1
|
Losso A, Gauthey A, Mayr S, Choat B. Foliar Water Uptake Supports Water Potential Recovery but Does Not Affect Xylem Sap Composition in Two Salt-Secreting Mangroves. PLANT, CELL & ENVIRONMENT 2024. [PMID: 39679830 DOI: 10.1111/pce.15332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 11/05/2024] [Accepted: 12/02/2024] [Indexed: 12/17/2024]
Abstract
Mangroves are highly salt-tolerant species, which live in saline intertidal environments, but rely on alternative, less saline water to maintain hydraulic integrity and plant productivity. Foliar water uptake (FWU) is thought to assist in hydration of mangroves, particularly during periods of acute water deficit. We investigated the dynamics of FWU in Avicennia marina and Aegiceras corniculatum by submerging and spraying excised branches and measuring leaf water potential (Ψ) at different time intervals. Daily changes in xylem sap composition (ionic concentrations, pH and surface tension) were monitored during 2 days characterised by the presence of morning dew and difference in tides. In both species, FWU occurred over relatively short times, with leaf Ψ recovering from -4.5 MPa to about -1.5 MPa in 120-150 min. At predawn, Ψ was higher (-1.5 MPa) than sea water Ψ, indicating that leaves had been partially rehydrated by absorbed dew. Tides did not affect Ψ, but high tides increased the overall ionic content of xylem sap. The results indicated mangroves are extremely efficient in absorbing non-saline water via the leaves and restoring the water balance to Ψ higher than seawater. Changes in xylem sap composition, which were strongly influenced by tides, were not affected by observed FWU.
Collapse
Affiliation(s)
- Adriano Losso
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
- Department of Botany, Universität Innsbruck/University of Innsbruck, Innsbruck, Austria
| | - Alice Gauthey
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
- Birmingham Institute of Forest Research, University of Birmingham, Edgbaston, UK
| | - Stefan Mayr
- Department of Botany, Universität Innsbruck/University of Innsbruck, Innsbruck, Austria
| | - Brendan Choat
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
| |
Collapse
|
2
|
Lopez LE, Chuah YS, Encina F, Carignani Sardoy M, Berdion Gabarain V, Mutwil M, Estevez JM. New molecular components that regulate the transcriptional hub in root hairs: coupling environmental signals with endogenous hormones to coordinate growth. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4171-4179. [PMID: 37875460 DOI: 10.1093/jxb/erad419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/23/2023] [Indexed: 10/26/2023]
Abstract
Root hairs have become an important model system for studying plant growth, and in particular how plants modulate their growth in response to cell-intrinsic and environmental stimuli. In this review, we discuss recent advances in our understanding of the molecular mechanisms underlying the growth of Arabidopsis root hairs in the interface between responses to environmental cues (e.g. nutrients such as nitrates and phosphate, and microorganisms) and hormonal stimuli (e.g. auxin). Growth of root hairs is under the control of several transcription factors that are also under strong regulation at different levels. We highlight recent new discoveries along these transcriptional pathways that might have the potential to increase our capacity to enhance nutrient uptake by the roots in the context of abiotic stresses. We use the text-mining capacities of the PlantConnectome database to generate an up-to-date view of root hairs growth within these complex biological contexts.
Collapse
Affiliation(s)
- Leonel E Lopez
- Fundación Instituto Leloir and IIBBA-CONICET. Av. Patricias Argentinas 435, Buenos Aires C1405BWE, Argentina
- ANID-Millennium Science Initiative Program-Millennium Nucleus for the Development of Super Adaptable Plants (MN-SAP), Santiago 8370146, Chile
| | - Yu Song Chuah
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Felipe Encina
- Fundación Instituto Leloir and IIBBA-CONICET. Av. Patricias Argentinas 435, Buenos Aires C1405BWE, Argentina
- ANID-Millennium Science Initiative Program-Millennium Nucleus for the Development of Super Adaptable Plants (MN-SAP), Santiago 8370146, Chile
- ANID-Millennium Science Initiative Program-Millennium Institute for Integrative Biology (iBio), Santiago 8331150, Chile
| | - Mariana Carignani Sardoy
- Fundación Instituto Leloir and IIBBA-CONICET. Av. Patricias Argentinas 435, Buenos Aires C1405BWE, Argentina
- ANID-Millennium Science Initiative Program-Millennium Nucleus for the Development of Super Adaptable Plants (MN-SAP), Santiago 8370146, Chile
| | - Victoria Berdion Gabarain
- Fundación Instituto Leloir and IIBBA-CONICET. Av. Patricias Argentinas 435, Buenos Aires C1405BWE, Argentina
- ANID-Millennium Science Initiative Program-Millennium Nucleus for the Development of Super Adaptable Plants (MN-SAP), Santiago 8370146, Chile
| | - Marek Mutwil
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - José M Estevez
- Fundación Instituto Leloir and IIBBA-CONICET. Av. Patricias Argentinas 435, Buenos Aires C1405BWE, Argentina
- ANID-Millennium Science Initiative Program-Millennium Nucleus for the Development of Super Adaptable Plants (MN-SAP), Santiago 8370146, Chile
- ANID-Millennium Science Initiative Program-Millennium Institute for Integrative Biology (iBio), Santiago 8331150, Chile
- Centro de Biotecnología Vegetal (CBV), Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370146, Chile
| |
Collapse
|
3
|
Niu F, Cui X, Yang B, Wang R, Zhao P, Zhao X, Zhang H, Fan X, Li Y, Deyholos MK, Jiang YQ. WRKY6 transcription factor modulates root potassium acquisition through promoting expression of AKT1 in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:1652-1667. [PMID: 38418388 DOI: 10.1111/tpj.16703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 02/01/2024] [Accepted: 02/14/2024] [Indexed: 03/01/2024]
Abstract
Potassium (K+), being an essential macronutrient in plants, plays a central role in many aspects. Root growth is highly plastic and is affected by many different abiotic stresses including nutrient deficiency. The Shaker-type K+ channel Arabidopsis (Arabidopsis thaliana) K+ Transporter 1 (AKT1) is responsible for K+ uptake under both low and high external K+ conditions. However, the upstream transcription factor of AKT1 is not clear. Here, we demonstrated that the WRKY6 transcription factor modulates root growth to low potassium (LK) stress in Arabidopsis. WRKY6 showed a quick response to LK stress and also to many other abiotic stress treatments. The two wrky6 T-DNA insertion mutants were highly sensitive to LK treatment, whose primary root lengths were much shorter, less biomass and lower K+ content in roots than those of wild-type plants, while WRKY6-overexpression lines showed opposite phenotypes. A further investigation showed that WRKY6 regulated the expression of the AKT1 gene via directly binding to the W-box elements in its promoter through EMSA and ChIP-qPCR assays. A dual luciferase reporter analysis further demonstrated that WRKY6 enhanced the transcription of AKT1. Genetic analysis further revealed that the overexpression of AKT1 greatly rescued the short root phenotype of the wrky6 mutant under LK stress, suggesting AKT1 is epistatic to WRKY6 in the control of LK response. Further transcriptome profiling suggested that WRKY6 modulates LK response through a complex regulatory network. Thus, this study unveils a transcription factor that modulates root growth under potassium deficiency conditions by affecting the potassium channel gene AKT1 expression.
Collapse
Affiliation(s)
- Fangfang Niu
- National Key Laboratory of Crop Improvement for Stress Tolerance and Production, College of Life Science, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xing Cui
- National Key Laboratory of Crop Improvement for Stress Tolerance and Production, College of Life Science, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Bo Yang
- National Key Laboratory of Crop Improvement for Stress Tolerance and Production, College of Life Science, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Rui Wang
- National Key Laboratory of Crop Improvement for Stress Tolerance and Production, College of Life Science, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Peiyu Zhao
- National Key Laboratory of Crop Improvement for Stress Tolerance and Production, College of Life Science, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xinjie Zhao
- National Key Laboratory of Crop Improvement for Stress Tolerance and Production, College of Life Science, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Hanfeng Zhang
- National Key Laboratory of Crop Improvement for Stress Tolerance and Production, College of Life Science, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xiaojiang Fan
- National Key Laboratory of Crop Improvement for Stress Tolerance and Production, College of Life Science, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Ye Li
- National Key Laboratory of Crop Improvement for Stress Tolerance and Production, College of Life Science, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Michael K Deyholos
- Department of Biology, University of British Columbia, Okanagan Campus, Kelowna, V1V 1V7, Canada
| | - Yuan-Qing Jiang
- National Key Laboratory of Crop Improvement for Stress Tolerance and Production, College of Life Science, Northwest A&F University, Yangling, 712100, Shaanxi, China
| |
Collapse
|
4
|
Dai S, Wu H, Chen H, Wang Z, Yu X, Wang L, Jia X, Qin C, Zhu Y, Yi K, Zeng H. Comparative transcriptome analyses under individual and combined nutrient starvations provide insights into N/P/K interactions in rice. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 197:107642. [PMID: 36989993 DOI: 10.1016/j.plaphy.2023.107642] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/11/2023] [Accepted: 03/13/2023] [Indexed: 06/19/2023]
Abstract
Crops often suffer from simultaneous limitations of multiple nutrients in soils, including nitrogen (N), phosphorus (P) and potassium (K), which are three major macronutrients essential for ensuring growth and yield. Although plant responses to individual N, P, and K deficiency have been well documented, our understanding of the responses to combined nutrient deficiencies and the crosstalk between nutrient starvation responses is still limited. Here, we compared the physiological responses in rice under seven kinds of single and multiple low nutrient stress of N, P and K, and used RNA sequencing approaches to compare their transcriptome changes. A total of 13,000 genes were found to be differentially expressed under all these single and multiple low N/P/K stresses, and 66 and 174 of them were shared by all these stresses in roots and shoots, respectively. Functional enrichment analyses of the DEGs showed that a group of biological and metabolic processes were shared by these low N/P/K stresses. Comparative analyses indicated that DEGs under multiple low nutrient stress was not the simple summation of single nutrient stress. N was found to be the predominant factor affecting the transcriptome under combined nutrient stress. N, P, or K availability exhibited massive influences on the transcriptomic responses to starvation of other nutrients. Many genes involved in nutrient transport, hormone signaling, and transcriptional regulation were commonly responsive to low N/P/K stresses. Some transcription factors were predicted to regulate the expression of genes that are commonly responsive to N, P, and K starvations. These results revealed the interactions between N, P, and K starvation responses, and will be helpful for further elucidation of the molecular mechanisms underlying nutrient interactions.
Collapse
Affiliation(s)
- Senhuan Dai
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Haicheng Wu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Huiying Chen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Zihui Wang
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environment Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xin Yu
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environment Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Long Wang
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xianqing Jia
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Cheng Qin
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Yiyong Zhu
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environment Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Keke Yi
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Houqing Zeng
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China.
| |
Collapse
|
5
|
Michalak A, Wdowikowska A, Janicka M. Plant Plasma Membrane Proton Pump: One Protein with Multiple Functions. Cells 2022; 11:cells11244052. [PMID: 36552816 PMCID: PMC9777500 DOI: 10.3390/cells11244052] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/13/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
In plants, the plasma membrane proton pump (PM H+-ATPase) regulates numerous transport-dependent processes such as growth, development, basic physiology, and adaptation to environmental conditions. This review explores the multifunctionality of this enzyme in plant cells. The abundance of several PM H+-ATPase isogenes and their pivotal role in energizing transport in plants have been connected to the phenomena of pleiotropy. The multifunctionality of PM H+-ATPase is a focal point of numerous studies unraveling the molecular mechanisms of plant adaptation to adverse environmental conditions. Furthermore, PM H+-ATPase is a key element in plant defense mechanisms against pathogen attack; however, it also functions as a target for pathogens that enable plant tissue invasion. Here, we provide an extensive review of the PM H+-ATPase as a multitasking protein in plants. We focus on the results of recent studies concerning PM H+-ATPase and its role in plant growth, physiology, and pathogenesis.
