1
|
Batista JVC, Melo MNDO, Holandino C, Maier J, Huwyler J, Baumgartner S, Boylan F. Characterization of Larix decidua Mill. (Pinaceae) oleoresin's essential oils composition using GC-MS. FRONTIERS IN PLANT SCIENCE 2024; 14:1331894. [PMID: 38259911 PMCID: PMC10801252 DOI: 10.3389/fpls.2023.1331894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 11/30/2023] [Indexed: 01/24/2024]
Abstract
Introduction Larch oleoresin has been described regarding several biological activities and medicinal applications, such as wound healing and treatment of ulcers, but little is known about its chemical composition. Material and methods Eight oleoresins from Larix decidua Mill. obtained from four companies and one adulterated control were therefore investigated to determine their content of essential oils and to verify possible differences in their composition in relation to the harvest and manufacturing processes. Essential oils (EOs) were isolated by distillation and the yield was analysed. Results and discussion The yield of EO varied among all samples. The yield of the pure larch samples covered a range of 7.8% to 15.5%. A higher yield (19.0%) was observed for adulterated control, which contained oleoresins from different Pinaceae trees. Age of samples had no impact on yield. However, there was a significant statistical variation (p<0.05) in the yields of the mid-summer oleoresins (>10%) compared to early or late summer (<10%), emphasising the importance of the time of collection. Samples were subsequently analysed by GC-MS. EO samples confirmed the presence of various chemical classes, such as monoterpenes, sesquiterpenes, and diterpenes. α-pinene was the compound with the highest concentrations (>50%), followed by β-pinene (>6%), D-limonene (>2.5%), α-terpineol (>0.9%), β-myrcene (>0.2%), and 3-carene (>0.05%). Samples were grouped using multivariate data analysis (MVDA) with respect to the chemical variation between the oleoresins' EOs. The resulting four clusters were named low (low yield obtained for the samples), mixed (mixed oleoresin from different Pinaceae species, adulteration control), old (old oleoresin kept in the institute), and normal (other oleoresins) samples, each presenting distinct chemical biomarkers. There were considerable differences between site and time of collection. Essential oil yield did not always meet requirements as defined by the German Homeopathic Pharmacopoeia. In addition, adulterated or aged samples could be identified as compared to pure and fresh larch oleoresins. Conclusion We conclude that larch oleoresin used for pharmaceutical applications has to be carefully analysed and standardised to guarantee reproducible product quality.
Collapse
Affiliation(s)
- João V. C. Batista
- Hiscia Institute, Society for Cancer Research, Arlesheim, Switzerland
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Technology, University of Basel, Basel, Switzerland
| | | | - Carla Holandino
- Hiscia Institute, Society for Cancer Research, Arlesheim, Switzerland
- Departamento de Fármacos e Medicamentos, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jakob Maier
- Hiscia Institute, Society for Cancer Research, Arlesheim, Switzerland
| | - Jörg Huwyler
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Technology, University of Basel, Basel, Switzerland
| | - Stephan Baumgartner
- Hiscia Institute, Society for Cancer Research, Arlesheim, Switzerland
- Institute of Integrative Medicine, University of Witter/Herdecke, Witten, Germany
- Institute of Complementary and Integrative Medicine, University of Bern, Bern, Switzerland
| | - Fabio Boylan
- School of Pharmacy and Pharmaceutical Sciences, Trinity Biomedical Sciences Institute, Trinity Natural Products Research Centre, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
2
|
Yao L, Wu X, Jiang X, Shan M, Zhang Z, Li Y, Yang A, Li Y, Yang C. Subcellular compartmentalization in the biosynthesis and engineering of plant natural products. Biotechnol Adv 2023; 69:108258. [PMID: 37722606 DOI: 10.1016/j.biotechadv.2023.108258] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 09/20/2023]
Abstract
Plant natural products (PNPs) are specialized metabolites with diverse bioactivities. They are extensively used in the pharmaceutical, cosmeceutical and food industries. PNPs are synthesized in plant cells by enzymes that are distributed in different subcellular compartments with unique microenvironments, such as ions, co-factors and substrates. Plant metabolic engineering is an emerging and promising approach for the sustainable production of PNPs, for which the knowledge of the subcellular compartmentalization of their biosynthesis is instrumental. In this review we describe the state of the art on the role of subcellular compartments in the biosynthesis of major types of PNPs, including terpenoids, phenylpropanoids, alkaloids and glucosinolates, and highlight the efforts to target biosynthetic pathways to subcellular compartments in plants. In addition, we will discuss the challenges and strategies in the field of plant synthetic biology and subcellular engineering. We expect that newly developed methods and tools, together with the knowledge gained from the microbial chassis, will greatly advance plant metabolic engineering.
Collapse
Affiliation(s)
- Lu Yao
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong 266100, China
| | - Xiuming Wu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong 266100, China
| | - Xun Jiang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong 266100, China
| | - Muhammad Shan
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong 266100, China
| | - Zhuoxiang Zhang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong 266100, China
| | - Yiting Li
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong 266100, China
| | - Aiguo Yang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong 266100, China
| | - Yu Li
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Changqing Yang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong 266100, China.
| |
Collapse
|
3
|
Shirokova AV, Dmitriev LB, Belopukhov SL, Dmitrieva VL, Danilova IL, Kharchenko VA, Pekhova OA, Myagkih EF, Tsitsilin AN, Gulevich AA, Zhuravleva EV, Kostanchuk YN, Baranova EN. The Accumulation of Volatile Compounds and the Change in the Morphology of the Leaf Wax Cover Accompanied the "Anti-Aging" Effect in Anethum graveolens L. Plants Sprayed with 6-Benzylaminopurine. Int J Mol Sci 2023; 24:15137. [PMID: 37894818 PMCID: PMC10606700 DOI: 10.3390/ijms242015137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
Essential oils (EOs) are of commercial importance for medicine, food, cosmetics, the perfume industry, and agriculture. In plants, EOs, like the wax cover, serve as protection against abiotic stresses, such as high temperatures and water deficiency. The use of spraying with exogenous hormones of aromatic plants affects the accumulation and composition of volatile compounds, as well as tolerance to abiotic stress. As a result of cytokinin treatment with 6-BAP (6-benzylaminopurine) (200 mg L-l) of Anetum graveolens L. "Uzory" and "Rusich" varieties, several responses to its action were revealed: a change in the division of leaf blades, inhibition of flowering, an increase in the content of EO and its main components α-phellandrene and p-cymene in leaves, and limonene in umbels and fruits. It was revealed that the increased accumulation of EO in dill leaves was longer with sufficient moisture. In contrast, under conditions of heat and water deficiency, the effect of 6-BAP treatment on accumulations of the EO in leaves was short-lived and did not appear on umbels and fruits. The study of the cytokinin effect on a fine structure of a wax cover on the adaxial side of leaves by scanning electron microscopy revealed a change in its elements (from amorphous layers with scales to thin tubules), which probably increased the sensitivity of leaves to water deficiency and, consequently, led to a decrease in the biosynthetic activity of leaf tissue. Thus, 6-BAP had an impact on the adaptive properties of dill plants, prolonging the "youth" of vegetative organs and the ability to EO biosynthesis under conditions of sufficient moisture.
Collapse
Affiliation(s)
- Anna V. Shirokova
- Genetic and Cytology Laboratory, Federal State Budgetary Scientific Institution, Federal Scientific Vegetable Center (FSVC), Selektsionnaya 14, VNIISSOK Village, 143072 Moscow, Russia
| | - Lev B. Dmitriev
- Department of Chemistry, Russian State Agrarian University—Moscow Agricultural Academy Named after K.A.Timiryazev (RSAU-MTAA), Timiryazevskaya 49, 127434 Moscow, Russia; (L.B.D.); (S.L.B.); (V.L.D.)
| | - Sergey L. Belopukhov
- Department of Chemistry, Russian State Agrarian University—Moscow Agricultural Academy Named after K.A.Timiryazev (RSAU-MTAA), Timiryazevskaya 49, 127434 Moscow, Russia; (L.B.D.); (S.L.B.); (V.L.D.)
| | - Valeria L. Dmitrieva
- Department of Chemistry, Russian State Agrarian University—Moscow Agricultural Academy Named after K.A.Timiryazev (RSAU-MTAA), Timiryazevskaya 49, 127434 Moscow, Russia; (L.B.D.); (S.L.B.); (V.L.D.)
| | - Irina L. Danilova
- Federal State Budgetary Scientific Institution, Research Institute of Agricultural of Crimea’, Kievskaya 150, 295493 Simferopol, Russia; (I.L.D.); (O.A.P.); (E.F.M.)
| | - Viktor A. Kharchenko
- Selection and Seed Poduction of Green Spice-Flavoring and Flower Crops Laboratory Federal State Budgetary Scientific Institution, Federal Scientific Vegetable Center (FSVC), Selektsionnaya 14, 143072 Moscow, Russia;
| | - Olga A. Pekhova
- Federal State Budgetary Scientific Institution, Research Institute of Agricultural of Crimea’, Kievskaya 150, 295493 Simferopol, Russia; (I.L.D.); (O.A.P.); (E.F.M.)
| | - Elena F. Myagkih
- Federal State Budgetary Scientific Institution, Research Institute of Agricultural of Crimea’, Kievskaya 150, 295493 Simferopol, Russia; (I.L.D.); (O.A.P.); (E.F.M.)
| | - Andrey N. Tsitsilin
- Botanical Garden of All-Russian Research Institute of Medicinal and Aromatic Plants, Grina 7/1, 117216 Moscow, Russia;
| | - Alexander A. Gulevich
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya 42, 127550 Moscow, Russia; (A.A.G.); (E.N.B.)
| | - Ekaterina V. Zhuravleva
- Federal State Budgetary Scientific Institution Belgorod Federal Agrarian Scientific Center of Russian Academy of Sciences, 308001 Belgorod, Russia;
| | - Yulia N. Kostanchuk
- Federal State Budgetary Scientific Institution, Research Institute of Agricultural of Crimea’, Kievskaya 150, 295493 Simferopol, Russia; (I.L.D.); (O.A.P.); (E.F.M.)
| | - Ekaterina N. Baranova
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya 42, 127550 Moscow, Russia; (A.A.G.); (E.N.B.)
- N.V. Tsitsin Main Botanical Garden of Russian Academy of Sciences, Botanicheskaya 4, 127276 Moscow, Russia
| |
Collapse
|
4
|
M'Rah S, Marichali A, M'Rabet Y, Chatti S, Casabianca H, Hosni K. Morphology, physiology, and biochemistry of zinc-stressed caraway plants. PROTOPLASMA 2023; 260:853-868. [PMID: 36329347 DOI: 10.1007/s00709-022-01818-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 10/22/2022] [Indexed: 06/16/2023]
Abstract
A greenhouse pot experiment was conducted to evaluate the impact of zinc supply (0, 1, and 2 mM Zn as ZnSO4) on morpho-physiological and biochemical parameters of caraway (Carum carvi L.). Exposure to different Zn concentrations for 12 weeks compromised severely all growth parameters (plant height, number of secondary branches, diameter of primary and secondary branches, fresh and dry weight of aerial parts and roots) yield and its components (number of umbels per primary branches and secondary branches; number of umbel per plant; number of seeds per plant; and the weight of 1000 seeds). These manifestations were intimately linked with excessive accumulation of Zn in roots and leaves, alteration of the content of photosynthetic pigments, and extended lipid peroxidation. A manifest increment of proline and soluble sugar content was also observed in response to Zn application. Lipid content in seeds was dropped in Zn-treated plants and the fatty acid profiles were profoundly affected as they were enriched with saturated fatty acids at the expense of unsaturated ones. While improving their oxidative stability as revealed by the reduced values calculated oxidizability and oxidative susceptibility, Zn treatment reduced the lipid nutritional quality of caraway seeds. Moreover, Zn treatment reduced the essential oil yield and its main component carvone while it enhanced the content of its precursor limonene. It also induced alteration of terpene metabolism as revealed in the redirection of the carbon flux to the shikimate/phenylpropanoid pathway resulting in the stimulation of the production of phenolic compounds and their subsequent antioxidant activities.
