1
|
Chen J, Wang S, Jiang S, Gan T, Luo X, Shi R, Xuan Y, Xiao G, Chen H. Overexpression of Calcineurin B-like Interacting Protein Kinase 31 Promotes Lodging and Sheath Blight Resistance in Rice. PLANTS (BASEL, SWITZERLAND) 2024; 13:1306. [PMID: 38794377 PMCID: PMC11124926 DOI: 10.3390/plants13101306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/04/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024]
Abstract
A breakthrough "Green Revolution" in rice enhanced lodging resistance by using gibberellin-deficient semi-dwarf varieties. However, the gibberellic acid (GA) signaling regulation on rice disease resistance remains unclear. The resistance test showed that a positive GA signaling regulator DWARF1 mutant d1 was more susceptible while a negative GA signaling regulator Slender rice 1 (SLR1) mutant was less susceptible to sheath blight (ShB), one of the major rice diseases, suggesting that GA signaling positively regulates ShB resistance. To isolate the regulator, which simultaneously regulates rice lodging and ShB resistance, SLR1 interactors were isolated. Yeast two-hybrid (Y2H), bimolecular fluorescence complementation (BiFC), and Co-IP assay results indicate that SLR1 interacts with Calcineurin B-like-interacting protein kinase 31 (CIPK31). cipk31 mutants exhibited normal plant height, but CIPK31 OXs showed semi-dwarfism. In addition, the SLR1 level was much higher in CIPK31 OXs than in the wild-type, suggesting that CIPK31 OX might accumulate SLR1 to inhibit GA signaling and thus regulate its semi-dwarfism. Recently, we demonstrated that CIPK31 interacts and inhibits Catalase C (CatC) to accumulate ROS, which promotes rice disease resistance. Interestingly, CIPK31 interacts with Vascular Plant One Zinc Finger 2 (VOZ2) in the nucleus, and expression of CIPK31 accumulated VOZ2. Inoculation of Rhizoctonia solani AG1-IA revealed that the voz2 mutant was more susceptible to ShB. Thus, these data prove that CIPK31 promotes lodging and ShB resistance by regulating GA signaling and VOZ2 in rice. This study provides a valuable reference for rice ShB-resistant breeding.
Collapse
Affiliation(s)
- Jingsheng Chen
- College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou 404100, China; (J.C.); (S.J.); (T.G.); (X.L.); (R.S.)
| | - Siting Wang
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China;
| | - Shiqi Jiang
- College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou 404100, China; (J.C.); (S.J.); (T.G.); (X.L.); (R.S.)
| | - Tian Gan
- College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou 404100, China; (J.C.); (S.J.); (T.G.); (X.L.); (R.S.)
| | - Xin Luo
- College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou 404100, China; (J.C.); (S.J.); (T.G.); (X.L.); (R.S.)
| | - Rujie Shi
- College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou 404100, China; (J.C.); (S.J.); (T.G.); (X.L.); (R.S.)
| | - Yuanhu Xuan
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China;
- Department of Plant Protection, National Pesticide Engineering Research Center (Tianjin), Nankai University, Tianjin 300071, China
| | - Guosheng Xiao
- College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou 404100, China; (J.C.); (S.J.); (T.G.); (X.L.); (R.S.)
| | - Huan Chen
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
2
|
Karimian P, Trusov Y, Botella JR. Conserved Role of Heterotrimeric G Proteins in Plant Defense and Cell Death Progression. Genes (Basel) 2024; 15:115. [PMID: 38255003 PMCID: PMC10815853 DOI: 10.3390/genes15010115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
Programmed cell death (PCD) is a critical process in plant immunity, enabling the targeted elimination of infected cells to prevent the spread of pathogens. The tight regulation of PCD within plant cells is well-documented; however, specific mechanisms remain elusive or controversial. Heterotrimeric G proteins are multifunctional signaling elements consisting of three distinct subunits, Gα, Gβ, and Gγ. In Arabidopsis, the Gβγ dimer serves as a positive regulator of plant defense. Conversely, in species such as rice, maize, cotton, and tomato, mutants deficient in Gβ exhibit constitutively active defense responses, suggesting a contrasting negative role for Gβ in defense mechanisms within these plants. Using a transient overexpression approach in addition to knockout mutants, we observed that Gβγ enhanced cell death progression and elevated the accumulation of reactive oxygen species in a similar manner across Arabidopsis, tomato, and Nicotiana benthamiana, suggesting a conserved G protein role in PCD regulation among diverse plant species. The enhancement of PCD progression was cooperatively regulated by Gβγ and one Gα, XLG2. We hypothesize that G proteins participate in two distinct mechanisms regulating the initiation and progression of PCD in plants. We speculate that G proteins may act as guardees, the absence of which triggers PCD. However, in Arabidopsis, this G protein guarding mechanism appears to have been lost in the course of evolution.
Collapse
Affiliation(s)
| | | | - Jose Ramon Botella
- School of Agriculture and Food Sciences, University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia; (P.K.); (Y.T.)
| |
Collapse
|
3
|
Tiwari R, Garg K, Senthil-Kumar M, Bisht NC. XLG2 and CORI3 function additively to regulate plant defense against the necrotrophic pathogen Sclerotinia sclerotiorum. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:616-631. [PMID: 37910396 DOI: 10.1111/tpj.16518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/01/2023] [Accepted: 10/13/2023] [Indexed: 11/03/2023]
Abstract
The membrane-bound heterotrimeric G-proteins in plants play a crucial role in defending against a broad range of pathogens. This study emphasizes the significance of Extra-large Gα protein 2 (XLG2), a plant-specific G-protein, in mediating the plant response to Sclerotinia sclerotiorum, which infects over 600 plant species worldwide. Our analysis of Arabidopsis G-protein mutants showed that loss of XLG2 function increased susceptibility to S. sclerotiorum, accompanied by compromised accumulation of jasmonic acid (JA) during pathogen infection. Overexpression of the XLG2 gene in xlg2 mutant plants resulted in higher resistance and increased JA accumulation during S. sclerotiorum infection. Co-immunoprecipitation (co-IP) analysis on S. sclerotiorum infected Col-0 samples, using two different approaches, identified 201 XLG2-interacting proteins. The identified JA-biosynthetic and JA-responsive proteins had compromised transcript expression in the xlg2 mutant during pathogen infection. XLG2 was found to interact physically with a JA-responsive protein, Coronatine induced 1 (CORI3) in Co-IP, and confirmed using split firefly luciferase complementation and bimolecular fluorescent complementation assays. Additionally, genetic analysis revealed an additive effect of XLG2 and CORI3 on resistance against S. sclerotiorum, JA accumulation, and expression of the defense marker genes. Overall, our study reveals two independent pathways involving XLG2 and CORI3 in contributing resistance against S. sclerotiorum.
Collapse
Affiliation(s)
- Ruchi Tiwari
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Kajal Garg
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Muthappa Senthil-Kumar
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Naveen C Bisht
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| |
Collapse
|
4
|
Sharma S, Ganotra J, Samantaray J, Sahoo RK, Bhardwaj D, Tuteja N. An emerging role of heterotrimeric G-proteins in nodulation and nitrogen sensing. PLANTA 2023; 258:101. [PMID: 37847414 DOI: 10.1007/s00425-023-04251-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 09/25/2023] [Indexed: 10/18/2023]
Abstract
MAIN CONCLUSION A comprehensive understanding of nitrogen signaling cascades involving heterotrimeric G-proteins and their putative receptors can assist in the production of nitrogen-efficient plants. Plants are immobile in nature, so they must endure abiotic stresses including nutrient stress. Plant development and agricultural productivity are frequently constrained by the restricted availability of nitrogen in the soil. Non-legume plants acquire nitrogen from the soil through root membrane-bound transporters. In depleted soil nitrogen conditions, legumes are naturally conditioned to fix atmospheric nitrogen with the aid of nodulation elicited by nitrogen-fixing bacteria. Moreover, apart from the symbiotic nitrogen fixation process, nitrogen uptake from the soil can also be a significant secondary source to satisfy the nitrogen requirements of legumes. Heterotrimeric G-proteins function as molecular switches to help plant cells relay diverse stimuli emanating from external stress conditions. They are comprised of Gα, Gβ and Gγ subunits, which cooperate with several downstream effectors to regulate multiple plant signaling events. In the present review, we concentrate on signaling mechanisms that regulate plant nitrogen nutrition. Our review highlights the potential of heterotrimeric G-proteins, together with their putative receptors, to assist the legume root nodule symbiosis (RNS) cascade, particularly during calcium spiking and nodulation. Additionally, the functions of heterotrimeric G-proteins in nitrogen acquisition by plant roots as well as in improving nitrogen use efficiency (NUE) have also been discussed. Future research oriented towards heterotrimeric G-proteins through genome editing tools can be a game changer in the enhancement of the nitrogen fixation process. This will foster the precise manipulation and production of plants to ensure global food security in an era of climate change by enhancing crop productivity and minimizing reliance on external inputs.
Collapse
Affiliation(s)
- Suvriti Sharma
- Department of Botany, Central University of Jammu, Jammu, Jammu and Kashmir, 181143, India
| | - Jahanvi Ganotra
- Department of Botany, Central University of Jammu, Jammu, Jammu and Kashmir, 181143, India
| | - Jyotipriya Samantaray
- Department of Botany, Central University of Jammu, Jammu, Jammu and Kashmir, 181143, India
| | - Ranjan Kumar Sahoo
- Department of Biotechnology, Centurion University of Technology and Management, Bhubaneswar, Odisha, 752050, India
| | - Deepak Bhardwaj
- Department of Botany, Central University of Jammu, Jammu, Jammu and Kashmir, 181143, India.
| | - Narendra Tuteja
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
5
|
Sharma B, Ganotra J, Biswal B, Sharma K, Gandhi S, Bhardwaj D, Tuteja N. An atypical heterotrimeric Gα and its interactome suggest an extra-large role in overcoming abiotic and biotic stress. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:1543-1561. [PMID: 38076761 PMCID: PMC10709287 DOI: 10.1007/s12298-023-01378-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/11/2023] [Accepted: 10/19/2023] [Indexed: 10/04/2024]
Abstract
Canonical heterotrimeric G-proteins (G-proteins) are comprised of Gα, Gβ, and Gγ subunits. G-proteins regulate multiple crucial plant growth and development processes, incorporating environmental responses. Besides Gα, Gβ and Gγ, the discovery of atypical Gα subunits termed as extra-large G-proteins or extra-large GTP-binding proteins (XLGs) makes G-protein signaling unique in plants. The C-terminus of XLG shares similarities with the canonical Gα subunits; the N-terminus harbors a nuclear localization signal (NLS) and is rich in cysteine. The earlier explorations suggest XLG's role in flowering, the development of embryos and seedlings, root morphogenesis, stamen development, cytokinin-induced development, stomatal opening and regulation of rice grain filling. The XLGs are also known to initiate signaling cascades that prime plants against a variety of abiotic and biotic stresses. They are also engaged in controlling several agronomic parameters such as rice panicle length, grain filling, grain size, and biomass, highlighting their potential contribution to crop improvement. The present review explores the remarkable properties of non-canonical Gα subunits (XLGs) and reflects on the various developmental, abiotic and biotic stress signaling pathways controlled by them. Moreover, the bottleneck dilemma of how a tiny handful of XLGs control a multiplicity of stress-responsive activities is partially resolved in this review by addressing the interaction of XLGs with different interacting proteins. XLG proteins presented in this review can be exploited to gain access to highly productive and stress-tolerant plants.
Collapse
Affiliation(s)
- Bhawana Sharma
- Department of Botany, Central University of Jammu, Jammu, Jammu and Kashmir 181143 India
| | - Jahanvi Ganotra
- Department of Botany, Central University of Jammu, Jammu, Jammu and Kashmir 181143 India
| | - Brijesh Biswal
- Department of Botany, Central University of Jammu, Jammu, Jammu and Kashmir 181143 India
| | - Kanishka Sharma
- Department of Botany, Central University of Jammu, Jammu, Jammu and Kashmir 181143 India
| | - Sumit Gandhi
- Infectious Diseases Division, CSIR – Indian Institute of Integrative Medicine, Canal Road, Jammu, Jammu and Kashmir 180001 India
| | - Deepak Bhardwaj
- Department of Botany, Central University of Jammu, Jammu, Jammu and Kashmir 181143 India
| | - Narendra Tuteja
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067 India
| |
Collapse
|
6
|
Cantos CF, dePamphilis CW, Assmann SM. Extra-large G proteins have extra-large effects on agronomic traits and stress tolerance in maize and rice. TRENDS IN PLANT SCIENCE 2023; 28:1033-1044. [PMID: 37156701 PMCID: PMC10524845 DOI: 10.1016/j.tplants.2023.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 04/01/2023] [Accepted: 04/04/2023] [Indexed: 05/10/2023]
Abstract
Heterotrimeric G proteins - comprising Gα, Gβ, and Gγ subunits - are ubiquitous elements in eukaryotic cell signaling. Plant genomes contain both canonical Gα subunit genes and a family of plant-specific extra-large G protein genes (XLGs) that encode proteins consisting of a domain with Gα-like features downstream of a long N-terminal domain. In this review we summarize phenotypes modulated by the canonical Gα and XLG proteins of arabidopsis and highlight recent studies in maize and rice that reveal dramatic phenotypic consequences of XLG clustered regularly interspaced short palindromic repeats (CRISPR) mutagenesis in these important crop species. XLGs have both redundant and specific roles in the control of agronomically relevant plant architecture and resistance to both abiotic and biotic stresses. We also point out areas of current controversy, suggest future research directions, and propose a revised, phylogenetically-based nomenclature for XLG protein genes.
