1
|
Schütte D, Baier M, Griebel T. Cold priming on pathogen susceptibility in the Arabidopsis eds1 mutant background requires a functional stromal Ascorbate Peroxidase. PLANT SIGNALING & BEHAVIOR 2024; 19:2300239. [PMID: 38170666 PMCID: PMC10766390 DOI: 10.1080/15592324.2023.2300239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 12/23/2023] [Indexed: 01/05/2024]
Abstract
24 h cold exposure (4°C) is sufficient to reduce pathogen susceptibility in Arabidopsis thaliana against the virulent Pseudomonas syringae pv. tomato (Pst) strain even when the infection occurs five days later. This priming effect is independent of the immune regulator Enhanced Disease Susceptibility 1 (EDS1) and can be observed in the immune-compromised eds1-2 null mutant. In contrast, cold priming-reduced Pst susceptibility is strongly impaired in knock-out lines of the stromal and thylakoid ascorbate peroxidases (sAPX/tAPX) highlighting their relevance for abiotic stress-related increased immune resilience. Here, we extended our analysis by generating an eds1 sapx double mutant. eds1 sapx showed eds1-like resistance and susceptibility phenotypes against Pst strains containing the effectors avrRPM1 and avrRPS4. In comparison to eds1-2, susceptibility against the wildtype Pst strain was constitutively enhanced in eds1 sapx. Although a prior cold priming exposure resulted in reduced Pst titers in eds1-2, it did not alter Pst resistance in eds1 sapx. This demonstrates that the genetic sAPX requirement for cold priming of basal plant immunity applies also to an eds1 null mutant background.
Collapse
Affiliation(s)
- Dominic Schütte
- Plant Physiology, Dahlem Centre of Plant Sciences, Freie Universität Berlin, Berlin, Germany
| | - Margarete Baier
- Plant Physiology, Dahlem Centre of Plant Sciences, Freie Universität Berlin, Berlin, Germany
| | - Thomas Griebel
- Plant Physiology, Dahlem Centre of Plant Sciences, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
2
|
DeTar RA, Chustecki JM, Martinez-Hottovy A, Ceriotti LF, Broz AK, Lou X, Sanchez-Puerta MV, Elowsky C, Christensen AC, Sloan DB. Photosynthetic demands on translational machinery drive retention of redundant tRNA metabolism in plant organelles. Proc Natl Acad Sci U S A 2024; 121:e2421485121. [PMID: 39693336 DOI: 10.1073/pnas.2421485121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 11/14/2024] [Indexed: 12/20/2024] Open
Abstract
Eukaryotic nuclear genomes often encode distinct sets of translation machinery for function in the cytosol vs. organelles (mitochondria and plastids). This raises questions about why multiple translation systems are maintained even though they are capable of comparable functions and whether they evolve differently depending on the compartment where they operate. These questions are particularly interesting in plants because translation machinery, including aminoacyl-transfer RNA (tRNA) synthetases (aaRS), is often dual-targeted to the plastids and mitochondria. These organelles have different functions, with much higher rates of translation in plastids to supply the abundant, rapid-turnover proteins required for photosynthesis. Previous studies have indicated that plant organellar aaRS evolve more slowly compared to mitochondrial aaRS in eukaryotes that lack plastids. Thus, we investigated the evolution of nuclear-encoded organellar and cytosolic aaRS and tRNA maturation enzymes across a broad sampling of angiosperms, including nonphotosynthetic (heterotrophic) plant species with reduced plastid gene expression, to test the hypothesis that translational demands associated with photosynthesis constrain the evolution of enzymes involved in organellar tRNA metabolism. Remarkably, heterotrophic plants exhibited wholesale loss of many organelle-targeted aaRS and other enzymes, even though translation still occurs in their mitochondria and plastids. These losses were often accompanied by apparent retargeting of cytosolic enzymes and tRNAs to the organelles, sometimes preserving aaRS-tRNA charging relationships but other times creating surprising mismatches between cytosolic aaRS and mitochondrial tRNA substrates. Our findings indicate that the presence of a photosynthetic plastid drives the retention of specialized systems for organellar tRNA metabolism.
Collapse
Affiliation(s)
- Rachael A DeTar
- Department of Biology, Colorado State University, Fort Collins, CO 80523
| | - Joanna M Chustecki
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68588
| | - Ana Martinez-Hottovy
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68588
| | - Luis Federico Ceriotti
- Instituto de Biología Agrícola de Mendoza, Universidad Nacional de Cuyo, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Agrarias, Chacras de Coria, Mendoza M5528AHB, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Ciudad de Mendoza, Mendoza M5502JMA, Argentina
| | - Amanda K Broz
- Department of Biology, Colorado State University, Fort Collins, CO 80523
| | - Xiaorui Lou
- Department of Biology, Colorado State University, Fort Collins, CO 80523
| | - M Virginia Sanchez-Puerta
- Instituto de Biología Agrícola de Mendoza, Universidad Nacional de Cuyo, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Agrarias, Chacras de Coria, Mendoza M5528AHB, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Ciudad de Mendoza, Mendoza M5502JMA, Argentina
| | - Christian Elowsky
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68588
| | - Alan C Christensen
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68588
| | - Daniel B Sloan
- Department of Biology, Colorado State University, Fort Collins, CO 80523
| |
Collapse
|
3
|
Gould SB, Magiera J, García García C, Raval PK. Reliability of plastid and mitochondrial localisation prediction declines rapidly with the evolutionary distance to the training set increasing. PLoS Comput Biol 2024; 20:e1012575. [PMID: 39527633 PMCID: PMC11581415 DOI: 10.1371/journal.pcbi.1012575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 11/21/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024] Open
Abstract
Mitochondria and plastids import thousands of proteins. Their experimental localisation remains a frequent task, but can be resource-intensive and sometimes impossible. Hence, hundreds of studies make use of algorithms that predict a localisation based on a protein's sequence. Their reliability across evolutionary diverse species is unknown. Here, we evaluate the performance of common algorithms (TargetP, Localizer and WoLFPSORT) for four photosynthetic eukaryotes (Arabidopsis thaliana, Zea mays, Physcomitrium patens, and Chlamydomonas reinhardtii) for which experimental plastid and mitochondrial proteome data is available, and 171 eukaryotes using orthology inferences. The match between predictions and experimental data ranges from 75% to as low as 2%. Results worsen as the evolutionary distance between training and query species increases, especially for plant mitochondria for which performance borders on random sampling. Specificity, sensitivity and precision analyses highlight cross-organelle errors and uncover the evolutionary divergence of organelles as the main driver of current performance issues. The results encourage to train the next generation of neural networks on an evolutionary more diverse set of organelle proteins for optimizing performance and reliability.
Collapse
Affiliation(s)
- Sven B. Gould
- Institute for Molecular Evolution, Heinrich–Heine–University Düsseldorf, Düsseldorf, Germany
| | - Jonas Magiera
- Institute for Molecular Evolution, Heinrich–Heine–University Düsseldorf, Düsseldorf, Germany
| | - Carolina García García
- Institute for Molecular Evolution, Heinrich–Heine–University Düsseldorf, Düsseldorf, Germany
| | - Parth K. Raval
- Institute for Molecular Evolution, Heinrich–Heine–University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
4
|
Gorbenko IV, Tarasenko VI, Garnik EY, Yakovleva TV, Katyshev AI, Belkov VI, Orlov YL, Konstantinov YM, Koulintchenko MV. Overexpression of RPOTmp Being Targeted to Either Mitochondria or Chloroplasts in Arabidopsis Leads to Overall Transcriptome Changes and Faster Growth. Int J Mol Sci 2024; 25:8164. [PMID: 39125738 PMCID: PMC11312007 DOI: 10.3390/ijms25158164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/18/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
The transcription of Arabidopsis organellar genes is performed by three nuclear-encoded RNA polymerases: RPOTm, RPOTmp, and RPOTp. The RPOTmp protein possesses ambiguous transit peptides, allowing participation in gene expression control in both mitochondria and chloroplasts, although its function in plastids is still under discussion. Here, we show that the overexpression of RPOTmp in Arabidopsis, targeted either to mitochondria or chloroplasts, disturbs the dormant seed state, and it causes the following effects: earlier germination, decreased ABA sensitivity, faster seedling growth, and earlier flowering. The germination of RPOTmp overexpressors is less sensitive to NaCl, while rpotmp knockout is highly vulnerable to salt stress. We found that mitochondrial dysfunction in the rpotmp mutant induces an unknown retrograde response pathway that bypasses AOX and ANAC017. Here, we show that RPOTmp transcribes the accD, clpP, and rpoB genes in plastids and up to 22 genes in mitochondria.
Collapse
Affiliation(s)
- Igor V. Gorbenko
- Siberian Institute of Plant Physiology and Biochemistry of Siberian Branch of Russian Academy of Sciences, Irkutsk 664033, Russia; (V.I.T.); (T.V.Y.); (A.I.K.); (Y.M.K.); (M.V.K.)
| | - Vladislav I. Tarasenko
- Siberian Institute of Plant Physiology and Biochemistry of Siberian Branch of Russian Academy of Sciences, Irkutsk 664033, Russia; (V.I.T.); (T.V.Y.); (A.I.K.); (Y.M.K.); (M.V.K.)
| | - Elena Y. Garnik
- Siberian Institute of Plant Physiology and Biochemistry of Siberian Branch of Russian Academy of Sciences, Irkutsk 664033, Russia; (V.I.T.); (T.V.Y.); (A.I.K.); (Y.M.K.); (M.V.K.)
| | - Tatiana V. Yakovleva
- Siberian Institute of Plant Physiology and Biochemistry of Siberian Branch of Russian Academy of Sciences, Irkutsk 664033, Russia; (V.I.T.); (T.V.Y.); (A.I.K.); (Y.M.K.); (M.V.K.)
| | - Alexander I. Katyshev
- Siberian Institute of Plant Physiology and Biochemistry of Siberian Branch of Russian Academy of Sciences, Irkutsk 664033, Russia; (V.I.T.); (T.V.Y.); (A.I.K.); (Y.M.K.); (M.V.K.)
| | - Vadim I. Belkov
- Siberian Institute of Plant Physiology and Biochemistry of Siberian Branch of Russian Academy of Sciences, Irkutsk 664033, Russia; (V.I.T.); (T.V.Y.); (A.I.K.); (Y.M.K.); (M.V.K.)
| | - Yuriy L. Orlov
- The Digital Health Center, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow 119991, Russia
- Agrarian and Technological Institute, Peoples’ Friendship University of Russia, Moscow 117198, Russia
| | - Yuri M. Konstantinov
- Siberian Institute of Plant Physiology and Biochemistry of Siberian Branch of Russian Academy of Sciences, Irkutsk 664033, Russia; (V.I.T.); (T.V.Y.); (A.I.K.); (Y.M.K.); (M.V.K.)
- Biosoil Department, Irkutsk State University, Irkutsk 664003, Russia
| | - Milana V. Koulintchenko
- Siberian Institute of Plant Physiology and Biochemistry of Siberian Branch of Russian Academy of Sciences, Irkutsk 664033, Russia; (V.I.T.); (T.V.Y.); (A.I.K.); (Y.M.K.); (M.V.K.)
- Kazan Institute of Biochemistry and Biophysics of the Federal Research Center “Kazan Scientific Center of the Russian Academy of Sciences” (KIBB FRC KazSC RAS), Kazan 420111, Russia
| |
Collapse
|
5
|
Yoshimura K, Ishikawa T. Physiological function and regulation of ascorbate peroxidase isoforms. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:2700-2715. [PMID: 38367016 DOI: 10.1093/jxb/erae061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 02/15/2024] [Indexed: 02/19/2024]
Abstract
Ascorbate peroxidase (APX) reduces H2O2 to H2O by utilizing ascorbate as a specific electron donor and constitutes the ascorbate-glutathione cycle in organelles of plants including chloroplasts, cytosol, mitochondria, and peroxisomes. It has been almost 40 years since APX was discovered as an important plant-specific H2O2-scavenging enzyme, during which time many research groups have conducted molecular physiological analyses. It is now clear that APX isoforms function not only just as antioxidant enzymes but also as important factors in intracellular redox regulation through the metabolism of reactive oxygen species. The function of APX isoforms is regulated at multiple steps, from the transcriptional level to post-translational modifications of enzymes, thereby allowing them to respond flexibly to ever-changing environmental factors and physiological phenomena such as cell growth and signal transduction. In this review, we summarize the physiological functions and regulation mechanisms of expression of each APX isoform.
Collapse
Affiliation(s)
- Kazuya Yoshimura
- Department of Food and Nutritional Science, College of Bioscience and Biotechnology, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi 487-8501, Japan
| | - Takahiro Ishikawa
- Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, 1060 Nishikawatsu, Matsue, Shimane 690-8504, Japan
| |
Collapse
|
6
|
Maruta T, Tanaka Y, Yamamoto K, Ishida T, Hamada A, Ishikawa T. Evolutionary insights into strategy shifts for the safe and effective accumulation of ascorbate in plants. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:2664-2681. [PMID: 38452239 DOI: 10.1093/jxb/erae062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 03/06/2024] [Indexed: 03/09/2024]
Abstract
Plants accumulate high concentrations of ascorbate, commonly in their leaves, as a redox buffer. While ascorbate levels have increased during plant evolution, the mechanisms behind this phenomenon are unclear. Moreover, has the increase in ascorbate concentration been achieved without imposing any detrimental effects on the plants? In this review, we focus on potential transitions in two regulatory mechanisms related to ascorbate biosynthesis and the availability of cellular dehydroascorbate (DHA) during plant evolution. The first transition might be that the trigger for the transcriptional induction of VTC2, which encodes the rate-limiting enzyme in ascorbate biosynthesis, has shifted from oxidative stress (in green algae) to light/photosynthesis (in land plants), probably enabling the continuous accumulation of ascorbate under illumination. This could serve as a preventive system against the unpredictable occurrence of oxidative stress. The second transition might be that DHA-degrading enzymes, which protect cells from the highly reactive DHA in green algae and mosses, have been lost in ferns or flowering plants. Instead, flowering plants may have increased glutathione concentrations to reinforce the DHA reduction capacity, possibly allowing ascorbate accumulation and avoiding the toxicity of DHA. These potential transitions may have contributed to strategies for plants' safe and effective accumulation of ascorbate.
Collapse
Affiliation(s)
- Takanori Maruta
- Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue, Shimane 690-8504, Japan
- Bioresource and Life Sciences, The United Graduate School of Agricultural Sciences, Tottori University, 4-101 Koyama-Minami, Tottori, Tottori 680-8553, Japan
- Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, 1060 Nishikawatsu, Matsue, Shimane 690-8504, Japan
| | - Yasuhiro Tanaka
- Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue, Shimane 690-8504, Japan
- Bioresource and Life Sciences, The United Graduate School of Agricultural Sciences, Tottori University, 4-101 Koyama-Minami, Tottori, Tottori 680-8553, Japan
| | - Kojiro Yamamoto
- Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue, Shimane 690-8504, Japan
| | - Tetsuya Ishida
- Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue, Shimane 690-8504, Japan
| | - Akane Hamada
- Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue, Shimane 690-8504, Japan
| | - Takahiro Ishikawa
- Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue, Shimane 690-8504, Japan
- Bioresource and Life Sciences, The United Graduate School of Agricultural Sciences, Tottori University, 4-101 Koyama-Minami, Tottori, Tottori 680-8553, Japan
- Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, 1060 Nishikawatsu, Matsue, Shimane 690-8504, Japan
| |
Collapse
|
7
|
Xu H, Wang H, Zhang Y, Yang X, Lv S, Hou D, Mo C, Wassie M, Yu B, Hu T. A synthetic light-inducible photorespiratory bypass enhances photosynthesis to improve rice growth and grain yield. PLANT COMMUNICATIONS 2023; 4:100641. [PMID: 37349987 PMCID: PMC10721467 DOI: 10.1016/j.xplc.2023.100641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 04/25/2023] [Accepted: 06/19/2023] [Indexed: 06/24/2023]
Abstract
Bioengineering of photorespiratory bypasses is an effective strategy for improving plant productivity by modulating photosynthesis. In previous work, two photorespiratory bypasses, the GOC and GCGT bypasses, increased photosynthetic rates but decreased seed-setting rate in rice (Oryza sativa), probably owing to excess photosynthate accumulation in the stem. To solve this bottleneck, we successfully developed a new synthetic photorespiratory bypass (called the GMA bypass) in rice chloroplasts by introducing Oryza sativa glycolate oxidase 1 (OsGLO1), Cucurbita maxima malate synthase (CmMS), and Oryza sativa ascorbate peroxidase7 (OsAPX7) into the rice genome using a high-efficiency transgene stacking system. Unlike the GOC and GCGT bypass genes driven by constitutive promoters, OsGLO1 in GMA plants was driven by a light-inducible Rubisco small subunit promoter (pRbcS); its expression dynamically changed in response to light, producing a more moderate increase in photosynthate. Photosynthetic rates were significantly increased in GMA plants, and grain yields were significantly improved under greenhouse and field conditions. Transgenic GMA rice showed no reduction in seed-setting rate under either test condition, unlike previous photorespiratory-bypass rice, probably reflecting proper modulation of the photorespiratory bypass. Together, these results imply that appropriate engineering of the GMA bypass can enhance rice growth and grain yield without affecting seed-setting rate.
