET1 genes were identified and mapped on homoeologous chromosome groups 2A/2B/2D, 5A/5B/5D and 7A/7B/7D. Synteny analysis and evolution rates suggest that the genome organization of TaMET1 genes results from a whole genome duplication shared within the grass family, and a second gene duplication, which occurred specifically in the Triticeae tribe prior to the speciation of diploid wheat. Higher expression levels were observed for TaMET1 homoeologous group 2 genes compared to group 5 and 7, indicating that group 2 homoeologous genes are predominant at the transcriptional level, while group 5 evolved into pseudogenes. We show the connection between low expression levels, elevated evolution rates and unexpected enrichment in CG-dinucleotides (CG-rich isochores) at putative promoter regions of homoeologous group 5 and 7, but not of group 2 TaMET1 genes. Bisulfite sequencing reveals that these CG-rich isochores are highly methylated in a CG context, which is the expected target of TaMET1. CONCLUSIONS We retraced the evolutionary history of MET1 genes in wheat, explaining the predominance of group 2 homoeologous genes and suggest CG-DNA methylation as one of the mechanisms involved in wheat genome dynamics.
Collapse
Affiliation(s)
- Mélanie Thomas
- />UMR CNRS 6293 INSERM U 1103 Clermont Université, Genetics Reproduction and Development (GReD), 24 avenue des Landais, BP80026, 63171 Aubière Cedex, France
- />BIOGEMMA, route d’Ennezat, Centre de Recherche de Chappes, CS 90126, 63720 Chappes, France
| | - Lise Pingault
- />UMR INRA 1095 Blaise Pascal University, Genetics Diversity & Ecophysiology of Cereals (GDEC), Clermont-Ferrand – Theix, 5 chemin de Beaulieu, 63039 Clermont-Ferrand Cedex 2, France
| | - Axel Poulet
- />UMR CNRS 6293 INSERM U 1103 Clermont Université, Genetics Reproduction and Development (GReD), 24 avenue des Landais, BP80026, 63171 Aubière Cedex, France
| | - Jorge Duarte
- />BIOGEMMA, route d’Ennezat, Centre de Recherche de Chappes, CS 90126, 63720 Chappes, France
| | - Mickaël Throude
- />BIOGEMMA, route d’Ennezat, Centre de Recherche de Chappes, CS 90126, 63720 Chappes, France
| | - Sébastien Faure
- />BIOGEMMA, route d’Ennezat, Centre de Recherche de Chappes, CS 90126, 63720 Chappes, France
| | - Jean-Philippe Pichon
- />BIOGEMMA, route d’Ennezat, Centre de Recherche de Chappes, CS 90126, 63720 Chappes, France
| | - Etienne Paux
- />UMR INRA 1095 Blaise Pascal University, Genetics Diversity & Ecophysiology of Cereals (GDEC), Clermont-Ferrand – Theix, 5 chemin de Beaulieu, 63039 Clermont-Ferrand Cedex 2, France
| | - Aline Valeska Probst
- />UMR CNRS 6293 INSERM U 1103 Clermont Université, Genetics Reproduction and Development (GReD), 24 avenue des Landais, BP80026, 63171 Aubière Cedex, France
| | - Christophe Tatout
- />UMR CNRS 6293 INSERM U 1103 Clermont Université, Genetics Reproduction and Development (GReD), 24 avenue des Landais, BP80026, 63171 Aubière Cedex, France
| |
Collapse
|
15
|
Pfeifer M, Kugler KG, Sandve SR, Zhan B, Rudi H, Hvidsten TR, Mayer KFX, Olsen OA. Genome interplay in the grain transcriptome of hexaploid bread wheat. Science 2014; 345:1250091. [PMID: 25035498 DOI: 10.1126/science.1250091] [Citation(s) in RCA: 215] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Allohexaploid bread wheat (Triticum aestivum L.) provides approximately 20% of calories consumed by humans. Lack of genome sequence for the three homeologous and highly similar bread wheat genomes (A, B, and D) has impeded expression analysis of the grain transcriptome. We used previously unknown genome information to analyze the cell type-specific expression of homeologous genes in the developing wheat grain and identified distinct co-expression clusters reflecting the spatiotemporal progression during endosperm development. We observed no global but cell type- and stage-dependent genome dominance, organization of the wheat genome into transcriptionally active chromosomal regions, and asymmetric expression in gene families related to baking quality. Our findings give insight into the transcriptional dynamics and genome interplay among individual grain cell types in a polyploid cereal genome.
Collapse
Affiliation(s)
- Matthias Pfeifer
- Plant Genome and Systems Biology, Helmholtz Center Munich, 85764 Neuherberg, Germany
| | - Karl G Kugler
- Plant Genome and Systems Biology, Helmholtz Center Munich, 85764 Neuherberg, Germany
| | - Simen R Sandve
- Department of Plant Sciences/Centre for Integrative Genetics, The Norwegian University of Life Sciences (NMBU), 1432 Åas, Norway
| | - Bujie Zhan
- Department of Plant Sciences/Centre for Integrative Genetics, The Norwegian University of Life Sciences (NMBU), 1432 Åas, Norway
| | - Heidi Rudi
- Department of Plant Sciences/Centre for Integrative Genetics, The Norwegian University of Life Sciences (NMBU), 1432 Åas, Norway
| | - Torgeir R Hvidsten
- Department of Chemistry, Biotechnology and Food Science, NMBU, 1432 Åas, Norway
| | | | - Klaus F X Mayer
- Plant Genome and Systems Biology, Helmholtz Center Munich, 85764 Neuherberg, Germany
| | - Odd-Arne Olsen
- Department of Plant Sciences/Centre for Integrative Genetics, The Norwegian University of Life Sciences (NMBU), 1432 Åas, Norway.
| |
Collapse
|
16
|
Choulet F, Alberti A, Theil S, Glover N, Barbe V, Daron J, Pingault L, Sourdille P, Couloux A, Paux E, Leroy P, Mangenot S, Guilhot N, Le Gouis J, Balfourier F, Alaux M, Jamilloux V, Poulain J, Durand C, Bellec A, Gaspin C, Safar J, Dolezel J, Rogers J, Vandepoele K, Aury JM, Mayer K, Berges H, Quesneville H, Wincker P, Feuillet C. Structural and functional partitioning of bread wheat chromosome 3B. Science 2014; 345:1249721. [PMID: 25035497 DOI: 10.1126/science.1249721] [Citation(s) in RCA: 399] [Impact Index Per Article: 39.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We produced a reference sequence of the 1-gigabase chromosome 3B of hexaploid bread wheat. By sequencing 8452 bacterial artificial chromosomes in pools, we assembled a sequence of 774 megabases carrying 5326 protein-coding genes, 1938 pseudogenes, and 85% of transposable elements. The distribution of structural and functional features along the chromosome revealed partitioning correlated with meiotic recombination. Comparative analyses indicated high wheat-specific inter- and intrachromosomal gene duplication activities that are potential sources of variability for adaption. In addition to providing a better understanding of the organization, function, and evolution of a large and polyploid genome, the availability of a high-quality sequence anchored to genetic maps will accelerate the identification of genes underlying important agronomic traits.
Collapse
Affiliation(s)
- Frédéric Choulet
- Institut National de la Recherche Agronomique (INRA) UMR1095, Genetics, Diversity and Ecophysiology of Cereals, 5 Chemin de Beaulieu, 63039 Clermont-Ferrand, France. University Blaise Pascal, UMR1095, Genetics, Diversity and Ecophysiology of Cereals, 5 Chemin de Beaulieu, 63039 Clermont-Ferrand, France.