Collapse
Affiliation(s)
- Christian F Cantos
- Biology Department, Penn State University, University Park, State College, PA, USA; Intercollege Graduate Degree Program in Plant Biology, Penn State University, University Park, State College, PA, USA
| | - Claude W dePamphilis
- Biology Department, Penn State University, University Park, State College, PA, USA; Intercollege Graduate Degree Program in Plant Biology, Penn State University, University Park, State College, PA, USA
| | - Sarah M Assmann
- Biology Department, Penn State University, University Park, State College, PA, USA; Intercollege Graduate Degree Program in Plant Biology, Penn State University, University Park, State College, PA, USA.
| |
Collapse
|
7
|
Wang Y, Zhang H, Wang P, Zhong H, Liu W, Zhang S, Xiong L, Wu Y, Xia Y. Arabidopsis EXTRA-LARGE G PROTEIN 1 (XLG1) functions together with XLG2 and XLG3 in PAMP-triggered MAPK activation and immunity. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:825-837. [PMID: 36250681 DOI: 10.1111/jipb.13391] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Pattern-triggered immunity (PTI) is an essential strategy used by plants to deploy broad-spectrum resistance against pathogen attacks. Heterotrimeric G proteins have been reported to contribute to PTI. Of the three non-canonical EXTRA-LARGE G PROTEINs (XLGs) in Arabidopsis thaliana, XLG2 and XLG3 were shown to positively regulate immunity, but XLG1 was not considered to function in defense, based on the analysis of a weak xlg1 allele. In this study, we characterized the xlg1 xlg2 xlg3 triple knockout mutants generated from an xlg1 knockout allele. The strong xlg1 xlg2 xlg3 triple mutants compromised pathogen-associated molecular pattern (PAMP)-triggered activation of mitogen-activated protein kinases (MAPKs) and resistance to pathogen infection. The three XLGs interacted with MAPK cascade proteins involved in defense signaling, including the MAPK kinase kinases MAPKKK3 and MAPKKK5, the MAPK kinases MKK4 and MKK5, and the MAPKs MPK3 and MPK6. Expressing a constitutively active form of MKK4 restored MAPK activation and partially recovered the compromised disease resistance seen in the strong xlg1 xlg2 xlg3 triple mutant. Furthermore, mutations of all three XLGs largely restored the phenotype of the autoimmunity mutant bak1-interacting receptor-like kinase 1. Our study reveals that all three XLGs function redundantly in PAMP-triggered MAPK activation and plant immunity.
Collapse
Affiliation(s)
- Yiping Wang
- Department of Biology, Hong Kong Baptist University, Hong Kong, 999077, China
- Institute for Research and Continuing Education, Hong Kong Baptist University, Shen Zhen, 518057, China
| | - Hailei Zhang
- Department of Biology, Hong Kong Baptist University, Hong Kong, 999077, China
| | - Pengxi Wang
- Department of Biology, Hong Kong Baptist University, Hong Kong, 999077, China
| | - Huan Zhong
- Department of Biology, Hong Kong Baptist University, Hong Kong, 999077, China
| | - Wuzhen Liu
- Department of Biology, Hong Kong Baptist University, Hong Kong, 999077, China
| | - Shoudong Zhang
- Department of Biology, Hong Kong Baptist University, Hong Kong, 999077, China
| | - Liming Xiong
- Department of Biology, Hong Kong Baptist University, Hong Kong, 999077, China
| | - Yingying Wu
- Department of Biology, Hong Kong Baptist University, Hong Kong, 999077, China
| | - Yiji Xia
- Department of Biology, Hong Kong Baptist University, Hong Kong, 999077, China
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, 999077, China
- State Key Laboratory of Biological and Environmental Analysis, Hong Kong Baptist University, Hong Kong, 999077, China
| |
Collapse
|
8
|
Bajsa-Hirschel J, Pan Z, Pandey P, Asolkar RN, Chittiboyina AG, Boddy L, Machingura MC, Duke SO. Spliceostatin C, a component of a microbial bioherbicide, is a potent phytotoxin that inhibits the spliceosome. FRONTIERS IN PLANT SCIENCE 2023; 13:1019938. [PMID: 36714729 PMCID: PMC9878571 DOI: 10.3389/fpls.2022.1019938] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 11/07/2022] [Indexed: 06/17/2023]
Abstract
Spliceostatin C (SPC) is a component of a bioherbicide isolated from the soil bacterium Burkholderia rinojensis. The chemical structure of SPC closely resembles spliceostatin A (SPA) which was characterized as an anticancer agent and splicing inhibitor. SPC inhibited the growth of Arabidopsis thaliana seedlings with an IC50 value of 2.2 µM. The seedlings exposed to SPC displayed a significant response with decreased root length and number and inhibition of gravitropism. Reverse transcriptase semi-quantitative PCR (RT-sqPCR) analyses of 19 selected genes demonstrated the active impact of SPC on the quality and quantity of transcripts that underwent intron rearrangements as well as up or down expression upon exposure to SPC. Qualitative and quantitative proteomic profiles identified 66 proteins that were significantly affected by SPC treatment. Further proteomics data analysis revealed that spliceostatin C induces hormone-related responses in Arabidopsis seedlings. In silico binding studies showed that SPC binds to a pocket between the SF3B3 and PF5A of the spliceosome.
Collapse
Affiliation(s)
- Joanna Bajsa-Hirschel
- Natural Products Utilization Research Unit, Agricultural Research Service, U.S. Department of Agriculture, University, MS, United States
| | - Zhiqiang Pan
- Natural Products Utilization Research Unit, Agricultural Research Service, U.S. Department of Agriculture, University, MS, United States
| | - Pankaj Pandey
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS, United States
| | | | - Amar G. Chittiboyina
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS, United States
| | - Louis Boddy
- Bioceres Crop Solutions, Davis, CA, United States
| | | | - Stephen O. Duke
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS, United States
| |
Collapse
|
9
|
Afrin T, Costello CN, Monella AN, Kørner CJ, Pajerowska-Mukhtar KM. The interplay of GTP-binding protein AGB1 with ER stress sensors IRE1a and IRE1b modulates Arabidopsis unfolded protein response and bacterial immunity. PLANT SIGNALING & BEHAVIOR 2022; 17:2018857. [PMID: 34968413 PMCID: PMC8920210 DOI: 10.1080/15592324.2021.2018857] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/10/2021] [Accepted: 12/10/2021] [Indexed: 06/14/2023]
Abstract
In eukaryotic cells, the accumulation of unfolded or misfolded proteins in the endoplasmic reticulum (ER) results in ER stress that induces a cascade of reactions called the unfolded protein response (UPR). In Arabidopsis, the most conserved UPR sensor, Inositol-requiring enzyme 1 (IRE1), responds to both abiotic- and biotic-induced ER stress. Guanine nucleotide-binding proteins (G proteins) constitute another universal and conserved family of signal transducers that have been extensively investigated due to their ubiquitous presence and diverse nature of action. Arabidopsis GTP-binding protein β1 (AGB1) is the only G-protein β-subunit encoded by the Arabidopsis genome that is involved in numerous signaling pathways. Mounting evidence suggests the existence of a crosstalk between IRE1 and G protein signaling during ER stress. AGB1 has previously been shown to control a distinct UPR pathway independently of IRE1 when treated with an ER stress inducer tunicamycin. Our results obtained with combinatorial knockout mutants support the hypothesis that both IRE1 and AGB1 synergistically contribute to ER stress responses chemically induced by dithiothreitol (DTT) as well as to the immune responses against a phytopathogenic bacterium Pseudomonas syringae pv. tomato strain DC3000. Our study highlights the crosstalk between the plant UPR transducers under abiotic and biotic stress.
Collapse
Affiliation(s)
- Taiaba Afrin
- Department of Biology, University of Alabama at Birmingham, 1300 University Blvd, Birmingham, AL, USA
| | - Caitlin N. Costello
- Department of Biology, University of Alabama at Birmingham, 1300 University Blvd, Birmingham, AL, USA
| | - Amber N. Monella
- Department of Biology, University of Alabama at Birmingham, 1300 University Blvd, Birmingham, AL, USA
| | - Camilla J. Kørner
- Department of Biology, University of Alabama at Birmingham, 1300 University Blvd, Birmingham, AL, USA
| | | |
Collapse
|
10
|
Wu TY, Krishnamoorthi S, Boonyaves K, Al-Darabsah I, Leong R, Jones AM, Ishizaki K, Liao KL, Urano D. G protein controls stress readiness by modulating transcriptional and metabolic homeostasis in Arabidopsis thaliana and Marchantia polymorpha. MOLECULAR PLANT 2022; 15:1889-1907. [PMID: 36321200 DOI: 10.1016/j.molp.2022.10.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 10/03/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
The core G protein signaling module, which consists of Gα and extra-large Gα (XLG) subunits coupled with the Gβγ dimer, is a master regulator of various stress responses. In this study, we compared the basal and salt stress-induced transcriptomic, metabolomic and phenotypic profiles in Gα, Gβ, and XLG-null mutants of two plant species, Arabidopsis thaliana and Marchantia polymorpha, and showed that G protein mediates the shift of transcriptional and metabolic homeostasis to stress readiness status. We demonstrated that such stress readiness serves as an intrinsic protection mechanism against further stressors through enhancing the phenylpropanoid pathway and abscisic acid responses. Furthermore, WRKY transcription factors were identified as key intermediates of G protein-mediated homeostatic shifts. Statistical and mathematical model comparisons between A. thaliana and M. polymorpha revealed evolutionary conservation of transcriptional and metabolic networks over land plant evolution, whereas divergence has occurred in the function of plant-specific atypical XLG subunit. Taken together, our results indicate that the shifts in transcriptional and metabolic homeostasis at least partially act as the mechanisms of G protein-coupled stress responses that are conserved between two distantly related plants.
Collapse
Affiliation(s)
- Ting-Ying Wu
- Temasek Life Sciences Laboratory, Singapore, Singapore.
| | | | - Kulaporn Boonyaves
- Temasek Life Sciences Laboratory, Singapore, Singapore; Singapore-MIT Alliance for Research and Technology, Singapore, Singapore
| | - Isam Al-Darabsah
- Department of Mathematics, University of Manitoba, Winnipeg, MB, Canada
| | - Richalynn Leong
- Temasek Life Sciences Laboratory, Singapore, Singapore; Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore
| | - Alan M Jones
- Departments of Biology and Pharmacology, University of North Carolina, Chapel Hill, NC, USA
| | - Kimitsune Ishizaki
- Graduate School of Science, Kobe University, Kobe, Hyogo 657-8501, Japan
| | - Kang-Ling Liao
- Department of Mathematics, University of Manitoba, Winnipeg, MB, Canada.
| | - Daisuke Urano
- Temasek Life Sciences Laboratory, Singapore, Singapore; Singapore-MIT Alliance for Research and Technology, Singapore, Singapore; Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore.
| |
Collapse
|
11
|
Ma M, Wang W, Fei Y, Cheng HY, Song B, Zhou Z, Zhao Y, Zhang X, Li L, Chen S, Wang J, Liang X, Zhou JM. A surface-receptor-coupled G protein regulates plant immunity through nuclear protein kinases. Cell Host Microbe 2022; 30:1602-1614.e5. [DOI: 10.1016/j.chom.2022.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 08/17/2022] [Accepted: 09/19/2022] [Indexed: 11/03/2022]
|
12
|
Petutschnig E, Anders J, Stolze M, Meusel C, Hacke R, Much L, Schwier M, Gippert AL, Kroll S, Fasshauer P, Wiermer M, Lipka V. EXTRA LARGE G-PROTEIN2 mediates cell death and hyperimmunity in the chitin elicitor receptor kinase 1-4 mutant. PLANT PHYSIOLOGY 2022; 189:2413-2431. [PMID: 35522044 PMCID: PMC9342992 DOI: 10.1093/plphys/kiac214] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 04/13/2022] [Indexed: 05/08/2023]
Abstract
Heterotrimeric G-proteins are signal transduction complexes that comprised three subunits, Gα, Gβ, and Gγ, and are involved in many aspects of plant life. The noncanonical Gα subunit EXTRA LARGE G-PROTEIN2 (XLG2) mediates pathogen-associated molecular pattern (PAMP)-induced reactive oxygen species (ROS) generation and immunity downstream of pattern recognition receptors. A mutant of the chitin receptor component CHITIN ELICITOR RECEPTOR KINASE1 (CERK1), cerk1-4, maintains normal chitin signaling capacity but shows excessive cell death upon infection with powdery mildew fungi. We identified XLG2 mutants as suppressors of the cerk1-4 phenotype. Mutations in XLG2 complex partners ARABIDOPSIS Gβ1 (AGB1) and Gγ1 (AGG1) have a partial cerk1-4 suppressor effect. Contrary to its role in PAMP-induced immunity, XLG2-mediated control of ROS production by RESPIRATORY BURST OXIDASE HOMOLOGUE D (RBOHD) is not critical for cerk1-4-associated cell death and hyperimmunity. The cerk1-4 phenotype is also independent of the co-receptor/adapter kinases BRI1-ASSOCIATED RECEPTOR KINASE 1 (BAK1) and SUPPRESSOR OF BIR1 1 (SOBIR1), but requires the E3 ubiquitin ligase PLANT U-BOX 2 (PUB2). XLG2 localizes to both the cell periphery and nucleus, and the cerk1-4 cell death phenotype is mediated by the cell periphery pool of XLG2. Integrity of the XLG2 N-terminal domain, but not its phosphorylation, is essential for correct XLG2 localization and formation of the cerk1-4 phenotype. Our results support a model in which XLG2 acts downstream of an unknown cell surface receptor that activates an NADPH oxidase-independent cell death pathway in Arabidopsis (Arabidopsis thaliana).
