1
|
Perdomo JA, Scales JC, Lee W, Kanyuka K, Carmo‐Silva E. Down-regulation of wheat Rubisco activase isoforms expression by virus-induced gene silencing. PLANT DIRECT 2024; 8:e583. [PMID: 38628621 PMCID: PMC11018489 DOI: 10.1002/pld3.583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 03/17/2024] [Accepted: 03/21/2024] [Indexed: 04/19/2024]
Abstract
Rubisco activase (Rca) is an essential photosynthetic enzyme that removes inhibitors from the catalytic sites of the carboxylating enzyme Rubisco. In wheat, Rca is composed of one longer 46 kDa α-isoform and two shorter 42 kDa β-isoforms encoded by the genes TaRca1 and TaRca2. TaRca1 produces a single transcript from which a short 1β-isoform is expressed, whereas two alternative transcripts are generated from TaRca2 directing expression of either a long 2α-isoform or a short 2β-isoform. The 2β isoform is similar but not identical to 1β. Here, virus-induced gene silencing (VIGS) was used to silence the different TaRca transcripts. Abundance of the transcripts and the respective protein isoforms was then evaluated in the VIGS-treated and control plants. Remarkably, treatment with the construct specifically targeting TaRca1 efficiently decreased expression not only of TaRca1 but also of the two alternative TaRca2 transcripts. Similarly, specific targeting of the TaRca2 transcript encoding a long isoform TaRca2α resulted in silencing of both TaRca2 alternative transcripts. The corresponding protein isoforms decreased in abundance. These findings indicate concomitant down-regulation of TaRca1 and TaRca2 at both transcript and protein levels and may impact the feasibility of altering the relative abundance of Rca isoforms in wheat.
Collapse
Affiliation(s)
- Juan Alejandro Perdomo
- Lancaster Environment CentreLancaster UniversityLancasterUK
- School of Pharmacy and Biomedical SciencesUniversity of Central LancashirePrestonUK
| | | | - Wing‐Sham Lee
- Biointeractions and Crop ProtectionRothamsted ResearchHarpendenUK
| | - Kostya Kanyuka
- Biointeractions and Crop ProtectionRothamsted ResearchHarpendenUK
- NIABCambridgeUK
| | - Elizabete Carmo‐Silva
- Lancaster Environment CentreLancaster UniversityLancasterUK
- Plant Biology and Crop SciencesRothamsted ResearchHarpendenUK
| |
Collapse
|
2
|
Wilson S, Dagvadorj B, Tam R, Murphy L, Schulz-Kroenert S, Heng N, Crean E, Greenwood J, Rathjen JP, Schwessinger B. Multiplexed effector screening for recognition by endogenous resistance genes using positive defense reporters in wheat protoplasts. THE NEW PHYTOLOGIST 2024; 241:2621-2636. [PMID: 38282212 DOI: 10.1111/nph.19555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 01/05/2024] [Indexed: 01/30/2024]
Abstract
Plant resistance (R) and pathogen avirulence (Avr) gene interactions play a vital role in pathogen resistance. Efficient molecular screening tools for crops lack far behind their model organism counterparts, yet they are essential to rapidly identify agriculturally important molecular interactions that trigger host resistance. Here, we have developed a novel wheat protoplast assay that enables efficient screening of Avr/R interactions at scale. Our assay allows access to the extensive gene pool of phenotypically described R genes because it does not require the overexpression of cloned R genes. It is suitable for multiplexed Avr screening, with interactions tested in pools of up to 50 Avr candidates. We identified Avr/R-induced defense genes to create a promoter-luciferase reporter. Then, we combined this with a dual-color ratiometric reporter system that normalizes read-outs accounting for experimental variability and Avr/R-induced cell death. Moreover, we introduced a self-replicative plasmid reducing the amount of plasmid used in the assay. Our assay increases the throughput of Avr candidate screening, accelerating the study of cellular defense signaling and resistance gene identification in wheat. We anticipate that our assay will significantly accelerate Avr identification for many wheat pathogens, leading to improved genome-guided pathogen surveillance and breeding of disease-resistant crops.
Collapse
Affiliation(s)
- Salome Wilson
- Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Bayantes Dagvadorj
- Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Rita Tam
- Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Lydia Murphy
- Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Sven Schulz-Kroenert
- Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Nigel Heng
- Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Emma Crean
- Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Julian Greenwood
- Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - John P Rathjen
- Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Benjamin Schwessinger
- Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| |
Collapse
|
3
|
Deng Y, Yarur-Thys A, Baulcombe DC. Virus-induced overexpression of heterologous FLOWERING LOCUS T for efficient speed breeding in tomato. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:36-44. [PMID: 37788568 PMCID: PMC10735598 DOI: 10.1093/jxb/erad369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 10/02/2023] [Indexed: 10/05/2023]
Abstract
Potato virus X (PVX) vectors expressing the Arabidopsis thaliana FLOWERING LOCUS T (FT) or tomato FT ortholog SINGLE-FLOWER TRUSS (SFT) shortened the generation time in tomato due to accelerated tomato flowering and ripening by 14-21 d, and caused a 2-3-fold increase in the number of flowers and fruits, compared with non-infected or empty vector-infected plants. The Arabidopsis FT was more effective than the tomato orthologue SFT and there was no alteration of the flower or fruit morphology. The virus was not transmitted to the next generation; therefore viral vectors with expression of a heterologous FT will be a useful approach to speed breeding in tomato and other species.
Collapse
Affiliation(s)
- Yingtian Deng
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Antonia Yarur-Thys
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - David C Baulcombe
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| |
Collapse
|
4
|
Yu Y, He L, Wu Y. Wheat WRKY transcription factor TaWRKY24 confers drought and salt tolerance in transgenic plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 205:108137. [PMID: 37977027 DOI: 10.1016/j.plaphy.2023.108137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 10/17/2023] [Accepted: 10/23/2023] [Indexed: 11/19/2023]
Abstract
Drought and salt stress are major environmental conditions that severely limit plant growth and productivity. WRKY transcription factors play a vital role in the responses against biotic or abiotic stress. In this study, TaWRKY24, a gene of the IIe WRKY family identified in wheat, was cloned and characterized. TaWRKY24 was mainly expressed in wheat leaf and stem and induced by treatment with PEG6000, salt, H2O2, ABA, MeJA, and ethrel. TaWRKY24 transient expression in onion epidermal cells suggested its nuclear localization and its transcriptional activation capability characteristics. Overexpression of TaWRKY24 in tobacco improved the seed germination rate and root growth of seedlings in transgenic lines when subjected to higher mannitol and NaCl concentrations. Further research showed that transgenic lines had higher proline and soluble sugars and lower levels of reactive oxygen species (ROS) and malondialdehyde (MDA). Moreover, compared to normal and negative control plants, TaWRKY24 silenced wheat seedlings had reduced growth under salt and drought stress. This study shows that wheat TaWRKY24 is crucial to plant stress, providing an excellent candidate gene for wheat resistance breeding.
Collapse
Affiliation(s)
- Yongang Yu
- School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, 453003, China; Collaborative Innovation Center of Modern Biological Breeding of Henan Province, Henan Institute of Science of Technology, XinXiang, 453003, China.
| | - Lingyun He
- School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Yanxia Wu
- School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, 453003, China
| |
Collapse
|
5
|
Ali A, Zafar MM, Farooq Z, Ahmed SR, Ijaz A, Anwar Z, Abbas H, Tariq MS, Tariq H, Mustafa M, Bajwa MH, Shaukat F, Razzaq A, Maozhi R. Breakthrough in CRISPR/Cas system: Current and future directions and challenges. Biotechnol J 2023; 18:e2200642. [PMID: 37166088 DOI: 10.1002/biot.202200642] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 05/12/2023]
Abstract
Targeted genome editing (GE) technology has brought a significant revolution in fictional genomic research and given hope to plant scientists to develop desirable varieties. This technology involves inducing site-specific DNA perturbations that can be repaired through DNA repair pathways. GE products currently include CRISPR-associated nuclease DNA breaks, prime editors generated DNA flaps, single nucleotide-modifications, transposases, and recombinases. The discovery of double-strand breaks, site-specific nucleases (SSNs), and repair mechanisms paved the way for targeted GE, and the first-generation GE tools, ZFNs and TALENs, were successfully utilized in plant GE. However, CRISPR-Cas has now become the preferred tool for GE due to its speed, reliability, and cost-effectiveness. Plant functional genomics has benefited significantly from the widespread use of CRISPR technology for advancements and developments. This review highlights the progress made in CRISPR technology, including multiplex editing, base editing (BE), and prime editing (PE), as well as the challenges and potential delivery mechanisms.
Collapse
Affiliation(s)
- Ahmad Ali
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | | | - Zunaira Farooq
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - Syed Riaz Ahmed
- Nuclear Institute for Agriculture and Biology College (NIAB-C), Pakistan Institute of Engineering and Applied Science (PIEAS), Nilore, Pakistan
| | - Aqsa Ijaz
- Nuclear Institute for Agriculture and Biology College (NIAB-C), Pakistan Institute of Engineering and Applied Science (PIEAS), Nilore, Pakistan
| | - Zunaira Anwar
- Nuclear Institute for Agriculture and Biology College (NIAB-C), Pakistan Institute of Engineering and Applied Science (PIEAS), Nilore, Pakistan
| | - Huma Abbas
- Department of Plant Pathology, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Sayyam Tariq
- Nuclear Institute for Agriculture and Biology College (NIAB-C), Pakistan Institute of Engineering and Applied Science (PIEAS), Nilore, Pakistan
| | - Hala Tariq
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Mahwish Mustafa
- Center of Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad, Pakistan
| | | | - Fiza Shaukat
- Center of Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad, Pakistan
| | - Abdul Razzaq
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Ren Maozhi
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Institute of, Urban Agriculture, Chinese Academy of Agriculture Science, Chengdu, China
| |
Collapse
|
6
|
Zhu Y, Zhang Q, Li Y, Pan Z, Liu C, Lin D, Gao J, Tang Z, Li Z, Wang R, Sun J. Role of Soil and Foliar-Applied Carbon Dots in Plant Iron Biofortification and Cadmium Mitigation by Triggering Opposite Iron Signaling in Roots. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301137. [PMID: 37119405 DOI: 10.1002/smll.202301137] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/17/2023] [Indexed: 06/19/2023]
Abstract
In China, iron (Fe) availability is low in most soils but cadmium (Cd) generally exceeds regulatory soil pollution limits. Thus, biofortification of Fe along with mitigation of Cd in edible plant parts is important for human nutrition and health. Carbon dots (CDs) are considered as potential nanomaterials for agricultural applications. Here, Salvia miltiorrhiza-derived CDs are an efficient modulator of Fe, manganese (Mn), zinc (Zn), and Cd accumulation in plants. CDs irrigation (1 mg mL-1 , performed every week starting at the jointing stage for 12 weeks) increased Fe content by 18% but mitigated Cd accumulation by 20% in wheat grains. This finding was associated with the Fe3+ -mobilizing properties of CDs from the soil and root cell wall, as well as endocytosis-dependent internalization in roots. The resulting excess Fe signaling mitigated Cd uptake via inhibiting TaNRAMP5 expression. Foliar spraying of CDs enhanced Fe (44%), Mn (30%), and Zn (19%) content with an unchanged Cd accumulation in wheat grains. This result is attributed to CDs-enhanced light signaling, which triggered shoot-to-root Fe deficiency response. This study not only reveals the molecular mechanism underlying CDs modulation of Fe signaling in plants but also provides useful strategies for concurrent Fe biofortification and Cd mitigation in plant-based foods.
Collapse
Affiliation(s)
- Yixia Zhu
- Department of Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province, 221116, China
| | - Qian Zhang
- Agro-Environmental Pollution Remediation Research Center, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Yanjuan Li
- Department of Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province, 221116, China
| | - Zhiyuan Pan
- Department of Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province, 221116, China
| | - Chong Liu
- Department of Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province, 221116, China
| | - Dasong Lin
- Agro-Environmental Pollution Remediation Research Center, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Jia Gao
- Department of Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province, 221116, China
| | - Zhonghou Tang
- Department of Sweetpotato Physiology Cultivation, Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou, Jiangsu Province, 221122, China
| | - Zongyun Li
- Department of Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province, 221116, China
| | - Ruigang Wang
- Agro-Environmental Pollution Remediation Research Center, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Jian Sun
- Department of Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province, 221116, China
| |
Collapse
|
7
|
Tamilselvan-Nattar-Amutha S, Hiekel S, Hartmann F, Lorenz J, Dabhi RV, Dreissig S, Hensel G, Kumlehn J, Heckmann S. Barley stripe mosaic virus-mediated somatic and heritable gene editing in barley ( Hordeum vulgare L.). FRONTIERS IN PLANT SCIENCE 2023; 14:1201446. [PMID: 37404527 PMCID: PMC10315673 DOI: 10.3389/fpls.2023.1201446] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/02/2023] [Indexed: 07/06/2023]
Abstract
Genome editing strategies in barley (Hordeum vulgare L.) typically rely on Agrobacterium-mediated genetic transformation for the delivery of required genetic reagents involving tissue culture techniques. These approaches are genotype-dependent, time-consuming, and labor-intensive, which hampers rapid genome editing in barley. More recently, plant RNA viruses have been engineered to transiently express short guide RNAs facilitating CRISPR/Cas9-based targeted genome editing in plants that constitutively express Cas9. Here, we explored virus-induced genome editing (VIGE) based on barley stripe mosaic virus (BSMV) in Cas9-transgenic barley. Somatic and heritable editing in the ALBOSTRIANS gene (CMF7) resulting in albino/variegated chloroplast-defective barley mutants is shown. In addition, somatic editing in meiosis-related candidate genes in barley encoding ASY1 (an axis-localized HORMA domain protein), MUS81 (a DNA structure-selective endonuclease), and ZYP1 (a transverse filament protein of the synaptonemal complex) was achieved. Hence, the presented VIGE approach using BSMV enables rapid somatic and also heritable targeted gene editing in barley.