Collapse
Affiliation(s)
- Sabah M'Rah
- Laboratoire Des Substances Naturelles, Institut National de Recherche Et d'Analyse Physico-Chimique (INRAP), Biorechpôle de Sidi Thabet, 2020, Ariana, Tunisia
- Laboratoire Productivité Végétale Et Contraintes Environnementales, Faculté Des Sciences de Tunis, Université Tunis El-Manar, 2092, Tunis, Tunisia
| | - Ahmed Marichali
- Laboratoire Des Substances Naturelles, Institut National de Recherche Et d'Analyse Physico-Chimique (INRAP), Biorechpôle de Sidi Thabet, 2020, Ariana, Tunisia
| | - Yassine M'Rabet
- Laboratoire Des Substances Naturelles, Institut National de Recherche Et d'Analyse Physico-Chimique (INRAP), Biorechpôle de Sidi Thabet, 2020, Ariana, Tunisia
| | - Saber Chatti
- Laboratoire Des Substances Naturelles, Institut National de Recherche Et d'Analyse Physico-Chimique (INRAP), Biorechpôle de Sidi Thabet, 2020, Ariana, Tunisia
| | - Hervé Casabianca
- Université de Lyon, CNRS, Université Claude Bernard Lyon 1, ENS de Lyon, Institut Des Sciences Analytiques, UMR 5280, 5 Rue de La Doua, 69100, Villeurbanne, France
| | - Karim Hosni
- Laboratoire Des Substances Naturelles, Institut National de Recherche Et d'Analyse Physico-Chimique (INRAP), Biorechpôle de Sidi Thabet, 2020, Ariana, Tunisia.
| |
Collapse
|
5
|
Hu X, Jiang Q, Wang H, Li J, Tu Z. Insight into the effect of traditional frying techniques on glycosylated hazardous products, quality attributes and flavor characteristics of grass carp fillets. Food Chem 2023; 421:136111. [PMID: 37087991 DOI: 10.1016/j.foodchem.2023.136111] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/04/2023] [Accepted: 04/04/2023] [Indexed: 05/03/2023]
Abstract
This study aimed to evaluate the evolution of quality attributes, oxidation index, glycosylated hazardous products, aroma characteristics of grass carp fillets and their relationship under air-frying, roast-frying and pan-frying. With frying progressed, the level of carbonyl protein and lipid oxidation products increased significantly (following air-frying > pan-frying > roast-frying), and the latter decreased subsequently after 6 min. Fillets possessed by frying increased significantly Nε-carboxymethyl-lysines (CML) and 5-hydroxymethylfurfural (5-HMF) levels, whose increment was pan-frying > air-frying > roast-frying. Compared to raw, eighty-seven volatiles were identified and the total concentrations of those increased gradually in air-frying, but then decreased up to 6 min in roast-frying and pan-frying. Furthermore, significant correlations between CML, TBARS and 5-HMF, quality attributes, oxidation index; volatiles (VIP and/or OAV > 1) and lipid oxidation index were obtained. Conclusively, fillets possessed by air-/roast-frying showed more lipid oxidation and alcohols/aldehydes, while pan-fried enriched CML and pyrazines.
Collapse
Affiliation(s)
- Xiangfei Hu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Qiannan Jiang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Hui Wang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Jinlin Li
- National Research and Development Center of Freshwater Fish Processing, College of Life Sciences, Jiangxi Normal University, Nanchang, Jiangxi 330022, China.
| | - Zongcai Tu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China; National Research and Development Center of Freshwater Fish Processing, College of Life Sciences, Jiangxi Normal University, Nanchang, Jiangxi 330022, China.
| |
Collapse
|
6
|
Singh R, Ahmed S, Luxmi S, Rai G, Gupta AP, Bhanwaria R, Gandhi SG. An assessment of the physicochemical characteristics and essential oil composition of Mentha longifolia (L.) Huds. exposed to different salt stress conditions. FRONTIERS IN PLANT SCIENCE 2023; 14:1165687. [PMID: 37143871 PMCID: PMC10151762 DOI: 10.3389/fpls.2023.1165687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 03/27/2023] [Indexed: 05/06/2023]
Abstract
Salt stress adversely influences growth, development, and productivity in plants, resulting in a limitation on agriculture production worldwide. Therefore, this study aimed to investigate the effect of four different salts, i.e., NaCl, KCl, MgSO4, and CaCl2, applied at various concentrations of 0, 12.5, 25, 50, and 100 mM on the physico-chemical properties and essential oil composition of M. longifolia. After 45 days of transplantation, the plants were irrigated at different salinities at 4-day intervals for 60 days. The resulting data revealed a significant reduction in plant height, number of branches, biomass, chlorophyll content, and relative water content with rising concentrations of NaCl, KCl, and CaCl2. However, MgSO4 poses fewer toxic effects than other salts. Proline concentration, electrolyte leakage, and DPPH inhibition (%) increase with increasing salt concentrations. At lower-level salt conditions, we had a higher essential oil yield, and GC-MS analysis reported 36 compounds in which (-)-carvone and D-limonene covered the most area by 22%-50% and 45%-74%, respectively. The expression analyzed by qRT-PCR of synthetic Limonene (LS) and Carvone (ISPD) synthetic genes has synergistic and antagonistic relationships in response to salt treatments. To conclude, it can be said that lower levels of salt enhanced the production of essential oil in M. longifolia, which may provide future benefits commercially and medicinally. In addition to this, salt stress also resulted in the emergence of novel compounds in essential oils, for which future strategies are needed to identify the importance of these compounds in M. longifolia.
Collapse
Affiliation(s)
- Ruby Singh
- Council of Scientific & Industrial Research (CSIR)-Indian Institute of Integrative Medicine, Jammu, India
- Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Sajad Ahmed
- Council of Scientific & Industrial Research (CSIR)-Indian Institute of Integrative Medicine, Jammu, India
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Savita Luxmi
- Council of Scientific & Industrial Research (CSIR)-Indian Institute of Integrative Medicine, Jammu, India
- Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Garima Rai
- Council of Scientific & Industrial Research (CSIR)-Indian Institute of Integrative Medicine, Jammu, India
| | - Ajai Prakash Gupta
- Council of Scientific & Industrial Research (CSIR)-Indian Institute of Integrative Medicine, Jammu, India
| | - Rajendra Bhanwaria
- Council of Scientific & Industrial Research (CSIR)-Indian Institute of Integrative Medicine, Jammu, India
- Academy of Scientific and Innovative Research, Ghaziabad, India
- *Correspondence: Sumit G. Gandhi, ; ; Rajendra Bhanwaria,
| | - Sumit G. Gandhi
- Council of Scientific & Industrial Research (CSIR)-Indian Institute of Integrative Medicine, Jammu, India
- Academy of Scientific and Innovative Research, Ghaziabad, India
- *Correspondence: Sumit G. Gandhi, ; ; Rajendra Bhanwaria,
| |
Collapse
|
7
|
The biochar-based nanocomposites influence the quantity, quality and antioxidant activity of essential oil in dill seeds under salt stress. Sci Rep 2022; 12:21903. [PMID: 36536073 PMCID: PMC9763235 DOI: 10.1038/s41598-022-26578-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022] Open
Abstract
The essential oil content and composition of medicinal plants may be influenced by eco-friendly products for nutrient availability under abiotic stresses. This research was conducted to determine the effects of biochar (30 g kg-1 soil) and biochar-based nanocomposites (BNCs) of iron (30 g BNC-FeO kg-1 soil), zinc (30 g BNC-ZnO kg-1 soil), and their combined form (15 + 15 g) on dill (Anethum graveolens L.) under salinity levels (non-saline, 6 and 12 dS m-1). Application of biochar, particularly BNCs increased iron and zinc content and decreased sodium accumulation in leaf tissues. The seed essential oil content increased under high salinity. Salinity changed the values of major compounds in essential oil and induced the formation of compounds such as alpha,2-dimethylstyrene, cuminyl alcohol, p-cymene, and linalool. Biochar treatments especially BNCs with a higher production of monoterpenes increased the levels of limonene, carvone, apiol, and dillapioll. All extracts showed a considerable DPPH-inhibitory effect with application of BNCs under salinity. The maximum antioxidant activity was observed under high level of salinity with application of the combined form. Therefore, the combined form of nanocomposite was the best treatment to improve the content of basic commercial monoterpenes and consequently antioxidant activity of essential oil in salt-stressed dill plants.
Collapse
|
8
|
Kardam V, Kalita S, Dubey KD. Computations reveal a crucial role of an aromatic dyad in the catalytic function of plant cytochrome P450 mint superfamily. J Inorg Biochem 2022; 237:111990. [PMID: 36115330 DOI: 10.1016/j.jinorgbio.2022.111990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/27/2022] [Accepted: 08/31/2022] [Indexed: 01/18/2023]
Abstract
Enzymes are highly specific for their native functions, however with advances in bioengineering tools such as directed evolution, several enzymes are being repurposed for the secondary function of contemporary significance(Khersonsky and Tawfik, 2010 [1]). Due to the functional versatility, the Cytochrome P450 (CYP450) superfamily has become the ideal scaffold for such bioengineering. In the current study, using MD (molecular dynamics) simulations and hybrid QM/MM (Quantum mechanics/molecular mechanics) calculations, we have studied the mechanism of spontaneous emergence of a secondary function due to a single site mutation in two plant CYP450 enzymes from the mint family. The MD simulations of WT (wild type) CYP71D18 and CYP71D13 enzymes and their variants show a crucial gating mechanism by aromatic dyad formed by Phe121 and Phe363 which regulates the substrate recognition. The QM/MM calculations reveal that the hydroxylation reactions at C3 and C6 positions in WT CYP71D18 and CYP71D13 enzymes as well as their variants follow a hydrogen atom transfer (HAT) followed by a single electron transfer (SET) mechanism, which is different from the typical rebound mechanism shown by most of the CYP450 enzymes.
Collapse
Affiliation(s)
- Vandana Kardam
- Department of Chemistry, School of Natural Sciences, Shiv Nadar Institution of Eminence Delhi-NCR, NH91, Tehsil Dadri, Greater Noida, Uttar Pradesh 201314, India
| | - Surajit Kalita
- Department of Chemistry, School of Natural Sciences, Shiv Nadar Institution of Eminence Delhi-NCR, NH91, Tehsil Dadri, Greater Noida, Uttar Pradesh 201314, India
| | - Kshatresh Dutta Dubey
- Department of Chemistry, School of Natural Sciences, Shiv Nadar Institution of Eminence Delhi-NCR, NH91, Tehsil Dadri, Greater Noida, Uttar Pradesh 201314, India.
| |
Collapse
|
9
|
Birk F, Hausmann H, Fraatz MA, Kirste A, Aust NC, Pelzer R, Zorn H. Generation of Flavor-Active Compounds by Electrochemical Oxidation of ( R)-Limonene. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:7220-7229. [PMID: 35642795 DOI: 10.1021/acs.jafc.2c01301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Terpenes may be converted by electrochemical oxidation to various oxidized products with appealing aroma properties. In this study, (R)-limonene was anodically oxidized in the presence of ethanol, and the resulting mixture exhibited a pleasing fruity, herbal, citrus-like, and resinous odor. The aroma-active compounds were purified by means of preparative high-performance liquid chromatography, and their structures were elucidated by means of gas chromatography (GC)-mass spectrometry and nuclear magnetic resonance spectroscopy. In addition, the odor of the isolated compounds was determined by means of GC-olfactometry. Seventeen compounds were isolated, and for only four of them, analytical data had been reported previously in the literature. Furthermore, only for two of the compounds, an odor description had been available in the literature.