Collapse
|
6
|
Chen Y, Zhang S, Du S, Jiang J, Wang G. Transcriptome and Metabonomic Analysis of Tamarix ramosissima Potassium (K+) Channels and Transporters in Response to NaCl Stress. Genes (Basel) 2022; 13:genes13081313. [PMID: 35893048 PMCID: PMC9394374 DOI: 10.3390/genes13081313] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 07/14/2022] [Accepted: 07/20/2022] [Indexed: 02/04/2023] Open
Abstract
Potassium ion (K+) channels and transporters are key components of plant K+ absorption and transportation and play an important role in plant growth and development. This study revealed that K+ channels and transporters are involved in the salt tolerance molecular mechanism and metabolites of the halophyte representative plant Tamarix ramosissima (T. ramosissima) in response to NaCl stress, providing a theoretical basis for the mitigation of salt stress using halophytes. Through transcriptome sequencing and metabolite detection analysis of 0 h, 48 h and 168 h by applying exogenous K+ to the roots of T. ramosissima under NaCl stress, 15 high-quality Clean Data bases were obtained, Q20 reached more than 97%, Q30 reached more than 92%, and GC content reached 44.5%, which is in line with further bioinformatics analysis. Based on the Liquid chromatography−mass spectrometry (LC-MS) analysis, the roots of T. ramosissima were exposed to exogenous potassium for 48 h and 168 h under NaCl stress, and 1510 and 1124 metabolites were identified in positive and negative ion mode, respectively. Through orthogonal projections to latent structures discriminant analysis (OPLS-DA) model analysis, its metabolomic data have excellent predictability and stability. The results of this study showed that there were 37 differentially expressed genes (DEGs) annotated as Class 2 K+ channels (Shaker-like K+ channel and TPK channel) and Class 3 K+ transporters (HAK/KUP/KT, HKT and CPAs transporter families). Among them, 29 DEGs were annotated to the gene ontology (GO) database, and the most genes were involved in the GO Biological Process. In addition, the expression levels of Unigene0014342 in the HAK/KUP/KT transporter and Unigene0088276 and Unigene0103067 in the CPAs transporter both first decreased and then increased when treated with 200 mM NaCl for 48 h and 168 h. However, when treated with 200 mM NaCl + 10 mM KCl for 48 h and 168 h, a continuous upward trend was shown. Notably, the expression level of Unigene0016813 in CPAS transporter continued to increase when treated with 200 mM NaCl and 200 mM NaCl + 10 mM KCl for 48 h and 168 h. 3 DEGs, Unigene0088276, Unigene0016813 and Unigene0103067, were dominated by the positive regulation of their related metabolites, and this correlation was significant. The results showed that these DEGs increased the absorption of K+ and the ratio of K+/Na+ under NaCl stress at 48 h and 168 h after adding exogenous potassium and enhanced the salt tolerance of T. ramosissima. Notably, the expression level of Unigene0103067 in the CPAs transporter was consistently upregulated when 200 mM NaCl + 10 mM KCl was treated for 48 h and 168 h. The positive regulatory metabolites were always dominant, which better helped T. ramosissima resist salt stress. Unigene0103067 plays an important role in enhancing the salt tolerance of T. ramosissima and reducing the toxicity of NaCl in roots. Additionally, phylogenetic tree analysis showed that Unigene0103067 and Reaumuria trigyna had the closest genetic distance in the evolutionary relationship. Finally, 9 DEGs were randomly selected for quantitative real-time PCR (qRT-PCR) verification. Their expression trends were completely consistent with the transcriptome sequencing analysis results, proving that this study’s data are accurate and reliable. This study provides resources for revealing the molecular mechanism of NaCl stress tolerance in T. ramosissima and lays a theoretical foundation for cultivating new salt-tolerant varieties.
Collapse
Affiliation(s)
- Yahui Chen
- Collaborative Innovation Center of Sustainable Forestry in Southern China of Jiangsu Province, Nanjing Forestry University, Nanjing 210037, China; (Y.C.); (S.D.)
- Faculty of Science and Department of Forest Resources Management, University of British Columbia, Vancouver, BC V6T 1Z4, Canada;
| | - Shiyang Zhang
- Faculty of Science and Department of Forest Resources Management, University of British Columbia, Vancouver, BC V6T 1Z4, Canada;
| | - Shanfeng Du
- Collaborative Innovation Center of Sustainable Forestry in Southern China of Jiangsu Province, Nanjing Forestry University, Nanjing 210037, China; (Y.C.); (S.D.)
| | - Jiang Jiang
- Collaborative Innovation Center of Sustainable Forestry in Southern China of Jiangsu Province, Nanjing Forestry University, Nanjing 210037, China; (Y.C.); (S.D.)
- Correspondence: (J.J.); (G.W.)
| | - Guangyu Wang
- Faculty of Science and Department of Forest Resources Management, University of British Columbia, Vancouver, BC V6T 1Z4, Canada;
- Correspondence: (J.J.); (G.W.)
| |
Collapse
|
7
|
Li G, Zhang L, Wu J, Yue X, Wang M, Sun L, Di D, Kronzucker HJ, Shi W. OsEIL1 protects rice growth under NH 4+ nutrition by regulating OsVTC1-3-dependent N-glycosylation and root NH 4+ efflux. PLANT, CELL & ENVIRONMENT 2022; 45:1537-1553. [PMID: 35133011 DOI: 10.1111/pce.14283] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 01/10/2022] [Indexed: 06/14/2023]
Abstract
Rice is known for its superior adaptation to ammonium (NH4+ ) as a nitrogen source. Compared to many other cereals, it displays lower NH4+ efflux in roots and higher nitrogen-use efficiency on NH4+ . A critical role for GDP-mannose pyrophosphorylase (VTC1) in controlling root NH4+ fluxes was previously documented in Arabidopsis, but the molecular pathways involved in regulating VTC1-dependent NH4+ efflux remain unclear. Here, we report that ETHYLENE-INSENSITIVE3-LIKE1 (OsEIL1) acts as a key transcription factor regulating OsVTC1-3-dependent NH4+ efflux and protein N-glycosylation in rice grown under NH4+ nutrition. We show that OsEIL1 in rice plays a contrasting role to Arabidopsis-homologous ETHYLENE-INSENSITIVE3 (AtEIN3) and maintains rice growth under NH4+ by stabilizing protein N-glycosylation and reducing root NH4+ efflux. OsEIL1 constrains NH4+ efflux by activation of OsVTC1-3, but not OsVTC1-1 or OsVTC1-8. OsEIL1 binds directly to the promoter EIN3-binding site (EBS) of OsVTC1-3 in vitro and in vivo and acts to increase the transcription of OsVTC1-3. Our work demonstrates an important link between excessive root NH4+ efflux and OsVTC1-3-mediated protein N-glycosylation in rice grown under NH4+ nutrition and identifies OsEIL1 as a direct genetic regulator of OsVTC1-3 expression.
Collapse
Affiliation(s)
- Guangjie Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Lin Zhang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Jinlin Wu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Xiaowei Yue
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Meng Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Li Sun
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Dongwei Di
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Herbert J Kronzucker
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing, Jiangsu, China
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, British Columbia, Canada
| | - Weiming Shi
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| |
Collapse
|
8
|
Amo J, Lara A, Martínez-Martínez A, Martínez V, Rubio F, Nieves-Cordones M. The protein kinase SlCIPK23 boosts K + and Na + uptake in tomato plants. PLANT, CELL & ENVIRONMENT 2021; 44:3589-3605. [PMID: 34545584 DOI: 10.1111/pce.14189] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 09/11/2021] [Accepted: 09/12/2021] [Indexed: 06/13/2023]
Abstract
Regulation of root transport systems is essential under fluctuating nutrient supply. In the case of potassium (K+ ), HAK/KUP/KT K+ transporters and voltage-gated K+ channels ensure root K+ uptake in a wide range of K+ concentrations. In Arabidopsis, the CIPK23/CBL1-9 complex regulates both transporter- and channel-mediated root K+ uptake. However, research about K+ homeostasis in crops is in demand due to species-specific mechanisms. In the present manuscript, we studied the contribution of the voltage-gated K+ channel LKT1 and the protein kinase SlCIPK23 to K+ uptake in tomato plants by analysing gene-edited knockout tomato mutant lines, together with two-electrode voltage-clamp experiments in Xenopus oocytes and protein-protein interaction analyses. It is shown that LKT1 is a crucial player in tomato K+ nutrition by contributing approximately 50% to root K+ uptake under K+ -sufficient conditions. Moreover, SlCIPK23 was responsible for approximately 100% of LKT1 and approximately 40% of the SlHAK5 K+ transporter activity in planta. Mg+2 and Na+ compensated for K+ deficit in tomato roots to a large extent, and the accumulation of Na+ was strongly dependent on SlCIPK23 function. The role of CIPK23 in Na+ accumulation in tomato roots was not conserved in Arabidopsis, which expands the current set of CIPK23-like protein functions in plants.
Collapse
Affiliation(s)
- Jesús Amo
- Departamento de Nutrición Vegetal, Centro de Edafología y Biología Aplicada del Segura-CSIC, Murcia, Spain
| | - Alberto Lara
- Departamento de Nutrición Vegetal, Centro de Edafología y Biología Aplicada del Segura-CSIC, Murcia, Spain
| | - Almudena Martínez-Martínez
- Departamento de Nutrición Vegetal, Centro de Edafología y Biología Aplicada del Segura-CSIC, Murcia, Spain
| | - Vicente Martínez
- Departamento de Nutrición Vegetal, Centro de Edafología y Biología Aplicada del Segura-CSIC, Murcia, Spain
| | - Francisco Rubio
- Departamento de Nutrición Vegetal, Centro de Edafología y Biología Aplicada del Segura-CSIC, Murcia, Spain
| | - Manuel Nieves-Cordones
- Departamento de Nutrición Vegetal, Centro de Edafología y Biología Aplicada del Segura-CSIC, Murcia, Spain
| |
Collapse
|
9
|
Zhang R, Wang N, Li S, Wang Y, Xiao S, Zhang Y, Egrinya Eneji A, Zhang M, Wang B, Duan L, Li F, Tian X, Li Z. Gibberellin biosynthesis inhibitor mepiquat chloride enhances root K+ uptake in cotton by modulating plasma membrane H+-ATPase. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:6659-6671. [PMID: 34161578 DOI: 10.1093/jxb/erab302] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/21/2021] [Indexed: 06/13/2023]
Abstract
Potassium deficiency causes severe losses in yield and quality in crops. Mepiquat chloride, a plant growth regulator, can increase K+ uptake in cotton (Gossypium hirsutum), but the underlying physiological mechanisms remain unclear. In this study, we used a non-invasive micro-test technique to measure K+ and H+ fluxes in the root apex with or without inhibitors of K+ channels, K+ transporters, non-selective cation channels, and plasma membrane H+-ATPases. We found that soaking seeds in mepiquat chloride solution increased the K+ influx mediated by K+ channels and reduced the K+ efflux mediated by non-selective cation channels in cotton seedlings. Mepiquat chloride also increased negative membrane potential (Em) and the activity of plasma membrane H+-ATPases in roots, due to higher levels of gene expression and protein accumulation of plasma membrane H+-ATPases as well as phosphorylation of H+-ATPase 11 (GhAHA11). Thus, plasma membrane hyperpolarization mediated by H+-ATPases was able to stimulate the activity of K+ channels in roots treated with mepiquat chloride. In addition, reduced K+ efflux under mepiquat chloride treatment was associated with reduced accumulation of H2O2 in roots. Our results provide important insights into the mechanisms of mepiquat chloride-induced K+ uptake in cotton and hence have the potential to help in improving K nutrition for enhancing cotton production.
Collapse
Affiliation(s)
- Rui Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Ning Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Shuying Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Yiru Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Shuang Xiao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Yichi Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - A Egrinya Eneji
- Department of Soil Science, Faculty of Agriculture, Forestry and Wildlife Resources Management, University of Calabar, Calabar, 540271, Nigeria
| | - Mingcai Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Baomin Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Liusheng Duan
- State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Fangjun Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Xiaoli Tian
- State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Zhaohu Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
10
|
Britto DT, Coskun D, Kronzucker HJ. Potassium physiology from Archean to Holocene: A higher-plant perspective. JOURNAL OF PLANT PHYSIOLOGY 2021; 262:153432. [PMID: 34034042 DOI: 10.1016/j.jplph.2021.153432] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/22/2021] [Accepted: 04/22/2021] [Indexed: 05/27/2023]
Abstract
In this paper, we discuss biological potassium acquisition and utilization processes over an evolutionary timescale, with emphasis on modern vascular plants. The quintessential osmotic and electrical functions of the K+ ion are shown to be intimately tied to K+-transport systems and membrane energization. Several prominent themes in plant K+-transport physiology are explored in greater detail, including: (1) channel mediated K+ acquisition by roots at low external [K+]; (2) K+ loading of root xylem elements by active transport; (3) variations on the theme of K+ efflux from root cells to the extracellular environment; (4) the veracity and utility of the "affinity" concept in relation to transport systems. We close with a discussion of the importance of plant-potassium relations to our human world, and current trends in potassium nutrition from farm to table.
