1
|
Transcriptomic analysis reveals the mechanism of the alleviation of salt stress by salicylic acid in pepper (Capsicum annuum L.). Mol Biol Rep 2022; 50:3593-3606. [PMID: 36418774 PMCID: PMC10042771 DOI: 10.1007/s11033-022-08064-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/28/2022] [Indexed: 11/26/2022]
Abstract
Abstract
Background
The growth and yield of pepper (Capsicum annuum L.) is often affected by the critical salt stress. Salicylic acid (SA) can improve plants’ stress tolerance by promoting growth and regulating ion absorption and transportation.
Methods and results
To uncover the alleviated mechanism of salt stress by SA in pepper, we conducted morphological, physiological, cytological, and transcriptomic analyses under a single SA treatment and NaCl with and without SA pre-treatment for 9 days. Seedlings under NaCl treatment showed yellow shrunken leaves, this tatus were alleviated by NS treatment (NaCl with SA pre-treatment). Compared with plants under NaCl treatment, those in the NS treatment showed reduced lipid peroxidation, and significantly increased contents of chlorophyll and osmotic regulators (proline, soluble sugars). Treatment with SA balanced the Na+/K+ ratio. We conducted transcriptome sequencing and identified differentially expressed genes (DEGs) contributing to alleviation of salt stress by SA in pepper. Besides photosynthesis related genes, GO and KEGG analyses revealed that the DEGs were enriched in ‘sequence-specific DNA binding’, ‘transcription regulator activity’ and ‘DNA binding transcription factor activity’ by GO terms. And our results showed that TFs, such as MYB, bZIP, BBX, AP2/ERF, NAC, etc., probably make a great contribution in the alleviation of salt stress by SA.
Conclusions
These results reveal that SA can improve plants’ stress tolerance by balancing ion absorption, gene expression and transcriptional regulation, which provide new ideas and resources for subsequent research on the mechanism of salt tolerance in pepper.
Collapse
|
2
|
Ou X, Wang Y, Li J, Zhang J, Xie Z, He B, Jiang Z, Wang Y, Su W, Song S, Hao Y, Chen R. Genome-wide identification of the KNOTTED HOMEOBOX gene family and their involvement in stalk development in flowering Chinese cabbage. FRONTIERS IN PLANT SCIENCE 2022; 13:1019884. [PMID: 36438132 PMCID: PMC9686407 DOI: 10.3389/fpls.2022.1019884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Gibberellin and cytokinin synergistically regulate the stalk development in flowering Chinese cabbage. KNOX proteins were reported to function as important regulators of the shoot apex to promote meristem activity by synchronously inducing CTK and suppressing GA biosynthesis, while their regulatory mechanism in the bolting and flowering is unknown. In this study, 9 BcKNOX genes were identified and mapped unevenly on 6 out of 10 flowering Chinese cabbage chromosomes. The BcKNOXs were divided into three subfamilies on the basis of sequences and gene structure. The proteins contain four conserved domains except for BcKNATM. Three BcKNOX TFs (BcKNOX1, BcKNOX3, and BcKNOX5) displayed high transcription levels on tested tissues at various stages. The major part of BcKNOX genes showed preferential expression patterns in response to low-temperature, zeatin (ZT), and GA3 treatment, indicating that they were involved in bud differentiation and bolting. BcKNOX1 and BcKNOX5 showed high correlation level with gibberellins synthetase, and CTK metabolic genes. BcKONX1 also showed high correlation coefficients within BcRGA1 and BcRGL1 which are negative regulators of GA signaling. In addition, BcKNOX1 interacted with BcRGA1 and BcRGL1, as confirmed by yeast two-hybrid (Y2H) and biomolecular fluorescence complementation assay (BiFC). This analysis has provided useful foundation for the future functional roles' analysis of flowering Chinese cabbage KNOX genes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Yanwei Hao
- *Correspondence: Yanwei Hao, ; Riyuan Chen,
| | | |
Collapse
|
3
|
Wang H, Tong X, Tang L, Wang Y, Zhao J, Li Z, Liu X, Shu Y, Yin M, Adegoke TV, Liu W, Wang S, Xu H, Ying J, Yuan W, Yao J, Zhang J. RLB (RICE LATERAL BRANCH) recruits PRC2-mediated H3K27 tri-methylation on OsCKX4 to regulate lateral branching. PLANT PHYSIOLOGY 2022; 188:460-476. [PMID: 34730827 PMCID: PMC8774727 DOI: 10.1093/plphys/kiab494] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 09/24/2021] [Indexed: 05/26/2023]
Abstract
Lateral branches such as shoot and panicle are determining factors and target traits for rice (Oryza sativa L.) yield improvement. Cytokinin promotes rice lateral branching; however, the mechanism underlying the fine-tuning of cytokinin homeostasis in rice branching remains largely unknown. Here, we report the map-based cloning of RICE LATERAL BRANCH (RLB) encoding a nuclear-localized, KNOX-type homeobox protein from a rice cytokinin-deficient mutant showing more tillers, sparser panicles, defected floret morphology as well as attenuated shoot regeneration from callus. RLB directly binds to the promoter and represses the transcription of OsCKX4, a cytokinin oxidase gene with high abundance in panicle branch meristem. OsCKX4 over-expression lines phenocopied rlb, which showed upregulated OsCKX4 levels. Meanwhile, RLB physically binds to Polycomb repressive complex 2 (PRC2) components OsEMF2b and co-localized with H3K27me3, a suppressing histone modification mediated by PRC2, in the OsCKX4 promoter. We proposed that RLB recruits PRC2 to the OsCKX4 promoter to epigenetically repress its transcription, which suppresses the catabolism of cytokinin, thereby promoting rice lateral branching. Moreover, antisense inhibition of OsCKX4 under the LOG promoter successfully increased panicle size and spikelet number per plant without affecting other major agronomic traits. This study provides insight into cytokinin homeostasis, lateral branching in plants, and also promising target genes for rice genetic improvement.
Collapse
Affiliation(s)
- Huimei Wang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China
| | - Xiaohong Tong
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China
| | - Liqun Tang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China
| | - Yifeng Wang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China
| | - Juan Zhao
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China
| | - Zhiyong Li
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China
| | - Xixi Liu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China
| | - Yazhou Shu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China
| | - Man Yin
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China
| | - Tosin Victor Adegoke
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China
| | - Wanning Liu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China
| | - Shuang Wang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China
| | - Huayu Xu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China
| | - Jiezheng Ying
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China
| | - Wenya Yuan
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Jialing Yao
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jian Zhang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China
| |
Collapse
|
4
|
Lebedeva M, Azarakhsh M, Sadikova D, Lutova L. At the Root of Nodule Organogenesis: Conserved Regulatory Pathways Recruited by Rhizobia. PLANTS (BASEL, SWITZERLAND) 2021; 10:2654. [PMID: 34961125 PMCID: PMC8705049 DOI: 10.3390/plants10122654] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/28/2021] [Accepted: 11/30/2021] [Indexed: 05/13/2023]
Abstract
The interaction between legume plants and soil bacteria rhizobia results in the formation of new organs on the plant roots, symbiotic nodules, where rhizobia fix atmospheric nitrogen. Symbiotic nodules represent a perfect model to trace how the pre-existing regulatory pathways have been recruited and modified to control the development of evolutionary "new" organs. In particular, genes involved in the early stages of lateral root development have been co-opted to regulate nodule development. Other regulatory pathways, including the players of the KNOX-cytokinin module, the homologues of the miR172-AP2 module, and the players of the systemic response to nutrient availability, have also been recruited to a unique regulatory program effectively governing symbiotic nodule development. The role of the NIN transcription factor in the recruitment of such regulatory modules to nodulation is discussed in more details.
Collapse
Affiliation(s)
- Maria Lebedeva
- Department of Genetics and Biotechnology, Saint Petersburg State University, Universitetskaya emb.7/9, 199034 Saint Petersburg, Russia; (D.S.); (L.L.)
- Center for Genetic Technologies, N. I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR), 190000 Saint Petersburg, Russia
| | - Mahboobeh Azarakhsh
- Cell and Molecular Biology Department, Kosar University of Bojnord, 9415615458 Bojnord, Iran;
| | - Darina Sadikova
- Department of Genetics and Biotechnology, Saint Petersburg State University, Universitetskaya emb.7/9, 199034 Saint Petersburg, Russia; (D.S.); (L.L.)
- Center for Genetic Technologies, N. I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR), 190000 Saint Petersburg, Russia
| | - Lyudmila Lutova
- Department of Genetics and Biotechnology, Saint Petersburg State University, Universitetskaya emb.7/9, 199034 Saint Petersburg, Russia; (D.S.); (L.L.)
- Center for Genetic Technologies, N. I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR), 190000 Saint Petersburg, Russia
| |
Collapse
|
5
|
Ma L, Liu Z, Cheng Z, Gou J, Chen J, Yu W, Wang P. Identification and Application of BhAPRR2 Controlling Peel Colour in Wax Gourd ( Benincasa hispida). FRONTIERS IN PLANT SCIENCE 2021; 12:716772. [PMID: 34659288 PMCID: PMC8517133 DOI: 10.3389/fpls.2021.716772] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 08/26/2021] [Indexed: 05/24/2023]
Abstract
Peel color is an important factor affecting commodity quality in vegetables; however, the genes controlling this trait remain unclear in wax gourd. Here, we used two F2 genetic segregation populations to explore the inheritance patterns and to clone the genes associated with green and white skin in wax gourd. The F2 and BC1 trait segregation ratios were 3:1 and 1:1, respectively, and the trait was controlled by nuclear genes. Bulked segregant analysis of both F2 plants revealed peaks on Chr5 exceeding the confidence interval. Additionally, 6,244 F2 plants were used to compress the candidate interval into a region of 179 Kb; one candidate gene, Bch05G003950 (BhAPRR2), encoding two-component response regulator-like protein Arabidopsis pseudo-response regulator2 (APRR2), which is involved in the regulation of peel color, was present in this interval. Two bases (GA) present in the coding sequence of BhAPRR2 in green-skinned wax gourd were absent from white-skinned wax gourd. The latter contained a frameshift mutation, a premature stop codon, and lacked 335 residues required for the protein functional region. The chlorophyll content and BhAPRR2 expression were significantly higher in green-skinned than in white-skinned wax gourd. Thus, BhAPRR2 may regulate the peel color of wax gourd. This study provides a theoretical foundation for further studies of the mechanism of gene regulation for the fruit peel color of wax gourd.