Collapse
Affiliation(s)
- Huawei Xu
- College of Agriculture, Henan University of Science and Technology, Luoyang 471000, China.
| | - Huihui Wang
- College of Agriculture, Henan University of Science and Technology, Luoyang 471000, China
| | - Yanwen Zhang
- College of Agriculture, Henan University of Science and Technology, Luoyang 471000, China
| | - Xiaoyi Yang
- College of Agriculture, Henan University of Science and Technology, Luoyang 471000, China
| | - Shufang Lv
- College of Agriculture, Henan University of Science and Technology, Luoyang 471000, China
| | - Dianyun Hou
- College of Agriculture, Henan University of Science and Technology, Luoyang 471000, China
| | - Changru Mo
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430074, China
| | - Misganaw Wassie
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430074, China
| | - Bo Yu
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Tao Hu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China.
| |
Collapse
|
8
|
Zmuda AJ, Niehaus TD. Systems and strategies for plant protein expression. Methods Enzymol 2023; 680:3-34. [PMID: 36710015 DOI: 10.1016/bs.mie.2022.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
At least a quarter of the protein-encoding genes in plant genomes are predicted to encode enzymes for which no physiological function is known. Determining functions for these uncharacterized enzymes is key to understanding plant metabolism. Functional characterization typically requires expression and purification of recombinant enzymes to be used in enzyme assays and/or for protein structure elucidation studies. Here, we describe several practical considerations used to improve the heterologous expression and purification of Arabidopsis thaliana and Zea mays NAD(P)HX dehydratase (NAXD) and NAD(P)HX epimerase (NAXE), two enzymes that are involved in repair of chemically damaged NAD(P)H cofactors. We provide protocols for transit peptide prediction and construct design, expression in Escherichia coli, and purification of NAXD and NAXE. Many of these strategies are generally applicable to the purification of any plant protein.
Collapse
Affiliation(s)
- Anthony J Zmuda
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN, United States
| | - Thomas D Niehaus
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN, United States.
| |
Collapse
|
9
|
Ascorbate-Glutathione Cycle Genes Families in Euphorbiaceae: Characterization and Evolutionary Analysis. BIOLOGY 2022; 12:biology12010019. [PMID: 36671712 PMCID: PMC9855080 DOI: 10.3390/biology12010019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/12/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
Ascorbate peroxidase (APX), Monodehydroascorbate Reductase (MDAR), Dehydroascorbate Reductase (DHAR) and Glutathione Reductase (GR) enzymes participate in the ascorbate-glutathione cycle, which exerts a central role in the antioxidant metabolism in plants. Despite the importance of this antioxidant system in different signal transduction networks related to development and response to environmental stresses, the pathway has not yet been comprehensively characterized in many crop plants. Among different eudicotyledons, the Euphorbiaceae family is particularly diverse with some species highly tolerant to drought. Here the APX, MDAR, DHAR, and GR genes in Ricinus communis, Jatropha curcas, Manihot esculenta, and Hevea brasiliensis were identified and characterized. The comprehensive phylogenetic and genomic analyses allowed the classification of the genes into different classes, equivalent to cytosolic, peroxisomal, chloroplastic, and mitochondrial enzymes, and revealed the duplication events that contribute to the expansion of these families within plant genomes. Due to the high drought stress tolerance of Ricinus communis, the expression patterns of ascorbate-glutathione cycle genes in response to drought were also analyzed in leaves and roots, indicating a differential expression during the stress. Altogether, these data contributed to the characterization of the expression pattern and evolutionary analysis of these genes, filling the gap in the proposed functions of core components of the antioxidant mechanism during stress response in an economically relevant group of plants.
Collapse
|
10
|
Jardim-Messeder D, Caverzan A, Bastos GA, Galhego V, Souza-Vieira YD, Lazzarotto F, Felix-Mendes E, Lavaquial L, Nicomedes Junior J, Margis-Pinheiro M, Sachetto-Martins G. Genome-wide, evolutionary, and functional analyses of ascorbate peroxidase (APX) family in Poaceae species. Genet Mol Biol 2022; 46:e20220153. [PMID: 36512713 DOI: 10.1590/1678-4685-gmb-2022-0153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 10/06/2022] [Indexed: 12/14/2022] Open
Abstract
Ascorbate peroxidases (APXs) are heme peroxidases involved in the control of hydrogen peroxide levels and signal transduction pathways related to development and stress responses. Here, a total of 238 APX, 30 APX-related (APX-R), and 34 APX-like (APX-L) genes were identified from 24 species from the Poaceae family. Phylogenetic analysis of APX indicated five distinct clades, equivalent to cytosolic (cAPX), peroxisomal (pAPX), mitochondrial (mitAPX), stromal (sAPX), and thylakoidal (tAPX) isoforms. Duplication events contributed to the expansion of this family and the divergence times. Different from other APX isoforms, the emergence of Poaceae mitAPXs occurred independently after eudicot and monocot divergence. Our results showed that the constitutive silencing of mitAPX genes is not viable in rice plants, suggesting that these isoforms are essential for rice regeneration or development. We also obtained rice plants silenced individually to sAPX isoforms, demonstrating that, different to plants double silenced to both sAPX and tAPX or single silenced to tAPX previously obtained, these plants do not show changes in the total APX activity and hydrogen peroxide content in the shoot. Among rice plants silenced to different isoforms, plants silenced to cAPX showed a higher decrease in total APX activity and an increase in hydrogen peroxide levels. These results suggest that the cAPXs are the main isoforms responsible for regulating hydrogen peroxide levels in the cell, whereas in the chloroplast, this role is provided mainly by the tAPX isoform. In addition to broadening our understanding of the core components of the antioxidant defense in Poaceae species, the present study also provides a platform for their functional characterization.
Collapse
Affiliation(s)
- Douglas Jardim-Messeder
- Universidade Federal do Rio de Janeiro, Departamento de Genética, Rio de Janeiro, RJ, Brazil.,Universidade Federal do Rio de Janeiro, Instituto de Bioquímica Médica, Rio de Janeiro, RJ, Brazil
| | - Andreia Caverzan
- Universidade Federal do Rio Grande do Sul, Departamento de Genética, Porto Alegre, RS, Brazil
| | - Gabriel Afonso Bastos
- Universidade Federal do Rio de Janeiro, Departamento de Genética, Rio de Janeiro, RJ, Brazil
| | - Vanessa Galhego
- Universidade Federal do Rio de Janeiro, Departamento de Genética, Rio de Janeiro, RJ, Brazil
| | - Ygor de Souza-Vieira
- Universidade Federal do Rio de Janeiro, Departamento de Genética, Rio de Janeiro, RJ, Brazil
| | - Fernanda Lazzarotto
- Universidade Federal do Rio Grande do Sul, Departamento de Genética, Porto Alegre, RS, Brazil
| | - Esther Felix-Mendes
- Universidade Federal do Rio de Janeiro, Departamento de Genética, Rio de Janeiro, RJ, Brazil
| | - Lucas Lavaquial
- Universidade Federal do Rio de Janeiro, Departamento de Genética, Rio de Janeiro, RJ, Brazil
| | - José Nicomedes Junior
- Universidade Federal do Rio de Janeiro, Departamento de Genética, Rio de Janeiro, RJ, Brazil
| | - Márcia Margis-Pinheiro
- Universidade Federal do Rio Grande do Sul, Departamento de Genética, Porto Alegre, RS, Brazil.,Universidade Federal do Rio Grande do Sul, Centro de Biotecnologia, Porto Alegre, RS, Brazil
| | | |
Collapse
|
11
|
Jardim-Messeder D, Zamocky M, Sachetto-Martins G, Margis-Pinheiro M. Chloroplastic ascorbate peroxidases targeted to stroma or thylakoid membrane: The chicken or egg dilemma. FEBS Lett 2022; 596:2989-3004. [PMID: 35776057 DOI: 10.1002/1873-3468.14438] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 06/04/2022] [Accepted: 06/07/2022] [Indexed: 12/14/2022]
Abstract
Ascorbate peroxidases (APXs) are heme peroxidases that remove hydrogen peroxide in different subcellular compartments with concomitant ascorbate cycling. Here, we analysed and discussed phylogenetic and molecular features of the APX family. Ancient APX originated as a soluble stromal enzyme, and early during plant evolution, acquired both chloroplast-targeting and mitochondrion-targeting sequences and an alternative splicing mechanism whereby it could be expressed as a soluble or thylakoid membrane-bound enzyme. Later, independent duplication and neofunctionalization events in some angiosperm groups resulted in individual genes encoding stromal, thylakoidal and mitochondrial isoforms. These data reaffirm the complexity of plant antioxidant defenses that allow diverse plant species to acquire new means to adapt to changing environmental conditions.
Collapse
Affiliation(s)
- Douglas Jardim-Messeder
- Departamento de Genética, Universidade Federal do Rio de Janeiro, Brazil.,Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Brazil
| | - Marcel Zamocky
- Laboratory of Phylogenomic Ecology, Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, Slovakia.,Department of Chemistry, Institute of Biochemistry, University of Natural Resources and Life Sciences, Vienna, Austria
| | | | - Márcia Margis-Pinheiro
- Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
12
|
Hooper CM, Castleden IR, Tanz SK, Grasso SV, Millar AH. Subcellular Proteomics as a Unified Approach of Experimental Localizations and Computed Prediction Data for Arabidopsis and Crop Plants. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1346:67-89. [PMID: 35113396 DOI: 10.1007/978-3-030-80352-0_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In eukaryotic organisms, subcellular protein location is critical in defining protein function and understanding sub-functionalization of gene families. Some proteins have defined locations, whereas others have low specificity targeting and complex accumulation patterns. There is no single approach that can be considered entirely adequate for defining the in vivo location of all proteins. By combining evidence from different approaches, the strengths and weaknesses of different technologies can be estimated, and a location consensus can be built. The Subcellular Location of Proteins in Arabidopsis database ( http://suba.live/ ) combines experimental data sets that have been reported in the literature and is analyzing these data to provide useful tools for biologists to interpret their own data. Foremost among these tools is a consensus classifier (SUBAcon) that computes a proposed location for all proteins based on balancing the experimental evidence and predictions. Further tools analyze sets of proteins to define the abundance of cellular structures. Extending these types of resources to plant crop species has been complex due to polyploidy, gene family expansion and contraction, and the movement of pathways and processes within cells across the plant kingdom. The Crop Proteins of Annotated Location database ( http://crop-pal.org/ ) has developed a range of subcellular location resources including a species-specific voting consensus for 12 plant crop species that offers collated evidence and filters for current crop proteomes akin to SUBA. Comprehensive cross-species comparison of these data shows that the sub-cellular proteomes (subcellulomes) depend only to some degree on phylogenetic relationship and are more conserved in major biosynthesis than in metabolic pathways. Together SUBA and cropPAL created reference subcellulomes for plants as well as species-specific subcellulomes for cross-species data mining. These data collections are increasingly used by the research community to provide a subcellular protein location layer, inform models of compartmented cell function and protein-protein interaction network, guide future molecular crop breeding strategies, or simply answer a specific question-where is my protein of interest inside the cell?
Collapse
Affiliation(s)
- Cornelia M Hooper
- The Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley, WA, Australia
| | - Ian R Castleden
- The Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley, WA, Australia
| | - Sandra K Tanz
- The Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley, WA, Australia
| | - Sally V Grasso
- The Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley, WA, Australia
| | - A Harvey Millar
- The Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley, WA, Australia.
| |
Collapse
|
13
|
Ayash M, Abukhalaf M, Thieme D, Proksch C, Heilmann M, Schattat MH, Hoehenwarter W. LC-MS Based Draft Map of the Arabidopsis thaliana Nuclear Proteome and Protein Import in Pattern Triggered Immunity. FRONTIERS IN PLANT SCIENCE 2021; 12:744103. [PMID: 34858452 PMCID: PMC8630587 DOI: 10.3389/fpls.2021.744103] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 10/11/2021] [Indexed: 06/13/2023]
Abstract
Despite its central role as the ark of genetic information and gene expression the plant nucleus is surprisingly understudied. We isolated nuclei from the Arabidopsis thaliana dark grown cell culture left untreated and treated with flg22 and nlp20, two elicitors of pattern triggered immunity (PTI) in plants, respectively. An liquid chromatography mass spectrometry (LC-MS) based discovery proteomics approach was used to measure the nuclear proteome fractions. An enrichment score based on the relative abundance of cytoplasmic, mitochondrial and Golgi markers in the nuclear protein fraction allowed us to curate the nuclear proteome producing high quality catalogs of around 3,000 nuclear proteins under untreated and both PTI conditions. The measurements also covered low abundant proteins including more than 100 transcription factors and transcriptional co-activators. We disclose a list of several hundred potentially dual targeted proteins including proteins not yet found before for further study. Protein import into the nucleus in plant immunity is known. Here we sought to gain a broader impression of this phenomenon employing our proteomics data and found 157 and 73 proteins to possibly be imported into the nucleus upon stimulus with flg22 and nlp20, respectively. Furthermore, the abundance of 93 proteins changed significantly in the nucleus following elicitation of immunity. These results suggest promiscuous ribosome assembly and a role of prohibitins and cytochrome C in the nucleus in PTI.
Collapse
Affiliation(s)
- Mohamed Ayash
- Department Biochemistry of Plant Interactions, Leibniz Institute of Plant Biochemistry, Halle, Germany
| | - Mohammad Abukhalaf
- Department Biochemistry of Plant Interactions, Leibniz Institute of Plant Biochemistry, Halle, Germany
| | - Domenika Thieme
- Department Biochemistry of Plant Interactions, Leibniz Institute of Plant Biochemistry, Halle, Germany
| | - Carsten Proksch
- Department Biochemistry of Plant Interactions, Leibniz Institute of Plant Biochemistry, Halle, Germany
| | - Mareike Heilmann
- Institute for Biochemistry and Biotechnology, Martin-Luther University Halle-Wittenberg, Halle, Germany
| | | | - Wolfgang Hoehenwarter
- Department Biochemistry of Plant Interactions, Leibniz Institute of Plant Biochemistry, Halle, Germany
| |
Collapse
|
14
|
Tanaka M, Takahashi R, Hamada A, Terai Y, Ogawa T, Sawa Y, Ishikawa T, Maruta T. Distribution and Functions of Monodehydroascorbate Reductases in Plants: Comprehensive Reverse Genetic Analysis of Arabidopsis thaliana Enzymes. Antioxidants (Basel) 2021; 10:antiox10111726. [PMID: 34829597 PMCID: PMC8615211 DOI: 10.3390/antiox10111726] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/22/2021] [Accepted: 10/27/2021] [Indexed: 11/16/2022] Open
Abstract
Monodehydroascorbate reductase (MDAR) is an enzyme involved in ascorbate recycling. Arabidopsis thaliana has five MDAR genes that encode two cytosolic, one cytosolic/peroxisomal, one peroxisomal membrane-attached, and one chloroplastic/mitochondrial isoform. In contrast, tomato plants possess only three enzymes, lacking the cytosol-specific enzymes. Thus, the number and distribution of MDAR isoforms differ according to plant species. Moreover, the physiological significance of MDARs remains poorly understood. In this study, we classify plant MDARs into three classes: class I, chloroplastic/mitochondrial enzymes; class II, peroxisomal membrane-attached enzymes; and class III, cytosolic/peroxisomal enzymes. The cytosol-specific isoforms form a subclass of class III and are conserved only in Brassicaceae plants. With some exceptions, all land plants and a charophyte algae, Klebsormidium flaccidum, contain all three classes. Using reverse genetic analysis of Arabidopsis thaliana mutants lacking one or more isoforms, we provide new insight into the roles of MDARs; for example, (1) the lack of two isoforms in a specific combination results in lethality, and (2) the role of MDARs in ascorbate redox regulation in leaves can be largely compensated by other systems. Based on these findings, we discuss the distribution and function of MDAR isoforms in land plants and their cooperation with other recycling systems.
Collapse
Affiliation(s)
- Mio Tanaka
- Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue 690-8504, Shimane, Japan; (M.T.); (A.H.); (T.O.); (T.I.)
- Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University, 1060 Nishikawatsu, Matsue 690-8504, Shimane, Japan; (R.T.); (Y.T.); (Y.S.)
| | - Ryuki Takahashi
- Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University, 1060 Nishikawatsu, Matsue 690-8504, Shimane, Japan; (R.T.); (Y.T.); (Y.S.)
| | - Akane Hamada
- Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue 690-8504, Shimane, Japan; (M.T.); (A.H.); (T.O.); (T.I.)
- Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University, 1060 Nishikawatsu, Matsue 690-8504, Shimane, Japan; (R.T.); (Y.T.); (Y.S.)
| | - Yusuke Terai
- Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University, 1060 Nishikawatsu, Matsue 690-8504, Shimane, Japan; (R.T.); (Y.T.); (Y.S.)
| | - Takahisa Ogawa
- Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue 690-8504, Shimane, Japan; (M.T.); (A.H.); (T.O.); (T.I.)
- Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University, 1060 Nishikawatsu, Matsue 690-8504, Shimane, Japan; (R.T.); (Y.T.); (Y.S.)
- Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, 1060 Nishikawatsu, Matsue 690-8504, Shimane, Japan
| | - Yoshihiro Sawa
- Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University, 1060 Nishikawatsu, Matsue 690-8504, Shimane, Japan; (R.T.); (Y.T.); (Y.S.)
| | - Takahiro Ishikawa
- Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue 690-8504, Shimane, Japan; (M.T.); (A.H.); (T.O.); (T.I.)
- Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University, 1060 Nishikawatsu, Matsue 690-8504, Shimane, Japan; (R.T.); (Y.T.); (Y.S.)
- Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, 1060 Nishikawatsu, Matsue 690-8504, Shimane, Japan
| | - Takanori Maruta
- Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue 690-8504, Shimane, Japan; (M.T.); (A.H.); (T.O.); (T.I.)
- Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University, 1060 Nishikawatsu, Matsue 690-8504, Shimane, Japan; (R.T.); (Y.T.); (Y.S.)
- Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, 1060 Nishikawatsu, Matsue 690-8504, Shimane, Japan
- Correspondence: ; Tel.: +81-882-32-6585
| |
Collapse
|
15
|
Müller-Schüssele SJ, Bohle F, Rossi J, Trost P, Meyer AJ, Zaffagnini M. Plasticity in plastid redox networks: evolution of glutathione-dependent redox cascades and glutathionylation sites. BMC PLANT BIOLOGY 2021; 21:322. [PMID: 34225654 PMCID: PMC8256493 DOI: 10.1186/s12870-021-03087-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 06/08/2021] [Indexed: 05/14/2023]
Abstract
BACKGROUND Flexibility of plant metabolism is supported by redox regulation of enzymes via posttranslational modification of cysteine residues, especially in plastids. Here, the redox states of cysteine residues are partly coupled to the thioredoxin system and partly to the glutathione pool for reduction. Moreover, several plastid enzymes involved in reactive oxygen species (ROS) scavenging and damage repair draw electrons from glutathione. In addition, cysteine residues can be post-translationally modified by forming a mixed disulfide with glutathione (S-glutathionylation), which protects thiol groups from further oxidation and can influence protein activity. However, the evolution of the plastid glutathione-dependent redox network in land plants and the conservation of cysteine residues undergoing S-glutathionylation is largely unclear. RESULTS We analysed the genomes of nine representative model species from streptophyte algae to angiosperms and found that the antioxidant enzymes and redox proteins belonging to the plastid glutathione-dependent redox network are largely conserved, except for lambda- and the closely related iota-glutathione S-transferases. Focussing on glutathione-dependent redox modifications, we screened the literature for target thiols of S-glutathionylation, and found that 151 plastid proteins have been identified as glutathionylation targets, while the exact cysteine residue is only known for 17% (26 proteins), with one or multiple sites per protein, resulting in 37 known S-glutathionylation sites for plastids. However, 38% (14) of the known sites were completely conserved in model species from green algae to flowering plants, with 22% (8) on non-catalytic cysteines. Variable conservation of the remaining sites indicates independent gains and losses of cysteines at the same position during land plant evolution. CONCLUSIONS We conclude that the glutathione-dependent redox network in plastids is highly conserved in streptophytes with some variability in scavenging and damage repair enzymes. Our analysis of cysteine conservation suggests that S-glutathionylation in plastids plays an important and yet under-investigated role in redox regulation and stress response.
Collapse
Affiliation(s)
- Stefanie J Müller-Schüssele
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Friedrich-Ebert-Allee 144, 53113, Bonn, Germany.
- Present Address: Department of Biology, Technische Universität Kaiserslautern, 67663, Kaiserslautern, Germany.
| | - Finja Bohle
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Friedrich-Ebert-Allee 144, 53113, Bonn, Germany
| | - Jacopo Rossi
- Department of Pharmacy and Biotechnology, University of Bologna, 40126, Bologna, Italy
| | - Paolo Trost
- Department of Pharmacy and Biotechnology, University of Bologna, 40126, Bologna, Italy
| | - Andreas J Meyer
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Friedrich-Ebert-Allee 144, 53113, Bonn, Germany
| | - Mirko Zaffagnini
- Department of Pharmacy and Biotechnology, University of Bologna, 40126, Bologna, Italy
| |
Collapse
|
16
|
Rodríguez-Saavedra C, Morgado-Martínez LE, Burgos-Palacios A, King-Díaz B, López-Coria M, Sánchez-Nieto S. Moonlighting Proteins: The Case of the Hexokinases. Front Mol Biosci 2021; 8:701975. [PMID: 34235183 PMCID: PMC8256278 DOI: 10.3389/fmolb.2021.701975] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 05/24/2021] [Indexed: 12/14/2022] Open
Abstract
Moonlighting proteins are defined as proteins with two or more functions that are unrelated and independent to each other, so that inactivation of one of them should not affect the second one and vice versa. Intriguingly, all the glycolytic enzymes are described as moonlighting proteins in some organisms. Hexokinase (HXK) is a critical enzyme in the glycolytic pathway and displays a wide range of functions in different organisms such as fungi, parasites, mammals, and plants. This review discusses HXKs moonlighting functions in depth since they have a profound impact on the responses to nutritional, environmental, and disease challenges. HXKs’ activities can be as diverse as performing metabolic activities, as a gene repressor complexing with other proteins, as protein kinase, as immune receptor and regulating processes like autophagy, programmed cell death or immune system responses. However, most of those functions are particular for some organisms while the most common moonlighting HXK function in several kingdoms is being a glucose sensor. In this review, we also analyze how different regulation mechanisms cause HXK to change its subcellular localization, oligomeric or conformational state, the response to substrate and product concentration, and its interactions with membrane, proteins, or RNA, all of which might impact the HXK moonlighting functions.
Collapse
Affiliation(s)
- Carolina Rodríguez-Saavedra
- Laboratorio de Transporte y Percepción de Azúcares en Plantas, Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Luis Enrique Morgado-Martínez
- Laboratorio de Transporte y Percepción de Azúcares en Plantas, Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Andrés Burgos-Palacios
- Laboratorio de Transporte y Percepción de Azúcares en Plantas, Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Beatriz King-Díaz
- Laboratorio de Transporte y Percepción de Azúcares en Plantas, Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Montserrat López-Coria
- Laboratorio de Transporte y Percepción de Azúcares en Plantas, Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Sobeida Sánchez-Nieto
- Laboratorio de Transporte y Percepción de Azúcares en Plantas, Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
17
|
Hooper CM, Castleden IR, Aryamanesh N, Black K, Grasso SV, Millar AH. CropPAL for discovering divergence in protein subcellular location in crops to support strategies for molecular crop breeding. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 104:812-827. [PMID: 32780488 DOI: 10.1111/tpj.14961] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 06/16/2020] [Accepted: 07/06/2020] [Indexed: 06/11/2023]
Abstract
Agriculture faces increasing demand for yield, higher plant-derived protein content and diversity while facing pressure to achieve sustainability. Although the genomes of many of the important crops have been sequenced, the subcellular locations of most of the encoded proteins remain unknown or are only predicted. Protein subcellular location is crucial in determining protein function and accumulation patterns in plants, and is critical for targeted improvements in yield and resilience. Integrating location data from over 800 studies for 12 major crop species into the cropPAL2020 data collection showed that while >80% of proteins in most species are not localised by experimental data, combining species data or integrating predictions can help bridge gaps at similar accuracy. The collation and integration of over 61 505 experimental localisations and more than 6 million predictions showed that the relative sizes of the protein catalogues located in different subcellular compartments are comparable between crops and Arabidopsis. A comprehensive cross-species comparison showed that between 50% and 80% of the subcellulomes are conserved across species and that conservation only depends to some degree on the phylogenetic relationship of the species. Protein subcellular locations in major biosynthesis pathways are more often conserved than in metabolic pathways. Underlying this conservation is a clear potential for subcellular diversity in protein location between species by means of gene duplication and alternative splicing. Our cropPAL data set and search platform (https://crop-pal.org) provide a comprehensive subcellular proteomics resource to drive compartmentation-based approaches for improving yield, protein composition and resilience in future crop varieties.
Collapse
Affiliation(s)
- Cornelia M Hooper
- ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Ian R Castleden
- ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Nader Aryamanesh
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA, 5000, Australia
- Robinson Research Institute and Adelaide Health and Medical Sciences, University of Adelaide, Adelaide, SA, 5000, Australia
| | - Kylie Black
- University Library, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Sally V Grasso
- ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley, WA, 6009, Australia
| | - A Harvey Millar
- ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley, WA, 6009, Australia
| |
Collapse
|
18
|
Kostyuk AI, Panova AS, Kokova AD, Kotova DA, Maltsev DI, Podgorny OV, Belousov VV, Bilan DS. In Vivo Imaging with Genetically Encoded Redox Biosensors. Int J Mol Sci 2020; 21:E8164. [PMID: 33142884 PMCID: PMC7662651 DOI: 10.3390/ijms21218164] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 12/13/2022] Open
Abstract
Redox reactions are of high fundamental and practical interest since they are involved in both normal physiology and the pathogenesis of various diseases. However, this area of research has always been a relatively problematic field in the context of analytical approaches, mostly because of the unstable nature of the compounds that are measured. Genetically encoded sensors allow for the registration of highly reactive molecules in real-time mode and, therefore, they began a new era in redox biology. Their strongest points manifest most brightly in in vivo experiments and pave the way for the non-invasive investigation of biochemical pathways that proceed in organisms from different systematic groups. In the first part of the review, we briefly describe the redox sensors that were used in vivo as well as summarize the model systems to which they were applied. Next, we thoroughly discuss the biological results obtained in these studies in regard to animals, plants, as well as unicellular eukaryotes and prokaryotes. We hope that this work reflects the amazing power of this technology and can serve as a useful guide for biologists and chemists who work in the field of redox processes.
Collapse
Affiliation(s)
- Alexander I. Kostyuk
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.S.P.); (A.D.K.); (D.A.K.); (D.I.M.); (O.V.P.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Anastasiya S. Panova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.S.P.); (A.D.K.); (D.A.K.); (D.I.M.); (O.V.P.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Aleksandra D. Kokova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.S.P.); (A.D.K.); (D.A.K.); (D.I.M.); (O.V.P.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Daria A. Kotova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.S.P.); (A.D.K.); (D.A.K.); (D.I.M.); (O.V.P.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Dmitry I. Maltsev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.S.P.); (A.D.K.); (D.A.K.); (D.I.M.); (O.V.P.); (V.V.B.)
- Federal Center for Cerebrovascular Pathology and Stroke, 117997 Moscow, Russia
| | - Oleg V. Podgorny
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.S.P.); (A.D.K.); (D.A.K.); (D.I.M.); (O.V.P.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Vsevolod V. Belousov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.S.P.); (A.D.K.); (D.A.K.); (D.I.M.); (O.V.P.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
- Federal Center for Cerebrovascular Pathology and Stroke, 117997 Moscow, Russia
- Institute for Cardiovascular Physiology, Georg August University Göttingen, D-37073 Göttingen, Germany
| | - Dmitry S. Bilan
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.S.P.); (A.D.K.); (D.A.K.); (D.I.M.); (O.V.P.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| |
Collapse
|
19
|
Qu C, Wang L, Zhao Y, Liu C. Molecular Evolution of Maize Ascorbate Peroxidase Genes and Their Functional Divergence. Genes (Basel) 2020; 11:E1204. [PMID: 33076444 PMCID: PMC7602589 DOI: 10.3390/genes11101204] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/12/2020] [Accepted: 10/13/2020] [Indexed: 11/16/2022] Open
Abstract
Ascorbate peroxidase (APX) is an important antioxidant enzyme. APXs in maize are encoded by multiple genes and exist as isoenzymes. The evolutionary history and functional divergence of the maize APX gene family were analyzed through comparative genomic and experimental data on the Internet in this paper. APX genes in higher plants were divided into classes A, B, and C. Each type of APX gene in angiosperms only had one ancestral gene that was duplicated along with the genome duplication or local (or tandem) duplication of the angiosperm. A total of eight genes were retained in maize and named APXa1, APXa2, APXa3, APXb1, APXb2, APXc1.1, APXc1.2, and APXc2. The APX genes of class A were located in the chloroplasts or mitochondria, and the class B and C genes were localized in the peroxisomes and cytoplasm, respectively. The expression patterns of eight APXs were different in vegetative and reproductive organs at different growth and development stages. APXa1 and APXb1 of maize may participate in the antioxidant metabolism of vegetative organs under normal conditions. APXa2, APXb2, APXc1.1, and APXc1.2 may be involved in the stress response, and APXb2 and APXc2 may participate in the senescence response. These results provide a basis for cultivating high-yield and resistant maize varieties.
Collapse
Affiliation(s)
- Chunxiang Qu
- School of Biology & Basic Medical Sciences, Medical College, Soochow University, Suzhou 215123, China; (C.Q.); (Y.Z.)
| | - Lin Wang
- School of Computer Science and Technology, Soochow University, Suzhou 215006, China;
| | - Yingwei Zhao
- School of Biology & Basic Medical Sciences, Medical College, Soochow University, Suzhou 215123, China; (C.Q.); (Y.Z.)
| | - Chao Liu
- School of Biology & Basic Medical Sciences, Medical College, Soochow University, Suzhou 215123, China; (C.Q.); (Y.Z.)
| |
Collapse
|
20
|
Müller-Schüssele SJ, Wang R, Gütle DD, Romer J, Rodriguez-Franco M, Scholz M, Buchert F, Lüth VM, Kopriva S, Dörmann P, Schwarzländer M, Reski R, Hippler M, Meyer AJ. Chloroplasts require glutathione reductase to balance reactive oxygen species and maintain efficient photosynthesis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:1140-1154. [PMID: 32365245 DOI: 10.1111/tpj.14791] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 04/23/2020] [Accepted: 04/24/2020] [Indexed: 05/27/2023]
Abstract
Thiol-based redox-regulation is vital for coordinating chloroplast functions depending on illumination and has been throroughly investigated for thioredoxin-dependent processes. In parallel, glutathione reductase (GR) maintains a highly reduced glutathione pool, enabling glutathione-mediated redox buffering. Yet, how the redox cascades of the thioredoxin and glutathione redox machineries integrate metabolic regulation and detoxification of reactive oxygen species remains largely unresolved because null mutants of plastid/mitochondrial GR are embryo-lethal in Arabidopsis thaliana. To investigate whether maintaining a highly reducing stromal glutathione redox potential (EGSH ) via GR is necessary for functional photosynthesis and plant growth, we created knockout lines of the homologous enzyme in the model moss Physcomitrella patens. In these viable mutant lines, we found decreasing photosynthetic performance and plant growth with increasing light intensities, whereas ascorbate and zeaxanthin/antheraxanthin levels were elevated. By in vivo monitoring stromal EGSH dynamics, we show that stromal EGSH is highly reducing in wild-type and clearly responsive to light, whereas an absence of GR leads to a partial glutathione oxidation, which is not rescued by light. By metabolic labelling, we reveal changing protein abundances in the GR knockout plants, pinpointing the adjustment of chloroplast proteostasis and the induction of plastid protein repair and degradation machineries. Our results indicate that the plastid thioredoxin system is not a functional backup for the plastid glutathione redox systems, whereas GR plays a critical role in maintaining efficient photosynthesis.
Collapse
Affiliation(s)
- Stefanie J Müller-Schüssele
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Friedrich-Ebert-Allee 144, Bonn, 53113, Germany
| | - Ren Wang
- Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, Münster, 48143, Germany
| | - Desirée D Gütle
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schänzlestrasse1, Freiburg, 79104, Germany
| | - Jill Romer
- Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, Bonn, 53115, Germany
| | - Marta Rodriguez-Franco
- Cell Biology, Faculty of Biology, University of Freiburg, Schänzlestr. 1, Freiburg, 79104, Germany
| | - Martin Scholz
- Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, Münster, 48143, Germany
| | - Felix Buchert
- Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, Münster, 48143, Germany
| | - Volker M Lüth
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schänzlestrasse1, Freiburg, 79104, Germany
| | - Stanislav Kopriva
- Botanical Institute, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, 50674, Germany
| | - Peter Dörmann
- Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, Bonn, 53115, Germany
| | - Markus Schwarzländer
- Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, Münster, 48143, Germany
| | - Ralf Reski
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schänzlestrasse1, Freiburg, 79104, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Schänzlestrasse18, Freiburg, 79104, Germany
| | - Michael Hippler
- Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, Münster, 48143, Germany
- Institute of Plant Science and Resources, Okayama University, Kurashiki, 710-0046, Japan
| | - Andreas J Meyer
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Friedrich-Ebert-Allee 144, Bonn, 53113, Germany
| |
Collapse
|
21
|
Wang Y, Selinski J, Mao C, Zhu Y, Berkowitz O, Whelan J. Linking mitochondrial and chloroplast retrograde signalling in plants. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190410. [PMID: 32362265 PMCID: PMC7209950 DOI: 10.1098/rstb.2019.0410] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Retrograde signalling refers to the regulation of nuclear gene expression in response to functional changes in organelles. In plants, the two energy-converting organelles, mitochondria and chloroplasts, are tightly coordinated to balance their activities. Although our understanding of components involved in retrograde signalling has greatly increased in the last decade, studies on the regulation of the two organelle signalling pathways have been largely independent. Thus, the mechanism of how mitochondrial and chloroplastic retrograde signals are integrated is largely unknown. Here, we summarize recent findings on the function of mitochondrial signalling components and their links to chloroplast retrograde responses. From this, a picture emerges showing that the major regulators are integrators of both organellar retrograde signalling pathways. This article is part of the theme issue 'Retrograde signalling from endosymbiotic organelles'.