Collapse
|
8
|
Padilla-Roji I, Ruiz-Jiménez L, Bakhat N, Vielba-Fernández A, Pérez-García A, Fernández-Ortuño D. RNAi Technology: A New Path for the Research and Management of Obligate Biotrophic Phytopathogenic Fungi. Int J Mol Sci 2023; 24:ijms24109082. [PMID: 37240427 DOI: 10.3390/ijms24109082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/05/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Powdery mildew and rust fungi are major agricultural problems affecting many economically important crops and causing significant yield losses. These fungi are obligate biotrophic parasites that are completely dependent on their hosts for growth and reproduction. Biotrophy in these fungi is determined by the presence of haustoria, specialized fungal cells that are responsible for nutrient uptake and molecular dialogue with the host, a fact that undoubtedly complicates their study under laboratory conditions, especially in terms of genetic manipulation. RNA interference (RNAi) is the biological process of suppressing the expression of a target gene through double-stranded RNA that induces mRNA degradation. RNAi technology has revolutionized the study of these obligate biotrophic fungi by enabling the analysis of gene function in these fungal. More importantly, RNAi technology has opened new perspectives for the management of powdery mildew and rust diseases, first through the stable expression of RNAi constructs in transgenic plants and, more recently, through the non-transgenic approach called spray-induced gene silencing (SIGS). In this review, the impact of RNAi technology on the research and management of powdery mildew and rust fungi will be addressed.
Collapse
Affiliation(s)
- Isabel Padilla-Roji
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga, Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), 29071 Málaga, Spain
| | - Laura Ruiz-Jiménez
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga, Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), 29071 Málaga, Spain
| | - Nisrine Bakhat
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga, Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), 29071 Málaga, Spain
| | - Alejandra Vielba-Fernández
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga, Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), 29071 Málaga, Spain
| | - Alejandro Pérez-García
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga, Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), 29071 Málaga, Spain
| | - Dolores Fernández-Ortuño
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga, Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), 29071 Málaga, Spain
| |
Collapse
|
9
|
Annan EN, Huang L. Molecular Mechanisms of the Co-Evolution of Wheat and Rust Pathogens. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091809. [PMID: 37176866 PMCID: PMC10180972 DOI: 10.3390/plants12091809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023]
Abstract
Wheat (Triticum spp.) is a cereal crop domesticated >8000 years ago and the second-most-consumed food crop nowadays. Ever since mankind has written records, cereal rust diseases have been a painful awareness in antiquity documented in the Old Testament (about 750 B.C.). The pathogen causing the wheat stem rust disease is among the first identified plant pathogens in the 1700s, suggesting that wheat and rust pathogens have co-existed for thousands of years. With advanced molecular technologies, wheat and rust genomes have been sequenced, and interactions between the host and the rust pathogens have been extensively studied at molecular levels. In this review, we summarized the research at the molecular level and organized the findings based on the pathogenesis steps of germination, penetration, haustorial formation, and colonization of the rusts to present the molecular mechanisms of the co-evolution of wheat and rust pathogens.
Collapse
Affiliation(s)
- Emmanuel N Annan
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717-3150, USA
| | - Li Huang
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717-3150, USA
| |
Collapse
|
10
|
Xu H, Chang Q, Huang L, Wei P, Song Y, Guo Z, Peng YL, Fan J. An Agrobacterium-Mediated Transient Expression Method for Functional Assay of Genes Promoting Disease in Monocots. Int J Mol Sci 2023; 24:ijms24087636. [PMID: 37108797 PMCID: PMC10142106 DOI: 10.3390/ijms24087636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/14/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
Agrobacterium-mediated transient expression (AMTE) has been widely used for high-throughput assays of gene function in diverse plant species. However, its application in monocots is still limited due to low expression efficiency. Here, by using histochemical staining and a quantitative fluorescence assay of β-glucuronidase (GUS) gene expression, we investigated factors affecting the efficiency of AMTE on intact barley plants. We found prominent variation in GUS expression levels across diverse vectors commonly used for stable transformation and that the vector pCBEP produced the highest expression. Additionally, concurrent treatments of plants with one day of high humidity and two days of darkness following agro-infiltration also significantly increased GUS expression efficiency. We thus established an optimized method for efficient AMTE on barley and further demonstrated its efficiency on wheat and rice plants. We showed that this approach could produce enough proteins suitable for split-luciferase assays of protein-protein interactions on barley leaves. Moreover, we incorporated the AMTE protocol into the functional dissection of a complex biological process such as plant disease. Based on our previous research, we used the pCBEP vector to construct a full-length cDNA library of genes upregulated during the early stage of rice blast disease. A subsequent screen of the library by AMTE identified 15 candidate genes (out of ~2000 clones) promoting blast disease on barley plants. Four identified genes encode chloroplast-related proteins: OsNYC3, OsNUDX21, OsMRS2-9, and OsAk2. These genes were induced during rice blast disease; however, constitutive overexpression of these genes conferred enhanced disease susceptibility to Colletotrichum higginsianum in Arabidopsis. These observations highlight the power of the optimized AMTE approach on monocots as an effective tool for facilitating functional assays of genes mediating complex processes such as plant-microbe interactions.
Collapse
Affiliation(s)
- Haijiao Xu
- MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Qingle Chang
- MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Luli Huang
- MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Peiyao Wei
- MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Yulu Song
- MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Zejian Guo
- MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - You-Liang Peng
- MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Jun Fan
- MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| |
Collapse
|
11
|
Mahmood MA, Naqvi RZ, Rahman SU, Amin I, Mansoor S. Plant Virus-Derived Vectors for Plant Genome Engineering. Viruses 2023; 15:v15020531. [PMID: 36851743 PMCID: PMC9958682 DOI: 10.3390/v15020531] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/25/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
Advances in genome engineering (GE) tools based on sequence-specific programmable nucleases have revolutionized precise genome editing in plants. However, only the traditional approaches are used to deliver these GE reagents, which mostly rely on Agrobacterium-mediated transformation or particle bombardment. These techniques have been successfully used for the past decades for the genetic engineering of plants with some limitations relating to lengthy time-taking protocols and transgenes integration-related regulatory concerns. Nevertheless, in the era of climate change, we require certain faster protocols for developing climate-smart resilient crops through GE to deal with global food security. Therefore, some alternative approaches are needed to robustly deliver the GE reagents. In this case, the plant viral vectors could be an excellent option for the delivery of GE reagents because they are efficient, effective, and precise. Additionally, these are autonomously replicating and considered as natural specialists for transient delivery. In the present review, we have discussed the potential use of these plant viral vectors for the efficient delivery of GE reagents. We have further described the different plant viral vectors, such as DNA and RNA viruses, which have been used as efficient gene targeting systems in model plants, and in other important crops including potato, tomato, wheat, and rice. The achievements gained so far in the use of viral vectors as a carrier for GE reagent delivery are depicted along with the benefits and limitations of each viral vector. Moreover, recent advances have been explored in employing viral vectors for GE and adapting this technology for future research.
Collapse
Affiliation(s)
- Muhammad Arslan Mahmood
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), College of Pakistan Institute of Engineering and Applied Sciences (PIEAS), Jhang Road, Faisalabad 38000, Pakistan
- Department of Biological Sciences, University of Sialkot, Sialkot 51310, Pakistan
| | - Rubab Zahra Naqvi
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), College of Pakistan Institute of Engineering and Applied Sciences (PIEAS), Jhang Road, Faisalabad 38000, Pakistan
| | - Saleem Ur Rahman
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), College of Pakistan Institute of Engineering and Applied Sciences (PIEAS), Jhang Road, Faisalabad 38000, Pakistan
| | - Imran Amin
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), College of Pakistan Institute of Engineering and Applied Sciences (PIEAS), Jhang Road, Faisalabad 38000, Pakistan
| | - Shahid Mansoor
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), College of Pakistan Institute of Engineering and Applied Sciences (PIEAS), Jhang Road, Faisalabad 38000, Pakistan
- International Center for Chemical and Biological Sciences, University of Karachi, Karachi 74000, Pakistan
- Correspondence:
| |
Collapse
|
12
|
The Plant Viruses and Molecular Farming: How Beneficial They Might Be for Human and Animal Health? Int J Mol Sci 2023; 24:ijms24021533. [PMID: 36675043 PMCID: PMC9863966 DOI: 10.3390/ijms24021533] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/04/2023] [Accepted: 01/06/2023] [Indexed: 01/15/2023] Open
Abstract
Plant viruses have traditionally been studied as pathogens in the context of understanding the molecular and cellular mechanisms of a particular disease affecting crops. In recent years, viruses have emerged as a new alternative for producing biological nanomaterials and chimeric vaccines. Plant viruses were also used to generate highly efficient expression vectors, revolutionizing plant molecular farming (PMF). Several biological products, including recombinant vaccines, monoclonal antibodies, diagnostic reagents, and other pharmaceutical products produced in plants, have passed their clinical trials and are in their market implementation stage. PMF offers opportunities for fast, adaptive, and low-cost technology to meet ever-growing and critical global health needs. In this review, we summarized the advancements in the virus-like particles-based (VLPs-based) nanotechnologies and the role they played in the production of advanced vaccines, drugs, diagnostic bio-nanomaterials, and other bioactive cargos. We also highlighted various applications and advantages plant-produced vaccines have and their relevance for treating human and animal illnesses. Furthermore, we summarized the plant-based biologics that have passed through clinical trials, the unique challenges they faced, and the challenges they will face to qualify, become available, and succeed on the market.
Collapse
|
13
|
Bredow M, Natukunda MI, Beernink BM, Chicowski AS, Salas‐Fernandez MG, Whitham SA. Characterization of a foxtail mosaic virus vector for gene silencing and analysis of innate immune responses in Sorghum bicolor. MOLECULAR PLANT PATHOLOGY 2023; 24:71-79. [PMID: 36088637 PMCID: PMC9742499 DOI: 10.1111/mpp.13270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 05/08/2023]
Abstract
Sorghum is vulnerable to many biotic and abiotic stresses, which cause considerable yield losses globally. Efforts to genetically characterize beneficial sorghum traits, including disease resistance, plant architecture, and tolerance to abiotic stresses, are ongoing. One challenge faced by sorghum researchers is its recalcitrance to transformation, which has slowed gene validation efforts and utilization for cultivar development. Here, we characterize the use of a foxtail mosaic virus (FoMV) vector for virus-induced gene silencing (VIGS) by targeting two previously tested marker genes: phytoene desaturase (PDS) and ubiquitin (Ub). We additionally demonstrate VIGS of a subgroup of receptor-like cytoplasmic kinases (RLCKs) and report the role of these genes as positive regulators of early defence signalling. Silencing of subgroup 8 RLCKs also resulted in higher susceptibility to the bacterial pathogens Pseudomonas syringae pv. syringae (B728a) and Xanthomonas vasicola pv. holcicola, demonstrating the role of these genes in host defence against bacterial pathogens. Together, this work highlights the utility of FoMV-induced gene silencing in the characterization of genes mediating defence responses in sorghum. Moreover, FoMV was able to systemically infect six diverse sorghum genotypes with high efficiency at optimal temperatures for sorghum growth and therefore could be extrapolated to study additional traits of economic importance.
Collapse
Affiliation(s)
- Melissa Bredow
- Department of Plant Pathology, Entomology, and MicrobiologyIowa State UniversityAmesIowaUSA
| | - Martha Ibore Natukunda
- Department of AgronomyIowa State UniversityAmesIowaUSA
- Present address:
Department of BiologyAugustana UniversitySioux FallsSouth DakotaUSA.
| | - Bliss M. Beernink
- Department of Plant Pathology, Entomology, and MicrobiologyIowa State UniversityAmesIowaUSA
- Present address:
Department of Biological SciencesUniversity of ManitobaWinnipegManitobaCanada.
| | - Aline Sartor Chicowski
- Department of Plant Pathology, Entomology, and MicrobiologyIowa State UniversityAmesIowaUSA
| | | | - Steven A. Whitham
- Department of Plant Pathology, Entomology, and MicrobiologyIowa State UniversityAmesIowaUSA
| |
Collapse
|
14
|
Wu N, Ozketen AC, Cheng Y, Jiang W, Zhou X, Zhao X, Guan Y, Xiang Z, Akkaya MS. Puccinia striiformis f. sp. tritici effectors in wheat immune responses. FRONTIERS IN PLANT SCIENCE 2022; 13:1012216. [PMID: 36420019 PMCID: PMC9677129 DOI: 10.3389/fpls.2022.1012216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
The obligate biotrophic fungus Puccinia striiformis f. sp. tritici, which causes yellow (stripe) rust disease, is among the leading biological agents resulting in tremendous yield losses on global wheat productions per annum. The combatting strategies include, but are not limited to, fungicide applications and the development of resistant cultivars. However, evolutionary pressure drives rapid changes, especially in its "effectorome" repertoire, thus allowing pathogens to evade and breach resistance. The extracellular and intracellular effectors, predominantly secreted proteins, are tactical arsenals aiming for many defense processes of plants. Hence, the identity of the effectors and the molecular mechanisms of the interactions between the effectors and the plant immune system have long been targeted in research. The obligate biotrophic nature of P. striiformis f. sp. tritici and the challenging nature of its host, the wheat, impede research on this topic. Next-generation sequencing and novel prediction algorithms in bioinformatics, which are accompanied by in vitro and in vivo validation approaches, offer a speedy pace for the discovery of new effectors and investigations of their biological functions. Here, we briefly review recent findings exploring the roles of P. striiformis f. sp. tritici effectors together with their cellular/subcellular localizations, host responses, and interactors. The current status and the challenges will be discussed. We hope that the overall work will provide a broader view of where we stand and a reference point to compare and evaluate new findings.
