1
|
Herrera-Isidron L, Valencia-Lozano E, Uribe-Lopez B, Délano-Frier JP, Barraza A, Cabrera-Ponce JL. Molecular Insights into the Role of Sterols in Microtuber Development of Potato Solanum tuberosum L. PLANTS (BASEL, SWITZERLAND) 2024; 13:2391. [PMID: 39273873 PMCID: PMC11397162 DOI: 10.3390/plants13172391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/15/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024]
Abstract
Potato tubers are reproductive and storage organs, enabling their survival. Unraveling the molecular mechanisms that regulate tuberization is crucial for understanding how potatorespond to environmental stress situations and for potato breeding. Previously, we did a transcriptomic analysis of potato microtuberization without light. This showed that important cellular processes like ribosomal proteins, cell cycle, carbon metabolism, oxidative stress, fatty acids, and phytosterols (PS) biosynthesis were closely connected in a protein-protein interaction (PPI) network. Research on PS function during potato tuberization has been scarce. PS plays a critical role in regulating membrane permeability and fluidity, and they are biosynthetic precursors of brassinosteroids (BRs) in plants, which are critical in regulating gene expression, cell division, differentiation, and reproductive biology. Within a PPI network, we found a module of 15 genes involved in the PS biosynthetic process. Darkness, as expected, activated the mevalonate (MVA) pathway. There was a tight interaction between three coding gene products for HMGR3, MVD2, and FPS1, and the gene products that synthetize PS, including CAS1, SMO1, BETAHSD, CPI1, CYP51, FACKEL, HYDRA1, SMT2, SMO2, STE1, and SSR1. Quantitative real-time polymerase chain reaction (qRT-PCR) confirmed the expression analysis of ten specific genes involved in the biosynthesis of PS. This manuscript discusses the potential role of genes involved in PS biosynthesis during microtuber development.
Collapse
Affiliation(s)
- Lisset Herrera-Isidron
- Unidad Profesional Interdisciplinaria de Ingeniería Campus Guanajuato (UPIIG), Instituto Politécnico Nacional, Av. Mineral de Valenciana 200, Puerto Interior, Silao de la Victoria 36275, Guanajuato, Mexico
| | - Eliana Valencia-Lozano
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Irapuato, Irapuato 36824, Guanajuato, Mexico
| | - Braulio Uribe-Lopez
- Unidad Profesional Interdisciplinaria de Ingeniería Campus Guanajuato (UPIIG), Instituto Politécnico Nacional, Av. Mineral de Valenciana 200, Puerto Interior, Silao de la Victoria 36275, Guanajuato, Mexico
| | - John Paul Délano-Frier
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Irapuato, Irapuato 36824, Guanajuato, Mexico
| | - Aarón Barraza
- CONAHCYT-Centro de Investigaciones Biológicas del Noreste, SC., Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz 23096, Baja California Sur, Mexico
| | - José Luis Cabrera-Ponce
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Irapuato, Irapuato 36824, Guanajuato, Mexico
| |
Collapse
|
2
|
Valitova J, Renkova A, Beckett R, Minibayeva F. Stigmasterol: An Enigmatic Plant Stress Sterol with Versatile Functions. Int J Mol Sci 2024; 25:8122. [PMID: 39125690 PMCID: PMC11311414 DOI: 10.3390/ijms25158122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/05/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Sterols play important structural and regulatory roles in numerous intracellular processes. Unlike animals, plants contain a distinctive and diverse variety of sterols. Recently, information has emerged showing that stigmasterol is a "stress sterol". Stigmasterol is synthesized via the mevalonate biosynthesis pathway and has structural similarity to β-sitosterol but differs in the presence of a trans-oriented double bond in the side chain. In plants, the accumulation of stigmasterol has been observed in response to various stresses. However, the precise ways that stigmasterol is involved in the stress responses of plants remain unclear. This comprehensive review provides an update on the biology of stigmasterol, particularly the physicochemical properties of this ethylsterol, its biosynthesis, and its occurrence in higher plants and extremophilic organisms, e.g., mosses and lichens. Special emphasis is given to the evolutionary aspects of stigmasterol biosynthesis, particularly the variations in the gene structure of C22-sterol desaturase, which catalyzes the formation of stigmasterol from β-sitosterol, in a diversity of evolutionarily distant organisms. The roles of stigmasterol in the tolerance of plants to hostile environments and the prospects for its biomedical applications are also discussed. Taken together, the available data suggest that stigmasterol plays important roles in plant metabolism, although in some aspects, it remains an enigmatic compound.
Collapse
Affiliation(s)
- Julia Valitova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, P.O. Box 261, Kazan 420111, Russia; (J.V.); (A.R.)
| | - Albina Renkova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, P.O. Box 261, Kazan 420111, Russia; (J.V.); (A.R.)
| | - Richard Beckett
- School of Life Sciences, University of KwaZulu-Natal, Private Bag X01, Scottsville 3209, South Africa;
| | - Farida Minibayeva
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, P.O. Box 261, Kazan 420111, Russia; (J.V.); (A.R.)
| |
Collapse
|
3
|
Der C, Courty PE, Recorbet G, Wipf D, Simon-Plas F, Gerbeau-Pissot P. Sterols, pleiotropic players in plant-microbe interactions. TRENDS IN PLANT SCIENCE 2024; 29:524-534. [PMID: 38565452 DOI: 10.1016/j.tplants.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 02/08/2024] [Accepted: 03/04/2024] [Indexed: 04/04/2024]
Abstract
Plant-microbe interactions (PMIs) are regulated through a wide range of mechanisms in which sterols from plants and microbes are involved in numerous ways, including recognition, transduction, communication, and/or exchanges between partners. Phytosterol equilibrium is regulated by PMIs through expression of genes involved in phytosterol biosynthesis, together with their accumulation. As such, PMI outcomes also include plasma membrane (PM) functionalization events, in which phytosterols have a central role, and activation of sterol-interacting proteins involved in cell signaling. In spite (or perhaps because) of such multifaceted abilities, an overall mechanism of sterol contribution is difficult to determine. However, promising approaches exploring sterol diversity, their contribution to PMI outcomes, and their localization would help us to decipher their crucial role in PMIs.
Collapse
Affiliation(s)
- Christophe Der
- Agroécologie, INRAE, Institut Agro, University of Bourgogne, Dijon, France
| | | | - Ghislaine Recorbet
- Agroécologie, INRAE, Institut Agro, University of Bourgogne, Dijon, France
| | - Daniel Wipf
- Agroécologie, INRAE, Institut Agro, University of Bourgogne, Dijon, France
| | | | | |
Collapse
|
4
|
Hu H, Jia Y, Hao Z, Ma G, Xie Y, Wang C, Ma D. Lipidomics-based insights into the physiological mechanism of wheat in response to heat stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 205:108190. [PMID: 37988880 DOI: 10.1016/j.plaphy.2023.108190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/06/2023] [Accepted: 11/09/2023] [Indexed: 11/23/2023]
Abstract
Lipids are the main components of plant cell biofilms and play a crucial role in plant growth, Understanding the modulation in lipid profiles under heat stress can contribute to understanding the heat tolerance mechanisms in wheat leaves. In the current study, two wheat cultivars with different heat tolerance levels were treated with optimum temperature (OT) and high temperature (HT) at the flowering stage, and the antioxidant enzyme activity in the leaves and the grain yield were determined. Further, lipidomics was studied to determine the changes in lipid composition in the leaves. The heat-tolerant cultivar ZM7698 exhibited higher antioxidant enzyme activity and lower malondialdehyde and H2O2 contents. High-temperature stress led to the remodeling of lipid profile in the two cultivars. The relative proportion of digalactosyl diacylglycerol (DGDG) and phosphatidylinositol (PI) components increased in the heat-tolerant cultivar under high-temperature stress, while it was decreased in the heat-sensitive cultivar. The lipid unsaturation levels of sulfoquinovosyl diacylglycerol (SQDG), monogalactosyl monoacylglycerol (MGMG), and phosphatidic acid (PA) decreased significantly in the heat-tolerant cultivar under high-temperature stress. The increase in unsaturation of monogalactosyl diacylglycerol (MGDG) and phosphatidylethanolamine (PE) in the heat-tolerant cultivar under high-temperature stress was lower than in the heat-sensitive cultivar. In addition, a high sitosterol/stigmasterol (SiE/StE) ratio was observed in heat-tolerant cultivar under high-temperature stress. Taken together, these results revealed that a heat-tolerant cultivar could enhance its ability to resist heat stress by modulating the composition and ratio of the lipid components and decreasing lipid unsaturation levels in wheat.
Collapse
Affiliation(s)
- Haizhou Hu
- National Wheat Technology Innovation Center, Henan Agricultural University, Zhengzhou, 450046, China; College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Yuku Jia
- National Wheat Technology Innovation Center, Henan Agricultural University, Zhengzhou, 450046, China; College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Zirui Hao
- National Wheat Technology Innovation Center, Henan Agricultural University, Zhengzhou, 450046, China; College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Geng Ma
- National Wheat Technology Innovation Center, Henan Agricultural University, Zhengzhou, 450046, China; College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Yingxin Xie
- National Wheat Technology Innovation Center, Henan Agricultural University, Zhengzhou, 450046, China; College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Chenyang Wang
- National Wheat Technology Innovation Center, Henan Agricultural University, Zhengzhou, 450046, China; College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China; The National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, 450046, China.
| | - Dongyun Ma
- National Wheat Technology Innovation Center, Henan Agricultural University, Zhengzhou, 450046, China; College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China; The National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, 450046, China.
| |
Collapse
|
5
|
Evtyugin DD, Evtuguin DV, Casal S, Domingues MR. Advances and Challenges in Plant Sterol Research: Fundamentals, Analysis, Applications and Production. Molecules 2023; 28:6526. [PMID: 37764302 PMCID: PMC10535520 DOI: 10.3390/molecules28186526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Plant sterols (PS) are cholesterol-like terpenoids widely spread in the kingdom Plantae. Being the target of extensive research for more than a century, PS have topped with evidence of having beneficial effects in healthy subjects and applications in food, cosmetic and pharmaceutical industries. However, many gaps in several fields of PS's research still hinder their widespread practical applications. In fact, many of the mechanisms associated with PS supplementation and their health benefits are still not fully elucidated. Furthermore, compared to cholesterol data, many complex PS chemical structures still need to be fully characterized, especially in oxidized PS. On the other hand, PS molecules have also been the focus of structural modifications for applications in diverse areas, including not only the above-mentioned but also in e.g., drug delivery systems or alternative matrixes for functional foods and fats. All the identified drawbacks are also superimposed by the need of new PS sources and technologies for their isolation and purification, taking into account increased environmental and sustainability concerns. Accordingly, current and future trends in PS research warrant discussion.
Collapse
Affiliation(s)
- Dmitry D. Evtyugin
- CICECO, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; (D.D.E.); (D.V.E.)
- LAQV-REQUIMTE, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Dmitry V. Evtuguin
- CICECO, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; (D.D.E.); (D.V.E.)
| | - Susana Casal
- LAQV-REQUIMTE, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Maria Rosário Domingues
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
- CESAM, Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| |
Collapse
|
6
|
Altabella T, Ramirez-Estrada K, Ferrer A. Phytosterol metabolism in plant positive-strand RNA virus replication. PLANT CELL REPORTS 2022; 41:281-291. [PMID: 34665312 DOI: 10.1007/s00299-021-02799-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 09/25/2021] [Indexed: 06/13/2023]
Abstract
The genome of most plant viruses consists of a single positive-strand of RNA (+ ssRNA). Successful replication of these viruses is fully dependent on the endomembrane system of the infected cells, which experiences a massive proliferation and a profound reshaping that enables assembly of the macromolecular complexes where virus genome replication occurs. Assembly of these viral replicase complexes (VRCs) requires a highly orchestrated interplay of multiple virus and co-opted host cell factors to create an optimal microenvironment for efficient assembly and functioning of the virus genome replication machinery. It is now widely accepted that VRC formation involves the recruitment of high levels of sterols, but the specific role of these essential components of cell membranes and the precise molecular mechanisms underlying sterol enrichment at VRCs are still poorly known. In this review, we intend to summarize the most relevant knowledge on the role of sterols in ( +)ssRNA virus replication and discuss the potential of manipulating the plant sterol pathway to help plants fight these infectious agents.
Collapse
Affiliation(s)
- Teresa Altabella
- Plant Metabolism and Metabolic Engineering Program, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Cerdanyola, 08193, Barcelona, Spain.
- Department of Biology, Healthcare and the Environment, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028, Barcelona, Spain.
| | - Karla Ramirez-Estrada
- Laboratory of Cell Metabolism, Faculty of Chemistry, Autonomous University of Nuevo León, San Nicolás de los Garza, NL, 66451, México
| | - Albert Ferrer
- Plant Metabolism and Metabolic Engineering Program, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Cerdanyola, 08193, Barcelona, Spain.