| | - Adriana Alberti
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Direction des Sciences du Vivant, Institut de Génomique, Genoscope, 2 Rue Gaston Crémieux, 91000 Evry, France
| | - Sébastien Theil
- Institut National de la Recherche Agronomique (INRA) UMR1095, Genetics, Diversity and Ecophysiology of Cereals, 5 Chemin de Beaulieu, 63039 Clermont-Ferrand, France. University Blaise Pascal, UMR1095, Genetics, Diversity and Ecophysiology of Cereals, 5 Chemin de Beaulieu, 63039 Clermont-Ferrand, France
| | - Natasha Glover
- Institut National de la Recherche Agronomique (INRA) UMR1095, Genetics, Diversity and Ecophysiology of Cereals, 5 Chemin de Beaulieu, 63039 Clermont-Ferrand, France. University Blaise Pascal, UMR1095, Genetics, Diversity and Ecophysiology of Cereals, 5 Chemin de Beaulieu, 63039 Clermont-Ferrand, France
| | - Valérie Barbe
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Direction des Sciences du Vivant, Institut de Génomique, Genoscope, 2 Rue Gaston Crémieux, 91000 Evry, France
| | - Josquin Daron
- Institut National de la Recherche Agronomique (INRA) UMR1095, Genetics, Diversity and Ecophysiology of Cereals, 5 Chemin de Beaulieu, 63039 Clermont-Ferrand, France. University Blaise Pascal, UMR1095, Genetics, Diversity and Ecophysiology of Cereals, 5 Chemin de Beaulieu, 63039 Clermont-Ferrand, France
| | - Lise Pingault
- Institut National de la Recherche Agronomique (INRA) UMR1095, Genetics, Diversity and Ecophysiology of Cereals, 5 Chemin de Beaulieu, 63039 Clermont-Ferrand, France. University Blaise Pascal, UMR1095, Genetics, Diversity and Ecophysiology of Cereals, 5 Chemin de Beaulieu, 63039 Clermont-Ferrand, France
| | - Pierre Sourdille
- Institut National de la Recherche Agronomique (INRA) UMR1095, Genetics, Diversity and Ecophysiology of Cereals, 5 Chemin de Beaulieu, 63039 Clermont-Ferrand, France. University Blaise Pascal, UMR1095, Genetics, Diversity and Ecophysiology of Cereals, 5 Chemin de Beaulieu, 63039 Clermont-Ferrand, France
| | - Arnaud Couloux
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Direction des Sciences du Vivant, Institut de Génomique, Genoscope, 2 Rue Gaston Crémieux, 91000 Evry, France
| | - Etienne Paux
- Institut National de la Recherche Agronomique (INRA) UMR1095, Genetics, Diversity and Ecophysiology of Cereals, 5 Chemin de Beaulieu, 63039 Clermont-Ferrand, France. University Blaise Pascal, UMR1095, Genetics, Diversity and Ecophysiology of Cereals, 5 Chemin de Beaulieu, 63039 Clermont-Ferrand, France
| | - Philippe Leroy
- Institut National de la Recherche Agronomique (INRA) UMR1095, Genetics, Diversity and Ecophysiology of Cereals, 5 Chemin de Beaulieu, 63039 Clermont-Ferrand, France. University Blaise Pascal, UMR1095, Genetics, Diversity and Ecophysiology of Cereals, 5 Chemin de Beaulieu, 63039 Clermont-Ferrand, France
| | - Sophie Mangenot
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Direction des Sciences du Vivant, Institut de Génomique, Genoscope, 2 Rue Gaston Crémieux, 91000 Evry, France
| | - Nicolas Guilhot
- Institut National de la Recherche Agronomique (INRA) UMR1095, Genetics, Diversity and Ecophysiology of Cereals, 5 Chemin de Beaulieu, 63039 Clermont-Ferrand, France. University Blaise Pascal, UMR1095, Genetics, Diversity and Ecophysiology of Cereals, 5 Chemin de Beaulieu, 63039 Clermont-Ferrand, France
| | - Jacques Le Gouis
- Institut National de la Recherche Agronomique (INRA) UMR1095, Genetics, Diversity and Ecophysiology of Cereals, 5 Chemin de Beaulieu, 63039 Clermont-Ferrand, France. University Blaise Pascal, UMR1095, Genetics, Diversity and Ecophysiology of Cereals, 5 Chemin de Beaulieu, 63039 Clermont-Ferrand, France
| | - Francois Balfourier
- Institut National de la Recherche Agronomique (INRA) UMR1095, Genetics, Diversity and Ecophysiology of Cereals, 5 Chemin de Beaulieu, 63039 Clermont-Ferrand, France. University Blaise Pascal, UMR1095, Genetics, Diversity and Ecophysiology of Cereals, 5 Chemin de Beaulieu, 63039 Clermont-Ferrand, France
| | - Michael Alaux
- INRA, UR1164 Unité de Recherche Génomique Info Research Unit in Genomics-Info, INRA de Versailles, Route de Saint-Cyr, 78026 Versailles, France
| | - Véronique Jamilloux
- INRA, UR1164 Unité de Recherche Génomique Info Research Unit in Genomics-Info, INRA de Versailles, Route de Saint-Cyr, 78026 Versailles, France
| | - Julie Poulain
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Direction des Sciences du Vivant, Institut de Génomique, Genoscope, 2 Rue Gaston Crémieux, 91000 Evry, France
| | - Céline Durand
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Direction des Sciences du Vivant, Institut de Génomique, Genoscope, 2 Rue Gaston Crémieux, 91000 Evry, France
| | - Arnaud Bellec
- Centre National des Ressources Génomiques Végétales, INRA UPR 1258, 24 Chemin de Borde Rouge, 31326 Castanet-Tolosan, France
| | - Christine Gaspin
- Biométrie et Intelligence Artificielle, INRA, Chemin de Borde Rouge, BP 27, 31326 Castanet-Tolosan, France
| | - Jan Safar
- Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany, Slechtitelu 31, CZ-78371 Olomouc, Czech Republic
| | - Jaroslav Dolezel
- Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany, Slechtitelu 31, CZ-78371 Olomouc, Czech Republic
| | - Jane Rogers
- The Genome Analysis Centre, Norwich, Norwich Research Park, Norwich NR4 7UH, UK
| | - Klaas Vandepoele
- Department of Plant Systems Biology (VIB) and Department of Plant Biotechnology and Bioinformatics (Ghent University), Technologiepark 927, 9052 Gent, Belgium
| | - Jean-Marc Aury
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Direction des Sciences du Vivant, Institut de Génomique, Genoscope, 2 Rue Gaston Crémieux, 91000 Evry, France
| | - Klaus Mayer
- Munich Information Center for Protein Sequences, Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum Muenchen, D-85764 Neuherberg, Germany
| | - Hélène Berges
- Centre National des Ressources Génomiques Végétales, INRA UPR 1258, 24 Chemin de Borde Rouge, 31326 Castanet-Tolosan, France
| | - Hadi Quesneville
- INRA, UR1164 Unité de Recherche Génomique Info Research Unit in Genomics-Info, INRA de Versailles, Route de Saint-Cyr, 78026 Versailles, France
| | - Patrick Wincker
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Direction des Sciences du Vivant, Institut de Génomique, Genoscope, 2 Rue Gaston Crémieux, 91000 Evry, France. CNRS UMR 8030, 2 Rue Gaston Crémieux, 91000 Evry, France. Université d'Evry, CP5706 Evry, France
| | - Catherine Feuillet
- Institut National de la Recherche Agronomique (INRA) UMR1095, Genetics, Diversity and Ecophysiology of Cereals, 5 Chemin de Beaulieu, 63039 Clermont-Ferrand, France. University Blaise Pascal, UMR1095, Genetics, Diversity and Ecophysiology of Cereals, 5 Chemin de Beaulieu, 63039 Clermont-Ferrand, France
| |
Collapse
|
17
|
Wang Z, Cui Y, Chen Y, Zhang D, Liang Y, Zhang D, Wu Q, Xie J, Ouyang S, Li D, Huang Y, Lu P, Wang G, Yu M, Zhou S, Sun Q, Liu Z. Comparative genetic mapping and genomic region collinearity analysis of the powdery mildew resistance gene Pm41. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2014; 127:1741-51. [PMID: 24906815 DOI: 10.1007/s00122-014-2336-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 05/20/2014] [Indexed: 05/09/2023]
Abstract
By applying comparative genomics analyses, a high-density genetic linkage map narrowed the powdery mildew resistance gene Pm41 originating from wild emmer in a sub-centimorgan genetic interval. Wheat powdery mildew, caused by Blumeria graminis f. sp. tritici, results in large yield losses worldwide. A high-density genetic linkage map of the powdery mildew resistance gene Pm41, originating from wild emmer (Triticum turgidum var. dicoccoides) and previously mapped to the distal region of chromosome 3BL bin 0.63-1.00, was constructed using an F5:6 recombinant inbred line population derived from a cross of durum wheat cultivar Langdon and wild emmer accession IW2. By applying comparative genomics analyses, 19 polymorphic sequence-tagged site markers were developed and integrated into the Pm41 genetic linkage map. Ultimately, Pm41 was mapped in a 0.6 cM genetic interval flanked by markers XWGGC1505 and XWGGC1507, which correspond to 11.7, 19.2, and 24.9 kb orthologous genomic regions in Brachypodium, rice, and sorghum, respectively. The XWGGC1506 marker co-segregated with Pm41 and could be served as a starting point for chromosome landing and map-based cloning as well as marker-assisted selection of Pm41. Detailed comparative genomics analysis of the markers flanking the Pm41 locus in wheat and the putative orthologous genes in Brachypodium, rice, and sorghum suggests that the gene order is highly conserved between rice and sorghum. However, intra-chromosome inversions and re-arrangements are evident in the wheat and Brachypodium genomic regions, and gene duplications are also present in the orthologous genomic regions of Pm41 in wheat, indicating that the Brachypodium gene model can provide more useful information for wheat marker development.
Collapse
Affiliation(s)
- Zhenzhong Wang
- State Key Laboratory for Agrobiotechnology, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Diéguez MJ, Pergolesi MF, Velasquez SM, Ingala L, López M, Darino M, Paux E, Feuillet C, Sacco F. Fine mapping of LrSV2, a race-specific adult plant leaf rust resistance gene on wheat chromosome 3BS. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2014; 127:1133-1141. [PMID: 24553966 DOI: 10.1007/s00122-014-2285-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 02/04/2014] [Indexed: 06/03/2023]
Abstract
Fine mapping permits the precise positioning of genes within chromosomes, prerequisite for positional cloning that will allow its rational use and the study of the underlying molecular action mechanism. Three leaf rust resistance genes were identified in the durable leaf rust resistant Argentinean wheat variety Sinvalocho MA: the seedling resistance gene Lr3 on distal 6BL and two adult plant resistance genes, LrSV1 and LrSV2, on chromosomes 2DS and 3BS, respectively. To develop a high-resolution genetic map for LrSV2, 10 markers were genotyped on 343 F2 individuals from a cross between Sinvalocho MA and Gama6. The closest co-dominant markers on both sides of the gene (3 microsatellites and 2 STMs) were analyzed on 965 additional F2s from the same cross. Microsatellite marker cfb5010 cosegregated with LrSV2 whereas flanking markers were found at 1 cM distal and at 0.3 cM proximal to the gene. SSR markers designed from the sequences of cv Chinese Spring BAC clones spanning the LrSV2 genetic interval were tested on the recombinants, allowing the identification of microsatellite swm13 at 0.15 cM distal to LrSV2. This delimited an interval of 0.45 cM around the gene flanked by the SSR markers swm13 and gwm533 at the subtelomeric end of chromosome 3BS.