Collapse
Affiliation(s)
- Lianlian Ma
- College of Agriculture, Guangxi University, Nanning, China
| | - Zhengguo Liu
- College of Agriculture, Guangxi University, Nanning, China
| | - Zhikui Cheng
- College of Agriculture, Guangxi University, Nanning, China
| | - Jiquan Gou
- College of Agriculture, Guangxi University, Nanning, China
| | - Jieying Chen
- College of Agriculture, Guangxi University, Nanning, China
| | - Wenjin Yu
- College of Agriculture, Guangxi University, Nanning, China
| | - Peng Wang
- College of Agriculture, Guangxi University, Nanning, China
- Institute of Vegetable Research, Guangxi Academy of Agricultural Sciences, Nanning, China
| |
Collapse
|
6
|
Al-Arjani ABF, Hashem A, Abd_Allah EF. Arbuscular mycorrhizal fungi modulates dynamics tolerance expression to mitigate drought stress in Ephedra foliata Boiss. Saudi J Biol Sci 2020; 27:380-394. [PMID: 31889861 PMCID: PMC6933241 DOI: 10.1016/j.sjbs.2019.10.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 10/13/2019] [Accepted: 10/20/2019] [Indexed: 01/19/2023] Open
Abstract
Arbuscular mycorrhizal fungi (AMF) are one of the most important drivers of soil ecosystem dynamics. AMF have the potential to improve plant growth and development by modulating key hormonal pathways, which result in decreasing the adverse impact of abiotic stress, such as drought. Pot experiments were conducted in this study to investigate the ability of AMF to ameliorate the adverse impact of drought in Ephedra foliate. Non-inoculated AMF E. foliate (Ef) plants, exhibited reduced growth in response to drought stress with a concomitant lowering of chlorophyll pigments, relative to non-stressed and AMF inoculated plant. AMF inoculated E. foliate showed improved nitrogen metabolism by positively regulating nitrate and nitrite reductase activity which results in greater ammonium availability for the synthesis of amino acids. Inoculation with AMF also increased antioxidant enzyme activity, ascorbic acid contents, and reduction in glutathione level. This resulted in significant amelioration of oxidative damage to plant membranes by restricting the excess generation of reactive oxygen species (ROS), such as hydrogen peroxide. Greater content of proline, glucose, and total soluble protein in AMF-inoculated plants provided further benefit to E. foliate plants and their ability to withstand drought stress, and also evident by a greater level of sucrose phosphate synthase activity. AMF significantly enhanced the uptake of essential nutrients like K, Mg, and Ca. Importantly, higher concentrations of plant hormones, including indole acetic acid (IAA), indole butyric acid (IBA), gibberellic acid (GA), and abscisic acid (ABA), were maintained in AMF-inoculated Ef plants. AMF inoculation also boosted phosphorous metabolism by increasing alkaline and acid phosphatase enzyme activity. In summary, AMF-inoculation of Ef plants significantly reduced the deleterious effect of drought stress by up-regulating the antioxidant defense system, synthesis of osmolytes, and maintaining phytohormone levels.
Collapse
Affiliation(s)
- Al-Bandari Fahad Al-Arjani
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| | - Abeer Hashem
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
- Mycology and Plant Disease Survey Department, Plant Pathology Research Institute, ARC, Giza 12511, Egypt
| | - Elsayed Fathi Abd_Allah
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| |
Collapse
|
7
|
Hashem A, Abd_Allah EF, Alqarawi AA, Wirth S, Egamberdieva D. Comparing symbiotic performance and physiological responses of two soybean cultivars to arbuscular mycorrhizal fungi under salt stress. Saudi J Biol Sci 2019; 26:38-48. [PMID: 30622405 PMCID: PMC6319201 DOI: 10.1016/j.sjbs.2016.11.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 11/18/2016] [Accepted: 11/21/2016] [Indexed: 11/18/2022] Open
Abstract
The presented experiments evaluated the symbiotic performance of soybean genotypes with contrasting salt stress tolerance to arbuscular mycorrhizal fungi (AMF) inoculation. In addition, the physiological stress tolerance mechanisms in plants derived from mutualistic interactions between AMF and the host plants were evaluated. Plant growth, nodulation, nitrogenase activity and levels of endogenous growth hormones, such as indole acetic acid and indole butyric acid, of salt-tolerant and salt-sensitive soybean genotypes significantly decreased at 200 mM NaCl. The inoculation of soybean with AMF improved the symbiotic performance of both soybean genotypes by improving nodule formation, leghemoglobin content, nitrogenase activity and auxin synthesis. AMF colonization also protected soybean genotypes from salt-induced membrane damage and reduced the production of hydrogen peroxide, subsequently reducing the production of TBARS and reducing lipid peroxidation. In conclusion, the results of the present investigation indicate that AMF improve the symbiotic performance of soybean genotypes regardless of their salt stress tolerance ability by mitigating the negative effect of salt stress and stimulating endogenous level of auxins that contribute to an improved root system and nutrient acquisition under salt stress.
Collapse
Affiliation(s)
- Abeer Hashem
- Botany and Microbiology Department, Faculty of Science, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
- Mycology and Plant Disease Survey Department, Plant Pathology Research Institute, Agriculture Research Center, Giza 12511, Egypt
| | - Elsayed Fathi Abd_Allah
- Plant Production Department, Faculty of Food & Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
- Seed Pathology Department, Plant Pathology Research Institute, Agriculture Research Center, Giza 12511, Egypt
| | - Abdulaziz A. Alqarawi
- Plant Production Department, Faculty of Food & Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| | - Stephan Wirth
- Institute of Landscape Biogeochemistry, Leibniz Centre for Agricultural Landscape Research (ZALF), 15374 Müncheberg, Germany
| | - Dilfuza Egamberdieva
- Institute of Landscape Biogeochemistry, Leibniz Centre for Agricultural Landscape Research (ZALF), 15374 Müncheberg, Germany
| |
Collapse
|
8
|
Naruse M, Takahashi H, Kurata N, Ito Y. Cytokinin-induced expression of OSH1 in a shoot-regenerating rice callus. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2018; 35:267-272. [PMID: 31819732 PMCID: PMC6879368 DOI: 10.5511/plantbiotechnology.18.0614a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 06/14/2018] [Indexed: 06/10/2023]
Abstract
The expression of a KNOX class 1 gene OSH1 is induced by cytokinin during regeneration of shoots from callus in Oryza sativa L. (rice). This cytokinin-induced expression was enhanced by overexpression of homologues of cytokinin-signalling phosphorelay genes such as a histidine kinase gene OHK3, a phosphotransmitter gene OHP2 and a response regulator gene ORR1 in cultured cells. Regionally overlapped expression of these genes and OSH1 was observed in shoot apex. These results suggest that these cytokinin-signalling genes are positive regulators of the expression of OSH1, and mediate the OSH expression upon shoot regeneration from callus in rice.
Collapse
Affiliation(s)
- Masashi Naruse
- Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki Aza Aoba, Aoba-ku, Sendai 980-8572, Japan
| | - Honami Takahashi
- Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki Aza Aoba, Aoba-ku, Sendai 980-8572, Japan
| | - Nori Kurata
- National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540, Japan
| | - Yukihiro Ito
- Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki Aza Aoba, Aoba-ku, Sendai 980-8572, Japan
| |
Collapse
|
9
|
Hashem A, Alqarawi AA, Radhakrishnan R, Al-Arjani ABF, Aldehaish HA, Egamberdieva D, Abd_Allah EF. Arbuscular mycorrhizal fungi regulate the oxidative system, hormones and ionic equilibrium to trigger salt stress tolerance in Cucumis sativus L. Saudi J Biol Sci 2018; 25:1102-1114. [PMID: 30174509 PMCID: PMC6117372 DOI: 10.1016/j.sjbs.2018.03.009] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 02/28/2018] [Accepted: 03/18/2018] [Indexed: 11/20/2022] Open
Abstract
Arbuscular mycorrhizal fungi (AMF) association increases plant stress tolerance. This study aimed to determine the mitigation effect of AMF on the growth and metabolic changes of cucumbers under adverse impact of salt stress. Salinity reduced the water content and synthesis of pigments. However, AMF inoculation ameliorated negative effects by enhancing the biomass, synthesis of pigments, activity of antioxidant enzymes, including superoxide dismutase, catalase, ascorbate peroxidase and glutathione reductase, and the content of ascorbic acid, which might be the result of lower level lipid peroxidation and electrolyte leakage. An accumulation of phenols and proline in AMF-inoculated plants also mediated the elimination of superoxide radicals. In addition, jasmonic acid, salicylic acid and several important mineral elements (K, Ca, Mg, Zn, Fe, Mn and Cu) were enhanced with significant reductions in the uptake of deleterious ions like Na+. These results suggested that AMF can protect cucumber growth from salt stress.
Collapse
Affiliation(s)
- Abeer Hashem
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box. 2460, Riyadh 11451, Saudi Arabia
- Mycology and Plant Disease Survey Department, Plant Pathology Research Institute, ARC, Giza 12511, Egypt
| | - Abdulaziz A. Alqarawi
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box. 2460, Riyadh 11451, Saudi Arabia
| | | | - Al-Bandari Fahad Al-Arjani
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box. 2460, Riyadh 11451, Saudi Arabia
| | - Horiah Abdulaziz Aldehaish
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box. 2460, Riyadh 11451, Saudi Arabia
| | | | - Elsayed Fathi Abd_Allah
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box. 2460, Riyadh 11451, Saudi Arabia
| |
Collapse
|
10
|
Liu Y, Liu D, Khan AR, Liu B, Wu M, Huang L, Wu J, Song G, Ni H, Ying H, Yu H, Gan Y. NbGIS regulates glandular trichome initiation through GA signaling in tobacco. PLANT MOLECULAR BIOLOGY 2018; 98:153-167. [PMID: 30171399 DOI: 10.1007/s11103-018-0772-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 08/22/2018] [Indexed: 06/08/2023]
Abstract
KEY MESSAGE A novel gene NbGIS positively regulates glandular trichome initiation through GA Signaling in tobacco. NbMYB123-like regulates glandular trichome initiation by acting downstream of NbGIS in tobacco. Glandular trichome is a specialized multicellular structure which has capability to synthesize and secrete secondary metabolites and protects plants from biotic and abiotic stresses. Our previous results revealed that a C2H2 zinc-finger transcription factor GIS and its sub-family genes act upstream of GL3/EGL3-GL1-TTG1 transcriptional activator complex to regulate trichome initiation in Arabidopsis. In this present study, we found that NbGIS could positively regulate glandular trichome development in Nicotiana benthamiana (tobacco). Our result demonstrated that 35S:NbGIS lines exhibited much higher densities of trichome on leaves, main stems, lateral branches and sepals than WT plants, while NbGIS:RNAi lines had the opposite phenotypes. Furthermore, our results also showed that NbGIS was required in response to GA signal to control glandular trichome initiation in Nicotiana benthamiana. In addition, our results also showed that NbGIS significantly influenced GA accumulation and expressions of marker genes of the GA biosynthesis, might result in the changes of growth and maturation in tobacco. Lastly, our results also showed that NbMYB123-like regulated glandular trichome initiation in tobacco by acting downstream of NbGIS. These findings provide new insights to discover the molecular mechanism by which C2H2 transcriptional factors regulates glandular trichome initiation through GA signaling pathway in tobacco.
Collapse
Affiliation(s)
- Yihua Liu
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Dongdong Liu
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Ali Raza Khan
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Bohan Liu
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Minjie Wu
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Linli Huang
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Junyu Wu
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Ge Song
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Hongwei Ni
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Haiming Ying
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Hao Yu
- Department of Biological Sciences and Temasek Life Sciences Laboratory, National University of Singapore, Singapore, 117543, Singapore
| | - Yinbo Gan
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China.
| |
Collapse
|
11
|
Šiukšta R, Vaitkūnienė V, Rančelis V. Is auxin involved in the induction of genetic instability in barley homeotic double mutants? PLANTA 2018; 247:483-498. [PMID: 29080070 DOI: 10.1007/s00425-017-2802-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 10/24/2017] [Indexed: 06/07/2023]
Abstract
The triggers of genetic instability in barley homeotic double mutants are tweaky spike -type mutations associated with an auxin imbalance in separate spike phytomeres. Barley homeotic tweaky spike;Hooded (tw;Hd) double mutants are characterized by an inherited instability of spike and flower development, which is absent in the single parental constituents. The aim of the present study was to show that the trigger of genetic instability in the double mutants is the tw mutations, which are associated with an auxin imbalance in the developing spikes. Their pleiotropic effects on genes related to spike/flower development may cause the genetic instability of double mutants. The study of four double-mutant groups composed of different mutant alleles showed that the instability arose only if the mutant allele tw was a constituent of the double mutants. Application of auxin inhibitors and 2,4-dichlorophenoxyacetic acid (2,4-D) demonstrated the relationship of the instability of the double mutants and the phenotype of the tw mutants to auxin imbalance. 2,4-D induced phenocopies of the tw mutation in wild-type plants and rescued the phenotypes of three allelic tw mutants. The differential display (dd-PCR) method allowed the identification of several putative candidate genes in tw that may be responsible for the initiation of instability in the double mutants by pleiotropic variations of their expression in the tw mutant associated with auxin imbalance in the developing spikes. The results of the present study linked the genetic instability of homeotic double mutants with an auxin imbalance caused by one of the constituents (tw). The genetic instability of the double mutants in relation to auxin imbalance was studied for the first time. A matrocliny on instability expression was also observed.
