1
|
Kaur M, Sinha K, Eastmond PJ, Bhunia RK. Exploiting lipid droplet metabolic pathway to foster lipid production: oleosin in focus. PLANT CELL REPORTS 2024; 44:12. [PMID: 39724216 DOI: 10.1007/s00299-024-03390-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 11/23/2024] [Indexed: 12/28/2024]
Abstract
In the past decade, there has been an emerging gap between the demand and supply of vegetable oils globally for both edible and industrial use. Lipids are important biomolecules with enormous applications in the industrial sector and a major source of energy for animals and plants. Hence, to elevate the lipid content through metabolic engineering, new strategies have come up for triacylglycerol (TAG) accumulation and in raising the lipid or oil yield in crop plants. Increased levels of energy density can be achieved by single and multiple gene strategies that re-orient the carbon flux into TAG. Transcription factors and enzymes of the metabolic pathways have been targeted to foster lipid production. Oleosin, a structural protein of the lipid droplet plays a vital role in its stabilization and subsequently in its mobilization for seed germination and seedling growth. Maintenance of increased lipid content with optimal composition is a major target. Knowledge gained from genetic engineering strategies suggests that oleosin co-expression can result in a significant shift in carbon allocation to LDs. In this review, we present a detailed analysis of the recent advancements in metabolic engineering of plant lipids with emphasis on oleosin with its distinct patterns and functions in plants.
Collapse
Affiliation(s)
- Manmehar Kaur
- Department of Biotechnology, Panjab University, Sector-25, Chandigarh, 160014, India
| | - Kshitija Sinha
- Department of Biotechnology, Panjab University, Sector-25, Chandigarh, 160014, India
- National Agri-Food and Biomanufacturing Institute (NABI), Sector 81, Knowledge City, S.A.S. Nagar, Mohali, Punjab, 140306, India
| | | | - Rupam Kumar Bhunia
- National Agri-Food and Biomanufacturing Institute (NABI), Sector 81, Knowledge City, S.A.S. Nagar, Mohali, Punjab, 140306, India.
| |
Collapse
|
2
|
Wolters SM, Laibach N, Riekötter J, Roelfs KU, Müller B, Eirich J, Twyman RM, Finkemeier I, Prüfer D, Schulze Gronover C. The interaction networks of small rubber particle proteins in the latex of Taraxacum koksaghyz reveal diverse functions in stress responses and secondary metabolism. FRONTIERS IN PLANT SCIENCE 2024; 15:1498737. [PMID: 39735776 PMCID: PMC11671276 DOI: 10.3389/fpls.2024.1498737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 11/05/2024] [Indexed: 12/31/2024]
Abstract
The Russian dandelion (Taraxacum koksaghyz) is a promising source of natural rubber (NR). The synthesis of NR takes place on the surface of organelles known as rubber particles, which are found in latex - the cytoplasm of specialized cells known as laticifers. As well as the enzymes directly responsible for NR synthesis, the rubber particles also contain small rubber particle proteins (SRPPs), the most abundant of which are SRPP3, 4 and 5. These three proteins support NR synthesis by maintaining rubber particle stability. We used homology-based searches to identify the whole TkSRPP gene family and qPCR to create their spatial expression profiles. Affinity enrichment-mass spectrometry was applied to identify TkSRPP3/4/5 protein interaction partners in T. koksaghyz latex and selected interaction partners were analyzed using qPCR, confocal laser scanning microscopy and heterologous expression in yeast. We identified 17 SRPP-like sequences in the T. koksaghyz genome, including three apparent pseudogenes, 10 paralogs arranged as an inverted repeat in a cluster with TkSRPP3/4/5, and one separate gene (TkSRPP6). Their sequence diversity and different expression profiles indicated distinct functions and the latex interactomes obtained for TkSRPP3/4/5 suggested that TkSRPP4 is a promiscuous hub protein that binds many partners from different compartments, whereas TkSRPP3 and 5 have more focused interactomes. Two interactors shared by TkSRPP3/4/5 (TkSRPP6 and TkUGT80B1) were chosen for independent validation and detailed characterization. TkUGT80B1 triterpenoid glycosylating activity provided first evidence for triterpenoid saponin synthesis in T. koksaghyz latex. Based on its identified interaction partners, TkSRPP4 appears to play a special role in the endoplasmic reticulum, interacting with lipidmodifying enzymes that may facilitate rubber particle formation. TkSRPP5 appears to be involved in GTPase-dependent signaling and TkSRPP3 may act as part of a kinase signaling cascade, with roles in stress tolerance. TkSRPP interaction with TkUGT80B1 draws a new connection between TkSRPPs and triterpenoid saponin synthesis in T. koksaghyz latex. Our data contribute to the functional differentiation between TkSRPP paralogs and demonstrate unexpected interactions that will help to further elucidate the network of proteins linking TkSRPPs, stress responses and NR biosynthesis within the cellular complexity of latex.