Collapse
Affiliation(s)
- Nan Wu
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | | | - Yu Cheng
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Wanqing Jiang
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Xuan Zhou
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Xinran Zhao
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Yaorong Guan
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Zhaoxia Xiang
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Mahinur S. Akkaya
- School of Bioengineering, Dalian University of Technology, Dalian, China
| |
Collapse
|
15
|
Lu K, Chen X, Yao X, An Y, Wang X, Qin L, Li X, Wang Z, Liu S, Sun Z, Zhang L, Chen L, Li B, Liu B, Wang W, Ding X, Yang Y, Zhang M, Zou S, Dong H. Phosphorylation of a wheat aquaporin at two sites enhances both plant growth and defense. MOLECULAR PLANT 2022; 15:1772-1789. [PMID: 36207815 DOI: 10.1016/j.molp.2022.10.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 08/30/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
Eukaryotic aquaporins share the characteristic of functional multiplicity in transporting distinct substrates and regulating various processes, but the underlying molecular basis for this is largely unknown. Here, we report that the wheat (Triticum aestivum) aquaporin TaPIP2;10 undergoes phosphorylation to promote photosynthesis and productivity and to confer innate immunity against pathogens and a generalist aphid pest. In response to elevated atmospheric CO2 concentrations, TaPIP2;10 is phosphorylated at the serine residue S280 and thereafter transports CO2 into wheat cells, resulting in enhanced photosynthesis and increased grain yield. In response to apoplastic H2O2 induced by pathogen or insect attacks, TaPIP2;10 is phosphorylated at S121 and this phosphorylated form transports H2O2 into the cytoplasm, where H2O2 intensifies host defenses, restricting further attacks. Wheat resistance and grain yield could be simultaneously increased by TaPIP2;10 overexpression or by expressing a TaPIP2;10 phosphomimic with aspartic acid substitutions at S121 and S280, thereby improving both crop productivity and immunity.
Collapse
Affiliation(s)
- Kai Lu
- College of Plant Protection, State Key Laboratory of Crop Biology, Qilu College, Shandong Agricultural University, Taian 271018, China
| | - Xiaochen Chen
- College of Plant Protection, State Key Laboratory of Crop Biology, Qilu College, Shandong Agricultural University, Taian 271018, China
| | - Xiaohui Yao
- College of Plant Protection, State Key Laboratory of Crop Biology, Qilu College, Shandong Agricultural University, Taian 271018, China
| | - Yuyan An
- College of Life Sciences, Shaanxi Normal University, Xi'an 710019, China
| | - Xuan Wang
- Institute of Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Lina Qin
- College of Plant Protection, State Key Laboratory of Crop Biology, Qilu College, Shandong Agricultural University, Taian 271018, China
| | - Xiaoxu Li
- College of Plant Protection, State Key Laboratory of Crop Biology, Qilu College, Shandong Agricultural University, Taian 271018, China
| | - Zuodong Wang
- College of Plant Protection, State Key Laboratory of Crop Biology, Qilu College, Shandong Agricultural University, Taian 271018, China
| | - Shuo Liu
- College of Plant Protection, State Key Laboratory of Crop Biology, Qilu College, Shandong Agricultural University, Taian 271018, China
| | - Zhimao Sun
- College of Life Sciences, Shaanxi Normal University, Xi'an 710019, China
| | - Liyuan Zhang
- College of Plant Protection, State Key Laboratory of Crop Biology, Qilu College, Shandong Agricultural University, Taian 271018, China
| | - Lei Chen
- College of Plant Protection, State Key Laboratory of Crop Biology, Qilu College, Shandong Agricultural University, Taian 271018, China
| | - Baoyan Li
- Institute of Plant Protection & Resource and Environment, Yantai Academy of Agricultural Sciences, Yantai 265599, China
| | - Baoyou Liu
- Institute of Plant Protection & Resource and Environment, Yantai Academy of Agricultural Sciences, Yantai 265599, China
| | - Weiyang Wang
- College of Plant Protection, State Key Laboratory of Crop Biology, Qilu College, Shandong Agricultural University, Taian 271018, China
| | - Xinhua Ding
- College of Plant Protection, State Key Laboratory of Crop Biology, Qilu College, Shandong Agricultural University, Taian 271018, China
| | - Yonghua Yang
- Institute of Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Meixiang Zhang
- College of Life Sciences, Shaanxi Normal University, Xi'an 710019, China.
| | - Shenshen Zou
- College of Plant Protection, State Key Laboratory of Crop Biology, Qilu College, Shandong Agricultural University, Taian 271018, China.
| | - Hansong Dong
- College of Plant Protection, State Key Laboratory of Crop Biology, Qilu College, Shandong Agricultural University, Taian 271018, China.
| |
Collapse
|
16
|
Geng X, Wang X, Wang J, Yang X, Zhang L, Song X. TaEXPB5 functions as a gene related to pollen development in thermo-sensitive male-sterility wheat with Aegilops kotschyi cytoplasm. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 323:111377. [PMID: 35820549 DOI: 10.1016/j.plantsci.2022.111377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/04/2022] [Accepted: 07/08/2022] [Indexed: 06/15/2023]
Abstract
The thermo-sensitive cytoplasmic male-sterility line with Aegilops kotschyi cytoplasm (K-TCMS) is completely male sterile under low temperature (< 18 ℃) during Zadoks growth stages 45-52, whereas its fertility can be restored under hot temperature (≥ 20 ℃). The K-TCMS line may facilitate hybrid breeding and hybrid wheat production. Therefore, to elucidate the molecular mechanisms of its male sterility/fertility conversion, we conducted the association analysis of proteins and transcript expression to screen fertility related genes using RNA-seq, iTRAQ, and PRM-based assay. A gene encoding expansin protein in wheat, TaEXPB5, was isolated in K-TCMS line KTM3315A, which upregulated expression in the fertility anthers. Subcellular localization analysis suggested that TaEXPB5 protein localized to nucleus and cell wall. The silencing of TaEXPB5 displayed pollen abortion and the declination of fertility. Further, cytological investigation indicated that the silencing of TaEXPB5 induced the early degradation of tapetum and abnormal development of pollen wall. These results implied that TaEXPB5 may be essential for anther or pollen development and male fertility of KTM3315A. These findings provide a novel insight into molecular mechanism of fertility conversion for thermo-sensitive cytoplasmic male-sterility wheat, and contribute to the molecular breeding of hybrid wheat in the future.
Collapse
Affiliation(s)
- Xingxia Geng
- College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Xiaoxia Wang
- College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Jingchen Wang
- College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Xuetong Yang
- College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Lingli Zhang
- College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Xiyue Song
- College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
17
|
Bu Y, Niu F, He M, Ye J, Yang X, Du Z, Zhang L, Song X. The gene TaPG encoding a polygalacturonase is critical for pollen development and male fertility in thermo-sensitive cytoplasmic male-sterility wheat. Gene 2022; 833:146596. [PMID: 35598679 DOI: 10.1016/j.gene.2022.146596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/20/2022] [Accepted: 05/16/2022] [Indexed: 11/04/2022]
Abstract
Thermo-sensitive cytoplasmic male sterility is of great significance to heterosis and hybrid seed production in wheat. Consequently, it is worthwhile to research the genes associated with male sterility. Although polygalacturonases (PGs) have been studied to play a crucial role in male reproduction of many plants, their functions in the reproductive development of wheat remain unclear. Here, TaPG (TraesCS7A02G404900) encoding a polygalacturonase was isolated from the anthers of KTM3315A, a wheat thermo-sensitive cytoplasmic male sterile with Aegilops kotschyi cytoplasm. Expression pattern analyses showed that TaPG was strongly expressed in fertile anthers and its protein was localized in the cell wall. Further verification via barley stripe mosaic virus revealed that the silencing of TaPG exhibited abnormal anthers, premature degradation of tapetum, pollen abortion, and defective pollen wall formation, resulting in the declination of fertility. Conclusively, our research suggested that TaPG contributed to the pollen development and male fertility, which will provide a novel insight into the fertility conversion of thermo-sensitive cytoplasmic male sterility in wheat.
Collapse
Affiliation(s)
- Yaning Bu
- College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Fuqiang Niu
- College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Mengting He
- College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Jiali Ye
- College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Xuetong Yang
- College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Zhejun Du
- Weiyang Extension Station for Agricultural Science and Technology, Xi'an, 710016 Shaanxi, China.
| | - Lingli Zhang
- College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Xiyue Song
- College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
18
|
Wang N, Tang C, Fan X, He M, Gan P, Zhang S, Hu Z, Wang X, Yan T, Shu W, Yu L, Zhao J, He J, Li L, Wang J, Huang X, Huang L, Zhou JM, Kang Z, Wang X. Inactivation of a wheat protein kinase gene confers broad-spectrum resistance to rust fungi. Cell 2022; 185:2961-2974.e19. [PMID: 35839760 DOI: 10.1016/j.cell.2022.06.027] [Citation(s) in RCA: 71] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 05/10/2022] [Accepted: 06/14/2022] [Indexed: 01/21/2023]
Abstract
Wheat crops are frequently devastated by pandemic stripe rust caused by Puccinia striiformis f. sp. tritici (Pst). Here, we identify and characterize a wheat receptor-like cytoplasmic kinase gene, TaPsIPK1, that confers susceptibility to this pathogen. PsSpg1, a secreted fungal effector vital for Pst virulence, can bind TaPsIPK1, enhance its kinase activity, and promote its nuclear localization, where it phosphorylates the transcription factor TaCBF1d for gene regulation. The phosphorylation of TaCBF1d switches its transcriptional activity on the downstream genes. CRISPR-Cas9 inactivation of TaPsIPK1 in wheat confers broad-spectrum resistance against Pst without impacting important agronomic traits in two years of field tests. The disruption of TaPsIPK1 leads to immune priming without constitutive activation of defense responses. Taken together, TaPsIPK1 is a susceptibility gene known to be targeted by rust effectors, and it has great potential for developing durable resistance against rust by genetic modifications.
Collapse
Affiliation(s)
- Ning Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China; Pioneering Innovation Center for Wheat Stress Tolerance Improvement, State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, China; State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Science, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chunlei Tang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China; Pioneering Innovation Center for Wheat Stress Tolerance Improvement, State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xin Fan
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China; Pioneering Innovation Center for Wheat Stress Tolerance Improvement, State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Mengying He
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China; Pioneering Innovation Center for Wheat Stress Tolerance Improvement, State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Pengfei Gan
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China; Pioneering Innovation Center for Wheat Stress Tolerance Improvement, State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shan Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China; Pioneering Innovation Center for Wheat Stress Tolerance Improvement, State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zeyu Hu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China; Pioneering Innovation Center for Wheat Stress Tolerance Improvement, State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaodong Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China; Pioneering Innovation Center for Wheat Stress Tolerance Improvement, State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Tong Yan
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China; Pioneering Innovation Center for Wheat Stress Tolerance Improvement, State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Weixue Shu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China; Pioneering Innovation Center for Wheat Stress Tolerance Improvement, State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ligang Yu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China; Pioneering Innovation Center for Wheat Stress Tolerance Improvement, State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jinren Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China; Pioneering Innovation Center for Wheat Stress Tolerance Improvement, State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jiani He
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China; Pioneering Innovation Center for Wheat Stress Tolerance Improvement, State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lili Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China; Pioneering Innovation Center for Wheat Stress Tolerance Improvement, State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jianfeng Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China; Pioneering Innovation Center for Wheat Stress Tolerance Improvement, State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xueling Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling 712100, China
| | - Lili Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jian-Min Zhou
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology and the Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China; Pioneering Innovation Center for Wheat Stress Tolerance Improvement, State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Xiaojie Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China; Pioneering Innovation Center for Wheat Stress Tolerance Improvement, State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
19
|
Chen W, Huang C, Luo C, Zhang Y, Zhang B, Xie Z, Hao M, Ling H, Cao G, Tian B, Wei F, Shi G. A New Method for Rapid Subcellular Localization and Gene Function Analysis in Cotton Based on Barley Stripe Mosaic Virus. PLANTS 2022; 11:plants11131765. [PMID: 35807717 PMCID: PMC9268801 DOI: 10.3390/plants11131765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 06/26/2022] [Accepted: 06/29/2022] [Indexed: 11/17/2022]
Abstract
The difficulty of genetic transformation has restricted research on functional genomics in cotton. Thus, a rapid and efficient method for gene overexpression that does not rely on genetic transformation is needed. Virus-based vectors offer a reasonable alternative for protein expression, as viruses can infect the host systemically to achieve expression and replication without transgene integration. Previously, a novel four-component barley stripe mosaic virus (BSMV) was reported to overexpress large fragments of target genes in plants over a long period of time, which greatly simplified the study of gene overexpression. However, whether this system can infect cotton and stably overexpress target genes has not yet been studied. In this study, we verified that this new BSMV system can infect cotton through seed imbibition and systemically overexpress large fragments of genes (up to 2340 bp) in cotton. The target gene that was fused with GFP was expressed at a high level in the roots, stems, and cotyledons of cotton seedlings, and stable fluorescence signals were detected in the cotton roots and leaves even after 4 weeks. Based on the BSMV overexpression system, the subcellular localization marker line of endogenous proteins localized in the nucleus, endoplasmic reticulum, plasma membrane, Golgi body, mitochondria, peroxisomes, tonoplast, and plastids were quickly established. The overexpression of a cotton Bile Acid Sodium Symporter GhBASS5 using the BSMV system indicated that GhBASS5 negatively regulated salt tolerance in cotton by transporting Na+ from underground to the shoots. Furthermore, multiple proteins were co-delivered, enabling co-localization and the study of protein–protein interactions through co-transformation. We also confirmed that the BSMV system can be used to conduct DNA-free gene editing in cotton by delivering split-SpCas9/sgRNA. Ultimately, the present work demonstrated that this BSMV system could be used as an efficient overexpression system for future cotton gene function research.
Collapse
Affiliation(s)
- Weiwei Chen
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (W.C.); (C.H.); (C.L.); (Y.Z.); (B.Z.); (Z.X.); (M.H.); (G.C.); (B.T.)
- Henan International Joint Laboratory of Crop Gene Resources and Improvements, Zhengzhou University, Zhengzhou 450001, China;
| | - Chaolin Huang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (W.C.); (C.H.); (C.L.); (Y.Z.); (B.Z.); (Z.X.); (M.H.); (G.C.); (B.T.)