Collapse
Affiliation(s)
- Raimondas Šiukšta
- Life Sciences Centre, Institute of Biosciences, Vilnius University, Saulėtekis Ave. 7, 10257, Vilnius, Lithuania.
- Botanical Garden of Vilnius University, Kairėnai Str. 43, 10239, Vilnius, Lithuania.
| | - Virginija Vaitkūnienė
- Life Sciences Centre, Institute of Biosciences, Vilnius University, Saulėtekis Ave. 7, 10257, Vilnius, Lithuania
- Botanical Garden of Vilnius University, Kairėnai Str. 43, 10239, Vilnius, Lithuania
| | - Vytautas Rančelis
- Life Sciences Centre, Institute of Biosciences, Vilnius University, Saulėtekis Ave. 7, 10257, Vilnius, Lithuania
| |
Collapse
|
12
|
Meng LS, Cao XY, Liu MQ, Jiang JH. The antagonistic or synchronous relationship between ASL/LBD and KNOX homeobox members. Biologia (Bratisl) 2017. [DOI: 10.1515/biolog-2017-0058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
13
|
Sarwat M, Hashem A, Ahanger MA, Abd_Allah EF, Alqarawi AA, Alyemeni MN, Ahmad P, Gucel S. Mitigation of NaCl Stress by Arbuscular Mycorrhizal Fungi through the Modulation of Osmolytes, Antioxidants and Secondary Metabolites in Mustard (Brassica juncea L.) Plants. FRONTIERS IN PLANT SCIENCE 2016; 7:869. [PMID: 27458462 PMCID: PMC4931734 DOI: 10.3389/fpls.2016.00869] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Accepted: 06/02/2016] [Indexed: 05/03/2023]
Abstract
Present work was carried out to investigate the possible role of arbuscular mycorrhizal fungi (AMF) in mitigating salinity-induced alterations in Brassica juncea L. Exposure to NaCl stress altered the morphological, physio-biochemical attributes, antioxidant activity, secondary metabolites and phytohormones in the mustard seedlings. The growth and biomass yield, leaf water content, and total chlorophyll content were decreased with NaCl stress. However, AMF-inoculated plants exhibited enhanced shoot and root length, elevated relative water content, enhanced chlorophyll content, and ultimately biomass yield. Lipid peroxidation and proline content were increased by 54.53 and 63.47%, respectively with 200 mM NaCl concentration. Further increase in proline content and decrease in lipid peroxidation was observed in NaCl-treated plants inoculated with AMF. The antioxidants, superoxide dismutase, ascorbate peroxidase, glutathione reductase, and reduced glutathione were increased by 48.35, 54.86, 43.85, and 44.44%, respectively, with 200 mM NaCl concentration. Further increase in these antioxidants has been observed in AMF-colonized plants indicating the alleviating role of AMF to salinity stress through antioxidant modulation. The total phenol, flavonoids, and phytohormones increase with NaCl treatment. However, NaCl-treated plants colonized with AMF showed further increase in the above parameters except ABA, which was reduced with NaCl+AMF treatment over the plants treated with NaCl alone. Our results demonstrated that NaCl caused negative effect on B. juncea seedlings; however, colonization with AMF enhances the NaCl tolerance by reforming the physio-biochemical attributes, activities of antioxidant enzymes, and production of secondary metabolites and phytohormones.
Collapse
Affiliation(s)
- Maryam Sarwat
- Department of Pharmaceutical Biotechnology, Amity Institute of Pharmacy, Amity UniversityNoida, India
| | - Abeer Hashem
- Mycology and Plant Disease Survey Department, Plant Pathology Research Institute, Agriculture Research CenterGiza, Egypt
- Botany and Microbiology Department, College of Science, King Saud UniversityRiyadh, Saudi Arabia
| | - Mohammad A. Ahanger
- Stress Physiology Laboratory, Department of Botany, Jiwaji UniversityGwalior, India
| | - Elsayed F. Abd_Allah
- Plant Production Department, College of Food and Agricultural Sciences, King Saud UniversityRiyadh, Saudi Arabia
| | - A. A. Alqarawi
- Plant Production Department, College of Food and Agricultural Sciences, King Saud UniversityRiyadh, Saudi Arabia
| | - Mohammed N. Alyemeni
- Botany and Microbiology Department, College of Science, King Saud UniversityRiyadh, Saudi Arabia
| | - Parvaiz Ahmad
- Botany and Microbiology Department, College of Science, King Saud UniversityRiyadh, Saudi Arabia
- Department of Botany, Sri Pratap CollegeSrinagar, India
| | - Salih Gucel
- Centre for Environmental Research, Near East UniversityNicosia, Cyprus
| |
Collapse
|
14
|
Misra RC, Garg A, Roy S, Chanotiya CS, Vasudev PG, Ghosh S. Involvement of an ent-copalyl diphosphate synthase in tissue-specific accumulation of specialized diterpenes in Andrographis paniculata. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 240:50-64. [PMID: 26475187 DOI: 10.1016/j.plantsci.2015.08.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Revised: 08/13/2015] [Accepted: 08/22/2015] [Indexed: 05/24/2023]
Abstract
Ent-labdane-related diterpene (ent-LRD) specialized (i.e. secondary) metabolites of the medicinal plant kalmegh (Andrographis paniculata) have long been known for several pharmacological activities. However, our understanding of the ent-LRD biosynthetic pathway has remained largely incomplete. Since ent-LRDs accumulate in leaves, we carried out a comparative transcriptional analysis using leaf and root tissues, and identified 389 differentially expressed transcripts, including 223 transcripts that were preferentially expressed in leaf tissue. Analysis of the transcripts revealed various specialized metabolic pathways, including transcripts of the ent-LRD biosynthetic pathway. Two class II diterpene synthases (ApCPS1 and ApCPS2) along with one (ApCPS1') and two (ApCPS2' and ApCPS2″) transcriptional variants that were the outcomes of alternative splicing of the precursor mRNA and alternative transcriptional termination, respectively, were identified. ApCPS1 and ApCPS2 encode for 832- and 817-amino acids proteins, respectively, and are phylogenetically related to the dicotyledons ent-copalyl diphosphate synthases (ent-CPSs). The spatio-temporal patterns of ent-LRD metabolites accumulation and gene expression suggested a likely role for ApCPS1 in general (i.e. primary) metabolism, perhaps by providing precursor for the biosynthesis of phytohormone gibberellin (GA). However, ApCPS2 is potentially involved in tissue-specific accumulation of ent-LRD specialized metabolites. Bacterially expressed recombinant ApCPS2 catalyzed the conversion of (E,E,E)-geranylgeranyl diphosphate (GGPP), the general precursor of diterpenes to ent-copalyl diphosphate (ent-CPP), the precursor of ent-LRDs. Taken together, these results advance our understanding of the tissue-specific accumulation of specialized ent-LRDs of medicinal importance.
Collapse
Affiliation(s)
- Rajesh Chandra Misra
- Biotechnology Division, Council of Scientific and Industrial Research-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, India
| | - Anchal Garg
- Biotechnology Division, Council of Scientific and Industrial Research-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, India
| | - Sudeep Roy
- Biotechnology Division, Council of Scientific and Industrial Research-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, India
| | - Chandan Singh Chanotiya
- Chemical Sciences Division, Council of Scientific and Industrial Research-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, India
| | - Prema G Vasudev
- Metabolic and Structural Biology Division, Council of Scientific and Industrial Research-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, India
| | - Sumit Ghosh
- Biotechnology Division, Council of Scientific and Industrial Research-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, India.
| |
Collapse
|
15
|
Cho WK, Lian S, Kim SM, Seo BY, Jung JK, Kim KH. Time-Course RNA-Seq Analysis Reveals Transcriptional Changes in Rice Plants Triggered by Rice stripe virus Infection. PLoS One 2015; 10:e0136736. [PMID: 26305329 PMCID: PMC4549299 DOI: 10.1371/journal.pone.0136736] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 08/04/2015] [Indexed: 12/31/2022] Open
Abstract
Rice stripe virus (RSV) has become a major pathogen of rice. To determine how the rice transcriptome is modified in response to RSV infection, we used RNA-Seq to perform a genome-wide gene expression analysis of a susceptible rice cultivar. The transcriptomes of RSV-infected samples were compared to those of mock-treated samples at 3, 7, and 15 days post-infection (dpi). From 8 to 11% of the genes were differentially expressed (>2-fold difference in expression) in RSV-infected vs. noninfected rice. Among them, 532 genes were differentially expressed at all three time points. Surprisingly, 37.6% of the 532 genes are related to transposons. Gene ontology enrichment analysis revealed that many chloroplast genes were down-regulated in infected plants at 3 and 15 dpi. Expression of genes associated with cell differentiation and flowering was significantly down-regulated in infected plants at 15 dpi. In contrast, most of the up-regulated genes in infected plants concern the cell wall, plasma membrane, and vacuole and are known to function in various metabolic pathways and stress responses. In addition, transcripts of diverse transcription factors gradually accumulated in infected plants with increasing infection time. We also confirmed that the expression of gene subsets (including NBS-LRR domain-containing genes, receptor-like kinase genes, and genes involving RNA silencing) was changed by RSV infection. Taken together, we demonstrated that down-regulation of genes related to photosynthesis and flowering was strongly associated with disease symptoms caused by RSV and that up-regulation of genes involved in metabolic pathways, stress responses, and transcription was related to host defense mechanisms.
Collapse
Affiliation(s)
- Won Kyong Cho
- Department of Agricultural Biotechnology and Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, 151–921, Republic of Korea
| | - Sen Lian
- Department of Agricultural Biotechnology and Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, 151–921, Republic of Korea
| | - Sang-Min Kim
- Department of Agricultural Biotechnology and Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, 151–921, Republic of Korea
| | - Bo Yoon Seo
- Crop Protection Division, National Academy of Agricultural Science, RDA, Suwon, 441–707, Republic of Korea
| | - Jin Kyo Jung
- Crop Environment Research Division, National Institute of Crop Science, RDA, Suwon, 441–857, Republic of Korea
| | - Kook-Hyung Kim
- Department of Agricultural Biotechnology and Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, 151–921, Republic of Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 151–921, Republic of Korea
- * E-mail:
| |
Collapse
|
16
|
Abd_Allah EF, Hashem A, Alqarawi AA, Bahkali AH, Alwhibi MS. Enhancing growth performance and systemic acquired resistance of medicinal plant Sesbania sesban (L.) Merr using arbuscular mycorrhizal fungi under salt stress. Saudi J Biol Sci 2015; 22:274-83. [PMID: 25972748 PMCID: PMC4423721 DOI: 10.1016/j.sjbs.2015.03.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 03/07/2015] [Accepted: 03/09/2015] [Indexed: 11/30/2022] Open
Abstract
Pot experiments were conducted to evaluate the damaging effects of salinity on Sesbania sesban plants in the presence and absence of arbuscular mycorrhizal fungi (AMF). The selected morphological, physiological and biochemical parameters of S. sesban were measured. Salinity reduced growth and chlorophyll content drastically while as AMF inoculated plants improved growth. A decrease in the number of nodules, nodule weight and nitrogenase activity was also evident due to salinity stress causing reduction in nitrogen fixation and assimilation potential. AMF inoculation increased these parameters and also ameliorated the salinity stress to some extent. Antioxidant enzymes like superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX) and glutathione reductase (GR) as well as non enzymatic antioxidants (ascorbic acid and glutathione) also exhibited great variation with salinity treatment. Salinity caused great alterations in the endogenous levels of growth hormones with abscisic acid showing increment. AMF inoculated plants maintained higher levels of growth hormones and also allayed the negative impact of salinity.