Collapse
Affiliation(s)
- Silva Melissa Wolters
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Münster, Germany
| | - Natalie Laibach
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Münster, Germany
| | - Jenny Riekötter
- Institute of Plant Biology and Biotechnology, University of Münster, Münster, Germany
| | - Kai-Uwe Roelfs
- Institute of Plant Biology and Biotechnology, University of Münster, Münster, Germany
| | - Boje Müller
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Münster, Germany
| | - Jürgen Eirich
- Institute of Plant Biology and Biotechnology, University of Münster, Münster, Germany
| | | | - Iris Finkemeier
- Institute of Plant Biology and Biotechnology, University of Münster, Münster, Germany
| | - Dirk Prüfer
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Münster, Germany
- Institute of Plant Biology and Biotechnology, University of Münster, Münster, Germany
| | | |
Collapse
|
3
|
Guzha A, Gautam B, Marchiafava D, Ver Sagun J, Garcia T, Jarvis BA, Barbaglia-Hurlock AM, Johnston C, Grotewold E, Sedbrook JC, Alonso AP, Chapman KD. Targeted modulation of pennycress lipid droplet proteins impacts droplet morphology and seed oil content. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:2151-2171. [PMID: 39467186 PMCID: PMC11629743 DOI: 10.1111/tpj.17109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 09/21/2024] [Accepted: 10/15/2024] [Indexed: 10/30/2024]
Abstract
Lipid droplets (LDs) are unusual organelles that have a phospholipid monolayer surface and a hydrophobic matrix. In oilseeds, this matrix is nearly always composed of triacylglycerols (TGs) for efficient storage of carbon and energy. Various proteins play a role in their assembly, stability and turnover, and even though the major structural oleosin proteins in seed LDs have been known for decades, the factors influencing LD formation and dynamics are still being uncovered mostly in the "model oilseed" Arabidopsis. Here we identified several key LD biogenesis proteins in the seeds of pennycress, a potential biofuel crop, that were correlated previously with seed oil content and characterized here for their participation in LD formation in transient expression assays and stable transgenics. One pennycress protein, the lipid droplet associated protein-interacting protein (LDIP), was able to functionally complement the Arabidopsis ldip mutant, emphasizing the close conservation of lipid storage among these two Brassicas. Moreover, loss-of-function ldip mutants in pennycress exhibited increased seed oil content without compromising plant growth, raising the possibility that LDIP or other LD biogenesis factors may be suitable targets for improving yields in oilseed crops more broadly.