- Henan International Joint Laboratory of Crop Gene Resources and Improvements, Zhengzhou University, Zhengzhou 450001, China;
| | - Chenmeng Luo
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (W.C.); (C.H.); (C.L.); (Y.Z.); (B.Z.); (Z.X.); (M.H.); (G.C.); (B.T.)
- Henan International Joint Laboratory of Crop Gene Resources and Improvements, Zhengzhou University, Zhengzhou 450001, China;
| | - Yongshan Zhang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (W.C.); (C.H.); (C.L.); (Y.Z.); (B.Z.); (Z.X.); (M.H.); (G.C.); (B.T.)
- National Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang 455000, China
| | - Bin Zhang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (W.C.); (C.H.); (C.L.); (Y.Z.); (B.Z.); (Z.X.); (M.H.); (G.C.); (B.T.)
- Henan International Joint Laboratory of Crop Gene Resources and Improvements, Zhengzhou University, Zhengzhou 450001, China;
| | - Zhengqing Xie
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (W.C.); (C.H.); (C.L.); (Y.Z.); (B.Z.); (Z.X.); (M.H.); (G.C.); (B.T.)
- Henan International Joint Laboratory of Crop Gene Resources and Improvements, Zhengzhou University, Zhengzhou 450001, China;
| | - Mengyuan Hao
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (W.C.); (C.H.); (C.L.); (Y.Z.); (B.Z.); (Z.X.); (M.H.); (G.C.); (B.T.)
- Henan International Joint Laboratory of Crop Gene Resources and Improvements, Zhengzhou University, Zhengzhou 450001, China;
| | - Hua Ling
- Henan International Joint Laboratory of Crop Gene Resources and Improvements, Zhengzhou University, Zhengzhou 450001, China;
- Department of Biochemistry, National University of Singapore, Singapore 117597, Singapore
| | - Gangqiang Cao
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (W.C.); (C.H.); (C.L.); (Y.Z.); (B.Z.); (Z.X.); (M.H.); (G.C.); (B.T.)
- Henan International Joint Laboratory of Crop Gene Resources and Improvements, Zhengzhou University, Zhengzhou 450001, China;
| | - Baoming Tian
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (W.C.); (C.H.); (C.L.); (Y.Z.); (B.Z.); (Z.X.); (M.H.); (G.C.); (B.T.)
- Henan International Joint Laboratory of Crop Gene Resources and Improvements, Zhengzhou University, Zhengzhou 450001, China;
- National Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang 455000, China
| | - Fang Wei
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (W.C.); (C.H.); (C.L.); (Y.Z.); (B.Z.); (Z.X.); (M.H.); (G.C.); (B.T.)
- Henan International Joint Laboratory of Crop Gene Resources and Improvements, Zhengzhou University, Zhengzhou 450001, China;
- Correspondence: (F.W.); (G.S.)
| | - Gongyao Shi
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (W.C.); (C.H.); (C.L.); (Y.Z.); (B.Z.); (Z.X.); (M.H.); (G.C.); (B.T.)
- Henan International Joint Laboratory of Crop Gene Resources and Improvements, Zhengzhou University, Zhengzhou 450001, China;
- Correspondence: (F.W.); (G.S.)
| |
Collapse
|
20
|
Rössner C, Lotz D, Becker A. VIGS Goes Viral: How VIGS Transforms Our Understanding of Plant Science. ANNUAL REVIEW OF PLANT BIOLOGY 2022; 73:703-728. [PMID: 35138878 DOI: 10.1146/annurev-arplant-102820-020542] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Virus-induced gene silencing (VIGS) has developed into an indispensable approach to gene function analysis in a wide array of species, many of which are not amenable to stable genetic transformation. VIGS utilizes the posttranscriptional gene silencing (PTGS) machinery of plants to restrain viral infections systemically and is used to downregulate the plant's endogenous genes. Here, we review the molecular mechanisms of DNA- and RNA-virus-based VIGS, its inherent connection to PTGS, and what is known about the systemic spread of silencing. Recently, VIGS-based technologies have been expanded to enable not only gene silencing but also overexpression [virus-induced overexpression (VOX)], genome editing [virus-induced genome editing (VIGE)], and host-induced gene silencing (HIGS). These techniques expand the genetic toolbox for nonmodel organisms even more. Further, we illustrate the versatility of VIGS and the methods derived from it in elucidating molecular mechanisms, using tomato fruit ripening and programmed cell death as examples. Finally, we discuss challenges of and future perspectives on the use of VIGS to advance gene function analysis in nonmodel plants in the postgenomic era.
Collapse
Affiliation(s)
- Clemens Rössner
- Institute of Botany, Justus-Liebig University Gießen, Gießen, Germany;
| | - Dominik Lotz
- Institute of Botany, Justus-Liebig University Gießen, Gießen, Germany;
| | - Annette Becker
- Institute of Botany, Justus-Liebig University Gießen, Gießen, Germany;
| |
Collapse
|
21
|
Shavit R, Batyrshina ZS, Yaakov B, Florean M, Köllner TG, Tzin V. The wheat dioxygenase BX6 is involved in the formation of benzoxazinoids in planta and contributes to plant defense against insect herbivores. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 316:111171. [PMID: 35151455 DOI: 10.1016/j.plantsci.2021.111171] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 12/22/2021] [Accepted: 12/25/2021] [Indexed: 06/14/2023]
Abstract
Benzoxazinoids are plant specialized metabolites with defense properties, highly abundant in wheat (Triticum), one of the world's most important crops. The goal of our study was to characterize dioxygenase BX6 genes in tetraploid and hexaploid wheat genotypes and to elucidate their effects on defense against herbivores. Phylogenetic analysis revealed four BX6 genes in the hexaploid wheat T. aestivum, but only one ortholog was found in the tetraploid (T. turgidum) wild emmer wheat and the cultivated durum wheat. Transcriptome sequencing of durum wheat plants, damaged by either aphids or caterpillars, revealed that several BX genes, including TtBX6, were upregulated upon caterpillar feeding, relative to the undamaged control plants. A virus-induced gene silencing approach was used to reduce the expression of BX6 in T. aestivum plants, which exhibited both reduced transcript levels and reduced accumulation of different benzoxazinoids. To elucidate the effect of BX6 on plant defense, bioassays with different herbivores feeding on BX6-silenced leaves were conducted. The results showed that plants with silenced BX6 were more susceptible to aphids and the two-spotted spider mite than the control. Overall, our study indicates that wheat BX6 is involved in benzoxazinoid formation in planta and contributes to plant resistance against insect herbivores.
Collapse
Affiliation(s)
- Reut Shavit
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, 8499000, Israel
| | - Zhaniya S Batyrshina
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, 8499000, Israel
| | - Beery Yaakov
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, 8499000, Israel
| | - Matilde Florean
- Max Planck Institute for Chemical Ecology, Department of Natural Product Biosynthesis, D-07745, Jena, Germany
| | - Tobias G Köllner
- Max Planck Institute for Chemical Ecology, Department of Natural Product Biosynthesis, D-07745, Jena, Germany
| | - Vered Tzin
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, 8499000, Israel.
| |
Collapse
|
22
|
Prediction of effector proteins and their implications in pathogenicity of phytopathogenic filamentous fungi: A review. Int J Biol Macromol 2022; 206:188-202. [PMID: 35227707 DOI: 10.1016/j.ijbiomac.2022.02.133] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/11/2022] [Accepted: 02/22/2022] [Indexed: 12/14/2022]
Abstract
Plant pathogenic fungi encode and secrete effector proteins to promote pathogenesis. In recent years, the important role of effector proteins in fungi and plant host interactions has become increasingly prominent. In this review, the functional characterization and molecular mechanisms by which fungal effector proteins modulate biological processes and suppress the defense of plant hosts are discussed, with an emphasis on cell localization during fungal infection. This paper also provides a comprehensive review of bioinformatic and experimental methods that are currently available for the identification of fungal effector proteins. We additionally summarize the secretion pathways and the methods for verifying the presence effector proteins in plant host cells. For future research, comparative genomic studies of different pathogens with varying life cycles will allow comprehensive and systematic identification of effector proteins. Additionally, functional analysis of effector protein interactions with a wider range of hosts (especially non-model crops) will provide more detailed repertoires of fungal effectors. Identifying effector proteins and verifying their functions will improve our understanding of their role in causing disease and in turn guide future strategies for combatting fungal infections.
Collapse
|
23
|
Paudel L, Kerr S, Prentis P, Tanurdžić M, Papanicolaou A, Plett JM, Cazzonelli CI. Horticultural innovation by viral-induced gene regulation of carotenogenesis. HORTICULTURE RESEARCH 2022; 9:uhab008. [PMID: 35043183 PMCID: PMC8769041 DOI: 10.1093/hr/uhab008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/31/2021] [Accepted: 09/24/2021] [Indexed: 06/14/2023]
Abstract
Multipartite viral vectors provide a simple, inexpensive and effective biotechnological tool to transiently manipulate (i.e. reduce or increase) gene expression in planta and characterise the function of genetic traits. The development of virus-induced gene regulation (VIGR) systems usually involve the targeted silencing or overexpression of genes involved in pigment biosynthesis or degradation in plastids, thereby providing rapid visual assessment of success in establishing RNA- or DNA-based VIGR systems in planta. Carotenoids pigments provide plant tissues with an array of yellow, orange, and pinkish-red colours. VIGR-induced transient manipulation of carotenoid-related gene expression has advanced our understanding of carotenoid biosynthesis, regulation, accumulation and degradation, as well as plastid signalling processes. In this review, we describe mechanisms of VIGR, the importance of carotenoids as visual markers of technology development, and knowledge gained through manipulating carotenogenesis in model plants as well as horticultural crops not always amenable to transgenic approaches. We outline how VIGR can be utilised in plants to fast-track the characterisation of gene function(s), accelerate fruit tree breeding programs, edit genomes, and biofortify plant products enriched in carotenoid micronutrients for horticultural innovation.
Collapse
Affiliation(s)
- Lucky Paudel
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith NSW 2751, Australia
| | - Stephanie Kerr
- Centre for Agriculture and the Bioeconomy (CAB), Queensland University of Technology, 2 George Street, Brisbane City, QLD 4000, Australia
- School of Biology and Environmental Sciences, Faculty of Science,
Queensland University of Technology, 2 George Street, Brisbane, QLD 4000, Australia
| | - Peter Prentis
- Centre for Agriculture and the Bioeconomy (CAB), Queensland University of Technology, 2 George Street, Brisbane City, QLD 4000, Australia
- School of Biology and Environmental Sciences, Faculty of Science,
Queensland University of Technology, 2 George Street, Brisbane, QLD 4000, Australia
| | - Miloš Tanurdžić
- School of Biological Sciences, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Alexie Papanicolaou
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith NSW 2751, Australia
| | - Jonathan M Plett
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith NSW 2751, Australia
| | - Christopher I Cazzonelli
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith NSW 2751, Australia
| |
Collapse
|
24
|
Gentzel IN, Ohlson EW, Redinbaugh MG, Wang GL. VIGE: virus-induced genome editing for improving abiotic and biotic stress traits in plants. STRESS BIOLOGY 2022; 2:2. [PMID: 37676518 PMCID: PMC10441944 DOI: 10.1007/s44154-021-00026-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 12/12/2021] [Indexed: 09/08/2023]
Abstract
Agricultural production is hampered by disease, pests, and environmental stresses. To minimize yield loss, it is important to develop crop cultivars with resistance or tolerance to their respective biotic and abiotic constraints. Transformation techniques are not optimized for many species and desirable cultivars may not be amenable to genetic transformation, necessitating inferior cultivar usage and time-consuming introgression through backcrossing to the preferred variety. Overcoming these limitations will greatly facilitate the development of disease, insect, and abiotic stress tolerant crops. One such avenue for rapid crop improvement is the development of viral systems to deliver CRISPR/Cas-based genome editing technology to plants to generate targeted beneficial mutations. Viral delivery of genomic editing constructs can theoretically be applied to span the entire host range of the virus utilized, circumventing the challenges associated with traditional transformation and breeding techniques. Here we explore the types of viruses that have been optimized for CRISPR/Cas9 delivery, the phenotypic outcomes achieved in recent studies, and discuss the future potential of this rapidly advancing technology.
Collapse
Affiliation(s)
- Irene N Gentzel
- Department of Plant Pathology, The Ohio State University, Columbus, OH, 43210, USA.
| | - Erik W Ohlson
- USDA, Agricultural Research Service, Corn, Soybean and Wheat Quality Research Unit, Wooster, OH, 44691, USA
| | | | - Guo-Liang Wang
- Department of Plant Pathology, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
25
|
Kanyuka K. Virus-Mediated Protein Overexpression (VOX) in Monocots to Identify and Functionally Characterize Fungal Effectors. Methods Mol Biol 2022; 2523:93-112. [PMID: 35759193 DOI: 10.1007/978-1-0716-2449-4_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
One of the important armories that pathogens utilize to successfully colonize the plants is small secreted effector proteins, which could perform a variety of functions from suppression of plant innate immunity to manipulation of plant physiology in favor of the disease. Plants, on the other hand, evolved disease resistance genes that recognize some of the effectors or avirulence (Avr) proteins. Both, identification of the Avr proteins and understanding of the mechanisms of action of other effectors, are important areas of research in the molecular plant-pathogen interactions field as this knowledge is critical for the development of new effective pathogen control measures. To enable functional analysis of the effectors, it is desirable to be able to overexpress them readily in the host plants. Here we describe detailed experimental protocols for transient effector overexpression in wheat and other monocots using binary Barley stripe mosaic virus (BSMV)- and Foxtail mosaic virus (FoMV)-derived vectors. This functional genomics tool, better known as VOX (Virus-mediated protein OvereXpression), is rapid and relatively simple and inexpensive.
Collapse
Affiliation(s)
- Kostya Kanyuka
- Plant Pathology and Entomology, NIAB, Cambridge, UK.