Collapse
Affiliation(s)
- Yan Wang
- Department of Animal, Plant and Soil Sciences, Australian Research Council Centre of Excellence in Plant Energy Biology, School of Life Sciences, La Trobe University, Bundoora, Victoria, Australia
| | - Jennifer Selinski
- Department of Animal, Plant and Soil Sciences, Australian Research Council Centre of Excellence in Plant Energy Biology, School of Life Sciences, La Trobe University, Bundoora, Victoria, Australia
| | - Chunli Mao
- Department of Animal, Plant and Soil Sciences, Australian Research Council Centre of Excellence in Plant Energy Biology, School of Life Sciences, La Trobe University, Bundoora, Victoria, Australia.,Department of Animal Science and Technology, Grassland Science, China Agricultural University, Beijing 100193, People's Republic of China
| | - Yanqiao Zhu
- Department of Animal, Plant and Soil Sciences, Australian Research Council Centre of Excellence in Plant Energy Biology, School of Life Sciences, La Trobe University, Bundoora, Victoria, Australia.,Department of Animal Science and Technology, Grassland Science, China Agricultural University, Beijing 100193, People's Republic of China
| | - Oliver Berkowitz
- Department of Animal, Plant and Soil Sciences, Australian Research Council Centre of Excellence in Plant Energy Biology, School of Life Sciences, La Trobe University, Bundoora, Victoria, Australia
| | - James Whelan
- Department of Animal, Plant and Soil Sciences, Australian Research Council Centre of Excellence in Plant Energy Biology, School of Life Sciences, La Trobe University, Bundoora, Victoria, Australia
| |
Collapse
|
22
|
Qiu Y, Tay YV, Ruan Y, Adams KL. Divergence of duplicated genes by repeated partitioning of splice forms and subcellular localization. THE NEW PHYTOLOGIST 2020; 225:1011-1022. [PMID: 31469915 DOI: 10.1111/nph.16148] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 08/21/2019] [Indexed: 06/10/2023]
Abstract
Gene duplication is a prominent and recurrent process in plant genomes. Among the possible fates of duplicated genes, subfunctionalization refers to duplicates taking on different parts of the function or expression pattern of the ancestral gene. This partitioning could be accompanied by changes in subcellular localization of the protein products. When alternative splicing of gene products leads to protein products with different subcellular localizations, we propose that after gene duplication there will be partitioning of the alternatively spliced forms such that the products of each duplicate are localized to only one of the original locations, which we refer to as sublocalization. We identified the plastid ascorbate peroxidase (cpAPX) genes across angiosperms and analyzed their duplication history, alternative splicing, and subcellular targeting patterns to identify cases of sublocalization. We found angiosperms typically have one cpAPX gene that generates both thylakoidal APX (tAPX) and stromal APX (sAPX) through alternative splicing. We identified several independent lineage-specific sublocalization cases with specialized paralogues of tAPX and sAPX. We determined that the sublocalization happened through two types of sequence evolution patterns. Our findings suggest that the divergence through sublocalization is key to the retention of paralogous cpAPX genes in angiosperms.
Collapse
Affiliation(s)
- Yichun Qiu
- Department of Botany, University of British Columbia, 6270 University Boulevard, Vancouver, BC, V6T 1Z4, Canada
| | - Yii Van Tay
- Department of Botany, University of British Columbia, 6270 University Boulevard, Vancouver, BC, V6T 1Z4, Canada
| | - Yuan Ruan
- Division of Biology and Biological Engineering, Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Keith L Adams
- Department of Botany, University of British Columbia, 6270 University Boulevard, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
23
|
Hein A, Brenner S, Polsakiewicz M, Knoop V. The dual-targeted RNA editing factor AEF1 is universally conserved among angiosperms and reveals only minor adaptations upon loss of its chloroplast or its mitochondrial target. PLANT MOLECULAR BIOLOGY 2020; 102:185-198. [PMID: 31797248 DOI: 10.1007/s11103-019-00940-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 11/26/2019] [Indexed: 06/10/2023]
Abstract
Upon loss of either its chloroplast or mitochondrial target, a uniquely dual-targeted factor for C-to-U RNA editing in angiosperms reveals low evidence for improved molecular adaptation to its remaining target. RNA-binding pentatricopeptide repeat (PPR) proteins specifically recognize target sites for C-to-U RNA editing in the transcriptomes of plant chloroplasts and mitochondria. Among more than 80 PPR-type editing factors that have meantime been characterized, AEF1 (or MPR25) is a special case given its dual targeting to both organelles and addressing an essential mitochondrial (nad5eU1580SL) and an essential chloroplast (atpFeU92SL) RNA editing site in parallel in Arabidopsis. Here, we explored the angiosperm-wide conservation of AEF1 and its two organelle targets. Despite numerous independent losses of the chloroplast editing site by C-to-T conversion and at least four such conversions at the mitochondrial target site in other taxa, AEF1 remains consistently conserved in more than 120 sampled angiosperm genomes. Not a single case of simultaneous loss of the chloroplast and mitochondrial editing target or of AEF1 disintegration or loss could be identified, contrasting previous findings for editing factors targeted to only one organelle. Like in most RNA editing factors, the PPR array of AEF1 reveals potential for conceptually "improved fits" to its targets according to the current PPR-RNA binding code. Surprisingly, we observe only minor evidence for adaptation to the mitochondrial target also after deep losses of the chloroplast target among Asterales, Caryophyllales and Poales or, vice versa, for the remaining chloroplast target after a deep loss of the mitochondrial target among Malvales. The evolutionary observations support the notion that PPR-RNA mismatches may be essential for proper function of editing factors.
Collapse
Affiliation(s)
- Anke Hein
- IZMB - Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn, Kirschallee 1, 53115, Bonn, Germany
| | - Sarah Brenner
- IZMB - Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn, Kirschallee 1, 53115, Bonn, Germany
| | - Monika Polsakiewicz
- IZMB - Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn, Kirschallee 1, 53115, Bonn, Germany
| | - Volker Knoop
- IZMB - Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn, Kirschallee 1, 53115, Bonn, Germany.
| |
Collapse
|
24
|
Yin B, Zhang J, Liu Y, Pan X, Zhao Z, Li H, Zhang C, Li C, Du X, Li Y, Liu D, Lu H. PtomtAPX, a mitochondrial ascorbate peroxidase, plays an important role in maintaining the redox balance of Populus tomentosa Carr. Sci Rep 2019; 9:19541. [PMID: 31862975 PMCID: PMC6925217 DOI: 10.1038/s41598-019-56148-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 12/06/2019] [Indexed: 12/21/2022] Open
Abstract
Plant mitochondria are important energy-producing structure and ROS are generated as byproducts. APX is one enzyme of the AsA-GSH cycle to reduces H2O2 to water. We identified both PtomtAPX and PtosAPX are located in mitochondria of Populus tomentosa Carr. PtomtAPX is specifically targeted to mitochondria, while PtosAPX is dual targeted to both chloroplast and mitochondria. The expression of PtomtAPX in mitochondria was 60-fold that of PtosAPX by ELISA and qPCR analysis. Under high light stress, the expression levels of PtosAPX increased, while that of PtomtAPX only slightly changed. Compared to the WT, the antisense transgenic PtomtAPX cell lines showed slowed growth, smaller cells impaired mitochondria in MS medium under normal growth. RNA-seq results showed 3121 genes significantly altered expression in the antisense cells, and most of them are important for mitochondrial function, particularly in oxidative phosphorylation. Our findings demonstrates a mitochondrial location for one APX isoform, and provide valuable insight into the mechanism which ROS balance is modulated by AsA-GSH cycle in mitochondria.
Collapse
Affiliation(s)
- Bin Yin
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, People's Republic of China.,College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, People's Republic of China
| | - Jiaxue Zhang
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, People's Republic of China
| | - Yadi Liu
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, People's Republic of China
| | - Xiang Pan
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, People's Republic of China
| | - Zhijing Zhao
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, People's Republic of China
| | - Hui Li
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, People's Republic of China
| | - Chong Zhang
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, People's Republic of China
| | - Conghui Li
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, People's Republic of China
| | - Xihua Du
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, People's Republic of China
| | - Yinjun Li
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, People's Republic of China
| | - Di Liu
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, People's Republic of China.
| | - Hai Lu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, People's Republic of China. .,College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, People's Republic of China.
| |
Collapse
|
25
|
Wu B, Wang B. Comparative analysis of ascorbate peroxidases (APXs) from selected plants with a special focus on Oryza sativa employing public databases. PLoS One 2019; 14:e0226543. [PMID: 31856232 PMCID: PMC6922425 DOI: 10.1371/journal.pone.0226543] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 11/29/2019] [Indexed: 12/28/2022] Open
Abstract
Reactive oxygen species (ROS) are produced by plants. Hydrogen peroxide (H2O2) is one important component of ROS and able to modulate plant growth and development at low level and damage plant cells at high concentrations. Ascorbate peroxidase (APX) shows high affinity towards H2O2 and plays vital roles in H2O2-scavenging. In order to explore the differences of APXs from selected plant species, bioinformatics methods and public databases were used to evaluate the physicochemical properties, conserved motifs, potential modifications and cis-elements in all the APXs, and protein-protein network and expression profiles of rice APXs. The results suggested that APXs in the selected plant species showed high evolutionary conservation and were able to divide into seven groups, group I to VII. Members in the groups contained abundant phosphorylation sites. Interestingly, group I and VII had only PKC site. Additionally, promoters of the APXs contained abundant stress-related cis-elements. APXs in rice plant were able to interact with dehydroascorbate reductase 2. The eight APXs expressed differently in root, leaf, panicle, anther, pistil and seed. Drought, Pi-free, Cd and Xanthomonas oryzae pv. oryzicola B8-12 treatments were able to significantly alter the expression profiles of rice APXs. This study increases our knowledge to further explore functions and mechanisms of APXs and also guides their applications.
Collapse
Affiliation(s)
- Baomei Wu
- International Center for Plant Molecular Genetics, School of Life Science, Shanxi Normal University, Linfen, PR China
- * E-mail:
| | - Binbin Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, PR China
| |
Collapse
|
26
|
Marty L, Bausewein D, Müller C, Bangash SAK, Moseler A, Schwarzländer M, Müller-Schüssele SJ, Zechmann B, Riondet C, Balk J, Wirtz M, Hell R, Reichheld JP, Meyer AJ. Arabidopsis glutathione reductase 2 is indispensable in plastids, while mitochondrial glutathione is safeguarded by additional reduction and transport systems. THE NEW PHYTOLOGIST 2019; 224:1569-1584. [PMID: 31372999 DOI: 10.1111/nph.16086] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 07/23/2019] [Indexed: 05/27/2023]
Abstract
A highly negative glutathione redox potential (EGSH ) is maintained in the cytosol, plastids and mitochondria of plant cells to support fundamental processes, including antioxidant defence, redox regulation and iron-sulfur cluster biogenesis. Out of two glutathione reductase (GR) proteins in Arabidopsis, GR2 is predicted to be dual-targeted to plastids and mitochondria, but its differential roles in these organelles remain unclear. We dissected the role of GR2 in organelle glutathione redox homeostasis and plant development using a combination of genetic complementation and stacked mutants, biochemical activity studies, immunogold labelling and in vivo biosensing. Our data demonstrate that GR2 is dual-targeted to plastids and mitochondria, but embryo lethality of gr2 null mutants is caused specifically in plastids. Whereas lack of mitochondrial GR2 leads to a partially oxidised glutathione pool in the matrix, the ATP-binding cassette (ABC) transporter ATM3 and the mitochondrial thioredoxin system provide functional backup and maintain plant viability. We identify GR2 as essential in the plastid stroma, where it counters GSSG accumulation and developmental arrest. By contrast a functional triad of GR2, ATM3 and the thioredoxin system in the mitochondria provides resilience to excessive glutathione oxidation.
Collapse
Affiliation(s)
- Laurent Marty
- Centre for Organismal Studies, Heidelberg University, Im Neuenheimer Feld, 360, D-69120, Heidelberg, Germany
| | - Daniela Bausewein
- Centre for Organismal Studies, Heidelberg University, Im Neuenheimer Feld, 360, D-69120, Heidelberg, Germany
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Friedrich-Ebert-Allee 144, D-53113, Bonn, Germany
| | - Christopher Müller
- Centre for Organismal Studies, Heidelberg University, Im Neuenheimer Feld, 360, D-69120, Heidelberg, Germany
| | - Sajid Ali Khan Bangash
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Friedrich-Ebert-Allee 144, D-53113, Bonn, Germany
| | - Anna Moseler
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Friedrich-Ebert-Allee 144, D-53113, Bonn, Germany
| | - Markus Schwarzländer
- Institute for Biology and Biotechnology of Plants, University of Münster, Schlossplatz 8, D-48143, Münster, Germany
| | - Stefanie J Müller-Schüssele
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Friedrich-Ebert-Allee 144, D-53113, Bonn, Germany
| | - Bernd Zechmann
- Center of Microscopy and Imaging, Baylor University, One Bear Place 97046, Waco, TX, 76798-7046, USA
| | - Christophe Riondet
- Laboratoire Génome et Développement des Plantes, Université de Perpignan, Via Domitia, F-66860, Perpignan, France
- Laboratoire Génome et Développement des Plantes, CNRS, F-66860, Perpignan, France
| | - Janneke Balk
- John Innes Centre and University of East Anglia, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Markus Wirtz
- Centre for Organismal Studies, Heidelberg University, Im Neuenheimer Feld, 360, D-69120, Heidelberg, Germany
| | - Rüdiger Hell
- Centre for Organismal Studies, Heidelberg University, Im Neuenheimer Feld, 360, D-69120, Heidelberg, Germany
| | - Jean-Philippe Reichheld
- Laboratoire Génome et Développement des Plantes, Université de Perpignan, Via Domitia, F-66860, Perpignan, France
- Laboratoire Génome et Développement des Plantes, CNRS, F-66860, Perpignan, France
| | - Andreas J Meyer
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Friedrich-Ebert-Allee 144, D-53113, Bonn, Germany
| |
Collapse
|
27
|
Lee DW, Lee S, Lee J, Woo S, Razzak MA, Vitale A, Hwang I. Molecular Mechanism of the Specificity of Protein Import into Chloroplasts and Mitochondria in Plant Cells. MOLECULAR PLANT 2019; 12:951-966. [PMID: 30890495 DOI: 10.1016/j.molp.2019.03.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 02/19/2019] [Accepted: 03/10/2019] [Indexed: 05/04/2023]
Abstract
Plants possess both types of endosymbiotic organelles, chloroplasts and mitochondria. Transit peptides and presequences function as signal sequences for specific import into chloroplasts and mitochondria, respectively. However, how these highly similar signal sequences confer the protein import specificity remains elusive. Here, we show that mitochondrial- or chloroplast-specific import involves two distinct steps, specificity determination and translocation across envelopes, which are mediated by the N-terminal regions and functionally interchangeable C-terminal regions, respectively, of transit peptides and presequences. A domain harboring multiple-arginine and hydrophobic sequence motifs in the N-terminal regions of presequences was identified as the mitochondrial specificity factor. The presence of this domain and the absence of arginine residues in the N-terminal regions of otherwise common targeting signals confers specificity of protein import into mitochondria and chloroplasts, respectively. AtToc159, a chloroplast import receptor, also contributes to determining chloroplast import specificity. We propose that common ancestral sequences were functionalized into mitochondrial- and chloroplast-specific signal sequences by the presence and absence, respectively, of multiple-arginine and hydrophobic sequence motifs in the N-terminal region.
Collapse
Affiliation(s)
- Dong Wook Lee
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Sumin Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Junho Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Seungjin Woo
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Md Abdur Razzak
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Alessandro Vitale
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale Delle Ricerche, Milano, Italy
| | - Inhwan Hwang
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang 37673, Korea; Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Korea.
| |
Collapse
|
28
|
Sharma M, Kretschmer C, Lampe C, Stuttmann J, Klösgen RB. Targeting specificity of nuclear-encoded organelle proteins with a self-assembling split-fluorescent protein toolkit. J Cell Sci 2019; 132:jcs230839. [PMID: 31085714 DOI: 10.1242/jcs.230839] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 05/01/2019] [Indexed: 12/21/2022] Open
Abstract
A large number of nuclear-encoded proteins are targeted to the organelles of endosymbiotic origin, namely mitochondria and plastids. To determine the targeting specificity of these proteins, fluorescent protein tagging is a popular approach. However, ectopic expression of fluorescent protein fusions commonly results in considerable background signals and often suffers from the large size and robust folding of the reporter protein, which may perturb membrane transport. Among the alternative approaches that have been developed in recent years, the self-assembling split-fluorescent protein (sasplit-FP) technology appears particularly promising to analyze protein targeting specificity in vivo Here, we improved the sensitivity of this technology and systematically evaluated its utilization to determine protein targeting to plastids and mitochondria. Furthermore, to facilitate high-throughput screening of candidate proteins we developed a Golden Gate-based vector toolkit (PlaMinGo). As a result of these improvements, dual targeting could be detected for a number of proteins that had earlier been characterized as being targeted to a single organelle only. These results were independently confirmed with a plant phenotype complementation approach based on the immutans mutant.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Mayank Sharma
- Institute of Biology-Plant Physiology, Martin Luther University Halle-Wittenberg, Weinbergweg 10, 06120 Halle (Saale), Germany
| | - Carola Kretschmer
- Institute of Biology-Genetics, Martin Luther University Halle-Wittenberg, Weinbergweg 10, 06120 Halle (Saale), Germany
| | - Christina Lampe
- Institute of Biology-Plant Physiology, Martin Luther University Halle-Wittenberg, Weinbergweg 10, 06120 Halle (Saale), Germany
| | - Johannes Stuttmann
- Institute of Biology-Genetics, Martin Luther University Halle-Wittenberg, Weinbergweg 10, 06120 Halle (Saale), Germany
| | - Ralf Bernd Klösgen
- Institute of Biology-Plant Physiology, Martin Luther University Halle-Wittenberg, Weinbergweg 10, 06120 Halle (Saale), Germany
| |
Collapse
|
29
|
Lee JS, Wilson ME, Richardson RA, Haswell ES. Genetic and physical interactions between the organellar mechanosensitive ion channel homologs MSL1, MSL2, and MSL3 reveal a role for inter-organellar communication in plant development. PLANT DIRECT 2019; 3:e00124. [PMID: 31245767 PMCID: PMC6508831 DOI: 10.1002/pld3.124] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 01/24/2019] [Accepted: 02/11/2019] [Indexed: 05/31/2023]
Abstract
Plant development requires communication on many levels, including between cells and between organelles within a cell. For example, mitochondria and plastids have been proposed to be sensors of environmental stress and to coordinate their responses. Here we present evidence for communication between mitochondria and chloroplasts during leaf and root development, based on genetic and physical interactions between three Mechanosensitive channel of Small conductance-Like (MSL) proteins from Arabidopsis thaliana. MSL proteins are Arabidopsis homologs of the bacterial Mechanosensitive channel of Small conductance (MscS), which relieves cellular osmotic pressure to protect against lysis during hypoosmotic shock. MSL1 localizes to the inner mitochondrial membrane, while MSL2 and MSL3 localize to the inner plastid membrane and are required to maintain plastid osmotic homeostasis during normal growth and development. In this study, we characterized the phenotypic effect of a genetic lesion in MSL1, both in wild type and in msl2 msl3 mutant backgrounds. msl1 single mutants appear wild type for all phenotypes examined. The characteristic leaf rumpling in msl2 msl3 double mutants was exacerbated in the msl1 msl2 msl3 triple mutant. However, the introduction of the msl1 lesion into the msl2 msl3 mutant background suppressed other msl2 msl3 mutant phenotypes, including ectopic callus formation, accumulation of superoxide and hydrogen peroxide in the shoot apical meristem, decreased root length, and reduced number of lateral roots. All these phenotypes could be recovered by molecular complementation with a transgene containing a wild type version of MSL1. In yeast-based interaction studies, MSL1 interacted with itself, but not with MSL2 or MSL3. These results establish that the abnormalities observed in msl2 msl3 double mutants is partially dependent on the presence of functional MSL1 and suggest a possible role for communication between plastid and mitochondria in seedling development.