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028, Barcelona, Spain.
| |
Collapse
|
7
|
Lapshin NK, Piotrovskii MS, Trofimova MS. Sterol Extraction from Isolated Plant Plasma Membrane Vesicles Affects H +-ATPase Activity and H +-Transport. Biomolecules 2021; 11:1891. [PMID: 34944535 PMCID: PMC8699270 DOI: 10.3390/biom11121891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 11/16/2022] Open
Abstract
Plasma membrane H+-ATPase is known to be detected in detergent-resistant sterol-enriched fractions, also called "raft" domains. Studies on H+-ATPase reconstituted in artificial or native membrane vesicles have shown both sterol-mediated stimulations and inhibitions of its activity. Here, using sealed isolated plasma membrane vesicles, we investigated the effects of sterol depletion in the presence of methyl-β-cyclodextrin (MβCD) on H+-ATPase activity. The rate of ATP-dependent ∆µH+ generation and the kinetic parameters of ATP hydrolysis were evaluated. We show that the relative sterols content in membrane vesicles decreased gradually after treatment with MβCD and reached approximately 40% of their initial level in 30 mM probe solution. However, changes in the hydrolytic and H+-transport activities of the enzyme were nonlinear. The extraction of up to 20% of the initial sterols was accompanied by strong stimulation of ATP-dependent H+-transport in comparison with the hydrolytic activity of enzymes. Further sterol depletion led to a significant inhibition of active proton transport with an increase in passive H+-leakage. The solubilization of control and sterol-depleted vesicles in the presence of dodecyl maltoside negated the differences in the kinetics parameters of ATP hydrolysis, and all samples demonstrated maximal hydrolytic activities. The mechanisms behind the sensitivity of ATP-dependent H+-transport to sterols in the lipid environment of plasma membrane H+-ATPase are discussed.
Collapse
Affiliation(s)
| | | | - Marina S. Trofimova
- K.A. Timiryazev Institute of Plant Physiology of the Russian Academy of Sciences (IPP RAS), 35 Botanicheskaya St., 127276 Moscow, Russia; (N.K.L.); (M.S.P.)
| |
Collapse
|
8
|
Aboobucker SI, Showman LJ, Lübberstedt T, Suza WP. Maize Zmcyp710a8 Mutant as a Tool to Decipher the Function of Stigmasterol in Plant Metabolism. FRONTIERS IN PLANT SCIENCE 2021; 12:732216. [PMID: 34804084 PMCID: PMC8597121 DOI: 10.3389/fpls.2021.732216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 10/07/2021] [Indexed: 06/13/2023]
Abstract
Sterols are integral components of membrane lipid bilayers in eukaryotic organisms and serve as precursors to steroid hormones in vertebrates and brassinosteroids (BR) in plants. In vertebrates, cholesterol is the terminal sterol serving both indirect and direct roles in cell signaling. Plants synthesize a mixture of sterols including cholesterol, sitosterol, campesterol, and stigmasterol but the signaling role for the free forms of individual plant sterols is unclear. Since stigmasterol is the terminal sterol in the sitosterol branch and produced from a single enzymatic step, modifying stigmasterol concentration may shed light on its role in plant metabolism. Although Arabidopsis has been the model of choice to study sterol function, the functional redundancy of AtCYP710A genes and the presence of brassicasterol may hinder our ability to test the biological function of stigmasterol. We report here the identification and characterization of ZmCYP710A8, the sole maize C-22 sterol desaturase involved in stigmasterol biosynthesis and the identification of a stigmasterol-free Zmcyp710a8 mutant. ZmCYP710A8 mRNA expression pattern correlated with transcripts for several sterol biosynthesis genes and loss of stigmasterol impacted sterol composition. Exogenous stigmasterol also had a stimulatory effect on mRNA for ZmHMGR and ZmSMT2. This demonstrates the potential of Zmcyp710a8 in understanding the role of stigmasterol in modulating sterol biosynthesis and global cellular metabolism. Several amino acids accumulate in the Zmcyp710a8 mutant, offering opportunity for genetic enhancement of nutritional quality of maize. Other cellular metabolites in roots and shoots of maize and Arabidopsis were also impacted by genetic modification of stigmasterol content. Yet lack of obvious developmental defects in Zmcyp710a8 suggest that stigmasterol might not be essential for plant growth under normal conditions. Nonetheless, the Zmcyp710a8 mutant reported here is of great utility to advance our understanding of the additional roles of stigmasterol in plant metabolism. A number of biological and agronomic questions can be interrogated using this tool such as gene expression studies, spatio-temporal localization of sterols, cellular metabolism, pathway regulation, physiological studies, and crop improvement.
Collapse
Affiliation(s)
| | - Lucas J. Showman
- W. M. Keck Metabolomics Research Laboratory, Iowa State University, Ames, IA, United States
| | | | - Walter P. Suza
- Department of Agronomy, Iowa State University, Ames, IA, United States
| |
Collapse
|
9
|
Lu Y, Kronzucker HJ, Shi W. Stigmasterol root exudation arising from Pseudomonas inoculation of the duckweed rhizosphere enhances nitrogen removal from polluted waters. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 287:117587. [PMID: 34182390 DOI: 10.1016/j.envpol.2021.117587] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 05/25/2021] [Accepted: 06/10/2021] [Indexed: 06/13/2023]
Abstract
Rhizospheric microorganisms such as denitrifying bacteria are able to affect 'rhizobioaugmention' in aquatic plants and can help boost wastewater purification by benefiting plant growth, but little is known about their effects on the production of plant root exudates, and how such exudates may affect microorganismal nitrogen removal. Here, we assess the effects of the rhizospheric Pseudomonas inoculant strain RWX31 on the root exudate profile of the duckweed Spirodela polyrrhiza, using gas chromatography/mass spectrometry. Compared to untreated plants, inoculation with RWX31 specifically induced the exudation of two sterols, stigmasterol and β-sitosterol. An authentic standard assay revealed that stigmasterol significantly promoted nitrogen removal and biofilm formation by the denitrifying bacterial strain RWX31, whereas β-sitosterol had no effect. Assays for denitrifying enzyme activity were conducted to show that stigmasterol stimulated nitrogen removal by targeting nitrite reductase in bacteria. Enhanced N removal from water by stigmasterol, and a synergistic stimulatory effect with RWX31, was observed in open duckweed cultivation systems. We suggest that this is linked to a modulation of community composition of nirS- and nirK-type denitrifying bacteria in the rhizosphere, with a higher abundance of Bosea, Rhizobium, and Brucella, and a lower abundance of Rubrivivax. Our findings provide important new insights into the interaction of duckweed with the rhizospheric bacterial strain RWX31 and their involvement in the aquatic N cycle and offer a new path toward more effective bio-formulations for the purification of N-polluted waters.
Collapse
Affiliation(s)
- Yufang Lu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Herbert J Kronzucker
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada; School of BioSciences, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Weiming Shi
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China.
| |
Collapse
|
10
|
Yu Y, Kou M, Gao Z, Liu Y, Xuan Y, Liu Y, Tang Z, Cao Q, Li Z, Sun J. Involvement of Phosphatidylserine and Triacylglycerol in the Response of Sweet Potato Leaves to Salt Stress. FRONTIERS IN PLANT SCIENCE 2019; 10:1086. [PMID: 31552077 PMCID: PMC6746921 DOI: 10.3389/fpls.2019.01086] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 08/09/2019] [Indexed: 05/05/2023]
Abstract
Lipid remodeling plays an important role in the adaptation of plants to environmental factors, but the mechanism by which lipid remodeling mediates salt stress response remains unclear. In this study, we compared the root and leaf lipidome profiles of salt-tolerant and salt-sensitive sweet potato cultivars (Xu 22 and Xu 32, respectively) under salinity stress. After salt treatment, the leaf lipidome showed more significant remodeling than the root lipidome in both cultivars. Compared with Xu 32 leaves, Xu 22 leaves generally maintained higher abundance of phospholipids, glycolipids, sphingolipids, sterol derivatives, and diacylglycerol under salinity conditions. Interestingly, salinity stress significantly increased phosphatidylserine (PS) abundance in Xu 22 leaves by predominantly triggering the increase of PS (20:5/22:6). Furthermore, Xu 32 leaves accumulated higher triacylglycerol (TG) level than Xu 22 leaves under salinity conditions. The exogenous application of PS delayed salt-induced leaf senescence in Xu 32 by reducing salt-induced K+ efflux and upregulating plasma membrane H+-ATPase activity. However, the inhibition of TG mobilization in salinized-Xu 22 leaves disturbed energy and K+/Na+ homeostasis, as well as plasma membrane H+-ATPase activity. These results demonstrate alterations in the leaf lipidome of sweet potato under salinity condition, underscoring the importance of PS and TG in mediating salt-defensive responses in sweet potato leaves.
Collapse
Affiliation(s)
- Yicheng Yu
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Meng Kou
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Zhonghui Gao
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Yang Liu
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Ying Xuan
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Yaju Liu
- Key Laboratory for Biology and Genetic Breeding of Sweet Potato, Sweet Potato Research Institute (CAAS), Xuzhou, China
| | - Zhonghou Tang
- Key Laboratory for Biology and Genetic Breeding of Sweet Potato, Sweet Potato Research Institute (CAAS), Xuzhou, China
| | - Qinghe Cao
- Key Laboratory for Biology and Genetic Breeding of Sweet Potato, Sweet Potato Research Institute (CAAS), Xuzhou, China
| | - Zongyun Li
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Jian Sun
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| |
Collapse
|
11
|
Membrane Lipid Remodeling in Response to Salinity. Int J Mol Sci 2019; 20:ijms20174264. [PMID: 31480391 PMCID: PMC6747501 DOI: 10.3390/ijms20174264] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/26/2019] [Accepted: 08/27/2019] [Indexed: 12/18/2022] Open
Abstract
Salinity is one of the most decisive environmental factors threatening the productivity of crop plants. Understanding the mechanisms of plant salt tolerance is critical to be able to maintain or improve crop yield under these adverse environmental conditions. Plant membranes act as biological barriers, protecting the contents of cells and organelles from biotic and abiotic stress, including salt stress. Alterations in membrane lipids in response to salinity have been observed in a number of plant species including both halophytes and glycophytes. Changes in membrane lipids can directly affect the properties of membrane proteins and activity of signaling molecules, adjusting the fluidity and permeability of membranes, and activating signal transduction pathways. In this review, we compile evidence on the salt stress responses of the major membrane lipids from different plant tissues, varieties, and species. The role of membrane lipids as signaling molecules in response to salinity is also discussed. Advances in mass spectrometry (MS)-based techniques have largely expanded our knowledge of salt-induced changes in lipids, however only a handful studies have investigated the underlying mechanisms of membrane lipidome regulation. This review provides a comprehensive overview of the recent works that have been carried out on lipid remodeling of plant membranes under salt treatment. Challenges and future perspectives in understanding the mechanisms of salt-induced changes to lipid metabolisms are proposed.
Collapse
|
12
|
Aboobucker SI, Suza WP. Why Do Plants Convert Sitosterol to Stigmasterol? FRONTIERS IN PLANT SCIENCE 2019; 10:354. [PMID: 30984220 PMCID: PMC6447690 DOI: 10.3389/fpls.2019.00354] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 03/07/2019] [Indexed: 05/11/2023]
Abstract
A direct role for cholesterol signaling in mammals is clearly established; yet, the direct role in signaling for a plant sterol or sterol precursor is unclear. Fluctuations in sitosterol and stigmasterol levels during development and stress conditions suggest their involvement in signaling activities essential for plant development and stress compensation. Stigmasterol may be involved in gravitropism and tolerance to abiotic stress. The isolation of stigmasterol biosynthesis mutants offers a promising tool to test the function of sterol end products in signaling responses to developmental and environmental cues.
Collapse
Affiliation(s)
| | - Walter P. Suza
- Department of Agronomy, Iowa State University, Ames, IA, United States
| |
Collapse
|
13
|
Emmerstorfer-Augustin A, Wriessnegger T, Hirz M, Zellnig G, Pichler H. Membrane Protein Production in Yeast: Modification of Yeast Membranes for Human Membrane Protein Production. Methods Mol Biol 2019; 1923:265-285. [PMID: 30737745 DOI: 10.1007/978-1-4939-9024-5_12] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Approximately 30% of the genes in the human genome code for membrane proteins, and yet we know relatively little about these complex molecules. Therefore, the biochemical and structural characterization of this challenging class of proteins represents an important frontier in both fundamental research and advances in drug discovery. However, due to their unique physical properties and requirement for association with cellular membranes, expression in heterologous systems is often daunting. In this chapter we describe how to engineer the yeast Pichia pastoris to obtain humanized sterol compositions. By implementing some simple genetic engineering approaches, P. pastoris can be reprogrammed to mainly produce cholesterol instead of ergosterol. We show how to apply mass spectrometry to confirm the production of cholesterol instead of ergosterol and how we have further analyzed the strain by electron microscopy. Finally, we delineate how to apply and test the cholesterol-forming P. pastoris strain for functional expression of mammalian Na,K-ATPase α3β1 isoform. Na,K-ATPases have been shown to specifically interact with cholesterol and phospholipids, and, obviously, the presence of cholesterol instead of ergosterol was the key to stabilizing correct localization and activity of this ion transporter.