Collapse
Affiliation(s)
- Elsayed Fathi Abd_Allah
- Department of Plant Production, Faculty of Food & Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abeer Hashem
- Botany and Microbiology Department, Faculty of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdulaziz Abdullah Alqarawi
- Department of Plant Production, Faculty of Food & Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ali Hassan Bahkali
- Botany and Microbiology Department, Faculty of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mona S. Alwhibi
- Botany and Microbiology Department, Faculty of Science, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
17
|
Farquharson KL. A rice KNOX transcription factor represses brassinosteroid production in the shoot apical meristem. THE PLANT CELL 2014; 26:3469. [PMID: 25228344 PMCID: PMC4213171 DOI: 10.1105/tpc.114.131698] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
|
18
|
Wang GK, Zhang M, Gong JF, Guo QF, Feng YN, Wang W. Increased gibberellin contents contribute to accelerated growth and development of transgenic tobacco overexpressing a wheat ubiquitin gene. PLANT CELL REPORTS 2012; 31:2215-27. [PMID: 22926030 DOI: 10.1007/s00299-012-1331-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Revised: 06/28/2012] [Accepted: 08/02/2012] [Indexed: 05/11/2023]
Abstract
KEY MESSAGE Overexpressing TaUb2 promoted stem growth and resulted in early flowering in transgenic tobacco plants. Ubiquitin are involved in the production, metabolism and proper function of gibberellin. The ubiquitin-26S proteasome system (UPS), in which ubiquitin (Ub) functions as a marker, is a post-translational regulatory system that plays a prominent role in various biological processes. To investigate the impact of different Ub levels on plant growth and development, transgenic tobacco (Nicotiana tabacum L.) plants were engineered to express an Ub gene (TaUb2) from wheat (Triticum aestivum L.) under the control of cauliflower mosaic virus 35S promoter. Transgenic tobacco plants overexpressing TaUb2 demonstrated an accelerated growth rate at early stage and an early flowering phenotype in development. The preceding expression of MADS-box genes also corresponded to the accelerated developmental phenotypes of the transgenic tobacco plants compared to that of wild-type (WT). Total gibberellin (GA) and active GA contents in transgenic tobacco plants were higher than those in WT at the corresponding developmental stages, and some GA metabolism genes were upregulated. Treatment with GA(3) conferred a similarly accelerated grown rate in WT plants to that of transgenic tobacco plants, while growth was inhibited when transgenic tobacco plants were treated with a GA biosynthesis inhibitor. Thus, the results suggest that Ub are involved in the production, metabolism and proper function of GA, which is important in the regulation of plant growth and development.
Collapse
Affiliation(s)
- Guo-Kun Wang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, Shandong, People's Republic of China
| | | | | | | | | | | |
Collapse
|
19
|
De-la-Peña C, Nic-Can G, Ojeda G, Herrera-Herrera JL, López-Torres A, Wrobel K, Robert-Díaz ML. KNOX1 is expressed and epigenetically regulated during in vitro conditions in Agave spp. BMC PLANT BIOLOGY 2012; 12:203. [PMID: 23126409 PMCID: PMC3541254 DOI: 10.1186/1471-2229-12-203] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Accepted: 10/23/2012] [Indexed: 05/07/2023]
Abstract
BACKGROUND The micropropagation is a powerful tool to scale up plants of economical and agronomical importance, enhancing crop productivity. However, a small but growing body of evidence suggests that epigenetic mechanisms, such as DNA methylation and histone modifications, can be affected under the in vitro conditions characteristic of micropropagation. Here, we tested whether the adaptation to different in vitro systems (Magenta boxes and Bioreactors) modified epigenetically different clones of Agave fourcroydes and A. angustifolia. Furthermore, we assessed whether these epigenetic changes affect the regulatory expression of KNOTTED1-like HOMEOBOX (KNOX) transcription factors. RESULTS To gain a better understanding of epigenetic changes during in vitro and ex vitro conditions in Agave fourcroydes and A. angustifolia, we analyzed global DNA methylation, as well as different histone modification marks, in two different systems: semisolid in Magenta boxes (M) and temporary immersion in modular Bioreactors (B). No significant difference was found in DNA methylation in A. fourcroydes grown in either M or B. However, when A. fourcroydes was compared with A. angustifolia, there was a two-fold difference in DNA methylation between the species, independent of the in vitro system used. Furthermore, we detected an absence or a low amount of the repressive mark H3K9me2 in ex vitro conditions in plants that were cultured earlier either in M or B. Moreover, the expression of AtqKNOX1 and AtqKNOX2, on A. fourcroydes and A. angustifolia clones, is affected during in vitro conditions. Therefore, we used Chromatin ImmunoPrecipitation (ChIP) to know whether these genes were epigenetically regulated. In the case of AtqKNOX1, the H3K4me3 and H3K9me2 were affected during in vitro conditions in comparison with AtqKNOX2. CONCLUSIONS Agave clones plants with higher DNA methylation during in vitro conditions were better adapted to ex vitro conditions. In addition, A. fourcroydes and A. angustifolia clones displayed differential expression of the KNOX1 gene during in vitro conditions, which is epigenetically regulated by the H3K4me3 and H3K9me2 marks. The finding of an epigenetic regulation in key developmental genes will make it important in future studies to identify factors that help to find climate-resistant micropropagated plants.
Collapse
Affiliation(s)
- Clelia De-la-Peña
- Unidad Biotecnología, Centro de Investigación Científica de Yucatán, Calle 43 No. 130, Col. Chuburná de Hidalgo, Mérida, Yucatán, CP 97200, México
| | - Geovanny Nic-Can
- Campus de Ciencias Exactas e Ingeniería, Universidad Autónoma de Yucatán, Periférico Norte. Km 33.5, Tablaje catastral 13615 Col. Chuburná de Hidalgo Inn, Merida, Yucatán, C. P. 97203, Mexico
| | - Gabriel Ojeda
- Unidad Biotecnología, Centro de Investigación Científica de Yucatán, Calle 43 No. 130, Col. Chuburná de Hidalgo, Mérida, Yucatán, CP 97200, México
| | - José L Herrera-Herrera
- Unidad Biotecnología, Centro de Investigación Científica de Yucatán, Calle 43 No. 130, Col. Chuburná de Hidalgo, Mérida, Yucatán, CP 97200, México
| | | | - Kazimierz Wrobel
- Facultad de Química, Universidad de Guanajuato, Guanajuato, 36000, México
| | - Manuel L Robert-Díaz
- Unidad Biotecnología, Centro de Investigación Científica de Yucatán, Calle 43 No. 130, Col. Chuburná de Hidalgo, Mérida, Yucatán, CP 97200, México
| |
Collapse
|
20
|
Mauriat M, Sandberg LG, Moritz T. Proper gibberellin localization in vascular tissue is required to control auxin-dependent leaf development and bud outgrowth in hybrid aspen. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 67:805-16. [PMID: 21569133 DOI: 10.1111/j.1365-313x.2011.04635.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Bioactive gibberellins (GAs) are involved in many developmental aspects in the life cycle of plants, acting either directly or through interaction with other hormones. One way to study the role of GA in specific mechanisms is to modify the levels of bioactive GA in specific tissues. We increased GA catabolism in different parts of the vascular tissue by overexpressing two different GA 2-oxidase genes that encode oxidases with affinity for C₂₀- or C₁₉-GA. We show that, irrespective of their localization in the vascular tissue, the expression of different members of this gene family leads to similar modifications in the primary and secondary growth of the stem of hybrid aspen. We also show that the precise localization of bioactive GA downregulation is important for the proper control of other developmental aspects, namely leaf shape and bud dormancy. Expression under the control of one of the studied promoters significantly affected both the shape of the leaves and the number of sylleptic branches. These phenotypic defects were correlated with alterations in the levels and repartitioning of auxins. We conclude that a precise localization of bioactive GA in the vasculature of the apex is necessary for the normal development of the plant through the effect of GAs on auxin transport.
Collapse
Affiliation(s)
- Mélanie Mauriat
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-90187 Umeå, Sweden
| | | | | |
Collapse
|
21
|
Skylar A, Wu X. Regulation of meristem size by cytokinin signaling. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2011; 53:446-54. [PMID: 21554538 DOI: 10.1111/j.1744-7909.2011.01045.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The plant meristems possess unique features that involve maintaining the stem cell populations while providing cells for continued development. Although both the primary shoot apical meristem (SAM) and the root apical meristem (RAM) are specified during embryogenesis, post-embryonic tissue proliferation is required for their full establishment and maintenance throughout a plants' life. The phytohormone cytokinin (CK) interacts with other systemic signals and is a key regulator of meristem size and functions. The SAM and the RAM respond to CK stimulations in different manners: CK promotes tissue proliferation in the SAM through pathways dominated by homeobox transcription factors, including the class I KNOX genes, STIP, and WUS; and curiously, it favors proliferation at low levels and differentiation at a slightly higher concentration in the RAM instead. Here we review the current understanding of the molecular mechanisms underlying CK actions in regulating meristematic tissue proliferation.
Collapse
Affiliation(s)
- Anna Skylar
- Molecular and Computational Biology, University of Southern California, Los Angeles, USA
| | | |
Collapse
|
22
|
Müller D, Leyser O. Auxin, cytokinin and the control of shoot branching. ANNALS OF BOTANY 2011; 107:1203-12. [PMID: 21504914 PMCID: PMC3091808 DOI: 10.1093/aob/mcr069] [Citation(s) in RCA: 243] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
|
23
|
Srinivasan C, Liu Z, Scorza R. Ectopic expression of class 1 KNOX genes induce adventitious shoot regeneration and alter growth and development of tobacco (Nicotiana tabacum L) and European plum (Prunus domestica L). PLANT CELL REPORTS 2011; 30:655-64. [PMID: 21212958 DOI: 10.1007/s00299-010-0993-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Revised: 12/20/2010] [Accepted: 12/21/2010] [Indexed: 05/07/2023]
Abstract
Transgenic plants of tobacco (Nicotiana tabacum L) and European plum (Prunus domestica L) were produced by transforming with the apple class 1 KNOX genes (MdKN1 and MdKN2) or corn KNOX1 gene. Transgenic tobacco plants were regenerated in vitro from transformed leaf discs cultured in a medium lacking cytokinin. Ectopic expression of KNOX genes retarded shoot growth by suppressing elongation of internodes in transgenic tobacco plants. Expression of each of the three KNOX1 genes induced malformation and extensive lobbing in tobacco leaves. In situ regeneration of adventitious shoots was observed from leaves and roots of transgenic tobacco plants expressing each of the three KNOX genes. In vitro culture of leaf explants and internode sections excised from in vitro grown MdKN1 expressing tobacco shoots regenerated adventitious shoots on MS (Murashige and Skoog 1962) basal medium in the absence of exogenous cytokinin. Transgenic plum plants that expressed the MdKN2 or corn KNOX1 gene grew normally but MdKN1 caused a significant reduction in plant height, leaf shape and size and produced malformed curly leaves. A high frequency of adventitious shoot regeneration (96%) was observed in cultures of leaf explants excised from corn KNOX1-expressing transgenic plum shoots. In contrast to KNOX1-expressing tobacco, leaf and internode explants of corn KNOX1-expressing plum required synthetic cytokinin (thidiazuron) in the culture medium to induce adventitious shoot regeneration. The induction of high-frequency regeneration of adventitious shoots in vitro from leaves and stem internodal sections of plum through the ectopic expression of a KNOX1 gene is the first such report for a woody perennial fruit trees.