Collapse
Affiliation(s)
- Athanas Guzha
- BioDiscovery Institute, Department of Biological Sciences, University of North Texas, Denton, 76203, Texas, USA
| | - Barsanti Gautam
- School of Biological Sciences, Illinois State University, Normal, Illinois, USA
| | - Damiano Marchiafava
- School of Biological Sciences, Illinois State University, Normal, Illinois, USA
| | - Julius Ver Sagun
- BioDiscovery Institute, Department of Biological Sciences, University of North Texas, Denton, 76203, Texas, USA
| | - Tatiana Garcia
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
| | - Brice A Jarvis
- School of Biological Sciences, Illinois State University, Normal, Illinois, USA
| | | | - Christopher Johnston
- BioDiscovery Institute, Department of Biological Sciences, University of North Texas, Denton, 76203, Texas, USA
| | - Erich Grotewold
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
| | - John C Sedbrook
- School of Biological Sciences, Illinois State University, Normal, Illinois, USA
| | - Ana Paula Alonso
- BioDiscovery Institute, Department of Biological Sciences, University of North Texas, Denton, 76203, Texas, USA
| | - Kent D Chapman
- BioDiscovery Institute, Department of Biological Sciences, University of North Texas, Denton, 76203, Texas, USA
| |
Collapse
|
4
|
Amari C, Carletti M, Yan S, Michaud M, Salvaing J. Lipid droplets degradation mechanisms from microalgae to mammals, a comparative overview. Biochimie 2024; 227:19-34. [PMID: 39299537 DOI: 10.1016/j.biochi.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/15/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
Lipid droplets (LDs) are organelles composed of a hydrophobic core (mostly triacylglycerols and steryl esters) delineated by a lipid monolayer and found throughout the tree of life. LDs were seen for a long time as simple energy storage organelles but recent works highlighted their versatile roles in several fundamental cellular processes, particularly during stress response. LDs biogenesis occurs in the ER and their number and size can be dynamically regulated depending on their function, e.g. during development or stress. Understanding their biogenesis and degradation mechanisms is thus essential to better apprehend their roles. LDs degradation can occur in the cytosol by lipolysis or after their internalization into lytic compartments (e.g. vacuoles or lysosomes) using diverse mechanisms that depend on the considered organism, tissue, developmental stage or environmental condition. In this review, we summarize our current knowledge on the different LDs degradation pathways in several main phyla of model organisms, unicellular or pluricellular, photosynthetic or not (budding yeast, mammals, land plants and microalgae). We highlight the conservation of the main degradation pathways throughout evolution, but also the differences between organisms, or inside an organism between different organs. Finally, we discuss how this comparison can help to shed light on relationships between LDs degradation pathways and LDs functions.
Collapse
Affiliation(s)
- Chems Amari
- Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble Alpes, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique et Aux Energies Alternatives, IRIG, CEA-Grenoble, 17 Rue des Martyrs, 38000, Grenoble, France; Department of Chemistry, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, Paris, France
| | - Marta Carletti
- Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble Alpes, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique et Aux Energies Alternatives, IRIG, CEA-Grenoble, 17 Rue des Martyrs, 38000, Grenoble, France
| | - Siqi Yan
- Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble Alpes, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique et Aux Energies Alternatives, IRIG, CEA-Grenoble, 17 Rue des Martyrs, 38000, Grenoble, France
| | - Morgane Michaud
- Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble Alpes, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique et Aux Energies Alternatives, IRIG, CEA-Grenoble, 17 Rue des Martyrs, 38000, Grenoble, France
| | - Juliette Salvaing
- Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble Alpes, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique et Aux Energies Alternatives, IRIG, CEA-Grenoble, 17 Rue des Martyrs, 38000, Grenoble, France.