Collapse
Affiliation(s)
| | - Julia Anders
- Department of Plant Cell Biology, Albrecht-von-Haller-Institute for Plant Sciences, Georg-August-University Göttingen, Göttingen 37077, Germany
| | - Marnie Stolze
- Department of Plant Cell Biology, Albrecht-von-Haller-Institute for Plant Sciences, Georg-August-University Göttingen, Göttingen 37077, Germany
| | - Christopher Meusel
- Department of Plant Cell Biology, Albrecht-von-Haller-Institute for Plant Sciences, Georg-August-University Göttingen, Göttingen 37077, Germany
| | - Ronja Hacke
- Department of Plant Cell Biology, Albrecht-von-Haller-Institute for Plant Sciences, Georg-August-University Göttingen, Göttingen 37077, Germany
| | - Laura Much
- Department of Plant Cell Biology, Albrecht-von-Haller-Institute for Plant Sciences, Georg-August-University Göttingen, Göttingen 37077, Germany
| | - Melina Schwier
- Department of Plant Cell Biology, Albrecht-von-Haller-Institute for Plant Sciences, Georg-August-University Göttingen, Göttingen 37077, Germany
| | - Anna-Lena Gippert
- Department of Plant Cell Biology, Albrecht-von-Haller-Institute for Plant Sciences, Georg-August-University Göttingen, Göttingen 37077, Germany
| | - Samuel Kroll
- Department of Plant Cell Biology, Albrecht-von-Haller-Institute for Plant Sciences, Georg-August-University Göttingen, Göttingen 37077, Germany
| | - Patrick Fasshauer
- Department of Plant Cell Biology, Albrecht-von-Haller-Institute for Plant Sciences, Georg-August-University Göttingen, Göttingen 37077, Germany
| | | | | |
Collapse
|
13
|
G-Protein Phosphorylation: Aspects of Binding Specificity and Function in the Plant Kingdom. Int J Mol Sci 2022; 23:ijms23126544. [PMID: 35742988 PMCID: PMC9224535 DOI: 10.3390/ijms23126544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/07/2022] [Accepted: 06/09/2022] [Indexed: 11/22/2022] Open
Abstract
Plant survival depends on adaptive mechanisms that constantly rely on signal recognition and transduction. The predominant class of signal discriminators is receptor kinases, with a vast member composition in plants. The transduction of signals occurs in part by a simple repertoire of heterotrimeric G proteins, with a core composed of α-, β-, and γ-subunits, together with a 7-transmembrane Regulator G Signaling (RGS) protein. With a small repertoire of G proteins in plants, phosphorylation by receptor kinases is critical in regulating the active state of the G-protein complex. This review describes the in vivo detected phosphosites in plant G proteins and conservation scores, and their in vitro corresponding kinases. Furthermore, recently described outcomes, including novel arrestin-like internalization of RGS and a non-canonical phosphorylation switching mechanism that drives G-protein plasticity, are discussed.
Collapse
|
14
|
Zhao Y, Shi Y, Jiang G, Wu Y, Ma M, Zhang X, Liang X, Zhou JM. Rice extra-large G proteins play pivotal roles in controlling disease resistance and yield-related traits. THE NEW PHYTOLOGIST 2022; 234:607-617. [PMID: 35090194 DOI: 10.1111/nph.17997] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 01/12/2022] [Indexed: 06/14/2023]
Abstract
To better explore the potential of rice extra-large G (XLG) proteins in future breeding, we characterised the function of OsXLG1, OsXLG2 and OsXLG3 in disease resistance. Loss-of-function Osxlg2 and Osxlg3 mutants showed reduced resistance to the fungal pathogen Magnaporthe oryzae, whereas Osxlg1 mutants were specifically compromised in resistance to the bacterial pathogen Xanthomonas oryzae pv oryzae. Consistent with their effects on rice blast resistance, mutations in OsXLG2 and OsXLG3 caused greater defects than did mutations in OsXLG1 for chitin-induced defence responses. All three OsXLGs interacted with components of a surface immune receptor complex composed of OsCERK1, OsRLCK176 and OsRLCK185. Further characterisation of yield-related traits showed that the Osxlg3 mutants displayed reduced plant height, panicle length and 1000grain weight, whereas Osxlg1 mutants exhibited increased plant height, panicle length and 1000-grain weight. Together the study shows the differential contributions of the three OsXLG proteins to disease resistance to fungal and bacterial pathogens, their yield-related traits and provides insights for future improvement of rice production.
Collapse
Affiliation(s)
- Yan Zhao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yiyun Shi
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Bioinformatics Center, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
| | - Guanghuai Jiang
- Center for Molecular Agrobiology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yufeng Wu
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Bioinformatics Center, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
| | - Miaomiao Ma
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaojuan Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiangxiu Liang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Jian-Min Zhou
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
15
|
Roy Choudhury S, Pandey S. SymRK-dependent phosphorylation of Gα protein and its role in signaling during soybean (Glycine max) nodulation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:277-291. [PMID: 35048428 DOI: 10.1111/tpj.15672] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 01/06/2022] [Accepted: 01/09/2022] [Indexed: 06/14/2023]
Abstract
Heterotrimeric G proteins, comprised of Gα, Gβ and Gγ subunits, influence signaling in most eukaryotes. In metazoans, G proteins are activated by G protein-coupled receptor (GPCR)-mediated GDP to GTP exchange on Gα; however, the role(s) of GPCRs in regulating plant G-protein signaling remains equivocal. Mounting evidence suggests the involvement of receptor-like kinases (RLKs) in regulating plant G-protein signaling, but their mechanistic details remain scarce. We have previously shown that during Glycine max (soybean) nodulation, the nod factor receptor 1 (NFR1) interacts with G-protein components and indirectly affects signaling. We explored the direct regulation of G-protein signaling by RLKs using protein-protein interactions, receptor-mediated in vitro phosphorylations and the effects of such phosphorylations on soybean nodule formation. Results presented in this study demonstrate a direct, phosphorylation-based regulation of Gα by symbiosis receptor kinase (SymRK). SymRKs interact with and phosphorylate Gα at multiple residues in vitro, including two in its active site, which abolishes GTP binding. Additionally, phospho-mimetic Gα fails to interact with Gβγ, potentially allowing for constitutive signaling by the freed Gβγ. These results uncover an unusual mechanism of G-protein cycle regulation in plants where the receptor-mediated phosphorylation of Gα not only affects its activity but also influences the availability of its signaling partners, thereby exerting a two-pronged check on signaling.
Collapse
Affiliation(s)
- Swarup Roy Choudhury
- Donald Danforth Plant Science Center, 975 N. Warson Road, St. Louis, MO, 63132, USA
| | - Sona Pandey
- Donald Danforth Plant Science Center, 975 N. Warson Road, St. Louis, MO, 63132, USA
| |
Collapse
|
16
|
Wang Y, Botella JR. Heterotrimeric G Protein Signaling in Abiotic Stress. PLANTS 2022; 11:plants11070876. [PMID: 35406855 PMCID: PMC9002505 DOI: 10.3390/plants11070876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/17/2022] [Accepted: 03/21/2022] [Indexed: 11/16/2022]
Abstract
As sessile organisms, plants exhibit extraordinary plasticity and have evolved sophisticated mechanisms to adapt and mitigate the adverse effects of environmental fluctuations. Heterotrimeric G proteins (G proteins), composed of α, β, and γ subunits, are universal signaling molecules mediating the response to a myriad of internal and external signals. Numerous studies have identified G proteins as essential components of the organismal response to stress, leading to adaptation and ultimately survival in plants and animal systems. In plants, G proteins control multiple signaling pathways regulating the response to drought, salt, cold, and heat stresses. G proteins signal through two functional modules, the Gα subunit and the Gβγ dimer, each of which can start either independent or interdependent signaling pathways. Improving the understanding of the role of G proteins in stress reactions can lead to the development of more resilient crops through traditional breeding or biotechnological methods, ensuring global food security. In this review, we summarize and discuss the current knowledge on the roles of the different G protein subunits in response to abiotic stress and suggest future directions for research.
Collapse
|
17
|
Tiwari R, Bisht NC. The multifaceted roles of heterotrimeric G-proteins: lessons from models and crops. PLANTA 2022; 255:88. [PMID: 35304667 DOI: 10.1007/s00425-022-03868-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
The review summarizes our advanced understanding of the heterotrimeric G-protein research from model plants and their emerging roles in modulating various plant architecture and agronomical traits in crop species. Heterotrimeric G-proteins (hereafter G-proteins), consisting of G-alpha (Gα), G-beta (Gβ) and G-gamma (Gγ) subunits, are key signal transducers conserved across different forms of life. The discovery of plant lineage-specific G-protein components (extra-large G-proteins and type-C Gγ subunits), inherent polyploidy in angiosperms, and unique modes of G-protein cycle regulation in plants pointed out to a few fundamental differences of plant G-protein signaling from its animal counterpart. Over the last 2 decades, extensive studies in the model plant Arabidopsis thaliana have confirmed the involvement of G-proteins in a wide range of plant growth and development, and stress adaptation processes. The G-protein research in crop species, however, is still in its infancy, and a handful of studies suggest important roles of G-proteins in regulating plant architectural and key agronomical traits including plant's response to abiotic and biotic factors. We propose that the advancement made in plant G-proteins research will facilitate the development of novel approaches to manage plant yield and fitness in changing environments.
Collapse
Affiliation(s)
- Ruchi Tiwari
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Naveen C Bisht
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
18
|
Wang Y, Wu Y, Zhong H, Chen S, Wong KB, Xia Y. Arabidopsis PUB2 and PUB4 connect signaling components of pattern-triggered immunity. THE NEW PHYTOLOGIST 2022; 233:2249-2265. [PMID: 34918346 DOI: 10.1111/nph.17922] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 12/04/2021] [Indexed: 06/14/2023]
Abstract
Plants use pattern recognition receptors (PRRs) to detect pathogen-associated molecular patterns (PAMPs) and activate pattern-triggered immunity (PTI). Precise regulation of information from PRRs to downstream signaling components is vital to mounting an appropriate immune response and requires dynamic interactions of these PTI components. We used transcriptome profiling, phenotypic analysis, molecular genetics, and protein-protein interaction analysis to understand the roles of the Arabidopsis plant U-box (PUB) proteins PUB2 and PUB4 in disease resistance and PTI signaling. Loss of function of both PUB2 and PUB4 diminishes the PAMP-triggered oxidative bursts and dampens mitogen-activated protein kinase signaling, resulting in a severe compromise in resistance to not only pathogenic but also nonpathogenic strains of Pseudomonas syringae. Within PUB4, the E3 ligase activity is dispensable, but the armadillo repeat region is essential and sufficient for its function in immunity. PUB2 and PUB4 interact with PTI signaling components, including FLS2, BIK1, PBL27, and RbohD, and enhance FLS2-BIK1 and BIK1-RbohD interactions. Our study reveals that PUB2 and PUB4 are critical components of plant immunity and connect PTI components to positively regulate defense responses.