- Biointeractions and Crop Protection, Rothamsted Research, Harpenden, UK.
| |
Collapse
|
26
|
Panwar V, Kanyuka K. Virus-Induced Gene Silencing in Wheat and Related Monocot Species. Methods Mol Biol 2022; 2408:95-107. [PMID: 35325418 DOI: 10.1007/978-1-0716-1875-2_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Advances made in genome sequencing projects and structural genomics are generating large repertoire of candidate genes in plants associated with specific agronomic traits. Rapid and high-throughput functional genomics approaches are therefore needed to validate the biological function of these genes especially for agronomically important crops beyond the few model plant species. This can be achieved by utilizing available gene knockout or transgenic methodologies, but these can take considerable time and effort particularly in crops with large and complex genomes such as wheat. Therefore, any tool that expedites the validation of gene function is of particular benefit especially in cereal crop plants that are genetically difficult to transform. One such reverse genetics tool is virus-induced gene silencing (VIGS) which relies on the plants' natural antiviral RNA silencing defence mechanism. VIGS is used to downregulate target gene expression in a transient manner which persists long enough to determine its effect on a specific trait. VIGS based on Barley stripe mosaic virus (BSMV) is rapid, powerful, efficient, and relatively inexpensive tool for the analysis of gene function in cereal species. Here we present detailed protocols for BSMV-mediated VIGS for robust gene silencing in bread wheat and related species.
Collapse
Affiliation(s)
- Vinay Panwar
- Department of Biointeractions and Crop Protection, Rothamsted Research, Harpenden, UK
| | - Kostya Kanyuka
- Department of Biointeractions and Crop Protection, Rothamsted Research, Harpenden, UK.
| |
Collapse
|
27
|
Wang X, Zhai T, Zhang X, Tang C, Zhuang R, Zhao H, Xu Q, Cheng Y, Wang J, Duplessis S, Kang Z, Wang X. Two stripe rust effectors impair wheat resistance by suppressing import of host Fe-S protein into chloroplasts. PLANT PHYSIOLOGY 2021; 187:2530-2543. [PMID: 34890460 PMCID: PMC8644677 DOI: 10.1093/plphys/kiab434] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 08/23/2021] [Indexed: 05/27/2023]
Abstract
Several effectors from phytopathogens usually target various cell organelles to interfere with plant defenses, and they generally contain sequences that direct their translocation into organelles, such as chloroplasts. In this study, we characterized a different mechanism for effectors to attack chloroplasts in wheat (Triticum aestivum). Two effectors from Puccinia striiformis f. sp. tritici (Pst), Pst_4, and Pst_5, inhibit Bax-mediated cell death and plant immune responses, such as callose deposition and reactive oxygen species (ROS) accumulation. Gene silencing of the two effectors induced significant resistance to Pst, demonstrating that both effectors function as virulence factors of Pst. Although these two effectors have low sequence similarities and lack chloroplast transit peptides, they both interact with TaISP (wheat cytochrome b6-f complex iron-sulfur subunit, a chloroplast protein encoded by nuclear gene) in the cytoplasm. Silencing of TaISP impaired wheat resistance to avirulent Pst and resulted in less accumulation of ROS. Heterogeneous expression of TaISP enhanced chloroplast-derived ROS accumulation in Nicotiana benthamiana. Co-localization in N. benthamiana and western blot assay of TaISP content in wheat chloroplasts show that both effectors suppressed TaISP from entering chloroplasts. We conclude that these biotrophic fungal effectors suppress plant defenses by disrupting the sorting of chloroplast protein, thereby limiting host ROS accumulation and promoting fungal pathogenicity.
Collapse
Affiliation(s)
- Xiaodong Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Tong Zhai
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xingmin Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chunlei Tang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Rui Zhuang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Haibin Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qiang Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yulin Cheng
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jianfeng Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Sébastien Duplessis
- INRA, UMR 1136 Interactions Arbres/Microorganismes, Centre INRA Nancy Lorraine, Champenoux 54280, France
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaojie Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
28
|
Wang X, Lu K, Yao X, Zhang L, Wang F, Wu D, Peng J, Chen X, Du J, Wei J, Ma J, Chen L, Zou S, Zhang C, Zhang M, Dong H. The Aquaporin TaPIP2;10 Confers Resistance to Two Fungal Diseases in Wheat. PHYTOPATHOLOGY 2021; 111:2317-2331. [PMID: 34058861 DOI: 10.1094/phyto-02-21-0048-r] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Plants employ aquaporins (AQPs) of the plasma membrane intrinsic protein (PIP) family to import environmental substrates, thereby affecting various processes, such as the cellular responses regulated by the signaling molecule hydrogen peroxide (H2O2). Common wheat (Triticum aestivum) contains 24 candidate members of the PIP family, designated as TaPIP1;1 to TaPIP1;12 and TaPIP2;1 to TaPIP2;12. None of these TaPIP candidates have been characterized for substrate selectivity or defense responses in their source plant. Here, we report that T. aestivum AQP TaPIP2;10 facilitates the cellular uptake of H2O2 to confer resistance against powdery mildew and Fusarium head blight, two devastating fungal diseases in wheat throughout the world. In wheat, the apoplastic H2O2 signal is induced by fungal attack, while TaPIP2;10 is stimulated to translocate this H2O2 into the cytoplasm, where it activates defense responses to restrict further attack. TaPIP2;10-mediated transport of H2O2 is essential for pathogen-associated molecular pattern-triggered plant immunity (PTI). Typical PTI responses are induced by the fungal infection and intensified by overexpression of the TaPIP2;10 gene. TaPIP2;10 overexpression causes a 70% enhancement in wheat resistance to powdery mildew and an 86% enhancement in resistance to Fusarium head blight. By reducing the disease severities, TaPIP2;10 overexpression brings about >37% increase in wheat grain yield. These results verify the feasibility of using an immunity-relevant AQP to concomitantly improve crop productivity and immunity.
Collapse
Affiliation(s)
- Xiaobing Wang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
| | - Kai Lu
- College of Plant Protection, Shandong Agricultural University, Taian, Shandong Province 271018, China
| | - Xiaohui Yao
- College of Plant Protection, Shandong Agricultural University, Taian, Shandong Province 271018, China
| | - Liyuan Zhang
- College of Plant Protection, Shandong Agricultural University, Taian, Shandong Province 271018, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, Shandong Province 271018, China
| | - Fubin Wang
- Institute of Environmental Sciences & Resources and Plant Protection, Jining Academy of Agricultural Sciences, Jining, Shandon Province 272000, China
| | - Degong Wu
- College of Agriculture, Anhui Science and Technology University, Fengyang, Anhui Province 233100, China
| | - Jinfeng Peng
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
| | - Xiaochen Chen
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
| | - Junli Du
- College of Agriculture, Anhui Science and Technology University, Fengyang, Anhui Province 233100, China
| | - Jiankun Wei
- College of Plant Protection, Shandong Agricultural University, Taian, Shandong Province 271018, China
| | - Jingyu Ma
- Institute of Environmental Sciences & Resources and Plant Protection, Jining Academy of Agricultural Sciences, Jining, Shandon Province 272000, China
| | - Lei Chen
- College of Plant Protection, Shandong Agricultural University, Taian, Shandong Province 271018, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, Shandong Province 271018, China
| | - Shenshen Zou
- College of Plant Protection, Shandong Agricultural University, Taian, Shandong Province 271018, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, Shandong Province 271018, China
| | - Chunling Zhang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
| | - Meixiang Zhang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
| | - Hansong Dong
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
- College of Plant Protection, Shandong Agricultural University, Taian, Shandong Province 271018, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, Shandong Province 271018, China
| |
Collapse
|
29
|
Bellido AM, Souza Canadá ED, Permingeat HR, Echenique V. Genetic Transformation of Apomictic Grasses: Progress and Constraints. FRONTIERS IN PLANT SCIENCE 2021; 12:768393. [PMID: 34804102 PMCID: PMC8602796 DOI: 10.3389/fpls.2021.768393] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/05/2021] [Indexed: 05/17/2023]
Abstract
The available methods for plant transformation and expansion beyond its limits remain especially critical for crop improvement. For grass species, this is even more critical, mainly due to drawbacks in in vitro regeneration. Despite the existence of many protocols in grasses to achieve genetic transformation through Agrobacterium or biolistic gene delivery, their efficiencies are genotype-dependent and still very low due to the recalcitrance of these species to in vitro regeneration. Many plant transformation facilities for cereals and other important crops may be found around the world in universities and enterprises, but this is not the case for apomictic species, many of which are C4 grasses. Moreover, apomixis (asexual reproduction by seeds) represents an additional constraint for breeding. However, the transformation of an apomictic clone is an attractive strategy, as the transgene is immediately fixed in a highly adapted genetic background, capable of large-scale clonal propagation. With the exception of some species like Brachiaria brizantha which is planted in approximately 100 M ha in Brazil, apomixis is almost non-present in economically important crops. However, as it is sometimes present in their wild relatives, the main goal is to transfer this trait to crops to fix heterosis. Until now this has been a difficult task, mainly because many aspects of apomixis are unknown. Over the last few years, many candidate genes have been identified and attempts have been made to characterize them functionally in Arabidopsis and rice. However, functional analysis in true apomictic species lags far behind, mainly due to the complexity of its genomes, of the trait itself, and the lack of efficient genetic transformation protocols. In this study, we review the current status of the in vitro culture and genetic transformation methods focusing on apomictic grasses, and the prospects for the application of new tools assayed in other related species, with two aims: to pave the way for discovering the molecular pathways involved in apomixis and to develop new capacities for breeding purposes because many of these grasses are important forage or biofuel resources.
Collapse
Affiliation(s)
- Andrés M. Bellido
- Departamento de Agronomía, Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS – CCT – CONICET Bahía Blanca), Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina
| | | | | | - Viviana Echenique
- Departamento de Agronomía, Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS – CCT – CONICET Bahía Blanca), Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina
| |
Collapse
|
30
|
Upadhyaya NM, Mago R, Panwar V, Hewitt T, Luo M, Chen J, Sperschneider J, Nguyen-Phuc H, Wang A, Ortiz D, Hac L, Bhatt D, Li F, Zhang J, Ayliffe M, Figueroa M, Kanyuka K, Ellis JG, Dodds PN. Genomics accelerated isolation of a new stem rust avirulence gene-wheat resistance gene pair. NATURE PLANTS 2021; 7:1220-1228. [PMID: 34294906 DOI: 10.1038/s41477-021-00971-5] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 06/18/2021] [Indexed: 06/13/2023]
Abstract
Stem rust caused by the fungus Puccinia graminis f. sp. tritici (Pgt) is a devastating disease of the global staple crop wheat. Although this disease was largely controlled in the latter half of the twentieth century, new virulent strains of Pgt, such as Ug99, have recently evolved1,2. These strains have caused notable losses worldwide and their continued spread threatens global wheat production. Breeding for disease resistance provides the most cost-effective control of wheat rust diseases3. A number of rust resistance genes have been characterized in wheat and most encode immune receptors of the nucleotide-binding leucine-rich repeat (NLR) class4, which recognize pathogen effector proteins known as avirulence (Avr) proteins5. However, only two Avr genes have been identified in Pgt so far, AvrSr35 and AvrSr50 (refs. 6,7), and none in other cereal rusts8,9. The Sr27 resistance gene was first identified in a wheat line carrying an introgression of the 3R chromosome from Imperial rye10. Although not deployed widely in wheat, Sr27 is widespread in the artificial crop species Triticosecale (triticale), which is a wheat-rye hybrid and is a host for Pgt11,12. Sr27 is effective against Ug99 (ref. 13) and other recent Pgt strains14,15. Here, we identify both the Sr27 gene in wheat and the corresponding AvrSr27 gene in Pgt and show that virulence to Sr27 can arise experimentally and in the field through deletion mutations, copy number variation and expression level polymorphisms at the AvrSr27 locus.
Collapse
Affiliation(s)
- Narayana M Upadhyaya
- Commonwealth Scientific and Industrial Research Organisation, Agriculture and Food, Canberra, Australian Capital Territory, Australia
| | - Rohit Mago
- Commonwealth Scientific and Industrial Research Organisation, Agriculture and Food, Canberra, Australian Capital Territory, Australia
| | - Vinay Panwar
- Biointeractions and Crop Protection, Rothamsted Research, Harpenden, UK
| | - Tim Hewitt
- Commonwealth Scientific and Industrial Research Organisation, Agriculture and Food, Canberra, Australian Capital Territory, Australia
| | - Ming Luo
- Commonwealth Scientific and Industrial Research Organisation, Agriculture and Food, Canberra, Australian Capital Territory, Australia
| | - Jian Chen
- Commonwealth Scientific and Industrial Research Organisation, Agriculture and Food, Canberra, Australian Capital Territory, Australia
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Jana Sperschneider
- Biological Data Science Institute, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Hoa Nguyen-Phuc
- Department of Ecology and Evolutionary Biology, Vietnam National University, Ho Chi Minh, Vietnam
| | - Aihua Wang
- Commonwealth Scientific and Industrial Research Organisation, Agriculture and Food, Canberra, Australian Capital Territory, Australia
| | - Diana Ortiz
- Commonwealth Scientific and Industrial Research Organisation, Agriculture and Food, Canberra, Australian Capital Territory, Australia
- Génétique et Amélioration des Fruits et Légumes, INRA, Montfavet Cedex, France
| | - Luch Hac
- Commonwealth Scientific and Industrial Research Organisation, Agriculture and Food, Canberra, Australian Capital Territory, Australia
| | - Dhara Bhatt
- Commonwealth Scientific and Industrial Research Organisation, Agriculture and Food, Canberra, Australian Capital Territory, Australia
| | - Feng Li
- Department of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, USA
| | - Jianping Zhang
- Commonwealth Scientific and Industrial Research Organisation, Agriculture and Food, Canberra, Australian Capital Territory, Australia
| | - Michael Ayliffe
- Commonwealth Scientific and Industrial Research Organisation, Agriculture and Food, Canberra, Australian Capital Territory, Australia
| | - Melania Figueroa
- Commonwealth Scientific and Industrial Research Organisation, Agriculture and Food, Canberra, Australian Capital Territory, Australia
| | - Kostya Kanyuka
- Biointeractions and Crop Protection, Rothamsted Research, Harpenden, UK
| | - Jeffrey G Ellis
- Commonwealth Scientific and Industrial Research Organisation, Agriculture and Food, Canberra, Australian Capital Territory, Australia
| | - Peter N Dodds
- Commonwealth Scientific and Industrial Research Organisation, Agriculture and Food, Canberra, Australian Capital Territory, Australia.
| |
Collapse
|
31
|
Venkataraman S, Hefferon K. Application of Plant Viruses in Biotechnology, Medicine, and Human Health. Viruses 2021; 13:1697. [PMID: 34578279 PMCID: PMC8473230 DOI: 10.3390/v13091697] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 07/02/2021] [Accepted: 07/12/2021] [Indexed: 01/06/2023] Open
Abstract
Plant-based nanotechnology programs using virus-like particles (VLPs) and virus nanoparticles (VNPs) are emerging platforms that are increasingly used for a variety of applications in biotechnology and medicine. Tobacco mosaic virus (TMV) and potato virus X (PVX), by virtue of having high aspect ratios, make ideal platforms for drug delivery. TMV and PVX both possess rod-shaped structures and single-stranded RNA genomes encapsidated by their respective capsid proteins and have shown great promise as drug delivery systems. Cowpea mosaic virus (CPMV) has an icosahedral structure, and thus brings unique benefits as a nanoparticle. The uses of these three plant viruses as either nanostructures or expression vectors for high value pharmaceutical proteins such as vaccines and antibodies are discussed extensively in the following review. In addition, the potential uses of geminiviruses in medical biotechnology are explored. The uses of these expression vectors in plant biotechnology applications are also discussed. Finally, in this review, we project future prospects for plant viruses in the fields of medicine, human health, prophylaxis, and therapy of human diseases.