Collapse
Affiliation(s)
- M J Diéguez
- Instituto de Genética "Ewald A. Favret" CICVyA-INTA CC25 (1712) Castelar, Buenos Aires, Argentina,
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Shatalina M, Messmer M, Feuillet C, Mascher F, Paux E, Choulet F, Wicker T, Keller B. High-resolution analysis of a QTL for resistance to Stagonospora nodorum glume blotch in wheat reveals presence of two distinct resistance loci in the target interval. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2014; 127:573-586. [PMID: 24306318 DOI: 10.1007/s00122-013-2240-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 11/19/2013] [Indexed: 06/02/2023]
Abstract
Stagonospora nodorum glume blotch (SNG), caused by the necrotrophic fungus Stagonospora nodorum, is one of the economically important diseases of bread wheat (Triticum aestivum L.). Resistance to SNG is known to be quantitative and previous studies of a recombinant inbred line (RIL) population identified a major quantitative trait locus (QTL) for resistance to SNG on the short arm of chromosome 3B. To localize this QTL (QSng.sfr-3BS) with high resolution, we constructed a genetic map for the QTL target region using information from sequenced flow-sorted chromosomes 3B of the two parental cultivars 'Arina' and 'Forno', the physical map of chromosome 3B of cultivar 'Chinese Spring' and BAC-clone sequences. The mapping population of near-isogenic lines (NIL) was evaluated for SNG resistance in field infection tests. NILs segregated for disease resistance as well as for plant height; additionally, we observed a high environmental influence on the trait. Our analysis detected a strong negative correlation of SNG resistance and plant height. Further analysis of the target region identified two linked loci associated with SNG resistance. One of them was also associated with plant height, revealing an effect of QSng.sfr-3BS on plant height that was hidden in the RIL population. This result demonstrates an unexpectedly high genetic complexity of resistance controlled by QSng.sfr-3BS and shows the importance of the study of QTL in mendelized form in NILs.
Collapse
Affiliation(s)
- Margarita Shatalina
- Institute of Plant Biology, University of Zurich, Zollikerstrasse 107, 8008, Zurich, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Daron J, Glover N, Pingault L, Theil S, Jamilloux V, Paux E, Barbe V, Mangenot S, Alberti A, Wincker P, Quesneville H, Feuillet C, Choulet F. Organization and evolution of transposable elements along the bread wheat chromosome 3B. Genome Biol 2014; 15:546. [PMID: 25476263 PMCID: PMC4290129 DOI: 10.1186/s13059-014-0546-4] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 11/17/2014] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The 17 Gb bread wheat genome has massively expanded through the proliferation of transposable elements (TEs) and two recent rounds of polyploidization. The assembly of a 774 Mb reference sequence of wheat chromosome 3B provided us with the opportunity to explore the impact of TEs on the complex wheat genome structure and evolution at a resolution and scale not reached so far. RESULTS We develop an automated workflow, CLARI-TE, for TE modeling in complex genomes. We delineate precisely 56,488 intact and 196,391 fragmented TEs along the 3B pseudomolecule, accounting for 85% of the sequence, and reconstruct 30,199 nested insertions. TEs have been mostly silent for the last one million years, and the 3B chromosome has been shaped by a succession of bursts that occurred between 1 to 3 million years ago. Accelerated TE elimination in the high-recombination distal regions is a driving force towards chromosome partitioning. CACTAs overrepresented in the high-recombination distal regions are significantly associated with recently duplicated genes. In addition, we identify 140 CACTA-mediated gene capture events with 17 genes potentially created by exon shuffling and show that 19 captured genes are transcribed and under selection pressure, suggesting the important role of CACTAs in the recent wheat adaptation. CONCLUSION Accurate TE modeling uncovers the dynamics of TEs in a highly complex and polyploid genome. It provides novel insights into chromosome partitioning and highlights the role of CACTA transposons in the high level of gene duplication in wheat.
Collapse
Affiliation(s)
- Josquin Daron
- />INRA UMR1095 Genetics, Diversity and Ecophysiology of Cereals, 5 chemin de Beaulieu, 63039 Clermont-Ferrand, France
- />University Blaise Pascal UMR1095 Genetics, Diversity and Ecophysiology of Cereals, 5 chemin de Beaulieu, 63039 Clermont-Ferrand, France
| | - Natasha Glover
- />INRA UMR1095 Genetics, Diversity and Ecophysiology of Cereals, 5 chemin de Beaulieu, 63039 Clermont-Ferrand, France
- />University Blaise Pascal UMR1095 Genetics, Diversity and Ecophysiology of Cereals, 5 chemin de Beaulieu, 63039 Clermont-Ferrand, France
| | - Lise Pingault
- />INRA UMR1095 Genetics, Diversity and Ecophysiology of Cereals, 5 chemin de Beaulieu, 63039 Clermont-Ferrand, France
- />University Blaise Pascal UMR1095 Genetics, Diversity and Ecophysiology of Cereals, 5 chemin de Beaulieu, 63039 Clermont-Ferrand, France
| | - Sébastien Theil
- />INRA UMR1095 Genetics, Diversity and Ecophysiology of Cereals, 5 chemin de Beaulieu, 63039 Clermont-Ferrand, France
- />University Blaise Pascal UMR1095 Genetics, Diversity and Ecophysiology of Cereals, 5 chemin de Beaulieu, 63039 Clermont-Ferrand, France
| | - Véronique Jamilloux
- />INRA-URGI, Centre de Versailles, Route de Saint Cyr, 78026 Versailles, France
| | - Etienne Paux
- />INRA UMR1095 Genetics, Diversity and Ecophysiology of Cereals, 5 chemin de Beaulieu, 63039 Clermont-Ferrand, France
- />University Blaise Pascal UMR1095 Genetics, Diversity and Ecophysiology of Cereals, 5 chemin de Beaulieu, 63039 Clermont-Ferrand, France
| | - Valérie Barbe
- />CEA/DSV/IG/Genoscope, 2 rue Gaston Cremieux, 91000 Evry, France
| | - Sophie Mangenot
- />CEA/DSV/IG/Genoscope, 2 rue Gaston Cremieux, 91000 Evry, France
| | - Adriana Alberti
- />CEA/DSV/IG/Genoscope, 2 rue Gaston Cremieux, 91000 Evry, France
| | - Patrick Wincker
- />CEA/DSV/IG/Genoscope, 2 rue Gaston Cremieux, 91000 Evry, France
- />CNRS UMR 8030, 2 rue Gaston Crémieux, 91000 Evry, France
- />Université d’Evry, P5706 Evry, France
| | - Hadi Quesneville
- />INRA-URGI, Centre de Versailles, Route de Saint Cyr, 78026 Versailles, France
| | - Catherine Feuillet
- />INRA UMR1095 Genetics, Diversity and Ecophysiology of Cereals, 5 chemin de Beaulieu, 63039 Clermont-Ferrand, France
- />University Blaise Pascal UMR1095 Genetics, Diversity and Ecophysiology of Cereals, 5 chemin de Beaulieu, 63039 Clermont-Ferrand, France
| | - Frédéric Choulet
- />INRA UMR1095 Genetics, Diversity and Ecophysiology of Cereals, 5 chemin de Beaulieu, 63039 Clermont-Ferrand, France
- />University Blaise Pascal UMR1095 Genetics, Diversity and Ecophysiology of Cereals, 5 chemin de Beaulieu, 63039 Clermont-Ferrand, France
| |
Collapse
|
21
|
Doležel J, Vrána J, Cápal P, Kubaláková M, Burešová V, Šimková H. Advances in plant chromosome genomics. Biotechnol Adv 2014; 32:122-36. [DOI: 10.1016/j.biotechadv.2013.12.011] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 12/20/2013] [Accepted: 12/21/2013] [Indexed: 01/09/2023]
|
22
|
Raats D, Frenkel Z, Krugman T, Dodek I, Sela H, Simková H, Magni F, Cattonaro F, Vautrin S, Bergès H, Wicker T, Keller B, Leroy P, Philippe R, Paux E, Doležel J, Feuillet C, Korol A, Fahima T. The physical map of wheat chromosome 1BS provides insights into its gene space organization and evolution. Genome Biol 2013; 14:R138. [PMID: 24359668 PMCID: PMC4053865 DOI: 10.1186/gb-2013-14-12-r138] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 12/20/2013] [Indexed: 11/16/2022] Open
Abstract
Background The wheat genome sequence is an essential tool for advanced genomic research and improvements. The generation of a high-quality wheat genome sequence is challenging due to its complex 17 Gb polyploid genome. To overcome these difficulties, sequencing through the construction of BAC-based physical maps of individual chromosomes is employed by the wheat genomics community. Here, we present the construction of the first comprehensive physical map of chromosome 1BS, and illustrate its unique gene space organization and evolution. Results Fingerprinted BAC clones were assembled into 57 long scaffolds, anchored and ordered with 2,438 markers, covering 83% of chromosome 1BS. The BAC-based chromosome 1BS physical map and gene order of the orthologous regions of model grass species were consistent, providing strong support for the reliability of the chromosome 1BS assembly. The gene space for chromosome 1BS spans the entire length of the chromosome arm, with 76% of the genes organized in small gene islands, accompanied by a two-fold increase in gene density from the centromere to the telomere. Conclusions This study provides new evidence on common and chromosome-specific features in the organization and evolution of the wheat genome, including a non-uniform distribution of gene density along the centromere-telomere axis, abundance of non-syntenic genes, the degree of colinearity with other grass genomes and a non-uniform size expansion along the centromere-telomere axis compared with other model cereal genomes. The high-quality physical map constructed in this study provides a solid basis for the assembly of a reference sequence of chromosome 1BS and for breeding applications.
Collapse
|
23
|
Mochida K, Shinozaki K. Unlocking Triticeae genomics to sustainably feed the future. PLANT & CELL PHYSIOLOGY 2013; 54:1931-50. [PMID: 24204022 PMCID: PMC3856857 DOI: 10.1093/pcp/pct163] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 11/04/2013] [Indexed: 05/23/2023]
Abstract
The tribe Triticeae includes the major crops wheat and barley. Within the last few years, the whole genomes of four Triticeae species-barley, wheat, Tausch's goatgrass (Aegilops tauschii) and wild einkorn wheat (Triticum urartu)-have been sequenced. The availability of these genomic resources for Triticeae plants and innovative analytical applications using next-generation sequencing technologies are helping to revitalize our approaches in genetic work and to accelerate improvement of the Triticeae crops. Comparative genomics and integration of genomic resources from Triticeae plants and the model grass Brachypodium distachyon are aiding the discovery of new genes and functional analyses of genes in Triticeae crops. Innovative approaches and tools such as analysis of next-generation populations, evolutionary genomics and systems approaches with mathematical modeling are new strategies that will help us discover alleles for adaptive traits to future agronomic environments. In this review, we provide an update on genomic tools for use with Triticeae plants and Brachypodium and describe emerging approaches toward crop improvements in Triticeae.