Collapse
Affiliation(s)
- Yiping Wang
- Department of Biology, Hong Kong Baptist University, Hong Kong, 999077, China
- Institute for Research and Continuing Education, Hong Kong Baptist University, Shen Zhen, 518057, China
| | - Yingying Wu
- Department of Biology, Hong Kong Baptist University, Hong Kong, 999077, China
| | - Huan Zhong
- Department of Biology, Hong Kong Baptist University, Hong Kong, 999077, China
| | - Shuai Chen
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, 999077, China
| | - Kam-Bo Wong
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, 999077, China
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, 999077, China
| | - Yiji Xia
- Department of Biology, Hong Kong Baptist University, Hong Kong, 999077, China
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, 999077, China
- State Key Laboratory of Biological and Environmental Analysis, Hong Kong Baptist University, Hong Kong, 999077, China
| |
Collapse
|
19
|
Ninh TT, Gao W, Trusov Y, Zhao J, Long L, Song C, Botella JR. Tomato and cotton G protein beta subunit mutants display constitutive autoimmune responses. PLANT DIRECT 2021; 5:e359. [PMID: 34765865 PMCID: PMC8573408 DOI: 10.1002/pld3.359] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
Heterotrimeric G protein Gβ-deficient mutants in rice and maize display constitutive immune responses, whereas Arabidopsis Gβ mutants show impaired defense, suggesting the existence of functional differences between monocots and dicots. Using CRISPR/Cas9, we produced one hemizygous tomato line with a mutated SlGB1 Gβ gene. Homozygous slgb1 knockout mutants exhibit all the hallmarks of autoimmune mutants, including development of necrotic lesions, constitutive expression of defense-related genes, and high endogenous levels of salicylic acid (SA) and reactive oxygen species, resulting in early seedling lethality. Virus-induced silencing of Gβ in cotton reproduced the symptoms observed in tomato mutants, confirming that the autoimmune phenotype is not limited to monocot species but is also shared by dicots. Even though multiple genes involved in SA and ethylene signaling are highly induced by Gβ silencing in tomato and cotton, co-silencing of SA or ethylene signaling components in cotton failed to suppress the lethal phenotype, whereas co-silencing of the oxidative burst oxidase RbohD can repress lethality. Despite the autoimmune response observed in slgb1 mutants, we show that SlGB1 is a positive regulator of the pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) response in tomato. We speculate that the phenotypic differences observed between Arabidopsis and tomato/cotton/rice/maize Gβ knockouts do not necessarily reflect divergences in G protein-mediated defense mechanisms.
Collapse
Affiliation(s)
- Thi Thao Ninh
- Plant Genetic Engineering Laboratory, School of Agriculture and Food SciencesUniversity of QueenslandBrisbaneAustralia
- Department of Plant Biotechnology, Faculty of BiotechnologyVietnam National University of AgricultureHanoiVietnam
| | - Wei Gao
- State Key Laboratory of Cotton Biology, School of Life ScienceHenan UniversityKaifengChina
| | - Yuri Trusov
- Plant Genetic Engineering Laboratory, School of Agriculture and Food SciencesUniversity of QueenslandBrisbaneAustralia
| | - Jing‐Ruo Zhao
- State Key Laboratory of Cotton Biology, School of Life ScienceHenan UniversityKaifengChina
| | - Lu Long
- State Key Laboratory of Cotton Biology, School of Life ScienceHenan UniversityKaifengChina
| | - Chun‐Peng Song
- State Key Laboratory of Cotton Biology, School of Life ScienceHenan UniversityKaifengChina
| | - Jose Ramon Botella
- Plant Genetic Engineering Laboratory, School of Agriculture and Food SciencesUniversity of QueenslandBrisbaneAustralia
| |
Collapse
|
20
|
Maruta N, Trusov Y, Jones AM, Botella JR. Heterotrimeric G Proteins in Plants: Canonical and Atypical Gα Subunits. Int J Mol Sci 2021; 22:11841. [PMID: 34769272 PMCID: PMC8584482 DOI: 10.3390/ijms222111841] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 11/16/2022] Open
Abstract
Heterotrimeric GTP-binding proteins (G proteins), consisting of Gα, Gβ and Gγ subunits, transduce signals from a diverse range of extracellular stimuli, resulting in the regulation of numerous cellular and physiological functions in Eukaryotes. According to the classic G protein paradigm established in animal models, the bound guanine nucleotide on a Gα subunit, either guanosine diphosphate (GDP) or guanosine triphosphate (GTP) determines the inactive or active mode, respectively. In plants, there are two types of Gα subunits: canonical Gα subunits structurally similar to their animal counterparts and unconventional extra-large Gα subunits (XLGs) containing a C-terminal domain homologous to the canonical Gα along with an extended N-terminal domain. Both Gα and XLG subunits interact with Gβγ dimers and regulator of G protein signalling (RGS) protein. Plant G proteins are implicated directly or indirectly in developmental processes, stress responses, and innate immunity. It is established that despite the substantial overall similarity between plant and animal Gα subunits, they convey signalling differently including the mechanism by which they are activated. This review emphasizes the unique characteristics of plant Gα subunits and speculates on their unique signalling mechanisms.
Collapse
Affiliation(s)
- Natsumi Maruta
- School of Agriculture and Food Sciences, University of Queensland, Brisbane 4072, Australia; (N.M.); (Y.T.)
| | - Yuri Trusov
- School of Agriculture and Food Sciences, University of Queensland, Brisbane 4072, Australia; (N.M.); (Y.T.)
| | - Alan M. Jones
- Departments of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
- Departments of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jose R. Botella
- School of Agriculture and Food Sciences, University of Queensland, Brisbane 4072, Australia; (N.M.); (Y.T.)
| |
Collapse
|
21
|
Tiwari R, Kaur J, Bisht NC. Extra-large G-proteins influence plant response to Sclerotinia sclerotiorum by regulating glucosinolate metabolism in Brassica juncea. MOLECULAR PLANT PATHOLOGY 2021; 22:1180-1194. [PMID: 34374201 PMCID: PMC8435238 DOI: 10.1111/mpp.13096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/26/2021] [Accepted: 05/22/2021] [Indexed: 05/30/2023]
Abstract
Heterotrimeric G-proteins are one of the highly conserved signal transducers across phyla. Despite the obvious importance of G-proteins in controlling various plant growth and environmental responses, there is no information describing the regulatory complexity of G-protein networks during pathogen response in a polyploid crop. Here, we investigated the role of extra-large G-proteins (XLGs) in the oilseed crop Brassica juncea, which has inherent susceptibility to the necrotrophic fungal pathogen Sclerotinia sclerotiorum. The allotetraploid B. juncea genome contains multiple homologs of three XLG genes (two BjuXLG1, five BjuXLG2, and three BjuXLG3), sharing a high level of sequence identity, gene structure organization, and phylogenetic relationship with the progenitors' orthologs. Quantitative reverse transcription PCR analysis revealed that BjuXLGs have retained distinct expression patterns across plant developmental stages and on S. sclerotiorum infection. To determine the role of BjuXLG genes in the B. juncea defence response against S. sclerotiorum, RNAi-based suppression was performed. Disease progression analysis showed more rapid lesion expansion and fungal accumulation in BjuXLG-RNAi lines compared to the vector control plants, wherein suppression of BjuXLG3 homologs displayed more compromised defence response at the later time point. Knocking down BjuXLGs caused impairment of the host resistance mechanism to S. sclerotiorum, as indicated by reduced expression of defence marker genes PDF1.2 and WRKY33 on pathogen infection. Furthermore, BjuXLG-RNAi lines showed reduced accumulation of leaf glucosinolates on S. sclerotiorum infection, wherein aliphatic glucosinolates were significantly compromised. Overall, our data suggest that B. juncea XLG genes are important signalling nodes modulating the host defence pathways in response to this necrotrophic pathogen.
Collapse
Affiliation(s)
- Ruchi Tiwari
- National Institute of Plant Genome ResearchNew DelhiIndia
| | - Jagreet Kaur
- Department of GeneticsUniversity of Delhi South CampusNew DelhiIndia
| | | |
Collapse
|
22
|
Cannon AE, Chapman KD. Lipid Signaling through G Proteins. TRENDS IN PLANT SCIENCE 2021; 26:720-728. [PMID: 33468433 DOI: 10.1016/j.tplants.2020.12.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/10/2020] [Accepted: 12/19/2020] [Indexed: 06/12/2023]
Abstract
N-Acylethanolamine (NAE) signaling has received considerable attention in vertebrates as part of the endocannabinoid signaling system, where anandamide acts as a ligand for G protein-coupled cannabinoid receptors. Recent studies indicate that G proteins also are required for some types of NAE signaling in plants. The genetic ablation of the Gβγ dimer or loss of the full set of extra-large G proteins strongly attenuated NAE-induced chloroplast responses in seedlings. Intriguing parallels and distinct differences have emerged between plants and animals in NAE signaling, despite the conserved use of these lipid mediators to modulate cellular processes. Here we compare similarities and differences and identify open questions in a fundamental lipid signaling pathway in eukaryotes with components that are both conserved and diverged in plants.
Collapse
Affiliation(s)
- Ashley E Cannon
- Wheat Health, Genetics, and Quality Research Unit, Agriculture Research Service, U.S. Department of Agriculture, Pullman, WA 99163, USA; Department of Crop and Soil Science, Washington State University, Pullman, WA 99163, USA.
| | - Kent D Chapman
- BioDiscovery Institute, Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA.
| |
Collapse
|
23
|
Maruta N, Trusov Y, Urano D, Chakravorty D, Assmann SM, Jones AM, Botella JR. GTP binding by Arabidopsis extra-large G protein 2 is not essential for its functions. PLANT PHYSIOLOGY 2021; 186:1240-1253. [PMID: 33729516 PMCID: PMC8195506 DOI: 10.1093/plphys/kiab119] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 02/19/2021] [Indexed: 05/06/2023]
Abstract
The extra-large guanosine-5'-triphosphate (GTP)-binding protein 2, XLG2, is an unconventional Gα subunit of the Arabidopsis (Arabidopsis thaliana) heterotrimeric GTP-binding protein complex with a major role in plant defense. In vitro biochemical analyses and molecular dynamic simulations show that affinity of XLG2 for GTP is two orders of magnitude lower than that of the conventional Gα, AtGPA1. Here we tested the physiological relevance of GTP binding by XLG2. We generated an XLG2(T476N) variant with abolished GTP binding, as confirmed by in vitro GTPγS binding assay. Yeast three-hybrid, bimolecular fluorescence complementation, and split firefly-luciferase complementation assays revealed that the nucleotide-depleted XLG2(T476N) retained wild-type XLG2-like interactions with the Gβγ dimer and defense-related receptor-like kinases. Both wild-type and nucleotide-depleted XLG2(T476N) restored the defense responses against Fusarium oxysporum and Pseudomonas syringae compromised in the xlg2 xlg3 double mutant. Additionally, XLG2(T476N) was fully functional restoring stomatal density, root growth, and sensitivity to NaCl, but failed to complement impaired germination and vernalization-induced flowering. We conclude that XLG2 is able to function in a GTP-independent manner and discuss its possible mechanisms of action.
Collapse
Affiliation(s)
- Natsumi Maruta
- Plant Genetic Engineering Laboratory, School of Agriculture and Food Sciences, University of Queensland, Brisbane, QLD, 4072, Australia
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD 4072, Australia
| | - Yuri Trusov
- Plant Genetic Engineering Laboratory, School of Agriculture and Food Sciences, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Daisuke Urano
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604, Singapore
| | - David Chakravorty
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Sarah M Assmann
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Alan M Jones
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599, USA
- Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Jose R Botella
- Plant Genetic Engineering Laboratory, School of Agriculture and Food Sciences, University of Queensland, Brisbane, QLD, 4072, Australia
- Author for communication:
| |
Collapse
|
24
|
Zhang H, Xie P, Xu X, Xie Q, Yu F. Heterotrimeric G protein signalling in plant biotic and abiotic stress response. PLANT BIOLOGY (STUTTGART, GERMANY) 2021; 23 Suppl 1:20-30. [PMID: 33533569 DOI: 10.1111/plb.13241] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 01/25/2021] [Indexed: 05/20/2023]
Abstract
Heterotrimeric G proteins act as molecular switches to participate in transmitting various stimuli signals from outside of cells. G proteins have three subunits, Gα, Gβ and Gγ, which function mutually to modulate many biological processes in plants, including plant growth and development, as well as biotic and abiotic stress responses. In plants, the number of Gγ subunits is larger than that of the α and β subunits. Based on recent breakthroughs in studies of plant G protein signal perception, transduction and downstream effectors, this review summarizes and analyses the connections between different subunits and the interactions of G proteins with other signalling pathways, especially in plant biotic and abiotic stress responses. Based on current progress and unresolved questions in the field, we also suggest future research directions on G proteins in plants.