Collapse
Affiliation(s)
- Anita Emmerstorfer-Augustin
- Division of Biochemistry, Biophysics and Structural Biology, Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | | | - Melanie Hirz
- Institute of Molecular Biotechnology, Graz University of Technology, NAWI Graz, BioTechMed Graz, Graz, Austria
| | - Guenther Zellnig
- Institute of Plant Sciences, University of Graz, NAWI Graz, Graz, Austria
| | - Harald Pichler
- acib-Austrian Centre of Industrial Biotechnology, Graz, Austria. .,Institute of Molecular Biotechnology, Graz University of Technology, NAWI Graz, BioTechMed Graz, Graz, Austria.
| |
Collapse
|
14
|
Castillo N, Pastor V, Chávez Á, Arró M, Boronat A, Flors V, Ferrer A, Altabella T. Inactivation of UDP-Glucose Sterol Glucosyltransferases Enhances Arabidopsis Resistance to Botrytis cinerea. FRONTIERS IN PLANT SCIENCE 2019; 10:1162. [PMID: 31611892 PMCID: PMC6776639 DOI: 10.3389/fpls.2019.01162] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Accepted: 08/26/2019] [Indexed: 05/15/2023]
Abstract
Free and glycosylated sterols are both structural components of the plasma membrane that regulate their biophysical properties and consequently different plasma membrane-associated processes such as plant adaptation to stress or signaling. Several reports relate changes in glycosylated sterols levels with the plant response to abiotic stress, but the information about the role of these compounds in the response to biotic stress is scarce. In this work, we have studied the response to the necrotrophic fungus Botrytis cinerea in an Arabidopsis mutant that is severely impaired in steryl glycosides biosynthesis due to the inactivation of the two sterol glucosyltransferases (UGT80A2 and UGT80B1) reported in this plant. This mutant exhibits enhanced resistance against B. cinerea when compared to wild-type plants, which correlates with increased levels of jasmonic acid (JA) and up-regulation of two marker genes (PDF1.2 and PR4) of the ERF branch of the JA signaling pathway. Upon B. cinerea infection, the ugt80A2;B1 double mutant also accumulates higher levels of camalexin, the major Arabidopsis phytoalexin, than wild-type plants. Camalexin accumulation correlates with enhanced transcript levels of several cytochrome P450 camalexin biosynthetic genes, as well as of their transcriptional regulators WRKY33, ANAC042, and MYB51, suggesting that the Botrytis-induced accumulation of camalexin is coordinately regulated at the transcriptional level. After fungus infection, the expression of genes involved in the indole glucosinolate biosynthesis is also up-regulated at a higher degree in the ugt80A2;B1 mutant than in wild-type plants. Altogether, the results of this study show that glycosylated sterols play an important role in the regulation of Arabidopsis response to B. cinerea infection and suggest that this occurs through signaling pathways involving the canonical stress-hormone JA and the tryptophan-derived secondary metabolites camalexin and possibly also indole glucosinolates.
Collapse
Affiliation(s)
- Nidia Castillo
- Plant Metabolism and Metabolic Engineering Program, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Barcelona, Spain
| | - Victoria Pastor
- Metabolic Integration and Cell Signalling Group, Plant Physiology Section, Department of Ciencias Agrarias y del Medio Natural, Universitat Jaume I, Castelló, Spain
| | - Ángel Chávez
- Plant Metabolism and Metabolic Engineering Program, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Barcelona, Spain
| | - Montserrat Arró
- Plant Metabolism and Metabolic Engineering Program, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Barcelona, Spain
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Albert Boronat
- Plant Metabolism and Metabolic Engineering Program, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Barcelona, Spain
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Victor Flors
- Metabolic Integration and Cell Signalling Group, Plant Physiology Section, Department of Ciencias Agrarias y del Medio Natural, Universitat Jaume I, Castelló, Spain
| | - Albert Ferrer
- Plant Metabolism and Metabolic Engineering Program, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Barcelona, Spain
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
- *Correspondence: Teresa Altabella, ; Albert Ferrer,
| | - Teresa Altabella
- Plant Metabolism and Metabolic Engineering Program, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Barcelona, Spain
- Department of Biology, Healthcare and the Environment, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
- *Correspondence: Teresa Altabella, ; Albert Ferrer,
| |
Collapse
|
15
|
Wang SQ, Wang T, Liu JF, Deng L, Wang F. Overexpression of Ecm22 improves ergosterol biosynthesis in Saccharomyces cerevisiae. Lett Appl Microbiol 2018; 67:484-490. [PMID: 30098030 DOI: 10.1111/lam.13061] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/17/2018] [Accepted: 07/28/2018] [Indexed: 12/01/2022]
Abstract
Ergosterol biosynthesis in Saccharomyces cerevisiae is complex and the underlying mechanism of regulation remains unclear. To clarify the influence of transcriptional regulation on the ergosterol content, transcription factor Ecm22 was overexpressed in S. cerevisiae. Results showed that the overexpression of ECM22 led to an increased invasive growth. Fluconazole susceptibility testing indicated that strains overexpressing ECM22 could grow at 20 μg(fluconazole) ml-1 . By contrast, the control failed to grow at 16 μg(fluconazole) ml-1 . Among truncated ECM22 fragments, only the 1440-bp DNA fragment exerted almost the same impact on ergosterol content as that of the full-length gene. In a 5-l bioreactor, the highest ergosterol yield of the recombinant reached 32∙7 mg g(dry cell weight) -1 , which was increased by about 20% compared with that of the control. In this work, a novel approach for enhancing the ergosterol production by overexpressing a transcription factor in S. cerevisiae was developed.
Collapse
Affiliation(s)
- S-Q Wang
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - T Wang
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - J-F Liu
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - L Deng
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - F Wang
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| |
Collapse
|
16
|
Short E, Leighton M, Imriz G, Liu D, Cope-Selby N, Hetherington F, Smertenko A, Hussey PJ, Topping JF, Lindsey K. Epidermal expression of a sterol biosynthesis gene regulates root growth by a non-cell-autonomous mechanism in Arabidopsis. Development 2018; 145:dev.160572. [PMID: 29695610 PMCID: PMC6001376 DOI: 10.1242/dev.160572] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 04/16/2018] [Indexed: 11/20/2022]
Abstract
The epidermis is hypothesized to play a signalling role during plant development. One class of mutants showing defects in signal transduction and radial patterning are those in sterol biosynthesis. The expectation is that living cells require sterols, but it is not clear that all cell types express sterol biosynthesis genes. The HYDRA1 (HYD1) gene of Arabidopsis encodes sterol Δ8-Δ7 isomerase, and although hyd1 seedlings are defective in radial patterning across several tissues, we show that the HYD1 gene is expressed most strongly in the root epidermis. Transgenic activation of HYD1 transcription in the epidermis of hyd1 null mutants reveals a major role in root patterning and growth. HYD1 expression in the vascular tissues and root meristem, though not endodermis or pericycle, also leads to some phenotypic rescue. Phenotypic rescue is associated with rescued patterning of the PIN1 and PIN2 auxin efflux carriers. The importance of the epidermis in controlling root growth and development is proposed to be, in part, due to its role as a site for sterol biosynthesis, and auxin is a candidate for the non-cell-autonomous signal.
Collapse
Affiliation(s)
- Eleri Short
- Department of Biosciences, Durham University, Durham DH1 3LE, UK
| | | | - Gul Imriz
- Department of Biosciences, Durham University, Durham DH1 3LE, UK
| | - Dongbin Liu
- Department of Biosciences, Durham University, Durham DH1 3LE, UK
| | - Naomi Cope-Selby
- Department of Biosciences, Durham University, Durham DH1 3LE, UK
| | | | - Andrei Smertenko
- Department of Biosciences, Durham University, Durham DH1 3LE, UK
| | - Patrick J Hussey
- Department of Biosciences, Durham University, Durham DH1 3LE, UK
| | | | - Keith Lindsey
- Department of Biosciences, Durham University, Durham DH1 3LE, UK
| |
Collapse
|
17
|
Valitova JN, Sulkarnayeva AG, Minibayeva FV. Plant Sterols: Diversity, Biosynthesis, and Physiological Functions. BIOCHEMISTRY (MOSCOW) 2017; 81:819-34. [PMID: 27677551 DOI: 10.1134/s0006297916080046] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Sterols, which are isoprenoid derivatives, are structural components of biological membranes. Special attention is now being given not only to their structure and function, but also to their regulatory roles in plants. Plant sterols have diverse composition; they exist as free sterols, sterol esters with higher fatty acids, sterol glycosides, and acylsterol glycosides, which are absent in animal cells. This diversity of types of phytosterols determines a wide spectrum of functions they play in plant life. Sterols are precursors of a group of plant hormones, the brassinosteroids, which regulate plant growth and development. Furthermore, sterols participate in transmembrane signal transduction by forming lipid microdomains. The predominant sterols in plants are β-sitosterol, campesterol, and stigmasterol. These sterols differ in the presence of a methyl or an ethyl group in the side chain at the 24th carbon atom and are named methylsterols or ethylsterols, respectively. The balance between 24-methylsterols and 24-ethylsterols is specific for individual plant species. The present review focuses on the key stages of plant sterol biosynthesis that determine the ratios between the different types of sterols, and the crosstalk between the sterol and sphingolipid pathways. The main enzymes involved in plant sterol biosynthesis are 3-hydroxy-3-methylglutaryl-CoA reductase, C24-sterol methyltransferase, and C22-sterol desaturase. These enzymes are responsible for maintaining the optimal balance between sterols. Regulation of the ratios between the different types of sterols and sterols/sphingolipids can be of crucial importance in the responses of plants to stresses.
Collapse
Affiliation(s)
- J N Valitova
- Kazan Institute of Biochemistry and Biophysics, Russian Academy of Sciences, Kazan, 420111, Russia
| | | | | |
Collapse
|
18
|
Parra-Lobato MC, Paredes MA, Labrador J, Saucedo-García M, Gavilanes-Ruiz M, Gomez-Jimenez MC. Localization of Sphingolipid Enriched Plasma Membrane Regions and Long-Chain Base Composition during Mature-Fruit Abscission in Olive. FRONTIERS IN PLANT SCIENCE 2017; 8:1138. [PMID: 28706527 PMCID: PMC5489598 DOI: 10.3389/fpls.2017.01138] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 06/13/2017] [Indexed: 05/20/2023]
Abstract
Sphingolipids, found in membranes of eukaryotic cells, have been demonstrated to carry out functions in various processes in plant cells. However, the roles of these lipids in fruit abscission remain to be determined in plants. Biochemical and fluorescence microscopy imaging approach has been adopted to investigate the accumulation and distribution of sphingolipids during mature-fruit abscission in olive (Olea europaea L. cv. Picual). Here, a lipid-content analysis in live protoplasts of the olive abscission zone (AZ) was made with fluorescent dyes and lipid analogs, particularly plasma membrane sphingolipid-enriched domains, and their dynamics were investigated in relation to the timing of mature-fruit abscission. In olive AZ cells, the measured proportion of both polar lipids and sphingolipids increased as well as endocytosis was stimulated during mature-fruit abscission. Likewise, mature-fruit abscission resulted in quantitative and qualitative changes in sphingolipid long-chain bases (LCBs) in the olive AZ. The total LCB increase was due essentially to the increase of t18:1(8E) LCBs, suggesting that C-4 hydroxylation and Δ8 desaturation with a preference for (E)-isomer formation were quantitatively the most important sphingolipids in olive AZ during abscission. However, our results also showed a specific association between the dihydroxylated LCB sphinganine (d18:0) and the mature-fruit abscission. These results indicate a clear correlation between the sphingolipid composition and mature-fruit abscission. Moreover, measurements of endogenous sterol levels in the olive AZ revealed that it accumulated sitosterol and campesterol with a concomitant decrease in cycloartenol during abscission. In addition, underlying the distinct sterol composition of AZ during abscission, genes for key biosynthetic enzymes for sterol synthesis, for obtusifoliol 14α-demethylase (CYP51) and C-24 sterol methyltransferase2 (SMT2), were up-regulated during mature-fruit abscission, in parallel to the increase in sitosterol content. The differences found in AZ lipid content and the relationships established between LCB and sterol composition, offer new insights about sphingolipids and sterols in abscission.