Collapse
Affiliation(s)
- Dev T Britto
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada; School of BioSciences, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Devrim Coskun
- Département de Phytologie, Faculté des Sciences de l'Agriculture et de l'Alimentation (FSAA), Université Laval, Québec, QC, G1V 0A6, Canada
| | - Herbert J Kronzucker
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada; School of BioSciences, The University of Melbourne, Parkville, Victoria, 3010, Australia.
| |
Collapse
|
11
|
Ammonium Accumulation Caused by Reduced Tonoplast V-ATPase Activity in Arabidopsis thaliana. Int J Mol Sci 2020; 22:ijms22010002. [PMID: 33374906 PMCID: PMC7792577 DOI: 10.3390/ijms22010002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 01/06/2023] Open
Abstract
Plant vacuoles are unique compartments that play a critical role in plant growth and development. The vacuolar H+-ATPase (V-ATPase), together with the vacuolar H+-pyrophosphatase (V-PPase), generates the proton motive force that regulates multiple cell functions and impacts all aspects of plant life. We investigated the effect of V-ATPase activity in the vacuole on plant growth and development. We used an Arabidopsisthaliana (L.) Heynh. double mutant, vha-a2 vha-a3, which lacks two tonoplast-localized isoforms of the membrane-integral V-ATPase subunit VHA-a. The mutant is viable but exhibits impaired growth and leaf chlorosis. Nitrate assimilation led to excessive ammonium accumulation in the shoot and lower nitrogen uptake, which exacerbated growth retardation of vha-a2 vha-a3. Ion homeostasis was disturbed in plants with missing VHA-a2 and VHA-a3 genes, which might be related to limited growth. The reduced growth and excessive ammonium accumulation of the double mutant was alleviated by potassium supplementation. Our results demonstrate that plants lacking the two tonoplast-localized subunits of V-ATPase can be viable, although with defective growth caused by multiple factors, which can be alleviated by adding potassium. This study provided a new insight into the relationship between V-ATPase, growth, and ammonium accumulation, and revealed the role of potassium in mitigating ammonium toxicity.
Collapse
|
12
|
Cheng H, Inyang A, Li CD, Fei J, Zhou YW, Wang YS. Salt tolerance and exclusion in the mangrove plant Avicennia marina in relation to root apoplastic barriers. ECOTOXICOLOGY (LONDON, ENGLAND) 2020; 29:676-683. [PMID: 32291617 DOI: 10.1007/s10646-020-02203-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/23/2020] [Indexed: 06/11/2023]
Abstract
Salt tolerance and the possible functions of suberization on salt exclusion and secretion were examined in a dominant mangrove plant, Avicennia marina. The results showed that low salinities (10‰ and 20‰) almost has no negative effect on A. marina, however significant growth inhibitions were observed in the seedlings grown in higher salinities (30‰ and 40‰). With the increases of salinity, increased tissue Na+ content and enhanced salt secretion by glands were observed. Obvious suberization thickening were detected both in the exodermis and endodermis of the roots after salt pretreatment when compared to the roots without salt treatment. More importantly, the present data further confirmed that these root apoplastic barriers would directly decrease Na+ loading into xylem. Higher salt tolerance was observed in the seedlings pre-cultivated by salty tide when compared to fresh water cultivated A. marina. In summary, this study suggests a barrier property of suberization in dealing with salt exclusion in mangroves, a moderate salt pre-treatment may benefit plant withstanding high salinity.
Collapse
Affiliation(s)
- Hao Cheng
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
- Daya Bay Marine Biology Research Station, Chinese Academy of Sciences, Shenzhen, 518121, China
| | - Anifiok Inyang
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Chang-Da Li
- Marine and fisheries Development Research Center, Dongtou District, Wenzhou, 325009, China
| | - Jiao Fei
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
- Daya Bay Marine Biology Research Station, Chinese Academy of Sciences, Shenzhen, 518121, China
| | - Yan-Wu Zhou
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - You-Shao Wang
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China.
- Daya Bay Marine Biology Research Station, Chinese Academy of Sciences, Shenzhen, 518121, China.
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 510301, China.
| |
Collapse
|
13
|
Plett DC, Ranathunge K, Melino VJ, Kuya N, Uga Y, Kronzucker HJ. The intersection of nitrogen nutrition and water use in plants: new paths toward improved crop productivity. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:4452-4468. [PMID: 32026944 PMCID: PMC7382376 DOI: 10.1093/jxb/eraa049] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 02/05/2020] [Indexed: 05/19/2023]
Abstract
Water and nitrogen availability limit crop productivity globally more than most other environmental factors. Plant availability of macronutrients such as nitrate is, to a large extent, regulated by the amount of water available in the soil, and, during drought episodes, crops can become simultaneously water and nitrogen limited. In this review, we explore the intricate relationship between water and nitrogen transport in plants, from transpiration-driven mass flow in the soil to uptake by roots via membrane transporters and channels and transport to aerial organs. We discuss the roles of root architecture and of suberized hydrophobic root barriers governing apoplastic water and nitrogen movement into the vascular system. We also highlight the need to identify the signalling cascades regulating water and nitrogen transport, as well as the need for targeted physiological analyses of plant traits influencing water and nitrogen uptake. We further advocate for incorporation of new phenotyping technologies, breeding strategies, and agronomic practices to improve crop yield in water- and nitrogen-limited production systems.
Collapse
Affiliation(s)
- Darren C Plett
- School of Agriculture and Food, The University of Melbourne, Melbourne, VIC, Australia
| | - Kosala Ranathunge
- School of Biological Sciences, University of Western Australia, Crawley, Perth, Australia
| | - Vanessa J Melino
- School of Agriculture and Food, The University of Melbourne, Melbourne, VIC, Australia
| | - Noriyuki Kuya
- Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| | - Yusaku Uga
- Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| | - Herbert J Kronzucker
- School of Agriculture and Food, The University of Melbourne, Melbourne, VIC, Australia
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
14
|
Multiple High-Affinity K + Transporters and ABC Transporters Involved in K + Uptake/Transport in the Potassium-Hyperaccumulator Plant Phytolacca acinosa Roxb. PLANTS 2020; 9:plants9040470. [PMID: 32276334 PMCID: PMC7238005 DOI: 10.3390/plants9040470] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/01/2020] [Accepted: 04/02/2020] [Indexed: 11/20/2022]
Abstract
Potassium is an important essential element for plant growth and development. Long-term potassium deprivation can lead to a severe deficiency phenotype in plants. Interestingly, Phytolacca acinosa is a plant with an unusually high potassium content and can grow well and complete its lifecycle even in severely potassium deficient soil. In this study, we found that its stems and leaves were the main tissues for high potassium accumulation, and P. acinosa showed a strong ability of K+ absorption in roots and a large capability of potassium accumulation in shoots. Analysis of plant growth and physiological characteristics indicated that P. acinosa had an adaptability in a wide range of external potassium levels. To reveal the mechanism of K+ uptake and transport in the potassium-hyperaccumulator plant P. acinosa, K+ uptake-/transport-related genes were screened by transcriptome sequencing, and their expression profiles were compared between K+ starved plants and normal cultured plants. Eighteen members of HAK/KT/KUPs, ten members of AKTs, and one member of HKT were identified in P. acinosa. Among them, six HAKs, and two AKTs and PaHKT1 showed significantly different expression. These transporters might be coordinatively involved in K+ uptake/transport in P. acinosa and lead to high potassium accumulation in plant tissues. In addition, significantly changed expression of some ABC transporters indicated that ABC transporters might be important for K+ uptake and transport in P. acinosa under low K+ concentrations.
Collapse
|
15
|
Griffiths M, York LM. Targeting Root Ion Uptake Kinetics to Increase Plant Productivity and Nutrient Use Efficiency. PLANT PHYSIOLOGY 2020; 182:1854-1868. [PMID: 32029523 PMCID: PMC7140967 DOI: 10.1104/pp.19.01496] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 01/20/2020] [Indexed: 05/03/2023]
Abstract
Root system architecture has received increased attention in recent years; however, significant knowledge gaps remain for physiological phenes, or units of phenotype, that have been relatively less studied. Ion uptake kinetics studies have been invaluable in uncovering distinct nutrient uptake systems in plants with the use of Michaelis-Menten kinetic modeling. This review outlines the theoretical framework behind ion uptake kinetics, provides a meta-analysis for macronutrient uptake parameters, and proposes new strategies for using uptake kinetics parameters as selection criteria for breeding crops with improved resource acquisition capability. Presumably, variation in uptake kinetics is caused by variation in type and number of transporters, assimilation machinery, and anatomical features that can vary greatly within and among species. Critically, little is known about what determines transporter properties at the molecular level or how transporter properties scale to the entire root system. A meta-analysis of literature containing measures of crop nutrient uptake kinetics provides insights about the need for standardization of reporting, the differences among crop species, and the relationships among various uptake parameters and experimental conditions. Therefore, uptake kinetics parameters are proposed as promising target phenes that integrate several processes for functional phenomics and genetic analysis, which will lead to a greater understanding of this fundamental plant process. Exploiting this genetic and phenotypic variation has the potential to greatly advance breeding efforts for improved nutrient use efficiency in crops.
Collapse
Affiliation(s)
| | - Larry M York
- Noble Research Institute, LLC, Ardmore, Oklahoma 73401
| |
Collapse
|
16
|
Hu W, Ren T, Meng F, Cong R, Li X, White PJ, Lu J. Leaf photosynthetic capacity is regulated by the interaction of nitrogen and potassium through coordination of CO 2 diffusion and carboxylation. PHYSIOLOGIA PLANTARUM 2019; 167:418-432. [PMID: 30690727 DOI: 10.1111/ppl.12919] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Accepted: 12/18/2018] [Indexed: 06/09/2023]
Abstract
Combined application of nitrogen (N) and potassium (K) fertilizer could significantly enhance crop yield. Crop yield and photosynthesis are inseparable. However, the influence of N and K interaction on photosynthesis is still not fully understood. Field and hydroponic experiments were conducted to examine the effects of N and K interaction on leaf photosynthesis characteristics and to explore the mechanisms in the hydroponic experiment. CO2 conductance and carboxylation characteristic parameters of oilseed leaves were measured under different N and K supplies. Results indicated that detectable increases in leaf area, biomass and net photosynthetic rate (An ) were observed under optimal N and K supply in field and hydroponic experiments. The ratio of total CO2 diffusion conductance to the maximum carboxylation rate (gtot /Vcmax ) and An presented a linear-plateau relationship. Under insufficient N, increased K contributed to the CO2 transmission capacity and improved the proportion of N used for carboxylation, promoting gtot /Vcmax . However, the low Vcmax associated with N insufficiency limited the An . High N supply obviously accelerated Vcmax , yet K deficiency led to a reduction of gtot , which restricted Vcmax . Synchronous increases in N and K supplementation ensured the appropriate ratio of N to K content in leaves, which simultaneously facilitated gtot and Vcmax and preserved a gtot /Vcmax suitable for guaranteeing CO2 transmission and carboxylation coordination; the overall effect was increased An and leaf area. These results highlight the suitable N and K nutrients to coordinate CO2 diffusion and carboxylation, thereby enhancing photosynthetic capacity and area to obtain high crop yield.