Collapse
Affiliation(s)
- C Srinivasan
- United States Department of Agriculture, Agricultural Research Service, Appalachian Fruit Research Station, 2217 Wiltshire Road, Kearneysville, WV 25430, USA.
| | | | | |
Collapse
|
24
|
Hu F, Wang D, Zhao X, Zhang T, Sun H, Zhu L, Zhang F, Li L, Li Q, Tao D, Fu B, Li Z. Identification of rhizome-specific genes by genome-wide differential expression analysis in Oryza longistaminata. BMC PLANT BIOLOGY 2011; 11:18. [PMID: 21261937 PMCID: PMC3036607 DOI: 10.1186/1471-2229-11-18] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Accepted: 01/24/2011] [Indexed: 05/04/2023]
Abstract
BACKGROUND Rhizomatousness is a key component of perenniality of many grasses that contribute to competitiveness and invasiveness of many noxious grass weeds, but can potentially be used to develop perennial cereal crops for sustainable farmers in hilly areas of tropical Asia. Oryza longistaminata, a perennial wild rice with strong rhizomes, has been used as the model species for genetic and molecular dissection of rhizome development and in breeding efforts to transfer rhizome-related traits into annual rice species. In this study, an effort was taken to get insights into the genes and molecular mechanisms underlying the rhizomatous trait in O. longistaminata by comparative analysis of the genome-wide tissue-specific gene expression patterns of five different tissues of O. longistaminata using the Affymetrix GeneChip Rice Genome Array. RESULTS A total of 2,566 tissue-specific genes were identified in five different tissues of O. longistaminata, including 58 and 61 unique genes that were specifically expressed in the rhizome tips (RT) and internodes (RI), respectively. In addition, 162 genes were up-regulated and 261 genes were down-regulated in RT compared to the shoot tips. Six distinct cis-regulatory elements (CGACG, GCCGCC, GAGAC, AACGG, CATGCA, and TAAAG) were found to be significantly more abundant in the promoter regions of genes differentially expressed in RT than in the promoter regions of genes uniformly expressed in all other tissues. Many of the RT and/or RI specifically or differentially expressed genes were located in the QTL regions associated with rhizome expression, rhizome abundance and rhizome growth-related traits in O. longistaminata and thus are good candidate genes for these QTLs. CONCLUSION The initiation and development of the rhizomatous trait in O. longistaminata are controlled by very complex gene networks involving several plant hormones and regulatory genes, different members of gene families showing tissue specificity and their regulated pathways. Auxin/IAA appears to act as a negative regulator in rhizome development, while GA acts as the activator in rhizome development. Co-localization of the genes specifically expressed in rhizome tips and rhizome internodes with the QTLs for rhizome traits identified a large set of candidate genes for rhizome initiation and development in rice for further confirmation.
Collapse
Affiliation(s)
- Fengyi Hu
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, 12 South Zhong-Guan-Cun St., Beijing 100081, China
- Food Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650205, China
| | - Di Wang
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, 12 South Zhong-Guan-Cun St., Beijing 100081, China
| | - Xiuqin Zhao
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, 12 South Zhong-Guan-Cun St., Beijing 100081, China
| | - Ting Zhang
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, 12 South Zhong-Guan-Cun St., Beijing 100081, China
- College of Life Sciences, Wuhan University, 430072, China
| | - Haixi Sun
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Linghua Zhu
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, 12 South Zhong-Guan-Cun St., Beijing 100081, China
| | - Fan Zhang
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, 12 South Zhong-Guan-Cun St., Beijing 100081, China
| | - Lijuan Li
- Food Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650205, China
| | - Qiong Li
- Food Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650205, China
| | - Dayun Tao
- Food Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650205, China
| | - Binying Fu
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, 12 South Zhong-Guan-Cun St., Beijing 100081, China
| | - Zhikang Li
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, 12 South Zhong-Guan-Cun St., Beijing 100081, China
- International Rice Research Institute, DAPO Box 7777, Metro Manila, the Philippines
| |
Collapse
|
25
|
Osnato M, Stile MR, Wang Y, Meynard D, Curiale S, Guiderdoni E, Liu Y, Horner DS, Ouwerkerk PB, Pozzi C, Müller KJ, Salamini F, Rossini L. Cross talk between the KNOX and ethylene pathways is mediated by intron-binding transcription factors in barley. PLANT PHYSIOLOGY 2010; 154:1616-32. [PMID: 20921155 PMCID: PMC2996029 DOI: 10.1104/pp.110.161984] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2010] [Accepted: 09/30/2010] [Indexed: 05/18/2023]
Abstract
In the barley (Hordeum vulgare) Hooded (Kap) mutant, the duplication of a 305-bp intron sequence leads to the overexpression of the Barley knox3 (Bkn3) gene, resulting in the development of an extra flower in the spikelet. We used a one-hybrid screen to identify four proteins that bind the intron-located regulatory element (Kap intron-binding proteins). Three of these, Barley Ethylene Response Factor1 (BERF1), Barley Ethylene Insensitive Like1 (BEIL1), and Barley Growth Regulating Factor1 (BGRF1), were characterized and their in vitro DNA-binding capacities verified. Given the homology of BERF1 and BEIL1 to ethylene signaling proteins, we investigated if these factors might play a dual role in intron-mediated regulation and ethylene response. In transgenic rice (Oryza sativa), constitutive expression of the corresponding genes produced phenotypic alterations consistent with perturbations in ethylene levels and variations in the expression of a key gene of ethylene biosynthesis. In barley, ethylene treatment results in partial suppression of the Kap phenotype, accompanied by up-regulation of BERF1 and BEIL1 expression, followed by down-regulation of Bkn3 mRNA levels. In rice protoplasts, BEIL1 activates the expression of a reporter gene driven by the 305-bp intron element, while BERF1 can counteract this activation. Thus, BEIL1 and BERF1, likely in association with other Kap intron-binding proteins, should mediate the fine-tuning of Bkn3 expression by ethylene. We propose a hypothesis for the cross talk between the KNOX and ethylene pathways.
Collapse
|
26
|
Gao F, Wang C, Wei C, Li Y. A branched-chain aminotransferase may regulate hormone levels by affecting KNOX genes in plants. PLANTA 2009; 230:611-23. [PMID: 19568767 DOI: 10.1007/s00425-009-0973-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2009] [Accepted: 06/14/2009] [Indexed: 05/28/2023]
Abstract
Branched-chain amino acid transaminases (BCATs) play a crucial role in the metabolic pathway of leucine, isoleucine and valine by catalyzing the last step of synthesis and/or the initial step of degradation of these amino acids. In this study, we characterized a new BCAT from Nicotiana benthamiana (NbBCAT, GeneBank accession No. EU194916), the deduced amino acid sequence of which exhibits a very high percentage of identity to the homologous enzymes from Solanum tuberosum (StBCAT-2, 91.5%) and Arabidopsis thaliana (AtBCAT1-6, 56.4-68.6%). Complementation experiment using a Deltabat1/Deltabat2 double knockout yeast strain system demonstrated enzymatic activities for NbBCAT. Ectopically expressed NbBCAT::green fluorescence fusion protein was targeted predominantly to the chloroplasts in tobacco protoplasts. The highest levels of NbBCAT transcripts were found in open flowers as well as in young leaves. Virus-induced gene silencing of NbBCAT resulted in abnormal leaf development and loss of apical dominance. In NbBCAT-silenced plants, two KNOTTED1-type genes, NTH15 and NTH23, were upregulated. This was accompanied by various hormone changes, as a result of transcriptional regulation of gibberellin 20-oxidase (Ntc12) and adenosine phosphate isopentenyltransferase. The transcript levels of NbBCAT could also be repressed by hormone treatment. These results suggest that NbBCAT, an enzyme in the branched-chain amino acid metabolic pathway, may be involved in the regulation of endogenous hormones by its effect on KNOX genes.
Collapse
Affiliation(s)
- Feng Gao
- Peking-Yale Joint Center for Plant Molecular Genetics and Agrobiotechnology, The National Laboratory of Protein Engineering and Plant Genetic Engineering, National Center for Plant Gene Research (Beijing), College of Life Sciences, Peking University, 100871 Beijing, China
| | | | | | | |
Collapse
|
27
|
Veit B. Hormone mediated regulation of the shoot apical meristem. PLANT MOLECULAR BIOLOGY 2009; 69:397-408. [PMID: 18797999 DOI: 10.1007/s11103-008-9396-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2008] [Accepted: 08/28/2008] [Indexed: 05/08/2023]
Abstract
Recent work on hormone mediated regulation of the SAM is reviewed, emphasizing how combinations of genetic, molecular and modelling approaches have refined models based on classic experimental and physiological work. Special emphasis is given to newly described mechanisms that modulate the responsiveness of specific tissues to hormones and their potential to direct position dependent determination processes.
Collapse
Affiliation(s)
- Bruce Veit
- Forage Biotechnology, AgResearch, Private Bag 11008, Palmerston North, New Zealand.
| |
Collapse
|
28
|
Devaiah BN, Madhuvanthi R, Karthikeyan AS, Raghothama KG. Phosphate starvation responses and gibberellic acid biosynthesis are regulated by the MYB62 transcription factor in Arabidopsis. MOLECULAR PLANT 2009; 2:43-58. [PMID: 19529828 PMCID: PMC2639739 DOI: 10.1093/mp/ssn081] [Citation(s) in RCA: 213] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2008] [Accepted: 10/30/2008] [Indexed: 05/18/2023]
Abstract
The limited availability of phosphate (Pi) in most soils results in the manifestation of Pi starvation responses in plants. To dissect the transcriptional regulation of Pi stress-response mechanisms, we have characterized the biological role of MYB62, an R2R3-type MYB transcription factor that is induced in response to Pi deficiency. The induction of MYB62 is a specific response in the leaves during Pi deprivation. The MYB62 protein localizes to the nucleus. The overexpression of MYB62 resulted in altered root architecture, Pi uptake, and acid phosphatase activity, leading to decreased total Pi content in the shoots. The expression of several Pi starvation-induced (PSI) genes was also suppressed in the MYB62 overexpressing plants. Overexpression of MYB62 resulted in a characteristic gibberellic acid (GA)-deficient phenotype that could be partially reversed by exogenous application of GA. In addition, the expression of SOC1 and SUPERMAN, molecular regulators of flowering, was suppressed in the MYB62 overexpressing plants. Interestingly, the expression of these genes was also reduced during Pi deprivation in wild-type plants, suggesting a role for GA biosynthetic and floral regulatory genes in Pi starvation responses. Thus, this study highlights the role of MYB62 in the regulation of phosphate starvation responses via changes in GA metabolism and signaling. Such cross-talk between Pi homeostasis and GA might have broader implications on flowering, root development and adaptive mechanisms during nutrient stress.