Collapse
Affiliation(s)
| | - Miguel A. Paredes
- Department of Plant Physiology, University of ExtremaduraBadajoz, Spain
| | - Juana Labrador
- Department of Plant Physiology, University of ExtremaduraBadajoz, Spain
| | - Mariana Saucedo-García
- Institute of Agricultural Sciences, Autonomous University of the State of HidalgoTulancingo, Mexico
| | - Marina Gavilanes-Ruiz
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de MéxicoMexico City, Mexico
| | - Maria C. Gomez-Jimenez
- Department of Plant Physiology, University of ExtremaduraBadajoz, Spain
- *Correspondence: Maria C. Gomez-Jimenez,
| |
Collapse
|
19
|
Ramirez-Estrada K, Castillo N, Lara JA, Arró M, Boronat A, Ferrer A, Altabella T. Tomato UDP-Glucose Sterol Glycosyltransferases: A Family of Developmental and Stress Regulated Genes that Encode Cytosolic and Membrane-Associated Forms of the Enzyme. FRONTIERS IN PLANT SCIENCE 2017. [PMID: 28649260 PMCID: PMC5465953 DOI: 10.3389/fpls.2017.00984] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Sterol glycosyltransferases (SGTs) catalyze the glycosylation of the free hydroxyl group at C-3 position of sterols to produce sterol glycosides. Glycosylated sterols and free sterols are primarily located in cell membranes where in combination with other membrane-bound lipids play a key role in modulating their properties and functioning. In contrast to most plant species, those of the genus Solanum contain very high levels of glycosylated sterols, which in the case of tomato may account for more than 85% of the total sterol content. In this study, we report the identification and functional characterization of the four members of the tomato (Solanum lycopersicum cv. Micro-Tom) SGT gene family. Expression of recombinant SlSGT proteins in E. coli cells and N. benthamiana leaves demonstrated the ability of the four enzymes to glycosylate different sterol species including cholesterol, brassicasterol, campesterol, stigmasterol, and β-sitosterol, which is consistent with the occurrence in their primary structure of the putative steroid-binding domain found in steroid UDP-glucuronosyltransferases and the UDP-sugar binding domain characteristic for a superfamily of nucleoside diphosphosugar glycosyltransferases. Subcellular localization studies based on fluorescence recovery after photobleaching and cell fractionation analyses revealed that the four tomato SGTs, like the Arabidopsis SGTs UGT80A2 and UGT80B1, localize into the cytosol and the PM, although there are clear differences in their relative distribution between these two cell fractions. The SlSGT genes have specialized but still largely overlapping expression patterns in different organs of tomato plants and throughout the different stages of fruit development and ripening. Moreover, they are differentially regulated in response to biotic and abiotic stress conditions. SlSGT4 expression increases markedly in response to osmotic, salt, and cold stress, as well as upon treatment with abscisic acid and methyl jasmonate. Stress-induced SlSGT2 expression largely parallels that of SlSGT4. On the contrary, SlSGT1 and SlSGT3 expression remains almost unaltered under the tested stress conditions. Overall, this study contributes to broaden the current knowledge on plant SGTs and provides support to the view that tomato SGTs play overlapping but not completely redundant biological functions involved in mediating developmental and stress responses.
Collapse
Affiliation(s)
- Karla Ramirez-Estrada
- Plant Metabolism and Metabolic Engineering Program, Centre for Research in Agricultural Genomics (CRAG) (CSIC-IRTA-UAB-UB)Barcelona, Spain
| | - Nídia Castillo
- Plant Metabolism and Metabolic Engineering Program, Centre for Research in Agricultural Genomics (CRAG) (CSIC-IRTA-UAB-UB)Barcelona, Spain
| | - Juan A. Lara
- Plant Metabolism and Metabolic Engineering Program, Centre for Research in Agricultural Genomics (CRAG) (CSIC-IRTA-UAB-UB)Barcelona, Spain
| | - Monserrat Arró
- Plant Metabolism and Metabolic Engineering Program, Centre for Research in Agricultural Genomics (CRAG) (CSIC-IRTA-UAB-UB)Barcelona, Spain
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of BarcelonaBarcelona, Spain
| | - Albert Boronat
- Plant Metabolism and Metabolic Engineering Program, Centre for Research in Agricultural Genomics (CRAG) (CSIC-IRTA-UAB-UB)Barcelona, Spain
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of BarcelonaBarcelona, Spain
| | - Albert Ferrer
- Plant Metabolism and Metabolic Engineering Program, Centre for Research in Agricultural Genomics (CRAG) (CSIC-IRTA-UAB-UB)Barcelona, Spain
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of BarcelonaBarcelona, Spain
- *Correspondence: Teresa Altabella, Albert Ferrer,
| | - Teresa Altabella
- Plant Metabolism and Metabolic Engineering Program, Centre for Research in Agricultural Genomics (CRAG) (CSIC-IRTA-UAB-UB)Barcelona, Spain
- Department of Biology, Healthcare and the Environment, Faculty of Pharmacy and Food Sciences, University of BarcelonaBarcelona, Spain
- *Correspondence: Teresa Altabella, Albert Ferrer,
| |
Collapse
|
20
|
Miras-Moreno B, Sabater-Jara AB, Pedreño MA, Almagro L. Bioactivity of Phytosterols and Their Production in Plant in Vitro Cultures. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:7049-58. [PMID: 27615454 DOI: 10.1021/acs.jafc.6b02345] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Phytosterols are a kind of plant metabolite belonging to the triterpene family. These compounds are essential biomolecules for human health, and so they must be taken from foods. β-Sitosterol, campesterol, and stigmasterol are the main phytosterols found in plants. Phytosterols have beneficial effects on human health since they are able to reduce plasma cholesterol levels and have antiinflammatory, antidiabetic, and anticancer activities. However, there are many difficulties in obtaining them, since the levels of these compounds produced from plant raw materials are low and their chemical synthesis is not economically profitable for commercial exploitation. A biotechnological alternative for their production is the use of plant cell and hairy root cultures. This review is focused on the biosynthesis of phytosterols and their function in both plants and humans as well as the different biotechnological strategies to increase phytosterol biosynthesis. Special attention is given to describing new methodologies based on the use of recombinant DNA technology to increase the levels of phytosterols.
Collapse
Affiliation(s)
- Begoña Miras-Moreno
- Department of Plant Biology, Faculty of Biology, University of Murcia , Campus de Espinardo, E-30100 Murcia, Spain
| | - Ana Belén Sabater-Jara
- Department of Plant Biology, Faculty of Biology, University of Murcia , Campus de Espinardo, E-30100 Murcia, Spain
| | - M A Pedreño
- Department of Plant Biology, Faculty of Biology, University of Murcia , Campus de Espinardo, E-30100 Murcia, Spain
| | - Lorena Almagro
- Department of Plant Biology, Faculty of Biology, University of Murcia , Campus de Espinardo, E-30100 Murcia, Spain
| |
Collapse
|
21
|
Manzano D, Andrade P, Caudepón D, Altabella T, Arró M, Ferrer A. Suppressing Farnesyl Diphosphate Synthase Alters Chloroplast Development and Triggers Sterol-Dependent Induction of Jasmonate- and Fe-Related Responses. PLANT PHYSIOLOGY 2016; 172:93-117. [PMID: 27382138 PMCID: PMC5074618 DOI: 10.1104/pp.16.00431] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 06/30/2016] [Indexed: 05/22/2023]
Abstract
Farnesyl diphosphate synthase (FPS) catalyzes the synthesis of farnesyl diphosphate from isopentenyl diphosphate and dimethylallyl diphosphate. Arabidopsis (Arabidopsis thaliana) contains two genes (FPS1 and FPS2) encoding FPS. Single fps1 and fps2 knockout mutants are phenotypically indistinguishable from wild-type plants, while fps1/fps2 double mutants are embryo lethal. To assess the effect of FPS down-regulation at postembryonic developmental stages, we generated Arabidopsis conditional knockdown mutants expressing artificial microRNAs devised to simultaneously silence both FPS genes. Induction of silencing from germination rapidly caused chlorosis and a strong developmental phenotype that led to seedling lethality. However, silencing of FPS after seed germination resulted in a slight developmental delay only, although leaves and cotyledons continued to show chlorosis and altered chloroplasts. Metabolomic analyses also revealed drastic changes in the profile of sterols, ubiquinones, and plastidial isoprenoids. RNA sequencing and reverse transcription-quantitative polymerase chain reaction transcriptomic analysis showed that a reduction in FPS activity levels triggers the misregulation of genes involved in biotic and abiotic stress responses, the most prominent one being the rapid induction of a set of genes related to the jasmonic acid pathway. Down-regulation of FPS also triggered an iron-deficiency transcriptional response that is consistent with the iron-deficient phenotype observed in FPS-silenced plants. The specific inhibition of the sterol biosynthesis pathway by chemical and genetic blockage mimicked these transcriptional responses, indicating that sterol depletion is the primary cause of the observed alterations. Our results highlight the importance of sterol homeostasis for normal chloroplast development and function and reveal important clues about how isoprenoid and sterol metabolism is integrated within plant physiology and development.
Collapse
Affiliation(s)
- David Manzano
- Plant Metabolism and Metabolic Engineering Program, Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra (Cerdanyola del Vallès), Barcelona, Spain (D.M., P.A., D.C., T.A., M.A., A.F.); andDepartment of Biochemistry and Molecular Biology (D.M., P.A., D.C., M.A., A.F.) and Plant Physiology Unit (T.A.), Faculty of Pharmacy, University of Barcelona, Barcelona, Spain
| | - Paola Andrade
- Plant Metabolism and Metabolic Engineering Program, Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra (Cerdanyola del Vallès), Barcelona, Spain (D.M., P.A., D.C., T.A., M.A., A.F.); andDepartment of Biochemistry and Molecular Biology (D.M., P.A., D.C., M.A., A.F.) and Plant Physiology Unit (T.A.), Faculty of Pharmacy, University of Barcelona, Barcelona, Spain
| | - Daniel Caudepón
- Plant Metabolism and Metabolic Engineering Program, Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra (Cerdanyola del Vallès), Barcelona, Spain (D.M., P.A., D.C., T.A., M.A., A.F.); andDepartment of Biochemistry and Molecular Biology (D.M., P.A., D.C., M.A., A.F.) and Plant Physiology Unit (T.A.), Faculty of Pharmacy, University of Barcelona, Barcelona, Spain
| | - Teresa Altabella
- Plant Metabolism and Metabolic Engineering Program, Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra (Cerdanyola del Vallès), Barcelona, Spain (D.M., P.A., D.C., T.A., M.A., A.F.); andDepartment of Biochemistry and Molecular Biology (D.M., P.A., D.C., M.A., A.F.) and Plant Physiology Unit (T.A.), Faculty of Pharmacy, University of Barcelona, Barcelona, Spain
| | - Montserrat Arró
- Plant Metabolism and Metabolic Engineering Program, Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra (Cerdanyola del Vallès), Barcelona, Spain (D.M., P.A., D.C., T.A., M.A., A.F.); andDepartment of Biochemistry and Molecular Biology (D.M., P.A., D.C., M.A., A.F.) and Plant Physiology Unit (T.A.), Faculty of Pharmacy, University of Barcelona, Barcelona, Spain
| | - Albert Ferrer
- Plant Metabolism and Metabolic Engineering Program, Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra (Cerdanyola del Vallès), Barcelona, Spain (D.M., P.A., D.C., T.A., M.A., A.F.); andDepartment of Biochemistry and Molecular Biology (D.M., P.A., D.C., M.A., A.F.) and Plant Physiology Unit (T.A.), Faculty of Pharmacy, University of Barcelona, Barcelona, Spain
| |
Collapse
|
22
|
Roy A, Walker WB, Vogel H, Chattington S, Larsson MC, Anderson P, Heckel DG, Schlyter F. Diet dependent metabolic responses in three generalist insect herbivores Spodoptera spp. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2016; 71:91-105. [PMID: 26908076 DOI: 10.1016/j.ibmb.2016.02.006] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 02/09/2016] [Accepted: 02/12/2016] [Indexed: 06/05/2023]
Abstract
Adaption to dietary changes is critical in the evolution of host plant ranges in polyphagous insects. We compared three taxa of lepidopteran herbivores from the predominantly generalist genus Spodoptera showing different degrees of polyphagy: Spodoptera littoralis, with a broad host range including both mono- and dicotyledonous plants, and two Spodoptera frugiperda strains [Corn (i.e. maize) (C) and Rice (R)] adapted primarily to different grass species. When feeding on maize we show a lower performance in the broad generalist taxon compared to the grass adapted taxa. Among these taxa, the maize adapted S. frugiperda C-strain generally performed better than the R-strain on maize leaves. On artificial pinto diet, all taxa performed well. Our RNA-Seq analysis of midgut transcriptomes from 3rd instar larvae feeding on maize showed broader transcriptional readjustments in the generalist S. littoralis compared to grass adapted S. frugiperda strains. Substantial alteration in the expression levels of midgut physiological function related transcripts, such as digestive and detoxifying enzymes, transporters, immunity, and peritrophic membrane associated transcripts, existed in all taxa. We found high background expression of UDP-glucosyl transferases, which are known to neutralize maize leaf toxins, in the maize adapted S. frugiperda C-strain, contributing to its fitness on maize compared to the R-strain. Our findings provide evidence for divergent diet specific response of digestive physiology within these Spodoptera taxa. Unexpectedly, the C- and R-strains of S. frugiperda fed on the same diet showed large differences in expression patterns between these two closely related taxa.