Collapse
Affiliation(s)
- Florian Birk
- Institute of Food Chemistry and Food Biotechnology, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| | - Heike Hausmann
- Institute of Organic Chemistry, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| | - Marco A Fraatz
- Institute of Food Chemistry and Food Biotechnology, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, 35392 Giessen, Germany
| | - Axel Kirste
- Process Research & Chemical Engineering, BASF SE, Carl-Bosch-Str. 38, 67056 Ludwigshafen, Germany
| | - Nicola C Aust
- Process Research & Chemical Engineering, BASF SE, Carl-Bosch-Str. 38, 67056 Ludwigshafen, Germany
| | - Ralf Pelzer
- New Business Development Aroma Ingredients, BASF SE, Chemiestrasse 22, 68623 Lampertheim, Germany
| | - Holger Zorn
- Institute of Food Chemistry and Food Biotechnology, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, 35392 Giessen, Germany
| |
Collapse
|
10
|
Saed-Moucheshi A, Mozafari AA. Alternate gene expression profiling of monoterpenes in Hymenocrater longiflorus as a novel pharmaceutical plant under water deficit. Sci Rep 2022; 12:4084. [PMID: 35260740 PMCID: PMC8904481 DOI: 10.1038/s41598-022-08062-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 02/11/2022] [Indexed: 11/08/2022] Open
Abstract
Hymenocrater longiflorus (surahalala) is a wild plant species with potential pharmaceutical and ornamental interest. To date, the genomics of this plant is unknown and the gene expression profiling of the genes related to its metabolite has never been studied before. In order to study the responses of in vitro-grown surahalala plants to abiotic stresses and the differential expression of the genes related to its essential oils under exogenous proline application; three levels of PEG600 (0, 10, and 20%) and five levels of proline (0, 5, 10, 15, and 20 µm) were combined in the culture media. Thus, water deficit increased oxidants levels and decreased fresh weight of surahalala tissues, whereas addition of proline up to 15 µm was able to relatively compensate the negative effect of water deficit. Contrarily, high proline level (20 µm) had a negative effect on surahalala plants probably due to the stress simulation (nutrition) under high proline concentration. In addition, the best combination for achieving highest essential oils content was 10 µm proline plus 10% PEG. The expressional profiling of the genes TPS27, L3H, TPS2, TPS1, OMT and GDH3 were successfully carried out and their involvement in 1,8-cineole, carvone, α-pinene, thymol, estragole and β-Citronellol biosynthesis, respectively, was verified. In addition, our results indicated that these genes could also be involved in the synthesis of other metabolites under water deficit condition.
Collapse
Affiliation(s)
- Armin Saed-Moucheshi
- Department of Horticultural Science, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran
| | - Ali Akbar Mozafari
- Department of Horticultural Science, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran.
| |
Collapse
|
11
|
The biosynthesis of thymol, carvacrol, and thymohydroquinone in Lamiaceae proceeds via cytochrome P450s and a short-chain dehydrogenase. Proc Natl Acad Sci U S A 2021; 118:2110092118. [PMID: 34930840 PMCID: PMC8719858 DOI: 10.1073/pnas.2110092118] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/31/2021] [Indexed: 11/18/2022] Open
Abstract
The monoterpene alcohols thymol, carvacrol, and thymohydroquinone are characteristic flavor compounds of thyme, oregano, and other Lamiaceae. These specialized metabolites are also valuable for their antibacterial, anti-spasmolytic, and antitumor activities. We elucidated the complete biosynthetic pathway of these compounds, which starts with the formation of γ-terpinene from geranyl diphosphate. The aromatic backbone of thymol and carvacrol is formed by P450 monooxygenases in combination with a dehydrogenase via an unstable intermediate. Additional P450s hydroxylate thymol and carvacrol to form thymohydroquinone. Our findings demonstrate a mechanism for the formation of phenolic monoterpenes that differs from previous predictions and provides targets for metabolic engineering of high-value terpenes in plants. Thymol and carvacrol are phenolic monoterpenes found in thyme, oregano, and several other species of the Lamiaceae. Long valued for their smell and taste, these substances also have antibacterial and anti-spasmolytic properties. They are also suggested to be precursors of thymohydroquinone and thymoquinone, monoterpenes with anti-inflammatory, antioxidant, and antitumor activities. Thymol and carvacrol biosynthesis has been proposed to proceed by the cyclization of geranyl diphosphate to γ-terpinene, followed by a series of oxidations via p-cymene. Here, we show that γ-terpinene is oxidized by cytochrome P450 monooxygenases (P450s) of the CYP71D subfamily to produce unstable cyclohexadienol intermediates, which are then dehydrogenated by a short-chain dehydrogenase/reductase (SDR) to the corresponding ketones. The subsequent formation of the aromatic compounds occurs via keto–enol tautomerisms. Combining these enzymes with γ-terpinene in in vitro assays or in vivo in Nicotiana benthamiana yielded thymol and carvacrol as products. In the absence of the SDRs, only p-cymene was formed by rearrangement of the cyclohexadienol intermediates. The nature of these unstable intermediates was inferred from reactions with the γ-terpinene isomer limonene and by analogy to reactions catalyzed by related enzymes. We also identified and characterized two P450s of the CYP76S and CYP736A subfamilies that catalyze the hydroxylation of thymol and carvacrol to thymohydroquinone when heterologously expressed in yeast and N. benthamiana. Our findings alter previous views of thymol and carvacrol formation, identify the enzymes involved in the biosynthesis of these phenolic monoterpenes and thymohydroquinone in the Lamiaceae, and provide targets for metabolic engineering of high-value terpenes in plants.
Collapse
|
12
|
Shelf-Life Stability of Ready-to-Use Green Rooibos Iced Tea Powder-Assessment of Physical, Chemical, and Sensory Properties. Molecules 2021; 26:molecules26175260. [PMID: 34500693 PMCID: PMC8433966 DOI: 10.3390/molecules26175260] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 11/17/2022] Open
Abstract
Green rooibos extract (GRE), shown to improve hyperglycemia and HDL/LDL blood cholesterol, has potential as a nutraceutical beverage ingredient. The main bioactive compound of the extract is aspalathin, a C-glucosyl dihydrochalcone. The study aimed to determine the effect of common iced tea ingredients (citric acid, ascorbic acid, and xylitol) on the stability of GRE, microencapsulated with inulin for production of a powdered beverage. The stability of the powder mixtures stored in semi-permeable (5 months) and impermeable (12 months) single-serve packaging at 30 °C and 40 °C/65% relative humidity was assessed. More pronounced clumping and darkening of the powders, in combination with higher first order reaction rate constants for dihydrochalcone degradation, indicated the negative effect of higher storage temperature and an increase in moisture content when stored in the semi-permeable packaging. These changes were further increased by the addition of crystalline ingredients, especially citric acid monohydrate. The sensory profile of the powders (reconstituted to beverage strength iced tea solutions) changed with storage from a predominant green-vegetal aroma to a fruity-sweet aroma, especially when stored at 40 °C/65% RH in the semi-permeable packaging. The change in the sensory profile of the powder mixtures could be attributed to a decrease in volatile compounds such as 2-hexenal, (Z)-2-heptenal, (E)-2-octenal, (E)-2-nonenal, (E,Z)-2,6-nonadienal and (E)-2-decenal associated with "green-like" aromas, rather than an increase in fruity and sweet aroma-impact compounds. Green rooibos extract powders would require storage at temperatures ≤ 30 °C and protection against moisture uptake to be chemically and physically shelf-stable and maintain their sensory profiles.
Collapse
|
13
|
Untargeted Metabolomics of Rind Essential Oils Allowed to Differentiate Two Closely Related Clementine Varieties. PLANTS 2021; 10:plants10091789. [PMID: 34579322 PMCID: PMC8470288 DOI: 10.3390/plants10091789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 11/17/2022]
Abstract
Chemical characterization of clementine varieties (Citrus clementina Hort. ex Tan.) essential oils (EO) can lead to variety identification and valorization of their potential use in food and aroma industries. The goal of this study was the chemometric discrimination between two very closely related and morphologically identical clementine varieties, Clemenules (NL) and Clemenpons (PO), based on their rind EO, to identify the differential volatile organic compounds (VOCs) and to determine their antioxidant capacity. EO rind volatile profile was determined by gas chromatography coupled to mass spectrometry in Citrus fruit at different ripening stages grown two independent years in two different locations. Untargeted metabolomics and multivariate data analysis showed an evolution of EO volatile profiles markedly parallel in both varieties. Although EO qualitative composition was identical in both varieties, PLS-DA allowed the identification of characteristic VOCs, quantitatively discriminating them along all the ripening process. PO showed higher accumulation of several mono- and sesquiterpene compounds such as trans-carveol, while NL showed higher levels of aldehyde and alcohol non-terpenoids like dodecanal. Both varieties evinced identical EO antioxidant activities, indicating a similar value for food preservation. Hence, untargeted metabolomics approach based on rind EO volatiles was revealed as a powerful technique able to differentiate between morphologically undistinguishable Citrus varieties.
Collapse
|
14
|
Jamieson CS, Misa J, Tang Y, Billingsley JM. Biosynthesis and synthetic biology of psychoactive natural products. Chem Soc Rev 2021; 50:6950-7008. [PMID: 33908526 PMCID: PMC8217322 DOI: 10.1039/d1cs00065a] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Psychoactive natural products play an integral role in the modern world. The tremendous structural complexity displayed by such molecules confers diverse biological activities of significant medicinal value and sociocultural impact. Accordingly, in the last two centuries, immense effort has been devoted towards establishing how plants, animals, and fungi synthesize complex natural products from simple metabolic precursors. The recent explosion of genomics data and molecular biology tools has enabled the identification of genes encoding proteins that catalyze individual biosynthetic steps. Once fully elucidated, the "biosynthetic pathways" are often comparable to organic syntheses in elegance and yield. Additionally, the discovery of biosynthetic enzymes provides powerful catalysts which may be repurposed for synthetic biology applications, or implemented with chemoenzymatic synthetic approaches. In this review, we discuss the progress that has been made toward biosynthetic pathway elucidation amongst four classes of psychoactive natural products: hallucinogens, stimulants, cannabinoids, and opioids. Compounds of diverse biosynthetic origin - terpene, amino acid, polyketide - are identified, and notable mechanisms of key scaffold transforming steps are highlighted. We also provide a description of subsequent applications of the biosynthetic machinery, with an emphasis placed on the synthetic biology and metabolic engineering strategies enabling heterologous production.
Collapse
Affiliation(s)
- Cooper S Jamieson
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA.
| | - Joshua Misa
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, USA.
| | - Yi Tang
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA. and Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, USA.
| | - John M Billingsley
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, USA. and Invizyne Technologies, Inc., Monrovia, CA, USA
| |
Collapse
|
15
|
Immobilization of Caraway Essential Oil in a Polypropylene Matrix for Antimicrobial Modification of a Polymeric Surface. Polymers (Basel) 2021; 13:polym13060906. [PMID: 33809428 PMCID: PMC7999115 DOI: 10.3390/polym13060906] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 12/21/2022] Open
Abstract
This study investigates antibacterial polymer composites based on polypropylene as modified by caraway essential oil at various concentrations, the latter immobilized on a talc. The caraway essential oil is incorporated in the polypropylene by a thermoplastic processing method. Analysis of the morphology of the composites was carried out by scanning electron microscopy. The chemical composition of the caraway essential oil in addition to its efficiency of incorporation and release were evaluated by GC/MS and Pyrolysis-GC/MS techniques, respectively. Determination was made as to the influence of such incorporation on thermal and tensile properties of the samples, while antibacterial activity was evaluated through conducting disk diffusion tests and measurement with adherence to the ISO 22196:2011 standard. It was found that incorporating the caraway essential oil in the samples did not affect the homogeneity of the thermoplastic-processed composites at any studied concentration. Stress–strain analysis confirmed the plasticizing effect of the essential oil in the polypropylene matrix, in addition to which, differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) analysis revealed that the prepared compositions with essential oil exhibited similar thermal properties to neat polypropylene. Results indicated significant antibacterial activity against Staphylococcus aureus and Escherichia coli at the concentration of essential oil of 4.9 ± 0.2 wt% and higher.