Collapse
Affiliation(s)
| | - Kathleen Hefferon
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3B2, Canada;
| |
Collapse
|
32
|
Giudice G, Moffa L, Varotto S, Cardone MF, Bergamini C, De Lorenzis G, Velasco R, Nerva L, Chitarra W. Novel and emerging biotechnological crop protection approaches. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:1495-1510. [PMID: 33945200 PMCID: PMC8384607 DOI: 10.1111/pbi.13605] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 04/01/2021] [Accepted: 04/13/2021] [Indexed: 05/05/2023]
Abstract
Traditional breeding or genetically modified organisms (GMOs) have for a long time been the sole approaches to effectively cope with biotic and abiotic stresses and implement the quality traits of crops. However, emerging diseases as well as unpredictable climate changes affecting agriculture over the entire globe force scientists to find alternative solutions required to quickly overcome seasonal crises. In this review, we first focus on cisgenesis and genome editing as challenging biotechnological approaches for breeding crops more tolerant to biotic and abiotic stresses. In addition, we take into consideration a toolbox of new techniques based on applications of RNA interference and epigenome modifications, which can be adopted for improving plant resilience. Recent advances in these biotechnological applications are mainly reported for non-model plants and woody crops in particular. Indeed, the characterization of RNAi machinery in plants is fundamental to transform available information into biologically or biotechnologically applicable knowledge. Finally, here we discuss how these innovative and environmentally friendly techniques combined with traditional breeding can sustain a modern agriculture and be of potential contribution to climate change mitigation.
Collapse
Affiliation(s)
- Gaetano Giudice
- Research Centre for Viticulture and EnologyCouncil for Agricultural Research and Economics (CREA‐VE)ConeglianoTVItaly
- Department of Agricultural and Environmental Sciences ‐ Production, Landscape, Agroenergy (DiSAA)University of MilanoMilanoItaly
| | - Loredana Moffa
- Research Centre for Viticulture and EnologyCouncil for Agricultural Research and Economics (CREA‐VE)ConeglianoTVItaly
- Department of Agricultural, Food, Environmental and Animal Sciences (DI4A)University of UdineUdineItaly
| | - Serena Varotto
- Department of Agronomy Animals Food Natural Resources and Environment (DAFNAE)University of PadovaLegnaroPDItaly
| | - Maria Francesca Cardone
- Research Centre for Viticulture and EnologyCouncil for Agricultural Research and Economics (CREA‐VE)TuriBAItaly
| | - Carlo Bergamini
- Research Centre for Viticulture and EnologyCouncil for Agricultural Research and Economics (CREA‐VE)TuriBAItaly
| | - Gabriella De Lorenzis
- Department of Agricultural and Environmental Sciences ‐ Production, Landscape, Agroenergy (DiSAA)University of MilanoMilanoItaly
| | - Riccardo Velasco
- Research Centre for Viticulture and EnologyCouncil for Agricultural Research and Economics (CREA‐VE)ConeglianoTVItaly
| | - Luca Nerva
- Research Centre for Viticulture and EnologyCouncil for Agricultural Research and Economics (CREA‐VE)ConeglianoTVItaly
- Institute for Sustainable Plant ProtectionNational Research Council (IPSP‐CNR)TorinoItaly
| | - Walter Chitarra
- Research Centre for Viticulture and EnologyCouncil for Agricultural Research and Economics (CREA‐VE)ConeglianoTVItaly
- Institute for Sustainable Plant ProtectionNational Research Council (IPSP‐CNR)TorinoItaly
| |
Collapse
|
33
|
Construction of Infectious Clones of Begomoviruses: Strategies, Techniques and Applications. BIOLOGY 2021; 10:biology10070604. [PMID: 34209952 PMCID: PMC8301103 DOI: 10.3390/biology10070604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/21/2021] [Accepted: 06/24/2021] [Indexed: 11/24/2022]
Abstract
Simple Summary Begomovirus has a wide host range and threatens a significant amount of economic damage to many important crops such as tomatoes, beans, cassava, squash and cotton. There are many efforts directed at controlling this disease including the use of insecticides to control the insect vector as well as screening the resistant varieties. The use of synthetic virus or infectious clones approaches has allowed plant virologists to characterize and exploit the genome virus at the molecular and biological levels. By exploiting the DNA of the virus using the infectious clones strategy, the viral genome can be manipulated at specific regions to study functional genes for host–virus interactions. Thus, this review will provide an overview of the strategy to construct infectious clones of Begomovirus. The significance of established infectious clones in Begomovirus study will also be discussed. Abstract Begomovirus has become a potential threat to the agriculture sector. It causes significant losses to several economically important crops. Given this considerable loss, the development of tools to study viral genomes and function is needed. Infectious clones approaches and applications have allowed the direct exploitation of virus genomes. Infectious clones of DNA viruses are the critical instrument for functional characterization of the notable and newly discovered virus. Understanding of structure and composition of viruses has contributed to the evolution of molecular plant pathology. Therefore, this review provides extensive guidelines on the strategy to construct infectious clones of Begomovirus. Also, this technique’s impacts and benefits in controlling and understanding the Begomovirus infection will be discussed.
Collapse
|
34
|
Machado Wood AK, Panwar V, Grimwade-Mann M, Ashfield T, Hammond-Kosack KE, Kanyuka K. The vesicular trafficking system component MIN7 is required for minimizing Fusarium graminearum infection. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:5010-5023. [PMID: 33877328 PMCID: PMC8364293 DOI: 10.1093/jxb/erab170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 04/15/2021] [Indexed: 05/13/2023]
Abstract
Plants have developed intricate defense mechanisms, referred to as innate immunity, to defend themselves against a wide range of pathogens. Plants often respond rapidly to pathogen attack by the synthesis and delivery to the primary infection sites of various antimicrobial compounds, proteins, and small RNA in membrane vesicles. Much of the evidence regarding the importance of vesicular trafficking in plant-pathogen interactions comes from studies involving model plants whereas this process is relatively understudied in crop plants. Here we assessed whether the vesicular trafficking system components previously implicated in immunity in Arabidopsis play a role in the interaction with Fusarium graminearum, a fungal pathogen well-known for its ability to cause Fusarium head blight disease in wheat. Among the analysed vesicular trafficking mutants, two independent T-DNA insertion mutants in the AtMin7 gene displayed a markedly enhanced susceptibility to F. graminearum. Earlier studies identified this gene, encoding an ARF-GEF protein, as a target for the HopM1 effector of the bacterial pathogen Pseudomonas syringae pv. tomato, which destabilizes MIN7 leading to its degradation and weakening host defenses. To test whether this key vesicular trafficking component may also contribute to defense in crop plants, we identified the candidate TaMin7 genes in wheat and knocked-down their expression through virus-induced gene silencing. Wheat plants in which TaMin7 genes were silenced displayed significantly more Fusarium head blight disease. This suggests that disruption of MIN7 function in both model and crop plants compromises the trafficking of innate immunity signals or products resulting in hypersusceptibility to various pathogens.
Collapse
Affiliation(s)
- Ana K Machado Wood
- Biointeractions and Crop Protection, Rothamsted Research, Harpenden AL5 2JQ, UK
| | - Vinay Panwar
- Biointeractions and Crop Protection, Rothamsted Research, Harpenden AL5 2JQ, UK
| | - Mike Grimwade-Mann
- Biointeractions and Crop Protection, Rothamsted Research, Harpenden AL5 2JQ, UK
| | - Tom Ashfield
- Biointeractions and Crop Protection, Rothamsted Research, Harpenden AL5 2JQ, UK
- Crop Health and Protection (CHAP), Rothamsted Research, Harpenden AL5 2JQ, UK
| | | | - Kostya Kanyuka
- Biointeractions and Crop Protection, Rothamsted Research, Harpenden AL5 2JQ, UK
- Correspondence:
| |
Collapse
|
35
|
Yang X, Ye J, Niu F, Feng Y, Song X. Identification and verification of genes related to pollen development and male sterility induced by high temperature in the thermo-sensitive genic male sterile wheat line. PLANTA 2021; 253:83. [PMID: 33770279 DOI: 10.1007/s00425-021-03601-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 03/18/2021] [Indexed: 06/12/2023]
Abstract
Bioinformatic analysis identified the function of genes regulating wheat fertility. Barley stripe mosaic virus-induced gene silencing verified that the genes TaMut11 and TaSF3 are involved in pollen development and related to fertility conversion. Environment-sensitive genic male sterility is of vital importance to hybrid vigor in crop production and breeding. Therefore, it is meaningful to study the function of the genes related to pollen development and male sterility, which is still not fully understand currently. In this study, YanZhan 4110S, a new thermo-sensitive genic male sterility wheat line, and its near-isogenic line YanZhan 4110 were analyzed. Through comparative transcriptome basic bioinformatics and weighted gene co-expression network to further identify some hub genes, the genes TaMut11 and TaSF3 associated with pollen development and male sterility induced by high-temperature were identified in YanZhan 4110S. Further verification through barley stripe mosaic virus-induced gene silencing elucidated that the silencing of TaMut11 and TaSF3 caused pollen abortion, finally resulting in the declination of fertility. These findings provided data on the abortive mechanism in environment-sensitive genic male sterility wheat.
Collapse
Affiliation(s)
- Xuetong Yang
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jiali Ye
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Fuqiang Niu
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yi Feng
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Xiyue Song
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
36
|
Harrington SA, Backhaus AE, Singh A, Hassani-Pak K, Uauy C. The Wheat GENIE3 Network Provides Biologically-Relevant Information in Polyploid Wheat. G3 (BETHESDA, MD.) 2020; 10:3675-3686. [PMID: 32747342 PMCID: PMC7534433 DOI: 10.1534/g3.120.401436] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 08/01/2020] [Indexed: 11/18/2022]
Abstract
Gene regulatory networks are powerful tools which facilitate hypothesis generation and candidate gene discovery. However, the extent to which the network predictions are biologically relevant is often unclear. Recently a GENIE3 network which predicted targets of wheat transcription factors was produced. Here we used an independent RNA-Seq dataset to test the predictions of the wheat GENIE3 network for the senescence-regulating transcription factor NAM-A1 (TraesCS6A02G108300). We re-analyzed the RNA-Seq data against the RefSeqv1.0 genome and identified a set of differentially expressed genes (DEGs) between the wild-type and nam-a1 mutant which recapitulated the known role of NAM-A1 in senescence and nutrient remobilisation. We found that the GENIE3-predicted target genes of NAM-A1 overlap significantly with the DEGs, more than would be expected by chance. Based on high levels of overlap between GENIE3-predicted target genes and the DEGs, we identified candidate senescence regulators. We then explored genome-wide trends in the network related to polyploidy and found that only homeologous transcription factors are likely to share predicted targets in common. However, homeologs which vary in expression levels across tissues are less likely to share predicted targets than those that do not, suggesting that they may be more likely to act in distinct pathways. This work demonstrates that the wheat GENIE3 network can provide biologically-relevant predictions of transcription factor targets, which can be used for candidate gene prediction and for global analyses of transcription factor function. The GENIE3 network has now been integrated into the KnetMiner web application, facilitating its use in future studies.
Collapse
Affiliation(s)
- Sophie A Harrington
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, United Kingdom
| | - Anna E Backhaus
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, United Kingdom
| | - Ajit Singh
- Computational and Analytical Sciences, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, United Kingdom
| | - Keywan Hassani-Pak
- Computational and Analytical Sciences, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, United Kingdom
| | - Cristobal Uauy
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, United Kingdom
| |
Collapse
|
37
|
Kanja C, Hammond‐Kosack KE. Proteinaceous effector discovery and characterization in filamentous plant pathogens. MOLECULAR PLANT PATHOLOGY 2020; 21:1353-1376. [PMID: 32767620 PMCID: PMC7488470 DOI: 10.1111/mpp.12980] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 06/03/2020] [Accepted: 07/05/2020] [Indexed: 05/26/2023]
Abstract
The complicated interplay of plant-pathogen interactions occurs on multiple levels as pathogens evolve to constantly evade the immune responses of their hosts. Many economically important crops fall victim to filamentous pathogens that produce small proteins called effectors to manipulate the host and aid infection/colonization. Understanding the effector repertoires of pathogens is facilitating an increased understanding of the molecular mechanisms underlying virulence as well as guiding the development of disease control strategies. The purpose of this review is to give a chronological perspective on the evolution of the methodologies used in effector discovery from physical isolation and in silico predictions, to functional characterization of the effectors of filamentous plant pathogens and identification of their host targets.