| |
Collapse
|
5
|
Muhammad D, Clark NM, Tharp NE, Chatt EC, Vierstra RD, Bartel B. Global impacts of peroxisome and pexophagy dysfunction revealed through multi-omics analyses of lon2 and atg2 mutants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:2563-2583. [PMID: 39526456 DOI: 10.1111/tpj.17129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/15/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024]
Abstract
Peroxisomes house diverse metabolic pathways that are essential for plant and animal survival, including enzymes that produce or inactivate toxic byproducts. Despite the importance of peroxisomes and their collaborations with other organelles, the mechanisms that trigger or prevent peroxisome turnover and the cellular impacts of impaired peroxisomes are incompletely understood. When Arabidopsis thaliana LON2, a peroxisomal protein with chaperone and protease capacity, is disrupted, metabolic dysfunction and protein instability in peroxisomes ensue. Paradoxically, preventing autophagy in lon2 mutants appears to normalize peroxisomal metabolism and stabilize peroxisomal proteins-hinting at a role for autophagy in causing the peroxisomal defects observed in lon2 seedlings. Using a combination of transcriptomics, proteomics, and in silico investigations, we compared wild type to lon2 and autophagy null mutants and double mutants. Through this analysis, we found that impeding autophagy via an atg2 null mutation alleviated several of the global defects observed when LON2 is absent. Moreover, we revealed processes influenced by LON2 that are independent of autophagy, including impacts on lipid droplet and chloroplast protein levels. Finally, we identified and classified potential LON2 substrates, which include proteins that might provide signal(s) for pexophagy.
Collapse
Affiliation(s)
- DurreShahwar Muhammad
- Department of Biosciences, Rice University, Houston, Texas, 77005, USA
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Massachusetts, 01003, USA
| | - Natalie M Clark
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, 02142, USA
| | - Nathan E Tharp
- Department of Biosciences, Rice University, Houston, Texas, 77005, USA
| | - Elizabeth C Chatt
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, 63130, USA
| | - Richard D Vierstra
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, 63130, USA
| | - Bonnie Bartel
- Department of Biosciences, Rice University, Houston, Texas, 77005, USA
| |
Collapse
|
6
|
Cai Y, Horn PJ. Packaging "vegetable oils": Insights into plant lipid droplet proteins. PLANT PHYSIOLOGY 2024:kiae533. [PMID: 39566075 DOI: 10.1093/plphys/kiae533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 09/06/2024] [Indexed: 11/22/2024]
Abstract
Plant neutral lipids, also known as "vegetable oils", are synthesized within the endoplasmic reticulum (ER) membrane and packaged into subcellular compartments called lipid droplets (LDs) for stable storage in the cytoplasm. The biogenesis, modulation, and degradation of cytoplasmic LDs in plant cells are orchestrated by a variety of proteins localized to the ER, LDs, and peroxisomes. Recent studies of these LD-related proteins have greatly advanced our understanding of LDs not only as steady oil depots in seeds but also as dynamic cell organelles involved in numerous physiological processes in different tissues and developmental stages of plants. In the past 2 decades, technology advances in proteomics, transcriptomics, genome sequencing, cellular imaging and protein structural modeling have markedly expanded the inventory of LD-related proteins, provided unprecedented structural and functional insights into the protein machinery modulating LDs in plant cells, and shed new light on the functions of LDs in nonseed plant tissues as well as in unicellular algae. Here, we review critical advances in revealing new LD proteins in various plant tissues, point out structural and mechanistic insights into key proteins in LD biogenesis and dynamic modulation, and discuss future perspectives on bridging our knowledge gaps in plant LD biology.
Collapse
Affiliation(s)
- Yingqi Cai
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, TX, 76203, USA
| | - Patrick J Horn
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, TX, 76203, USA
| |
Collapse
|
7
|
Zou Z, Fu X, Huang J, Zhao Y. Molecular characterization of CeOLE6, a diverged SH oleosin gene, preferentially expressed in Cyperus esculentus tubers. PLANTA 2024; 260:122. [PMID: 39438351 DOI: 10.1007/s00425-024-04553-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 10/11/2024] [Indexed: 10/25/2024]
Abstract
MAIN CONCLUSION CeOLE6, a tuber-specific gene in tigernut, encodes a diverged SH oleosin that functions in oil accumulation via homo and heteromultimerization. Tigernut (Cyperus esculentus L.) is a rare example accumulating high levels of triacylglycerols (TAGs) in underground tubers; however, the mechanism underlying is poorly understood. Given essential roles of oleosins (OLEs) in oil accumulation, in this study, structural and functional analyses were conducted for CeOLE6, an oleosin gene preferentially expressed in tigernut tubers. Phylogenetic analysis revealed that CeOLE6 encodes a diverged oleosin in Clade SH, which also includes CeOLE4 and -5. Further synteny analysis and sequence comparison indicated that CeOLE6 is more likely to be a whole-genome duplication (WGD) repeat of CeOLE4, which underwent rapid evolution and deletion of the typical C-terminal insertion for SHs. Nevertheless, CeOLE6 retains the capacity of oligomerization and oil accumulation, because (i) CeOLE6 could not only interact with itself but also with CeOLE2 and -5, two tuber-dominant members belonging to Clades SL and SH, respectively, and (ii) overexpressing CeOLE6 in tobacco leaves could significantly enhance the TAG content. Though CeWRI1 exhibits a similar expression pattern as CeOLE6 during tuber development, both CeWRI1 and -3 could not activate the CeOLE6 promoter, implying that they are not transcription factors contributing tuber-specific activation of CeOLE6. These findings not only provide insights into CeOLE genes in tuber oil accumulation, but also lay a foundation for further genetic improvement in tigernut and other species.