Collapse
Affiliation(s)
- Keiichi Mochida
- Biomass Research Platform Team, Biomass Engineering Program Cooperation Division, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045 Japan
- Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka-cho, Totsuka-ku, Yokohama, Kanagawa, 230-0045 Japan
| | - Kazuo Shinozaki
- Biomass Research Platform Team, Biomass Engineering Program Cooperation Division, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045 Japan
| |
Collapse
|
24
|
Next generation characterisation of cereal genomes for marker discovery. BIOLOGY 2013; 2:1357-77. [PMID: 24833229 PMCID: PMC4009793 DOI: 10.3390/biology2041357] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 10/29/2013] [Accepted: 11/08/2013] [Indexed: 12/30/2022]
Abstract
Cereal crops form the bulk of the world’s food sources, and thus their importance cannot be understated. Crop breeding programs increasingly rely on high-resolution molecular genetic markers to accelerate the breeding process. The development of these markers is hampered by the complexity of some of the major cereal crop genomes, as well as the time and cost required. In this review, we address current and future methods available for the characterisation of cereal genomes, with an emphasis on faster and more cost effective approaches for genome sequencing and the development of markers for trait association and marker assisted selection (MAS) in crop breeding programs.
Collapse
|
25
|
Breen J, Wicker T, Shatalina M, Frenkel Z, Bertin I, Philippe R, Spielmeyer W, Šimková H, Šafář J, Cattonaro F, Scalabrin S, Magni F, Vautrin S, Bergès H, Paux E, Fahima T, Doležel J, Korol A, Feuillet C, Keller B. A physical map of the short arm of wheat chromosome 1A. PLoS One 2013; 8:e80272. [PMID: 24278269 PMCID: PMC3836966 DOI: 10.1371/journal.pone.0080272] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 10/11/2013] [Indexed: 12/31/2022] Open
Abstract
Bread wheat (Triticum aestivum) has a large and highly repetitive genome which poses major technical challenges for its study. To aid map-based cloning and future genome sequencing projects, we constructed a BAC-based physical map of the short arm of wheat chromosome 1A (1AS). From the assembly of 25,918 high information content (HICF) fingerprints from a 1AS-specific BAC library, 715 physical contigs were produced that cover almost 99% of the estimated size of the chromosome arm. The 3,414 BAC clones constituting the minimum tiling path were end-sequenced. Using a gene microarray containing ∼40 K NCBI UniGene EST clusters, PCR marker screening and BAC end sequences, we arranged 160 physical contigs (97 Mb or 35.3% of the chromosome arm) in a virtual order based on synteny with Brachypodium, rice and sorghum. BAC end sequences and information from microarray hybridisation was used to anchor 3.8 Mbp of Illumina sequences from flow-sorted chromosome 1AS to BAC contigs. Comparison of genetic and synteny-based physical maps indicated that ∼50% of all genetic recombination is confined to 14% of the physical length of the chromosome arm in the distal region. The 1AS physical map provides a framework for future genetic mapping projects as well as the basis for complete sequencing of chromosome arm 1AS.
Collapse
Affiliation(s)
- James Breen
- Institute of Plant Biology, University of Zurich, Zurich, Switzerland
| | - Thomas Wicker
- Institute of Plant Biology, University of Zurich, Zurich, Switzerland
| | | | - Zeev Frenkel
- Institute of Evolution, University of Haifa, Haifa, Israel
| | - Isabelle Bertin
- INRA UMR 1095, Genetique Diversite et Ecophysiologie des Cereales, Clermont-Ferrand, France
| | - Romain Philippe
- INRA UMR 1095, Genetique Diversite et Ecophysiologie des Cereales, Clermont-Ferrand, France
| | | | - Hana Šimková
- Centre of the Region Hana for Biotechnological and Agricultural Research, Institute of Experimental Botany, Olomouc, Czech Republic
| | - Jan Šafář
- Centre of the Region Hana for Biotechnological and Agricultural Research, Institute of Experimental Botany, Olomouc, Czech Republic
| | | | | | | | | | | | | | - Etienne Paux
- INRA UMR 1095, Genetique Diversite et Ecophysiologie des Cereales, Clermont-Ferrand, France
| | - Tzion Fahima
- Institute of Evolution, University of Haifa, Haifa, Israel
| | - Jaroslav Doležel
- Centre of the Region Hana for Biotechnological and Agricultural Research, Institute of Experimental Botany, Olomouc, Czech Republic
| | - Abraham Korol
- Institute of Evolution, University of Haifa, Haifa, Israel
| | - Catherine Feuillet
- INRA UMR 1095, Genetique Diversite et Ecophysiologie des Cereales, Clermont-Ferrand, France
| | - Beat Keller
- Institute of Plant Biology, University of Zurich, Zurich, Switzerland
- * E-mail:
| |
Collapse
|
26
|
Plessis A, Ravel C, Bordes J, Balfourier F, Martre P. Association study of wheat grain protein composition reveals that gliadin and glutenin composition are trans-regulated by different chromosome regions. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:3627-44. [PMID: 23881399 PMCID: PMC3745720 DOI: 10.1093/jxb/ert188] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Wheat grain storage protein (GSP) content and composition are the main determinants of the end-use value of bread wheat (Triticum aestivum L.) grain. The accumulation of glutenins and gliadins, the two main classes of GSP in wheat, is believed to be mainly controlled at the transcriptional level through a network of transcription factors. This regulation network could lead to stable cross-environment allometric scaling relationships between the quantity of GSP classes/subunits and the total quantity of nitrogen per grain. This work conducted a genetic mapping study of GSP content and composition and allometric scaling parameters of grain N allocation using a bread wheat worldwide core collection grown in three environments. The core collection was genotyped with 873 markers for genome-wide association and 167 single nucleotide polymorphism markers in 51 candidate genes for candidate association. The candidate genes included 35 transcription factors (TFs) expressed in grain. This work identified 74 loci associated with 38 variables, of which 19 were candidate genes or were tightly linked with candidate genes. Besides structural GSP genes, several loci putatively trans-regulating GSP accumulation were identified. Seven candidate TFs, including four wheat orthologues of barley TFs that control hordein gene expression, were associated or in strong linkage disequilibrium with markers associated with the composition or quantity of glutenin or gliadin, or allometric grain N allocation parameters, confirming the importance of the transcriptional control of GSP accumulation. Genome-wide association results suggest that the genes regulating glutenin and gliadin compositions are mostly distinct from each other and operate differently.
Collapse
Affiliation(s)
- Anne Plessis
- INRA, UMR1095, Genetics, Diversity and Ecophysiology of Cereals, 5 Chemin de Beaulieu, F-63100 Clermont-Ferrand, France
- Blaise Pascal University, UMR1095, Genetics, Diversity and Ecophysiology of Cereals, F-63170 Aubière, France
- * These authors contributed equally to this manuscript
| | - Catherine Ravel
- INRA, UMR1095, Genetics, Diversity and Ecophysiology of Cereals, 5 Chemin de Beaulieu, F-63100 Clermont-Ferrand, France
- Blaise Pascal University, UMR1095, Genetics, Diversity and Ecophysiology of Cereals, F-63170 Aubière, France
- * These authors contributed equally to this manuscript
| | - Jacques Bordes
- INRA, UMR1095, Genetics, Diversity and Ecophysiology of Cereals, 5 Chemin de Beaulieu, F-63100 Clermont-Ferrand, France
- Blaise Pascal University, UMR1095, Genetics, Diversity and Ecophysiology of Cereals, F-63170 Aubière, France
| | - François Balfourier
- INRA, UMR1095, Genetics, Diversity and Ecophysiology of Cereals, 5 Chemin de Beaulieu, F-63100 Clermont-Ferrand, France
- Blaise Pascal University, UMR1095, Genetics, Diversity and Ecophysiology of Cereals, F-63170 Aubière, France
| | - Pierre Martre
- INRA, UMR1095, Genetics, Diversity and Ecophysiology of Cereals, 5 Chemin de Beaulieu, F-63100 Clermont-Ferrand, France
- Blaise Pascal University, UMR1095, Genetics, Diversity and Ecophysiology of Cereals, F-63170 Aubière, France
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
27
|
Bassi FM, Kumar A, Zhang Q, Paux E, Huttner E, Kilian A, Dizon R, Feuillet C, Xu SS, Kianian SF. Radiation hybrid QTL mapping of Tdes2 involved in the first meiotic division of wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2013; 126:1977-1990. [PMID: 23715938 DOI: 10.1007/s00122-013-2111-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2013] [Accepted: 04/20/2013] [Indexed: 06/02/2023]
Abstract
Since the dawn of wheat cytogenetics, chromosome 3B has been known to harbor a gene(s) that, when removed, causes chromosome desynapsis and gametic sterility. The lack of natural genetic diversity for this gene(s) has prevented any attempt to fine map and further characterize it. Here, gamma radiation treatment was used to create artificial diversity for this locus. A total of 696 radiation hybrid lines were genotyped with a custom mini array of 140 DArT markers, selected to evenly span the whole 3B chromosome. The resulting map spanned 2,852 centi Ray with a calculated resolution of 0.384 Mb. Phenotyping for the occurrence of meiotic desynapsis was conducted by measuring the level of gametic sterility as seeds produced per spikelet and pollen viability at booting. Composite interval mapping revealed a single QTL with LOD of 16.2 and r (2) of 25.6 % between markers wmc326 and wPt-8983 on the long arm of chromosome 3B. By independent analysis, the location of the QTL was confirmed to be within the deletion bin 3BL7-0.63-1.00 and to correspond to a single gene located ~1.4 Mb away from wPt-8983. The meiotic behavior of lines lacking this gene was characterized cytogenetically to reveal striking similarities with mutants for the dy locus, located on the syntenic chromosome 3 of maize. This represents the first example to date of employing radiation hybrids for QTL analysis. The success achieved by this approach provides an ideal starting point for the final cloning of this interesting gene involved in meiosis of cereals.