Collapse
|
16
|
El Jery A, Hasan M, Rashid MM, Al Mesfer MK, Danish M, Ben Rebah F. Phytochemical characterization, and antioxidant and antimicrobial activities of essential oil from leaves of the common sage Salvia officinalis L. from Abha, Saudi Arabia. ASIAN BIOMED 2020; 14:261-270. [PMID: 37551305 PMCID: PMC10373391 DOI: 10.1515/abm-2020-0035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
Background The composition and activities of essential oil of common sage from Saudi Arabia have not yet been reported. Objectives To analyze the composition and antibacterial and antioxidant activities of essential oil from leaves of the common sage Salvia officinalis L. from Abha, Saudi Arabia. Methods Essential oil was extracted from the leaves of S. officinalis by hydrodistillation, and its composition was analyzed using gas chromatography and mass spectrometry. Phenolics and flavonoids were determined using gallic acid and quercetin standards. Antioxidant activity was determined using a 2,2-diphenyl-1-picrylhydrazyl radical scavenging method. Activity against various gram-positive and gram-negative bacteria was determined by disk diffusion and microdilution. Results The yield of essential oil was 3.24 ± 0.55% (w/dry weight). Major compounds identified were camphor (20.3%), 1,8-cineole (15.0%), α-thujone (14.9%), viridiflorol (9.9%), carvone (6.2%), and β-thujone (5.7%). Phenolic content was 134.3 ± 17.61 μg/mL and flavonoid content was 119.5 ± 18.75 μg/mL. Antioxidant IC50 was 970 ± 5.5 μg/mL. The highest gram-positive antibacterial activity was for Bacillus subtilis and the highest gram-negative activity was for Escherichia coli. Minimum inhibitory concentrations ranged from 62.2 ± 3.9 to 1398.1 ± 50.7 μg/mL for gram-positive bacteria and from 323.4 ± 69.5 to 968.4 ± 120.6 μg/mL for gram-negative bacteria. Minimum bactericidal concentrations ranged from 120.3 ± 7.6 to 1387.4 ± 161.8 μg/mL for gram-positive bacteria and from 386 ± 8.3 to 1225.2 ± 100.9 μg/mL for gram-negative bacteria. Conclusions Essential oil of S. officinalis L. from Abha, Saudi Arabia, showed compositional, antioxidant, and antibacterial properties generally consistent with essential oil of S. officinalis L. from other locations as reported in the literature.
Collapse
Affiliation(s)
- Atef El Jery
- Department of Chemical Engineering, College of Engineering, King Khalid University, Abha61411, Saudi Arabia
- Higher Institute of Applied Biology, Gabes University, Medenine4119, Tunisia
| | - Mudassir Hasan
- Department of Chemical Engineering, College of Engineering, King Khalid University, Abha61411, Saudi Arabia
| | - Md Mamoon Rashid
- Department of Chemical Engineering, College of Engineering, King Khalid University, Abha61411, Saudi Arabia
| | | | - Mohd Danish
- Department of Chemical Engineering, College of Engineering, King Khalid University, Abha61411, Saudi Arabia
| | - Faouzi Ben Rebah
- Department of Chemistry, College of Science, King Khalid University, Abha61413, Saudi Arabia
- Higher Institute of Biotechnology of Sfax, Sfax University, Sfax3000, Tunisia
| |
Collapse
|
17
|
Wróblewska A, Retajczyk M. The isomerization of S-carvone over the natural clinoptilolite as the catalyst: the influence of reaction time, temperature and catalyst content. REACTION KINETICS MECHANISMS AND CATALYSIS 2020. [DOI: 10.1007/s11144-020-01781-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Abstract
This work describes the isomerization of S-carvone using a natural zeolite—clinoptilolite as the catalyst. The isomerization of S-carvone was carried out at the catalyst content in the reaction mixture from 5 to 15 wt%, in a temperature range of 190–210 °C and for the reaction time from 60 to 300 min. The main product of the isomerization of S-carvone was aromatic alcohol with many practical applications—carvacrol. The use of the most favorable reaction conditions (the reaction time of 3 h, the temperature of 210 °C and the catalyst content 15 wt%) allowed to obtain this compound with high yield amounted to about 90 mol%. The S-carvone isomerization is an example of environmentally friendly process because it does not use any solvents, S-carvone can be separated from cheap cumin waste (renewable biomass) and a cheap zeolite of natural origin—clinoptilolite can be is used as the catalyst.
Graphic abstract
Collapse
|
18
|
Accumulation of high-value bioproducts in planta can improve the economics of advanced biofuels. Proc Natl Acad Sci U S A 2020; 117:8639-8648. [PMID: 32220956 PMCID: PMC7165473 DOI: 10.1073/pnas.2000053117] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Cellulosic biofuels have not yet reached cost parity with conventional petroleum fuels. One strategy to address this challenge is to generate valuable coproducts alongside biofuels. Engineering bioenergy crops to generate value-added bioproducts in planta can reduce input requirements relative to microbial chassis and skip costly deconstruction and conversion steps. Although rapid progress has been made in plant metabolic engineering, there has been no systematic analysis devoted to quantifying the impact of such engineered bioenergy crops on biorefinery economics. Here, we provide new insights into how bioproduct accumulation in planta affects biofuel selling prices. We present the range of bioproduct selling prices and accumulation rates needed to compensate for additional extraction steps and reach a target $2.50/gal minimum biofuel selling price. Coproduction of high-value bioproducts at biorefineries is a key factor in making biofuels more cost-competitive. One strategy for generating coproducts is to directly engineer bioenergy crops to accumulate bioproducts in planta that can be fractionated and recovered at biorefineries. Here, we develop quantitative insights into the relationship between bioproduct market value and target accumulation rates by investigating a set of industrially relevant compounds already extracted from plant sources with a wide range of market prices and applications, including <$10/kg (limonene, latex, and polyhydroxybutyrate [PHB]), $10 to $100/kg (cannabidiol), and >$100/kg (artemisinin). These compounds are used to identify a range of mass fraction thresholds required to achieve net economic benefits for biorefineries and the additional amounts needed to reach a target $2.50/gal biofuel selling price, using cellulosic ethanol production as a test case. Bioproduct market prices and recovery costs determine the accumulation threshold; we find that moderate- to high-value compounds (i.e., cannabidiol and artemisinin) offer net economic benefits at accumulation rates of just 0.01% dry weight (dwt) to 0.02 dwt%. Lower-value compounds, including limonene, latex, and PHB, require at least an order-of-magnitude greater accumulation to overcome additional extraction and recovery costs (0.3 to 1.2 dwt%). We also find that a diversified approach is critical. For example, global artemisinin demand could be met with fewer than 10 biorefineries, while global demand for latex is equivalent to nearly 180 facilities. Our results provide a roadmap for future plant metabolic engineering efforts aimed at increasing the value derived from bioenergy crops.
Collapse
|
19
|
Vilela DAD, Silva BAO, Brito MC, Menezes PMN, Bomfim HF, Duarte-Filho LAMDS, Silva TRDS, Ribeiro LADA, Lucchese AM, Silva FS. Lippia alnifolia essential oil induces relaxation on Guinea-pig trachea by multiple pathways. JOURNAL OF ETHNOPHARMACOLOGY 2020; 246:112162. [PMID: 31419501 DOI: 10.1016/j.jep.2019.112162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 07/22/2019] [Accepted: 08/11/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Lippia alnifolia Mart. & Schauer, known as "alecrim-do-mato", "alecrim-de-vaqueiro" and "pedrécio", is used in folk medicine as antiseptic and to treat diseases that affect respiratory system, like bronchitis and asthma. AIM OF THE STUDY The aim of this work was to investigate the spasmolytic activity and relaxant mechanism of the Lippia alnifolia essential oil (EOLA) on isolated guinea-pig trachea and to correlate with its use in folk medicine. MATERIALS AND METHODS Leaves from L. alnifolia were collected in Pico das Almas, Chapada Diamantina, situated in the city of Rio de Contas, Bahia, Brazil. EOLA was extracted by hydrodistillation, analyzed by GC/FID and GC/MS and the volatile constituents were identified. Spasmolytic activity was assayed in isolated guinea-pig trachea pre-contracted with carbachol 1 μM or histamine 10 μM. Relaxant mechanism of EOLA was determined comparing concentration-response curves in the presence or absence of different blockers. RESULTS Chemical analysis revealed the presence of carvone (60 ± 0.8%) as major constituent. EOLA (1-243 μg/mL) relaxed isolated guinea-pig trachea pre-contracted with carbachol 1 μM [EC50 = 53.36 (44.75-63.51) μg/mL] or histamine 10 μM [EC50 = 5.42 (4.42-6.65) μg/mL]. The pre-incubation of 4-aminopyridine in histamine-induced contractions did not alter significantly the relaxant effect of EOLA. However, the presence of cesium chloride, glibenclamide, tetraethylammonium, propranolol, indomethacin, dexamethasone, hexamethonium, atropine, L-NAME, methylene blue or ODQ reduced EOLA relaxant effect. EOLA 18 μg/mL pre-incubation in calcium-free medium reduced histamine-evoked contractions, but did not alter histamine contractions in the presence of nifedipine. CONCLUSIONS Lippia alnifolia essential oil has spasmolytic activity on isolated guinea-pig trachea and its mechanism of action possibly involves the activation of multiple signal transduction pathways, which culminate in potassium channels activation and cytosolic calcium reduction.
Collapse
Affiliation(s)
| | | | - Mariana Coelho Brito
- Laboratório de Farmacologia Experimental, Colegiado de Farmácia, Universidade Federal do Vale do São Francisco (UNIVASF), Brazil.
| | | | - Horácio Freitas Bomfim
- Laboratório de Química de Produtos Naturais e Bioativos, Departamento de Ciências Exatas, Universidade Estadual de Feira de Santana (UEFS), Brazil.
| | | | | | - Luciano Augusto de Araújo Ribeiro
- Pós-graduação em Biociências, Universidade Federal do Vale do São Francisco (UNIVASF), Brazil; Laboratório de Farmacologia Experimental, Colegiado de Farmácia, Universidade Federal do Vale do São Francisco (UNIVASF), Brazil.
| | - Angélica Maria Lucchese
- Laboratório de Química de Produtos Naturais e Bioativos, Departamento de Ciências Exatas, Universidade Estadual de Feira de Santana (UEFS), Brazil.
| | - Fabrício Souza Silva
- Pós-graduação em Biociências, Universidade Federal do Vale do São Francisco (UNIVASF), Brazil; Laboratório de Farmacologia Experimental, Colegiado de Farmácia, Universidade Federal do Vale do São Francisco (UNIVASF), Brazil.
| |
Collapse
|
20
|
Cohen SM, Eisenbrand G, Fukushima S, Gooderham NJ, Guengerich FP, Hecht SS, Rietjens IMCM, Bastaki M, Davidsen JM, Harman CL, McGowen MM, Taylor SV. FEMA GRAS assessment of natural flavor complexes: Mint, buchu, dill and caraway derived flavoring ingredients. Food Chem Toxicol 2019; 135:110870. [PMID: 31604112 DOI: 10.1016/j.fct.2019.110870] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 09/18/2019] [Accepted: 10/02/2019] [Indexed: 02/08/2023]
Abstract
In 2015, the Expert Panel of the Flavor and Extract Manufacturers Association (FEMA) initiated a re-evaluation of the safety of over 250 natural flavor complexes (NFCs) used as flavor ingredients. NFC flavor materials include a variety of essential oils and botanical extracts. The re-evaluation of NFCs is conducted based on a constituent-based procedure outlined in 2005 and updated in 2018 that evaluates the safety of NFCs for their intended use as flavor ingredients. This procedure is applied in the re-evaluation of the generally recognized as safe (GRAS) status of NFCs with constituent profiles that are dominated by alicyclic ketones such as menthone and carvone, secondary alcohols such as menthol and carveol, and related compounds. The FEMA Expert Panel affirmed the GRAS status of Peppermint Oil (FEMA 2848), Spearmint Oil (FEMA 3032), Spearmint Extract (FEMA 3031), Cornmint Oil (FEMA 4219), Erospicata Oil (FEMA 4777), Curly Mint Oil (FEMA 4778), Pennyroyal Oil (FEMA 2839), Buchu Leaves Oil (FEMA 2169), Caraway Oil (FEMA 2238) and Dill Oil (FEMA 2383) and determined FEMA GRAS status for Buchu Leaves Extract (FEMA 4923), Peppermint Oil, Terpeneless (FEMA 4924) and Spearmint Oil, Terpeneless (FEMA 4925).