Collapse
Affiliation(s)
- A Roy
- Chemical Ecology, Department of Plant Protection Biology, Swedish University of Agricultural Sciences, SE-230 53, Alnarp, Sweden
| | - W B Walker
- Chemical Ecology, Department of Plant Protection Biology, Swedish University of Agricultural Sciences, SE-230 53, Alnarp, Sweden; Department of Neuroethology and Evolution, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, 07745 Jena, Germany
| | - H Vogel
- Department of Entomology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, 07745 Jena, Germany
| | - S Chattington
- Chemical Ecology, Department of Plant Protection Biology, Swedish University of Agricultural Sciences, SE-230 53, Alnarp, Sweden
| | - M C Larsson
- Chemical Ecology, Department of Plant Protection Biology, Swedish University of Agricultural Sciences, SE-230 53, Alnarp, Sweden
| | - P Anderson
- Chemical Ecology, Department of Plant Protection Biology, Swedish University of Agricultural Sciences, SE-230 53, Alnarp, Sweden
| | - D G Heckel
- Department of Entomology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, 07745 Jena, Germany
| | - F Schlyter
- Chemical Ecology, Department of Plant Protection Biology, Swedish University of Agricultural Sciences, SE-230 53, Alnarp, Sweden.
| |
Collapse
|
23
|
Lipid profiles of detergent resistant fractions of the plasma membrane in oat and rye in association with cold acclimation and freezing tolerance. Cryobiology 2016; 72:123-34. [PMID: 26904981 DOI: 10.1016/j.cryobiol.2016.02.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 02/04/2016] [Accepted: 02/17/2016] [Indexed: 01/24/2023]
Abstract
Cold acclimation (CA) results in alteration of the plasma membrane (PM) lipid composition in plants, which plays a crucial role in the acquisition of freezing tolerance via membrane stabilization. Recent studies have indicated that PM structure is consistent with the fluid mosaic model but is laterally non-homogenous and contains microdomains enriched in sterols, sphingolipids and specific proteins. In plant cells, the function of these microdomains in relation to CA and freezing tolerance is not yet fully understood. The present study aimed to investigate the lipid compositions of detergent resistant fractions of the PM (DRM) which are considered to represent microdomains. They were prepared from leaves of low-freezing tolerant oat and high-freezing tolerant rye. The DRMs contained higher proportions of sterols, sphingolipids and saturated phospholipids than the PM. In particular, one of the sterol lipid classes, acylated sterylglycoside, was the predominant sterol in oat DRM while rye DRM contained free sterol as the major sterol. Oat and rye showed different patterns (or changes) of sterols and 2-hydroxy fatty acids of sphingolipids of DRM lipids during CA. Taken together, these results suggest that CA-induced changes of lipid classes and molecular species in DRMs are associated with changes in the thermodynamic properties and physiological functions of microdomains during CA and hence, influence plant freezing tolerance.
Collapse
|
24
|
Morales-Cedillo F, González-Solís A, Gutiérrez-Angoa L, Cano-Ramírez DL, Gavilanes-Ruiz M. Plant lipid environment and membrane enzymes: the case of the plasma membrane H+-ATPase. PLANT CELL REPORTS 2015; 34:617-29. [PMID: 25577330 DOI: 10.1007/s00299-014-1735-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 12/18/2014] [Accepted: 12/29/2014] [Indexed: 05/06/2023]
Abstract
Several lipid classes constitute the universal matrix of the biological membranes. With their amphipathic nature, lipids not only build the continuous barrier that confers identity to every cell and organelle, but they are also active actors that modulate the activity of the proteins immersed in the lipid bilayer. The plasma membrane H(+)-ATPase, an enzyme from plant cells, is an excellent example of a transmembrane protein whose activity is influenced by the hydrophilic compartments at both sides of the membrane and by the hydrophobic domains of the lipid bilayer. As a result, an extensive documentation of the effect of numerous amphiphiles in the enzyme activity can be found. Detergents, membrane glycerolipids, and sterols can produce activation or inhibition of the enzyme activity. In some cases, these effects are associated with the lipids of the membrane bulk, but in others, a direct interaction of the lipid with the protein is involved. This review gives an account of reports related to the action of the membrane lipids on the H(+)-ATPase activity.
Collapse
Affiliation(s)
- Francisco Morales-Cedillo
- Dpto. de Bioquímica, Facultad de Química, Conj. E. Universidad Nacional Autónoma de México, UNAM. Cd. Universitaria, Coyoacán, 04510, Mexico, D.F., Mexico
| | | | | | | | | |
Collapse
|
25
|
Bouillon R, Suda T. Vitamin D: calcium and bone homeostasis during evolution. BONEKEY REPORTS 2014; 3:480. [PMID: 24466411 DOI: 10.1038/bonekey.2013.214] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 11/27/2013] [Indexed: 12/30/2022]
Abstract
Vitamin D3 is already found early in the evolution of life but essentially as inactive end products of the photochemical reaction of 7-dehydrocholestol with ultraviolet light B. A full vitamin D (refers to vitamin D2 and D3) endocrine system, characterized by a specific VDR (vitamin D receptor, member of the nuclear receptor family), specific vitamin D metabolizing CYP450 enzymes regulated by calciotropic hormones and a dedicated plasma transport-protein is only found in vertebrates. In the earliest vertebrates (lamprey), vitamin D metabolism and VDR may well have originated from a duplication of a common PRX/VDR ancestor gene as part of a xenobiotic detoxification pathway. The vitamin D endocrine system, however, subsequently became an important regulator of calcium supply for an extensive calcified skeleton. Vitamin D is essential for normal calcium and bone homeostasis as shown by rickets in vitamin D-deficient growing amphibians, reptiles, birds and mammals. From amphibians onward, bone is gradually more dynamic with regulated bone resorption, mainly by combined action of PTH and 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3) on the generation and function of multinucleated osteoclasts. Therefore, bone functions as a large internal calcium reservoir, under the control of osteoclasts. Osteocytes also display a remarkable spectrum of activities, including mechanical sensing and regulating mineral homeostasis, but also have an important role in global nutritional and energy homeostasis. Mineralization from reptiles onward is under the control of well-regulated SIBLING proteins and associated enzymes, nearly all under the control of 1,25(OH)2D3. The vitamin D story thus started as inert molecule but gained an essential role for calcium and bone homeostasis in terrestrial animals to cope with the challenge of higher gravity and calcium-poor environment.
Collapse
Affiliation(s)
- Roger Bouillon
- Clinical and Experimental Endocrinology, KU Leuven; Department of Endocrinology, University Hospitals Leuven , Leuven, Belgium
| | - Tatsuo Suda
- Research Center for Genomic Medicine, Saitama Medical University , Saitama, Japan
| |
Collapse
|
26
|
Takahashi D, Kawamura Y, Uemura M. Changes of detergent-resistant plasma membrane proteins in oat and rye during cold acclimation: association with differential freezing tolerance. J Proteome Res 2013; 12:4998-5011. [PMID: 24111712 DOI: 10.1021/pr400750g] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cold acclimation (CA) results in an increase in freezing tolerance of plants, which is closely associated to functional changes of the plasma membrane (PM). Although proteomic studies have revealed compositional changes of the PM during CA, there has been no large-scale study of how the microdomains in the PM, which contains specific lipids and proteins, change during CA. Therefore, we conducted semiquantitative shotgun proteomics using microdomain-enriched detergent-resistant membrane (DRM) fractions extracted from low freezing-tolerant oat and highly freezing-tolerant rye. We identified 740 and 809 DRM proteins in oat and rye, respectively. Among the proteins identified, the abundances of a variety of proteins, such as P-type ATPase and aquaporins, were affected by CA in both oat and rye. Some CA-responsive proteins in the DRM fractions, such as heat shock protein 70, changed differently in oat and rye. In addition, changes in lipocalins and sugar transporters in the DRM fractions were different from those found in total PM fraction during CA. This is the first report to describe compositional changes in the DRM during CA. The proteomic profiles obtained in the present study hint at many possible microdomain functions associated with CA and freezing tolerance.
Collapse
Affiliation(s)
- Daisuke Takahashi
- United Graduate School of Agricultural Sciences and ‡Cryobiofrontier Research Center, Iwate University , 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan
| | | | | |
Collapse
|
27
|
Wriessnegger T, Pichler H. Yeast metabolic engineering – Targeting sterol metabolism and terpenoid formation. Prog Lipid Res 2013; 52:277-93. [DOI: 10.1016/j.plipres.2013.03.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2012] [Revised: 03/26/2013] [Accepted: 03/27/2013] [Indexed: 12/28/2022]
|
28
|
Kopischke M, Westphal L, Schneeberger K, Clark R, Ossowski S, Wewer V, Fuchs R, Landtag J, Hause G, Dörmann P, Lipka V, Weigel D, Schulze-Lefert P, Scheel D, Rosahl S. Impaired sterol ester synthesis alters the response of Arabidopsis thaliana to Phytophthora infestans. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 73:456-68. [PMID: 23072470 DOI: 10.1111/tpj.12046] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 10/03/2012] [Accepted: 10/04/2012] [Indexed: 05/06/2023]
Abstract
Non-host resistance of Arabidopsis thaliana against Phytophthora infestans, the causal agent of late blight disease of potato, depends on efficient extracellular pre- and post-invasive resistance responses. Pre-invasive resistance against P. infestans requires the myrosinase PEN2. To identify additional genes involved in non-host resistance to P. infestans, a genetic screen was performed by re-mutagenesis of pen2 plants. Fourteen independent mutants were isolated that displayed an enhanced response to Phytophthora (erp) phenotype. Upon inoculation with P. infestans, two mutants, pen2-1 erp1-3 and pen2-1 erp1-4, showed an enhanced rate of mesophyll cell death and produced excessive callose deposits in the mesophyll cell layer. ERP1 encodes a phospholipid:sterol acyltransferase (PSAT1) that catalyzes the formation of sterol esters. Consistent with this, the tested T-DNA insertion lines of PSAT1 are phenocopies of erp1 plants. Sterol ester levels are highly reduced in all erp1/psat1 mutants, whereas sterol glycoside levels are increased twofold. Excessive callose deposition occurred independently of PMR4/GSL5 activity, a known pathogen-inducible callose synthase. A similar formation of aberrant callose deposits was triggered by the inoculation of erp1 psat1 plants with powdery mildew. These results suggest a role for sterol conjugates in cell non-autonomous defense responses against invasive filamentous pathogens.
Collapse
Affiliation(s)
- Michaela Kopischke
- Department of Stress and Developmental Biology, Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120, Halle (Saale), Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Debiane D, Calonne M, Fontaine J, Laruelle F, Grandmougin-Ferjani A, Lounès-Hadj Sahraoui A. Benzo[a]pyrene induced lipid changes in the monoxenic arbuscular mycorrhizal chicory roots. JOURNAL OF HAZARDOUS MATERIALS 2012; 209-210:18-26. [PMID: 22277337 DOI: 10.1016/j.jhazmat.2011.12.044] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Revised: 12/13/2011] [Accepted: 12/15/2011] [Indexed: 05/31/2023]
Abstract
Arbuscular mycorrhizal (AM) colonization may be one of the means that protects plants and allows them to thrive on polycyclic aromatic hydrocarbon-polluted soils including the carcinogenic benzo(a)pyrene (B[a]P). To understand the mechanisms involved in the AM symbiosis tolerance to B[a]P toxicity, the purpose of this study was to compare the lipid compositions as well as the contents between mycorrhizal and non-mycorrhizal chicory root cultures grown in vitro under B[a]P pollution. Firstly, B[a]P induced significant decreases of the Glomalean lipid markers: C16:1ω5 and 24-methyl/methylene sterol amounts in AM roots indicating a reduced AM fungal development inside the roots. Secondly, whereas increases in fatty acid amounts after B[a]P application were measured in non-mycorrhizal roots, no changes were shown in mycorrhizal roots. On the other hand, while, after treatment with B[a]P, the total phospholipid contents were unmodified in non-mycorrhizal roots in comparison with the control, drastic reductions were observed in mycorrhizal roots, mainly owing to decreases in phosphatidylethanolamine and phosphatidylcholine. Moreover, B[a]P affected AM root sterols by reducing stigmasterol. In conclusion, the findings presented in this paper have highlighted, for the first time, significant changes in the AM root lipid metabolism under B[a]P pollution and have culminated on their role in the defense/protection mechanisms.