Collapse
Affiliation(s)
- Josephine S. Lee
- NSF Center for Engineering MechanoBiologyDepartment of BiologyWashington University in Saint LouisSaint LouisMissouri
- Present address:
Broad InstituteCambridgeMassachusetts
| | - Margaret E. Wilson
- NSF Center for Engineering MechanoBiologyDepartment of BiologyWashington University in Saint LouisSaint LouisMissouri
- Present address:
Donald Danforth Plant Science CenterSaint LouisMissouri
| | - Ryan A. Richardson
- NSF Center for Engineering MechanoBiologyDepartment of BiologyWashington University in Saint LouisSaint LouisMissouri
| | - Elizabeth S. Haswell
- NSF Center for Engineering MechanoBiologyDepartment of BiologyWashington University in Saint LouisSaint LouisMissouri
| |
Collapse
|
30
|
Meyer AJ, Riemer J, Rouhier N. Oxidative protein folding: state-of-the-art and current avenues of research in plants. THE NEW PHYTOLOGIST 2019; 221:1230-1246. [PMID: 30230547 DOI: 10.1111/nph.15436] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Accepted: 08/01/2018] [Indexed: 06/08/2023]
Abstract
Contents Summary 1230 I. Introduction 1230 II. Formation and isomerization of disulfides in the ER and the Golgi apparatus 1231 III. The disulfide relay in the mitochondrial intermembrane space: why are plants different? 1236 IV. Disulfide bond formation on luminal proteins in thylakoids 1240 V. Conclusion 1242 Acknowledgements 1242 References 1242 SUMMARY: Disulfide bonds are post-translational modifications crucial for the structure and function of thousands of proteins. Their formation and isomerization, referred to as oxidative folding, require specific protein machineries found in oxidizing subcellular compartments, namely the endoplasmic reticulum and the associated endomembrane system, the intermembrane space of mitochondria and the thylakoid lumen of chloroplasts. At least one protein component is required for transferring electrons from substrate proteins to an acceptor that is usually molecular oxygen. For oxidation reactions, incoming reduced substrates are oxidized by thiol-oxidoreductase proteins (or domains in case of chimeric proteins), which are usually themselves oxidized by a single thiol oxidase, the enzyme generating disulfide bonds de novo. By contrast, the description of the molecular actors and pathways involved in proofreading and isomerization of misfolded proteins, which require a tightly controlled redox balance, lags behind. Herein we provide a general overview of the knowledge acquired on the systems responsible for oxidative protein folding in photosynthetic organisms, highlighting their particularities compared to other eukaryotes. Current research challenges are discussed including the importance and specificity of these oxidation systems in the context of the existence of reducing systems in the same compartments.
Collapse
Affiliation(s)
- Andreas J Meyer
- INRES-Chemical Signalling, University of Bonn, 53113, Bonn, Germany
| | - Jan Riemer
- Institute of Biochemistry, University of Cologne, 50674, Cologne, Germany
| | | |
Collapse
|
31
|
Sharma M, Bennewitz B, Klösgen RB. Rather rule than exception? How to evaluate the relevance of dual protein targeting to mitochondria and chloroplasts. PHOTOSYNTHESIS RESEARCH 2018; 138:335-343. [PMID: 29946965 DOI: 10.1007/s11120-018-0543-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 06/20/2018] [Indexed: 05/11/2023]
Abstract
Dual targeting of a nuclearly encoded protein into two different cell organelles is an exceptional event in eukaryotic cells. Yet, the frequency of such dual targeting is remarkably high in case of mitochondria and chloroplasts, the two endosymbiotic organelles of plant cells. In most instances, it is mediated by "ambiguous" transit peptides, which recognize both organelles as the target. A number of different approaches including in silico, in organello as well as both transient and stable in vivo assays are established to determine the targeting specificity of such transit peptides. In this review, we will describe and compare these approaches and discuss the potential role of this unusual targeting process. Furthermore, we will present a hypothetical scenario how dual targeting might have arisen during evolution.
Collapse
Affiliation(s)
- Mayank Sharma
- Institute of Biology - Plant Physiology, Martin Luther University Halle-Wittenberg, Weinbergweg 10, 06120, Halle/Saale, Germany
| | - Bationa Bennewitz
- Institute of Biology - Plant Physiology, Martin Luther University Halle-Wittenberg, Weinbergweg 10, 06120, Halle/Saale, Germany
| | - Ralf Bernd Klösgen
- Institute of Biology - Plant Physiology, Martin Luther University Halle-Wittenberg, Weinbergweg 10, 06120, Halle/Saale, Germany.
| |
Collapse
|
32
|
Dayan FE, Barker A, Tranel PJ. Origins and structure of chloroplastic and mitochondrial plant protoporphyrinogen oxidases: implications for the evolution of herbicide resistance. PEST MANAGEMENT SCIENCE 2018; 74:2226-2234. [PMID: 28967179 DOI: 10.1002/ps.4744] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 09/05/2017] [Accepted: 09/23/2017] [Indexed: 05/25/2023]
Abstract
Protoporphyrinogen IX oxidase (PPO)-inhibiting herbicides are effective tools to control a broad spectrum of weeds, including those that have evolved resistance to glyphosate. Their utility is being threatened by the appearance of biotypes that are resistant to PPO inhibitors. While the chloroplastic PPO1 isoform is thought to be the primary target of PPO herbicides, evolved resistance mechanisms elucidated to date are associated with changes to the mitochondrial PPO2 isoform, suggesting that the importance of PPO2 has been underestimated. Our investigation of the evolutionary and structural biology of plant PPOs provides some insight into the potential reasons why PPO2 is the preferred target for evolution of resistance. The most common target-site mutation imparting resistance involved the deletion of a key glycine codon. The genetic environment that facilitates this deletion is apparently only present in the gene encoding PPO2 in a few species. Additionally, both species with this mutation (Amaranthus tuberculatus and Amaranthus palmeri) have dual targeting of PPO2 to both the chloroplast and the mitochondria, which might be a prerequisite to impart herbicide resistance. The most recent target-site mutations have substituted a key arginine residue involved in stabilizing the substrate in the catalytic domain of PPO2. This arginine is highly conserved across all plant PPOs, suggesting that its substitution could be equally likely on PPO1 and PPO2, yet it has only occurred on PPO2, underscoring the importance of this isoform for the evolution of herbicide resistance. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Franck E Dayan
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO, USA
| | - Abigail Barker
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO, USA
| | - Patrick J Tranel
- Department of Crop Sciences, University of Illinois, Urbana, IL, USA
| |
Collapse
|
33
|
Functional switching of ascorbate peroxidase 2 of rice (OsAPX2) between peroxidase and molecular chaperone. Sci Rep 2018; 8:9171. [PMID: 29907832 PMCID: PMC6003922 DOI: 10.1038/s41598-018-27459-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 05/15/2018] [Indexed: 12/25/2022] Open
Abstract
Ascorbate peroxidase (APX) is a class I haem-containing peroxidase, which catalyses the conversion of H2O2 to H2O and O2 using ascorbate as the specific electron donor. APX plays a central role in the elimination of intracellular reactive oxygen species (ROS) and protects plants from the oxidative damage that can occur as a result of biotic and abiotic stresses. At present, the only known function of APX is as a peroxidase. However, in this study, we demonstrate that Oryza sativa APX2 also operates as a molecular chaperone in rice. The different functions of OsAPX2 correlate strongly with its structural conformation. The high-molecular-weight (HMW) complexes had chaperone activity, whereas the low-molecular-weight (LMW) forms displayed predominantly APX activity. The APX activity was effectively inhibited by sodium azide, which is an inhibitor of haem-containing enzymes, but this did not affect the protein’s activity as a chaperone. Additionally, the OsAPX2 conformational changes could be regulated by salt and heat stresses and these stimulated OsAPX2 dissociation and association, respectively. Our results provide new insight into the roles of APXs.
Collapse
|
34
|
Sakamoto W, Takami T. Chloroplast DNA Dynamics: Copy Number, Quality Control and Degradation. PLANT & CELL PHYSIOLOGY 2018; 59:1120-1127. [PMID: 29860378 DOI: 10.1093/pcp/pcy084] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 04/01/2018] [Indexed: 05/16/2023]
Abstract
Endosymbiotically originated chloroplast DNA (cpDNA) encodes part of the genetic information needed to fulfill chloroplast function, including fundamental processes such as photosynthesis. In the last two decades, advances in genome analysis led to the identification of a considerable number of cpDNA sequences from various species. While these data provided the consensus features of cpDNA organization and chloroplast evolution in plants, how cpDNA is maintained through development and is inherited remains to be fully understood. In particular, the fact that cpDNA exists as multiple copies despite its limited genetic capacity raises the important question of how copy number is maintained or whether cpDNA is subjected to quantitative fluctuation or even developmental degradation. For example, cpDNA is abundant in leaves, where it forms punctate structures called nucleoids, which seemingly alter their morphologies and numbers depending on the developmental status of the chloroplast. In this review, we summarize our current understanding of 'cpDNA dynamics', focusing on the changes in DNA abundance. A special focus is given to the cpDNA degradation mechanism, which appears to be mediated by Defective in Pollen organelle DNA degradation 1 (DPD1), a recently discovered organelle exonuclease. The physiological significance of cpDNA degradation in flowering plants is also discussed.
Collapse
Affiliation(s)
- Wataru Sakamoto
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama, 710-0046 Japan
| | - Tsuneaki Takami
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama, 710-0046 Japan
| |
Collapse
|
35
|
Decoding the Divergent Subcellular Location of Two Highly Similar Paralogous LEA Proteins. Int J Mol Sci 2018; 19:ijms19061620. [PMID: 29857468 PMCID: PMC6032150 DOI: 10.3390/ijms19061620] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 05/25/2018] [Accepted: 05/28/2018] [Indexed: 11/17/2022] Open
Abstract
Many mitochondrial proteins are synthesized as precursors in the cytosol with an N-terminal mitochondrial targeting sequence (MTS) which is cleaved off upon import. Although much is known about import mechanisms and MTS structural features, the variability of MTS still hampers robust sub-cellular software predictions. Here, we took advantage of two paralogous late embryogenesis abundant proteins (LEA) from Arabidopsis with different subcellular locations to investigate structural determinants of mitochondrial import and gain insight into the evolution of the LEA genes. LEA38 and LEA2 are short proteins of the LEA_3 family, which are very similar along their whole sequence, but LEA38 is targeted to mitochondria while LEA2 is cytosolic. Differences in the N-terminal protein sequences were used to generate a series of mutated LEA2 which were expressed as GFP-fusion proteins in leaf protoplasts. By combining three types of mutation (substitution, charge inversion, and segment replacement), we were able to redirect the mutated LEA2 to mitochondria. Analysis of the effect of the mutations and determination of the LEA38 MTS cleavage site highlighted important structural features within and beyond the MTS. Overall, these results provide an explanation for the likely loss of mitochondrial location after duplication of the ancestral gene.
Collapse
|
36
|
Dorrell RG, Gile G, McCallum G, Méheust R, Bapteste EP, Klinger CM, Brillet-Guéguen L, Freeman KD, Richter DJ, Bowler C. Chimeric origins of ochrophytes and haptophytes revealed through an ancient plastid proteome. eLife 2017; 6. [PMID: 28498102 PMCID: PMC5462543 DOI: 10.7554/elife.23717] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 05/08/2017] [Indexed: 12/18/2022] Open
Abstract
Plastids are supported by a wide range of proteins encoded within the nucleus and imported from the cytoplasm. These plastid-targeted proteins may originate from the endosymbiont, the host, or other sources entirely. Here, we identify and characterise 770 plastid-targeted proteins that are conserved across the ochrophytes, a major group of algae including diatoms, pelagophytes and kelps, that possess plastids derived from red algae. We show that the ancestral ochrophyte plastid proteome was an evolutionary chimera, with 25% of its phylogenetically tractable nucleus-encoded proteins deriving from green algae. We additionally show that functional mixing of host and plastid proteomes, such as through dual-targeting, is an ancestral feature of plastid evolution. Finally, we detect a clear phylogenetic signal from one ochrophyte subgroup, the lineage containing pelagophytes and dictyochophytes, in plastid-targeted proteins from another major algal lineage, the haptophytes. This may represent a possible serial endosymbiosis event deep in eukaryotic evolutionary history. DOI:http://dx.doi.org/10.7554/eLife.23717.001 The cells of most plants and algae contain compartments called chloroplasts that enable them to capture energy from sunlight in a process known as photosynthesis. Chloroplasts are the remnants of photosynthetic bacteria that used to live freely in the environment until they were consumed by a larger cell. “Complex” chloroplasts can form if a cell that already has a chloroplast is swallowed by another cell. The most abundant algae in the oceans are known as diatoms. These algae belong to a group called the stramenopiles, which also includes giant seaweeds such as kelp. The stramenopiles have a complex chloroplast that they acquired from a red alga (a relative of the seaweed used in sushi). However, some of the proteins in their chloroplasts are from other sources, such as the green algal relatives of plants, and it was not clear how these chloroplast proteins have contributed to the evolution of this group. Many of the proteins that chloroplasts need to work properly are produced by the host cell and are then transported into the chloroplasts. Dorrell et al. studied the genetic material of many stramenopile species and identified 770 chloroplast-targeted proteins that are predicted to underpin the origins of this group. Experiments in a diatom called Phaeodactylum confirmed these predictions and show that many of these chloroplast-targeted proteins have been recruited from green algae, bacteria, and other compartments within the host cell to support the chloroplast. Further experiments suggest that another major group of algae called the haptophytes once had a stramenopile chloroplast. The current haptophyte chloroplast does not come from the stramenopiles so the haptophytes appear to have replaced their chloroplasts at least once in their evolutionary history. The findings show that algal chloroplasts are mosaics, supported by proteins from many different species. This helps us understand why certain species succeed in the wild and how they may respond to environmental changes in the oceans. In the future, these findings may help researchers to engineer new species of algae and plants for food and fuel production. DOI:http://dx.doi.org/10.7554/eLife.23717.002
Collapse
Affiliation(s)
- Richard G Dorrell
- IBENS, Département de Biologie, École Normale Supérieure, CNRS, Inserm, PSL Research University, Paris, France
| | - Gillian Gile
- School of Life Sciences, Arizona State University, Tempe, United States
| | - Giselle McCallum
- IBENS, Département de Biologie, École Normale Supérieure, CNRS, Inserm, PSL Research University, Paris, France
| | - Raphaël Méheust
- Institut de Biologie Paris-Seine, Université Pierre et Marie Curie, Paris, France
| | - Eric P Bapteste
- Institut de Biologie Paris-Seine, Université Pierre et Marie Curie, Paris, France
| | | | | | | | - Daniel J Richter
- Sorbonne Universités, Université Pierre et Marie Curie, CNRS UMR 7144.,Adaptation et Diversité en Milieu Marin, Équipe EPEP, Station Biologique de Roscoff, Roscoff, France
| | - Chris Bowler
- IBENS, Département de Biologie, École Normale Supérieure, CNRS, Inserm, PSL Research University, Paris, France
| |
Collapse
|
37
|
Murcha MW, Kubiszewski-Jakubiak S, Teixeira PF, Gügel IL, Kmiec B, Narsai R, Ivanova A, Megel C, Schock A, Kraus S, Berkowitz O, Glaser E, Philippar K, Maréchal-Drouard L, Soll J, Whelan J. Plant-Specific Preprotein and Amino Acid Transporter Proteins Are Required for tRNA Import into Mitochondria. PLANT PHYSIOLOGY 2016; 172:2471-2490. [PMID: 27789739 PMCID: PMC5129730 DOI: 10.1104/pp.16.01519] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 10/25/2016] [Indexed: 05/03/2023]
Abstract
A variety of eukaryotes, in particular plants, do not contain the required number of tRNAs to support the translation of mitochondria-encoded genes and thus need to import tRNAs from the cytosol. This study identified two Arabidopsis (Arabidopsis thaliana) proteins, Tric1 and Tric2 (for tRNA import component), which on simultaneous inactivation by T-DNA insertion lines displayed a severely delayed and chlorotic growth phenotype and significantly reduced tRNA import capacity into isolated mitochondria. The predicted tRNA-binding domain of Tric1 and Tric2, a sterile-α-motif at the C-terminal end of the protein, was required to restore tRNA uptake ability in mitochondria of complemented plants. The purified predicted tRNA-binding domain binds the T-arm of the tRNA for alanine with conserved lysine residues required for binding. T-DNA inactivation of both Tric proteins further resulted in an increase in the in vitro rate of in organello protein synthesis, which was mediated by a reorganization of the nuclear transcriptome, in particular of genes encoding a variety of proteins required for mitochondrial gene expression at both the transcriptional and translational levels. The characterization of Tric1/2 provides mechanistic insight into the process of tRNA import into mitochondria and supports the theory that the tRNA import pathway resulted from the repurposing of a preexisting protein import apparatus.