Collapse
Affiliation(s)
- Zhi Zou
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Biosciences and Biotechnology/Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, People's Republic of China.
| | - Xiaowen Fu
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Biosciences and Biotechnology/Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, People's Republic of China
| | - Jiaquan Huang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication) and College of Tropical Agriculture and Forestry, Hainan University, Sanya, 572025, Hainan, People's Republic of China
| | - Yongguo Zhao
- College of Biology and Food Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, Guangdong, People's Republic of China.
| |
Collapse
|
8
|
Parakkunnel R, K BN, Vanishree G, George A, Kv S, Yr A, K UB, Anandan A, Kumar S. Exploring selection signatures in the divergence and evolution of lipid droplet (LD) associated genes in major oilseed crops. BMC Genomics 2024; 25:653. [PMID: 38956471 PMCID: PMC11218257 DOI: 10.1186/s12864-024-10527-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 06/14/2024] [Indexed: 07/04/2024] Open
Abstract
BACKGROUND Oil bodies or lipid droplets (LDs) in the cytosol are the subcellular storage compartments of seeds and the sites of lipid metabolism providing energy to the germinating seeds. Major LD-associated proteins are lipoxygenases, phospholipaseD, oleosins, TAG-lipases, steroleosins, caleosins and SEIPINs; involved in facilitating germination and enhancing peroxidation resulting in off-flavours. However, how natural selection is balancing contradictory processes in lipid-rich seeds remains evasive. The present study was aimed at the prediction of selection signatures among orthologous clades in major oilseeds and the correlation of selection effect with gene expression. RESULTS The LD-associated genes from the major oil-bearing crops were analyzed to predict natural selection signatures in phylogenetically close-knit ortholog clusters to understand adaptive evolution. Positive selection was the major force driving the evolution and diversification of orthologs in a lineage-specific manner. Significant positive selection effects were found in 94 genes particularly in oleosin and TAG-lipases, purifying with excess of non-synonymous substitution in 44 genes while 35 genes were neutral to selection effects. No significant selection impact was noticed in Brassicaceae as against LOX genes of oil palm. A heavy load of deleterious mutations affecting selection signatures was detected in T-lineage oleosins and LOX genes of Arachis hypogaea. The T-lineage oleosin genes were involved in mainly anther, tapetum and anther wall morphogenesis. In Ricinus communis and Sesamum indicum > 85% of PLD genes were under selection whereas selection pressures were low in Brassica juncea and Helianthus annuus. Steroleosin, caleosin and SEIPINs with large roles in lipid droplet organization expressed mostly in seeds and were under considerable positive selection pressures. Expression divergence was evident among paralogs and homeologs with one gene attaining functional superiority compared to the other. The LOX gene Glyma.13g347500 associated with off-flavor was not expressed during germination, rather its paralog Glyma.13g347600 showed expression in Glycine max. PLD-α genes were expressed on all the tissues except the seed,δ genes in seed and meristem while β and γ genes expressed in the leaf. CONCLUSIONS The genes involved in seed germination and lipid metabolism were under strong positive selection, although species differences were discernable. The present study identifies suitable candidate genes enhancing seed oil content and germination wherein directional selection can become more fruitful.