Collapse
Affiliation(s)
- Wenshi Hu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Wuhan 430070, China
| | - Tao Ren
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Wuhan 430070, China
| | - Fanjin Meng
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Wuhan 430070, China
| | - Rihuan Cong
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Wuhan 430070, China
| | - Xiaokun Li
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Wuhan 430070, China
| | | | - Jianwei Lu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Wuhan 430070, China
| |
Collapse
|
17
|
Sustr M, Soukup A, Tylova E. Potassium in Root Growth and Development. PLANTS (BASEL, SWITZERLAND) 2019; 8:E435. [PMID: 31652570 PMCID: PMC6843428 DOI: 10.3390/plants8100435] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 10/18/2019] [Accepted: 10/19/2019] [Indexed: 02/06/2023]
Abstract
Potassium is an essential macronutrient that has been partly overshadowed in root science by nitrogen and phosphorus. The current boom in potassium-related studies coincides with an emerging awareness of its importance in plant growth, metabolic functions, stress tolerance, and efficient agriculture. In this review, we summarized recent progress in understanding the role of K+ in root growth, development of root system architecture, cellular functions, and specific plant responses to K+ shortage. K+ transport is crucial for its physiological role. A wide range of K+ transport proteins has developed during evolution and acquired specific functions in plants. There is evidence linking K+ transport with cell expansion, membrane trafficking, auxin homeostasis, cell signaling, and phloem transport. This places K+ among important general regulatory factors of root growth. K+ is a rather mobile element in soil, so the absence of systemic and localized root growth response has been accepted. However, recent research confirms both systemic and localized growth response in Arabidopsis thaliana and highlights K+ uptake as a crucial mechanism for plant stress response. K+-related regulatory mechanisms, K+ transporters, K+ acquisition efficiency, and phenotyping for selection of K+ efficient plants/cultivars are highlighted in this review.
Collapse
Affiliation(s)
- Marek Sustr
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Vinicna 5, 128 44 Prague 2, Czech Republic.
| | - Ales Soukup
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Vinicna 5, 128 44 Prague 2, Czech Republic.
| | - Edita Tylova
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Vinicna 5, 128 44 Prague 2, Czech Republic.
| |
Collapse
|
18
|
Feng H, Tang Q, Cai J, Xu B, Xu G, Yu L. Rice OsHAK16 functions in potassium uptake and translocation in shoot, maintaining potassium homeostasis and salt tolerance. PLANTA 2019; 250:549-561. [PMID: 31119363 DOI: 10.1007/s00425-019-03194-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 05/16/2019] [Indexed: 05/27/2023]
Abstract
OsHAK16 mediates K uptake and root-to-shoot translocation in a broad range of external K concentrations, thereby contributing to the maintenance of K homeostasis and salt tolerance in the rice shoot. The HAK/KUP/KT transporters have been widely associated with potassium (K) transport across membranes in both microbes and plants. Here, we report the physiological function of OsHAK16, a member belonging to the HAK/KUP/KT family in rice (Oryza sativa L.). Transcriptional expression of OsHAK16 was up-regulated by K deficiency or salt stress. OsHAK16 is localized at the plasma membrane. OsHAK16 knockout (KO) dramatically reduced root K net uptake rate and growth at both 0.1 mM and 1 mM K supplies, while OsHAK16 overexpression (OX) increased total K uptake and growth only at 0.1 mM K level. OsHAK16-KO decreased the rate of rubidium (Rb) uptake and translocation compared to WT at both 0.2 mM and 1 mM Rb levels. OsHAK16 disruption decreased while its overexpression increased K concentration in root slightly but in shoot remarkably. The relative distribution of total K between shoot and root decreased by 30% in OsHAK16-KO lines and increased by 30% in its OX lines compared to WT. OsHAK16-KO diminished K uptake and K/Na ratio, while OsHAK16-OX improved K uptake and translocation from root to shoot, resulting in increased sensitivity and tolerance to salt stress, respectively. Expression of OsHAK16 enhanced the growth of high salt-sensitive yeast mutant by increasing its K but no Na content. Taking all these together, we conclude that OsHAK16 plays crucial roles in maintaining K homeostasis and salt tolerance in rice shoot.
Collapse
Affiliation(s)
- Huimin Feng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
- MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qiang Tang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jin Cai
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Benchao Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Guohua Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
- MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ling Yu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China.
- MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
19
|
Cui YN, Xia ZR, Ma Q, Wang WY, Chai WW, Wang SM. The synergistic effects of sodium and potassium on the xerophyte Apocynum venetum in response to drought stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 135:489-498. [PMID: 30447942 DOI: 10.1016/j.plaphy.2018.11.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 10/27/2018] [Accepted: 11/08/2018] [Indexed: 06/09/2023]
Abstract
Apocynum venetum is an eco-economic plant species with high adaptability to saline and arid environments. Our previous work has found that A. venetum could absorb large amount of Na+ and maintain high K+ level under saline conditions. To investigate whether K+ and Na+ could simultaneously enhance drought resistance in A. venetum, seedlings were exposed to osmotic stress (-0.2 MPa) in the presence or absence of additional 25 mM NaCl under low (0.01 mM) and normal (2.5 mM) K+ supplying conditions, respectively. The results showed that A. venetum should be considered as a typical K+-efficient species since its growth was unimpaired and possessed a strong K+ uptake and prominent K+ utilization efficiency under K+ deficiency condition. Leaf K+ concentration remained stable or was even significantly increased under osmotic stress in the presence or absence of NaCl, compared with that under control condition, regardless of whether the K+ supply was sufficient or not, and the contribution of K+ to leaf osmotic potential consistently exceeded 37%, indicating K+ is the uppermost contributor to osmotic adjustment of A. venetum. Under osmotic stress, the addition of 25 mM NaCl significantly increase Na+ accumulation in leaves and the contribution of Na+ to osmotic adjustment, thus improving the relative water content, concomitantly, promoting the photosynthetic activity resulting in an enhancement of overall plant growth. These findings suggested that, K+ and Na+ simultaneously play crucial roles in the osmotic adjustment and the maintenance of water status and photosynthetic activity, which is beneficial for A. venetum to cope with drought stress.
Collapse
Affiliation(s)
- Yan-Nong Cui
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, PR China
| | - Zeng-Run Xia
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, PR China; Ankang R&D Center of Se-enriched Products, Key Laboratory of Se-enriched Products Development and Quality Control, Ministry of Agriculture, Ankang, Shaanxi, 725000, PR China
| | - Qing Ma
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, PR China
| | - Wen-Ying Wang
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, PR China
| | - Wei-Wei Chai
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, PR China
| | - Suo-Min Wang
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, PR China.
| |
Collapse
|
20
|
Genome-Wide Identification and Analysis of HAK/KUP/KT Potassium Transporters Gene Family in Wheat ( Triticum aestivum L.). Int J Mol Sci 2018; 19:ijms19123969. [PMID: 30544665 PMCID: PMC6321448 DOI: 10.3390/ijms19123969] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 12/01/2018] [Accepted: 12/01/2018] [Indexed: 12/13/2022] Open
Abstract
In plants, the HAK (high-affinity K+)/KUP (K+ uptake)/KT (K+ transporter) family represents a large group of potassium transporters that play important roles in plant growth and environmental adaptation. Although HAK/KUP/KT genes have been extensively investigated in many plant species, they remain uncharacterized in wheat, especially those involved in the response to environmental stresses. In this study, 56 wheat HAK/KUP/KT (hereafter called TaHAKs) genes were identified by a genome-wide search using recently released wheat genomic data. Phylogenetic analysis grouped these genes into four clusters (Ι, II, III, IV), containing 22, 19, 7 and 8 genes, respectively. Chromosomal distribution, gene structure, and conserved motif analyses of the 56 TaHAK genes were subsequently performed. In silico RNA-seq data analysis revealed that TaHAKs from clusters II and III are constitutively expressed in various wheat tissues, while most genes from clusters I and IV have very low expression levels in the examined tissues at different developmental stages. qRT-PCR analysis showed that expression levels of TaHAK genes in wheat seedlings were significantly up- or downregulated when seedlings were exposed to K+ deficiency, high salinity, or dehydration. Furthermore, we functionally characterized TaHAK1b-2BL and showed that it facilitates K+ transport in yeast. Collectively, these results provide valuable information for further functional studies of TaHAKs, and contribute to a better understanding of the molecular basis of wheat development and stress tolerance.
Collapse
|
21
|
Prinsi B, Espen L. Time-Course of Metabolic and Proteomic Responses to Different Nitrate/Ammonium Availabilities in Roots and Leaves of Maize. Int J Mol Sci 2018; 19:ijms19082202. [PMID: 30060519 PMCID: PMC6121299 DOI: 10.3390/ijms19082202] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 07/24/2018] [Accepted: 07/25/2018] [Indexed: 12/16/2022] Open
Abstract
The availability of nitrate and ammonium significantly affects plant growth. Co-provision of both nutrients is generally the best nutritional condition, due to metabolic interactions not yet fully elucidated. In this study, maize grown in hydroponics was exposed to different nitrogen (N) availabilities, consisting of nitrate, ammonium and co-provision. Roots and leaves were analyzed after 6, 30, and 54 h by biochemical evaluations and proteomics. The ammonium-fed plants showed the lowest biomass accumulation and the lowest ratio of inorganic to organic N content, suggesting a metabolic need to assimilate ammonium that was not evident in plants grown in co-provision. The N sources differently affected the root proteome, inducing changes in abundance of proteins involved in N and carbon (C) metabolisms, cell water homeostasis, and cell wall metabolism. Notable among these changes was that some root enzymes, such as asparagine synthetase, phosphoenolpyruvate (PEP) carboxylase, and formate dehydrogenase showed a relevant upsurge only under the sole ammonium nutrition. However, the leaf proteome appeared mainly influenced by total N availability, showing changes in the abundance of several proteins involved in photosynthesis and in energy metabolism. Overall, the study provides novel information about the biochemical determinants involved in plant adaptation to different N mineral forms.
Collapse
Affiliation(s)
- Bhakti Prinsi
- Department of Agricultural and Environmental Sciences-Production, Landscape, Agroenergy (DiSAA), Università degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy.
| | - Luca Espen
- Department of Agricultural and Environmental Sciences-Production, Landscape, Agroenergy (DiSAA), Università degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy.
| |
Collapse
|
22
|
Zhang L, Li G, Wang M, Di D, Sun L, Kronzucker HJ, Shi W. Excess iron stress reduces root tip zone growth through nitric oxide-mediated repression of potassium homeostasis in Arabidopsis. THE NEW PHYTOLOGIST 2018; 219:259-274. [PMID: 29658100 DOI: 10.1111/nph.15157] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 03/09/2018] [Indexed: 05/08/2023]
Abstract
The root tip zone is regarded as the principal action site for iron (Fe) toxicity and is more sensitive than other root zones, but the mechanism underpinning this remains largely unknown. We explored the mechanism underpinning the higher sensitivity at the Arabidopsis root tip and elucidated the role of nitric oxide (NO) using NO-related mutants and pharmacological methods. Higher Fe sensitivity of the root tip is associated with reduced potassium (K+ ) retention. NO in root tips is increased significantly above levels elsewhere in the root and is involved in the arrest of primary root tip zone growth under excess Fe, at least in part related to NO-induced K+ loss via SNO1 (sensitive to nitric oxide 1)/SOS4 (salt overly sensitive 4) and reduced root tip zone cell viability. Moreover, ethylene can antagonize excess Fe-inhibited root growth and K+ efflux, in part by the control of root tip NO levels. We conclude that excess Fe attenuates root growth by effecting an increase in root tip zone NO, and that this attenuation is related to NO-mediated alterations in K+ homeostasis, partly via SNO1/SOS4.