Collapse
Affiliation(s)
- Djouher Debiane
- Univ Lille Nord de France, F-59000 Lille, Université du Littoral Côte d'Opale, Unité de Chimie Environnementale et Interactions sur le Vivant, F-62228 Calais, France
| | | | | | | | | | | |
Collapse
|
30
|
Brain RA, Brooks BW. Considerations and Criteria for the Incorporation of Mechanistic Sublethal Endpoints into Environmental Risk Assessment for Biologically Active Compounds. EMERGING TOPICS IN ECOTOXICOLOGY 2012. [DOI: 10.1007/978-1-4614-3473-3_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
31
|
Schrick K, DeBolt S, Bulone V. Deciphering the molecular functions of sterols in cellulose biosynthesis. FRONTIERS IN PLANT SCIENCE 2012; 3:84. [PMID: 22639668 PMCID: PMC3355633 DOI: 10.3389/fpls.2012.00084] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Accepted: 04/15/2012] [Indexed: 05/02/2023]
Abstract
Sterols play vital roles in plant growth and development, as components of membranes and as precursors to steroid hormones. Analysis of Arabidopsis mutants indicates that sterol composition is crucial for cellulose biosynthesis. Sterols are widespread in the plasma membrane (PM), suggesting a possible link between sterols and the multimeric cellulose synthase complex. In one possible scenario, molecular interactions in sterol-rich PM microdomains or another form of sterol-dependent membrane scaffolding may be critical for maintaining the correct subcellular localization, structural integrity and/or activity of the cellulose synthase machinery. Another possible link may be through steryl glucosides, which could act as primers for the attachment of glucose monomers during the synthesis of β-(1 → 4) glucan chains that form the cellulose microfibrils. This mini-review examines genetic and biochemical data supporting the link between sterols and cellulose biosynthesis in cell wall formation and explores potential approaches to elucidate the mechanism of this association.
Collapse
Affiliation(s)
- Kathrin Schrick
- Division of Biology, Kansas State UniversityManhattan, KS, USA
- *Correspondence: Kathrin Schrick, Division of Biology, Kansas State University, Ackert Hall 116, Manhattan, KS 66506, USA. e-mail:
| | - Seth DeBolt
- Department of Horticulture, University of KentuckyLexington, KY, USA
| | - Vincent Bulone
- Division of Glycoscience, Royal Institute of Technology, School of Biotechnology, AlbaNova University CentreStockholm, Sweden
| |
Collapse
|
32
|
Pereira-Netto AB, Meneguin RG, Biz A, Silveira JLM. A galactomannan-driven enhancement of the in vitro multiplication rate for the Marubakaido apple rootstock (Malus prunifolia (Willd.) Borkh) is not related to the degradation of the exogenous galactomannan. Appl Biochem Biotechnol 2012. [PMID: 22057908 DOI: 10.1007/s00468-011-0621-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Agar is a complex mixture of gel-forming polysaccharides. Gelling agents are very often used to provide proper support for plants grown in semisolid culture media. And agar is the most frequently used gelling agent in plant tissue culture media. Galactomannans, another group of gel-forming polysaccharides, consists of a (1 → 4)-linked β-D: -mannopyranosyl backbone partially substituted at O-6 with D: -galactopyranosyl side groups. In this work, we demonstrate that a statistically significant 2.7-fold increase on the multiplication rate (MR) for in vitro-grown Marubakaido (Malus prunifolia) shoots was associated with a 12.5% replacement of agar in the semi-solid culture media for a galactomannan obtained from seeds of Schizolobium paraybae. This increase on MR was due mainly to a 1.9-fold increase in the number of main branches and an 8.6-fold increase in the number of primary lateral branches. Gas liquid chromatography and thin layer chromatography analyzes demonstrated that the galactomannan-driven enhancement of the in vitro multiplication rate of the Marubakaido apple rootstock was not related to the galactomannan degradation. To the best of our knowledge, this is the first report on the successful use of partial replacement of high quality agar by a galactomannan from S. paraybae in a micropropagation system for a tree species.
Collapse
Affiliation(s)
- Adaucto B Pereira-Netto
- Department of Botany-SCB, Centro Politécnico-Parana Federal University, Curitiba, PR, Brazil.
| | | | | | | |
Collapse
|
33
|
Schrick K, Shiva S, Arpin JC, Delimont N, Isaac G, Tamura P, Welti R. Steryl glucoside and acyl steryl glucoside analysis of Arabidopsis seeds by electrospray ionization tandem mass spectrometry. Lipids 2011; 47:185-93. [PMID: 21830156 DOI: 10.1007/s11745-011-3602-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Accepted: 07/22/2011] [Indexed: 11/26/2022]
Abstract
Establishment of sensitive methods for the detection of cellular sterols and their derivatives is a critical step in developing comprehensive lipidomics technology. We demonstrate that electrospray ionization tandem (triple quadrupole) mass spectrometry (ESI-MS/MS) is an efficient method for monitoring steryl glucosides (SG) and acyl steryl glucosides (ASG). Comparison of analysis of SG and ASG by ESI-MS/MS with analysis by gas chromatography with flame ionization detection (GC-FID) shows that the two methods yield similar molar compositions. These data demonstrate that ESI-MS/MS response per molar amount of sterol conjugate is similar among various molecular species of SG and ASG. Application of ESI-MS/MS to seed samples from wild-type Arabidopsis and a mutant deficient in two UDP-glucose:sterol glucosyltransferases, UGT80A2 and UGT80B1, revealed new details on the composition of sitosteryl, campesteryl and stigmasteryl glucosides and ASG. SG were decreased by 86% in the ugt80A2,B1 double mutant, compared to the wild-type, while ASG were reduced 96%. The results indicate that these glucosyltransferases account for much of the accumulation of the sterol conjugates in wild-type Arabidopsis seeds.
Collapse
Affiliation(s)
- Kathrin Schrick
- Division of Biology, 116 Ackert Hall, Kansas State University, Manhattan, KS 66506-4901, USA.
| | | | | | | | | | | | | |
Collapse
|
34
|
Elmore JM, Coaker G. The role of the plasma membrane H+-ATPase in plant-microbe interactions. MOLECULAR PLANT 2011; 4:416-27. [PMID: 21300757 PMCID: PMC3107590 DOI: 10.1093/mp/ssq083] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Accepted: 12/17/2010] [Indexed: 05/17/2023]
Abstract
Plasma membrane (PM) H+-ATPases are the primary pumps responsible for the establishment of cellular membrane potential in plants. In addition to regulating basic aspects of plant cell function, these enzymes contribute to signaling events in response to diverse environmental stimuli. Here, we focus on the roles of the PM H+-ATPase during plant-pathogen interactions. PM H+-ATPases are dynamically regulated during plant immune responses and recent quantitative proteomics studies suggest complex spatial and temporal modulation of PM H+-ATPase activity during early pathogen recognition events. Additional data indicate that PM H+-ATPases cooperate with the plant immune signaling protein RIN4 to regulate stomatal apertures during bacterial invasion of leaf tissue. Furthermore, pathogens have evolved mechanisms to manipulate PM H+-ATPase activity during infection. Thus, these ubiquitous plant enzymes contribute to plant immune responses and are targeted by pathogens to increase plant susceptibility.
Collapse
Affiliation(s)
| | - Gitta Coaker
- To whom correspondence should be addressed. E-mail , fax 530-752-5674, tel. 530-752-6541
| |
Collapse
|
35
|
Sánchez-Nieto S, Enríquez-Arredondo C, Guzmán-Chávez F, Hernández-Muñoz R, Ramírez J, Gavilanes-Ruíz M. Kinetics of the H+-ATPase from dry and 5-hours-imbibed maize embryos in its native, solubilized, and reconstituted forms. MOLECULAR PLANT 2011; 4:505-515. [PMID: 21367847 DOI: 10.1093/mp/ssr010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Membranes undergo recovery upon rehydration in seed germination. Previous work has described that the plasma membrane H+-ATPase from maize embryos adopts two different forms at 0 and 5 h of imbibition. We investigated how the kinetics of these two forms could be affected by alterations in the plasma membrane (PM). In comparison to the 0-h, PMs from the 5-h imbibed embryos showed changes in glycerophospholipid composition, decrease in leakage, and increase in fluidity. Kinetics of the PM H+-ATPase from 0 and 5-h imbibed embryos showed negative cooperativity. With the removal of the membrane environment, the activity of the enzymes shifted to a more complex kinetics, displaying two enzyme components. Lipid reconstitution produced one component with positive cooperativity. In all cases, enzymes from 0 and 5-h imbibed embryos presented similar kinetics with some quantitative differences. These results indicate that the two enzyme forms have the potential ability to respond to changes in the membrane environment, but the fact that they do not show differences in the native membranes at 0 or 5 h implies that modifications in the membrane are not drastic enough to alter their kinetics, or that they are able to preserve their boundary lipids or associated proteins and thus retain the same kinetic behavior.
Collapse
Affiliation(s)
- Sobeida Sánchez-Nieto
- Departamento de Bioquímica, Facultad de Química, Conjunto E. Universidad Nacional Autónoma de México, Cd Universitaria, 04360 México, DF México
| | | | | | | | | | | |
Collapse
|
36
|
Schrick K, Cordova C, Li G, Murray L, Fujioka S. A dynamic role for sterols in embryogenesis of Pisum sativum. PHYTOCHEMISTRY 2011; 72:465-75. [PMID: 21315386 DOI: 10.1016/j.phytochem.2011.01.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Revised: 12/29/2010] [Accepted: 01/07/2011] [Indexed: 05/08/2023]
Abstract
Molecular roles of sterols in plant development remain to be elucidated. To investigate sterol composition during embryogenesis, the occurrence of 25 steroid compounds in stages of developing seeds and pods of Pisum sativum was examined by GC-MS analysis. Immature seeds containing very young embryos exhibited the greatest concentrations of sterols. Regression models indicated that the natural log of seed or pod fr. wt was a consistent predictor of declining sterol content during embryonic development. Although total sterol levels were reduced in mature embryos, the composition of major sterols sitosterol and campesterol remained relatively constant in all 12 seed stages examined. In mature seeds, a significant decrease in isofucosterol was observed, as well as minor changes such as increases in cycloartenol branch sterols and campesterol derivatives. In comparison to seeds and pods, striking differences in composition were observed in sterol profiles of stems, shoots, leaves, flowers and flower buds, as well as cotyledons versus radicles. The highest levels of isofucosterol, a precursor to sitosterol, occurred in young seeds and flower buds, tissues that contain rapidly dividing cells and cells undergoing differentiation. Conversely, the highest levels of stigmasterol, a derivative of sitosterol, were found in fully-differentiated leaves while all seed stages exhibited low levels of stigmasterol. The observed differences in sterol content were correlated to mRNA expression data for sterol biosynthesis genes from Arabidopsis. These findings implicate the coordinated expression of sterol biosynthesis enzymes in gene regulatory networks underlying the embryonic development of flowering plants.
Collapse
Affiliation(s)
- Kathrin Schrick
- Keck Graduate Institute of Applied Life Sciences, 535 Watson Drive, Claremont, CA 91711, USA.
| | | | | | | | | |
Collapse
|
37
|
Modulation of plant mitochondrial VDAC by phytosterols. Biophys J 2011; 99:2097-106. [PMID: 20923643 DOI: 10.1016/j.bpj.2010.07.067] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Revised: 07/27/2010] [Accepted: 07/28/2010] [Indexed: 12/21/2022] Open
Abstract
We have investigated the effect of cholesterol and two abundant phytosterols (sitosterol and stigmasterol) on the voltage-dependent anion-selective channel (VDAC) purified from mitochondria of bean seeds (Phaseolus coccineus). These sterols differ by the degree of freedom of their lateral chain. We show that VDAC displays sensitivity to the lipid-sterol ratio and to the type of sterol found in the membrane. The main findings of this study are: 1), cholesterol and phytosterols modulate the selectivity but only stigmasterol alters the voltage-dependence of the plant VDAC in the range of sterol fraction found in the plant mitochondrial membrane; 2), VDAC unitary conductance is not affected by the addition of sterols; 3), the effect of sterols on the VDAC is reversible upon sterol depletion with 10 μM methyl-β-cyclodextrins; and 4), phytosterols are essential for the channel gating at salt concentration prevailing in vivo. A quantitative analysis of the voltage-dependence indicates that stigmasterol inhibits the transition of the VDAC in the lowest subconductance states.