Collapse
Affiliation(s)
- Ramya Parakkunnel
- ICAR- Indian Institute of Seed Science, Regional Station, GKVK Campus, Bengaluru, 560065, Karnataka, India.
| | - Bhojaraja Naik K
- ICAR- Indian Institute of Seed Science, Regional Station, GKVK Campus, Bengaluru, 560065, Karnataka, India
| | - Girimalla Vanishree
- ICAR- Indian Institute of Seed Science, Regional Station, GKVK Campus, Bengaluru, 560065, Karnataka, India
| | - Anjitha George
- ICAR- Indian Institute of Seed Science, Regional Station, GKVK Campus, Bengaluru, 560065, Karnataka, India
| | - Sripathy Kv
- ICAR- Indian Institute of Seed Science, Regional Station, GKVK Campus, Bengaluru, 560065, Karnataka, India
| | - Aruna Yr
- ICAR- Indian Institute of Seed Science, Regional Station, GKVK Campus, Bengaluru, 560065, Karnataka, India
| | - Udaya Bhaskar K
- ICAR- Indian Institute of Seed Science, Regional Station, GKVK Campus, Bengaluru, 560065, Karnataka, India
| | - A Anandan
- ICAR- Indian Institute of Seed Science, Regional Station, GKVK Campus, Bengaluru, 560065, Karnataka, India
| | - Sanjay Kumar
- ICAR- Indian Institute of Seed Science, Mau, 275103, Uttar Pradesh, India
| |
Collapse
|
9
|
Parchuri P, Bhandari S, Azeez A, Chen G, Johnson K, Shockey J, Smertenko A, Bates PD. Identification of triacylglycerol remodeling mechanism to synthesize unusual fatty acid containing oils. Nat Commun 2024; 15:3547. [PMID: 38670976 PMCID: PMC11053099 DOI: 10.1038/s41467-024-47995-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Typical plant membranes and storage lipids are comprised of five common fatty acids yet over 450 unusual fatty acids accumulate in seed oils of various plant species. Plant oils are important human and animal nutrients, while some unusual fatty acids such as hydroxylated fatty acids (HFA) are used in the chemical industry (lubricants, paints, polymers, cosmetics, etc.). Most unusual fatty acids are extracted from non-agronomic crops leading to high production costs. Attempts to engineer HFA into crops are unsuccessful due to bottlenecks in the overlapping pathways of oil and membrane lipid synthesis where HFA are not compatible. Physaria fendleri naturally overcomes these bottlenecks through a triacylglycerol (TAG) remodeling mechanism where HFA are incorporated into TAG after initial synthesis. TAG remodeling involves a unique TAG lipase and two diacylglycerol acyltransferases (DGAT) that are selective for different stereochemical and acyl-containing species of diacylglycerol within a synthesis, partial degradation, and resynthesis cycle. The TAG lipase interacts with DGAT1, localizes to the endoplasmic reticulum (with the DGATs) and to puncta around the lipid droplet, likely forming a TAG remodeling metabolon near the lipid droplet-ER junction. Each characterized DGAT and TAG lipase can increase HFA accumulation in engineered seed oils.
Collapse
Affiliation(s)
- Prasad Parchuri
- Institute of Biological Chemistry, Washington State University, Pullman, WA, 99164, USA
| | - Sajina Bhandari
- Institute of Biological Chemistry, Washington State University, Pullman, WA, 99164, USA
| | - Abdul Azeez
- Institute of Biological Chemistry, Washington State University, Pullman, WA, 99164, USA
| | - Grace Chen
- United States Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Albany, CA, 94710, USA
| | - Kumiko Johnson
- United States Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Albany, CA, 94710, USA
| | - Jay Shockey
- United States Department of Agriculture, Agricultural Research Service, Southern Regional Research Center, New Orleans, 70124, LA, USA
| | - Andrei Smertenko
- Institute of Biological Chemistry, Washington State University, Pullman, WA, 99164, USA
| | - Philip D Bates
- Institute of Biological Chemistry, Washington State University, Pullman, WA, 99164, USA.