Collapse
Affiliation(s)
- F M Bassi
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58102, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Philippe R, Paux E, Bertin I, Sourdille P, Choulet F, Laugier C, Šimková H, Šafář J, Bellec A, Vautrin S, Frenkel Z, Cattonaro F, Magni F, Scalabrin S, Martis MM, Mayer KFX, Korol A, Bergès H, Doležel J, Feuillet C. A high density physical map of chromosome 1BL supports evolutionary studies, map-based cloning and sequencing in wheat. Genome Biol 2013; 14:R64. [PMID: 23800011 PMCID: PMC4054855 DOI: 10.1186/gb-2013-14-6-r64] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 05/24/2013] [Accepted: 06/25/2013] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND As for other major crops, achieving a complete wheat genome sequence is essential for the application of genomics to breeding new and improved varieties. To overcome the complexities of the large, highly repetitive and hexaploid wheat genome, the International Wheat Genome Sequencing Consortium established a chromosome-based strategy that was validated by the construction of the physical map of chromosome 3B. Here, we present improved strategies for the construction of highly integrated and ordered wheat physical maps, using chromosome 1BL as a template, and illustrate their potential for evolutionary studies and map-based cloning. RESULTS Using a combination of novel high throughput marker assays and an assembly program, we developed a high quality physical map representing 93% of wheat chromosome 1BL, anchored and ordered with 5,489 markers including 1,161 genes. Analysis of the gene space organization and evolution revealed that gene distribution and conservation along the chromosome results from the superimposition of the ancestral grass and recent wheat evolutionary patterns, leading to a peak of synteny in the central part of the chromosome arm and an increased density of non-collinear genes towards the telomere. With a density of about 11 markers per Mb, the 1BL physical map provides 916 markers, including 193 genes, for fine mapping the 40 QTLs mapped on this chromosome. CONCLUSIONS Here, we demonstrate that high marker density physical maps can be developed in complex genomes such as wheat to accelerate map-based cloning, gain new insights into genome evolution, and provide a foundation for reference sequencing.
Collapse
Affiliation(s)
- Romain Philippe
- INRA-UBP UMR 1095 Genetics, Diversity and Ecophysiology of Cereals, 5 Chemin de Beaulieu 63039 Clermont-Ferrand, France
| | - Etienne Paux
- INRA-UBP UMR 1095 Genetics, Diversity and Ecophysiology of Cereals, 5 Chemin de Beaulieu 63039 Clermont-Ferrand, France
| | - Isabelle Bertin
- INRA-UBP UMR 1095 Genetics, Diversity and Ecophysiology of Cereals, 5 Chemin de Beaulieu 63039 Clermont-Ferrand, France
| | - Pierre Sourdille
- INRA-UBP UMR 1095 Genetics, Diversity and Ecophysiology of Cereals, 5 Chemin de Beaulieu 63039 Clermont-Ferrand, France
| | - Fréderic Choulet
- INRA-UBP UMR 1095 Genetics, Diversity and Ecophysiology of Cereals, 5 Chemin de Beaulieu 63039 Clermont-Ferrand, France
| | - Christel Laugier
- INRA-UBP UMR 1095 Genetics, Diversity and Ecophysiology of Cereals, 5 Chemin de Beaulieu 63039 Clermont-Ferrand, France
| | - Hana Šimková
- Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany, Sokolovska 6, CZ-77200 Olomouc, Czech Republic
| | - Jan Šafář
- Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany, Sokolovska 6, CZ-77200 Olomouc, Czech Republic
| | - Arnaud Bellec
- Centre National des Ressources Génomiques Végétales, INRA UPR 1258, 24 Chemin de Borde Rouge - Auzeville 31326 Castalnet Tolosan, France
| | - Sonia Vautrin
- Centre National des Ressources Génomiques Végétales, INRA UPR 1258, 24 Chemin de Borde Rouge - Auzeville 31326 Castalnet Tolosan, France
| | - Zeev Frenkel
- University of Haifa, Institute of Evolution and Department of Evolutionary and Environmental Biology, Haifa 31905, Israel
| | - Federica Cattonaro
- Instituto di Genomica Applicata, Via J. Linussio 51, Udine, 33100, Italy
| | - Federica Magni
- Instituto di Genomica Applicata, Via J. Linussio 51, Udine, 33100, Italy
| | - Simone Scalabrin
- Instituto di Genomica Applicata, Via J. Linussio 51, Udine, 33100, Italy
| | | | - Klaus FX Mayer
- MIPS/IBIS; Helmholtz-Zentrum München, 85764 Neuherberg, Germany
| | - Abraham Korol
- University of Haifa, Institute of Evolution and Department of Evolutionary and Environmental Biology, Haifa 31905, Israel
| | - Hélène Bergès
- Centre National des Ressources Génomiques Végétales, INRA UPR 1258, 24 Chemin de Borde Rouge - Auzeville 31326 Castalnet Tolosan, France
| | - Jaroslav Doležel
- Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany, Sokolovska 6, CZ-77200 Olomouc, Czech Republic
| | - Catherine Feuillet
- INRA-UBP UMR 1095 Genetics, Diversity and Ecophysiology of Cereals, 5 Chemin de Beaulieu 63039 Clermont-Ferrand, France
| |
Collapse
|
29
|
Genomics approaches for crop improvement against abiotic stress. ScientificWorldJournal 2013; 2013:361921. [PMID: 23844392 PMCID: PMC3690750 DOI: 10.1155/2013/361921] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 04/22/2013] [Indexed: 12/13/2022] Open
Abstract
As sessile organisms, plants are inevitably exposed to one or a combination of stress factors every now and then throughout their growth and development. Stress responses vary considerably even in the same plant species; stress-susceptible genotypes are at one extreme, and stress-tolerant ones are at the other. Elucidation of the stress responses of crop plants is of extreme relevance, considering the central role of crops in food and biofuel production. Crop improvement has been a traditional issue to increase yields and enhance stress tolerance; however, crop improvement against abiotic stresses has been particularly compelling, given the complex nature of these stresses. As traditional strategies for crop improvement approach their limits, the era of genomics research has arisen with new and promising perspectives in breeding improved varieties against abiotic stresses.
Collapse
|
30
|
Czyczyło-Mysza I, Tyrka M, Marcińska I, Skrzypek E, Karbarz M, Dziurka M, Hura T, Dziurka K, Quarrie SA. Quantitative trait loci for leaf chlorophyll fluorescence parameters, chlorophyll and carotenoid contents in relation to biomass and yield in bread wheat and their chromosome deletion bin assignments. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2013; 32:189-210. [PMID: 23794940 PMCID: PMC3684715 DOI: 10.1007/s11032-013-9862-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Accepted: 03/16/2013] [Indexed: 05/04/2023]
Abstract
Relatively little is known of the genetic control of chlorophyll fluorescence (CF) and pigment traits important in determining efficiency of photosynthesis in wheat and its association with biomass productivity. A doubled haploid population of 94 lines from the wheat cross Chinese Spring × SQ1 was trialled under optimum glasshouse conditions for 4 years to identify quantitative trait loci (QTL) for CF traits including, for the first time in wheat, JIP-test parameters per excited cross section (CSm): ABS/CSm, DIo/CSm, TRo/CSm, RC/CSm and ETo/CSm, key parameters determining efficiency of the photosynthetic apparatus, as well as chlorophyll and carotenoid contents to establish associations with biomass and grain yield. The existing genetic map was extended to 920 loci by adding Diversity Arrays Technology markers. Markers and selected genes for photosynthetic light reactions, pigment metabolism and biomass accumulation were located to chromosome deletion bins. Across all CF traits and years, 116 QTL for CF were located on all chromosomes except 7B, and 39 QTL were identified for pigments on the majority of chromosomes, excluding 1A, 2A, 4A, 3B, 5B, 1D, 2D, 5D, 6D and 7D. Thirty QTL for plant productivity traits were mapped on chromosomes 3A, 5A, 6A, 7A, 1B, 2B, 4B, 6B, 7B, 3D and 4D. A region on chromosome 6B was identified where 14 QTL for CF parameters coincided with QTL for chlorophyll content and grain weight per ear. Thirty-five QTL regions were coincident with candidate genes. The environment was shown to dominate in determining expression of genes for those traits.