Collapse
Affiliation(s)
- Claire Kanja
- Department of Biointeractions and Crop ProtectionRothamsted ResearchHarpendenUK
- School of BiosciencesUniversity of NottinghamNottinghamUK
| | | |
Collapse
|
38
|
Wood AKM, Walker C, Lee WS, Urban M, Hammond-Kosack KE. Functional evaluation of a homologue of plant rapid alkalinisation factor (RALF) peptides in Fusarium graminearum. Fungal Biol 2020; 124:753-765. [PMID: 32883427 PMCID: PMC7487784 DOI: 10.1016/j.funbio.2020.05.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 04/01/2020] [Accepted: 05/12/2020] [Indexed: 02/08/2023]
Abstract
The cereal infecting fungus Fusarium graminearum is predicted to possess a single homologue of plant RALF (rapid alkalinisation factor) peptides. Fusarium mutant strains lacking FgRALF were generated and found to exhibit wildtype virulence on wheat and Arabidopsis floral tissue. Arabidopsis lines constitutively overexpressing FgRALF exhibited no obvious change in susceptibility to F. graminearum leaf infection. In contrast transient virus-mediated over-expression (VOX) of FgRALF in wheat prior to F. graminearum infection, slightly increased the rate of fungal colonisation of floral tissue. Ten putative Feronia (FER) receptors of RALF peptide were identified bioinformatically in hexaploid wheat (Triticum aestivum). Transient silencing of two wheat FER homoeologous genes prior to F. graminearum inoculation did not alter the subsequent interaction outcome. Collectively, our VOX results show that the fungal RALF peptide may be a minor contributor in F. graminearum virulence but results from fungal gene deletion experiments indicate potential functional redundancy within the F. graminearum genome. We demonstrate that virus-mediated over-expression is a useful tool to provide novel information about gene/protein function when results from gene deletion/disruption experimentation were uninformative.
Collapse
Affiliation(s)
- Ana K M Wood
- Department of Biointeractions and Crop Protection, Rothamsted Research, Harpenden, AL5 2JQ, UK
| | - Catherine Walker
- Department of Biointeractions and Crop Protection, Rothamsted Research, Harpenden, AL5 2JQ, UK
| | - Wing-Sham Lee
- Department of Biointeractions and Crop Protection, Rothamsted Research, Harpenden, AL5 2JQ, UK
| | - Martin Urban
- Department of Biointeractions and Crop Protection, Rothamsted Research, Harpenden, AL5 2JQ, UK
| | - Kim E Hammond-Kosack
- Department of Biointeractions and Crop Protection, Rothamsted Research, Harpenden, AL5 2JQ, UK.
| |
Collapse
|
39
|
Abrahamian P, Hammond RW, Hammond J. Plant Virus-Derived Vectors: Applications in Agricultural and Medical Biotechnology. Annu Rev Virol 2020; 7:513-535. [PMID: 32520661 DOI: 10.1146/annurev-virology-010720-054958] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Major advances in our understanding of plant viral genome expression strategies and the interaction of a virus with its host for replication and movement, induction of disease, and resistance responses have been made through the generation of infectious molecules from cloned viral sequences. Autonomously replicating viral vectors derived from infectious clones have been exploited to express foreign genes in plants. Applications of virus-based vectors include the production of human/animal therapeutic proteins in plant cells and the specific study of plant biochemical processes, including those that confer resistance to pathogens. Additionally, virus-induced gene silencing, which is RNA mediated and triggered through homology-dependent RNA degradation mechanisms, has been exploited as an efficient method to study the functions of host genes in plants and to deliver small RNAs to insects. New and exciting strategies for vector engineering, delivery, and applications of plant virus-based vectors are the subject of this review.
Collapse
Affiliation(s)
- Peter Abrahamian
- Molecular Plant Pathology Laboratory, Beltsville Agricultural Research Center, United States Department of Agriculture, Agricultural Research Service, Beltsville, Maryland 20705, USA
| | - Rosemarie W Hammond
- Molecular Plant Pathology Laboratory, Beltsville Agricultural Research Center, United States Department of Agriculture, Agricultural Research Service, Beltsville, Maryland 20705, USA
| | - John Hammond
- Floral and Nursery Plants Research Unit, United States National Arboretum, United States Department of Agriculture, Agricultural Research Service, Beltsville, Maryland 20705, USA;
| |
Collapse
|
40
|
Wu JQ, Dong C, Song L, Park RF. Long-Read-Based de novo Genome Assembly and Comparative Genomics of the Wheat Leaf Rust Pathogen Puccinia triticina Identifies Candidates for Three Avirulence Genes. Front Genet 2020; 11:521. [PMID: 32582280 PMCID: PMC7287177 DOI: 10.3389/fgene.2020.00521] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 04/29/2020] [Indexed: 11/18/2022] Open
Abstract
Leaf rust, caused by Puccinia triticina (Pt), is one of the most devastating diseases of wheat, affecting production in nearly all wheat-growing regions worldwide. Despite its economic importance, genomic resources for Pt are very limited. In the present study, we have used long-read sequencing (LRS) and the pipeline of FALCON and FALCON-Unzip (v4.1.0) to carry out the first LRS-based de novo genome assembly for Pt. Using 22.4-Gb data with an average read length of 11.6 kb and average coverage of 150-fold, we generated a genome assembly for Pt104 [strain 104-2,3,(6),(7),11; isolate S423], considered to be the founding isolate of a clonal lineage of Pt in Australia. The Pt104 genome contains 162 contigs with a total length of 140.5 Mb and N50 of 2 Mb, with the associated haplotigs providing haplotype information for 91% of the genome. This represents the best quality of Pt genome assembly to date, which reduces the contig number by 91-fold and improves the N50 by 4-fold as compared to the previous Pt race1 assembly. An annotation pipeline that combined multiple lines of evidence including the transcriptome assemblies derived from RNA-Seq, previously identified expressed sequence tags and Pt race 1 protein sequences predicted 29,043 genes for Pt104 genome. Based on the presence of a signal peptide, no transmembrane segment, and no target location to mitochondria, 2,178 genes were identified as secreted proteins (SPs). Whole-genome sequencing (Illumina paired-end) was performed for Pt104 and six additional strains with differential virulence profile on the wheat leaf rust resistance genes Lr26, Lr2a, and Lr3ka. To identify candidates for the corresponding avirulence genes AvrLr26, AvrLr2a, and AvrLr3ka, genetic variation within each strain was first identified by mapping to the Pt104 genome. Variants within predicted SP genes between the strains were then correlated to the virulence profiles, identifying 38, 31, and 37 candidates for AvrLr26, AvrLr2a, and AvrLr3ka, respectively. The identification of these candidate genes lays a good foundation for future studies on isolating these avirulence genes, investigating the molecular mechanisms underlying host-pathogen interactions, and the development of new diagnostic tools for pathogen monitoring.
Collapse
Affiliation(s)
| | | | | | - Robert F. Park
- Plant Breeding Institute, School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
41
|
Mellado-Sánchez M, McDiarmid F, Cardoso V, Kanyuka K, MacGregor DR. Virus-Mediated Transient Expression Techniques Enable Gene Function Studies in Black-Grass. PLANT PHYSIOLOGY 2020; 183:455-459. [PMID: 32238443 PMCID: PMC7271810 DOI: 10.1104/pp.20.00205] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 03/26/2020] [Indexed: 05/05/2023]
Abstract
Virus-mediated transient expression techniques create loss- and gain-of-function mutations in black-grass with genotype specificity and measurable changes in herbicide resistance.
Collapse
Affiliation(s)
- Macarena Mellado-Sánchez
- Rothamsted Research, Department of Biointeractions and Crop Protection, Harpenden, Hertfordshire AL5 2JQ, United Kingdom
| | - Faye McDiarmid
- Rothamsted Research, Department of Biointeractions and Crop Protection, Harpenden, Hertfordshire AL5 2JQ, United Kingdom
| | - Victor Cardoso
- Rothamsted Research, Department of Biointeractions and Crop Protection, Harpenden, Hertfordshire AL5 2JQ, United Kingdom
| | - Kostya Kanyuka
- Rothamsted Research, Department of Biointeractions and Crop Protection, Harpenden, Hertfordshire AL5 2JQ, United Kingdom
| | - Dana R MacGregor
- Rothamsted Research, Department of Biointeractions and Crop Protection, Harpenden, Hertfordshire AL5 2JQ, United Kingdom
| |
Collapse
|
42
|
Wang K, Gong Q, Ye X. Recent developments and applications of genetic transformation and genome editing technologies in wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:1603-1622. [PMID: 31654081 DOI: 10.1007/s00122-019-03464-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 10/19/2019] [Indexed: 05/24/2023]
Abstract
Wheat (Triticum aestivum) is a staple crop across the world and plays a remarkable role in food supplying security. Over the past few decades, basic and applied research on wheat has lagged behind other cereal crops due to the complex and polyploid genome and difficulties in genetic transformation. A breakthrough called as PureWheat was made in the genetic transformation of wheat in 2014 in Asia, leading to a noticeable progress of wheat genome editing. Due to this great achievement, it is predicated that wheat biotechnology revolution is arriving. Genome editing technologies using zinc finger nucleases, transcription activator-like effector nuclease, and clustered regularly interspaced short palindromic repeats-associated endonucleases (CRISR/Cas) are becoming powerful tools for crop modification which can help biologists and biotechnologists better understand the processes of mutagenesis and genomic alteration. Among the three genome editing systems, CRISR/Cas has high specificity and activity, and therefore it is widely used in genetic engineering. Generally, the genome editing technologies depend on an efficient genetic transformation system. In this paper, we summarize recent progresses and applications on genetic transformation and genome editing in wheat. We also examine the future aspects of genetic transformation and genome editing. We believe that the technologies for wheat efficient genetic engineering and functional studies will become routine with the emergence of high-quality genomic sequences.
Collapse
Affiliation(s)
- Ke Wang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Qiang Gong
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xingguo Ye
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
43
|
Adamski NM, Borrill P, Brinton J, Harrington SA, Marchal C, Bentley AR, Bovill WD, Cattivelli L, Cockram J, Contreras-Moreira B, Ford B, Ghosh S, Harwood W, Hassani-Pak K, Hayta S, Hickey LT, Kanyuka K, King J, Maccaferrri M, Naamati G, Pozniak CJ, Ramirez-Gonzalez RH, Sansaloni C, Trevaskis B, Wingen LU, Wulff BBH, Uauy C. A roadmap for gene functional characterisation in crops with large genomes: Lessons from polyploid wheat. eLife 2020; 9:e55646. [PMID: 32208137 PMCID: PMC7093151 DOI: 10.7554/elife.55646] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 03/12/2020] [Indexed: 02/04/2023] Open
Abstract
Understanding the function of genes within staple crops will accelerate crop improvement by allowing targeted breeding approaches. Despite their importance, a lack of genomic information and resources has hindered the functional characterisation of genes in major crops. The recent release of high-quality reference sequences for these crops underpins a suite of genetic and genomic resources that support basic research and breeding. For wheat, these include gene model annotations, expression atlases and gene networks that provide information about putative function. Sequenced mutant populations, improved transformation protocols and structured natural populations provide rapid methods to study gene function directly. We highlight a case study exemplifying how to integrate these resources. This review provides a helpful guide for plant scientists, especially those expanding into crop research, to capitalise on the discoveries made in Arabidopsis and other plants. This will accelerate the improvement of crops of vital importance for food and nutrition security.
Collapse
Affiliation(s)
| | - Philippa Borrill
- School of Biosciences, University of BirminghamBirminghamUnited Kingdom
| | - Jemima Brinton
- John Innes Centre, Norwich Research ParkNorwichUnited Kingdom
| | | | | | | | - William D Bovill
- Commonwealth Scientific and Industrial Research Organisation, Agriculture and Food (CSIRO)CanberraAustralia
| | - Luigi Cattivelli
- Council for Agricultural Research and Economics, Research Centre for Genomics and BioinformaticsFiorenzuola d'ArdaItaly
| | | | - Bruno Contreras-Moreira
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome CampusHinxtonUnited Kingdom
| | - Brett Ford
- Commonwealth Scientific and Industrial Research Organisation, Agriculture and Food (CSIRO)CanberraAustralia
| | - Sreya Ghosh
- John Innes Centre, Norwich Research ParkNorwichUnited Kingdom
| | - Wendy Harwood
- John Innes Centre, Norwich Research ParkNorwichUnited Kingdom
| | | | - Sadiye Hayta
- John Innes Centre, Norwich Research ParkNorwichUnited Kingdom
| | - Lee T Hickey
- Queensland Alliance for Agriculture and Food Innovation, The University of QueenslandSt LuciaAustralia
| | | | - Julie King
- Division of Plant and Crop Sciences, The University of Nottingham, Sutton Bonington CampusLoughboroughUnited Kingdom
| | - Marco Maccaferrri
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum - Università di Bologna (University of Bologna)BolognaItaly
| | - Guy Naamati
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome CampusHinxtonUnited Kingdom
| | - Curtis J Pozniak
- Crop Development Centre, University of SaskatchewanSaskatoonCanada
| | | | | | - Ben Trevaskis
- Commonwealth Scientific and Industrial Research Organisation, Agriculture and Food (CSIRO)CanberraAustralia
| | - Luzie U Wingen
- John Innes Centre, Norwich Research ParkNorwichUnited Kingdom
| | - Brande BH Wulff
- John Innes Centre, Norwich Research ParkNorwichUnited Kingdom
| | - Cristobal Uauy
- John Innes Centre, Norwich Research ParkNorwichUnited Kingdom
| |
Collapse
|
44
|
German TL, Lorenzen MD, Grubbs N, Whitfield AE. New Technologies for Studying Negative-Strand RNA Viruses in Plant and Arthropod Hosts. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:382-393. [PMID: 31914364 DOI: 10.1094/mpmi-10-19-0281-fi] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The plant viruses in the phylum Negarnaviricota, orders Bunyavirales and Mononegavirales, have common features of single-stranded, negative-sense RNA genomes and replication in the biological vector. Due to the similarities in biology, comparative functional analysis in plant and vector hosts is helpful for understanding host-virus interactions for negative-strand RNA viruses. In this review, we will highlight recent technological advances that are breaking new ground in the study of these recalcitrant virus systems. The development of infectious clones for plant rhabdoviruses and bunyaviruses is enabling unprecedented examination of gene function in plants and these advances are also being transferred to study virus biology in the vector. In addition, genome and transcriptome projects for critical nonmodel arthropods has enabled characterization of insect response to viruses and identification of interacting proteins. Functional analysis of genes using genome editing will provide future pathways for further study of the transmission cycle and new control strategies for these viruses and their vectors.