Collapse
Affiliation(s)
- Lin Zhang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, No. 71 East Beijing Road, Nanjing, 210008, China
- University of the Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Guangjie Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, No. 71 East Beijing Road, Nanjing, 210008, China
| | - Meng Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, No. 71 East Beijing Road, Nanjing, 210008, China
| | - Dongwei Di
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, No. 71 East Beijing Road, Nanjing, 210008, China
| | - Li Sun
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, No. 71 East Beijing Road, Nanjing, 210008, China
| | - Herbert J Kronzucker
- School of BioSciences, The University of Melbourne, Parkville, Vic., 3010, Australia
| | - Weiming Shi
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, No. 71 East Beijing Road, Nanjing, 210008, China
| |
Collapse
|
23
|
Santa-María GE, Oliferuk S, Moriconi JI. KT-HAK-KUP transporters in major terrestrial photosynthetic organisms: A twenty years tale. JOURNAL OF PLANT PHYSIOLOGY 2018; 226:77-90. [PMID: 29704646 DOI: 10.1016/j.jplph.2018.04.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Revised: 04/04/2018] [Accepted: 04/15/2018] [Indexed: 05/24/2023]
Abstract
Since their discovery, twenty years ago, KT-HAK-KUP transporters have become a keystone to understand how alkali cation fluxes are controlled in major land-dwelling photosynthetic organisms. In this review we focus on their discovery, phylogeny, and functions, as well as the regulation of its canonical member, AtHAK5. We also address issues related to structure-function studies, and the technological possibilities opened up by recent findings. Available evidence suggests that this family of transporters underwent an early divergence into major groups following the conquest of land by embryophytes. KT-HAK-KUPs are necessary to accomplish several major developmental and growth processes, as well as to ensure plant responses to environmental injuries. Although the primary function of these transporters is to mediate potassium (K+) fluxes, some of them can also mediate sodium (Na+) and cesium (Cs+) transport, and contribute to maintenance of K+ (and Na+) homeostasis in different plant tissues. In addition, there is evidence for a role of some members of this family in auxin movement and in adenylate cyclase activity. Recent research, focusing on the regulation of the canonical member of this family, AtHAK5, revealed the existence of a complex network that involves transcriptional and post-transcriptional phenomena which control the enhancement of AtHAK5-mediated K+ uptake when Arabidopsis thaliana plants are faced with low K+ supply. In spite of the formidable advances made since their discovery, important subjects remain to be elucidated to gain a more complete knowledge of the roles and regulation of KT-HAK-KUPs, as well as to improve their use for innovative procedures in crop breeding.
Collapse
Affiliation(s)
- Guillermo E Santa-María
- Instituto Tecnológico Chascomús (INTECH), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and Universidad Nacional de San Martín (UNSAM), Avda Intendente Marino km 8, 2. Chascomús, 7130, Provincia de Buenos Aires, Argentina.
| | - Sonia Oliferuk
- Instituto Tecnológico Chascomús (INTECH), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and Universidad Nacional de San Martín (UNSAM), Avda Intendente Marino km 8, 2. Chascomús, 7130, Provincia de Buenos Aires, Argentina
| | - Jorge I Moriconi
- Instituto Tecnológico Chascomús (INTECH), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and Universidad Nacional de San Martín (UNSAM), Avda Intendente Marino km 8, 2. Chascomús, 7130, Provincia de Buenos Aires, Argentina
| |
Collapse
|
24
|
Ródenas R, Nieves-Cordones M, Rivero RM, Martinez V, Rubio F. Pharmacological and gene regulation properties point to the SlHAK5 K + transporter as a system for high-affinity Cs + uptake in tomato plants. PHYSIOLOGIA PLANTARUM 2018; 162:455-466. [PMID: 29055027 DOI: 10.1111/ppl.12652] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 09/29/2017] [Accepted: 10/11/2017] [Indexed: 05/27/2023]
Abstract
Potassium (K+ ) and cesium (Cs+ ) are chemically similar but while K+ is an essential nutrient, Cs+ can be toxic for living organisms, plants included. Two different situations could lead to problems derived from the presence of Cs+ in agricultural systems: (1) presence of Cs+ at high concentrations that could produce toxic effects on plants, (2) presence of micromolar concentrations of radiocesium, which can be accumulated in the plant and affect animal and human health through the food chain. While K+ uptake has been well described in tomato plants, information on molecular mechanisms involved in Cs+ accumulation in this species is absent. Here, we show that in tomato plants, high concentrations of Cs+ produce deficiency of K+ but do not induce high-affinity K+ uptake or the gene encoding the high-affinity K+ transporter SlHAK5. At these concentrations, Cs+ uptake takes place through a Ca2+ -sensitive pathway, probably a non-selective cation channel. At micromolar concentrations, Cs+ is accumulated by a high-affinity uptake system upregulated in K+ -starved plants. This high-affinity Cs+ uptake shares features with high-affinity K+ uptake. It is sensitive to NH4+ and insensitive to Ba2+ and Ca2+ and its presence parallels the pattern of SlHAK5 expression. Moreover, blockers of reactive oxygen species and ethylene action repress SlHAK5 and negatively regulate both high-affinity K+ and Cs+ uptake. Thus, we propose that SlHAK5 contributes to Cs+ uptake from micromolar concentrations in tomato plants and can constitute a pathway for radiocesium transfer from contaminated areas to the food chain.
Collapse
Affiliation(s)
- Reyes Ródenas
- Departamento de Nutrición Vegetal, CEBAS-CSIC, 30100, Murcia, Spain
| | | | - Rosa M Rivero
- Departamento de Nutrición Vegetal, CEBAS-CSIC, 30100, Murcia, Spain
| | - Vicente Martinez
- Departamento de Nutrición Vegetal, CEBAS-CSIC, 30100, Murcia, Spain
| | - Francisco Rubio
- Departamento de Nutrición Vegetal, CEBAS-CSIC, 30100, Murcia, Spain
| |
Collapse
|
25
|
Etesami H, Jeong BR. Silicon (Si): Review and future prospects on the action mechanisms in alleviating biotic and abiotic stresses in plants. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 147:881-896. [PMID: 28968941 DOI: 10.1016/j.ecoenv.2017.09.063] [Citation(s) in RCA: 166] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 09/17/2017] [Accepted: 09/22/2017] [Indexed: 05/22/2023]
Abstract
In the era present, due to increasing incidences of a large number of different biotic and abiotic stresses all over the world, the growth of plants (principal crops) may be restrained by these stresses. In addition to beneficial microorganisms, use of silicon (Si)-fertilizer is known as an ecologically compatible and environmentally friendly technique to stimulate plant growth, alleviate various biotic and abiotic stresses in plants, and enhance the plant resistance to multiple stresses, because Si is not harmful, corrosive, and polluting to plants when presents in excess. Here, we reviewed the action mechanisms by which Si alleviates abiotic and biotic stresses in plants. The use of Si (mostly as industrial slags and rice straw) is predicted to become a sustainable strategy and an emerging trend in agriculture to enhance crop growth and alleviate abiotic and biotic stresses in the not too distant future. In this review article, the future research needs on the use of Si under the conditions of abiotic and biotic stresses are also highlighted.
Collapse
Affiliation(s)
- Hassan Etesami
- Department of Soil Science, Faculty of Agricultural Engineering and Technology, University College of Agriculture and Natural Resources, University of Tehran, 31587-77871 Iran.
| | - Byoung Ryong Jeong
- Horticulture Major, Division of Applies Life Science (BK21 Plus Program), Graduate School, Gyeongsang National University, Jinju 52828, Republic of Korea
| |
Collapse
|
26
|
Kontopoulou CK, Liasis E, Iannetta PP, Tampakaki A, Savvas D. Impact of rhizobial inoculation and reduced N supply on biomass production and biological N 2 fixation in common bean grown hydroponically. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2017; 97:4353-4361. [PMID: 28071798 DOI: 10.1002/jsfa.8202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 12/30/2016] [Accepted: 01/03/2017] [Indexed: 06/06/2023]
Abstract
BACKGROUND Testing rhizobial inoculation of common bean (Phaseolus vulgaris L.) in hydroponics enables accurate quantification of biological N2 fixation (BNF) and provides information about the potential of reducing inorganic N fertilizer use. In view of this background, common bean grown on pumice was inoculated with Rhizobium tropici CIAT899 (Rt) and supplied with either full-N (total nitrogen 11.2 mmol L-1 ), 1/3 of full-N or N-free nutrient solution (NS). BNF was quantified at the early pod-filling stage using the 15 N natural abundance method. RESULTS Full-N supply to Rt-inoculated plants resulted in markedly smaller nodules than less- or zero-N supply, and no BNF. Rt inoculation of full-N-treated plants did not increase biomass and pod yield compared with non-inoculation. Restriction (1/3 of full-N) or omission of inorganic N resulted in successful nodulation and BNF (54.3 and 49.2 kg N ha-1 , corresponding to 58 and 100% of total plant N content respectively) but suppressed dry shoot biomass from 191.7 (full-N, +Rt) to 107.4 and 43.2 g per plant respectively. Nutrient cation uptake was reduced when inorganic N supply was less or omitted. CONCLUSION Rt inoculation of hydroponic bean provides no advantage when full-N NS is supplied, while 1/3 of full-N or N-free NS suppresses plant biomass and yield, partly because the restricted NO3- supply impairs cation uptake. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
| | - Epifanios Liasis
- Department of Crop Science, Agricultural University of Athens, Iera Odos, Athens, Greece
| | | | - Anastasia Tampakaki
- Department of Crop Science, Agricultural University of Athens, Iera Odos, Athens, Greece
| | - Dimitrios Savvas
- Department of Crop Science, Agricultural University of Athens, Iera Odos, Athens, Greece
| |
Collapse
|
27
|
Coskun D, Britto DT, Kronzucker HJ. The nitrogen-potassium intersection: membranes, metabolism, and mechanism. PLANT, CELL & ENVIRONMENT 2017; 40:2029-2041. [PMID: 26524711 DOI: 10.1111/pce.12671] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Revised: 10/13/2015] [Accepted: 10/14/2015] [Indexed: 05/21/2023]
Abstract
Nitrogen (N) and potassium (K) are the two most abundantly acquired mineral elements by plants, and their acquisition pathways interact in complex ways. Here, we review pivotal interactions with respect to root acquisition, storage, translocation and metabolism, between the K+ ion and the two major N sources, ammonium (NH4+ ) and nitrate (NO3- ). The intersections between N and K physiology are explored at a number of organizational levels, from molecular-genetic processes, to compartmentation, to whole plant physiology, and discussed in the context of both N-K cooperation and antagonism. Nutritional regulation and optimization of plant growth, yield, metabolism and water-use efficiency are also discussed.
Collapse
Affiliation(s)
- Devrim Coskun
- Department of Biological Sciences and the Canadian Centre for World Hunger Research (CCWHR), University of Toronto, 1265 Military Trail, Toronto, Ontario, Canada, M1C 1A4
| | - Dev T Britto
- Department of Biological Sciences and the Canadian Centre for World Hunger Research (CCWHR), University of Toronto, 1265 Military Trail, Toronto, Ontario, Canada, M1C 1A4
| | - Herbert J Kronzucker
- Department of Biological Sciences and the Canadian Centre for World Hunger Research (CCWHR), University of Toronto, 1265 Military Trail, Toronto, Ontario, Canada, M1C 1A4
| |
Collapse
|
28
|
Li C, Tang Z, Wei J, Qu H, Xie Y, Xu G. The OsAMT1.1 gene functions in ammonium uptake and ammonium-potassium homeostasis over low and high ammonium concentration ranges. J Genet Genomics 2016; 43:639-649. [PMID: 27889499 DOI: 10.1016/j.jgg.2016.11.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 09/16/2016] [Accepted: 11/03/2016] [Indexed: 12/19/2022]
Abstract
Rice (Oryza sativa) grown in paddy fields is an ammonium (NH4+)-preferring crop; however, its AMT-type NH4+ transporters that mediate root N acquisition have not been well characterized yet. In this study, we analyzed the expression pattern and physiological function of the OsAMT1.1 gene of the AMT1 subfamily in rice. OsAMT1.1 is located in the plasma membrane and is mainly expressed in the root epidermis, stele and mesophyll cells. Disruption of the OsAMT1.1 gene decreased the uptake of NH4+, and the growth of roots and shoots under both low NH4+ and high NH4+ conditions. OsAMT1.1 contributed to the short-term (5 min) 15NH4+ influx rate by approximately one-quarter, irrespective of the NH4+ concentration. Knockout of OsAMT1.1 significantly decreased the total N transport from roots to shoots under low NH4+ conditions. Moreover, compared with the wild type, the osamt1.1 mutant showed an increase in the potassium (K) absorption rate under high NH4+ conditions and a decrease under low NH4+ conditions. The mutants contained a significantly high concentration of K in both the roots and shoots at a limited K (0.1 mmol/L) supply when NH4+ was replete. Taken together, the results indicated that OsAMT1.1 significantly contributes to the NH4+ uptake under both low and high NH4+ conditions and plays an important role in N-K homeostasis in rice.