Collapse
Affiliation(s)
- H Zhang
- School of Agriculture, Ningxia University, Yinchuan, China
| | - P Xie
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - X Xu
- School of Agriculture, Ningxia University, Yinchuan, China
- Breeding Base of State Key Laboratory of Land Degradation and Ecological Restoration of North Western China, Ningxia University, Yinchuan, China
| | - Q Xie
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - F Yu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
25
|
Ghusinga KR, Paredes F, Jones AM, Colaneri A. Reported differences in the flg22 response of the null mutation of AtRGS1 correlates with fixed genetic variation in the background of Col-0 isolates. PLANT SIGNALING & BEHAVIOR 2021; 16:1878685. [PMID: 33522388 PMCID: PMC7971207 DOI: 10.1080/15592324.2021.1878685] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
A role for the heterotrimeric G protein complex in the induction of a transient burst of reactive oxygen species (ROS) by the Microbial-Associated Molecular Pattern, flg22, a 22-amino acid peptide derived from bacterial flagella, is well established. However, the evidence for a negative or positive role for one component of the Arabidopsis G protein complex, namely, Regulator of G Signaling 1 (AtRGS1) leads to opposing conclusions. We show that the reason for this difference is due to the isolate of Col-0 ecotype used as the wildtype control in flg22-induced ROS and our data further support the idea that AtRGS1 is a negative regulator of the flg22-induced ROS response. Whole-genome genotyping led to the identification and validation of polymorphism in five genes between two Col-0 isolates that are candidates for the different ROS response relative to the rgs1 null mutant.
Collapse
Affiliation(s)
- Khem Raj Ghusinga
- Departments of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Departments of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Franco Paredes
- CIFASIS-CONICET-UNR, Ocampo y Esmeralda, Rosario, Argentina
| | - Alan M. Jones
- Departments of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Departments of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- CONTACT Alan M. Jones Departments of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC27599-3280, USA
| | - Alejandro Colaneri
- Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Argentina
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Alejandro Colaneri Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Argentina
| |
Collapse
|
26
|
Liu C, Ye X, Zou L, Xiang D, Wu Q, Wan Y, Wu X, Zhao G. Genome-wide identification of genes involved in heterotrimeric G-protein signaling in Tartary buckwheat (Fagopyrum tataricum) and their potential roles in regulating fruit development. Int J Biol Macromol 2021; 171:435-447. [PMID: 33434548 DOI: 10.1016/j.ijbiomac.2021.01.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/08/2020] [Accepted: 01/04/2021] [Indexed: 11/18/2022]
Abstract
Tartary buckwheat (Fagopyrum tataricum Gaertn.) is an economical crop with excellent edible, nutritional, and medicinal values. However, the production of Tartary buckwheat is very low and it is urgent to breed high-yield varieties for satisfying the increasing market demand. Heterotrimeric G-protein signaling involves in the regulation of agronomical traits and fruit development in several plant species. In this study, fifteen genes involved in G-protein signaling were characterized in Tartary buckwheat and their potential roles in fruit development were revealed by expression analysis. The exon-intron organization and conserved motif of Tartary buckwheat G-protein signaling genes were similar to those in other dicot plants. All these genes were ubiquitously and differently expressed in five tissues. The expression patterns of Tartary buckwheat G-protein signaling genes in fruit suggested they may play important roles in the fruit at early development stage, which was supported by meta-analysis of G-protein signaling genes' expression in the fruits from different species. Furthermore, we found the expression of G-protein signaling genes in fruit showed high correlation with 178 transcription factors, which indicated a transcriptional regulatory loop moderating G-protein signaling genes' expression during fruit development. This paper provides new insights into the physiological functions of G-protein signaling in fruit.
Collapse
Affiliation(s)
- Changying Liu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, PR China
| | - Xueling Ye
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, PR China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, PR China
| | - Dabing Xiang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, PR China
| | - Qi Wu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, PR China
| | - Yan Wan
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, PR China
| | - Xiaoyong Wu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, PR China.
| | - Gang Zhao
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, PR China.
| |
Collapse
|
27
|
Ofoe R. Signal transduction by plant heterotrimeric G-protein. PLANT BIOLOGY (STUTTGART, GERMANY) 2021; 23:3-10. [PMID: 32803877 DOI: 10.1111/plb.13172] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 08/09/2020] [Indexed: 06/11/2023]
Abstract
Heterotrimeric G-proteins are complexes that regulate important signalling pathways essential for growth and development in both plants and animals. Although plant cells are composed of the core components (Gα, Gβ and Gγ subunits) found in animal G-proteins, the complexities of the architecture, function and signalling mechanisms of those in animals are dissimilar to those identified in some plants. Current studies on plant G-proteins have improved knowledge of the essential physiological and agronomic properties, which when harnessed, could potentially impact global food security. Extensive studies on the molecular mechanisms underlying these properties in diverse plant species will be imperative in improving our current understanding of G-protein signalling pathways involved in plant growth and development. The advancement of G-protein signalling networks in distinct plant species could significantly aid in better crop development. This review summarizes current progress, novel discoveries and future prospects for this area in potential crop improvement.
Collapse
Affiliation(s)
- R Ofoe
- Department of Biology and Biochemistry, University of Bath, Bath, UK
- West African Centre for Crop Improvement, University of Ghana, Legon, Accra, Ghana
| |
Collapse
|
28
|
Biswal AK, Wu TY, Urano D, Pelissier R, Morel JB, Jones AM, Biswal AK. Novel Mutant Alleles Reveal a Role of the Extra-Large G Protein in Rice Grain Filling, Panicle Architecture, Plant Growth, and Disease Resistance. FRONTIERS IN PLANT SCIENCE 2021; 12:782960. [PMID: 35046975 PMCID: PMC8761985 DOI: 10.3389/fpls.2021.782960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 11/10/2021] [Indexed: 05/02/2023]
Abstract
Plant growth and grain filling are the key agronomical traits for grain weight and yield of rice. The continuous improvement in rice yield is required for a future sustainable global economy and food security. The heterotrimeric G protein complex containing a canonical α subunit (RGA1) couples extracellular signals perceived by receptors to modulate cell function including plant development and grain weight. We hypothesized that, besides RGA1, three atypical, extra-large GTP-binding protein (XLG) subunits also regulate panicle architecture, plant growth, development, grain weight, and disease resistance. Here, we identified a role of XLGs in agronomic traits and stress tolerance by genetically ablating all three rice XLGs individually and in combination using the CRISPR/Cas9 genome editing in rice. For this study, eight (three single, two double, and three triple) null mutants were selected. Three XLG proteins combinatorically regulate seed filling, because loss confers a decrease in grain weight from 14% with loss of one XLG and loss of three to 32% decrease in grain weight. Null mutations in XLG2 and XLG4 increase grain size. The mutants showed significantly reduced panicle length and number per plant including lesser number of grains per panicle compared to the controls. Loss-of-function of all individual XLGs contributed to 9% more aerial biomass compared to wild type (WT). The double mutant showed improved salinity tolerance. Moreover, loss of the XLG gene family confers hypersensitivity to pathogens. Our findings suggest that the non-canonical XLGs play important roles in regulating rice plant growth, grain filling, panicle phenotype, stress tolerance, and disease resistance. Genetic manipulation of XLGs has the potential to improve agronomic properties in rice.
Collapse
Affiliation(s)
- Akshaya K. Biswal
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| | - Ting-Ying Wu
- Temasek Life Sciences Laboratory, Singapore, Singapore
| | - Daisuke Urano
- Temasek Life Sciences Laboratory, Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Rémi Pelissier
- PHIM, CEFE, Institut Agro, INRAE, CIRAD, Université de Montpellier, Montpellier, France
| | - Jean-Benoit Morel
- PHIM, INRAE, CIRAD, Institut Agro, Université de Montpellier, Montpellier, France
| | - Alan M. Jones
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Ajaya K. Biswal
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, United States
- *Correspondence: Ajaya K. Biswal,
| |
Collapse
|
29
|
Bhardwaj D, Sahoo RK, Naqvi AR, Lakhanpaul S, Tuteja N. Pea Gβ subunit of G proteins has a role in nitric oxide-induced stomatal closure in response to heat and drought stress. PROTOPLASMA 2020; 257:1639-1654. [PMID: 32737572 DOI: 10.1007/s00709-020-01529-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 06/18/2020] [Indexed: 06/11/2023]
Abstract
Heterotrimeric G proteins consisting of Gα, Gβ and Gγ subunits act as downstream effectors to regulate multiple functions including abiotic stress tolerance. However, the mechanism of Gβ-mediated heat and drought tolerance is yet to be established. To explore the role of Pisum sativum Gβ subunit (PsGβ) in heat and drought stress, transgenic tobacco plants overexpressing (OEs) PsGβ were raised. Transgenic plants showing ectopic expression of PsGβ performed better under heat and drought stress in comparison with vector control plants. The seed germination, relative water content (RWC) and nitric oxide (NO) induction in the guard cells of transgenic plants were significantly higher in contrast to control plants. PsGβ promoter was isolated and several stress-responsive elements were identified. The change in Gβ expression in response to heat, methyl jasmonate (MeJA), abscisic acid (ABA), drought and salt confirms the presence of heat, low temperature and drought-responsive elements in the PsGβ promoter. Also, heat and drought stress caused the release of NO-induced stomatal closure in the leaves of transgenic tobacco plants OEs PsGβ. The better performance of transgenic plant OEs PsGβ is also attributed to the improved photosynthetic parameters as compared with control plants. These findings suggest a role of PsGβ in the signalling pathway leading to NO-induced stomatal closure during heat and drought stress.
Collapse
Affiliation(s)
- Deepak Bhardwaj
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
- Department of Botany, Central University of Jammu, Jammu and Kashmir, 181143, India
- Department of Botany, University of Delhi, Delhi, India
| | - Ranjan Kumar Sahoo
- Department of Biotechnology, Centurion University of Technology and Management, Bhubaneswar, Odisha, 752050, India
| | - Afsar Raza Naqvi
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | | | - Narendra Tuteja
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
30
|
Jose J, Roy Choudhury S. Heterotrimeric G-proteins mediated hormonal responses in plants. Cell Signal 2020; 76:109799. [PMID: 33011291 DOI: 10.1016/j.cellsig.2020.109799] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 09/27/2020] [Accepted: 09/28/2020] [Indexed: 01/27/2023]
Abstract
Phytohormones not only orchestrate intrinsic developmental programs from germination to senescence but also regulate environmental inputs through complex signalling pathways. Despite building an own signalling network, hormones mutually contribute several signalling systems, which are also essential for plant growth and development, defense, and responses to abiotic stresses. One of such important signalling cascades is G-proteins, which act as critical regulators of a wide range of fundamental cellular processes by transducing receptor signals to the intracellular environment. G proteins are composed of α, β, and γ subunits, and the molecular switching between active and inactive conformation of Gα controls the signalling cycle. The active GTP bound Gα and freed Gβγ have both independent and tightly coordinated roles in the regulation of effector molecules, thereby modulating multiple responses, including hormonal responses. Therefore, an interplay of hormones with G-proteins fine-tunes multiple biological processes of plants; however, their molecular mechanisms are largely unknown. Functional characterization of hormone biosynthesis, perception, and signalling components, as well as identification of few effector molecules of G-proteins and their interaction networks, reduces the complexity of the hormonal signalling networks related to G-proteins. In this review, we highlight a valuable insight into the mechanisms of how the G-protein signalling cascades connect with hormonal responses to regulate increased developmental flexibility as well as remarkable plasticity of plants.
Collapse
Affiliation(s)
- Jismon Jose
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, Andhra Pradesh 517507, India
| | - Swarup Roy Choudhury
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, Andhra Pradesh 517507, India.
| |
Collapse
|
31
|
Yan C, Cannon AE, Watkins J, Keereetaweep J, Khan BR, Jones AM, Blancaflor EB, Azad RK, Chapman KD. Seedling Chloroplast Responses Induced by N-Linolenoylethanolamine Require Intact G-Protein Complexes. PLANT PHYSIOLOGY 2020; 184:459-477. [PMID: 32665332 PMCID: PMC7479873 DOI: 10.1104/pp.19.01552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 07/05/2020] [Indexed: 05/10/2023]
Abstract
In animals, several long-chain N-acylethanolamines (NAEs) have been identified as endocannabinoids and are autocrine signals that operate through cell surface G-protein-coupled cannabinoid receptors. Despite the occurrence of NAEs in land plants, including nonvascular plants, their precise signaling properties and molecular targets are not well defined. Here we show that the activity of N-linolenoylethanolamine (NAE 18:3) requires an intact G-protein complex. Specifically, genetic ablation of the Gβγ dimer or loss of the full set of atypical Gα subunits strongly attenuates an NAE-18:3-induced degreening of cotyledons in Arabidopsis (Arabidopsis thaliana) seedlings. This effect involves, at least in part, transcriptional regulation of chlorophyll biosynthesis and catabolism genes. In addition, there is feedforward transcriptional control of G-protein signaling components and G-protein interactors. These results are consistent with NAE 18:3 being a lipid signaling molecule in plants with a requirement for G-proteins to mediate signal transduction, a situation similar, but not identical, to the action of NAE endocannabinoids in animal systems.