| |
Collapse
|
10
|
Omata Y, Sato R, Mishiro-Sato E, Kano K, Ueda H, Hara-Nishimura I, Shimada TL. Lipid droplets in Arabidopsis thaliana leaves contain myosin-binding proteins and enzymes associated with furan-containing fatty acid biosynthesis. FRONTIERS IN PLANT SCIENCE 2024; 15:1331479. [PMID: 38495375 PMCID: PMC10940516 DOI: 10.3389/fpls.2024.1331479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/13/2024] [Indexed: 03/19/2024]
Abstract
Lipid droplets (LDs) are lipid storage organelles in plant leaves and seeds. Seed LD proteins are well known, and their functions in lipid metabolism have been characterized; however, many leaf LD proteins remain to be identified. We therefore isolated LDs from leaves of the leaf LD-overaccumulating mutant high sterol ester 1 (hise1) of Arabidopsis thaliana by centrifugation or co-immunoprecipitation. We then performed LD proteomics by mass spectrometry and identified 3,206 candidate leaf LD proteins. In this study, we selected 31 candidate proteins for transient expression assays using a construct encoding the candidate protein fused with green fluorescent protein (GFP). Fluorescence microscopy showed that MYOSIN BINDING PROTEIN14 (MYOB14) and two uncharacterized proteins localized to LDs labeled with the LD marker. Subcellular localization analysis of MYOB family members revealed that MYOB1, MYOB2, MYOB3, and MYOB5 localized to LDs. LDs moved along actin filaments together with the endoplasmic reticulum. Co-immunoprecipitation of myosin XIK with MYOB2-GFP or MYOB14-GFP suggested that LD-localized MYOBs are involved in association with the myosin XIK-LDs. The two uncharacterized proteins were highly similar to enzymes for furan fatty acid biosynthesis in the photosynthetic bacterium Cereibacter sphaeroides, suggesting a relationship between LDs and furan fatty acid biosynthesis. Our findings thus reveal potential molecular functions of LDs and provide a valuable resource for further studies of the leaf LD proteome.
Collapse
Affiliation(s)
- Yuto Omata
- Faculty of Horticulture, Chiba University, Matsudo, Japan
| | - Reina Sato
- Faculty of Horticulture, Chiba University, Matsudo, Japan
| | - Emi Mishiro-Sato
- World Premier International Research Center Initiative-Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Japan
| | - Keiko Kano
- World Premier International Research Center Initiative-Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Japan
| | - Haruko Ueda
- Faculty of Science and Engineering, Konan University, Kobe, Japan
| | | | - Takashi L. Shimada
- Faculty of Horticulture, Chiba University, Matsudo, Japan
- Graduate School of Horticulture, Chiba University, Matsudo, Japan
- Plant Molecular Science Center, Chiba University, Chiba, Japan
- Research Center for Space Agriculture and Horticulture, Chiba University, Matsudo, Japan
| |
Collapse
|
11
|
Hembach L, Niemeyer PW, Schmitt K, Zegers JMS, Scholz P, Brandt D, Dabisch JJ, Valerius O, Braus GH, Schwarzländer M, de Vries J, Rensing SA, Ischebeck T. Proteome plasticity during Physcomitrium patens spore germination - from the desiccated phase to heterotrophic growth and reconstitution of photoautotrophy. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:1466-1486. [PMID: 38059656 DOI: 10.1111/tpj.16574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/13/2023] [Accepted: 11/22/2023] [Indexed: 12/08/2023]
Abstract
The establishment of moss spores is considered a milestone in plant evolution. They harbor protein networks underpinning desiccation tolerance and accumulation of storage compounds that can be found already in algae and that are also utilized in seeds and pollen. Furthermore, germinating spores must produce proteins that drive the transition through heterotrophic growth to the autotrophic plant. To get insight into the plasticity of this proteome, we investigated it at five timepoints of moss (Physcomitrium patens) spore germination and in protonemata and gametophores. The comparison to previously published Arabidopsis proteome data of seedling establishment showed that not only the proteomes of spores and seeds are functionally related, but also the proteomes of germinating spores and young seedlings. We observed similarities with regard to desiccation tolerance, lipid droplet proteome composition, control of dormancy, and β-oxidation and the glyoxylate cycle. However, there were also striking differences. For example, spores lacked any obvious storage proteins. Furthermore, we did not detect homologs to the main triacylglycerol lipase in Arabidopsis seeds, SUGAR DEPENDENT1. Instead, we discovered a triacylglycerol lipase of the oil body lipase family and a lipoxygenase as being the overall most abundant proteins in spores. This finding indicates an alternative pathway for triacylglycerol degradation via oxylipin intermediates in the moss. The comparison of spores to Nicotiana tabacum pollen indicated similarities for example in regards to resistance to desiccation and hypoxia, but the overall developmental pattern did not align as in the case of seedling establishment and spore germination.