Collapse
Affiliation(s)
- I. Czyczyło-Mysza
- The F. Górski Institute of Plant Physiology, Polish Academy of Sciences, Kraków, Poland
| | - M. Tyrka
- Department of Biochemistry and Biotechnology, Rzeszow University of Technology, Rzeszów, Poland
| | - I. Marcińska
- The F. Górski Institute of Plant Physiology, Polish Academy of Sciences, Kraków, Poland
| | - E. Skrzypek
- The F. Górski Institute of Plant Physiology, Polish Academy of Sciences, Kraków, Poland
| | - M. Karbarz
- Institute of Applied Biotechnology and Basic Sciences, University of Rzeszow, Rzeszów, Poland
| | - M. Dziurka
- The F. Górski Institute of Plant Physiology, Polish Academy of Sciences, Kraków, Poland
| | - T. Hura
- The F. Górski Institute of Plant Physiology, Polish Academy of Sciences, Kraków, Poland
| | - K. Dziurka
- The F. Górski Institute of Plant Physiology, Polish Academy of Sciences, Kraków, Poland
| | - S. A. Quarrie
- Faculty of Biology, Belgrade University, Belgrade, Serbia
- Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
31
|
Vincent J, Dai Z, Ravel C, Choulet F, Mouzeyar S, Bouzidi MF, Agier M, Martre P. dbWFA: a web-based database for functional annotation of Triticum aestivum transcripts. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2013; 2013:bat014. [PMID: 23660284 PMCID: PMC3649639 DOI: 10.1093/database/bat014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The functional annotation of genes based on sequence homology with genes from model species genomes is time-consuming because it is necessary to mine several unrelated databases. The aim of the present work was to develop a functional annotation database for common wheat Triticum aestivum (L.). The database, named dbWFA, is based on the reference NCBI UniGene set, an expressed gene catalogue built by expressed sequence tag clustering, and on full-length coding sequences retrieved from the TriFLDB database. Information from good-quality heterogeneous sources, including annotations for model plant species Arabidopsis thaliana (L.) Heynh. and Oryza sativa L., was gathered and linked to T. aestivum sequences through BLAST-based homology searches. Even though the complexity of the transcriptome cannot yet be fully appreciated, we developed a tool to easily and promptly obtain information from multiple functional annotation systems (Gene Ontology, MapMan bin codes, MIPS Functional Categories, PlantCyc pathway reactions and TAIR gene families). The use of dbWFA is illustrated here with several query examples. We were able to assign a putative function to 45% of the UniGenes and 81% of the full-length coding sequences from TriFLDB. Moreover, comparison of the annotation of the whole T. aestivum UniGene set along with curated annotations of the two model species assessed the accuracy of the annotation provided by dbWFA. To further illustrate the use of dbWFA, genes specifically expressed during the early cell division or late storage polymer accumulation phases of T. aestivum grain development were identified using a clustering analysis and then annotated using dbWFA. The annotation of these two sets of genes was consistent with previous analyses of T. aestivum grain transcriptomes and proteomes. Database URL:urgi.versailles.inra.fr/dbWFA/
Collapse
Affiliation(s)
- Jonathan Vincent
- INRA, UMR1095 Genetics, Diversity and Ecophysiology of Cereals, 5 Chemin de Beaulieu, Clermont-Ferrand, F-63 039 Cedex 2, France
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Physical mapping integrated with syntenic analysis to characterize the gene space of the long arm of wheat chromosome 1A. PLoS One 2013; 8:e59542. [PMID: 23613713 PMCID: PMC3628912 DOI: 10.1371/journal.pone.0059542] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 02/15/2013] [Indexed: 12/02/2022] Open
Abstract
Background Bread wheat (Triticum aestivum L.) is one of the most important crops worldwide and its production faces pressing challenges, the solution of which demands genome information. However, the large, highly repetitive hexaploid wheat genome has been considered intractable to standard sequencing approaches. Therefore the International Wheat Genome Sequencing Consortium (IWGSC) proposes to map and sequence the genome on a chromosome-by-chromosome basis. Methodology/Principal Findings We have constructed a physical map of the long arm of bread wheat chromosome 1A using chromosome-specific BAC libraries by High Information Content Fingerprinting (HICF). Two alternative methods (FPC and LTC) were used to assemble the fingerprints into a high-resolution physical map of the chromosome arm. A total of 365 molecular markers were added to the map, in addition to 1122 putative unique transcripts that were identified by microarray hybridization. The final map consists of 1180 FPC-based or 583 LTC-based contigs. Conclusions/Significance The physical map presented here marks an important step forward in mapping of hexaploid bread wheat. The map is orders of magnitude more detailed than previously available maps of this chromosome, and the assignment of over a thousand putative expressed gene sequences to specific map locations will greatly assist future functional studies. This map will be an essential tool for future sequencing of and positional cloning within chromosome 1A.
Collapse
|
33
|
Li B, Choulet F, Heng Y, Hao W, Paux E, Liu Z, Yue W, Jin W, Feuillet C, Zhang X. Wheat centromeric retrotransposons: the new ones take a major role in centromeric structure. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 73:952-65. [PMID: 23253213 DOI: 10.1111/tpj.12086] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 11/22/2012] [Accepted: 11/27/2012] [Indexed: 05/21/2023]
Abstract
The physical map of the hexaploid wheat chromosome 3B was screened using centromeric DNA probes. A 1.1-Mb region showing the highest number of positive bacterial artificial chromosome (BAC) clones was fully sequenced and annotated, revealing that 96% of the DNA consisted of transposable elements, mainly long terminal repeat (LTR) retrotransposons (88%). Estimation of the insertion time of the transposable elements revealed that CRW (also called Cereba) and Quinta are the youngest elements at the centromeres of common wheat (Triticum spp.) and its diploid ancestors, with Quinta being younger than CRW in both diploid and hexaploid wheats. Chromatin immunoprecipitation experiments revealed that both CRW and Quinta families are targeted by the centromere-specific histone H3 variant CENH3. Immuno colocalization of retroelements and CENH3 antibody indicated that a higher proportion of Quinta than CRWs was associated with CENH3, although CRWs were more abundant. Long arrays of satellite repeats were also identified in the wheat centromere regions, but they lost the ability to bind with CENH3. In addition to transposons, two functional genes and one pseudogene were identified. The gene density in the centromere appeared to be between three and four times lower than the average gene density of chromosome 3B. Comparisons with related grasses also indicated a loss of microcollinearity in this region. Finally, comparison of centromeric sequences of Aegilops tauschii (DD), Triticum boeoticum (AA) and hexaploid wheat revealed that the centromeres in both the polyploids and diploids are still undergoing dynamic changes, and that the new CRWs and Quintas may have undertaken the core role in kinetochore formation.
Collapse
Affiliation(s)
- Baochun Li
- Key Laboratory of Crop Gene Resource and Germplasm Enhancement, Ministry of Agriculture, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Gottlieb A, Müller HG, Massa AN, Wanjugi H, Deal KR, You FM, Xu X, Gu YQ, Luo MC, Anderson OD, Chan AP, Rabinowicz P, Devos KM, Dvorak J. Insular organization of gene space in grass genomes. PLoS One 2013; 8:e54101. [PMID: 23326580 PMCID: PMC3543359 DOI: 10.1371/journal.pone.0054101] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Accepted: 12/06/2012] [Indexed: 01/28/2023] Open
Abstract
Wheat and maize genes were hypothesized to be clustered into islands but the hypothesis was not statistically tested. The hypothesis is statistically tested here in four grass species differing in genome size, Brachypodium distachyon, Oryza sativa, Sorghum bicolor, and Aegilops tauschii. Density functions obtained under a model where gene locations follow a homogeneous Poisson process and thus are not clustered are compared with a model-free situation quantified through a non-parametric density estimate. A simple homogeneous Poisson model for gene locations is not rejected for the small O. sativa and B. distachyon genomes, indicating that genes are distributed largely uniformly in those species, but is rejected for the larger S. bicolor and Ae. tauschii genomes, providing evidence for clustering of genes into islands. It is proposed to call the gene islands “gene insulae” to distinguish them from other types of gene clustering that have been proposed. An average S. bicolor and Ae. tauschii insula is estimated to contain 3.7 and 3.9 genes with an average intergenic distance within an insula of 2.1 and 16.5 kb, respectively. Inter-insular distances are greater than 8 and 81 kb and average 15.1 and 205 kb, in S. bicolor and Ae. tauschii, respectively. A greater gene density observed in the distal regions of the Ae. tauschii chromosomes is shown to be primarily caused by shortening of inter-insular distances. The comparison of the four grass genomes suggests that gene locations are largely a function of a homogeneous Poisson process in small genomes. Nonrandom insertions of LTR retroelements during genome expansion creates gene insulae, which become less dense and further apart with the increase in genome size. High concordance in relative lengths of orthologous intergenic distances among the investigated genomes including the maize genome suggests functional constraints on gene distribution in the grass genomes.
Collapse
Affiliation(s)
- Andrea Gottlieb
- Department of Statistics, University of California Davis, Davis, California, United States of America
| | - Hans-Georg Müller
- Department of Statistics, University of California Davis, Davis, California, United States of America
| | - Alicia N. Massa
- Institute of Plant Breeding, Genetics and Genomics (Department of Crop and Soil Sciences), Department of Plant Biology, University of Georgia, Athens, Georgia, United States of America
| | - Humphrey Wanjugi
- USDA/ARS Western Research Center, Albany, California, United States of America
| | - Karin R. Deal
- Department of Plant Sciences, University of California Davis, Davis, California, United States of America
| | - Frank M. You
- Department of Plant Sciences, University of California Davis, Davis, California, United States of America
| | - Xiangyang Xu
- Institute of Plant Breeding, Genetics and Genomics (Department of Crop and Soil Sciences), Department of Plant Biology, University of Georgia, Athens, Georgia, United States of America
| | - Yong Q. Gu
- USDA/ARS Western Research Center, Albany, California, United States of America
| | - Ming-Cheng Luo
- Department of Plant Sciences, University of California Davis, Davis, California, United States of America
| | - Olin D. Anderson
- USDA/ARS Western Research Center, Albany, California, United States of America
| | - Agnes P. Chan
- The J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Pablo Rabinowicz
- Institute for Genome Sciences, and Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Katrien M. Devos
- Institute of Plant Breeding, Genetics and Genomics (Department of Crop and Soil Sciences), Department of Plant Biology, University of Georgia, Athens, Georgia, United States of America
| | - Jan Dvorak
- Department of Plant Sciences, University of California Davis, Davis, California, United States of America
- * E-mail:
| |
Collapse
|
35
|
Shatalina M, Wicker T, Buchmann JP, Oberhaensli S, Simková H, Doležel J, Keller B. Genotype-specific SNP map based on whole chromosome 3B sequence information from wheat cultivars Arina and Forno. PLANT BIOTECHNOLOGY JOURNAL 2013; 11:23-32. [PMID: 23046423 DOI: 10.1111/pbi.12003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 08/27/2012] [Accepted: 08/30/2012] [Indexed: 05/10/2023]
Abstract
Agronomically important traits are frequently controlled by rare, genotype-specific alleles. Such genes can only be mapped in a population derived from the donor genotype. This requires the development of a specific genetic map, which is difficult in wheat because of the low level of polymorphism among elite cultivars. The absence of sufficient polymorphism, the complexity of the hexaploid wheat genome as well as the lack of complete sequence information make the construction of genetic maps with a high density of reproducible and polymorphic markers challenging. We developed a genotype-specific genetic map of chromosome 3B from winter wheat cultivars Arina and Forno. Chromosome 3B was isolated from the two cultivars and then sequenced to 10-fold coverage. This resulted in a single-nucleotide polymorphisms (SNP) database of the complete chromosome. Based on proposed synteny with the Brachypodium model genome and gene annotation, sequences close to coding regions were used for the development of 70 SNP-based markers. They were mapped on a Arina × Forno Recombinant Inbred Lines population and found to be spread over the complete chromosome 3B. While overall synteny was well maintained, numerous exceptions and inversions of syntenic gene order were identified. Additionally, we found that the majority of recombination events occurred in distal parts of chromosome 3B, particularly in hot-spot regions. Compared with the earlier map based on SSR and RFLP markers, the number of markers increased fourfold. The approach presented here allows fast development of genotype-specific polymorphic markers that can be used for mapping and marker-assisted selection.