Collapse
Affiliation(s)
- Chang Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhong Tang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Jia Wei
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Hongye Qu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yanjie Xie
- Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Guohua Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
29
|
Coskun D, Britto DT, Huynh WQ, Kronzucker HJ. The Role of Silicon in Higher Plants under Salinity and Drought Stress. FRONTIERS IN PLANT SCIENCE 2016; 7:1072. [PMID: 27486474 PMCID: PMC4947951 DOI: 10.3389/fpls.2016.01072] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 07/07/2016] [Indexed: 05/18/2023]
Abstract
Although deemed a "non-essential" mineral nutrient, silicon (Si) is clearly beneficial to plant growth and development, particularly under stress conditions, including salinity and drought. Here, we review recent research on the physiological, biochemical, and molecular mechanisms underlying Si-induced alleviation of osmotic and ionic stresses associated with salinity and drought. We distinguish between changes observed in the apoplast (i.e., suberization, lignification, and silicification of the extracellular matrix; transpirational bypass flow of solutes and water), and those of the symplast (i.e., transmembrane transport of solutes and water; gene expression; oxidative stress; metabolism), and discuss these features in the context of Si biogeochemistry and bioavailability in agricultural soils, evaluating the prospect of using Si fertilization to increase crop yield and stress tolerance under salinity and drought conditions.
Collapse
Affiliation(s)
| | | | | | - Herbert J. Kronzucker
- Department of Biological Sciences, Canadian Centre for World Hunger Research, University of Toronto, TorontoON, Canada
| |
Collapse
|
30
|
Abstract
The metabolite 2-oxoglutarate (also known as α-ketoglutarate, 2-ketoglutaric acid, or oxoglutaric acid) lies at the intersection between the carbon and nitrogen metabolic pathways. This compound is a key intermediate of one of the most fundamental biochemical pathways in carbon metabolism, the tricarboxylic acid (TCA) cycle. In addition, 2-oxoglutarate also acts as the major carbon skeleton for nitrogen-assimilatory reactions. Experimental data support the conclusion that intracellular levels of 2-oxoglutarate fluctuate according to nitrogen and carbon availability. This review summarizes how nature has capitalized on the ability of 2-oxoglutarate to reflect cellular nutritional status through evolution of a variety of 2-oxoglutarate-sensing regulatory proteins. The number of metabolic pathways known to be regulated by 2-oxoglutarate levels has increased significantly in recent years. The signaling properties of 2-oxoglutarate are highlighted by the fact that this metabolite regulates the synthesis of the well-established master signaling molecule, cyclic AMP (cAMP), in Escherichia coli.
Collapse
|
31
|
Coskun D, Britto DT, Kochian LV, Kronzucker HJ. How high do ion fluxes go? A re-evaluation of the two-mechanism model of K(+) transport in plant roots. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 243:96-104. [PMID: 26795154 DOI: 10.1016/j.plantsci.2015.12.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 12/04/2015] [Accepted: 12/08/2015] [Indexed: 05/21/2023]
Abstract
Potassium (K(+)) acquisition in roots is generally described by a two-mechanism model, consisting of a saturable, high-affinity transport system (HATS) operating via H(+)/K(+) symport at low (<1mM) external [K(+)] ([K(+)]ext), and a linear, low-affinity system (LATS) operating via ion channels at high (>1mM) [K(+)]ext. Radiotracer measurements in the LATS range indicate that the linear rise in influx continues well beyond nutritionally relevant concentrations (>10mM), suggesting K(+) transport may be pushed to extraordinary, and seemingly limitless, capacity. Here, we assess this rise, asking whether LATS measurements faithfully report transmembrane fluxes. Using (42)K(+)-isotope and electrophysiological methods in barley, we show that this flux is part of a K(+)-transport cycle through the apoplast, and masks a genuine plasma-membrane influx that displays Michaelis-Menten kinetics. Rapid apoplastic cycling of K(+) is corroborated by an absence of transmembrane (42)K(+) efflux above 1mM, and by the efflux kinetics of PTS, an apoplastic tracer. A linear apoplastic influx, masking a saturating transmembrane influx, was also found in Arabidopsis mutants lacking the K(+) transporters AtHAK5 and AtAKT1. Our work significantly revises the model of K(+) transport by demonstrating a surprisingly modest upper limit for plasma-membrane influx, and offers insight into sodium transport under salt stress.
Collapse
Affiliation(s)
- Devrim Coskun
- Department of Biological Sciences & Canadian Centre for World Hunger Research (CCWHR), University of Toronto, Toronto, Ontario M1C 1A4, Canada.
| | - Dev T Britto
- Department of Biological Sciences & Canadian Centre for World Hunger Research (CCWHR), University of Toronto, Toronto, Ontario M1C 1A4, Canada.
| | - Leon V Kochian
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, New York 14853, USA.
| | - Herbert J Kronzucker
- Department of Biological Sciences & Canadian Centre for World Hunger Research (CCWHR), University of Toronto, Toronto, Ontario M1C 1A4, Canada.
| |
Collapse
|
32
|
Nieves-Cordones M, Martínez V, Benito B, Rubio F. Comparison between Arabidopsis and Rice for Main Pathways of K(+) and Na(+) Uptake by Roots. FRONTIERS IN PLANT SCIENCE 2016; 7:992. [PMID: 27458473 PMCID: PMC4932104 DOI: 10.3389/fpls.2016.00992] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 06/22/2016] [Indexed: 05/22/2023]
Abstract
K(+) is an essential macronutrient for plants. It is acquired by specific uptake systems located in roots. Although the concentrations of K(+) in the soil solution are widely variable, K(+) nutrition is secured by uptake systems that exhibit different affinities for K(+). Two main systems have been described for root K(+) uptake in several species: the high-affinity HAK5-like transporter and the inward-rectifier AKT1-like channel. Other unidentified systems may be also involved in root K(+) uptake, although they only seem to operate when K(+) is not limiting. The use of knock-out lines has allowed demonstrating their role in root K(+) uptake in Arabidopsis and rice. Plant adaptation to the different K(+) supplies relies on the finely tuned regulation of these systems. Low K(+)-induced transcriptional up-regulation of the genes encoding HAK5-like transporters occurs through a signal cascade that includes changes in the membrane potential of root cells and increases in ethylene and reactive oxygen species concentrations. Activation of AKT1 channels occurs through phosphorylation by the CIPK23/CBL1 complex. Recently, activation of the Arabidopsis HAK5 by the same complex has been reported, pointing to CIPK23/CBL as a central regulator of the plant's adaptation to low K(+). Na(+) is not an essential plant nutrient but it may be beneficial for some plants. At low concentrations, Na(+) improves growth, especially under K(+) deficiency. Thus, high-affinity Na(+) uptake systems have been described that belong to the HKT and HAK families of transporters. At high concentrations, typical of saline environments, Na(+) accumulates in plant tissues at high concentrations, producing alterations that include toxicity, water deficit and K(+) deficiency. Data concerning pathways for Na(+) uptake into roots under saline conditions are still scarce, although several possibilities have been proposed. The apoplast is a significant pathway for Na(+) uptake in rice grown under salinity conditions, but in other plant species different mechanisms involving non-selective cation channels or transporters are under discussion.
Collapse
Affiliation(s)
- Manuel Nieves-Cordones
- Biochimie et Physiologie Moléculaire des Plantes, Institut de Biologie Intégrative des Plantes, UMR 5004 CNRS/UMR 0386 INRA/Montpellier SupAgro/Université Montpellier 2Montpellier, France
| | - Vicente Martínez
- Departamento de Nutrición Vegetal, Centro de Edafología y Biología Aplicada del Segura – Consejo Superior de Investigaciones CientíficasMurcia, Spain
| | - Begoña Benito
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de MadridMadrid, Spain
| | - Francisco Rubio
- Departamento de Nutrición Vegetal, Centro de Edafología y Biología Aplicada del Segura – Consejo Superior de Investigaciones CientíficasMurcia, Spain
- *Correspondence: Francisco Rubio,
| |
Collapse
|
33
|
Houmani H, J Corpas F. Differential responses to salt-induced oxidative stress in three phylogenetically related plant species: Arabidopsis thaliana (glycophyte), Thellungiella salsuginea and Cakile maritima (halophytes). Involvement of ROS and NO in the control of K+/Na+ homeostasis. AIMS BIOPHYSICS 2016. [DOI: 10.3934/biophy.2016.3.380] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
34
|
Yang Y, Jiang H, Wang M, Korpelainen H, Li C. Male poplars have a stronger ability to balance growth and carbohydrate accumulation than do females in response to a short-term potassium deficiency. PHYSIOLOGIA PLANTARUM 2015; 155:400-413. [PMID: 25615581 DOI: 10.1111/ppl.12325] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 01/09/2015] [Accepted: 01/14/2015] [Indexed: 06/04/2023]
Abstract
Potassium (K) deficiency influences plant performance, such as ion uptake and carbohydrate transport. However, little is known about differences between males and females in response to K deficiency. In this study, dry matter accumulation, photosynthetic capacity, allocation patterns of K(+) , Na(+) and carbohydrates, and ultrastructural changes in males and females of Populus cathayana exposed to K deficiency were investigated. The results indicated that males maintained a significantly higher K(+) content and K(+) /Na(+) ratio in leaves and stems than did females under K deficiency. Moreover, K deficiency significantly increased the sucrose content of females, whereas no significant effect on males was detected. In addition, a comparative analysis showed that males allocated more resources to roots, while females allocated more to leaves, which resulted in sexually different root/shoot (R/S) ratios. Transmission electron microscopic (TEM) observations showed that males suffered fewer injuries than did females. These results suggested that males have a better ability to cope with K deficiency. In addition, the combined effects of salinity and K deficiency on poplars were studied. The results indicated that salt stress aggravates the negative effects caused by K deficiency. Taken together, our study provided evidence for gender-specific strategies in ion and carbohydrate allocation in poplars exposed to a short-term K deficiency. In leaves and stems, the lower K(+) accumulation inhibited sucrose translocation and resulted in a decreased R/S ratio, which may contribute to males having a stronger ability to balance growth and carbohydrate accumulation when compared with females.
Collapse
Affiliation(s)
- Yanni Yang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Hao Jiang
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China
| | - Maolin Wang
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Helena Korpelainen
- Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland
| | - Chunyang Li
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China
| |
Collapse
|
35
|
Chen G, Hu Q, Luo L, Yang T, Zhang S, Hu Y, Yu L, Xu G. Rice potassium transporter OsHAK1 is essential for maintaining potassium-mediated growth and functions in salt tolerance over low and high potassium concentration ranges. PLANT, CELL & ENVIRONMENT 2015; 38:2747-65. [PMID: 26046301 DOI: 10.1111/pce.12585] [Citation(s) in RCA: 146] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Revised: 05/16/2015] [Accepted: 06/01/2015] [Indexed: 05/17/2023]
Abstract
Potassium (K) absorption and translocation in plants rely upon multiple K transporters for adapting varied K supply and saline conditions. Here, we report the expression patterns and physiological roles of OsHAK1, a member belonging to the KT/KUP/HAK gene family in rice (Oryza sativa L.). The expression of OsHAK1 is up-regulated by K deficiency or salt stress in various tissues, particularly in the root and shoot apical meristem, the epidermises and steles of root, and vascular bundles of shoot. Both oshak1 knockout mutants in comparison to their respective Dongjin or Manan wild types showed a dramatic reduction in K concentration and stunted root and shoot growth. Knockout of OsHAK1 reduced the K absorption rate of unit root surface area by ∼50-55 and ∼30%, and total K uptake by ∼80 and ∼65% at 0.05-0.1 and 1 mm K supply level, respectively. The root net high-affinity K uptake of oshak1 mutants was sensitive to salt stress but not to ammonium supply. Overexpression of OsHAK1 in rice increased K uptake and K/Na ratio. The positive relationship between K concentration and shoot biomass in the mutants suggests that OsHAK1 plays an essential role in K-mediated rice growth and salt tolerance over low and high K concentration ranges.