Collapse
Affiliation(s)
- Monika W Murcha
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, Western Australia 6009, Australia (M.W.M., S.K.-J., A.I.);
- Department of Biochemistry and Biophysics, Stockholm University, Arrhenius Laboratories for Natural Sciences, SE-10691 Stockholm, Sweden (P.F.T., B.K., E.G.);
- Department Biology 1-Botany, Biocenter Ludwig-Maximilians-University Munich, 82152 Planegg, Germany (I.L.G., A.S., S.K., K.P., J.S.);
- Munich Centre for Integrated Protein Science, Ludwig-Maximilians-University Munich, 81377 Munich, Germany (I.L.G., A.S., S.K., J.S.);
- Australian Research Council Centre of Excellence in Plant Energy Biology, Department of Animal, Plant, and Soil Science, School of Life Science, La Trobe University, Bundoora, Victoria 3086, Australia (R.N., O.B., J.W.);
- Center for Human and Molecular Biology, Plant Biology, Saarland University, 66123 Saarbruecken, Germany (K.P.); and
- Institut de Biologie Moléculaire des Plantes-Centre National de la Recherche Scientifique, Université de Strasbourg, 67084 Strasbourg cedex, France (L.M.-D., C.M.)
| | - Szymon Kubiszewski-Jakubiak
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, Western Australia 6009, Australia (M.W.M., S.K.-J., A.I.)
- Department of Biochemistry and Biophysics, Stockholm University, Arrhenius Laboratories for Natural Sciences, SE-10691 Stockholm, Sweden (P.F.T., B.K., E.G.)
- Department Biology 1-Botany, Biocenter Ludwig-Maximilians-University Munich, 82152 Planegg, Germany (I.L.G., A.S., S.K., K.P., J.S.)
- Munich Centre for Integrated Protein Science, Ludwig-Maximilians-University Munich, 81377 Munich, Germany (I.L.G., A.S., S.K., J.S.)
- Australian Research Council Centre of Excellence in Plant Energy Biology, Department of Animal, Plant, and Soil Science, School of Life Science, La Trobe University, Bundoora, Victoria 3086, Australia (R.N., O.B., J.W.)
- Center for Human and Molecular Biology, Plant Biology, Saarland University, 66123 Saarbruecken, Germany (K.P.); and
- Institut de Biologie Moléculaire des Plantes-Centre National de la Recherche Scientifique, Université de Strasbourg, 67084 Strasbourg cedex, France (L.M.-D., C.M.)
| | - Pedro F Teixeira
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, Western Australia 6009, Australia (M.W.M., S.K.-J., A.I.)
- Department of Biochemistry and Biophysics, Stockholm University, Arrhenius Laboratories for Natural Sciences, SE-10691 Stockholm, Sweden (P.F.T., B.K., E.G.)
- Department Biology 1-Botany, Biocenter Ludwig-Maximilians-University Munich, 82152 Planegg, Germany (I.L.G., A.S., S.K., K.P., J.S.)
- Munich Centre for Integrated Protein Science, Ludwig-Maximilians-University Munich, 81377 Munich, Germany (I.L.G., A.S., S.K., J.S.)
- Australian Research Council Centre of Excellence in Plant Energy Biology, Department of Animal, Plant, and Soil Science, School of Life Science, La Trobe University, Bundoora, Victoria 3086, Australia (R.N., O.B., J.W.)
- Center for Human and Molecular Biology, Plant Biology, Saarland University, 66123 Saarbruecken, Germany (K.P.); and
- Institut de Biologie Moléculaire des Plantes-Centre National de la Recherche Scientifique, Université de Strasbourg, 67084 Strasbourg cedex, France (L.M.-D., C.M.)
| | - Irene L Gügel
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, Western Australia 6009, Australia (M.W.M., S.K.-J., A.I.)
- Department of Biochemistry and Biophysics, Stockholm University, Arrhenius Laboratories for Natural Sciences, SE-10691 Stockholm, Sweden (P.F.T., B.K., E.G.)
- Department Biology 1-Botany, Biocenter Ludwig-Maximilians-University Munich, 82152 Planegg, Germany (I.L.G., A.S., S.K., K.P., J.S.)
- Munich Centre for Integrated Protein Science, Ludwig-Maximilians-University Munich, 81377 Munich, Germany (I.L.G., A.S., S.K., J.S.)
- Australian Research Council Centre of Excellence in Plant Energy Biology, Department of Animal, Plant, and Soil Science, School of Life Science, La Trobe University, Bundoora, Victoria 3086, Australia (R.N., O.B., J.W.)
- Center for Human and Molecular Biology, Plant Biology, Saarland University, 66123 Saarbruecken, Germany (K.P.); and
- Institut de Biologie Moléculaire des Plantes-Centre National de la Recherche Scientifique, Université de Strasbourg, 67084 Strasbourg cedex, France (L.M.-D., C.M.)
| | - Beata Kmiec
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, Western Australia 6009, Australia (M.W.M., S.K.-J., A.I.)
- Department of Biochemistry and Biophysics, Stockholm University, Arrhenius Laboratories for Natural Sciences, SE-10691 Stockholm, Sweden (P.F.T., B.K., E.G.)
- Department Biology 1-Botany, Biocenter Ludwig-Maximilians-University Munich, 82152 Planegg, Germany (I.L.G., A.S., S.K., K.P., J.S.)
- Munich Centre for Integrated Protein Science, Ludwig-Maximilians-University Munich, 81377 Munich, Germany (I.L.G., A.S., S.K., J.S.)
- Australian Research Council Centre of Excellence in Plant Energy Biology, Department of Animal, Plant, and Soil Science, School of Life Science, La Trobe University, Bundoora, Victoria 3086, Australia (R.N., O.B., J.W.)
- Center for Human and Molecular Biology, Plant Biology, Saarland University, 66123 Saarbruecken, Germany (K.P.); and
- Institut de Biologie Moléculaire des Plantes-Centre National de la Recherche Scientifique, Université de Strasbourg, 67084 Strasbourg cedex, France (L.M.-D., C.M.)
| | - Reena Narsai
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, Western Australia 6009, Australia (M.W.M., S.K.-J., A.I.)
- Department of Biochemistry and Biophysics, Stockholm University, Arrhenius Laboratories for Natural Sciences, SE-10691 Stockholm, Sweden (P.F.T., B.K., E.G.)
- Department Biology 1-Botany, Biocenter Ludwig-Maximilians-University Munich, 82152 Planegg, Germany (I.L.G., A.S., S.K., K.P., J.S.)
- Munich Centre for Integrated Protein Science, Ludwig-Maximilians-University Munich, 81377 Munich, Germany (I.L.G., A.S., S.K., J.S.)
- Australian Research Council Centre of Excellence in Plant Energy Biology, Department of Animal, Plant, and Soil Science, School of Life Science, La Trobe University, Bundoora, Victoria 3086, Australia (R.N., O.B., J.W.)
- Center for Human and Molecular Biology, Plant Biology, Saarland University, 66123 Saarbruecken, Germany (K.P.); and
- Institut de Biologie Moléculaire des Plantes-Centre National de la Recherche Scientifique, Université de Strasbourg, 67084 Strasbourg cedex, France (L.M.-D., C.M.)
| | - Aneta Ivanova
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, Western Australia 6009, Australia (M.W.M., S.K.-J., A.I.)
- Department of Biochemistry and Biophysics, Stockholm University, Arrhenius Laboratories for Natural Sciences, SE-10691 Stockholm, Sweden (P.F.T., B.K., E.G.)
- Department Biology 1-Botany, Biocenter Ludwig-Maximilians-University Munich, 82152 Planegg, Germany (I.L.G., A.S., S.K., K.P., J.S.)
- Munich Centre for Integrated Protein Science, Ludwig-Maximilians-University Munich, 81377 Munich, Germany (I.L.G., A.S., S.K., J.S.)
- Australian Research Council Centre of Excellence in Plant Energy Biology, Department of Animal, Plant, and Soil Science, School of Life Science, La Trobe University, Bundoora, Victoria 3086, Australia (R.N., O.B., J.W.)
- Center for Human and Molecular Biology, Plant Biology, Saarland University, 66123 Saarbruecken, Germany (K.P.); and
- Institut de Biologie Moléculaire des Plantes-Centre National de la Recherche Scientifique, Université de Strasbourg, 67084 Strasbourg cedex, France (L.M.-D., C.M.)
| | - Cyrille Megel
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, Western Australia 6009, Australia (M.W.M., S.K.-J., A.I.)
- Department of Biochemistry and Biophysics, Stockholm University, Arrhenius Laboratories for Natural Sciences, SE-10691 Stockholm, Sweden (P.F.T., B.K., E.G.)
- Department Biology 1-Botany, Biocenter Ludwig-Maximilians-University Munich, 82152 Planegg, Germany (I.L.G., A.S., S.K., K.P., J.S.)
- Munich Centre for Integrated Protein Science, Ludwig-Maximilians-University Munich, 81377 Munich, Germany (I.L.G., A.S., S.K., J.S.)
- Australian Research Council Centre of Excellence in Plant Energy Biology, Department of Animal, Plant, and Soil Science, School of Life Science, La Trobe University, Bundoora, Victoria 3086, Australia (R.N., O.B., J.W.)
- Center for Human and Molecular Biology, Plant Biology, Saarland University, 66123 Saarbruecken, Germany (K.P.); and
- Institut de Biologie Moléculaire des Plantes-Centre National de la Recherche Scientifique, Université de Strasbourg, 67084 Strasbourg cedex, France (L.M.-D., C.M.)
| | - Annette Schock
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, Western Australia 6009, Australia (M.W.M., S.K.-J., A.I.)
- Department of Biochemistry and Biophysics, Stockholm University, Arrhenius Laboratories for Natural Sciences, SE-10691 Stockholm, Sweden (P.F.T., B.K., E.G.)
- Department Biology 1-Botany, Biocenter Ludwig-Maximilians-University Munich, 82152 Planegg, Germany (I.L.G., A.S., S.K., K.P., J.S.)
- Munich Centre for Integrated Protein Science, Ludwig-Maximilians-University Munich, 81377 Munich, Germany (I.L.G., A.S., S.K., J.S.)
- Australian Research Council Centre of Excellence in Plant Energy Biology, Department of Animal, Plant, and Soil Science, School of Life Science, La Trobe University, Bundoora, Victoria 3086, Australia (R.N., O.B., J.W.)
- Center for Human and Molecular Biology, Plant Biology, Saarland University, 66123 Saarbruecken, Germany (K.P.); and
- Institut de Biologie Moléculaire des Plantes-Centre National de la Recherche Scientifique, Université de Strasbourg, 67084 Strasbourg cedex, France (L.M.-D., C.M.)
| | - Sabrina Kraus
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, Western Australia 6009, Australia (M.W.M., S.K.-J., A.I.)
- Department of Biochemistry and Biophysics, Stockholm University, Arrhenius Laboratories for Natural Sciences, SE-10691 Stockholm, Sweden (P.F.T., B.K., E.G.)
- Department Biology 1-Botany, Biocenter Ludwig-Maximilians-University Munich, 82152 Planegg, Germany (I.L.G., A.S., S.K., K.P., J.S.)
- Munich Centre for Integrated Protein Science, Ludwig-Maximilians-University Munich, 81377 Munich, Germany (I.L.G., A.S., S.K., J.S.)
- Australian Research Council Centre of Excellence in Plant Energy Biology, Department of Animal, Plant, and Soil Science, School of Life Science, La Trobe University, Bundoora, Victoria 3086, Australia (R.N., O.B., J.W.)
- Center for Human and Molecular Biology, Plant Biology, Saarland University, 66123 Saarbruecken, Germany (K.P.); and
- Institut de Biologie Moléculaire des Plantes-Centre National de la Recherche Scientifique, Université de Strasbourg, 67084 Strasbourg cedex, France (L.M.-D., C.M.)
| | - Oliver Berkowitz
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, Western Australia 6009, Australia (M.W.M., S.K.-J., A.I.)
- Department of Biochemistry and Biophysics, Stockholm University, Arrhenius Laboratories for Natural Sciences, SE-10691 Stockholm, Sweden (P.F.T., B.K., E.G.)
- Department Biology 1-Botany, Biocenter Ludwig-Maximilians-University Munich, 82152 Planegg, Germany (I.L.G., A.S., S.K., K.P., J.S.)
- Munich Centre for Integrated Protein Science, Ludwig-Maximilians-University Munich, 81377 Munich, Germany (I.L.G., A.S., S.K., J.S.)
- Australian Research Council Centre of Excellence in Plant Energy Biology, Department of Animal, Plant, and Soil Science, School of Life Science, La Trobe University, Bundoora, Victoria 3086, Australia (R.N., O.B., J.W.)
- Center for Human and Molecular Biology, Plant Biology, Saarland University, 66123 Saarbruecken, Germany (K.P.); and
- Institut de Biologie Moléculaire des Plantes-Centre National de la Recherche Scientifique, Université de Strasbourg, 67084 Strasbourg cedex, France (L.M.-D., C.M.)
| | - Elzbieta Glaser
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, Western Australia 6009, Australia (M.W.M., S.K.-J., A.I.)
- Department of Biochemistry and Biophysics, Stockholm University, Arrhenius Laboratories for Natural Sciences, SE-10691 Stockholm, Sweden (P.F.T., B.K., E.G.)
- Department Biology 1-Botany, Biocenter Ludwig-Maximilians-University Munich, 82152 Planegg, Germany (I.L.G., A.S., S.K., K.P., J.S.)
- Munich Centre for Integrated Protein Science, Ludwig-Maximilians-University Munich, 81377 Munich, Germany (I.L.G., A.S., S.K., J.S.)
- Australian Research Council Centre of Excellence in Plant Energy Biology, Department of Animal, Plant, and Soil Science, School of Life Science, La Trobe University, Bundoora, Victoria 3086, Australia (R.N., O.B., J.W.)
- Center for Human and Molecular Biology, Plant Biology, Saarland University, 66123 Saarbruecken, Germany (K.P.); and
- Institut de Biologie Moléculaire des Plantes-Centre National de la Recherche Scientifique, Université de Strasbourg, 67084 Strasbourg cedex, France (L.M.-D., C.M.)
| | - Katrin Philippar
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, Western Australia 6009, Australia (M.W.M., S.K.-J., A.I.)
- Department of Biochemistry and Biophysics, Stockholm University, Arrhenius Laboratories for Natural Sciences, SE-10691 Stockholm, Sweden (P.F.T., B.K., E.G.)
- Department Biology 1-Botany, Biocenter Ludwig-Maximilians-University Munich, 82152 Planegg, Germany (I.L.G., A.S., S.K., K.P., J.S.)
- Munich Centre for Integrated Protein Science, Ludwig-Maximilians-University Munich, 81377 Munich, Germany (I.L.G., A.S., S.K., J.S.)
- Australian Research Council Centre of Excellence in Plant Energy Biology, Department of Animal, Plant, and Soil Science, School of Life Science, La Trobe University, Bundoora, Victoria 3086, Australia (R.N., O.B., J.W.)
- Center for Human and Molecular Biology, Plant Biology, Saarland University, 66123 Saarbruecken, Germany (K.P.); and
- Institut de Biologie Moléculaire des Plantes-Centre National de la Recherche Scientifique, Université de Strasbourg, 67084 Strasbourg cedex, France (L.M.-D., C.M.)
| | - Laurence Maréchal-Drouard
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, Western Australia 6009, Australia (M.W.M., S.K.-J., A.I.)
- Department of Biochemistry and Biophysics, Stockholm University, Arrhenius Laboratories for Natural Sciences, SE-10691 Stockholm, Sweden (P.F.T., B.K., E.G.)
- Department Biology 1-Botany, Biocenter Ludwig-Maximilians-University Munich, 82152 Planegg, Germany (I.L.G., A.S., S.K., K.P., J.S.)
- Munich Centre for Integrated Protein Science, Ludwig-Maximilians-University Munich, 81377 Munich, Germany (I.L.G., A.S., S.K., J.S.)
- Australian Research Council Centre of Excellence in Plant Energy Biology, Department of Animal, Plant, and Soil Science, School of Life Science, La Trobe University, Bundoora, Victoria 3086, Australia (R.N., O.B., J.W.)
- Center for Human and Molecular Biology, Plant Biology, Saarland University, 66123 Saarbruecken, Germany (K.P.); and
- Institut de Biologie Moléculaire des Plantes-Centre National de la Recherche Scientifique, Université de Strasbourg, 67084 Strasbourg cedex, France (L.M.-D., C.M.)
| | - Jürgen Soll
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, Western Australia 6009, Australia (M.W.M., S.K.-J., A.I.)
- Department of Biochemistry and Biophysics, Stockholm University, Arrhenius Laboratories for Natural Sciences, SE-10691 Stockholm, Sweden (P.F.T., B.K., E.G.)
- Department Biology 1-Botany, Biocenter Ludwig-Maximilians-University Munich, 82152 Planegg, Germany (I.L.G., A.S., S.K., K.P., J.S.)
- Munich Centre for Integrated Protein Science, Ludwig-Maximilians-University Munich, 81377 Munich, Germany (I.L.G., A.S., S.K., J.S.)
- Australian Research Council Centre of Excellence in Plant Energy Biology, Department of Animal, Plant, and Soil Science, School of Life Science, La Trobe University, Bundoora, Victoria 3086, Australia (R.N., O.B., J.W.)