Collapse
|
36
|
Feuillet C, Stein N, Rossini L, Praud S, Mayer K, Schulman A, Eversole K, Appels R. Integrating cereal genomics to support innovation in the Triticeae. Funct Integr Genomics 2012. [PMID: 23161406 DOI: 10.1007/s10142‐012‐0300‐5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The genomic resources of small grain cereals that include some of the most important crop species such as wheat, barley, and rye are attaining a level of completion that now is contributing to new structural and functional studies as well as refining molecular marker development and mapping strategies for increasing the efficiency of breeding processes. The integration of new efforts to obtain reference sequences in bread wheat and barley, in particular, is accelerating the acquisition and interpretation of genome-level analyses in both of these major crops.
Collapse
Affiliation(s)
- C Feuillet
- INRA-UBP UMR 1095 Genetics and Diversity of Cereals, Clermont-Ferrand, France.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Feuillet C, Stein N, Rossini L, Praud S, Mayer K, Schulman A, Eversole K, Appels R. Integrating cereal genomics to support innovation in the Triticeae. Funct Integr Genomics 2012; 12:573-83. [PMID: 23161406 PMCID: PMC3508266 DOI: 10.1007/s10142-012-0300-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Accepted: 10/31/2012] [Indexed: 11/26/2022]
Abstract
The genomic resources of small grain cereals that include some of the most important crop species such as wheat, barley, and rye are attaining a level of completion that now is contributing to new structural and functional studies as well as refining molecular marker development and mapping strategies for increasing the efficiency of breeding processes. The integration of new efforts to obtain reference sequences in bread wheat and barley, in particular, is accelerating the acquisition and interpretation of genome-level analyses in both of these major crops.
Collapse
Affiliation(s)
- C Feuillet
- INRA-UBP UMR 1095 Genetics and Diversity of Cereals, Clermont-Ferrand, France.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Pavy N, Pelgas B, Laroche J, Rigault P, Isabel N, Bousquet J. A spruce gene map infers ancient plant genome reshuffling and subsequent slow evolution in the gymnosperm lineage leading to extant conifers. BMC Biol 2012; 10:84. [PMID: 23102090 PMCID: PMC3519789 DOI: 10.1186/1741-7007-10-84] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2012] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Seed plants are composed of angiosperms and gymnosperms, which diverged from each other around 300 million years ago. While much light has been shed on the mechanisms and rate of genome evolution in flowering plants, such knowledge remains conspicuously meagre for the gymnosperms. Conifers are key representatives of gymnosperms and the sheer size of their genomes represents a significant challenge for characterization, sequencing and assembling. RESULTS To gain insight into the macro-organisation and long-term evolution of the conifer genome, we developed a genetic map involving 1,801 spruce genes. We designed a statistical approach based on kernel density estimation to analyse gene density and identified seven gene-rich isochors. Groups of co-localizing genes were also found that were transcriptionally co-regulated, indicative of functional clusters. Phylogenetic analyses of 157 gene families for which at least two duplicates were mapped on the spruce genome indicated that ancient gene duplicates shared by angiosperms and gymnosperms outnumbered conifer-specific duplicates by a ratio of eight to one. Ancient duplicates were much more translocated within and among spruce chromosomes than conifer-specific duplicates, which were mostly organised in tandem arrays. Both high synteny and collinearity were also observed between the genomes of spruce and pine, two conifers that diverged more than 100 million years ago. CONCLUSIONS Taken together, these results indicate that much genomic evolution has occurred in the seed plant lineage before the split between gymnosperms and angiosperms, and that the pace of evolution of the genome macro-structure has been much slower in the gymnosperm lineage leading to extent conifers than that seen for the same period of time in flowering plants. This trend is largely congruent with the contrasted rates of diversification and morphological evolution observed between these two groups of seed plants.
Collapse
Affiliation(s)
- Nathalie Pavy
- Canada Research Chair in Forest and Environmental Genomics, Centre for Forest Research and Institute for Systems and Integrative Biology, Université Laval, Québec, Québec G1V 0A6, Canada.
| | | | | | | | | | | |
Collapse
|
39
|
Huynh BL, Mather DE, Schreiber AW, Toubia J, Baumann U, Shoaei Z, Stein N, Ariyadasa R, Stangoulis JCR, Edwards J, Shirley N, Langridge P, Fleury D. Clusters of genes encoding fructan biosynthesizing enzymes in wheat and barley. PLANT MOLECULAR BIOLOGY 2012; 80:299-314. [PMID: 22864927 DOI: 10.1007/s11103-012-9949-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Accepted: 07/23/2012] [Indexed: 05/21/2023]
Abstract
Fructans are soluble carbohydrates with health benefits and possible roles in plant adaptation. Fructan biosynthetic genes were isolated using comparative genomics and physical mapping followed by BAC sequencing in barley. Genes encoding sucrose:sucrose 1-fructosyltransferase (1-SST), fructan:fructan 1-fructosyltransferase (1-FFT) and sucrose:fructan 6-fructosyltransferase (6-SFT) were clustered together with multiple copies of vacuolar invertase genes and a transposable element on two barley BAC. Intron-exon structures of the genes were similar. Phylogenetic analysis of the fructosyltransferases and invertases in the Poaceae showed that the fructan biosynthetic genes may have evolved from vacuolar invertases. Quantitative real-time PCR was performed using leaf RNA extracted from three wheat cultivars grown under different conditions. The 1-SST, 1-FFT and 6-SFT genes had correlated expression patterns in our wheat experiment and in existing barley transcriptome database. Single nucleotide polymorphism (SNP) markers were developed and successfully mapped to a major QTL region affecting wheat grain fructan accumulation in two independent wheat populations. The alleles controlling high- and low- fructan in parental lines were also found to be associated in fructan production in a diverse set of 128 wheat lines. To the authors' knowledge, this is the first report on the mapping and sequencing of a fructan biosynthetic gene cluster and in particular, the isolation of a novel 1-FFT gene from barley.
Collapse
Affiliation(s)
- Bao-Lam Huynh
- Australian Centre for Plant Functional Genomics and School of Agriculture, Food and Wine, Waite Research Institute, The University of Adelaide, PMB 1, Glen Osmond 5064, South Australia,
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Bartoš J, Vlček Č, Choulet F, Džunková M, Cviková K, Šafář J, Šimková H, Pačes J, Strnad H, Sourdille P, Bergès H, Cattonaro F, Feuillet C, Doležel J. Intraspecific sequence comparisons reveal similar rates of non-collinear gene insertion in the B and D genomes of bread wheat. BMC PLANT BIOLOGY 2012; 12:155. [PMID: 22935214 PMCID: PMC3445842 DOI: 10.1186/1471-2229-12-155] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2012] [Accepted: 08/15/2012] [Indexed: 05/08/2023]
Abstract
BACKGROUND Polyploidization is considered one of the main mechanisms of plant genome evolution. The presence of multiple copies of the same gene reduces selection pressure and permits sub-functionalization and neo-functionalization leading to plant diversification, adaptation and speciation. In bread wheat, polyploidization and the prevalence of transposable elements resulted in massive gene duplication and movement. As a result, the number of genes which are non-collinear to genomes of related species seems markedly increased in wheat. RESULTS We used new-generation sequencing (NGS) to generate sequence of a Mb-sized region from wheat chromosome arm 3DS. Sequence assembly of 24 BAC clones resulted in two scaffolds of 1,264,820 and 333,768 bases. The sequence was annotated and compared to the homoeologous region on wheat chromosome 3B and orthologous loci of Brachypodium distachyon and rice. Among 39 coding sequences in the 3DS scaffolds, 32 have a homoeolog on chromosome 3B. In contrast, only fifteen and fourteen orthologs were identified in the corresponding regions in rice and Brachypodium, respectively. Interestingly, five pseudogenes were identified among the non-collinear coding sequences at the 3B locus, while none was found at the 3DS locus. CONCLUSION Direct comparison of two Mb-sized regions of the B and D genomes of bread wheat revealed similar rates of non-collinear gene insertion in both genomes with a majority of gene duplications occurring before their divergence. Relatively low proportion of pseudogenes was identified among non-collinear coding sequences. Our data suggest that the pseudogenes did not originate from insertion of non-functional copies, but were formed later during the evolution of hexaploid wheat. Some evidence was found for gene erosion along the B genome locus.