Collapse
Affiliation(s)
- Samuel M Cohen
- Havlik-Wall Professor of Oncology, Dept. of Pathology and Microbiology, University of Nebraska Medical Center, 983135 Nebraska Medical Center, Omaha, NE, 68198-3135, USA
| | - Gerhard Eisenbrand
- Food Chemistry & Toxicology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Shoji Fukushima
- Japan Bioassay Research Center, 2445 Hirasawa, Hadano, Kanagawa, 257-0015, Japan
| | - Nigel J Gooderham
- Dept. of Metabolism, Digestion, and Reproduction, Imperial College London, Sir Alexander Fleming Building, London, SW7 2AZ, United Kingdom
| | - F Peter Guengerich
- Dept. of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, 37232-0146, USA
| | - Stephen S Hecht
- Masonic Cancer Center and Dept. of Laboratory Medicine and Pathology, University of Minnesota, MMC 806, 420 Delaware St., S.E., Minneapolis, MN, 55455, USA
| | - Ivonne M C M Rietjens
- Division of Toxicology, Wageningen University, Tuinlaan 5, 6703 HE, Wageningen, the Netherlands
| | - Maria Bastaki
- Flavor and Extract Manufacturers Association, 1101 17th Street NW, Suite 700, Washington, DC, 20036, USA
| | - Jeanne M Davidsen
- Flavor and Extract Manufacturers Association, 1101 17th Street NW, Suite 700, Washington, DC, 20036, USA
| | - Christie L Harman
- Flavor and Extract Manufacturers Association, 1101 17th Street NW, Suite 700, Washington, DC, 20036, USA
| | - Margaret M McGowen
- Flavor and Extract Manufacturers Association, 1101 17th Street NW, Suite 700, Washington, DC, 20036, USA
| | - Sean V Taylor
- Flavor and Extract Manufacturers Association, 1101 17th Street NW, Suite 700, Washington, DC, 20036, USA.
| |
Collapse
|
21
|
Abstract
Although flavor is an essential element for consumer acceptance of food, breeding programs have focused primarily on yield, leading to significant declines in flavor for many vegetables. The deterioration of flavor quality has concerned breeders; however, the complexity of this trait has hindered efforts to improve or even maintain it. Recently, the integration of flavor-associated metabolic profiling with other omics methodologies derived from big data has become a prominent trend in this research field. Here, we provide an overview of known metabolites contributing to flavor in the major vegetables as well as genetic analyses of the relevant metabolic pathways based on different approaches, especially multi-omics. We present examples demonstrating how omics analyses can help us to understand the accomplishments of historical flavor breeding practices and implement further improvements. The integration of genetics, cultivation, and postharvest practices with genome-scale data analyses will create enormous potential for further flavor quality improvements.
Collapse
Affiliation(s)
- Guangtao Zhu
- The CAAS-YNNU Joint Academy of Potato Sciences, Yunnan Normal University, Kunming 650500, China
- Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Junbo Gou
- Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Harry Klee
- Horticultural Sciences Department, Plant Innovation Center, University of Florida, Gainesville, Florida 32611, USA
| | - Sanwen Huang
- Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China;
| |
Collapse
|
22
|
Lange BM, Srividya N. Enzymology of monoterpene functionalization in glandular trichomes. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:1095-1108. [PMID: 30624688 DOI: 10.1093/jxb/ery436] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 11/18/2018] [Indexed: 05/08/2023]
Abstract
The plant kingdom supports an extraordinary chemical diversity, with terpenoids representing a particularly diversified class of secondary (or specialized) metabolites. Volatile and semi-volatile terpenoids in the C10-C20 range are often formed in specialized cell types and secretory structures. In the angiosperm lineage, glandular trichomes play an important role in enabling the biosynthesis and storage (or in some cases secretion) of functionalized terpenoids. The 'decoration' of a terpenoid scaffold with functional groups changes its physical and chemical properties, and can therefore affect the perception of a specific metabolite by other organisms. Because of the ecological implications (e.g. plant-herbivore interactions) and commercial relevance (e.g. volatiles used in the flavor and fragrance industries), terpenoid functionalization has been researched extensively. Recent successes in the cloning and functional evaluation of genes as well as the structural and biochemical characterization of enzyme catalysts have laid the foundation for an improved understanding of how pathways toward functionalized monoterpenes may have evolved. In this review, we will focus on an up-to-date account of functionalization reactions present in glandular trichomes.
Collapse
Affiliation(s)
- Bernd Markus Lange
- Institute of Biological Chemistry and M.J. Murdock Metabolomics Laboratory, Washington State University, Pullman, USA
| | - Narayanan Srividya
- Institute of Biological Chemistry and M.J. Murdock Metabolomics Laboratory, Washington State University, Pullman, USA
| |
Collapse
|
23
|
Guo J, Zhang R, Ouyang J, Zhang F, Qin F, Liu G, Zhang W, Li H, Ji X, Jia X, Qin B, You S. Stereodivergent Synthesis of Carveol and Dihydrocarveol through Ketoreductases/Ene‐Reductases Catalyzed Asymmetric Reduction. ChemCatChem 2018. [DOI: 10.1002/cctc.201801391] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Jiyang Guo
- School of Life Sciences and Biopharmaceutical SciencesShenyang Pharmaceutical University 103 Wenhua Road, Shenhe District Shenyang 110016 P.R. China
| | - Rui Zhang
- Wuya College of InnovationShenyang Pharmaceutical University 103 Wenhua Road, Shenhe District Shenyang 110016 P.R. China
| | - Jingping Ouyang
- School of Pharmaceutical EngineeringShenyang Pharmaceutical University 103 Wenhua Road, Shenhe District Shenyang 110016 P.R. China
| | - Feiting Zhang
- School of Life Sciences and Biopharmaceutical SciencesShenyang Pharmaceutical University 103 Wenhua Road, Shenhe District Shenyang 110016 P.R. China
| | - Fengyu Qin
- School of Life Sciences and Biopharmaceutical SciencesShenyang Pharmaceutical University 103 Wenhua Road, Shenhe District Shenyang 110016 P.R. China
| | - Guigao Liu
- Wuya College of InnovationShenyang Pharmaceutical University 103 Wenhua Road, Shenhe District Shenyang 110016 P.R. China
| | - Wenhe Zhang
- School of Life Sciences and Biopharmaceutical SciencesShenyang Pharmaceutical University 103 Wenhua Road, Shenhe District Shenyang 110016 P.R. China
| | - Hengyu Li
- School of Life Sciences and Biopharmaceutical SciencesShenyang Pharmaceutical University 103 Wenhua Road, Shenhe District Shenyang 110016 P.R. China
| | - Xiaohong Ji
- Wuya College of InnovationShenyang Pharmaceutical University 103 Wenhua Road, Shenhe District Shenyang 110016 P.R. China
| | - Xian Jia
- School of Pharmaceutical EngineeringShenyang Pharmaceutical University 103 Wenhua Road, Shenhe District Shenyang 110016 P.R. China
| | - Bin Qin
- Wuya College of InnovationShenyang Pharmaceutical University 103 Wenhua Road, Shenhe District Shenyang 110016 P.R. China
| | - Song You
- School of Life Sciences and Biopharmaceutical SciencesShenyang Pharmaceutical University 103 Wenhua Road, Shenhe District Shenyang 110016 P.R. China
| |
Collapse
|
24
|
Liu C, Srividya N, Parrish AN, Yue W, Shan M, Wu Q, Lange BM. Morphology of glandular trichomes of Japanese catnip (Schizonepeta tenuifolia Briquet) and developmental dynamics of their secretory activity. PHYTOCHEMISTRY 2018; 150:23-30. [PMID: 29533838 DOI: 10.1016/j.phytochem.2018.02.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 02/26/2018] [Accepted: 02/28/2018] [Indexed: 05/28/2023]
Abstract
Schizonepeta tenuifolia Briquet, commonly known as Japanese catnip, is used for the treatment of colds, headaches, fevers, and skin rashes in traditional Asian medicine (China, Japan and Korea). The volatile oil and its constituents have various demonstrated biological activities, but there is currently limited information regarding the site of biosynthesis. Light microscopy and scanning electron microscopy indicated the presence of three distinct glandular trichome types which, based on their morphological features, are referred to as peltate, capitate and digitiform glandular trichomes. Laser scanning microscopy and 3D reconstruction demonstrated that terpenoid-producing peltate glandular trichomes contain a disk of twelve secretory cells. The oil of peltate glandular trichomes, collected by laser microdissection or using custom-made micropipettes, was demonstrated to contain (-)-pulegone, (+)-menthone and (+)-limonene as major constituents. Digitiform and capitate glandular trichomes did not contain appreciable levels of terpenoid volatiles. The yield of distilled oil from spikes was significantly (44%) higher than that from leaves, while the composition of oils was very similar. Oils collected directly from leaf peltate glandular trichomes over the course of a growing season contained primarily (-)-pulegone (>80% at 32 days after germination) in young plants, while (+)-menthone began to accumulate later (>75% at 80 days after germination), at the expense of (-)-pulegone (the levels of (+)-limonene remained fairly stable at 3-5%). The current study establishes the morphological and chemical characteristics of glandular trichome types of S. tenuifolia, and also provides the basis for unraveling the biosynthesis of essential oil in this popular medicinal plant.
Collapse
Affiliation(s)
- Chanchan Liu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Institute of Biological Chemistry and M.J. Murdock Metabolomics Laboratory, Washington State University, Pullman, WA 99164-6340, USA
| | - Narayanan Srividya
- Institute of Biological Chemistry and M.J. Murdock Metabolomics Laboratory, Washington State University, Pullman, WA 99164-6340, USA
| | - Amber N Parrish
- Institute of Biological Chemistry and M.J. Murdock Metabolomics Laboratory, Washington State University, Pullman, WA 99164-6340, USA
| | - Wei Yue
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Mingqiu Shan
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Qinan Wu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - B Markus Lange
- Institute of Biological Chemistry and M.J. Murdock Metabolomics Laboratory, Washington State University, Pullman, WA 99164-6340, USA.
| |
Collapse
|
25
|
Sawicki R, Sieniawska E, Swatko-Ossor M, Golus J, Ginalska G. The frequently occurring components of essential oils beta elemene and R-limonene alter expression of dprE1 and clgR genes of Mycobacterium tuberculosis H37Ra. Food Chem Toxicol 2018; 112:145-149. [DOI: 10.1016/j.fct.2017.12.052] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 12/21/2017] [Accepted: 12/22/2017] [Indexed: 01/30/2023]
|
26
|
Sieniawska E, Sawicki R, Swatko-Ossor M, Napiorkowska A, Przekora A, Ginalska G, Augustynowicz-Kopec E. The Effect of Combining Natural Terpenes and Antituberculous Agents against Reference and Clinical Mycobacterium tuberculosis Strains. Molecules 2018; 23:E176. [PMID: 29342972 PMCID: PMC6017631 DOI: 10.3390/molecules23010176] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 12/28/2017] [Accepted: 01/06/2018] [Indexed: 11/17/2022] Open
Abstract
Background: On account of emergence of multi- and extensively drug-resistant Mycobacterium tuberculosis (Mtb) strains, combinations of drugs with natural compounds were tested to search for antibiotic activity enhancers. In this work we studied terpenes (α-pinene, bisabolol, β-elemene, (R)-limonene, (S)-limonene, myrcene, sabinene), which are the main constituents of essential oil obtained from Mutellina purpurea L., a plant with described antitubercular activity, to investigate their interactions with antibiotics against reference Mtb strains and multidrug-resistant clinical isolates. Methods: The serial dilution method was used to evaluate the minimal inhibitory concentration (MIC) of tested compounds, while the fractional inhibitory concentration index (FICI) was calculated for characterization of interactions. Moreover, IC50 values of tested compounds were determined using monkey kidney epithelial cell line (GMK). Results: The combinations of all studied terpenes with ethambutol or rifampicin resulted in a synergistic interaction. Bisabolol and (R)-limonene decreased the MIC for rifampicin at least two-fold for all tested strains, however no synergistic action was observed against virulent strains. The tested terpenes showed slight (bisabolol) or no cytotoxic effect against normal eukaryotic cells in vitro. Conclusions: The obtained enhanced activity (FICI < 0.5) of ethambutol and rifampicin against H37Ra strain under the influence of the studied terpenes may be correlated to the capability of essential oil constituents to modify bacterial resistance mechanisms in general. The observed differences in avirulent and virulent bacteria susceptibility to terpenes tested separately and in combinations with antibiotics can be correlated with the differences in the cell wall structure between H37Ra mutant and all virulent strains.