Collapse
|
29
|
Tanaka M, Kato N, Nakayama H, Nakatani M, Takahata Y. Expression of class I knotted1-like homeobox genes in the storage roots of sweetpotato (Ipomoea batatas). JOURNAL OF PLANT PHYSIOLOGY 2008; 165:1726-35. [PMID: 18242774 DOI: 10.1016/j.jplph.2007.11.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2007] [Revised: 11/28/2007] [Accepted: 11/29/2007] [Indexed: 05/04/2023]
Abstract
As a first step in clarifying the involvement of class I knotted1-like homeobox (KNOXI) genes in the storage root development of sweetpotato (Ipomoea batatas), we isolated three KNOXI genes, named Ibkn1, Ibkn2 and Ibkn3, expressed in the storage roots. Phylogenetic analysis showed that Ibkn1 was homologous to the SHOOT MERISTEMLESS (STM) gene of Arabidopsis, while Ibkn2 and Ibkn3 were homologous to the BREVIPEDICELLUS (BP) gene. Of these, expression of Ibkn1 and Ibkn2 were upregulated in developing and mature storage roots compared with fibrous roots. Ibkn1 and Ibkn2 showed different expression patterns in the storage roots. Ibkn1 was preferentially expressed at the proximal end and around the primary vascular cambium, while Ibkn2 expression was highest in the thickest part and lower in both the proximal and distal ends. In contrast to Ibkn1 and Ibkn2, expression of Ibkn3 in roots was not consistent among sweetpotato cultivars. The distribution of endogenous trans-zeatin riboside (t-ZR) in sweetpotato roots showed a similarity to the expression pattern of KNOXI genes, supporting the idea that KNOXI genes control cytokinin levels in the storage roots. The physiological functions of these KNOXI genes in storage root development are discussed.
Collapse
Affiliation(s)
- Masaru Tanaka
- Crop Functionality and Utilization Research Team, National Agricultural Research Center for Kyushu Okinawa Region, Miyakonojo, Miyazaki, Japan.
| | | | | | | | | |
Collapse
|
30
|
Abstract
Bioactive gibberellins (GAs) are diterpene plant hormones that are biosynthesized through complex pathways and control diverse aspects of growth and development. Biochemical, genetic, and genomic approaches have led to the identification of the majority of the genes that encode GA biosynthesis and deactivation enzymes. Recent studies have highlighted the occurrence of previously unrecognized deactivation mechanisms. It is now clear that both GA biosynthesis and deactivation pathways are tightly regulated by developmental, hormonal, and environmental signals, consistent with the role of GAs as key growth regulators. In some cases, the molecular mechanisms for fine-tuning the hormone levels are beginning to be uncovered. In this review, I summarize our current understanding of the GA biosynthesis and deactivation pathways in plants and fungi, and discuss how GA concentrations in plant tissues are regulated during development and in response to environmental stimuli.
Collapse
|
31
|
Chatterjee M, Banerjee AK, Hannapel DJ. A BELL1-like gene of potato is light activated and wound inducible. PLANT PHYSIOLOGY 2007; 145:1435-43. [PMID: 17921341 PMCID: PMC2151700 DOI: 10.1104/pp.107.105924] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2007] [Accepted: 09/26/2007] [Indexed: 05/18/2023]
Abstract
BELL1-like transcription factors interact with their protein partners from the KNOTTED1 family to bind to target genes and regulate numerous developmental and metabolic processes. In potato (Solanum tuberosum), the BELL1 transcription factor StBEL5 and its protein partner POTH1 regulate tuber formation by affecting hormone levels. Overexpression of StBEL5 in transgenic lines produces plants that consistently exhibit enhanced tuber formation, and the mRNA of this gene moves through phloem cells in a long-distance signaling pathway regulated by photoperiod. Whereas photoperiod mediates the movement of StBEL5 RNA, activation of transcription of the StBEL5 gene in leaves is regulated by white light, regardless of photoperiod or light intensity. Illumination with either red or blue light induces the StBEL5 promoter, whereas far-red light had no effect. As expected, the StBEL5 promoter harbors numerous conventional light-responsive cis-acting elements like GT1, GATA, and AT1 motifs. Deletion constructs were analyzed to determine what sequences are involved in light activation. Transcriptional activity was also mediated by wounding on stems, insect predation on leaves, and photoperiod in stolons. These results demonstrate that StBEL5 gene activity in the leaf is correlated with wavelengths optimal for photosynthesis. The number of factors that affect the StBEL5 promoter supports the premise that the BELL1-like genes play a role in a wide range of functions.
Collapse
Affiliation(s)
- Mithu Chatterjee
- Department of Horticulture, Iowa State University, Ames, Iowa 50011-1100, USA
| | | | | |
Collapse
|
32
|
Wang S, Chang Y, Guo J, Chen JG. Arabidopsis Ovate Family Protein 1 is a transcriptional repressor that suppresses cell elongation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2007; 50:858-72. [PMID: 17461792 DOI: 10.1111/j.1365-313x.2007.03096.x] [Citation(s) in RCA: 144] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Transcription factors regulate multiple aspects of plant growth and development. Here we report the identification and functional analysis of a plant-specific, novel transcription factor in Arabidopsis. We isolated a dominant, gain-of-function mutant that displays reduced lengths in all aerial organs including hypocotyl, rosette leaf, cauline leaf, inflorescence stem, floral organs and silique. Molecular cloning revealed that these phenotypes are caused by elevated expression of the Arabidopsis thaliana Ovate Family Protein 1 (AtOFP1). This mutant was designated as Atofp1-1D. We show that the altered morphology of Atofp1-1D mutant is caused by reduced cell length resulting from reduced cell elongation, and demonstrate that a mutant harboring a transposon insertion that disrupts the OVATE domain of AtOFP1 is indistinguishable from wild-type plants. Plants overexpressing other closely related AtOFP genes phenocopy plants overexpressing AtOFP1, implying a possible overlapping function among members of the AtOFP gene family. We found that AtOFP1 localizes in the nucleus, and that AtOFP1 functions as an active transcriptional repressor. Chromatin immunoprecipitation results indicated that AtGA20ox1, a gene encoding the key enzyme in GA biosynthesis, is a target gene regulated by AtOFP1. Consistent with this, exogenous gibberellic acid can partially restore defects in cell elongation in plants overexpressing AtOFP1, suggesting that such a reduced cell elongation is caused, in part, by the deficiency in gibberellin biosynthesis. Taken together, our results indicate that AtOFP1 is an active transcriptional repressor that has a role in regulating cell elongation in plants.
Collapse
Affiliation(s)
- Shucai Wang
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | | | | | | |
Collapse
|
33
|
Xu C, He C. The rice OsLOL2 gene encodes a zinc finger protein involved in rice growth and disease resistance. Mol Genet Genomics 2007; 278:85-94. [PMID: 17404758 DOI: 10.1007/s00438-007-0232-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2006] [Accepted: 03/09/2007] [Indexed: 01/10/2023]
Abstract
Arabidopsis LSD1-related proteins that contain LSD1-like zinc finger domains have been identified to be involved in disease resistance and programmed cell death. To investigate the potential role of LSD1-related gene in rice (Oryza sativa L.), we cloned an LSD1 ortholog, OsLOL2, from the rice cDNA plasmid library. The OsLOL2 gene is predicted to encode a polypeptide of 163 amino acids with two LSD1-like zinc finger domains with 74.5% identity to those of LSD1. Southern blot analysis indicated that OsLOL2 was a single-copy gene in the rice genome. Transgenic rice lines carrying the antisense strand of OsLOL2 with decreased expression of OsLOL2 had dwarf phenotypes, and the dwarfism could be restored by exogenous GA(3) treatment, suggesting that the dwarfism was the result of a deficiency in bioactive gibberellin (GA). In agreement with this possibility, the content of endogenous bioactive GA(1) decreased in the antisense transgenic lines. Expression of OsKS1, one of the genes encoding for GA biosynthetic enzymes, was suppressed in the antisense transgenic lines. Sense transgenic lines with increased expression of OsLOL2 were more resistant to rice bacterial blight, while antisense transgenic lines were less resistant to rice bacterial blight. The OsLOL2-GFP (green fluorescence protein) fusion protein was localized in the nucleus of cells of transgenic BY2 tobacco (Nicotiana tabacum L.). These data suggest that OsLOL2 is involved in rice growth and disease resistance.
Collapse
Affiliation(s)
- Chunxiao Xu
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100080, People's Republic of China
| | | |
Collapse
|
34
|
Saibo NJM, Vriezen WH, De Grauwe L, Azmi A, Prinsen E, Van der Straeten D. A comparative analysis of the Arabidopsis mutant amp1-1 and a novel weak amp1 allele reveals new functions of the AMP1 protein. PLANTA 2007; 225:831-42. [PMID: 17006669 DOI: 10.1007/s00425-006-0395-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2006] [Accepted: 08/22/2006] [Indexed: 05/12/2023]
Abstract
Ethylene and gibberellins have a synergistic stimulatory effect on hypocotyl elongation of light-grown Arabidopsis thaliana (L.) Heynh. seedlings. A screen for mutants with decreased response to these hormones led to the isolation of a novel allele (ampl-7) of the ALTERED MERISTEM PROGRAM (AMP) 1 locus. The amp1-7 allele contains a missense mutation causing a phenotype, which is weaker than that of the amp1-1 mutant that carries a nonsense mutation. The mutant phenotype prompted the hypothesis that AMP1 is involved in ethylene and GA signalling pathways or in a parallel pathway-controlling cell and hypocotyl elongation and cellular organization. Amp1 mutants contain higher zeatin concentrations causing enlargement of the apical meristem, which was confirmed by cytokinin application to wild type seedlings. Light grown amp1 seedlings have shorter hypocotyls than wild type; however, application of cytokinins promotes hypocotyl elongation of both Col-0 and amp1. We suggest that in amp1 mutants either zeatin overproduction or its action is strictly localized.
Collapse
Affiliation(s)
- Nelson J M Saibo
- Unit Plant Hormone Signaling and Bio-imaging, Department of Molecular Genetics, Ghent University, K.L. Ledeganckstraat 35, 9000 Gent, Belgium.
| | | | | | | | | | | |
Collapse
|
35
|
Pandey GK, Pandey A, Reddy VS, Deswal R, Bhattacharya A, Upadhyaya KC, Sopory SK. Antisense expression of a gene encoding a calcium-binding protein in transgenic tobacco leads to altered morphology and enhanced chlorophyll. J Biosci 2007; 32:251-60. [PMID: 17435317 DOI: 10.1007/s12038-007-0025-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Entamoeba histolytica contains a novel calcium-binding protein like calmodulin,which was discovered earlier,and we have reported the presence of its homologue(s)and a dependent protein kinase in plants.To understand the functions of these in plants,a cDNA encoding a calcium-binding protein isolated from Entamoeba histolytica (EhCaBP)was cloned into vector pBI121 in antisense orientation and transgenic tobacco plants were raised.These plants showed variation in several phenotypic characters,of which two distinct features,more greenness and leaf thickness,were inherited in subsequent generations.The increase in the level of total chlorophyll in different plants ranged from 60% to 70%.There was no major change in chloroplast structure and in the protein level of D1,D2,LHCP and RuBP carboxylase.These morphological changes were not seen in antisense calmodulin transgenic tobacco plants,nor was the calmodulin level altered in EhCaBP antisense plants.