Collapse
Affiliation(s)
- Chengshi Yan
- Department of Biological Sciences and BioDiscovery Institute, University of North Texas, Denton, Texas 76203
| | - Ashley E Cannon
- Department of Biological Sciences and BioDiscovery Institute, University of North Texas, Denton, Texas 76203
| | - Justin Watkins
- Departments of Biology, and Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Jantana Keereetaweep
- Department of Biological Sciences and BioDiscovery Institute, University of North Texas, Denton, Texas 76203
| | | | - Alan M Jones
- Departments of Biology, and Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | | | - Rajeev K Azad
- Department of Biological Sciences and BioDiscovery Institute, University of North Texas, Denton, Texas 76203
- Noble Research Institute LLC, Ardmore, Oklahoma 73401
- Department of Mathematics, University of North Texas, Denton, Texas 76203
| | - Kent D Chapman
- Department of Biological Sciences and BioDiscovery Institute, University of North Texas, Denton, Texas 76203
| |
Collapse
|
32
|
Oligomerization of A. thaliana Heterotrimeric G Protein Subunits AGB1 and AGG2 In Vitro. Protein J 2020; 39:563-573. [PMID: 32772216 DOI: 10.1007/s10930-020-09914-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Plant heterotrimeric G proteins are a major group of signaling molecules involved in regulation of critical processes including stress adaptation, seed size, grain quality and immune responses. Despite an abundance of in situ functional studies; purification of the individual subunits of the plant heterotrimer for biophysical and structural characterization and for studies on their interactions are lacking. In this study cloning of the genes encoding the β subunit AGB1 of A. thaliana and its γ-subunits AGG1 and AGG2 using different E. coli expression vectors and screening of expression in several strains are reported. AGB1 could be expressed albeit at very low levels and in all cases it was accompanied by overexpression of E. coli chaperone proteins. AGG1 could only be detected in inclusion body fractions, whereas AGG2 was obtained in soluble fractions and was purified. Purified AGB1 and AGG2 subunits were shown to dimerize in vitro. Further characterization of AGG2 by small angle X-ray scattering measurements and by dynamic light scattering revealed that AGG2 formed homodimers with extended shape in solution. These results are also consistent with those from circular dichroism spectroscopy which yielded 39.4% helical and 50% random coil content for AGG2. This is the first study showing heterologous expression of a plant heterotrimeric G protein β subunit individually and presenting its interaction with a plant γ-subunit in vitro. Results also show that the AGG2 subunit has a disordered structure, which would account for its role in diverse interactions for establishing selectivity in signal propagation.
Collapse
|
33
|
Patel JS, Selvaraj V, Gunupuru LR, Kharwar RN, Sarma BK. Plant G-protein signaling cascade and host defense. 3 Biotech 2020; 10:219. [PMID: 32355593 DOI: 10.1007/s13205-020-02201-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 04/09/2020] [Indexed: 02/07/2023] Open
Abstract
The heterotrimeric guanine-nucleotide-binding proteins (G-proteins) play a crucial role in signal transduction and regulate plant responses against biotic and abiotic stresses. Necrotrophic pathogens trigger Gα subunit and, in contrast, sometimes Gβγ dimers. Beneficial microbes play a vital role in the activation of heterotrimeric G-proteins in plants against biotrophic and necrotrophic pathogens. The subunits of G-protein (α, β, and γ) are activated differentially against different kinds of pathogens which in turn regulates the entry of the pathogen in a plant cell. Defense mediated by G-proteins in plants imparts resistance against several pathogens. Activation of different G-protein subunits depends on the mode of nutrition of the pathogen. The current review discussed the role of the three subunits against various pathogens. It appeared to be specific in the individual host-pathogen system as well as the role of effectors in the induction of G-proteins. We also discussed the G-protein-mediated production of reactive oxygen species (ROS), including H2O2, activation of NADPH oxidases, hypersensitive response (HR), phospholipases, and ion channels in response to microorganisms.
Collapse
|
34
|
Roy Choudhury S, Li M, Lee V, Nandety RS, Mysore KS, Pandey S. Flexible functional interactions between G-protein subunits contribute to the specificity of plant responses. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 102:207-221. [PMID: 32034949 DOI: 10.1111/tpj.14714] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 01/17/2020] [Accepted: 01/29/2020] [Indexed: 06/10/2023]
Abstract
Plants being sessile integrate information from a variety of endogenous and external cues simultaneously to optimize growth and development. This necessitates the signaling networks in plants to be highly dynamic and flexible. One such network involves heterotrimeric G-proteins comprised of Gα, Gβ, and Gγ subunits, which influence many aspects of growth, development, and stress response pathways. In plants such as Arabidopsis, a relatively simple repertoire of G-proteins comprised of one canonical and three extra-large Gα, one Gβ and three Gγ subunits exists. Because the Gβ and Gγ proteins form obligate dimers, the phenotypes of plants lacking the sole Gβ or all Gγ genes are similar, as expected. However, Gα proteins can exist either as monomers or in a complex with Gβγ, and the details of combinatorial genetic and physiological interactions of different Gα proteins with the sole Gβ remain unexplored. To evaluate such flexible, signal-dependent interactions and their contribution toward eliciting a specific response, we have generated Arabidopsis mutants lacking specific combinations of Gα and Gβ genes, performed extensive phenotypic analysis, and evaluated the results in the context of subunit usage and interaction specificity. Our data show that multiple mechanistic modes, and in some cases complex epistatic relationships, exist depending on the signal-dependent interactions between the Gα and Gβ proteins. This suggests that, despite their limited numbers, the inherent flexibility of plant G-protein networks provides for the adaptability needed to survive under continuously changing environments.
Collapse
Affiliation(s)
| | - Mao Li
- Donald Danforth Plant Science Center, St. Louis, MO, 63132, USA
| | - Veronica Lee
- Donald Danforth Plant Science Center, St. Louis, MO, 63132, USA
| | | | | | - Sona Pandey
- Donald Danforth Plant Science Center, St. Louis, MO, 63132, USA
| |
Collapse
|
35
|
Maron L. Adding pieces to the G-protein signaling puzzle. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 102:205-206. [PMID: 32347642 DOI: 10.1111/tpj.14772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
|
36
|
Pandey S. Plant receptor-like kinase signaling through heterotrimeric G-proteins. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:1742-1751. [PMID: 31930311 PMCID: PMC7242010 DOI: 10.1093/jxb/eraa016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 01/10/2020] [Indexed: 05/06/2023]
Abstract
Heterotrimeric G-proteins regulate multiple aspects of plant growth, development, and response to biotic and abiotic stresses. While the core components of heterotrimeric G-proteins and their basic biochemistry are similar in plants and metazoans, key differences exist in their regulatory mechanisms. In particular, the activation mechanisms of plant G-proteins appear diverse and may include both canonical and novel modes. Classical G-protein-coupled receptor-like proteins exist in plants and interact with Gα proteins, but their ability to activate Gα by facilitating GDP to GTP exchange has not been demonstrated. Conversely, there is genetic and functional evidence that plant G-proteins interact with the highly prevalent receptor-like kinases (RLKs) and are phosphorylated by them. This suggests the exciting scenario that in plants the G-proteins integrate RLK-dependent signal perception at the plasma membrane with downstream effectors. Because RLKs are active kinases, it is also likely that the activity of plant G-proteins is regulated via phosphorylation/dephosphorylation rather than GTP-GDP exchange as in metazoans. This review discusses our current knowledge of the possible RLK-dependent regulatory mechanisms of plant G-protein signaling in the context of several biological systems and outlines the diversity that might exist in such regulation.
Collapse
Affiliation(s)
- Sona Pandey
- Donald Danforth Plant Science Center, St Louis, MO, USA
- Correspondence:
| |
Collapse
|
37
|
Yang Q, Niu X, Tian X, Zhang X, Cong J, Wang R, Zhang G, Li G. Comprehensive genomic analysis of the DUF4228 gene family in land plants and expression profiling of ATDUF4228 under abiotic stresses. BMC Genomics 2020; 21:12. [PMID: 31900112 PMCID: PMC6942412 DOI: 10.1186/s12864-019-6389-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Accepted: 12/12/2019] [Indexed: 01/24/2023] Open
Abstract
Background Domain of unknown function (DUF) proteins represent a number of gene families that encode functionally uncharacterized proteins in eukaryotes. The DUF4228 gene family is one of these families in plants that has not been described previously. Results In this study, we performed an extensive comparative analysis of DUF4228 proteins and determined their phylogeny in the plant lineage. A total of 489 high-confidence DUF4228 family members were identified from 14 land plant species, which sub-divided into three distinct phylogenetic groups: group I, group II and group III. A highly conserved DUF4228 domain and motif distribution existed in each group, implying their functional conservation. To reveal the possible biological functions of these DUF4228 genes, 25 ATDUF4228 sequences from Arabidopsis thaliana were selected for further analysis of characteristics such as their chromosomal position, gene duplications and gene structures. Ka/Ks analysis identified seven segmental duplication events, while no tandemly duplication gene pairs were found in A. thaliana. Some cis-elements responding to abiotic stress and phytohormones were identified in the upstream sequences of the ATDUF4228 genes. Expression profiling of the ATDUF4228 genes under abiotic stresses (mainly osmotic, salt and cold) and protein-protein interaction prediction suggested that some ATDUF4228 genes are may be involved in the pathways of plant resistance to abiotic stresses. Conclusion These results expand our knowledge of the evolution of the DUF4228 gene family in plants and will contribute to the elucidation of the biological functions of DUF4228 genes in the future.
Collapse
Affiliation(s)
- Qi Yang
- College of Life Sciences, Inner Mongolia Key Laboratory of Plant Stress Physiology and Molecular Biology, Inner Mongolia Agricultural University, Hohhot, China
| | - Xiaocui Niu
- College of Life Sciences, Inner Mongolia Key Laboratory of Plant Stress Physiology and Molecular Biology, Inner Mongolia Agricultural University, Hohhot, China
| | - Xiaona Tian
- College of Life Sciences, Inner Mongolia Key Laboratory of Plant Stress Physiology and Molecular Biology, Inner Mongolia Agricultural University, Hohhot, China
| | - Xiujuan Zhang
- College of Life Sciences, Inner Mongolia Key Laboratory of Plant Stress Physiology and Molecular Biology, Inner Mongolia Agricultural University, Hohhot, China
| | - Jingyu Cong
- College of Life Sciences, Inner Mongolia Key Laboratory of Plant Stress Physiology and Molecular Biology, Inner Mongolia Agricultural University, Hohhot, China
| | - Ruigang Wang
- College of Life Sciences, Inner Mongolia Key Laboratory of Plant Stress Physiology and Molecular Biology, Inner Mongolia Agricultural University, Hohhot, China
| | - Guosheng Zhang
- Forestry College, Inner Mongolia Agricultural University, Hohhot, China.
| | - Guojing Li
- College of Life Sciences, Inner Mongolia Key Laboratory of Plant Stress Physiology and Molecular Biology, Inner Mongolia Agricultural University, Hohhot, China.
| |
Collapse
|
38
|
Lou F, Abramyan TM, Jia H, Tropsha A, Jones AM. An atypical heterotrimeric Gα protein has substantially reduced nucleotide binding but retains nucleotide-independent interactions with its cognate RGS protein and Gβγ dimer. J Biomol Struct Dyn 2019; 38:5204-5218. [PMID: 31838952 DOI: 10.1080/07391102.2019.1704879] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Plants uniquely have a family of proteins called extra-large G proteins (XLG) that share homology in their C-terminal half with the canonical Gα subunits; we carefully detail here that Arabidopsis XLG2 lacks critical residues requisite for nucleotide binding and hydrolysis which is consistent with our quantitative analyses. Based on microscale thermophoresis, Arabidopsis XLG2 binds GTPγS with an affinity 100 times lower than that to canonical Gα subunits. This means that given the concentration range of guanine nucleotide in plant cells, XLG2 is not likely bound by GTP in vivo. Homology modeling and molecular dynamics simulations provide a plausible mechanism for the poor nucleotide binding affinity of XLG2. Simulations indicate substantially stronger salt bridge networks formed by several key amino-acid residues of AtGPA1 which are either misplaced or missing in XLG2. These residues in AtGPA1 not only maintain the overall shape and integrity of the apoprotein cavity but also increase the frequency of favorable nucleotide-protein interactions in the nucleotide-bound state. Despite this loss of nucleotide dependency, XLG2 binds the RGS domain of AtRGS1 with an affinity similar to the Arabidopsis AtGPA1 in its apo-state and about 2 times lower than AtGPA1 in its transition state. In addition, XLG2 binds the Gβγ dimer with an affinity similar to that of AtGPA1. XLG2 likely acts as a dominant negative Gα protein to block G protein signaling. We propose that XLG2, independent of guanine nucleotide binding, regulates the active state of the canonical G protein pathway directly by sequestering Gβγ and indirectly by promoting heterodimer formation.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Fei Lou
- Departments of Pharmacology, University of North Carolina at Chapel Hill, NC, USA
| | - Tigran M Abramyan
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, NC, USA
| | - Haiyan Jia
- Departments of Pharmacology, University of North Carolina at Chapel Hill, NC, USA
| | - Alexander Tropsha
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, NC, USA
| | - Alan M Jones
- Departments of Pharmacology, University of North Carolina at Chapel Hill, NC, USA.,Departments of Biology and Pharmacology, University of North Carolina at Chapel Hill, NC, USA
| |
Collapse
|
39
|
Desaki Y, Takahashi S, Sato K, Maeda K, Matsui S, Yoshimi I, Miura T, Jumonji JI, Takeda J, Yashima K, Kohari M, Suenaga T, Terada H, Narisawa T, Shimizu T, Yumoto E, Miyamoto K, Narusaka M, Narusaka Y, Kaku H, Shibuya N. PUB4, a CERK1-Interacting Ubiquitin Ligase, Positively Regulates MAMP-Triggered Immunity in Arabidopsis. PLANT & CELL PHYSIOLOGY 2019; 60:2573-2583. [PMID: 31368495 DOI: 10.1093/pcp/pcz151] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 07/24/2019] [Indexed: 06/10/2023]
Abstract
Lysin motif (LysM) receptor-like kinase CERK1 is a co-receptor essential for plant immune responses against carbohydrate microbe-associated molecular patterns (MAMPs). Concerning the immediate downstream signaling components of CERK1, receptor-like cytoplasmic kinases such as PBL27 and other RLCK VII members have been reported to regulate immune responses positively. In this study, we report that a novel CERK1-interacting E3 ubiquitin ligase, PUB4, is also involved in the regulation of MAMP-triggered immune responses. Knockout of PUB4 resulted in the alteration of chitin-induced defense responses, indicating that PUB4 positively regulates reactive oxygen species generation and callose deposition but negatively regulates MAPK activation and defense gene expression. On the other hand, detailed analyses of a double knockout mutant of pub4 and sid2, a mutant of salicylic acid (SA) synthesis pathway, showed that the contradictory phenotype of the pub4 mutant was actually caused by abnormal accumulation of SA in this mutant and that PUB4 is a positive regulator of immune responses. The present and recent findings on the role of PUB4 indicate that PUB4 is a unique E3 ubiquitin ligase involved in the regulation of both plant immunity and growth/development.