Collapse
Affiliation(s)
- Elwira Sieniawska
- Department of Pharmacognosy with Medicinal Plant Unit, Medical University of Lublin, 20-093 Lublin, Poland.
| | - Rafal Sawicki
- Department of Biochemistry and Biotechnology, Medical University of Lublin, 20-093 Lublin, Poland.
| | - Marta Swatko-Ossor
- Department of Biochemistry and Biotechnology, Medical University of Lublin, 20-093 Lublin, Poland.
| | - Agnieszka Napiorkowska
- Department of Microbiology, National Tuberculosis and Lung Diseases Research Institute, 01-138 Warsaw, Poland.
| | - Agata Przekora
- Department of Biochemistry and Biotechnology, Medical University of Lublin, 20-093 Lublin, Poland.
| | - Grazyna Ginalska
- Department of Biochemistry and Biotechnology, Medical University of Lublin, 20-093 Lublin, Poland.
| | - Ewa Augustynowicz-Kopec
- Department of Microbiology, National Tuberculosis and Lung Diseases Research Institute, 01-138 Warsaw, Poland.
| |
Collapse
|
27
|
Di Sotto A, Vecchiato M, Abete L, Toniolo C, Giusti AM, Mannina L, Locatelli M, Nicoletti M, Di Giacomo S. Capsicum annuum L. var. Cornetto di Pontecorvo PDO: Polyphenolic profile and in vitro biological activities. J Funct Foods 2018. [DOI: 10.1016/j.jff.2017.11.041] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
28
|
An original approach for lipophilic natural products extraction: Use of liquefied n-butane as alternative solvent to n-hexane. Lebensm Wiss Technol 2017. [DOI: 10.1016/j.lwt.2016.10.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
29
|
Elechosa MA, Di Leo Lira P, Juárez MA, Viturro CI, Heit CI, Molina AC, Martínez AJ, López S, Molina AM, van Baren CM, Bandoni AL. Essential oil chemotypes of Aloysia citrodora (Verbenaceae) in Northwestern Argentina. BIOCHEM SYST ECOL 2017. [DOI: 10.1016/j.bse.2017.07.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
30
|
Ahamad Bustamam MS, Hadithon KA, Mediani A, Abas F, Rukayadi Y, Lajis N, Shaari K, Safinar Ismail I. Stability Study of Algerian Nigella sativa Seeds Stored under Different Conditions. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2017; 2017:7891434. [PMID: 28255502 PMCID: PMC5309406 DOI: 10.1155/2017/7891434] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 11/16/2016] [Accepted: 12/28/2016] [Indexed: 06/06/2023]
Abstract
In a study to determine the stability of the main volatile constituents of Nigella sativa seeds stored under several conditions, eight storage conditions were established, based on the ecological abiotic effects of air, heat, and light. Six replicates each were prepared and analyzed with Headspace-Gas Chromatography-Mass Spectrometry (HS-GC-MS) for three time points at the initial (1st day (0)), 14th (1), and 28th (2) day of storage. A targeted multivariate analysis of Principal Component Analysis revealed that the stability of the main volatile constituents of the whole seeds was better than that of the ground seeds. Exposed seeds, whole or ground, were observed to experience higher decrement of the volatile composition. These ecofactors of air, heat, and light are suggested to be directly responsible for the loss of volatiles in N. sativa seeds, particularly of the ground seeds.
Collapse
Affiliation(s)
| | - Kamarul Arifin Hadithon
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Ahmed Mediani
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Faridah Abas
- Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Yaya Rukayadi
- Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Nordin Lajis
- Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Khozirah Shaari
- Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Intan Safinar Ismail
- Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| |
Collapse
|
31
|
Differences in Monoterpene Biosynthesis and Accumulation in Pistacia palaestina Leaves and Aphid-Induced Galls. J Chem Ecol 2017; 43:143-152. [PMID: 28108840 DOI: 10.1007/s10886-016-0817-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 11/23/2016] [Accepted: 12/20/2016] [Indexed: 10/20/2022]
Abstract
Certain insect species can induce gall formation on numerous plants species. Although the mechanism of gall development is largely unknown, it is clear that insects manipulate their hosts' anatomy, physiology, and chemistry for their own benefit. It is well known that insect-induced galls often contain vast amounts of plant defensive compounds as compared to non-colonized tissues, but it is not clear if defensive compounds can be produced in situ in the galled tissues. To answer this question, we analyzed terpene accumulation patterns and possible independent biosynthetic potential of galls induced by the aphid Baizongia pistaciae L. on the terminal buds of Pistacia palaestina Boiss. We compared monoterpene levels and monoterpene synthase enzyme activity in galls and healthy leaves from individual trees growing in a natural setting. At all developmental stages, monoterpene content and monoterpene synthase activity were consistently (up to 10 fold on a fresh weight basis) higher in galls than in intact non-colonized leaves. A remarkable tree to tree variation in the products produced in vitro from the substrate geranyl diphosphate by soluble protein extracts derived from individual trees was observed. Furthermore, galls and leaves from the same trees displayed enhanced and often distinct biosynthetic capabilities. Our results clearly indicate that galls possess independent metabolic capacities to produce and accumulate monoterpenes as compared to leaves. Our study indicates that galling aphids manipulate the enzymatic machinery of their host plant, intensifying their own defenses against natural enemies.
Collapse
|
32
|
Brückner A, Heethoff M. Scent of a mite: origin and chemical characterization of the lemon-like flavor of mite-ripened cheeses. EXPERIMENTAL & APPLIED ACAROLOGY 2016; 69:249-261. [PMID: 27059866 DOI: 10.1007/s10493-016-0040-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 03/31/2016] [Indexed: 06/05/2023]
Abstract
Cheese infested with cheese mites is usually treated as unpalatable. Nevertheless, some traditional cheese manufactories in Germany and France intentionally use mites for fermentation of special varieties (i.e. Milbenkäse and Mimolette). While their production includes different mite species, both are characterized by a "lemon-like" flavor. However, the chemical nature and origin of this flavor-component is unknown. The cheese mites possess a pair of opisthosomal glands producing blends of hydrocarbons, terpenes and aromatics. Here, we describe the chemical profiles of the astigmatid mite species Tyrolichus casei (Milbenkäse) and Acarus siro (Mimolette). Although the chemical profiles differ in several aspects, both mite species produce neral (a volatile flavor component of lemon oil), which was absent from the headspace of both cheeses without mites. We conclude that the lemon-like flavor of mite cheese is not a consequence of fermentation of the cheese itself but a component from secretions of the cheese mites.
Collapse
Affiliation(s)
- Adrian Brückner
- Ecological Networks, Department of Biology, Darmstadt University of Technology, Schnittspahnstraße 3, 64287, Darmstadt, Germany
| | - Michael Heethoff
- Ecological Networks, Department of Biology, Darmstadt University of Technology, Schnittspahnstraße 3, 64287, Darmstadt, Germany.
| |
Collapse
|
33
|
Shiwakoti S, Poudyal S, Saleh O, Astatkie T, Zheljazkov VD. Method for Attaining Caraway Seed Oil Fractions with Different Composition. Chem Biodivers 2016; 13:695-9. [PMID: 27119969 DOI: 10.1002/cbdv.201500190] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 08/11/2015] [Indexed: 11/09/2022]
Abstract
Caraway (Carum carvi L.) is a medicinal and aromatic plant; its seeds (fruits) are used as spice and they contain essential oils. We hypothesized that by collecting caraway oil at different time points during the extraction process, we could obtain oil fractions with distinct chemical composition. A hydrodistillation time (HDT) study was conducted to test the hypothesis. The caraway seed oil fractions were collected at eight different HDT (at 0 - 2, 2 - 7, 7 - 15, 15 - 30, 30 - 45, 45 - 75, 75 - 105, and 105 - 135 min). Additionally, a non-stop HD for 135 min was conducted as a control. Most of the oil was eluted early in the HD process. The non-stop HDT treatment yielded 2.76% oil by weight. Of the 24 essential oil constituents, limonene (77 - 19% of the total oil) and carvone (20 - 79%) were the major ones. Other constituents included myrcene (0.72 - 0.16%), trans-carveol (0.07 - 0.39%), and β-caryophyllene (0.07 - 0.24%). Caraway seed oil with higher concentration of limonene can be obtained by sampling oil fractions early in HD process; conversely, oil with high concentration of carvone can be obtained by excluding the fractions eluted early in the HD process. We demonstrated a method of obtaining caraway seed oil fractions with various and unique composition. These novel oil fractions with unique composition are not commercially available and could have much wider potential uses, and also target different markets compared to the typical caraway essential oil.
Collapse
Affiliation(s)
- Santosh Shiwakoti
- Department of Crop and Soil Science, Oregon State University, 109 Crop Science Building, Corvallis, OR, 97331, USA.,Plant Sciences Department, University of Wyoming, 1000 University Avenue, Laramie, WY, 82071, USA
| | - Shital Poudyal
- Plant Sciences Department, University of Wyoming, 1000 University Avenue, Laramie, WY, 82071, USA
| | - Osama Saleh
- Plant Sciences Department, University of Wyoming, 1000 University Avenue, Laramie, WY, 82071, USA
| | - Tess Astatkie
- Faculty of Agriculture, Dalhousie University, 50 Pictou Road, P.O. Box 550, Truro, NS, B2N 5E3, Canada
| | - Valtcho D Zheljazkov
- Department of Crop and Soil Science, Oregon State University, 109 Crop Science Building, Corvallis, OR, 97331, USA
| |
Collapse
|
34
|
Majdi M, Abdollahi MR, Maroufi A. Parthenolide accumulation and expression of genes related to parthenolide biosynthesis affected by exogenous application of methyl jasmonate and salicylic acid in Tanacetum parthenium. PLANT CELL REPORTS 2015; 34:1909-1918. [PMID: 26183953 DOI: 10.1007/s00299-015-1837-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 06/22/2015] [Accepted: 06/29/2015] [Indexed: 06/04/2023]
Abstract
Up-regulation of germacrene A synthase and down-regulation of parthenolide hydroxylase genes play key role in parthenolide accumulation of feverfew plants treated with methyl jasmonate and salicylic acid. Parthenolide is an important sesquiterpene lactone due to its anti-migraine and anti-cancer properties. Parthenolide amount was quantified by high-performance liquid chromatography after foliar application of methyl jasmonate (100 µM) or salicylic acid (1.0 mM) on feverfew leaves in time course experiment (3-96 h). Results indicate that exogenous application of methyl jasmonate or salicylic acid activated parthenolide biosynthesis. Parthenolide content reached its highest amount at 24 h after methyl jasmonate or salicylic acid treatments, which were 3.1- and 1.96-fold higher than control plants, respectively. Parthenolide transiently increased due to methyl jasmonate or salicylic acid treatments until 24 h, but did not show significant difference compared with control plants at 48 and 96 h time points in both treatments. Also, the transcript levels of early pathway (upstream) genes of terpene biosynthesis including 3-hydroxy-3-methylglutaryl-coenzyme A reductase, 1-deoxy-D-xylulose-5-phosphate reductoisomerase and hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate reductase and the biosynthetic genes of parthenolide including germacrene A synthase, germacrene A oxidase, costunolide synthase and parthenolide synthase were increased by methyl jasmonate and salicylic acid treatments, but with different intensity. The transcriptional levels of these genes were higher in methyl jasmonate-treated plants than salicylic acid-treated plants. Parthenolide content measurements along with expression pattern analysis of the aforementioned genes and parthenolide hydroxylase as side branch gene of parthenolide suggest that the expression patterns of early pathway genes were not directly consistent with parthenolide accumulation pattern; hence, parthenolide accumulation is probably further modulated by the expression of its biosynthetic genes, especially germacrene A synthase and also its side branch gene, parthenolide hydroxylase.
Collapse
Affiliation(s)
- Mohammad Majdi
- Department of Agricultural Biotechnology, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran.