Collapse
Affiliation(s)
- Thomas L German
- Departments of Entomology and Plant Pathology, University of Wisconsin, Madison, WI, U.S.A
| | - Marcé D Lorenzen
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, U.S.A
| | - Nathaniel Grubbs
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, U.S.A
| | - Anna E Whitfield
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, U.S.A
| |
Collapse
|
45
|
Peng X, Ma X, Lu S, Li Z. A Versatile Plant Rhabdovirus-Based Vector for Gene Silencing, miRNA Expression and Depletion, and Antibody Production. FRONTIERS IN PLANT SCIENCE 2020; 11:627880. [PMID: 33510764 PMCID: PMC7835261 DOI: 10.3389/fpls.2020.627880] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 12/16/2020] [Indexed: 05/12/2023]
Abstract
Plant virus vectors are ideal tools for delivery of genetic cargo into host cells for functional genomics studies and protein overexpression. Although a vast number of plant virus vectors have been developed for different purposes, the utility of a particular virus vector is generally limited. Here, we report a multipurpose plant rhabdovirus-based vector system suitable for a wide range of applications in Nicotiana benthamiana. We engineered sonchus yellow net rhabdovirus (SYNV)-based gene silencing vectors through expressing a sense, antisense, or double-stranded RNAs of target genes. Robust target gene silencing was also achieved with an SYNV vector expressing a designed artificial microRNA. In addition, ectopic expression of a short tandem target mimic RNA using the SYNV vector led to a significant depletion of the target miR165/166 and caused abnormal leaf development. More importantly, SYNV was able to harbor two expression cassettes that permitted simultaneous RNA silencing and overexpression of large reporter gene. This dual capacity vector also enabled systemic expression of a whole-molecule monoclonal antibody consisting of light and heavy chains. These results highlight the utility of the SYNV vector system in gene function studies and agricultural biotechnology and provide a technical template for developing similar vectors of other economically important plant rhabdoviruses.
Collapse
Affiliation(s)
- Xingxing Peng
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Xiaonan Ma
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Shuting Lu
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Zhenghe Li
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
- *Correspondence: Zhenghe Li,
| |
Collapse
|
46
|
Misra RC, Sharma S, Garg A, Ghosh S. Virus-Induced Gene Silencing in Sweet Basil (Ocimum basilicum). Methods Mol Biol 2020; 2172:123-138. [PMID: 32557366 DOI: 10.1007/978-1-0716-0751-0_10] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Virus-induced gene silencing (VIGS) is a powerful reverse genetic tool for rapid functional analysis of plant genes. Over the last decade, VIGS has been widely used for conducting rapid gene knockdown experiment in plants and played a crucial role in advancing applied and basic research in plant science. VIGS was studied extensively in model plants Arabidopsis and tobacco. Moreover, several non-model plants such as Papaver (Hileman et al., Plant J 44:334-341, 2005), Aquilegia (Gould and Kramer, Plant Methods 3:6, 2007), Catharanthus (Liscombe and O'Connor, Phytochemistry 72:1969-1977, 2011), Withania (Singh et al., Plant Biol J 13:1287-1299, 2015), and Ocimum (Misra et al., New Phytol 214:706-720, 2017) were also successfully explored. We have recently developed a robust protocol for VIGS in sweet basil (Ocimum basilicum). Sweet basil, a popular medicinal/aromatic herb, is being studied for the diversity of specialized metabolites produced in it.
Collapse
Affiliation(s)
- Rajesh Chandra Misra
- Biotechnology Division, Council of Scientific and Industrial Research-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Metabolic Biology Department,, John Innes Centre, Norwich, United Kingdom
| | - Shubha Sharma
- Biotechnology Division, Council of Scientific and Industrial Research-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | - Anchal Garg
- Biotechnology Division, Council of Scientific and Industrial Research-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | - Sumit Ghosh
- Biotechnology Division, Council of Scientific and Industrial Research-Central Institute of Medicinal and Aromatic Plants, Lucknow, India.
| |
Collapse
|
47
|
Desjardins S, Kanyuka K, Higgins JD. A Cytological Analysis of Wheat Meiosis Targeted by Virus-Induced Gene Silencing (VIGS). Methods Mol Biol 2020; 2061:319-330. [PMID: 31583669 DOI: 10.1007/978-1-4939-9818-0_22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Virus-induced gene silencing (VIGS) is a rapid and cost-effective reverse genetic technology that can be used to assess gene function in wheat. This chapter contains a detailed description of how to target wheat meiotic genes by VIGS. The timing of this technique is critical and has been optimized to silence meiotic genes at peak expression, evidenced by silencing of Triticum aestivum disrupted meiotic cDNA1 (TaDMC1). We also describe cytological techniques that have been adapted for the preparation and analysis of meiocytes in wheat, including fluorescent in situ hybridization (FISH) with directly labeled, synthetic oligonucleotide probes, and immunolocalization on spread material.
Collapse
Affiliation(s)
- Stuart Desjardins
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Kostya Kanyuka
- Department of Biointeractions and Crop Protection, Rothamsted Research, Harpenden, UK
| | - James D Higgins
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK.
| |
Collapse
|
48
|
Mei Y, Beernink BM, Ellison EE, Konečná E, Neelakandan AK, Voytas DF, Whitham SA. Protein expression and gene editing in monocots using foxtail mosaic virus vectors. PLANT DIRECT 2019; 3:e00181. [PMID: 31768497 PMCID: PMC6874699 DOI: 10.1002/pld3.181] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 10/08/2019] [Accepted: 10/24/2019] [Indexed: 05/03/2023]
Abstract
Plant viruses can be engineered to carry sequences that direct silencing of target host genes, expression of heterologous proteins, or editing of host genes. A set of foxtail mosaic virus (FoMV) vectors was developed that can be used for transient gene expression and single guide RNA delivery for Cas9-mediated gene editing in maize, Setaria viridis, and Nicotiana benthamiana. This was accomplished by duplicating the FoMV capsid protein subgenomic promoter, abolishing the unnecessary open reading frame 5A, and inserting a cloning site containing unique restriction endonuclease cleavage sites immediately after the duplicated promoter. The modified FoMV vectors transiently expressed green fluorescent protein (GFP) and bialaphos resistance (BAR) protein in leaves of systemically infected maize seedlings. GFP was detected in epidermal and mesophyll cells by epifluorescence microscopy, and expression was confirmed by Western blot analyses. Plants infected with FoMV carrying the bar gene were temporarily protected from a glufosinate herbicide, and expression was confirmed using a rapid antibody-based BAR strip test. Expression of these proteins was stabilized by nucleotide substitutions in the sequence of the duplicated promoter region. Single guide RNAs expressed from the duplicated promoter mediated edits in the N. benthamiana Phytoene desaturase gene, the S. viridis Carbonic anhydrase 2 gene, and the maize HKT1 gene encoding a potassium transporter. The efficiency of editing was enhanced in the presence of synergistic viruses and a viral silencing suppressor. This work expands the utility of FoMV for virus-induced gene silencing (VIGS), virus-mediated overexpression (VOX), and virus-enabled gene editing (VEdGE) in monocots.
Collapse
Affiliation(s)
- Yu Mei
- Department of Plant Pathology and MicrobiologyIowa State UniversityAmesIAUSA
| | - Bliss M. Beernink
- Department of Plant Pathology and MicrobiologyIowa State UniversityAmesIAUSA
| | - Evan E. Ellison
- Department of Genetics, Cell Biology and DevelopmentCenter for Genome EngineeringCenter for Precision Plant GenomicsUniversity of MinnesotaSt. PaulMNUSA
| | - Eva Konečná
- Department of Genetics, Cell Biology and DevelopmentCenter for Genome EngineeringCenter for Precision Plant GenomicsUniversity of MinnesotaSt. PaulMNUSA
| | | | - Daniel F. Voytas
- Department of Genetics, Cell Biology and DevelopmentCenter for Genome EngineeringCenter for Precision Plant GenomicsUniversity of MinnesotaSt. PaulMNUSA
| | - Steven A. Whitham
- Department of Plant Pathology and MicrobiologyIowa State UniversityAmesIAUSA
| |
Collapse
|
49
|
De Novo Genome Assembly and Comparative Genomics of the Barley Leaf Rust Pathogen Puccinia hordei Identifies Candidates for Three Avirulence Genes. G3-GENES GENOMES GENETICS 2019; 9:3263-3271. [PMID: 31444296 PMCID: PMC6778787 DOI: 10.1534/g3.119.400450] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Puccinia hordei (Ph) is a damaging pathogen of barley throughout the world. Despite its importance, almost nothing is known about the genomics of this pathogen, and a reference genome is lacking. In this study, the first reference genome was assembled for an Australian isolate of Ph ("Ph560") using long-read SMRT sequencing. A total of 838 contigs were assembled, with a total size of 207 Mbp. This included both haplotype collapsed and separated regions, consistent with an estimated haploid genome size of about 150Mbp. An annotation pipeline that combined RNA-Seq of Ph-infected host tissues and homology to proteins from four other Puccinia species predicted 25,543 gene models of which 1,450 genes were classified as encoding secreted proteins based on the prediction of a signal peptide and no transmembrane domain. Genome resequencing using short-read technology was conducted for four additional Australian strains, Ph612, Ph626, Ph608 and Ph584, which are considered to be simple mutational derivatives of Ph560 with added virulence to one or two of three barley leaf rust resistance genes (viz. Rph3, Rph13 and Rph19). To identify candidate genes for the corresponding avirulence genes AvrRph3, AvrRph13 and AvrRph19, genetic variation in predicted secreted protein genes between the strains was correlated to the virulence profiles of each, identifying 35, 29 and 46 candidates for AvrRph13, AvrRph3 and AvrRph19, respectively. The identification of these candidate genes provides a strong foundation for future efforts to isolate these three avirulence genes, investigate their biological properties, and develop new diagnostic tests for monitoring pathogen virulence.
Collapse
|
50
|
Wang X, Luo C, Xu Y, Zhang C, Bao M, Dou J, Wang Q, Cheng Y. Expression of the p24 silencing suppressor of Grapevine leafroll-associated virus 2 from Potato virus X or Barley stripe mosaic virus vector elicits hypersensitive responses in Nicotiana benthamiana. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 142:34-42. [PMID: 31255907 DOI: 10.1016/j.plaphy.2019.06.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 05/24/2019] [Accepted: 06/23/2019] [Indexed: 06/09/2023]
Abstract
The 24-kDa protein (p24) encoded by Grapevine leafroll-associated virus 2 (GLRaV-2) is an RNA-silencing suppressor (RSS), but its effect on active viral infection is unclear. Using a Potato virus X (PVX)-based expression system, we demonstrated that p24 elicits lethal systemic necrosis in Nicotiana benthamiana, sharing typical characteristics of the hypersensitive response (HR), and that NbRAR1 (a cytoplasmic Zn2+-binding protein) is involved in the PVX-p24-mediated systemic necrosis. Moreover, expression of p24 from Barley stripe mosaic virus (BSMV) vector triggered local necrosis in infiltrated patches of N. benthamiana, likely inhibiting viral systemic spread. By deletion analysis, we demonstrated that amino acids (aa) 1 to 180, which are located in the region (aa 1-188) previously shown to be necessary for p24's RSS activity, is sufficient for p24 to elicit systemic necrosis in the context of PVX infection. Using substitution mutants, we revealed that silencing-suppression-defective mutants R2A and W54A induce only a mild necrotic response; two mutants without self-interaction ability previously shown to lose or retain weak suppression function also displayed decreased pathogenicity: W149A without RSS activity elicited a mild necrotic response, whereas V162H/L169H/L170H which retains weak RSS activity was able to induce systemic necrosis, but with a 1- to 2-day delay. Taken together, p24 plays an important role in GLRaV-2 pathogenesis, triggering HR-like necrosis in N. benthamiana plants when expressed from PVX or BSMV vector; both the silencing suppression and self-interaction are crucial for p24's pathogenicity activity, and the region of p24 for determining systemic necrosis is mapped to aa 1-180.
Collapse
Affiliation(s)
- Xianyou Wang
- Department of Pomology, China Agricultural University, Beijing, 100193, China; Key Laboratory of Viticulture and Enology, Ministry of Agriculture, Beijing, 100083, China
| | - Chen Luo
- Department of Pomology, China Agricultural University, Beijing, 100193, China; Key Laboratory of Viticulture and Enology, Ministry of Agriculture, Beijing, 100083, China
| | - Yanfei Xu
- DeLaval Tianjin Company, Tianjin, 300308, China
| | - Chenwei Zhang
- Department of Pomology, China Agricultural University, Beijing, 100193, China; Key Laboratory of Viticulture and Enology, Ministry of Agriculture, Beijing, 100083, China
| | - Mian Bao
- Department of Pomology, China Agricultural University, Beijing, 100193, China; Key Laboratory of Viticulture and Enology, Ministry of Agriculture, Beijing, 100083, China
| | - Junjie Dou
- Department of Pomology, China Agricultural University, Beijing, 100193, China; Key Laboratory of Viticulture and Enology, Ministry of Agriculture, Beijing, 100083, China
| | - Qi Wang
- Department of Plant Pathology, China Agricultural University, Beijing, 100193, China
| | - Yuqin Cheng
- Department of Pomology, China Agricultural University, Beijing, 100193, China; Key Laboratory of Viticulture and Enology, Ministry of Agriculture, Beijing, 100083, China.
| |
Collapse
|