Collapse
|
38
|
Piepho M, Martin-Creuzburg D, Wacker A. Simultaneous effects of light intensity and phosphorus supply on the sterol content of phytoplankton. PLoS One 2010; 5:e15828. [PMID: 21209879 PMCID: PMC3013121 DOI: 10.1371/journal.pone.0015828] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Accepted: 11/27/2010] [Indexed: 11/19/2022] Open
Abstract
Sterol profiles of microalgae and their change with environmental conditions are of great interest in ecological food web research and taxonomic studies alike. Here, we investigated effects of light intensity and phosphorus supply on the sterol content of phytoplankton and assessed potential interactive effects of these important environmental factors on the sterol composition of algae. We identified sterol contents of four common phytoplankton genera, Scenedesmus, Chlamydomonas, Cryptomonas and Cyclotella, and analysed the change in sterol content with varying light intensities in both a high-phosphorus and a low-phosphorus approach. Sterol contents increased significantly with increasing light in three out of four species. Phosphorus-limitation reversed the change of sterol content with light intensity, i.e., sterol content decreased with increasing light at low phosphorus supply. Generally sterol contents were lower in low-phosphorus cultures. In conclusion, both light and phosphorus conditions strongly affect the sterol composition of algae and hence should be considered in ecological and taxonomic studies investigating the biochemical composition of algae. Data suggest a possible sterol limitation of growth and reproduction of herbivorous crustacean zooplankton during summer when high light intensities and low phosphorus supply decrease sterol contents of algae.
Collapse
Affiliation(s)
- Maike Piepho
- Institute of Biochemistry and Biology, Theoretical Aquatic Ecology, University of Potsdam, Potsdam, Germany.
| | | | | |
Collapse
|
39
|
Bonneau L, Gerbeau-Pissot P, Thomas D, Der C, Lherminier J, Bourque S, Roche Y, Simon-Plas F. Plasma membrane sterol complexation, generated by filipin, triggers signaling responses in tobacco cells. BIOCHIMICA ET BIOPHYSICA ACTA 2010; 1798:2150-9. [PMID: 20674542 DOI: 10.1016/j.bbamem.2010.07.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Revised: 07/12/2010] [Accepted: 07/23/2010] [Indexed: 12/31/2022]
Abstract
The effects of changes in plasma membrane (PM) sterol lateral organization and availability on the control of signaling pathways have been reported in various animal systems, but rarely assessed in plant cells. In the present study, the pentaene macrolide antibiotic filipin III, commonly used in animal systems as a sterol sequestrating agent, was applied to tobacco cells. We show that filipin can be used at a non-lethal concentration that still allows an homogeneous labeling of the plasma membrane and the formation of filipin-sterol complexes at the ultrastructural level. This filipin concentration triggers a rapid and transient NADPH oxidase-dependent production of reactive oxygen species, together with an increase in both medium alkalinization and conductivity. Pharmacological inhibition studies suggest that these signaling events may be regulated by phosphorylations and free calcium. By conducting FRAP experiments using the di-4-ANEPPDHQ probe and spectrofluorimetry using the Laurdan probe, we provide evidence for a filipin-induced increase in PM viscosity that is also regulated by phosphorylations. We conclude that filipin triggers ligand-independent signaling responses in plant cells. The present findings strongly suggest that changes in PM sterol availability could act as a sensor of the modifications of cell environment in plants leading to adaptive cell responses through regulated signaling processes.
Collapse
|
40
|
Griebel T, Zeier J. A role for beta-sitosterol to stigmasterol conversion in plant-pathogen interactions. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 63:254-268. [PMID: 20444228 DOI: 10.1111/j.1365-313x.2010.04235.x] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Upon inoculation with pathogenic microbes, plants induce an array of metabolic changes that potentially contribute to induced resistance or even enhance susceptibility. When analysing leaf lipid composition during the Arabidopsis thaliana-Pseudomonas syringae interaction, we found that accumulation of the phytosterol stigmasterol is a significant plant metabolic process that occurs upon bacterial leaf infection. Stigmasterol is synthesized from beta-sitosterol by the cytochrome P450 CYP710A1 via C22 desaturation. Arabidopsis cyp710A1 mutant lines impaired in pathogen-inducible expression of the C22 desaturase and concomitant stigmasterol accumulation are more resistant to both avirulent and virulent P. syringae strains than wild-type plants, and exogenous application of stigmasterol attenuates this resistance phenotype. These data indicate that induced sterol desaturation in wild-type plants favours pathogen multiplication and plant susceptibility. Stigmasterol formation is triggered through perception of pathogen-associated molecular patterns such as flagellin and lipopolysaccharides, and through production of reactive oxygen species, but does not depend on the salicylic acid, jasmonic acid or ethylene defence pathways. Isolated microsomal and plasma membrane preparations exhibited a similar increase in the stigmasterol/beta-sitosterol ratio as whole-leaf extracts after leaf inoculation with P. syringae, indicating that the stigmasterol produced is incorporated into plant membranes. The increased contents of stigmasterol in leaves after pathogen attack do not influence salicylic acid-mediated defence signalling but attenuate pathogen-induced expression of the defence regulator flavin-dependent monooxygenase 1. P. syringae thus promotes plant disease susceptibility through stimulation of sterol C22 desaturation in leaves, which increases the stigmasterol to beta-sitosterol ratio in plant membranes.
Collapse
Affiliation(s)
- Thomas Griebel
- Julius-von-Sachs-Institute of Biological Sciences, University of Würzburg, Julius-von-Sachs Platz 3, D-97082 Würzburg, Germany
| | - Jürgen Zeier
- Department of Biology, Plant Biology Section, University of Fribourg, Route Albert Gockel 3, CH-1700 Fribourg, Switzerland
| |
Collapse
|
41
|
Rossard S, Roblin G, Atanassova R. Ergosterol triggers characteristic elicitation steps in Beta vulgaris leaf tissues. JOURNAL OF EXPERIMENTAL BOTANY 2010; 61:1807-16. [PMID: 20304987 DOI: 10.1093/jxb/erq047] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
This study investigates the role of the fungal sterol ergosterol as a general elicitor in the triggering of plant innate immunity in sugar beet. Evidence for this specific function of ergosterol is provided by careful comparison with cholesterol and three plant sterols (stigmasterol, campesterol, sitosterol), which do not enable the integrity of responses leading to elicitation. Our results demonstrate the modification of H(+) flux by ergosterol, due to the direct inhibition of the H(+)-ATPase activity on plasma membrane vesicles purified from leaves. The ergosterol-induced oxidative burst is related to enhanced NADPH-oxidase and superoxide dismutase activities. The similar effects obtained with the fungal elicitor chitosan further reinforce the particular role of ergosterol in the induced defences. The involvement of salicylic acid and/or jasmonic acid signalling in the ergosterol-enhanced plant non-host resistance is also studied. The possible link between ergosterol-triggered plant innate immunity and its putative impact on the structural organization of plant plasma membrane are discussed in terms of the ability of this fungal sterol to promote the formation of lipid rafts.
Collapse
Affiliation(s)
- Stéphanie Rossard
- University of Poitiers, CNRS FRE 3091 Molecular Physiology of Sugar Transport in Plants, 40 avenue du Recteur Pineau, F-86022 Poitiers Cedex, France
| | | | | |
Collapse
|
42
|
Kim HB, Lee H, Oh CJ, Lee HY, Eum HL, Kim HS, Hong YP, Lee Y, Choe S, An CS, Choi SB. Postembryonic seedling lethality in the sterol-deficient Arabidopsis cyp51A2 mutant is partially mediated by the composite action of ethylene and reactive oxygen species. PLANT PHYSIOLOGY 2010; 152:192-205. [PMID: 19915013 PMCID: PMC2799356 DOI: 10.1104/pp.109.149088] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2009] [Accepted: 11/05/2009] [Indexed: 05/21/2023]
Abstract
Seedling-lethal phenotypes of Arabidopsis (Arabidopsis thaliana) mutants that are defective in early steps in the sterol biosynthetic pathway are not rescued by the exogenous application of brassinosteroids. The detailed molecular and physiological mechanisms of seedling lethality have yet to be understood. Thus, to elucidate the underlying mechanism of lethality, we analyzed transcriptome and proteome profiles of the cyp51A2 mutant that is defective in sterol 14alpha-demethylation. Results revealed that the expression levels of genes involved in ethylene biosynthesis/signaling and detoxification of reactive oxygen species (ROS) increased in the mutant compared with the wild type and, thereby, that the endogenous ethylene level also increased in the mutant. Consistently, the seedling-lethal phenotype of the cyp51A2 mutant was partly attenuated by the inhibition of ethylene biosynthesis or signaling. However, photosynthesis-related genes including Rubisco large subunit, chlorophyll a/b-binding protein, and components of photosystems were transcriptionally and/or translationally down-regulated in the mutant, accompanied by the transformation of chloroplasts into gerontoplasts and a reduction in both chlorophyll contents and photosynthetic activity. These characteristics observed in the cyp51A2 mutant resemble those of leaf senescence. Nitroblue tetrazolium staining data revealed that the mutant was under oxidative stress due to the accumulation of ROS, a key factor controlling both programmed cell death and ethylene production. Our results suggest that changes in membrane sterol contents and composition in the cyp51A2 mutant trigger the generation of ROS and ethylene and eventually induce premature seedling senescence.
Collapse
|
43
|
Brain RA, Hanson ML, Solomon KR, Brooks BW. Aquatic plants exposed to pharmaceuticals: effects and risks. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2008; 192:67-115. [PMID: 18020304 DOI: 10.1007/978-0-387-71724-1_3] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Pharmaceuticals are biologically active, ubiquitous, low-level contaminants that are continuously introduced into the environment from both human and veterinary applications at volumes comparable to total pesticide loadings. Recent analytical advances have made possible the detection of a number of these compounds in environmental samples, raising concerns over potential nontarget effects to aquatic organisms, especially given the highly specific biologically active nature of these compounds. These concerns become paramount when the evolutionary conservation of metabolic pathways and receptors is taken into consideration, particularly in the case of aquatic plants, where a great deal of homology is displayed between the chloroplast and bacteria, as well as between other metabolic pathways across multiple phyla of biological organization. Common receptors have been identified in plants for a number of antibiotics affecting chloroplast replication (fluoroquinolones) transcription and translation (tetracyclines macrolides, lincosamides, P-aminoglycosides, and pleuromutilins), metabolic pathways such as folate biosynthesis (sulfonamides) and fatty acid biosynthesis (triclosan), as well as other classes of pharmaceuticals that affect sterol biosynthesis (statin-type blood lipid regulators). Toxicological investigations into the potency of these compounds indicates susceptibility across multiple plant species, although sensitivity to these compounds varies widely between blue-green algae, green algae, and higher plants in a rather inconsistent manner, except that Cyanobacteria are largely the most sensitive to antibiotic compounds. This differential sensitivity is likely dependent on differences in metabolic potential as well as uptake kinetics, which has been demonstrated for a number of compounds from another class of biologically active compounds, pesticides. The demonstration of conserved receptors and pathways in plants is not surprising, although it has been largely overlooked in the risk assessment process to date, which typically relies heavily on physiological and/or morphological endpoints for deriving toxicity data. However, a small number of studies have indicated that measuring the response of a pathway- or receptor-specific target in conjunction with a physiological endpoint with direct relatedness can yield sublethal responses that are two to three times more sensitive that the traditional gross morphological endpoints typically employed in risk assessment. The risk assessment for this review was based almost entirely on evaluations of gross morphological endpoints, which generally indicated that the risk pharmaceuticals pose to aquatic plants is generally low, with a few exceptions, particularly blue-green algae exposed to antibiotics, and both green and blue-green algae exposed to triclosan. It is critical to note, however, that the application of sublethal pathway or receptor-specific responses in risk assessment has largely been unconsidered, and future research is needed to elucidate whether evaluating the toxicity of pharmaceuticals using these endpoints provides a more sensitive, subtle, yet meaningful indication of toxicity than the traditional endpoints used in prospective and retrospective risk assessments for aquatic plants.