- Research Center for Medicinal Plant Breeding and Development, University of Kurdistan, Sanandaj, Iran.
| | - Mohammad Reza Abdollahi
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, Bu-Ali Sina University, Hamedan, Iran
| | - Asad Maroufi
- Department of Agricultural Biotechnology, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran
| |
Collapse
|
35
|
Electronic-nose applications for fruit identification, ripeness and quality grading. SENSORS 2015; 15:899-931. [PMID: 25569761 PMCID: PMC4327056 DOI: 10.3390/s150100899] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 12/25/2014] [Indexed: 11/17/2022]
Abstract
Fruits produce a wide range of volatile organic compounds that impart their characteristically distinct aromas and contribute to unique flavor characteristics. Fruit aroma and flavor characteristics are of key importance in determining consumer acceptance in commercial fruit markets based on individual preference. Fruit producers, suppliers and retailers traditionally utilize and rely on human testers or panels to evaluate fruit quality and aroma characters for assessing fruit salability in fresh markets. We explore the current and potential utilization of electronic-nose devices (with specialized sensor arrays), instruments that are very effective in discriminating complex mixtures of fruit volatiles, as new effective tools for more efficient fruit aroma analyses to replace conventional expensive methods used in fruit aroma assessments. We review the chemical nature of fruit volatiles during all stages of the agro-fruit production process, describe some of the more important applications that electronic nose (e-nose) technologies have provided for fruit aroma characterizations, and summarize recent research providing e-nose data on the effectiveness of these specialized gas-sensing instruments for fruit identifications, cultivar discriminations, ripeness assessments and fruit grading for assuring fruit quality in commercial markets.
Collapse
|
36
|
Lange BM. Biosynthesis and Biotechnology of High-Value p-Menthane Monoterpenes, Including Menthol, Carvone, and Limonene. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2015; 148:319-53. [PMID: 25618831 DOI: 10.1007/10_2014_289] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Monoterpenes of the p-menthane group are volatile secondary (or specialized) metabolites found across the plant kingdom. They are dominant constituents of commercially important essential oils obtained from members of the genera Mentha (Lamiaceae), Carum (Apiaceae), Citrus (Rutaceae), and Eucalyptus (Myrtaceae). p-Menthane monoterpenes have also attracted interest as chiral specialty chemicals, and the harvest from natural sources is therefore supplemented by chemical synthesis. More recently, microbial and plant-based platforms for the high-level accumulation of specific target monoterpenes have been developed. In this review chapter, I discuss the properties of the genes and enzymes involved in p-menthane biosynthesis and provide a critical assessment of biotechnological production approaches.
Collapse
Affiliation(s)
- Bernd Markus Lange
- Institute of Biological Chemistry and M.J. Murdock Metabolomics Laboratory, Washington State University, Pullman, WA, 99164-6340, USA,
| |
Collapse
|
37
|
Yu ZX, Wang LJ, Zhao B, Shan CM, Zhang YH, Chen DF, Chen XY. Progressive regulation of sesquiterpene biosynthesis in Arabidopsis and Patchouli (Pogostemon cablin) by the miR156-targeted SPL transcription factors. MOLECULAR PLANT 2015; 8:98-110. [PMID: 25578275 DOI: 10.1016/j.molp.2014.11.002] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2014] [Accepted: 10/25/2014] [Indexed: 05/18/2023]
Abstract
Plant metabolites vary at different stages of their life cycle. Although it is well documented that environmental factors stimulate biosynthesis of secondary metabolites, the regulation by endogenous developmental cues remains poorly understood. The microRNA156 (miR156)-targeted squamosa promoter binding protein-like (SPL) factors function as a major age cue in regulating developmental phase transition and flowering. We show here that the miR156-targeted SPL transcription factor plays an important role in the spatiotemporal regulation of sesquiterpene biosynthesis. In Arabidopsis thaliana, the miR156-SPL module regulates the formation of (E)-β-caryophyllene in the flowering stage through modulating expression of the sesquiterpene synthase gene TPS21. We demonstrated that SPL9 directly binds to TPS21 promoter and activates its expression. In the perennial fragrant herb Pogostemon cablin, the accumulation of patchouli oil, largely composed of sesquiterpenes dominated by (-)-patchoulol, is also age-regulated, and the SPL promotes biosynthesis of sesquiterpenes in elder plants by upregulating patchoulol synthase (PatPTS) gene expression. As miR156-SPLs are highly conserved in plants, our finding not only uncovers a molecular link between developmental timing and sesquiterpene production but also suggests a new strategy to engineer plants for accelerated growth with enhanced production of terpenoids.
Collapse
Affiliation(s)
- Zong-Xia Yu
- Plant Science Research Center, Shanghai Chenshan Botanical Garden, Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai 201602, China; National Key Laboratory of Plant Molecular Genetics, National Plant Gene Research Center, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China; University of CAS, Beijing 100049, China; College of Bioengineering, Dalian University, Dalian 116622, China
| | - Ling-Jian Wang
- National Key Laboratory of Plant Molecular Genetics, National Plant Gene Research Center, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Bo Zhao
- National Key Laboratory of Plant Molecular Genetics, National Plant Gene Research Center, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China; University of CAS, Beijing 100049, China
| | - Chun-Min Shan
- National Key Laboratory of Plant Molecular Genetics, National Plant Gene Research Center, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China; University of CAS, Beijing 100049, China
| | - Yu-Hua Zhang
- Firmenich Aromatics (China) Co. Ltd., Shanghai 201108, China
| | - Dong-Fang Chen
- Firmenich Aromatics (China) Co. Ltd., Shanghai 201108, China
| | - Xiao-Ya Chen
- Plant Science Research Center, Shanghai Chenshan Botanical Garden, Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai 201602, China; National Key Laboratory of Plant Molecular Genetics, National Plant Gene Research Center, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
38
|
Khan AA, Bacha N, Ahmad B, Lutfullah G, Farooq U, Cox RJ. Fungi as chemical industries and genetic engineering for the production of biologically active secondary metabolites. Asian Pac J Trop Biomed 2014. [DOI: 10.12980/apjtb.4.2014apjtb-2014-0230] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
39
|
Scientific Opinion on the safety assessment of carvone, considering all sources of exposure. EFSA J 2014. [DOI: 10.2903/j.efsa.2014.3806] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
40
|
Paul V, Pandey R. Role of internal atmosphere on fruit ripening and storability-a review. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2014; 51:1223-50. [PMID: 24966416 PMCID: PMC4062679 DOI: 10.1007/s13197-011-0583-x] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 10/03/2011] [Accepted: 11/07/2011] [Indexed: 11/28/2022]
Abstract
Concentrations of different gases and volatiles present or produced inside a fruit are determined by the permeability of the fruit tissue to these compounds. Primarily, surface morphology and anatomical features of a given fruit determine the degree of permeance across the fruit. Species and varietal variability in surface characteristics and anatomical features therefore influence not only the diffusibility of gases and volatiles across the fruits but also the activity and response of various metabolic and physiological reactions/processes regulated by these compounds. Besides the well-known role of ethylene, gases and volatiles; O2, CO2, ethanol, acetaldehyde, water vapours, methyl salicylate, methyl jasmonate and nitric oxide (NO) have the potential to regulate the process of ripening individually and also in various interactive ways. Differences in the prevailing internal atmosphere of the fruits may therefore be considered as one of the causes behind the existing varietal variability of fruits in terms of rate of ripening, qualitative changes, firmness, shelf-life, ideal storage requirement, extent of tolerance towards reduced O2 and/or elevated CO2, transpirational loss and susceptibility to various physiological disorders. In this way, internal atmosphere of a fruit (in terms of different gases and volatiles) plays a critical regulatory role in the process of fruit ripening. So, better and holistic understanding of this internal atmosphere along with its exact regulatory role on various aspects of fruit ripening will facilitate the development of more meaningful, refined and effective approaches in postharvest management of fruits. Its applicability, specially for the climacteric fruits, at various stages of the supply chain from growers to consumers would assist in reducing postharvest losses not only in quantity but also in quality.
Collapse
Affiliation(s)
- Vijay Paul
- Division of Plant Physiology, Indian Agricultural Research Institute, New Delhi, 110 012 India
| | - Rakesh Pandey
- Division of Plant Physiology, Indian Agricultural Research Institute, New Delhi, 110 012 India
| |
Collapse
|
41
|
Huchelmann A, Gastaldo C, Veinante M, Zeng Y, Heintz D, Tritsch D, Schaller H, Rohmer M, Bach TJ, Hemmerlin A. S-carvone suppresses cellulase-induced capsidiol production in Nicotiana tabacum by interfering with protein isoprenylation. PLANT PHYSIOLOGY 2014; 164:935-50. [PMID: 24367019 PMCID: PMC3912117 DOI: 10.1104/pp.113.232546] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 12/20/2013] [Indexed: 05/27/2023]
Abstract
S-Carvone has been described as a negative regulator of mevalonic acid (MVA) production by interfering with 3-hydroxy-3-methyl glutaryl coenzyme A reductase (HMGR) activity, a key player in isoprenoid biosynthesis. The impact of this monoterpene on the production of capsidiol in Nicotiana tabacum, an assumed MVA-derived sesquiterpenoid phytoalexin produced in response to elicitation by cellulase, was investigated. As expected, capsidiol production, as well as early stages of elicitation such as hydrogen peroxide production or stimulation of 5-epi-aristolochene synthase activity, were repressed. Despite the lack of capsidiol synthesis, apparent HMGR activity was boosted. Feeding experiments using (1-13C)Glc followed by analysis of labeling patterns by 13C-NMR, confirmed an MVA-dependent biosynthesis; however, treatments with fosmidomycin, an inhibitor of the MVA-independent 2-C-methyl-D-erythritol 4-phosphate (MEP) isoprenoid pathway, unexpectedly down-regulated the biosynthesis of this sesquiterpene as well. We postulated that S-carvone does not directly inhibit the production of MVA by inactivating HMGR, but possibly targets an MEP-derived isoprenoid involved in the early steps of the elicitation process. A new model is proposed in which the monoterpene blocks an MEP pathway-dependent protein geranylgeranylation necessary for the signaling cascade. The production of capsidiol was inhibited when plants were treated with some inhibitors of protein prenylation or by further monoterpenes. Moreover, S-carvone hindered isoprenylation of a prenylable GFP indicator protein expressed in N. tabacum cell lines, which can be chemically complemented with geranylgeraniol. The model was further validated using N. tabacum cell extracts or recombinant N. tabacum protein prenyltransferases expressed in Escherichia coli. Our study endorsed a reevaluation of the effect of S-carvone on plant isoprenoid metabolism.
Collapse
Affiliation(s)
- Alexandre Huchelmann
- Unité Propre de Recherche 2357, Centre National de la Recherche Scientifique, Institut de Biologie Moléculaire des Plantes, conventionné avec l’Université de Strasbourg, F-67083 Strasbourg, France (Al.H., M.V., Y.Z., D.H., H.S., T.J.B., An.H.); and
- Institut de Chimie Unité Mixte de Recherche 7177, Université de Strasbourg/Centre National de la Recherche Scientifique, F-67070 Strasbourg, France (C.G., D.T., M.R.)
| | - Clément Gastaldo
- Unité Propre de Recherche 2357, Centre National de la Recherche Scientifique, Institut de Biologie Moléculaire des Plantes, conventionné avec l’Université de Strasbourg, F-67083 Strasbourg, France (Al.H., M.V., Y.Z., D.H., H.S., T.J.B., An.H.); and
- Institut de Chimie Unité Mixte de Recherche 7177, Université de Strasbourg/Centre National de la Recherche Scientifique, F-67070 Strasbourg, France (C.G., D.T., M.R.)
| | - Mickaël Veinante
- Unité Propre de Recherche 2357, Centre National de la Recherche Scientifique, Institut de Biologie Moléculaire des Plantes, conventionné avec l’Université de Strasbourg, F-67083 Strasbourg, France (Al.H., M.V., Y.Z., D.H., H.S., T.J.B., An.H.); and
- Institut de Chimie Unité Mixte de Recherche 7177, Université de Strasbourg/Centre National de la Recherche Scientifique, F-67070 Strasbourg, France (C.G., D.T., M.R.)
| | | | - Dimitri Heintz
- Unité Propre de Recherche 2357, Centre National de la Recherche Scientifique, Institut de Biologie Moléculaire des Plantes, conventionné avec l’Université de Strasbourg, F-67083 Strasbourg, France (Al.H., M.V., Y.Z., D.H., H.S., T.J.B., An.H.); and
- Institut de Chimie Unité Mixte de Recherche 7177, Université de Strasbourg/Centre National de la Recherche Scientifique, F-67070 Strasbourg, France (C.G., D.T., M.R.)