- Center for Human and Molecular Biology, Plant Biology, Saarland University, 66123 Saarbruecken, Germany (K.P.); and
- Institut de Biologie Moléculaire des Plantes-Centre National de la Recherche Scientifique, Université de Strasbourg, 67084 Strasbourg cedex, France (L.M.-D., C.M.)
| | - James Whelan
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, Western Australia 6009, Australia (M.W.M., S.K.-J., A.I.);
- Department of Biochemistry and Biophysics, Stockholm University, Arrhenius Laboratories for Natural Sciences, SE-10691 Stockholm, Sweden (P.F.T., B.K., E.G.);
- Department Biology 1-Botany, Biocenter Ludwig-Maximilians-University Munich, 82152 Planegg, Germany (I.L.G., A.S., S.K., K.P., J.S.);
- Munich Centre for Integrated Protein Science, Ludwig-Maximilians-University Munich, 81377 Munich, Germany (I.L.G., A.S., S.K., J.S.);
- Australian Research Council Centre of Excellence in Plant Energy Biology, Department of Animal, Plant, and Soil Science, School of Life Science, La Trobe University, Bundoora, Victoria 3086, Australia (R.N., O.B., J.W.);
- Center for Human and Molecular Biology, Plant Biology, Saarland University, 66123 Saarbruecken, Germany (K.P.); and
- Institut de Biologie Moléculaire des Plantes-Centre National de la Recherche Scientifique, Université de Strasbourg, 67084 Strasbourg cedex, France (L.M.-D., C.M.)
| |
Collapse
|
38
|
Garg SG, Gould SB. The Role of Charge in Protein Targeting Evolution. Trends Cell Biol 2016; 26:894-905. [PMID: 27524662 DOI: 10.1016/j.tcb.2016.07.001] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 06/28/2016] [Accepted: 07/11/2016] [Indexed: 12/31/2022]
Abstract
Two eukaryotic compartments are of endosymbiotic origin, the mitochondrion and plastid. These organelles need to import hundreds of proteins from the cytosol. The import machineries of both are of independent origin, but function in a similar fashion and recognize N-terminal targeting sequences that also share similarities. Targeting, however, is generally specific, even though plastid targeting evolved in the presence of established mitochondrial targeting. Here we review current advances on protein import into mitochondria and plastids from diverse eukaryotic lineages and highlight the impact of charged amino acids in targeting. Their presence or absence alone can determine localization, and comparisons across diverse eukaryotes, and their different types of mitochondria and plastids, uncover unexplored avenues of protein import research.
Collapse
Affiliation(s)
- Sriram G Garg
- Institute for Molecular Evolution, University of Düsseldorf, 40225 Düsseldorf, Germany
| | - Sven B Gould
- Institute for Molecular Evolution, University of Düsseldorf, 40225 Düsseldorf, Germany.
| |
Collapse
|
39
|
Mueller SJ, Hoernstein SNW, Reski R. The mitochondrial proteome of the moss Physcomitrella patens. Mitochondrion 2016; 33:38-44. [PMID: 27450107 DOI: 10.1016/j.mito.2016.07.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 07/08/2016] [Accepted: 07/18/2016] [Indexed: 01/08/2023]
Abstract
Extant basal land plants are routinely used to trace plant evolution and to track strategies for high abiotic stress resistance. Whereas the structure of mitochondrial genomes and RNA editing are already well studied, mitochondrial proteome research is restricted to a few data sets. While the mitochondrial proteome of the model moss Physcomitrella patens is covered to an estimated 15-25% by proteomic evidence to date, the available data have already provided insights into the evolution of metabolic compartmentation, dual targeting and mitochondrial heterogeneity. This review summarizes the current knowledge about the mitochondrial proteome of P. patens, and gives a perspective on its use as a mitochondrial model system. Its amenability to gene editing, metabolic labelling as well as fluorescence microscopy provides a unique platform to study open questions in mitochondrial biology, such as regulation of protein stability, responses to stress and connectivity to other organelles. Future challenges will include improving the proteomic resources for P. patens, and to link protein inventories and modifications as well as evolutionary differences to the functional level.
Collapse
Affiliation(s)
- Stefanie J Mueller
- INRES-Chemical Signalling University of Bonn, Friedrich-Ebert-Allee 144, DE-53113 Bonn, Germany.
| | - Sebastian N W Hoernstein
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr.1, DE-79104 Freiburg, Germany.
| | - Ralf Reski
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr.1, DE-79104 Freiburg, Germany; BIOSS - Centre for Biological Signalling Studies, DE-79104 Freiburg, Germany.
| |
Collapse
|
40
|
Maruta T, Sawa Y, Shigeoka S, Ishikawa T. Diversity and Evolution of Ascorbate Peroxidase Functions in Chloroplasts: More Than Just a Classical Antioxidant Enzyme? PLANT & CELL PHYSIOLOGY 2016; 57:1377-1386. [PMID: 26738546 DOI: 10.1093/pcp/pcv203] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 12/15/2015] [Indexed: 05/26/2023]
Abstract
Reactive oxygen species (ROS) have dual functions in plant cells as cytotoxic molecules and emergency signals. The balance between the production and scavenging of these molecules in chloroplasts, major sites for the production of ROS, is one of the key determinants for plant acclimation to stress conditions. The water-water cycle is a crucial regulator of ROS levels in chloroplasts. In this cycle, the stromal and thylakoid membrane-attached isoforms of ascorbate peroxidase (sAPX and tAPX, respectively) are involved in the metabolism of H2O2 Current genome and phylogenetic analyses suggest that the first monofunctional APX was generated as sAPX in unicellular green algae, and that tAPX occurred in multicellular charophytes during plant evolution. Chloroplastic APXs, especially tAPX, have been considered to be the source of a bottleneck in the water-water cycle, at least in higher plants, because of their high susceptibility to H2O2 A number of studies have succeeded in improving plant stress resistance by reinforcing the fragile characteristics of the enzymes. However, researchers have unexpectedly failed to find a 'stress-sensitive phenotype' among loss-of-function mutants, at least in laboratory conditions. Interestingly, the susceptibility of enzymes to H2O2 may have been acquired during plant evolution, thereby allowing for the flexible use of H2O2 as a signaling molecule in plants, and this is supported by growing lines of evidence for the physiological significance of chloroplastic H2O2 as a retrograde signal in plant stress responses. By overviewing historical, biochemical, physiological and genetic studies, we herein discuss the diverse functions of chloroplastic APXs as antioxidant enzymes and signaling modulators.
Collapse
Affiliation(s)
- Takanori Maruta
- Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University, 1060 Nishikawatsu, Matsue, Shimane, 690-8504 Japan
- T.M. currently holds an additional post at the Department of Plant Systems Biology, VIB/Ghent University (Technologiepark 927, 9052 Ghent, Belgium)
| | - Yoshihiro Sawa
- Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University, 1060 Nishikawatsu, Matsue, Shimane, 690-8504 Japan
| | - Shigeru Shigeoka
- Department of Advanced Bioscience, Faculty of Agriculture, Kinki University, 3327-204 Nakamachi, Nara, 631-8505 Japan
| | - Takahiro Ishikawa
- Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University, 1060 Nishikawatsu, Matsue, Shimane, 690-8504 Japan
| |
Collapse
|
41
|
Wang Y, Lyu W, Berkowitz O, Radomiljac JD, Law SR, Murcha MW, Carrie C, Teixeira PF, Kmiec B, Duncan O, Van Aken O, Narsai R, Glaser E, Huang S, Roessner U, Millar AH, Whelan J. Inactivation of Mitochondrial Complex I Induces the Expression of a Twin Cysteine Protein that Targets and Affects Cytosolic, Chloroplastidic and Mitochondrial Function. MOLECULAR PLANT 2016; 9:696-710. [PMID: 26829715 DOI: 10.1016/j.molp.2016.01.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Revised: 12/09/2015] [Accepted: 01/06/2016] [Indexed: 06/05/2023]
Abstract
At12Cys-1 (At5g64400) and At12Cys-2 (At5g09570) are two closely related isogenes that encode small, twin cysteine proteins, typically located in mitochondria. At12Cys-2 transcript is induced in a variety of mutants with disrupted mitochondrial proteins, but an increase in At12Cys protein is only detected in mutants with reduced mitochondrial complex I abundance. Induction of At12Cys protein in mutants that lack mitochondrial complex I is accompanied by At12Cys protein located in mitochondria, chloroplasts, and the cytosol. Biochemical analyses revealed that even single gene deletions, i.e., At12cys-1 or At12cys-2, have an effect on mitochondrial and chloroplast functions. However, only double mutants, i.e., At12cys-1:At12cys-2, affect the abundance of protein and mRNA transcripts encoding translation elongation factors as well as rRNA abundance. Blue native PAGE showed that At12Cys co-migrated with mitochondrial supercomplex I + III. Likewise, deletion of both At12cys-1 and At12cys-2 genes, but not single gene deletions, results in enhanced tolerance to drought and light stress and increased anti-oxidant capacity. The induction and multiple localization of At12Cys upon a reduction in complex I abundance provides a mechanism to specifically signal mitochondrial dysfunction to the cytosol and then beyond to other organelles in the cell.
Collapse
Affiliation(s)
- Yan Wang
- Department of Animal, Plant and Soil Science, Australian Research Council Centre of Excellence in Plant Energy Biology, School of Life Science, La Trobe University, Bundoora, VIC 3086, Australia
| | - Wenhui Lyu
- Department of Animal, Plant and Soil Science, Australian Research Council Centre of Excellence in Plant Energy Biology, School of Life Science, La Trobe University, Bundoora, VIC 3086, Australia
| | - Oliver Berkowitz
- Department of Animal, Plant and Soil Science, Australian Research Council Centre of Excellence in Plant Energy Biology, School of Life Science, La Trobe University, Bundoora, VIC 3086, Australia
| | - Jordan D Radomiljac
- Department of Animal, Plant and Soil Science, Australian Research Council Centre of Excellence in Plant Energy Biology, School of Life Science, La Trobe University, Bundoora, VIC 3086, Australia
| | - Simon R Law
- Umeå Plant Science Centre (UPSC), Faculty of Science and Technology, Umeå University, Umeå, Sweden
| | - Monika W Murcha
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Chris Carrie
- Department of Biology I, Botany, Ludwig-Maximilians-Universität München, Großhaderner Strasse 2-4, 82152 Planegg-Martinsried, Germany
| | - Pedro F Teixeira
- Department of Biochemistry and Biophysics, Stockholm University, Arrhenius Laboratories for Natural Sciences, 10691 Stockholm, Sweden
| | - Beata Kmiec
- Department of Biochemistry and Biophysics, Stockholm University, Arrhenius Laboratories for Natural Sciences, 10691 Stockholm, Sweden
| | - Owen Duncan
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Olivier Van Aken
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Reena Narsai
- Department of Animal, Plant and Soil Science, Australian Research Council Centre of Excellence in Plant Energy Biology, School of Life Science, La Trobe University, Bundoora, VIC 3086, Australia
| | - Elzbieta Glaser
- Department of Biochemistry and Biophysics, Stockholm University, Arrhenius Laboratories for Natural Sciences, 10691 Stockholm, Sweden
| | - Shaobai Huang
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Ute Roessner
- School of BioSciences, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - A Harvey Millar
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - James Whelan
- Department of Animal, Plant and Soil Science, Australian Research Council Centre of Excellence in Plant Energy Biology, School of Life Science, La Trobe University, Bundoora, VIC 3086, Australia.
| |
Collapse
|
42
|
Noctor G, Mhamdi A, Foyer CH. Oxidative stress and antioxidative systems: recipes for successful data collection and interpretation. PLANT, CELL & ENVIRONMENT 2016; 39:1140-60. [PMID: 26864619 DOI: 10.1111/pce.12726] [Citation(s) in RCA: 194] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 01/25/2016] [Accepted: 01/31/2016] [Indexed: 05/18/2023]
Abstract
Oxidative stress and reactive oxygen species (ROS) are common to many fundamental responses of plants. Enormous and ever-growing interest has focused on this research area, leading to an extensive literature that documents the tremendous progress made in recent years. As in other areas of plant biology, advances have been greatly facilitated by developments in genomics-dependent technologies and the application of interdisciplinary techniques that generate information at multiple levels. At the same time, advances in understanding ROS are fundamentally reliant on the use of biochemical and cell biology techniques that are specific to the study of oxidative stress. It is therefore timely to revisit these approaches with the aim of providing a guide to convenient methods and assisting interested researchers in avoiding potential pitfalls. Our critical overview of currently popular methodologies includes a detailed discussion of approaches used to generate oxidative stress, measurements of ROS themselves, determination of major antioxidant metabolites, assays of antioxidative enzymes and marker transcripts for oxidative stress. We consider the applicability of metabolomics, proteomics and transcriptomics approaches and discuss markers such as damage to DNA and RNA. Our discussion of current methodologies is firmly anchored to future technological developments within this popular research field.
Collapse
Affiliation(s)
- Graham Noctor
- Institute of Plant Sciences Paris Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Saclay, Bâtiment 630, 91405, Orsay, France
- Institute of Plant Sciences Paris-Saclay IPS2, Paris Diderot, Sorbonne Paris-Cité, Bâtiment 630, 91405, Orsay, France
| | - Amna Mhamdi
- Institute of Plant Sciences Paris Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Saclay, Bâtiment 630, 91405, Orsay, France
- Institute of Plant Sciences Paris-Saclay IPS2, Paris Diderot, Sorbonne Paris-Cité, Bâtiment 630, 91405, Orsay, France
- Department of Plant Biotechnology and Bioinformatics, Ghent University, VIB, Department of Plant Systems Biology, Technologie Park 927, B-9052, Ghent, Belgium
| | - Christine H Foyer
- Centre for Plant Sciences, School of Biology and Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|
43
|
Hoernstein SNW, Mueller SJ, Fiedler K, Schuelke M, Vanselow JT, Schuessele C, Lang D, Nitschke R, Igloi GL, Schlosser A, Reski R. Identification of Targets and Interaction Partners of Arginyl-tRNA Protein Transferase in the Moss Physcomitrella patens. Mol Cell Proteomics 2016; 15:1808-22. [PMID: 27067052 DOI: 10.1074/mcp.m115.057190] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Indexed: 12/15/2022] Open
Abstract
Protein arginylation is a posttranslational modification of both N-terminal amino acids of proteins and sidechain carboxylates and can be crucial for viability and physiology in higher eukaryotes. The lack of arginylation causes severe developmental defects in moss, affects the low oxygen response in Arabidopsis thaliana and is embryo lethal in Drosophila and in mice. Although several studies investigated impact and function of the responsible enzyme, the arginyl-tRNA protein transferase (ATE) in plants, identification of arginylated proteins by mass spectrometry was not hitherto achieved. In the present study, we report the identification of targets and interaction partners of ATE in the model plant Physcomitrella patens by mass spectrometry, employing two different immuno-affinity strategies and a recently established transgenic ATE:GUS reporter line (Schuessele et al., 2016 New Phytol. , DOI: 10.1111/nph.13656). Here we use a commercially available antibody against the fused reporter protein (β-glucuronidase) to pull down ATE and its interacting proteins and validate its in vivo interaction with a class I small heatshock protein via Förster resonance energy transfer (FRET). Additionally, we apply and modify a method that already successfully identified arginylated proteins from mouse proteomes by using custom-made antibodies specific for N-terminal arginine. As a result, we identify four arginylated proteins from Physcomitrella patens with high confidence.Data are available via ProteomeXchange with identifier PXD003228 and PXD003232.
Collapse
Affiliation(s)
- Sebastian N W Hoernstein
- From the ‡Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104 Freiburg, Germany
| | - Stefanie J Mueller
- From the ‡Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104 Freiburg, Germany
| | - Kathrin Fiedler
- From the ‡Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104 Freiburg, Germany
| | - Marc Schuelke
- From the ‡Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104 Freiburg, Germany
| | - Jens T Vanselow
- §Rudolf Virchow Center for Experimental Biomedicine, University of Wuerzburg, Josef-Schneider-Str. 2, 97080 Wuerzburg, Germany
| | - Christian Schuessele
- From the ‡Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104 Freiburg, Germany
| | - Daniel Lang
- From the ‡Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104 Freiburg, Germany
| | - Roland Nitschke
- ¶ZBSA - Centre for Biological Systems Analysis, Life Imaging Center, University Freiburg, Habsburgerstr. 49, 79104 Freiburg, Germany; ‡‡BIOSS - Centre for Biological Signalling Studies, 79104 Freiburg, Germany
| | - Gabor L Igloi
- ‖Institute of Biology 3, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104 Freiburg, Germany
| | - Andreas Schlosser
- §Rudolf Virchow Center for Experimental Biomedicine, University of Wuerzburg, Josef-Schneider-Str. 2, 97080 Wuerzburg, Germany
| | - Ralf Reski
- From the ‡Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104 Freiburg, Germany; ¶ZBSA - Centre for Biological Systems Analysis, Life Imaging Center, University Freiburg, Habsburgerstr. 49, 79104 Freiburg, Germany; **FRIAS - Freiburg Institute for Advanced Studies, 79104 Freiburg, Germany; ‡‡BIOSS - Centre for Biological Signalling Studies, 79104 Freiburg, Germany
| |
Collapse
|
44
|
Narsai R. Databases and informatics resources for analysis of plant mitochondria. Methods Mol Biol 2016; 1305:263-79. [PMID: 25910741 DOI: 10.1007/978-1-4939-2639-8_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
As more omics data is generated from various plant species, it is becoming increasingly possible to carry out a range of in silico analyses to gain insight into mitochondrial function in plants. From the use of software tools for DNA motif analyses and transcript expression visualization to proteomic and subcellular localization resources, it is possible to carry out significant in silico analyses that are highly informative to researchers and can help to guide experimental design for further mitochondrial study. Databases specific to plant mitochondrial analyses have been developed in recent years, revealing mitochondria-specific information. This chapter outlines the databases and informatics resources that are useful for plant mitochondrial studies, with specific examples presented to indicate how these resources can be used to gain insight into plant mitochondrial function(s).