Collapse
Affiliation(s)
- Girdhar K Pandey
- International Center for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110 067, India.
| | | | | | | | | | | | | |
Collapse
|
36
|
Soucek P, Klíma P, Reková A, Brzobohatý B. Involvement of hormones and KNOXI genes in early Arabidopsis seedling development. JOURNAL OF EXPERIMENTAL BOTANY 2007; 58:3797-810. [PMID: 17951601 DOI: 10.1093/jxb/erm236] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Plant hormones control plant development by modulating the expression of regulatory genes, including homeobox-containing KNOXI genes. However, much remains to be elucidated about the interactions involved. Therefore, hormonal regulation of KNOXI gene expression was investigated using hormone applications and an inducible transgenic ipt expression system to increase endogenous cytokinin (CK) levels. Treatments with auxin, abscisic acid (ABA), cytokinins, ethylene, and gibberellin (GA) did not result in ectopic expression of the BP (BREVIPEDICELLUS) gene. However, BP expression was strongly reduced by ABA, increased by auxin treatment (correlating with the initiation of lateral root meristems, which strongly express BP), and did not significantly respond to short-term treatments with the other hormones in whole seedlings. Following short-term ipt activation, organ-specific differential regulation of KNOXI gene expression was observed. While several KNOXI genes were transiently up-regulated to low levels, STM was selectively repressed (especially at low light) in hypocotyls. In cotyledons, activation of CK-responsive genes preceded ipt induction, suggesting that CKs are transported more rapidly than the inducing agent (dexamethasone). Long-term increases in CK levels induced raised levels of several KNOXI transcripts in hypocotyls, correlating with the radial expansion of vascular tissues, the main domains of KNOXI gene expression, suggesting that CKs had little effect on KNOXI promoter activity. No alterations in hormone sensitivity were observed in a bp null mutant. Constitutive BP overexpression caused reductions in the length and number of lateral roots, while the primary root remained unaffected. The transgenic seedlings displayed weak, but significant, alterations in sensitivity to ABA, CK, and 1-amino-cyclopropane-1-carboxylic acid.
Collapse
Affiliation(s)
- Premysl Soucek
- Institute of Biophysics, Academy of Sciences of the Czech Republic V.V.i., Královopolská 135, CZ-61265 Brno, Czech Republic
| | | | | | | |
Collapse
|
37
|
Sakamoto T, Sakakibara H, Kojima M, Yamamoto Y, Nagasaki H, Inukai Y, Sato Y, Matsuoka M. Ectopic expression of KNOTTED1-like homeobox protein induces expression of cytokinin biosynthesis genes in rice. PLANT PHYSIOLOGY 2006; 142:54-62. [PMID: 16861569 PMCID: PMC1557621 DOI: 10.1104/pp.106.085811] [Citation(s) in RCA: 160] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Some phytohormones such as gibberellins (GAs) and cytokinins (CKs) are potential targets of the KNOTTED1-like homeobox (KNOX) protein. To enhance our understanding of KNOX protein function in plant development, we identified rice (Oryza sativa) genes for adenosine phosphate isopentenyltransferase (IPT), which catalyzes the rate-limiting step of CK biosynthesis. Molecular and biochemical studies revealed that there are eight IPT genes, OsIPT1 to OsIPT8, in the rice genome, including a pseudogene, OsIPT6. Overexpression of OsIPTs in transgenic rice inhibited root development and promoted axillary bud growth, indicating that OsIPTs are functional in vivo. Phenotypes of OsIPT overexpressers resembled those of KNOX-overproducing transgenic rice, although OsIPT overexpressers did not form roots or ectopic meristems, both of which are observed in KNOX overproducers. Expression of two OsIPT genes, OsIPT2 and OsIPT3, was up-regulated in response to the induction of KNOX protein function with similar kinetics to those of down-regulation of GA 20-oxidase genes, target genes of KNOX proteins in dicots. However, expression of these two OsIPT genes was not regulated in a feedback manner. These results suggest that OsIPT2 and OsIPT3 have unique roles in the developmental process, which is controlled by KNOX proteins, rather than in the maintenance of bioactive CK levels in rice. On the basis of these findings, we concluded that KNOX protein simultaneously decreases GA biosynthesis and increases de novo CK biosynthesis through the induction of OsIPT2 and OsIPT3 expression, and the resulting high-CK and low-GA condition is required for formation and maintenance of the meristem.
Collapse
Affiliation(s)
- Tomoaki Sakamoto
- Field Production Science Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Nishi-Tokyo, Tokyo 188-0002, Japan
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Kessler S, Townsley B, Sinha N. L1 division and differentiation patterns influence shoot apical meristem maintenance. PLANT PHYSIOLOGY 2006; 141:1349-62. [PMID: 16798950 PMCID: PMC1533940 DOI: 10.1104/pp.105.076075] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Plant development requires regulation of both cell division and differentiation. The class 1 KNOTTED1-like homeobox (KNOX) genes such as knotted1 (kn1) in maize (Zea mays) and SHOOTMERISTEMLESS in Arabidopsis (Arabidopsis thaliana) play a role in maintaining shoot apical meristem indeterminacy, and their misexpression is sufficient to induce cell division and meristem formation. KNOX overexpression experiments have shown that these genes interact with the cytokinin, auxin, and gibberellin pathways. The L1 layer has been shown to be necessary for the maintenance of indeterminacy in the underlying meristem layers. This work explores the possibility that the L1 affects meristem function by disrupting hormone transport pathways. The semidominant Extra cell layers1 (Xcl1) mutation in maize leads to the production of multiple epidermal layers by overproduction of a normal gene product. Meristem size is reduced in mutant plants and more cells are incorporated into the incipient leaf primordium. Thus, Xcl1 may provide a link between L1 division patterns, hormonal pathways, and meristem maintenance. We used double mutants between Xcl1 and dominant KNOX mutants and showed that Xcl1 suppresses the Kn1 phenotype but has a synergistic interaction with gnarley1 and rough sheath1, possibly correlated with changes in gibberellin and auxin signaling. In addition, double mutants between Xcl1 and crinkly4 had defects in shoot meristem maintenance. Thus, proper L1 development is essential for meristem function, and XCL1 may act to coordinate hormonal effects with KNOX gene function at the shoot apex.
Collapse
Affiliation(s)
- Sharon Kessler
- Section of Plant Biology, University of California, Davis, California 95616, USA
| | | | | |
Collapse
|
39
|
Carraro N, Peaucelle A, Laufs P, Traas J. Cell differentiation and organ initiation at the shoot apical meristem. PLANT MOLECULAR BIOLOGY 2006; 60:811-26. [PMID: 16724254 DOI: 10.1007/s11103-005-2761-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2005] [Accepted: 09/02/2005] [Indexed: 05/09/2023]
Abstract
Plants continuously generate organs at the flanks of their shoot apical meristems (SAMs). The patterns in which these organs are initiated, also called patterns of phyllotaxis, are highly stereotypic and characteristic for a particular species or developmental stage. This stable, predictable behaviour of the meristem has led to the idea that organ initiation must be based on simple and robust mechanisms. This conclusion is less evident, however, if we consider the very dynamic behaviour of the individual cells. How dynamic cellular events are coordinated and how they are linked to the regular patterns of organ initiation is a major issue in plant developmental biology.
Collapse
Affiliation(s)
- Nicola Carraro
- Laboratoire de Biologie Cellulaire, INRA, Institut Jean-Pierre Bourgin, Route de Saint Cyr, 78026, Versailles, cedex, France
| | | | | | | |
Collapse
|
40
|
Yanai O, Shani E, Dolezal K, Tarkowski P, Sablowski R, Sandberg G, Samach A, Ori N. Arabidopsis KNOXI proteins activate cytokinin biosynthesis. Curr Biol 2006; 15:1566-71. [PMID: 16139212 DOI: 10.1016/j.cub.2005.07.060] [Citation(s) in RCA: 354] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2005] [Revised: 07/18/2005] [Accepted: 07/19/2005] [Indexed: 10/25/2022]
Abstract
Plant architecture is shaped through the continuous formation of organs by meristems. Class I KNOTTED1-like homeobox (KNOXI) genes are expressed in the shoot apical meristem (SAM) and are required for SAM maintenance. KNOXI proteins and cytokinin, a plant hormone intimately associated with the regulation of cell division, share overlapping roles, such as meristem maintenance and repression of senescence, but their mechanistic and hierarchical relationship have yet to be defined. Here, we show that activation of three different KNOXI proteins using an inducible system resulted in a rapid increase in mRNA levels of the cytokinin biosynthesis gene isopentenyl transferase 7 (AtIPT7) and in the activation of ARR5, a cytokinin response factor. We further demonstrate a rapid and dramatic increase in cytokinin levels following activation of the KNOXI protein SHOOT MERISTEMLESS (STM). Application of exogenous cytokinin or expression of a cytokinin biosynthesis gene through the STM promoter partially rescued the stm mutant. We conclude that activation of cytokinin biosynthesis mediates KNOXI function in meristem maintenance. KNOXI proteins emerge as central regulators of hormone levels in plant meristems.
Collapse
Affiliation(s)
- Osnat Yanai
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agricultural, Food, and Environmental Quality Sciences, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot 76100, Israel
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Jasinski S, Piazza P, Craft J, Hay A, Woolley L, Rieu I, Phillips A, Hedden P, Tsiantis M. KNOX action in Arabidopsis is mediated by coordinate regulation of cytokinin and gibberellin activities. Curr Biol 2006; 15:1560-5. [PMID: 16139211 DOI: 10.1016/j.cub.2005.07.023] [Citation(s) in RCA: 460] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2005] [Revised: 07/05/2005] [Accepted: 07/05/2005] [Indexed: 11/28/2022]
Abstract
The shoot apical meristem (SAM) is a pluripotent group of cells that gives rise to the aerial parts of higher plants. Class-I KNOTTED1-like homeobox (KNOX) transcription factors promote meristem function partly through repression of biosynthesis of the growth regulator gibberellin (GA). However, regulation of GA activity cannot fully account for KNOX action. Here, we show that KNOX function is also mediated by cytokinin (CK), a growth regulator that promotes cell division and meristem function. We demonstrate that KNOX activity is sufficient to rapidly activate both CK biosynthetic gene expression and a SAM-localized CK-response regulator. We also show that CK signaling is necessary for SAM function in a weak hypomorphic allele of the KNOX gene SHOOTMERISTEMLESS (STM). Additionally, we provide evidence that a combination of constitutive GA signaling and reduced CK levels is detrimental to SAM function. Our results indicate that CK activity is both necessary and sufficient for stimulating GA catabolic gene expression, thus reinforcing the low-GA regime established by KNOX proteins in the SAM. We propose that KNOX proteins may act as general orchestrators of growth-regulator homeostasis at the shoot apex of Arabidopsis by simultaneously activating CK and repressing GA biosynthesis, thus promoting meristem activity.
Collapse
Affiliation(s)
- Sophie Jasinski
- Plant Sciences Department, University of Oxford, South Parks Road, Oxford OX1 3RB, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Kepinski S. Integrating hormone signaling and patterning mechanisms in plant development. CURRENT OPINION IN PLANT BIOLOGY 2006; 9:28-34. [PMID: 16325457 DOI: 10.1016/j.pbi.2005.11.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2005] [Accepted: 11/18/2005] [Indexed: 05/05/2023]
Abstract
Plant growth and development are driven by the bustling integration of a vast number of signals, among which plant hormones dominate. Understanding the role of hormones in particular developmental events requires their integration with developmental regulators known to be specific to those events. Using the increasing number of tools that can be utilized to probe hormone biosynthesis, transport and response, several recent studies have taken such an integrative approach, and in so doing have contributed to a clearer picture of precisely how hormones control plant development.