Collapse
Affiliation(s)
- Guang Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qingdi Hu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Le Luo
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Tianyuan Yang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Song Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yibing Hu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ling Yu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Guohua Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
36
|
Model of Cation Transportation Mediated by High-Affinity Potassium Transporters (HKTs) in Higher Plants. Biol Proced Online 2015; 17:1. [PMID: 25698907 PMCID: PMC4334588 DOI: 10.1186/s12575-014-0013-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 12/06/2014] [Indexed: 01/18/2023] Open
Abstract
Trk/Ktr/HKT transporters probably were evolved from simple K+ channels KcsA. HKT transporters, which mediate Na+-uniport or Na+/K+-symport, maintain K+/Na+ homeostasis and increase salinity tolerance, can be classified into three subfamilies in higher plants. In this review, we systematically analyzed the characteristics of amino acids sequences and physiological functions of HKT transporters in higher plant. Furthermore, we depicted the hypothetical models of cations selection and transportation mediated by HKT transporters according to the highly conserved structure for the goal of better understanding the cations transportation processes.
Collapse
|
37
|
Yang T, Zhang S, Hu Y, Wu F, Hu Q, Chen G, Cai J, Wu T, Moran N, Yu L, Xu G. The role of a potassium transporter OsHAK5 in potassium acquisition and transport from roots to shoots in rice at low potassium supply levels. PLANT PHYSIOLOGY 2014; 166:945-59. [PMID: 25157029 PMCID: PMC4213120 DOI: 10.1104/pp.114.246520] [Citation(s) in RCA: 188] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
In plants, K transporter (KT)/high affinity K transporter (HAK)/K uptake permease (KUP) is the largest potassium (K) transporter family; however, few of the members have had their physiological functions characterized in planta. Here, we studied OsHAK5 of the KT/HAK/KUP family in rice (Oryza sativa). We determined its cellular and tissue localization and analyzed its functions in rice using both OsHAK5 knockout mutants and overexpression lines in three genetic backgrounds. A β-glucuronidase reporter driven by the OsHAK5 native promoter indicated OsHAK5 expression in various tissue organs from root to seed, abundantly in root epidermis and stele, the vascular tissues, and mesophyll cells. Net K influx rate in roots and K transport from roots to aerial parts were severely impaired by OsHAK5 knockout but increased by OsHAK5 overexpression in 0.1 and 0.3 mm K external solution. The contribution of OsHAK5 to K mobilization within the rice plant was confirmed further by the change of K concentration in the xylem sap and K distribution in the transgenic lines when K was removed completely from the external solution. Overexpression of OsHAK5 increased the K-sodium concentration ratio in the shoots and salt stress tolerance (shoot growth), while knockout of OsHAK5 decreased the K-sodium concentration ratio in the shoots, resulting in sensitivity to salt stress. Taken together, these results demonstrate that OsHAK5 plays a major role in K acquisition by roots faced with low external K and in K upward transport from roots to shoots in K-deficient rice plants.
Collapse
Affiliation(s)
- Tianyuan Yang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement (T.Y., S.Z., Y.H., F.W., Q.H., G.C., J.C., T.W., L.Y., G.X.) and Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Ministry of Agriculture (T.Y., S.Z., Y.H., F.W., Q.H., G.C., J.C., T.W., L.Y., G.X.), Nanjing Agricultural University, Nanjing 210095, China; andR.H. Smith Institute of Plant Sciences and Genetics in Agriculture, R.H. Smith Faculty of Agriculture, Food, and Environment, Hebrew University of Jerusalem, Rehovot 76100, Israel (N.M.)
| | - Song Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement (T.Y., S.Z., Y.H., F.W., Q.H., G.C., J.C., T.W., L.Y., G.X.) and Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Ministry of Agriculture (T.Y., S.Z., Y.H., F.W., Q.H., G.C., J.C., T.W., L.Y., G.X.), Nanjing Agricultural University, Nanjing 210095, China; andR.H. Smith Institute of Plant Sciences and Genetics in Agriculture, R.H. Smith Faculty of Agriculture, Food, and Environment, Hebrew University of Jerusalem, Rehovot 76100, Israel (N.M.)
| | - Yibing Hu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement (T.Y., S.Z., Y.H., F.W., Q.H., G.C., J.C., T.W., L.Y., G.X.) and Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Ministry of Agriculture (T.Y., S.Z., Y.H., F.W., Q.H., G.C., J.C., T.W., L.Y., G.X.), Nanjing Agricultural University, Nanjing 210095, China; andR.H. Smith Institute of Plant Sciences and Genetics in Agriculture, R.H. Smith Faculty of Agriculture, Food, and Environment, Hebrew University of Jerusalem, Rehovot 76100, Israel (N.M.)
| | - Fachi Wu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement (T.Y., S.Z., Y.H., F.W., Q.H., G.C., J.C., T.W., L.Y., G.X.) and Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Ministry of Agriculture (T.Y., S.Z., Y.H., F.W., Q.H., G.C., J.C., T.W., L.Y., G.X.), Nanjing Agricultural University, Nanjing 210095, China; andR.H. Smith Institute of Plant Sciences and Genetics in Agriculture, R.H. Smith Faculty of Agriculture, Food, and Environment, Hebrew University of Jerusalem, Rehovot 76100, Israel (N.M.)
| | - Qingdi Hu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement (T.Y., S.Z., Y.H., F.W., Q.H., G.C., J.C., T.W., L.Y., G.X.) and Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Ministry of Agriculture (T.Y., S.Z., Y.H., F.W., Q.H., G.C., J.C., T.W., L.Y., G.X.), Nanjing Agricultural University, Nanjing 210095, China; andR.H. Smith Institute of Plant Sciences and Genetics in Agriculture, R.H. Smith Faculty of Agriculture, Food, and Environment, Hebrew University of Jerusalem, Rehovot 76100, Israel (N.M.)
| | - Guang Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement (T.Y., S.Z., Y.H., F.W., Q.H., G.C., J.C., T.W., L.Y., G.X.) and Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Ministry of Agriculture (T.Y., S.Z., Y.H., F.W., Q.H., G.C., J.C., T.W., L.Y., G.X.), Nanjing Agricultural University, Nanjing 210095, China; andR.H. Smith Institute of Plant Sciences and Genetics in Agriculture, R.H. Smith Faculty of Agriculture, Food, and Environment, Hebrew University of Jerusalem, Rehovot 76100, Israel (N.M.)
| | - Jing Cai
- State Key Laboratory of Crop Genetics and Germplasm Enhancement (T.Y., S.Z., Y.H., F.W., Q.H., G.C., J.C., T.W., L.Y., G.X.) and Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Ministry of Agriculture (T.Y., S.Z., Y.H., F.W., Q.H., G.C., J.C., T.W., L.Y., G.X.), Nanjing Agricultural University, Nanjing 210095, China; andR.H. Smith Institute of Plant Sciences and Genetics in Agriculture, R.H. Smith Faculty of Agriculture, Food, and Environment, Hebrew University of Jerusalem, Rehovot 76100, Israel (N.M.)
| | - Ting Wu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement (T.Y., S.Z., Y.H., F.W., Q.H., G.C., J.C., T.W., L.Y., G.X.) and Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Ministry of Agriculture (T.Y., S.Z., Y.H., F.W., Q.H., G.C., J.C., T.W., L.Y., G.X.), Nanjing Agricultural University, Nanjing 210095, China; andR.H. Smith Institute of Plant Sciences and Genetics in Agriculture, R.H. Smith Faculty of Agriculture, Food, and Environment, Hebrew University of Jerusalem, Rehovot 76100, Israel (N.M.)
| | - Nava Moran
- State Key Laboratory of Crop Genetics and Germplasm Enhancement (T.Y., S.Z., Y.H., F.W., Q.H., G.C., J.C., T.W., L.Y., G.X.) and Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Ministry of Agriculture (T.Y., S.Z., Y.H., F.W., Q.H., G.C., J.C., T.W., L.Y., G.X.), Nanjing Agricultural University, Nanjing 210095, China; andR.H. Smith Institute of Plant Sciences and Genetics in Agriculture, R.H. Smith Faculty of Agriculture, Food, and Environment, Hebrew University of Jerusalem, Rehovot 76100, Israel (N.M.)
| | - Ling Yu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement (T.Y., S.Z., Y.H., F.W., Q.H., G.C., J.C., T.W., L.Y., G.X.) and Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Ministry of Agriculture (T.Y., S.Z., Y.H., F.W., Q.H., G.C., J.C., T.W., L.Y., G.X.), Nanjing Agricultural University, Nanjing 210095, China; andR.H. Smith Institute of Plant Sciences and Genetics in Agriculture, R.H. Smith Faculty of Agriculture, Food, and Environment, Hebrew University of Jerusalem, Rehovot 76100, Israel (N.M.)
| | - Guohua Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement (T.Y., S.Z., Y.H., F.W., Q.H., G.C., J.C., T.W., L.Y., G.X.) and Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Ministry of Agriculture (T.Y., S.Z., Y.H., F.W., Q.H., G.C., J.C., T.W., L.Y., G.X.), Nanjing Agricultural University, Nanjing 210095, China; andR.H. Smith Institute of Plant Sciences and Genetics in Agriculture, R.H. Smith Faculty of Agriculture, Food, and Environment, Hebrew University of Jerusalem, Rehovot 76100, Israel (N.M.)
| |
Collapse
|
38
|
Coskun D, Britto DT, Hamam AM, Kronzucker HJ. Measuring fluxes of mineral nutrients and toxicants in plants with radioactive tracers. J Vis Exp 2014:51877. [PMID: 25177829 PMCID: PMC4758755 DOI: 10.3791/51877] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Unidirectional influx and efflux of nutrients and toxicants, and their resultant net fluxes, are central to the nutrition and toxicology of plants. Radioisotope tracing is a major technique used to measure such fluxes, both within plants, and between plants and their environments. Flux data obtained with radiotracer protocols can help elucidate the capacity, mechanism, regulation, and energetics of transport systems for specific mineral nutrients or toxicants, and can provide insight into compartmentation and turnover rates of subcellular mineral and metabolite pools. Here, we describe two major radioisotope protocols used in plant biology: direct influx (DI) and compartmental analysis by tracer efflux (CATE). We focus on flux measurement of potassium (K(+)) as a nutrient, and ammonia/ammonium (NH3/NH4(+)) as a toxicant, in intact seedlings of the model species barley (Hordeum vulgare L.). These protocols can be readily adapted to other experimental systems (e.g., different species, excised plant material, and other nutrients/toxicants). Advantages and limitations of these protocols are discussed.
Collapse
Affiliation(s)
- Devrim Coskun
- Department of Biological Sciences, University of Toronto
| | - Dev T Britto
- Department of Biological Sciences, University of Toronto
| | - Ahmed M Hamam
- Department of Biological Sciences, University of Toronto
| | | |
Collapse
|
39
|
Krishnamurthy P, Jyothi-Prakash PA, Qin L, He J, Lin Q, Loh CS, Kumar PP. Role of root hydrophobic barriers in salt exclusion of a mangrove plant Avicennia officinalis. PLANT, CELL & ENVIRONMENT 2014; 37:1656-71. [PMID: 24417377 DOI: 10.1111/pce.12272] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 12/17/2013] [Accepted: 01/04/2014] [Indexed: 05/17/2023]
Abstract
Salt exclusion at the roots and salt secretion in the leaves were examined in a mangrove, Avicennia officinalis. The non-secretor mangrove Bruguiera cylindrica was used for comparative study of hydrophobic barrier formation in the roots. Bypass flow was reduced when seedlings were previously treated with high salt concentration. A biseriate exodermis was detected in the salt-treated roots, along with an enhanced deposition of hydrophobic barriers in the endodermis. These barriers reduced Na(+) loading into the xylem, accounting for a 90-95% salt exclusion in A. officinalis. Prominent barriers were found in the roots of B. cylindrica even in the absence of salt treatment. A cytochrome P450 gene that may regulate suberin biosynthesis was up-regulated within hours of salt treatment in A. officinalis roots and leaves, corresponding with increased suberin deposition. X-ray microanalysis showed preferential deposition of Na(+) and Cl(-) in the root cortex compared with the stele, suggesting that the endodermis is the primary site of salt exclusion. Enhanced salt secretion and increased suberin deposition surrounding the salt glands were seen in the leaves with salt treatment. Overall, these data show that the deposition of apoplastic barriers increases resistance to bypass flow leading to efficient salt exclusion at the roots in mangroves.