Collapse
Affiliation(s)
- Yoshitake Desaki
- Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Kanagawa, Japan
| | - Shohei Takahashi
- Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Kanagawa, Japan
| | - Kenta Sato
- Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Kanagawa, Japan
| | - Kanako Maeda
- Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Kanagawa, Japan
| | - Saki Matsui
- Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Kanagawa, Japan
| | - Ikuya Yoshimi
- Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Kanagawa, Japan
| | - Takaki Miura
- Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Kanagawa, Japan
| | - Jun-Ichi Jumonji
- Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Kanagawa, Japan
| | - Jun Takeda
- Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Kanagawa, Japan
| | - Kohei Yashima
- Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Kanagawa, Japan
| | - Masaki Kohari
- Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Kanagawa, Japan
| | - Takayoshi Suenaga
- Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Kanagawa, Japan
| | - Hayato Terada
- Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Kanagawa, Japan
| | - Tomoko Narisawa
- Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Kanagawa, Japan
| | - Takeo Shimizu
- Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Kanagawa, Japan
| | - Emi Yumoto
- Advanced Instrumental Analysis Center, Teikyo University, Utsunomiya, Tochigi, Japan
| | - Koji Miyamoto
- Department of Biosciences, Faculty of Science and Engineering, Teikyo University, Utsunomiya, Tochigi, Japan
| | - Mari Narusaka
- Okayama Prefectural Technology Center for Agriculture, Forestry, and Fisheries, Research Institute for Biological Sciences, Okayama, Japan
| | - Yoshihiro Narusaka
- Okayama Prefectural Technology Center for Agriculture, Forestry, and Fisheries, Research Institute for Biological Sciences, Okayama, Japan
| | - Hanae Kaku
- Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Kanagawa, Japan
| | - Naoto Shibuya
- Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Kanagawa, Japan
| |
Collapse
|
40
|
Swain DM, Sahoo RK, Chandan RK, Ghosh S, Kumar R, Jha G, Tuteja N. Concurrent overexpression of rice G-protein β and γ subunits provide enhanced tolerance to sheath blight disease and abiotic stress in rice. PLANTA 2019; 250:1505-1520. [PMID: 31332521 DOI: 10.1007/s00425-019-03241-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 07/15/2019] [Indexed: 05/12/2023]
Abstract
Our study demonstrates that simultaneous overexpression of RGB1 and RGG1 genes provides multiple stress tolerance in rice by inducing stress responsive genes and better management of ROS scavenging/photosynthetic machineries. The heterotrimeric G-proteins act as signalling molecules and modulate various cellular responses including stress tolerance in eukaryotes. The gamma (γ) subunit of rice G-protein (RGG1) was earlier reported to promote salinity stress tolerance in rice. In the present study, we report that a rice gene-encoding beta (β) subunit of G-protein (RGB1) gets upregulated during both biotic (upon a necrotrophic fungal pathogen, Rhizoctonia solani infection) and drought stresses. Marker-free transgenic IR64 rice lines that simultaneously overexpress both RGB1 and RGG1 genes under CaMV35S promoter were raised. The overexpressing (OE) lines showed enhanced tolerance to R. solani infection and salinity/drought stresses. Several defense marker genes including OsMPK3 were significantly upregulated in the R. solani-infected OE lines. We also found the antioxidant machineries to be upregulated during salinity as well as drought stress in the OE lines. Overall, the present study provides evidence that concurrent overexpression of G-protein subunits (RGG1 and RGB1) impart multiple (both biotic and abiotic) stress tolerance in rice which could be due to the enhanced expression of stress-marker genes and better management of reactive oxygen species (ROS)-scavenging/photosynthetic machinery. The current study suggests an improved approach for simultaneous improvement of biotic and abiotic stress tolerance in rice which remains a major challenge for its sustainable cultivation.
Collapse
Affiliation(s)
- Durga Madhab Swain
- Plant Microbe Interactions Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
- Department of Biotechnology, Ravenshaw University, Cuttack, 753003, Odisha, India
| | - Ranjan Kumar Sahoo
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Ravindra Kumar Chandan
- Plant Microbe Interactions Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
- School of Life Sciences, Central University of Gujrat, Sector-30, Gandhinagar, 382030, India
| | - Srayan Ghosh
- Plant Microbe Interactions Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Rahul Kumar
- Plant Microbe Interactions Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Gopaljee Jha
- Plant Microbe Interactions Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| | - Narendra Tuteja
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
41
|
Urano D, Leong R, Wu TY, Jones AM. Quantitative morphological phenomics of rice G protein mutants portend autoimmunity. Dev Biol 2019; 457:83-90. [PMID: 31541643 DOI: 10.1016/j.ydbio.2019.09.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 09/12/2019] [Accepted: 09/17/2019] [Indexed: 10/26/2022]
Abstract
The heterotrimeric G protein complex, composed of Gα, Gβ, and Gγ subunits, plays some role in structural development in plants but this role could be indirect because loss-of-function mutations do not alter the body plan and post-embryonic organs differ only morphologically and not in their identity. This uncertainty has been compounded by the fact that loss of the Gβ subunit in cereals, but not Arabidopsis, is seedling lethal and that loss of maize Gα subunit confers prolificacy of a reproductive organ. In this study, we comprehensively profiled the root and shoot structural traits of rice Gα-null and viable Gβ-RNAi "knockdown" mutants, and found anomalous morphologies caused by Gβ-RNAi that are distinct from the Arabidopsis orthologue. The rice Gβ-RNAi mutant exhibited reduced radial growth of aerial parts as well as a more compact root architecture, among which smaller root mass seems mainly due to increased necrosis when grown on soil. In addition, three dimensional analyses of rice root system architecture revealed that the smaller root architecture of Gβ-RNAi plant is also due to both reduced root elongation and adventitious root formation. This contrasts to the Arabidopsis Gβ-null mutation that promotes cell proliferation. There is elevated cell senescence activity both visualized by Evans Blue staining and inferred from an expression analysis of cell-death marker genes. We propose that the morphological phenotypes of rice Gβ-RNAi plants are predominantly associated with the mediation of various stresses and cell senescence, consistent with an indirect role for Arabidopsis Gβ in development where the orthologous gene ablation mainly confers altered cell proliferation. We also elaborate our speculative working hypothesis that cell division is a type of stress and as such due to impairment in responding to stress in the G protein mutants, manifests as altered morphology and architecture but not an altered body plan or organ identities.
Collapse
Affiliation(s)
- Daisuke Urano
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, 117604, Singapore.
| | - Richalynn Leong
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, 117604, Singapore
| | - Ting-Ying Wu
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, 117604, Singapore
| | - Alan M Jones
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27599-3280, USA; Department of Pharmacology, University of North Carolina, Chapel Hill, NC, 27599-3280, USA
| |
Collapse
|
42
|
Wang Y, Wang Y, Deng D. Multifaceted plant G protein: interaction network, agronomic potential, and beyond. PLANTA 2019; 249:1259-1266. [PMID: 30790051 DOI: 10.1007/s00425-019-03112-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 02/15/2019] [Indexed: 06/09/2023]
Abstract
Heterotrimeric G protein and interacting effectors are relevant for agronomic significance. We can manipulate G protein and effectors, individually or in combination, to develop plant ideotypes by intelligent design breeding. Heterotrimeric guanine nucleotide-binding protein (G protein) is involved in a wide range of biological events, many of which with agronomic significance. In this review, we summarize recent advances of plant G protein research. We first retrieve maize G protein core subunits Gα, Gβ, and Gγ based on information of Arabidopsis and rice G proteins using integrated BLAST and domain confirmation. Then, we briefly introduce the distribution and function of G protein. We also describe the interaction between G protein and CLAVATA receptor, brassinosteroid signaling kinase complex, and MADS-domain transcription factor. Finally, we discuss the application of G protein knowledge in intelligent plant breeding with focus on the improvement of agronomically important traits.
Collapse
Affiliation(s)
- Yijun Wang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, 225009, China.
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China.
| | - Yali Wang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Dexiang Deng
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| |
Collapse
|
43
|
Pandey S. Heterotrimeric G-Protein Signaling in Plants: Conserved and Novel Mechanisms. ANNUAL REVIEW OF PLANT BIOLOGY 2019; 70:213-238. [PMID: 31035831 DOI: 10.1146/annurev-arplant-050718-100231] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Heterotrimeric GTP-binding proteins are key regulators of a multitude of signaling pathways in all eukaryotes. Although the core G-protein components and their basic biochemistries are broadly conserved throughout evolution, the regulatory mechanisms of G proteins seem to have been rewired in plants to meet specific needs. These proteins are currently the focus of intense research in plants due to their involvement in many agronomically important traits, such as seed yield, organ size regulation, biotic and abiotic stress responses, symbiosis, and nitrogen use efficiency. The availability of massive sequence information from a variety of plant species, extensive biochemical data generated over decades, and impressive genetic resources for plant G proteins have made it possible to examine their role, unique properties, and novel regulation. This review focuses on some recent advances in our understanding of the mechanistic details of this critical signaling pathway to enable the precise manipulation and generation of plants to meet future needs.
Collapse
Affiliation(s)
- Sona Pandey
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132, USA;
| |
Collapse
|
44
|
Escudero V, Torres MÁ, Delgado M, Sopeña-Torres S, Swami S, Morales J, Muñoz-Barrios A, Mélida H, Jones AM, Jordá L, Molina A. Mitogen-Activated Protein Kinase Phosphatase 1 (MKP1) Negatively Regulates the Production of Reactive Oxygen Species During Arabidopsis Immune Responses. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:464-478. [PMID: 30387369 DOI: 10.1094/mpmi-08-18-0217-fi] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Genetic ablation of the β subunit of the heterotrimeric G protein complex in agb1-2 confers defective activation of microbe-associated molecular pattern (MAMP)-triggered immunity, resulting in agb1-2 enhanced susceptibility to pathogens like the fungus Plectosphaerella cucumerina BMM. A mutant screen for suppressors of agb1-2 susceptibility (sgb) to P. cucumerina BMM identified sgb10, a new null allele (mkp1-2) of the mitogen-activated protein kinase phosphatase 1 (MKP1). The enhanced susceptibility of agb1-2 to the bacterium Pseudomonas syringae pv. tomato DC3000 and the oomycete Hyaloperonospora arabidopsidis is also abrogated by mkp1-2. MKP1 negatively balances production of reactive oxygen species (ROS) triggered by MAMPs, since ROS levels are enhanced in mkp1. The expression of RBOHD, encoding a NADPH oxidase-producing ROS, is upregulated in mkp1 upon MAMP treatment or pathogen infection. Moreover, MKP1 negatively regulates RBOHD activity, because ROS levels upon MAMP treatment are increased in mkp1 plants constitutively overexpressing RBOHD (35S::RBOHD mkp1). A significant reprograming of mkp1 metabolic profile occurs with more than 170 metabolites, including antimicrobial compounds, showing differential accumulation in comparison with wild-type plants. These results suggest that MKP1 functions downstream of the heterotrimeric G protein during MAMP-triggered immunity, directly regulating the activity of RBOHD and ROS production as well as other immune responses.