| | - Denis Tritsch
- Unité Propre de Recherche 2357, Centre National de la Recherche Scientifique, Institut de Biologie Moléculaire des Plantes, conventionné avec l’Université de Strasbourg, F-67083 Strasbourg, France (Al.H., M.V., Y.Z., D.H., H.S., T.J.B., An.H.); and
- Institut de Chimie Unité Mixte de Recherche 7177, Université de Strasbourg/Centre National de la Recherche Scientifique, F-67070 Strasbourg, France (C.G., D.T., M.R.)
| | - Hubert Schaller
- Unité Propre de Recherche 2357, Centre National de la Recherche Scientifique, Institut de Biologie Moléculaire des Plantes, conventionné avec l’Université de Strasbourg, F-67083 Strasbourg, France (Al.H., M.V., Y.Z., D.H., H.S., T.J.B., An.H.); and
- Institut de Chimie Unité Mixte de Recherche 7177, Université de Strasbourg/Centre National de la Recherche Scientifique, F-67070 Strasbourg, France (C.G., D.T., M.R.)
| | - Michel Rohmer
- Unité Propre de Recherche 2357, Centre National de la Recherche Scientifique, Institut de Biologie Moléculaire des Plantes, conventionné avec l’Université de Strasbourg, F-67083 Strasbourg, France (Al.H., M.V., Y.Z., D.H., H.S., T.J.B., An.H.); and
- Institut de Chimie Unité Mixte de Recherche 7177, Université de Strasbourg/Centre National de la Recherche Scientifique, F-67070 Strasbourg, France (C.G., D.T., M.R.)
| | - Thomas J. Bach
- Unité Propre de Recherche 2357, Centre National de la Recherche Scientifique, Institut de Biologie Moléculaire des Plantes, conventionné avec l’Université de Strasbourg, F-67083 Strasbourg, France (Al.H., M.V., Y.Z., D.H., H.S., T.J.B., An.H.); and
- Institut de Chimie Unité Mixte de Recherche 7177, Université de Strasbourg/Centre National de la Recherche Scientifique, F-67070 Strasbourg, France (C.G., D.T., M.R.)
| | | |
Collapse
|
42
|
El Hadi MAM, Zhang FJ, Wu FF, Zhou CH, Tao J. Advances in fruit aroma volatile research. Molecules 2013; 18:8200-29. [PMID: 23852166 PMCID: PMC6270112 DOI: 10.3390/molecules18078200] [Citation(s) in RCA: 331] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 07/02/2013] [Accepted: 07/03/2013] [Indexed: 11/16/2022] Open
Abstract
Fruits produce a range of volatile compounds that make up their characteristic aromas and contribute to their flavor. Fruit volatile compounds are mainly comprised of esters, alcohols, aldehydes, ketones, lactones, terpenoids and apocarotenoids. Many factors affect volatile composition, including the genetic makeup, degree of maturity, environmental conditions, postharvest handling and storage. There are several pathways involved in volatile biosynthesis starting from lipids, amino acids, terpenoids and carotenoids. Once the basic skeletons are produced via these pathways, the diversity of volatiles is achieved via additional modification reactions such as acylation, methylation, oxidation/reduction and cyclic ring closure. In this paper, we review the composition of fruit aroma, the characteristic aroma compounds of several representative fruits, the factors affecting aroma volatile, and the biosynthetic pathways of volatile aroma compounds. We anticipate that this review would provide some critical information for profound research on fruit aroma components and their manipulation during development and storage.
Collapse
Affiliation(s)
- Muna Ahmed Mohamed El Hadi
- College of Horticulture and Plant Protection, Yangzhou University, Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou 225009, China.
| | | | | | | | | |
Collapse
|
43
|
Sun Y, Long R, Kang J, Zhang T, Zhang Z, Zhou H, Yang Q. Molecular cloning and characterization of three isoprenyl diphosphate synthase genes from alfalfa. Mol Biol Rep 2013; 40:2035-44. [PMID: 23238915 DOI: 10.1007/s11033-012-2262-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Accepted: 11/19/2012] [Indexed: 10/27/2022]
Abstract
Isoprenoid is the precursor for the biosynthesis of saponins, abscisic acid, gibberellins, chlorophylls and many other products in plants. Saponins are an important group of bioactive plant natural products. The alfalfa (Medicago sativa L.) saponins are glycosides of different triterpene aglycones and possess many biological activities. We isolated three genes (MsFPPS, MsGPPS and MsGGPPS) encoding isoprenyl diphosphate synthases (IDS) from alfalfa via a homology-based PCR approach. The enzyme activity assay of purified recombined MsFPPS and MsGGPPS expressed in Escherichia coli indicated that they all had IDS activity. Expression analysis of the three genes in different alfalfa tissues using real time PCR displayed that they were expressed in all tissues although they had a different expression patterns. MsFPPS and MsGPS displayed a significant increase in transcript level in response to methyl jasmonate, but the transcript level of MsGGPPS decreased obviously. To elucidate the functions of the three IDSs, their overexpression driven by a constitutive cauliflower mosaic virus-35S promoter in tobacco plants was applied and analyzed. The T(0) transgenic plants of MsFPPS showed high levels of squalene content when compared with control. However, no differences were detected in T(0) transgenic plants of MsGPPS and MsGGPPS. In addition, the overexpression of MsFPPS induced senescence response in transgenic plant leaves. This result may indicate that MsFPPS performs a role not only in phytosterol and triterpene biosynthesis, but also in growth regulation.
Collapse
Affiliation(s)
- Yan Sun
- College of Animal Science and Technology, China Agriculture University, Beijing, 100193, China
| | | | | | | | | | | | | |
Collapse
|
44
|
Jana S, Shekhawat GS. Anethum graveolens: An Indian traditional medicinal herb and spice. Pharmacogn Rev 2012; 4:179-84. [PMID: 22228959 PMCID: PMC3249919 DOI: 10.4103/0973-7847.70915] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Indexed: 11/06/2022] Open
Abstract
Anethum graveolens L. (dill) has been used in ayurvedic medicines since ancient times and it is a popular herb widely used as a spice and also yields essential oil. It is an aromatic and annual herb of apiaceae family. The Ayurvedic uses of dill seeds are carminative, stomachic and diuretic. There are various volatile components of dill seeds and herb; carvone being the predominant odorant of dill seed and α-phellandrene, limonene, dill ether, myristicin are the most important odorants of dill herb. Other compounds isolated from seeds are coumarins, flavonoids, phenolic acids and steroids. The main purpose of this review is to understand the significance of Anethum graveolens in ayurvedic medicines and non-medicinal purposes and emphasis can also be given to the enhancement of secondary metabolites of this medicinal plant.
Collapse
Affiliation(s)
- S Jana
- Department of Bioscience and Biotechnology, Banasthali University, Banasthali, Rajasthan, India
| | | |
Collapse
|
45
|
Finefield JM, Sherman DH, Kreitman M, Williams RM. Enantiomeric natural products: occurrence and biogenesis. Angew Chem Int Ed Engl 2012; 51:4802-36. [PMID: 22555867 PMCID: PMC3498912 DOI: 10.1002/anie.201107204] [Citation(s) in RCA: 201] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Indexed: 01/07/2023]
Abstract
In nature, chiral natural products are usually produced in optically pure form-however, occasionally both enantiomers are formed. These enantiomeric natural products can arise from a single species or from different genera and/or species. Extensive research has been carried out over the years in an attempt to understand the biogenesis of naturally occurring enantiomers; however, many fascinating puzzles and stereochemical anomalies still remain.
Collapse
|
46
|
Finefield JM, Sherman DH, Kreitman M, Williams RM. Enantiomere Naturstoffe: Vorkommen und Biogenese. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201107204] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
47
|
Miyazaki T, Plotto A, Baldwin EA, Reyes-De-Corcuera JI, Gmitter FG. Aroma characterization of tangerine hybrids by gas-chromatography-olfactometry and sensory evaluation. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2012; 92:727-35. [PMID: 22413143 DOI: 10.1002/jsfa.4663] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
BACKGROUND Tangerines have a distinct flavor among citrus fruit. However, information on tangerine volatiles remains limited. Volatile compounds from a breeding population of tangerines were earlier identified by gas chromatography-mass spectrometry. In this study, five hybrids with a distinct volatile profile were analyzed by gas-chromatography-olfactometry (GC-O) and descriptive sensory analysis. RESULTS Forty-nine aroma active compounds were found in a consensus by GC-O. Aldehydes were the most important group with odor activity, as well as monoterpenes, esters, alcohols and ketones. 1,8-Cineole, β-myrcene, (E,E)-2,4-nonadienal, hexanal, ethyl-2-methylbutanoate, and linalool were perceived with high intensity in most samples. Two 'Clementine' × 'Minneola' and one 'Fortune' × 'Murcott' hybrids with tangerine, sulfury and woody/spicy flavors had aroma active compounds with terpeney, fatty/vegetable and metallic/rubber descriptors. A tangerine with 'Valencia' orange in its parentage had a characteristic orange flavor, which could be explained by esters and ketones, high in fruity and floral odor intensities. A hybrid of unknown origin had a distinct fruity-non-citrus and pumpkin/fatty flavor; that sample had the lowest amount of aroma-active volatiles, with the least compounds with terpeney odors. CONCLUSION There was no one compound characteristic of tangerine flavor. Nevertheless, each sample sensory characteristic could be explained by a set of aroma-active volatile compounds.
Collapse
Affiliation(s)
- Takayuki Miyazaki
- University of Florida-IFAS, Citrus Research and Education Center, Lake Alfred, FL 33850, USA
| | | | | | | | | |
Collapse
|
48
|
Raal A, Arak E, Orav A. The content and composition of the essential oil Found inCarum carviL. commercial fruits obtained from different countries. JOURNAL OF ESSENTIAL OIL RESEARCH 2012. [DOI: 10.1080/10412905.2012.646016] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
49
|
Fähnrich A, Krause K, Piechulla B. Product variability of the 'cineole cassette' monoterpene synthases of related Nicotiana species. MOLECULAR PLANT 2011; 4:965-84. [PMID: 21527560 DOI: 10.1093/mp/ssr021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Nicotiana species of the section Alatae characteristically emit the floral scent compounds of the 'cineole cassette' comprising 1,8-cineole, limonene, myrcene, α-pinene, β-pinene, sabinene, and α-terpineol. We successfully isolated genes of Nicotiana alata and Nicotiana langsdorfii that encoded enzymes, which produced the characteristic monoterpenes of this 'cineole cassette' with α-terpineol being most abundant in the volatile spectra. The amino acid sequences of both terpineol synthases were 99% identical. The enzymes cluster in a monophyletic branch together with the closely related cineole synthase of Nicotiana suaveolens and monoterpene synthase 1 of Solanum lycopersicum. The cyclization reactions (α-terpineol to 1,8-cineole) of the terpineol synthases of N. alata and N. langsdorfii were less efficient compared to the 'cineole cassette' monoterpene synthases of Arabidopsis thaliana, N. suaveolens, Salvia fruticosa, Salvia officinalis, and Citrus unshiu. The terpineol synthases of N. alata and N. langsdorfii were localized in pistils and in the adaxial and abaxial epidermis of the petals. The enzyme activities reached their maxima at the second day after anthesis when flowers were fully opened and the enzyme activity in N. alata was highest at the transition from day to night (diurnal rhythm).
Collapse
Affiliation(s)
- Anke Fähnrich
- University of Rostock, Institute for Biological Sciences, Albert-Einstein-Str. 3, 18059 Rostock, Germany
| | | | | |
Collapse
|
50
|
Abstract
A summary of the features for investigating absolute structure available in the crystallographic refinement programCRYSTALSis presented, together with the results of analyses of 150 light-atom structures collected with molybdenum radiation carried out with these tools. The results confirm that the Flack and Hooft parameters are strongly indicative, even when the standard uncertainties are large compared to the thresholds recommended by Flack & Bernardinelli [J. Appl. Cryst.(2000),33, 1143–1148].
Collapse
|