Collapse
Affiliation(s)
- Pannaga Krishnamurthy
- Department of Biological Sciences, National University of Singapore, 117543, Singapore; NUS Environmental Research Institute (NERI), National University of Singapore, 117411, Singapore
| | | | | | | | | | | | | |
Collapse
|
40
|
Coskun D, Britto DT, Kronzucker HJ. The physiology of channel-mediated K+ acquisition in roots of higher plants. PHYSIOLOGIA PLANTARUM 2014; 151:305-12. [PMID: 24697609 DOI: 10.1111/ppl.12174] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 01/17/2014] [Accepted: 01/25/2014] [Indexed: 05/08/2023]
Abstract
K(+) channels are among the best-characterized classes of membrane protein in plants. Nevertheless, in-planta demonstrations of traits emerging from molecular characterizations have often been insufficient or lacking altogether. Such linkages are, however, critical to our basic understanding of plant nutrition and to addressing 'real-world' issues that are faced in environmental and agricultural settings. Here, we cover some of the recent advances in K(+) acquisition with particular focus on voltage-gated K(+) channel functioning and regulation in roots, and highlight where linkages to in-planta behavior have been successfully made and, conversely, where such linkages are yet to be made.
Collapse
Affiliation(s)
- Devrim Coskun
- Department of Biological Sciences, University of Toronto, Toronto, ON, M1C 1A4, Canada
| | | | | |
Collapse
|
41
|
Nieves-Cordones M, Alemán F, Martínez V, Rubio F. K+ uptake in plant roots. The systems involved, their regulation and parallels in other organisms. JOURNAL OF PLANT PHYSIOLOGY 2014; 171:688-95. [PMID: 24810767 DOI: 10.1016/j.jplph.2013.09.021] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 09/26/2013] [Accepted: 09/28/2013] [Indexed: 05/20/2023]
Abstract
Potassium (K(+)) is an essential macronutrient for plants. It is taken into the plant by the transport systems present in the plasma membranes of root epidermal and cortical cells. The identity of these systems and their regulation is beginning to be understood and the systems of K(+) transport in the model species Arabidopsis thaliana remain far better characterized than in any other plant species. Roots can activate different K(+) uptake systems to adapt to their environment, important to a sessile organism that needs to cope with a highly variable environment. The mechanisms of K(+) acquisition in the model species A. thaliana are the best characterized at the molecular level so far. According to the current model, non-selective channels are probably the main pathways for K(+) uptake at high concentrations (>10mM), while at intermediate concentrations (1mM), the inward rectifying channel AKT1 dominates K(+) uptake. Under lower concentrations of external K(+) (100μM), AKT1 channels, together with the high-affinity K(+) uptake system HAK5 contribute to K(+) acquisition, and at extremely low concentrations (<10μM) the only system capable of taking up K(+) is HAK5. Depending on the species the high-affinity system has been named HAK5 or HAK1, but in all cases it fulfills the same functions. The activation of these systems as a function of the K(+) availability is achieved by different mechanisms that include phosphorylation of AKT1 or induction of HAK5 transcription. Some of the characteristics of the systems for root K(+) uptake are shared by other organisms, whilst others are specific to plants. This indicates that some crucial properties of the ancestral of K(+) transport systems have been conserved through evolution while others have diverged among different kingdoms.
Collapse
Affiliation(s)
| | - Fernando Alemán
- Departamento de Nutrición Vegetal, CEBAS-CSIC, Campus de Espinardo, Murcia 30100, Spain
| | - Vicente Martínez
- Departamento de Nutrición Vegetal, CEBAS-CSIC, Campus de Espinardo, Murcia 30100, Spain
| | - Francisco Rubio
- Departamento de Nutrición Vegetal, CEBAS-CSIC, Campus de Espinardo, Murcia 30100, Spain.
| |
Collapse
|
42
|
Le Deunff E, Malagoli P. An updated model for nitrate uptake modelling in plants. I. Functional component: cross-combination of flow-force interpretation of nitrate uptake isotherms, and environmental and in planta regulation of nitrate influx. ANNALS OF BOTANY 2014; 113:991-1005. [PMID: 24638820 PMCID: PMC3997639 DOI: 10.1093/aob/mcu021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 01/21/2014] [Indexed: 05/05/2023]
Abstract
BACKGROUND AND AIMS In spite of major breakthroughs in the last three decades in the identification of root nitrate uptake transporters in plants and the associated regulation of nitrate transport activities, a simplified and operational modelling approach for nitrate uptake is still lacking. This is due mainly to the difficulty in linking the various regulations of nitrate transport that act at different levels of time and on different spatial scales. METHODS A cross-combination of a Flow-Force approach applied to nitrate influx isotherms and experimentally determined environmental and in planta regulation is used to model nitrate in oilseed rape, Brassica napus. In contrast to 'Enzyme-Substrate' interpretations, a Flow-Force modelling approach considers the root as a single catalytic structure and does not infer hypothetical cellular processes among nitrate transporter activities across cellular layers in the mature roots. In addition, this approach accounts for the driving force on ion transport based on the gradient of electrochemical potential, which is more appropriate from a thermodynamic viewpoint. KEY RESULTS AND CONCLUSIONS Use of a Flow-Force formalism on nitrate influx isotherms leads to the development of a new conceptual mechanistic basis to model more accurately N uptake by a winter oilseed rape crop under field conditions during the whole growth cycle. This forms the functional component of a proposed new structure-function mechanistic model of N uptake.
Collapse
Affiliation(s)
- Erwan Le Deunff
- Université de Caen Basse-Normandie, UMR EVA, F-14032 Caen cedex, France
- INRA, UMR 950, Écophysiologie Végétale & Agronomie Nutritions NCS, F-14032 Caen cedex, France
| | - Philippe Malagoli
- Clermont Universités, Université Blaise Pascal, UMR 547 PIAF, BP 10448, F-63000 Clermont Ferrand, France
- INRA, UMR 547 PIAF, F-63100 Clermont Ferrand, France
| |
Collapse
|
43
|
Song Z, Yang S, Zhu H, Jin M, Su Y. Heterologous expression of an alligatorweed high-affinity potassium transporter gene enhances salinity tolerance in Arabidopsis thaliana. AMERICAN JOURNAL OF BOTANY 2014; 101:840-850. [PMID: 24824834 DOI: 10.3732/ajb.1400155] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Accepted: 04/16/2014] [Indexed: 06/03/2023]
Abstract
UNLABELLED • PREMISE OF THE STUDY The potassium cation (K(+)), one of the most abundant cations in cells, improves plant tolerance to various abiotic stresses. Alligatorweed (Alternanthera philoxeroides) is well known for its strong capacity to accumulate K(+) The distinctive K(+) accumulation capability of alligatorweed is linked to a high-affinity K(+) transport facilitated by K(+)-uptake transporters (ApKUPs).• METHODS A putative K(+) transporter gene, ApKUP4, was isolated from alligatorweed using degenerate primers and rapid amplification of cDNA ends (RACE) techniques. Gene expression profiles were performed by quantitative real time PCR and northern blot analysis. Moreover, we introduced ApKUP4 into Arabidopsis to determine its function in improving crop nutrition and NaCl stress tolerance.• KEY RESULTS ApKUP4 was localized throughout the entire alligatorweed plant, and its expression was stimulated in the stems and roots under K(+) deficiency, osmotic stress, and salinity stress. Northern blot analysis revealed that ApKUP4 was present in all tested organs of transgenic Arabidopsis plants. Compared with the wild type, Arabidopsis plants overexpressing ApKUP4 showed improved growth and K(+) homeostasis. Moreover, ApKUP4 overexpression in Arabidopsis plants enhanced plant tolerance to salinity stress, as evidenced by reduced water loss and ROS generation, associated with enhanced photosynthesis, nutritional status, and enzymatic antioxidants.• CONCLUSIONS The present study provides direct evidence that the alligatorweed K(+) transporter gene, ApKUP4, contributes to salinity tolerance in transgenic Arabidopsis seedlings, demonstrating the essentiality of potassium homeostasis for plant salinity tolerance.
Collapse
Affiliation(s)
- Zhizhong Song
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210014, China Institute of Horticulture, Jiangsu Academy of Agricultural Sciences, Nanjing 210008, China
| | - Shunying Yang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210014, China University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong Zhu
- Institute of Botany, Jiangsu Province and Chinese Academy of Science, Nanjing 210018, China
| | - Man Jin
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210014, China University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanhua Su
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210014, China
| |
Collapse
|
44
|
Coskun D, Britto DT, Li M, Becker A, Kronzucker HJ. Rapid ammonia gas transport accounts for futile transmembrane cycling under NH3/NH4+ toxicity in plant roots. PLANT PHYSIOLOGY 2013; 163:1859-67. [PMID: 24134887 PMCID: PMC3850193 DOI: 10.1104/pp.113.225961] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 10/14/2013] [Indexed: 05/17/2023]
Abstract
Futile transmembrane NH3/NH4(+) cycling in plant root cells, characterized by extremely rapid fluxes and high efflux to influx ratios, has been successfully linked to NH3/NH4(+) toxicity. Surprisingly, the fundamental question of which species of the conjugate pair (NH3 or NH4(+)) participates in such fluxes is unresolved. Using flux analyses with the short-lived radioisotope (13)N and electrophysiological, respiratory, and histochemical measurements, we show that futile cycling in roots of barley (Hordeum vulgare) seedlings is predominately of the gaseous NH3 species, rather than the NH4(+) ion. Influx of (13)NH3/(13)NH4(+), which exceeded 200 µmol g(-1) h(-1), was not commensurate with membrane depolarization or increases in root respiration, suggesting electroneutral NH3 transport. Influx followed Michaelis-Menten kinetics for NH3 (but not NH4(+)), as a function of external concentration (Km = 152 µm, Vmax = 205 µmol g(-1) h(-1)). Efflux of (13)NH3/(13)NH4(+) responded with a nearly identical Km. Pharmacological characterization of influx and efflux suggests mediation by aquaporins. Our study fundamentally revises the futile-cycling model by demonstrating that NH3 is the major permeating species across both plasmalemma and tonoplast of root cells under toxicity conditions.
Collapse
Affiliation(s)
- Devrim Coskun
- Department of Biological Sciences, University of Toronto, 1265 Military Trail, Toronto, Ontario, Canada M1C 1A4
| | - Dev T. Britto
- Department of Biological Sciences, University of Toronto, 1265 Military Trail, Toronto, Ontario, Canada M1C 1A4
| | - Mingyuan Li
- Department of Biological Sciences, University of Toronto, 1265 Military Trail, Toronto, Ontario, Canada M1C 1A4
| | - Alexander Becker
- Department of Biological Sciences, University of Toronto, 1265 Military Trail, Toronto, Ontario, Canada M1C 1A4
| | - Herbert J. Kronzucker
- Department of Biological Sciences, University of Toronto, 1265 Military Trail, Toronto, Ontario, Canada M1C 1A4
| |
Collapse
|
45
|
Coskun D, Kronzucker HJ. Complexity of potassium acquisition: how much flows through channels? PLANT SIGNALING & BEHAVIOR 2013; 8:e24799. [PMID: 23656868 PMCID: PMC3908970 DOI: 10.4161/psb.24799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The involvement of potassium (K(+))-selective, Shaker-type channels, particularly AKT1, in primary K(+) acquisition in roots of higher plants has long been of interest, particularly in the context of low-affinity K(+) uptake, at high K(+) concentrations, as well as uptake from low-K(+) media under ammonium (NH₄(+)) stress. We recently demonstrated that K(+) channels cannot mediate K(+) acquisition in roots of intact barley (Hordeum vulgare L.) seedlings at low (22.5 µM) external K(+) concentrations ([K(+)](ext)) and in the presence of high (10 mM) external NH₄(+), while the model species Arabidopsis thaliana L. utilizes channels under comparable conditions. However, when external NH₄(+) was suddenly withdrawn, a thermodynamic shift to passive (channel-mediated) K(+) influx was observed in barley and both species demonstrated immediate and dramatic stimulations in K(+) influx, illustrating a hitherto unexplored magnitude and rapidity of K(+)-uptake capacity and plasticity. Here, we expand on our previous work by offering further characterization of channel-mediated K(+) fluxes in intact barley, with particular focus on anion effects, root respiration and pharmacological sensitivity and highlight key additions to the current model of K(+) acquisition.
Collapse
|