Collapse
Affiliation(s)
- Viviana Escudero
- 1 Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo, 28223-Pozuelo de Alarcón (Madrid), Spain
- 2 Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, 28040-Madrid, Spain; and
| | - Miguel Ángel Torres
- 1 Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo, 28223-Pozuelo de Alarcón (Madrid), Spain
- 2 Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, 28040-Madrid, Spain; and
| | - Magdalena Delgado
- 1 Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo, 28223-Pozuelo de Alarcón (Madrid), Spain
- 2 Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, 28040-Madrid, Spain; and
| | - Sara Sopeña-Torres
- 1 Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo, 28223-Pozuelo de Alarcón (Madrid), Spain
- 2 Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, 28040-Madrid, Spain; and
| | - Sanjay Swami
- 1 Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo, 28223-Pozuelo de Alarcón (Madrid), Spain
- 2 Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, 28040-Madrid, Spain; and
| | - Jorge Morales
- 1 Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo, 28223-Pozuelo de Alarcón (Madrid), Spain
- 2 Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, 28040-Madrid, Spain; and
| | - Antonio Muñoz-Barrios
- 1 Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo, 28223-Pozuelo de Alarcón (Madrid), Spain
- 2 Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, 28040-Madrid, Spain; and
| | - Hugo Mélida
- 1 Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo, 28223-Pozuelo de Alarcón (Madrid), Spain
| | - Alan M Jones
- 3 Departments of Biology and Pharmacology, University of North Carolina, Chapel Hill, NC 27599, U.S.A
| | - Lucía Jordá
- 1 Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo, 28223-Pozuelo de Alarcón (Madrid), Spain
- 2 Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, 28040-Madrid, Spain; and
| | - Antonio Molina
- 1 Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo, 28223-Pozuelo de Alarcón (Madrid), Spain
- 2 Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, 28040-Madrid, Spain; and
| |
Collapse
|
45
|
Roy Choudhury S, Marlin MA, Pandey S. The Role of Gβ Protein in Controlling Cell Expansion via Potential Interaction with Lipid Metabolic Pathways. PLANT PHYSIOLOGY 2019; 179:1159-1175. [PMID: 30622152 PMCID: PMC6393804 DOI: 10.1104/pp.18.01312] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 12/10/2018] [Indexed: 05/23/2023]
Abstract
Heterotrimeric G-proteins influence almost all aspects of plant growth, development, and responses to biotic and abiotic stresses in plants, likely via their interaction with specific effectors. However, the identity of such effectors and their mechanism of action are mostly unknown. While investigating the roles of different G-protein subunits in modulating the oil content in Camelina (Camelina sativa), an oil seed crop, we uncovered a role of Gβ proteins in controlling anisotropic cell expansion. Knockdown of Gβ genes causes reduced longitudinal and enhanced transverse expansion, resulting in altered cell, tissue, and organ shapes in transgenic plants during vegetative and reproductive development. These plants also exhibited substantial changes in their fatty acid and phospholipid profiles, which possibly leads to the increased oil content of the transgenic seeds. This increase is potentially caused by the direct interaction of Gβ proteins with a specific patatin-like phospholipase, pPLAIIIδ. Camelina plants with suppressed Gβ expression exhibit higher lipase activity, and show phenotypes similar to plants overexpressing pPLAIIIδ, suggesting that the Gβ proteins are negative regulators of pPLAIIIδ. These results reveal interactions between the G-protein-mediated and lipid signaling/metabolic pathways, where specific phospholipases may act as effectors that control key developmental and environmental responses of plants.
Collapse
Affiliation(s)
| | - Maria A Marlin
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132
| | - Sona Pandey
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132
| |
Collapse
|
46
|
Zhong CL, Zhang C, Liu JZ. Heterotrimeric G protein signaling in plant immunity. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:1109-1118. [PMID: 30481338 DOI: 10.1093/jxb/ery426] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 11/22/2018] [Indexed: 05/26/2023]
Abstract
In animals, heterotrimeric guanine nucleotide-binding proteins (G proteins) transduce signals perceived by numerous G protein-coupled receptors (GPCRs). However, no canonical GPCRs with guanine nucleotide exchange factor (GEF) activity are present in plant genomes. Accumulated evidence indicates that, instead of GPCRs, the receptor-like kinases (RLKs) function upstream of G proteins in plants. Regulator of G protein signaling 1 (RGS1) functions to convert the GTP-bound Gα to the GDP-bound form through its GTPase-accelerating protein (GAP) activity. Because of the intrinsic differences in the biochemical properties between Arabidopsis and animal Gα, the actions of animal and Arabidopsis RGS1 result in contrasting outcomes in G signaling activation/deactivation. Animal RGSs accelerate the deactivation of the activated G signaling, whereas Arabidopsis RGS1 prevents the activation of G signaling in the resting state. Phosphorylation of Arabidopsis RGS1 triggered by ligand-RLK recognition results in the endocytosis or degradation of RGS1, leading to the separation of RGS1 from Gα and thus the derepression of G signaling. Here, we summarize the involvement of the G proteins in plant immunity, with a special focus on the molecular mechanism of G signaling activation/deactivation regulated by RLKs and RGS1. We also provide a brief perspective on the outstanding questions that need to be addressed to fully understand G signaling in plant immunity.
Collapse
Affiliation(s)
- Chen-Li Zhong
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang, China
| | - Chi Zhang
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang, China
| | - Jian-Zhong Liu
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang, China
| |
Collapse
|
47
|
Liu J, Zhi P, Wang X, Fan Q, Chang C. Wheat WD40-repeat protein TaHOS15 functions in a histone deacetylase complex to fine-tune defense responses to Blumeria graminis f.sp. tritici. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:255-268. [PMID: 30204899 DOI: 10.1093/jxb/ery330] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Accepted: 09/10/2018] [Indexed: 05/23/2023]
Abstract
Powdery mildew caused by Blumeria graminis f.sp. tritici (Bgt) seriously threatens the production of common wheat (Triticum aestivum). In eukaryotes, WD40-repeat (WDR) proteins usually participate in assembling protein complexes involved in a wide range of cellular processes, including defense responses. However, the potential function of WDR proteins in regulating crop resistance to biotrophic fungal pathogens, such as Bgt, remains unclear. In this study, we isolated TaHOS15, encoding a WDR protein, from the Bgt-susceptible wheat cultivar Jing411 and demonstrated that knockdown of TaHOS15 expression using virus- or transient-induced gene-silencing attenuated wheat susceptibility to Bgt. Biochemical and molecular-biological assays revealed that TaHOS15 interacts with TaHDA6, a wheat homolog of Arabidopsis histone deacetylase AtHDA6, to constitute a transcriptional repressor complex. We determined the role of TaHOS15, which might act as an adaptor protein recruiting TaHDA6 to the chromatin of wheat defense-related genes including TaPR1, TaPR2, TaPR5, and TaWRKY45, where they repress histone acetylation. Reduced TaHOS15 or TaHDA6 transcript levels led to decreased susceptibility to Bgt together with enhanced defense-related transcription under Bgt infection. Collectively, these results demonstrate that TaHOS15 functions in a histone deacetylase complex with TaHDA6 to fine-tune the defense response to Bgt in common wheat.
Collapse
Affiliation(s)
- Jiao Liu
- College of Life Sciences, Qingdao University, Qingdao, China
| | - Pengfei Zhi
- College of Life Sciences, Qingdao University, Qingdao, China
| | - Xiaoyu Wang
- College of Life Sciences, Qingdao University, Qingdao, China
| | - Qingxin Fan
- College of Life Sciences, Qingdao University, Qingdao, China
| | - Cheng Chang
- College of Life Sciences, Qingdao University, Qingdao, China
| |
Collapse
|
48
|
G protein subunit phosphorylation as a regulatory mechanism in heterotrimeric G protein signaling in mammals, yeast, and plants. Biochem J 2018; 475:3331-3357. [PMID: 30413679 DOI: 10.1042/bcj20160819] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 09/28/2018] [Accepted: 10/02/2018] [Indexed: 12/15/2022]
Abstract
Heterotrimeric G proteins composed of Gα, Gβ, and Gγ subunits are vital eukaryotic signaling elements that convey information from ligand-regulated G protein-coupled receptors (GPCRs) to cellular effectors. Heterotrimeric G protein-based signaling pathways are fundamental to human health [Biochimica et Biophysica Acta (2007) 1768, 994-1005] and are the target of >30% of pharmaceuticals in clinical use [Biotechnology Advances (2013) 31, 1676-1694; Nature Reviews Drug Discovery (2017) 16, 829-842]. This review focuses on phosphorylation of G protein subunits as a regulatory mechanism in mammals, budding yeast, and plants. This is a re-emerging field, as evidence for phosphoregulation of mammalian G protein subunits from biochemical studies in the early 1990s can now be complemented with contemporary phosphoproteomics and genetic approaches applied to a diversity of model systems. In addition, new evidence implicates a family of plant kinases, the receptor-like kinases, which are monophyletic with the interleukin-1 receptor-associated kinase/Pelle kinases of metazoans, as possible GPCRs that signal via subunit phosphorylation. We describe early and modern observations on G protein subunit phosphorylation and its functional consequences in these three classes of organisms, and suggest future research directions.
Collapse
|
49
|
Yu Y, Assmann SM. Inter-relationships between the heterotrimeric Gβ subunit AGB1, the receptor-like kinase FERONIA, and RALF1 in salinity response. PLANT, CELL & ENVIRONMENT 2018; 41:2475-2489. [PMID: 29907954 PMCID: PMC6150805 DOI: 10.1111/pce.13370] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 06/04/2018] [Accepted: 06/08/2018] [Indexed: 05/06/2023]
Abstract
Plant heterotrimeric G proteins modulate numerous developmental stress responses. Recently, receptor-like kinases (RLKs) have been implicated as functioning with G proteins and may serve as plant G-protein-coupled-receptors. The RLK FERONIA (FER), in the Catharantus roseus RLK1-like subfamily, is activated by a family of polypeptides called rapid alkalinization factors (RALFs). We previously showed that the Arabidopsis G protein β subunit, AGB1, physically interacts with FER, and that RALF1 regulation of stomatal movement through FER requires AGB1. Here, we investigated genetic interactions of AGB1 and FER in plant salinity response by comparing salt responses in the single and double mutants of agb1 and fer. We show that AGB1 and FER act additively or synergistically depending on the conditions of the NaCl treatments. We further show that the synergism likely occurs through salt-induced ROS production. In addition, we show that RALF1 enhances salt toxicity through increasing Na+ accumulation and decreasing K+ accumulation rather than by inducing ROS production, and that the RALF1 effect on salt response occurs in an AGB1-independent manner. Our results indicate that RLK epistatic relationships are not fixed, as AGB1 and FER display different genetic relationships to RALF1 in stomatal versus salinity responses.
Collapse
Affiliation(s)
| | - Sarah M. Assmann
- To whom correspondence should be addressed: , tel. 814-863-9579, fax. 814-865-9131
| |
Collapse
|
50
|
Takahashi T, Murano T, Ishikawa A. SOBIR1 and AGB1 independently contribute to nonhost resistance to Pyricularia oryzae (syn. Magnaporthe oryzae) in Arabidopsis thaliana. Biosci Biotechnol Biochem 2018; 82:1922-1930. [PMID: 30022707 DOI: 10.1080/09168451.2018.1498727] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Rice blast caused by Pyricularia oryzae (syn. Magnaporthe oryzae) is a disease devastating to rice. We have studied the Arabidopsis-P. oryzae pathosystem as a model system for nonhost resistance (NHR) and found that SOBIR1, but not BAK1, is a positive regulator of NHR to P. oryzae in Arabidopsis. AGB1 is also involved in NHR. However, the genetic interactions between SOBIR1, BAK1, and AGB1 are uncharacterized. In this study, we delineated the genetic interactions between SOBIR1, BAK1, and AGB1 in NHR to P. oryzae in Arabidopsis and found SOBIR1 and AGB1 independently control NHR to P. oryzae in Arabidopsis pen2-1 mutant plants. Furthermore, XLG2, but not TMM, has a positive role in penetration resistance to P. oryzae in Arabidopsis pen2-1 mutant plants. Our study characterized genetic interactions in Arabidopsis NHR. Abbreviations: PRR: pattern recognition receptor, RLK: receptor-like kinase, RLP: receptor-like protein, BAK1: BRASSINOSTEROID INSENSITIVE 1-ASSOCIATED RECEPTOR KINASE 1, BIR1: BAK1-INTERACTING RECEPTOR-LIKE KINASE 1, SOBIR1: SUPPRESSOR OF BIR1-1-1, AGB1: ARABIDOPSIS G PROTEIN ß-SUBUNIT 1, XLG2: EXTRA-LARGE G PROTEIN 2.
Collapse
Affiliation(s)
- Toshiharu Takahashi
- a Department of Bioscience and Biotechnology , Fukui Prefectural University , Fukui , Japan
| | - Tomoya Murano
- a Department of Bioscience and Biotechnology , Fukui Prefectural University , Fukui , Japan
| | - Atsushi Ishikawa
- a Department of Bioscience and Biotechnology , Fukui Prefectural University , Fukui , Japan
| |
Collapse
|