Collapse
Affiliation(s)
- Reena Narsai
- Department of Botany, Australian Research Council Centre of Excellence Plant Energy Biology, School of Life Sciences, La Trobe University, 5 Ring Road, Bundoora, VIC, 3086, Australia,
| |
Collapse
|
45
|
Wu TM, Lin KC, Liau WS, Chao YY, Yang LH, Chen SY, Lu CA, Hong CY. A set of GFP-based organelle marker lines combined with DsRed-based gateway vectors for subcellular localization study in rice (Oryza sativa L.). PLANT MOLECULAR BIOLOGY 2016; 90:107-15. [PMID: 26519260 DOI: 10.1007/s11103-015-0397-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 10/25/2015] [Indexed: 05/18/2023]
Abstract
In the post-genomic era, many useful tools have been developed to accelerate the investigation of gene functions. Fluorescent proteins have been widely used as protein tags for studying the subcellular localization of proteins in plants. Several fluorescent organelle marker lines have been generated in dicot plants; however, useful and reliable fluorescent organelle marker lines are lacking in the monocot model rice. Here, we developed eight different GFP-based organelle markers in transgenic rice and created a set of DsRed-based gateway vectors for combining with the marker lines. Two mitochondrial-localized rice ascorbate peroxidase genes fused to DsRed and successfully co-localized with mitochondrial-targeted marker lines verified the practical use of this system. The co-localization of GFP-fusion marker lines and DsRed-fusion proteins provide a convenient platform for in vivo or in vitro analysis of subcellular localization of rice proteins.
Collapse
Affiliation(s)
- Tsung-Meng Wu
- Department of Agricultural Chemistry, College of Bioresources and Agriculture, National Taiwan University, Taipei, 10617, Taiwan, ROC
- Department of Aquaculture, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan, ROC
| | - Ke-Chun Lin
- Department of Agricultural Chemistry, College of Bioresources and Agriculture, National Taiwan University, Taipei, 10617, Taiwan, ROC
| | - Wei-Shiang Liau
- Department of Agricultural Chemistry, College of Bioresources and Agriculture, National Taiwan University, Taipei, 10617, Taiwan, ROC
| | - Yun-Yang Chao
- Department of Agricultural Chemistry, College of Bioresources and Agriculture, National Taiwan University, Taipei, 10617, Taiwan, ROC
- Department of Plant Industry, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan, ROC
| | - Ling-Hung Yang
- Department of Agricultural Chemistry, College of Bioresources and Agriculture, National Taiwan University, Taipei, 10617, Taiwan, ROC
| | - Szu-Yun Chen
- Department of Agricultural Chemistry, College of Bioresources and Agriculture, National Taiwan University, Taipei, 10617, Taiwan, ROC
| | - Chung-An Lu
- Department of Life Sciences, National Central University, Jhongli City, Taoyuan County, 320, Taiwan, ROC
| | - Chwan-Yang Hong
- Department of Agricultural Chemistry, College of Bioresources and Agriculture, National Taiwan University, Taipei, 10617, Taiwan, ROC.
| |
Collapse
|
46
|
Law YS, Zhang R, Guan X, Cheng S, Sun F, Duncan O, Murcha MW, Whelan J, Lim BL. Phosphorylation and Dephosphorylation of the Presequence of Precursor MULTIPLE ORGANELLAR RNA EDITING FACTOR3 during Import into Mitochondria from Arabidopsis. PLANT PHYSIOLOGY 2015; 169:1344-55. [PMID: 26304849 PMCID: PMC4587475 DOI: 10.1104/pp.15.01115] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 08/21/2015] [Indexed: 05/18/2023]
Abstract
The nucleus-encoded mitochondria-targeted proteins, multiple organellar RNA editing factors (MORF3, MORF5, and MORF6), interact with Arabidopsis (Arabidopsis thaliana) PURPLE ACID PHOSPHATASE2 (AtPAP2) located on the chloroplast and mitochondrial outer membranes in a presequence-dependent manner. Phosphorylation of the presequence of the precursor MORF3 (pMORF3) by endogenous kinases in wheat germ translation lysate, leaf extracts, or STY kinases, but not in rabbit reticulocyte translation lysate, resulted in the inhibition of protein import into mitochondria. This inhibition of import could be overcome by altering threonine/serine residues to alanine on the presequence, thus preventing phosphorylation. Phosphorylated pMORF3, but not the phosphorylation-deficient pMORF3, can form a complex with 14-3-3 proteins and HEAT SHOCK PROTEIN70. The phosphorylation-deficient mutant of pMORF3 also displayed faster rates of import when translated in wheat germ lysates. Mitochondria isolated from plants with altered amounts of AtPAP2 displayed altered protein import kinetics. The import rate of pMORF3 synthesized in wheat germ translation lysate into pap2 mitochondria was slower than that into wild-type mitochondria, and this rate disparity was not seen for pMORF3 synthesized in rabbit reticulocyte translation lysate, the latter translation lysate largely deficient in kinase activity. Taken together, these results support a role for the phosphorylation and dephosphorylation of pMORF3 during the import into plant mitochondria. These results suggest that kinases, possibly STY kinases, and AtPAP2 are involved in the import of protein into both mitochondria and chloroplasts and provide a mechanism by which the import of proteins into both organelles may be coordinated.
Collapse
Affiliation(s)
- Yee-Song Law
- School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong, China (Y.-S.L., R.Z., X.G., S.C., F.S., B.L.L.);Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, Western Australia 6009, Australia (O.D., M.W.M.);Department of Animal, Plant, and Soil Science, School of Life Science, Australian Research Council Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora, Victoria 3086, Australia (J.W.); andState Key Laboratory of Agrobiotechnology, Chinese University of Hong Kong, Shatin, Hong Kong, China (B.L.L.)
| | - Renshan Zhang
- School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong, China (Y.-S.L., R.Z., X.G., S.C., F.S., B.L.L.);Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, Western Australia 6009, Australia (O.D., M.W.M.);Department of Animal, Plant, and Soil Science, School of Life Science, Australian Research Council Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora, Victoria 3086, Australia (J.W.); andState Key Laboratory of Agrobiotechnology, Chinese University of Hong Kong, Shatin, Hong Kong, China (B.L.L.)
| | - Xiaoqian Guan
- School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong, China (Y.-S.L., R.Z., X.G., S.C., F.S., B.L.L.);Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, Western Australia 6009, Australia (O.D., M.W.M.);Department of Animal, Plant, and Soil Science, School of Life Science, Australian Research Council Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora, Victoria 3086, Australia (J.W.); andState Key Laboratory of Agrobiotechnology, Chinese University of Hong Kong, Shatin, Hong Kong, China (B.L.L.)
| | - Shifeng Cheng
- School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong, China (Y.-S.L., R.Z., X.G., S.C., F.S., B.L.L.);Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, Western Australia 6009, Australia (O.D., M.W.M.);Department of Animal, Plant, and Soil Science, School of Life Science, Australian Research Council Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora, Victoria 3086, Australia (J.W.); andState Key Laboratory of Agrobiotechnology, Chinese University of Hong Kong, Shatin, Hong Kong, China (B.L.L.)
| | - Feng Sun
- School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong, China (Y.-S.L., R.Z., X.G., S.C., F.S., B.L.L.);Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, Western Australia 6009, Australia (O.D., M.W.M.);Department of Animal, Plant, and Soil Science, School of Life Science, Australian Research Council Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora, Victoria 3086, Australia (J.W.); andState Key Laboratory of Agrobiotechnology, Chinese University of Hong Kong, Shatin, Hong Kong, China (B.L.L.)
| | - Owen Duncan
- School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong, China (Y.-S.L., R.Z., X.G., S.C., F.S., B.L.L.);Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, Western Australia 6009, Australia (O.D., M.W.M.);Department of Animal, Plant, and Soil Science, School of Life Science, Australian Research Council Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora, Victoria 3086, Australia (J.W.); andState Key Laboratory of Agrobiotechnology, Chinese University of Hong Kong, Shatin, Hong Kong, China (B.L.L.)
| | - Monika W Murcha
- School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong, China (Y.-S.L., R.Z., X.G., S.C., F.S., B.L.L.);Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, Western Australia 6009, Australia (O.D., M.W.M.);Department of Animal, Plant, and Soil Science, School of Life Science, Australian Research Council Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora, Victoria 3086, Australia (J.W.); andState Key Laboratory of Agrobiotechnology, Chinese University of Hong Kong, Shatin, Hong Kong, China (B.L.L.)
| | - James Whelan
- School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong, China (Y.-S.L., R.Z., X.G., S.C., F.S., B.L.L.);Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, Western Australia 6009, Australia (O.D., M.W.M.);Department of Animal, Plant, and Soil Science, School of Life Science, Australian Research Council Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora, Victoria 3086, Australia (J.W.); andState Key Laboratory of Agrobiotechnology, Chinese University of Hong Kong, Shatin, Hong Kong, China (B.L.L.)
| | - Boon Leong Lim
- School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong, China (Y.-S.L., R.Z., X.G., S.C., F.S., B.L.L.);Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, Western Australia 6009, Australia (O.D., M.W.M.);Department of Animal, Plant, and Soil Science, School of Life Science, Australian Research Council Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora, Victoria 3086, Australia (J.W.); andState Key Laboratory of Agrobiotechnology, Chinese University of Hong Kong, Shatin, Hong Kong, China (B.L.L.)
| |
Collapse
|
47
|
Shigeoka S, Maruta T. Cellular redox regulation, signaling, and stress response in plants. Biosci Biotechnol Biochem 2015; 78:1457-70. [PMID: 25209493 DOI: 10.1080/09168451.2014.942254] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cellular and organellar redox states, which are characterized by the balance between oxidant and antioxidant pool sizes, play signaling roles in the regulation of gene expression and protein function in a wide variety of plant physiological processes including stress acclimation. Reactive oxygen species (ROS) and ascorbic acid (AsA) are the most abundant oxidants and antioxidants, respectively, in plant cells; therefore, the metabolism of these redox compounds must be strictly and spatiotemporally controlled. In this review, we provided an overview of our previous studies as well as recent advances in (1) the molecular mechanisms and regulation of AsA biosynthesis, (2) the molecular and genetic properties of ascorbate peroxidases, and (3) stress acclimation via ROS-derived oxidative/redox signaling pathways, and discussed future perspectives in this field.
Collapse
Affiliation(s)
- Shigeru Shigeoka
- a Faculty of Agriculture, Department of Advanced Bioscience , Kinki University , Nara , Japan
| | | |
Collapse
|
48
|
Gile GH, Moog D, Slamovits CH, Maier UG, Archibald JM. Dual Organellar Targeting of Aminoacyl-tRNA Synthetases in Diatoms and Cryptophytes. Genome Biol Evol 2015; 7:1728-42. [PMID: 25994931 PMCID: PMC4494062 DOI: 10.1093/gbe/evv095] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The internal compartmentation of eukaryotic cells not only allows separation of biochemical processes but it also creates the requirement for systems that can selectively transport proteins across the membrane boundaries. Although most proteins function in a single subcellular compartment, many are able to enter two or more compartments, a phenomenon known as dual or multiple targeting. The aminoacyl-tRNA synthetases (aaRSs), which catalyze the ligation of tRNAs to their cognate amino acids, are particularly prone to functioning in multiple subcellular compartments. They are essential for translation, so they are required in every compartment where translation takes place. In diatoms, there are three such compartments, the plastid, the mitochondrion, and the cytosol. In cryptophytes, translation also takes place in the periplastid compartment (PPC), which is the reduced cytoplasm of the plastid’s red algal ancestor and which retains a reduced red algal nucleus. We searched the organelle and nuclear genomes of the cryptophyte Guillardia theta and the diatoms Phaeodactylum tricornutum and Thalassiosira pseudonana for aaRS genes and found an insufficient number of genes to provide each compartment with a complete set of aaRSs. We therefore inferred, with support from localization predictions, that many aaRSs are dual targeted. We tested four of the predicted dual targeted aaRSs with green fluorescent protein fusion localizations in P. tricornutum and found evidence for dual targeting to the mitochondrion and plastid in P. tricornutum and G. theta, and indications for dual targeting to the PPC and cytosol in G. theta. This is the first report of dual targeting in diatoms or cryptophytes.
Collapse
Affiliation(s)
- Gillian H Gile
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Daniel Moog
- LOEWE Centre for Synthetic Microbiology (SYNMIKRO), Philipps University Marburg, Germany Present address: Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Claudio H Slamovits
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada Program in Integrated Microbial Biodiversity, Canadian Institute for Advanced Research, Toronto, Ontario, Canada
| | - Uwe-G Maier
- LOEWE Centre for Synthetic Microbiology (SYNMIKRO), Philipps University Marburg, Germany Laboratory for Cell Biology, Philipps University Marburg, Germany
| | - John M Archibald
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada Program in Integrated Microbial Biodiversity, Canadian Institute for Advanced Research, Toronto, Ontario, Canada
| |
Collapse
|
49
|
Bobik K, Burch-Smith TM. Chloroplast signaling within, between and beyond cells. FRONTIERS IN PLANT SCIENCE 2015; 6:781. [PMID: 26500659 PMCID: PMC4593955 DOI: 10.3389/fpls.2015.00781] [Citation(s) in RCA: 134] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 09/10/2015] [Indexed: 05/18/2023]
Abstract
The most conspicuous function of plastids is the oxygenic photosynthesis of chloroplasts, yet plastids are super-factories that produce a plethora of compounds that are indispensable for proper plant physiology and development. Given their origins as free-living prokaryotes, it is not surprising that plastids possess their own genomes whose expression is essential to plastid function. This semi-autonomous character of plastids requires the existence of sophisticated regulatory mechanisms that provide reliable communication between them and other cellular compartments. Such intracellular signaling is necessary for coordinating whole-cell responses to constantly varying environmental cues and cellular metabolic needs. This is achieved by plastids acting as receivers and transmitters of specific signals that coordinate expression of the nuclear and plastid genomes according to particular needs. In this review we will consider the so-called retrograde signaling occurring between plastids and nuclei, and between plastids and other organelles. Another important role of the plastid we will discuss is the involvement of plastid signaling in biotic and abiotic stress that, in addition to influencing retrograde signaling, has direct effects on several cellular compartments including the cell wall. We will also review recent evidence pointing to an intriguing function of chloroplasts in regulating intercellular symplasmic transport. Finally, we consider an intriguing yet less widely known aspect of plant biology, chloroplast signaling from the perspective of the entire plant. Thus, accumulating evidence highlights that chloroplasts, with their complex signaling pathways, provide a mechanism for exquisite regulation of plant development, metabolism and responses to the environment. As chloroplast processes are targeted for engineering for improved productivity the effect of such modifications on chloroplast signaling will have to be carefully considered in order to avoid unintended consequences on plant growth and development.
Collapse
Affiliation(s)
| | - Tessa M. Burch-Smith
- *Correspondence: Tessa M. Burch-Smith, Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, 1414 Cumberland Avenue, M407 Walters Life Science, Knoxville, TN 37932, USA,
| |
Collapse
|
50
|
Murcha MW, Narsai R, Devenish J, Kubiszewski-Jakubiak S, Whelan J. MPIC: a mitochondrial protein import components database for plant and non-plant species. PLANT & CELL PHYSIOLOGY 2015; 56:e10. [PMID: 25435547 DOI: 10.1093/pcp/pcu186] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
In the 2 billion years since the endosymbiotic event that gave rise to mitochondria, variations in mitochondrial protein import have evolved across different species. With the genomes of an increasing number of plant species sequenced, it is possible to gain novel insights into mitochondrial protein import pathways. We have generated the Mitochondrial Protein Import Components (MPIC) Database (DB; http://www.plantenergy.uwa.edu.au/applications/mpic) providing searchable information on the protein import apparatus of plant and non-plant mitochondria. An in silico analysis was carried out, comparing the mitochondrial protein import apparatus from 24 species representing various lineages from Saccharomyces cerevisiae (yeast) and algae to Homo sapiens (human) and higher plants, including Arabidopsis thaliana (Arabidopsis), Oryza sativa (rice) and other more recently sequenced plant species. Each of these species was extensively searched and manually assembled for analysis in the MPIC DB. The database presents an interactive diagram in a user-friendly manner, allowing users to select their import component of interest. The MPIC DB presents an extensive resource facilitating detailed investigation of the mitochondrial protein import machinery and allowing patterns of conservation and divergence to be recognized that would otherwise have been missed. To demonstrate the usefulness of the MPIC DB, we present a comparative analysis of the mitochondrial protein import machinery in plants and non-plant species, revealing plant-specific features that have evolved.
Collapse
Affiliation(s)
- Monika W Murcha
- Australian Research Council Centre of Excellence in Plant Energy Biology, Bayliss Building M316, University of Western Australia, 35 Stirling Highway, Crawley 6009, Western Australia, Australia
| | - Reena Narsai
- Department of Botany, Australian Research Council Centre of Excellence in Plant Energy Biology, School of Life Science, La Trobe University, Bundoora 3083, Victoria, Australia
| | - James Devenish
- Australian Research Council Centre of Excellence in Plant Energy Biology, Bayliss Building M316, University of Western Australia, 35 Stirling Highway, Crawley 6009, Western Australia, Australia
| | - Szymon Kubiszewski-Jakubiak
- Australian Research Council Centre of Excellence in Plant Energy Biology, Bayliss Building M316, University of Western Australia, 35 Stirling Highway, Crawley 6009, Western Australia, Australia
| | - James Whelan
- Department of Botany, Australian Research Council Centre of Excellence in Plant Energy Biology, School of Life Science, La Trobe University, Bundoora 3083, Victoria, Australia
| |
Collapse
|