Collapse
Affiliation(s)
- Jan Bartoš
- Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany, Sokolovská 6, Olomouc, CZ-77200, Czech Republic
| | - Čestmír Vlček
- Institute of Molecular Genetics, Vídeňská 1083, Praha, CZ-14220, Czech Republic
| | - Frédéric Choulet
- INRA University Blaise Pascal UMR 1095 Genetics Diversity Ecophysiology of Cereals, Clermont-Ferrand, F-63100, France
| | - Mária Džunková
- Institute of Molecular Genetics, Vídeňská 1083, Praha, CZ-14220, Czech Republic
| | - Kateřina Cviková
- Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany, Sokolovská 6, Olomouc, CZ-77200, Czech Republic
| | - Jan Šafář
- Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany, Sokolovská 6, Olomouc, CZ-77200, Czech Republic
| | - Hana Šimková
- Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany, Sokolovská 6, Olomouc, CZ-77200, Czech Republic
| | - Jan Pačes
- Institute of Molecular Genetics, Vídeňská 1083, Praha, CZ-14220, Czech Republic
| | - Hynek Strnad
- Institute of Molecular Genetics, Vídeňská 1083, Praha, CZ-14220, Czech Republic
| | - Pierre Sourdille
- INRA University Blaise Pascal UMR 1095 Genetics Diversity Ecophysiology of Cereals, Clermont-Ferrand, F-63100, France
| | - Hélène Bergès
- INRA, National Resources Centre for Plant Genomics, Castanet Tolosan Cedex, F-31326, France
| | - Federica Cattonaro
- Instituto di Genomica Applicata, Via J. Linussio 51, Udine, 33100, Italy
| | - Catherine Feuillet
- INRA University Blaise Pascal UMR 1095 Genetics Diversity Ecophysiology of Cereals, Clermont-Ferrand, F-63100, France
| | - Jaroslav Doležel
- Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany, Sokolovská 6, Olomouc, CZ-77200, Czech Republic
| |
Collapse
|
41
|
Kumar A, Bassi FM, Paux E, Al-Azzam O, de Jimenez MM, Denton AM, Gu YQ, Huttner E, Kilian A, Kumar S, Goyal A, Iqbal MJ, Tiwari VK, Dogramaci M, Balyan HS, Dhaliwal HS, Gupta PK, Randhawa GS, Feuillet C, Pawlowski WP, Kianian SF. DNA repair and crossing over favor similar chromosome regions as discovered in radiation hybrid of Triticum. BMC Genomics 2012; 13:339. [PMID: 22827734 PMCID: PMC3443642 DOI: 10.1186/1471-2164-13-339] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Accepted: 07/07/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The uneven distribution of recombination across the length of chromosomes results in inaccurate estimates of genetic to physical distances. In wheat (Triticum aestivum L.) chromosome 3B, it has been estimated that 90% of the cross over events occur in distal sub-telomeric regions representing 40% of the chromosome. Radiation hybrid (RH) mapping which does not rely on recombination is a strategy to map genomes and has been widely employed in animal species and more recently in some plants. RH maps have been proposed to provide i) higher and ii) more uniform resolution than genetic maps, and iii) to be independent of the distribution patterns observed for meiotic recombination. An in vivo RH panel was generated for mapping chromosome 3B of wheat in an attempt to provide a complete scaffold for this ~1 Gb segment of the genome and compare the resolution to previous genetic maps. RESULTS A high density RH map with 541 marker loci anchored to chromosome 3B spanning a total distance of 1871.9 cR was generated. Detailed comparisons with a genetic map of similar quality confirmed that i) the overall resolution of the RH map was 10.5 fold higher and ii) six fold more uniform. A significant interaction (r = 0.879 at p = 0.01) was observed between the DNA repair mechanism and the distribution of crossing-over events. This observation could be explained by accepting the possibility that the DNA repair mechanism in somatic cells is affected by the chromatin state in a way similar to the effect that chromatin state has on recombination frequencies in gametic cells. CONCLUSIONS The RH data presented here support for the first time in vivo the hypothesis of non-casual interaction between recombination hot-spots and DNA repair. Further, two major hypotheses are presented on how chromatin compactness could affect the DNA repair mechanism. Since the initial RH application 37 years ago, we were able to show for the first time that the iii) third hypothesis of RH mapping might not be entirely correct.
Collapse
Affiliation(s)
- Ajay Kumar
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58102, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Kumar A, Bassi FM, Paux E, Al-Azzam O, de Jimenez MM, Denton AM, Gu YQ, Huttner E, Kilian A, Kumar S, Goyal A, Iqbal MJ, Tiwari VK, Dogramaci M, Balyan HS, Dhaliwal HS, Gupta PK, Randhawa GS, Feuillet C, Pawlowski WP, Kianian SF. DNA repair and crossing over favor similar chromosome regions as discovered in radiation hybrid of Triticum. BMC Genomics 2012. [PMID: 22827734 DOI: 10.1186/1471‐2164‐13‐339] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The uneven distribution of recombination across the length of chromosomes results in inaccurate estimates of genetic to physical distances. In wheat (Triticum aestivum L.) chromosome 3B, it has been estimated that 90% of the cross over events occur in distal sub-telomeric regions representing 40% of the chromosome. Radiation hybrid (RH) mapping which does not rely on recombination is a strategy to map genomes and has been widely employed in animal species and more recently in some plants. RH maps have been proposed to provide i) higher and ii) more uniform resolution than genetic maps, and iii) to be independent of the distribution patterns observed for meiotic recombination. An in vivo RH panel was generated for mapping chromosome 3B of wheat in an attempt to provide a complete scaffold for this ~1 Gb segment of the genome and compare the resolution to previous genetic maps. RESULTS A high density RH map with 541 marker loci anchored to chromosome 3B spanning a total distance of 1871.9 cR was generated. Detailed comparisons with a genetic map of similar quality confirmed that i) the overall resolution of the RH map was 10.5 fold higher and ii) six fold more uniform. A significant interaction (r = 0.879 at p = 0.01) was observed between the DNA repair mechanism and the distribution of crossing-over events. This observation could be explained by accepting the possibility that the DNA repair mechanism in somatic cells is affected by the chromatin state in a way similar to the effect that chromatin state has on recombination frequencies in gametic cells. CONCLUSIONS The RH data presented here support for the first time in vivo the hypothesis of non-casual interaction between recombination hot-spots and DNA repair. Further, two major hypotheses are presented on how chromatin compactness could affect the DNA repair mechanism. Since the initial RH application 37 years ago, we were able to show for the first time that the iii) third hypothesis of RH mapping might not be entirely correct.
Collapse
Affiliation(s)
- Ajay Kumar
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58102, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Sehgal SK, Li W, Rabinowicz PD, Chan A, Šimková H, Doležel J, Gill BS. Chromosome arm-specific BAC end sequences permit comparative analysis of homoeologous chromosomes and genomes of polyploid wheat. BMC PLANT BIOLOGY 2012; 12:64. [PMID: 22559868 PMCID: PMC3438119 DOI: 10.1186/1471-2229-12-64] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 04/09/2012] [Indexed: 05/24/2023]
Abstract
BACKGROUND Bread wheat, one of the world's staple food crops, has the largest, highly repetitive and polyploid genome among the cereal crops. The wheat genome holds the key to crop genetic improvement against challenges such as climate change, environmental degradation, and water scarcity. To unravel the complex wheat genome, the International Wheat Genome Sequencing Consortium (IWGSC) is pursuing a chromosome- and chromosome arm-based approach to physical mapping and sequencing. Here we report on the use of a BAC library made from flow-sorted telosomic chromosome 3A short arm (t3AS) for marker development and analysis of sequence composition and comparative evolution of homoeologous genomes of hexaploid wheat. RESULTS The end-sequencing of 9,984 random BACs from a chromosome arm 3AS-specific library (TaaCsp3AShA) generated 11,014,359 bp of high quality sequence from 17,591 BAC-ends with an average length of 626 bp. The sequence represents 3.2% of t3AS with an average DNA sequence read every 19 kb. Overall, 79% of the sequence consisted of repetitive elements, 1.38% as coding regions (estimated 2,850 genes) and another 19% of unknown origin. Comparative sequence analysis suggested that 70-77% of the genes present in both 3A and 3B were syntenic with model species. Among the transposable elements, gypsy/sabrina (12.4%) was the most abundant repeat and was significantly more frequent in 3A compared to homoeologous chromosome 3B. Twenty novel repetitive sequences were also identified using de novo repeat identification. BESs were screened to identify simple sequence repeats (SSR) and transposable element junctions. A total of 1,057 SSRs were identified with a density of one per 10.4 kb, and 7,928 junctions between transposable elements (TE) and other sequences were identified with a density of one per 1.39 kb. With the objective of enhancing the marker density of chromosome 3AS, oligonucleotide primers were successfully designed from 758 SSRs and 695 Insertion Site Based Polymorphisms (ISBPs). Of the 96 ISBP primer pairs tested, 28 (29%) were 3A-specific and compared to 17 (18%) for 96 SSRs. CONCLUSION This work reports on the use of wheat chromosome arm 3AS-specific BAC library for the targeted generation of sequence data from a particular region of the huge genome of wheat. A large quantity of sequences were generated from the A genome of hexaploid wheat for comparative genome analysis with homoeologous B and D genomes and other model grass genomes. Hundreds of molecular markers were developed from the 3AS arm-specific sequences; these and other sequences will be useful in gene discovery and physical mapping.
Collapse
Affiliation(s)
- Sunish K Sehgal
- Wheat Genetic and Genomic Resources Center, Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, USA
| | - Wanlong Li
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA
| | - Pablo D Rabinowicz
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Agnes Chan
- The J. Craig Venter Institute, Rockville, MD 20850, USA
| | - Hana Šimková
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Sokolovska 6, Olomouc CZ-77200, Czech Republic
| | - Jaroslav Doležel
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Sokolovska 6, Olomouc CZ-77200, Czech Republic
| | - Bikram S Gill
- Wheat Genetic and Genomic Resources Center, Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, USA
- Faculty of Science, Genomics and Biotechnology Section, Department of Biological Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
44
|
Paux E, Sourdille P, Mackay I, Feuillet C. Sequence-based marker development in wheat: advances and applications to breeding. Biotechnol Adv 2011; 30:1071-88. [PMID: 21989506 DOI: 10.1016/j.biotechadv.2011.09.015] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 08/24/2011] [Accepted: 09/25/2011] [Indexed: 01/04/2023]
Abstract
In the past two decades, the wheat community has made remarkable progress in developing molecular resources for breeding. A wide variety of molecular tools has been established to accelerate genetic and physical mapping for facilitating the efficient identification of molecular markers linked to genes and QTL of agronomic interest. Already, wheat breeders are benefiting from a wide range of techniques to follow the introgression of the most favorable alleles in elite material and develop improved varieties. Breeders soon will be able to take advantage of new technological developments based on Next Generation Sequencing. In this paper, we review the molecular toolbox available to wheat scientists and breeders for performing fundamental genomic studies and breeding. Special emphasis is given on the production and detection of single nucleotide polymorphisms (SNPs) that should enable a step change in saturating the wheat genome for more efficient genetic studies and for the development of new selection methods. The perspectives offered by the access to an ordered full genome sequence for further marker development and enhanced precision breeding is also discussed. Finally, we discuss the advantages and limitations of marker-assisted selection for supporting wheat improvement.
Collapse
Affiliation(s)
- Etienne Paux
- INRA-UBP 1095, Genetics Diversity and Ecophysiology of Cereals, 234 Avenue du Brézet, Clermont-Ferrand, France
| | | | | | | |
Collapse
|