Collapse
Affiliation(s)
- Richard A Brain
- Center for Reservoir and Aquatic Systems Research, Department of Environmental Studies, Baylor University, One Bear Place, Waco, TX 76798-7388, USA
| | | | | | | |
Collapse
|
44
|
Brain RA, Reitsma TS, Lissemore LI, Bestari K, Sibley PK, Solomon KR. Herbicidal effects of statin pharmaceuticals in Lemna gibba. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2006; 40:5116-23. [PMID: 16955916 DOI: 10.1021/es0600274] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Statin pharmaceuticals, heavily prescribed in the treatment of hypercholesterolemia, are competitive inhibitors of 3-hydroxy-3-methylglutaryl coenzyme-A reductase (HMGR). In plants, these compounds also inhibit HMGR, which regulates cytosolic isoprenoid biosynthesis in the mevalonic acid (MVA) pathway. Phytotoxicity was evaluated in the higher aquatic plant Lemna gibba exposed to atorvastatin and lovastatin for 7-days by measuring the concentrations of sterols and ubiquinone; products downstream in the MVA pathway. The efficiency of the parallel and unaffected methylerythritol phosphate pathway (MEP) was also evaluated by measuring the end product, plastoquinone. Statin treatment caused an accumulation of plastoquinone, and unexpectedly, ubiquinone, an artifact likely due to metabolite sharing from the plastidial MEP pathway. Statins were, however, highly phytotoxic to L. gibba and HPLC-UV analysis of plant extracts showed significantly decreased concentrations of both stigmasterol and beta-sitosterol, which are critical components of plant membranes and regulate morphogenesis and development. EC10 values for atorvastatin and lovastatin were as small as 26.1 and 32.8 microg/L, respectively. However, hazard quotients indicated that statins present little risk to the model higher aquatic plant Lemna gibba at environmentally relevant concentrations, even though pathway-specific endpoints were 2-3 times more sensitive than traditional gross morphological endpoints typically used in risk assessment.
Collapse
Affiliation(s)
- Richard A Brain
- Department of Environmental Biology, University of Guelph, Ontario, Canada.
| | | | | | | | | | | |
Collapse
|
45
|
Mora-Ranjeva MP, Charveron M, Fabre B, Milon A, Muller I. Incorporation of phytosterols in human keratinocytes. Chem Phys Lipids 2006; 141:216-24. [PMID: 16635484 DOI: 10.1016/j.chemphyslip.2006.03.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2005] [Revised: 03/07/2006] [Accepted: 03/15/2006] [Indexed: 11/28/2022]
Abstract
We have designed experimental conditions allowing the replacement of 50% of cholesterol of human keratinocytes (SVK14 line) with sitosterol or stigmasterol without affecting cellular viability. We have investigated the influence of incorporating phytosterol on the ultraviolet-A-induced formation of lipid-peroxidation products (thiobarbituric reactive substances (TBARS)) in these cells. Our results show that ultraviolet-A-induced lipid peroxidation depends on the nature of the phytosterol. Sitosterol induces a significant decrease (-30%) of TBARS relative to the control whereas stigmasterol markedly increases lipid peroxidation (+70%). We have also studied the effect of plant sterols on prostaglandin release by using the Ca(2+) ionophore A23187 as an in vitro model of the inflammation induced by UVA radiation. We show that in the presence of 50% of phytosterol (particularly stigmasterol), the release of prostaglandin (6-ketoPG(1alpha), PGE(2)) is increased compared to untreated cells. This pro-inflammatory effect of phytosterols is correlated with a loss of the regulation of the intracellular Ca(2+) concentration.
Collapse
Affiliation(s)
- M P Mora-Ranjeva
- Institut de Pharmacologie et de Biologie Structurale, CNRS, Toulouse, France
| | | | | | | | | |
Collapse
|
46
|
Kim HB, Schaller H, Goh CH, Kwon M, Choe S, An CS, Durst F, Feldmann KA, Feyereisen R. Arabidopsis cyp51 mutant shows postembryonic seedling lethality associated with lack of membrane integrity. PLANT PHYSIOLOGY 2005; 138:2033-47. [PMID: 16040657 PMCID: PMC1183393 DOI: 10.1104/pp.105.061598] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2005] [Revised: 05/10/2005] [Accepted: 05/10/2005] [Indexed: 05/03/2023]
Abstract
CYP51 exists in all organisms that synthesize sterols de novo. Plant CYP51 encodes an obtusifoliol 14alpha-demethylase involved in the postsqualene sterol biosynthetic pathway. According to the current gene annotation, the Arabidopsis (Arabidopsis thaliana) genome contains two putative CYP51 genes, CYP51A1 and CYP51A2. Our studies revealed that CYP51A1 should be considered an expressed pseudogene. To study the functional importance of the CYP51A2 gene in plant growth and development, we isolated T-DNA knockout alleles for CYP51A2. Loss-of-function mutants for CYP51A2 showed multiple defects, such as stunted hypocotyls, short roots, reduced cell elongation, and seedling lethality. In contrast to other sterol mutants, such as fk/hydra2 and hydra1, the cyp51A2 mutant has only minor defects in early embryogenesis. Measurements of endogenous sterol levels in the cyp51A2 mutant revealed that it accumulates obtusifoliol, the substrate of CYP51, and a high proportion of 14alpha-methyl-delta8-sterols, at the expense of campesterol and sitosterol. The cyp51A2 mutants have defects in membrane integrity and hypocotyl elongation. The defect in hypocotyl elongation was not rescued by the exogenous application of brassinolide, although the brassinosteroid-signaling cascade is apparently not affected in the mutants. Developmental defects in the cyp51A2 mutant were completely rescued by the ectopic expression of CYP51A2. Taken together, our results demonstrate that the Arabidopsis CYP51A2 gene encodes a functional obtusifoliol 14alpha-demethylase enzyme and plays an essential role in controlling plant growth and development by a sterol-specific pathway.
Collapse
Affiliation(s)
- Ho Bang Kim
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 151-747, Korea.
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Kim HB, Schaller H, Goh CH, Kwon M, Choe S, An CS, Durst F, Feldmann KA, Feyereisen R. Arabidopsis cyp51 mutant shows postembryonic seedling lethality associated with lack of membrane integrity. PLANT PHYSIOLOGY 2005. [PMID: 16040657 DOI: 10.1104/pp.105.06159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
CYP51 exists in all organisms that synthesize sterols de novo. Plant CYP51 encodes an obtusifoliol 14alpha-demethylase involved in the postsqualene sterol biosynthetic pathway. According to the current gene annotation, the Arabidopsis (Arabidopsis thaliana) genome contains two putative CYP51 genes, CYP51A1 and CYP51A2. Our studies revealed that CYP51A1 should be considered an expressed pseudogene. To study the functional importance of the CYP51A2 gene in plant growth and development, we isolated T-DNA knockout alleles for CYP51A2. Loss-of-function mutants for CYP51A2 showed multiple defects, such as stunted hypocotyls, short roots, reduced cell elongation, and seedling lethality. In contrast to other sterol mutants, such as fk/hydra2 and hydra1, the cyp51A2 mutant has only minor defects in early embryogenesis. Measurements of endogenous sterol levels in the cyp51A2 mutant revealed that it accumulates obtusifoliol, the substrate of CYP51, and a high proportion of 14alpha-methyl-delta8-sterols, at the expense of campesterol and sitosterol. The cyp51A2 mutants have defects in membrane integrity and hypocotyl elongation. The defect in hypocotyl elongation was not rescued by the exogenous application of brassinolide, although the brassinosteroid-signaling cascade is apparently not affected in the mutants. Developmental defects in the cyp51A2 mutant were completely rescued by the ectopic expression of CYP51A2. Taken together, our results demonstrate that the Arabidopsis CYP51A2 gene encodes a functional obtusifoliol 14alpha-demethylase enzyme and plays an essential role in controlling plant growth and development by a sterol-specific pathway.
Collapse
Affiliation(s)
- Ho Bang Kim
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 151-747, Korea.
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Zunino MP, Zygadlo JA. Changes in the Composition of Phospholipid Fatty Acids and Sterols of Maize Root in Response to Monoterpenes. J Chem Ecol 2005; 31:1269-83. [PMID: 16229065 DOI: 10.1007/s10886-005-5285-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Terpenes are thought to be important in plant plant interactions because of their phytotoxic action on seed germination and growth. Herein, the effects of five volatile monoterpenes on root sterols and phospholipid fatty acid (PLFA) composition have been studied during maize seedling germination. The investigated monoterpenes (camphor, 1-8 cineole, geraniol, menthol, and thymol) were applied at their respective IC80 (concentration causing 80% inhibition). They quantitatively affected free sterols and PLFA composition, thus producing an increase in the percentage of unsaturated PLFAs, stigmasterol of the free sterol fraction, and saturated steryl ester fatty acids. Alcoholic and nonalcoholic monoterpenes appeared to have different modes of action. The former affected unsaturated fatty acid and stigmasterol to a greater extent, and accordingly they could interfere in seedling growth by changes in the membrane lipids.
Collapse
Affiliation(s)
- María P Zunino
- Instituto Multidisciplinario de Biología Vegetal, CONICET, Cátedra de Química Orgánica, Facultad de Ciencias Exactas Físicas y Naturales, Universidad Nacional de Córdoba, Ciudad Universitaria, Argentina.
| | | |
Collapse
|
49
|
Heyer J, Parker B, Becker D, Ruffino J, Fordyce A, Witt MD, Bedard M, Grebenok R. Steroid profiles of transgenic tobacco expressing an Actinomyces 3-hydroxysteroid oxidase gene. PHYTOCHEMISTRY 2004; 65:2967-76. [PMID: 15504431 DOI: 10.1016/j.phytochem.2004.09.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2004] [Revised: 09/01/2004] [Indexed: 05/08/2023]
Abstract
Previously, we have shown that the expression of a 3-hydroxysteroid-oxidase gene in transgenic tobacco initiated a series of biochemical events leading to the conversion of sterol to stanol. As a result, the plants maintained a diminished sterol pool and a modified relative sterol ratio but demonstrated no observable morphological abnormalities. The maintenance of normal higher plant physiology in the absence of particular sterols or in the presence of modified sterol ratios is controversial. In this report, we present additional biochemical and physiological characteristics of transgenic tobacco expressing an Actinomyces 3-hydroxysteroid-oxidase gene. The total steroid accumulated in the transgenic plants is 6-fold higher than in control plants and consists of sterol, 3-ketosteroid and stanol. The relative abundance of sterols within whole plant and individual organs is grossly altered as ethylated side chain sterols account for 99% of the total sterol pool in the transgenic tobacco. Stigmasterol is readily apparent in all tissues and cholesterol is found at measurable levels in specific organs, while campesterol and sitosterol are detected at trace levels in the transgenic plants. Stanols and 3-ketosteroids accumulate in all tissues and represent 77% of the measurable steroid pool in the transgenic plants. The sum of sterol, the respective 3-ketosteroid plus stanol provide a relative abundance of steroid, which is similar to the abundance of sterol accumulated in control tissue. In vitro photosynthetic electron transport measurements demonstrate altered activity of chloroplasts under a variety of reaction conditions, indicating a link between the modified steroid pool and a modulation of chloroplast membrane function.
Collapse
Affiliation(s)
- Jennelle Heyer
- Department of Biology, Canisius College, Buffalo, New York 14208, USA
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Fontaine J, Grandmougin-Ferjani A, Glorian V, Durand R. 24-Methyl/methylene sterols increase in monoxenic roots after colonization by arbuscular mycorrhizal fungi. THE NEW PHYTOLOGIST 2004; 163:159-167. [PMID: 33873784 DOI: 10.1111/j.1469-8137.2004.01075.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
• Characteristic sterols of transformed carrot (Daucus carota) and chicory (Cichorium intybus) roots colonized by different strains of arbuscular mycorrhizal (AM) fungi were identified. • Sterols were extracted, analysed and identified by gas chromatography/mass spectrometry (GC-MS) from monoxenic cultures of mycorrhizal and nonmycorrhizal roots. After colonization by Glomus intraradices, Glomus proliferum and Glomus sp., carrot and chicory roots exhibited a significantly higher 24-methyl/methylene sterol content. A correlation was established between the content of the sum of 24-methyl cholesterol, 24-methylene cholesterol and 24-methyl desmosterol. • This study clearly established that the increment of these characteristic sterols is an appropriate indicator of colonization by AM fungi of transformed roots. • Metabolic origin and specificity of these sterols in mycorrhizal roots was researched. The 24-methyl/methylene sterol increase was observed only when the interaction between fungus and plant was completely established and the fungus was present inside the roots.
Collapse
Affiliation(s)
- J Fontaine
- Laboratoire Mycologie/Phytopathologie/Environnement, Université du Littoral, Côte d'Opale, BP 699, 62228 Calais cedex, France
| | - A Grandmougin-Ferjani
- Laboratoire Mycologie/Phytopathologie/Environnement, Université du Littoral, Côte d'Opale, BP 699, 62228 Calais cedex, France
| | - V Glorian
- Laboratoire Mycologie/Phytopathologie/Environnement, Université du Littoral, Côte d'Opale, BP 699, 62228 Calais cedex, France
| | - R Durand
- Laboratoire Mycologie/Phytopathologie/Environnement, Université du Littoral, Côte d'Opale, BP 699, 62228 Calais cedex, France
| |
Collapse
|