Collapse
Affiliation(s)
- Stefan Kepinski
- Department of Biology, University of York, Box 373, York YO10 5YW, UK.
| |
Collapse
|
43
|
Luo H, Song F, Zheng Z. Overexpression in transgenic tobacco reveals different roles for the rice homeodomain gene OsBIHD1 in biotic and abiotic stress responses. JOURNAL OF EXPERIMENTAL BOTANY 2005; 56:2673-82. [PMID: 16105854 DOI: 10.1093/jxb/eri260] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The rice OsBIHD1 gene encodes a transcriptional factor belonging to the homeodomain class. It had previously been shown to be activated by treatment with benzothiadiazole, a chemical inducer of disease resistance, and in an incompatible interaction between rice and the blast fungus. To allow a better understanding of the function of OsBIHD1 in plant disease resistance response, the OsBIHD1 gene in tobacco was overexpressed by Agrobacterium-mediated leaf disc transformation with a construct containing the OsBIHD1 ORF under control of the 35S promoter. Overexpression of the rice OsBIHD1 gene in some of the transgenic tobacco lines led to some morphological abnormalities in the top buds and roots. The transgenic tobacco plants showed an elevated level of defence-related PR-1 gene expression and enhanced disease resistance against infection by tomato mosaic virus, tobacco mosaic virus, and Phytophthora parasitica var. nicotianae. However, the transgenic tobacco plants overexpressing OsBIHD1 showed enhanced sensitivity to salt and oxidative stress as compared with the wild-type plants. The results suggested that the OsBIHD1 protein may be positively involved in activating expression of the defence-related genes in disease resistance responses, and is also important in rice development and abiotic stress tolerance.
Collapse
Affiliation(s)
- Hongli Luo
- Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310029, PR China
| | | | | |
Collapse
|
44
|
DeMason DA. Auxin-cytokinin and auxin-gibberellin interactions during morphogenesis of the compound leaves of pea (Pisum sativum). PLANTA 2005; 222:151-66. [PMID: 15809864 DOI: 10.1007/s00425-005-1508-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2004] [Accepted: 02/05/2005] [Indexed: 05/24/2023]
Abstract
A number of mutations that alter the form of the compound leaf in pea (Pisum sativum) has proven useful in elucidating the role that auxin might play in pea leaf development. The goals of this study were to determine if auxin application can rescue any of the pea leaf mutants and if gibberellic acid (GA) plays a role in leaf morphogenesis in pea. A tissue culture system was used to determine the effects of various auxins, GA or a GA biosynethesis inhibitor (paclobutrazol) on leaf development. The GA mutant, nana1 (na1) was analyzed. The uni-tac mutant was rescued by auxin and GA and rescue involved both a conversion of the terminal leaflet into a tendril and an addition of a pair of lateral tendrils. This rescue required the presence of cytokinin. The auxins tested varied in their effectiveness, although methyl-IAA worked best. The terminal tendrils of wildtype plantlets grown on paclobutrazol were converted into leaflets, stubs or were aborted. The number of lateral pinna pairs produced was reduced and leaf initiation was impaired. These abnormalities resembled those caused by auxin transport inhibitors and phenocopy the uni mutants. The na1 mutant shared some morphological features with the uni mutants; including, flowering late and producing leaves with fewer lateral pinna pairs. These results show that both auxin and GA play similar and significant roles in pea leaf development. Pea leaf morphogenesis might involve auxin regulation of GA biosynthesis and GA regulation of Uni expression.
Collapse
Affiliation(s)
- Darleen A DeMason
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA.
| |
Collapse
|
45
|
Abstract
Leaves are determinate organs produced by the shoot apical meristem. Land plants demonstrate a large range of variation in leaf form. Here we discuss evolution of leaf form in the context of our current understanding of leaf development, as this has emerged from molecular genetic studies in model organisms. We also discuss specific examples where parallel studies of development in different species have helped understanding how diversification of leaf form may occur in nature.
Collapse
Affiliation(s)
- Paolo Piazza
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, UK
| | | | | |
Collapse
|
46
|
Luo H, Song F, Goodman RM, Zheng Z. Up-regulation of OsBIHD1, a rice gene encoding BELL homeodomain transcriptional factor, in disease resistance responses. PLANT BIOLOGY (STUTTGART, GERMANY) 2005; 7:459-68. [PMID: 16163610 DOI: 10.1055/s-2005-865851] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
In the present study, we cloned and identified a full-length cDNA of a rice gene, OsBIHD1, encoding a homeodomain type transcriptional factor. OsBIHD1 is predicted to encode a 642 amino acid protein and the deduced protein sequence of OsBIHD1 contains all conserved domains, a homeodomain, a BELL domain, a SKY box, and a VSLTLGL box, which are characteristics of the BELL type homedomain proteins. The recombinant OsBIHD1 protein expressed in Escherichia coli bound to the TGTCA motif that is the characteristic cis-element DNA sequence of the homeodomain transcriptional factors. Subcellular localization analysis revealed that the OsBIHD1 protein localized in the nucleus of the plant cells. The OsBIHD1 gene was mapped to chromosome 3 of the rice genome and is a single-copy gene with four exons and three introns. Northern blot analysis showed that expression of OsBIHD1 was activated upon treatment with benzothiadiazole (BTH), which is capable of inducing disease resistance. Expression of OsBIHD1 was also up-regulated rapidly during the first 6 h after inoculation with Magnaporthe grisea in BTH-treated rice seedlings and during the incompatible interaction between M. grisea and a resistant genotype. These results suggest that OsBIHD1 is a BELL type of homeodomain transcription factor present in the nucleus, whose induction is associated with resistance response in rice.
Collapse
Affiliation(s)
- H Luo
- Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, PR China
| | | | | | | |
Collapse
|
47
|
Alexander DL, Mellor EA, Langdale JA. CORKSCREW1 defines a novel mechanism of domain specification in the maize shoot. PLANT PHYSIOLOGY 2005; 138:1396-408. [PMID: 15980185 PMCID: PMC1176412 DOI: 10.1104/pp.105.063909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
In higher plants, determinate leaf primordia arise in regular patterns on the flanks of the indeterminate shoot apical meristem (SAM). The acquisition of leaf form is then a gradual process, involving the specification and growth of distinct domains within the three leaf axes. The recessive corkscrew1 (cks1) mutation of maize (Zea mays) disrupts both leaf initiation patterns in the SAM and domain specification within the mediolateral and proximodistal leaf axes. Specifically, cks1 mutant leaves exhibit multiple midribs and leaf sheath tissue differentiates in the blade domain. Such perturbations are a common feature of maize mutants that ectopically accumulate KNOTTED1-like homeobox (KNOX) proteins in leaf tissue. Consistent with this observation, at least two knox genes are ectopically expressed in cks1 mutant leaves. However, ectopic KNOX proteins cannot be detected. We therefore propose that CKS1 primarily functions within the SAM to establish boundaries between meristematic and leaf zones. Loss of gene function disrupts boundary formation, impacts phyllotactic patterns, and leads to aspects of indeterminate growth within leaf primordia. Because these perturbations arise independently of ectopic KNOX activity, the cks1 mutation defines a novel component of the developmental machinery that facilitates leaf-versus-shoot development in maize.
Collapse
Affiliation(s)
- Debbie L Alexander
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, United Kingdom
| | | | | |
Collapse
|
48
|
Craft J, Samalova M, Baroux C, Townley H, Martinez A, Jepson I, Tsiantis M, Moore I. New pOp/LhG4 vectors for stringent glucocorticoid-dependent transgene expression in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2005; 41:899-918. [PMID: 15743453 DOI: 10.1111/j.1365-313x.2005.02342.x] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
To facilitate glucocorticoid-inducible transgene expression from the pOp promoter in Arabidopsis the ligand-binding domain of a rat glucocorticoid receptor (GR LBD) was fused to the amino terminus of the synthetic transcription factor LhG4 to generate LhGR-N. Fusions bearing the GR LBD at other positions in LhG4 exhibited incomplete repression or inefficient induction. LhGR-N was stringently repressed in the absence of exogenous glucocorticoid but was fully activated by addition of 2 microm dexamethasone which resulted in 1000-fold increase in GUS reporter activity. Half maximal induction was achieved with 0.2 microm dexamethasone. Reporter transcripts were detectable within 2 h of dexamethasone application and peaked 4-10 h later. Neither LhGR-N nor dexamethasone affected seedling development although ethanol retarded development when used as a solvent for dexamethasone. The efficiency of the pOp target promoter was improved 10- to 20-fold by incorporating six copies of the ideal lac operator with sufficient inter-operator spacing to allow simultaneous occupancy. Introduction of the TMV Omega sequence into the 5'UTR resulted in a further 10-fold increase in dexamethasone-inducible reporter activity and an increase in the induction factor to 10(4). Although promoters containing the TMV Omega sequence exhibited slightly increased basal expression levels in the absence of dexamethasone, stringent regulation of the cytokinin biosynthetic gene ipt was achieved with all promoters. Despite the severity of the induced ipt phenotypes, transcripts for the KNOX homoeodomain transcription factors BREVIPEDICELLUS and SHOOTMERISTEMLESS were not significantly increased within 48 h of dexamethasone application to seedlings.
Collapse
Affiliation(s)
- Judith Craft
- Department of Plant Sciences, University of Oxford, South Parks Rd, Oxford, OX1 3RB, UK
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Deguchi M, Koshita Y, Gao M, Tao R, Tetsumura T, Yamaki S, Kanayama Y. Engineered sorbitol accumulation induces dwarfism in Japanese persimmon. JOURNAL OF PLANT PHYSIOLOGY 2004; 161:1177-1184. [PMID: 15535127 DOI: 10.1016/j.jplph.2004.04.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
A cDNA encoding sorbitol-6-phosphate dehydrogenase (S6PDH), which is a key enzyme in sorbitol biosynthesis in Rosaceae, was introduced into the Japanese persimmon (Diospyros kaki) to increase the environmental stress tolerance. Resultant transformants exhibited salt-tolerance with dwarfing phenotypes. Therefore, we studied two transgenic lines to understand the physiological mechanism of this dwarfism: lines PS1 and PS6 accumulated high and moderate levels of sorbitol, respectively. The average length of shoots was significantly shorter as compared with the wild-type in line PS1, while no such decrease was observed in line PS6. The myo-inositol and glucose 6-phosphate (G6P) contents were measured in the transgenic lines because previous work with tobacco transformed with S6PDH had suggested that growth inhibition was due to depletion of these metabolites. Although the myo-inositol content was decreased in PS1 plants, the decrease was much smaller than that observed in transgenic tobacco that accumulates sorbitol. The G6P contents were the same in PS1 plants and phenotypically normal PS6 plants. The level of indole-3-acetic acid (IAA), which affects stem elongation, in line PS1 was similar to the levels in the other lines. A decrease in gibberellin (GA) content generally induces dwarfism in plants. However, GA was not decreased in PS1 plants compared with wild-type or control plants. Therefore, we focused on sorbitol accumulation as the most remarkable feature of PS1 plants. As one possibility, the observed growth inhibition was likely caused by an osmotic imbalance between the cytosol and vacuole.
Collapse
Affiliation(s)
- Michihito Deguchi
- Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidori-Amamiyamachi, Aoba-ku, Sendai 981-8555, Japan
| | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
The leaves of seed plants can be classified as being either simple or compound according to their shape. Two hypotheses address the homology between simple and compound leaves, which equate either individual leaflets of compound leaves with simple leaves or the entire compound leaf with a simple leaf. Here we discuss the genes that function in simple and compound leaf development, such as KNOX1 genes, including how they interact with growth hormones to link growth regulation and development to cause changes in leaf complexity. Studies of transcription factors that control leaf development, their downstream targets, and how these targets are regulated are areas of inquiry that should increase our understanding of how leaf complexity is regulated and how it evolved through time.
Collapse
Affiliation(s)
- Connie Champagne
- Section of Plant Biology, University of California, 1 Shields Avenue, Davis, CA 95616, USA
| | | |
Collapse
|