Collapse
Affiliation(s)
- Lea Hembach
- Green Biotechnology, Institute of Plant Biology and Biotechnology (IBBP), University of Münster, 48143, Münster, Germany
| | - Philipp W Niemeyer
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, 37077, Göttingen, Germany
| | - Kerstin Schmitt
- Department for Molecular Microbiology and Genetics, Genetics and Göttingen Center for Molecular Biosciences (GZMB) and Service Unit LCMS Protein Analytics, Institute for Microbiology, University of Göttingen, 37077, Göttingen, Germany
| | - Jaccoline M S Zegers
- Department of Applied Bioinformatics, Göttingen Center for Molecular Biosciences (GZMB) and Campus Institute Data Science (CIDAS), Institute for Microbiology and Genetics, University of Göttingen, 37077, Göttingen, Germany
| | - Patricia Scholz
- Laboratoire Reproduction et Développement des Plantes (RDP), UCB Lyon 1, CNRS, INRAE, Université de Lyon, ENS de Lyon, Lyon, France
| | - Dennis Brandt
- Plant Energy Biology, Institute of Plant Biology and Biotechnology (IBBP), University of Münster, 48143, Münster, Germany
| | - Janis J Dabisch
- Green Biotechnology, Institute of Plant Biology and Biotechnology (IBBP), University of Münster, 48143, Münster, Germany
| | - Oliver Valerius
- Department for Molecular Microbiology and Genetics, Genetics and Göttingen Center for Molecular Biosciences (GZMB) and Service Unit LCMS Protein Analytics, Institute for Microbiology, University of Göttingen, 37077, Göttingen, Germany
| | - Gerhard H Braus
- Department for Molecular Microbiology and Genetics, Genetics and Göttingen Center for Molecular Biosciences (GZMB) and Service Unit LCMS Protein Analytics, Institute for Microbiology, University of Göttingen, 37077, Göttingen, Germany
| | - Markus Schwarzländer
- Plant Energy Biology, Institute of Plant Biology and Biotechnology (IBBP), University of Münster, 48143, Münster, Germany
| | - Jan de Vries
- Department of Applied Bioinformatics, Göttingen Center for Molecular Biosciences (GZMB) and Campus Institute Data Science (CIDAS), Institute for Microbiology and Genetics, University of Göttingen, 37077, Göttingen, Germany
| | - Stefan A Rensing
- Plant Cell Biology, Department of Biology, University of Marburg, Marburg, Germany
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Till Ischebeck
- Green Biotechnology, Institute of Plant Biology and Biotechnology (IBBP), University of Münster, 48143, Münster, Germany
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, 37077, Göttingen, Germany
| |
Collapse
|
12
|
Qin Z, Wang T, Zhao Y, Ma C, Shao Q. Molecular Machinery of Lipid Droplet Degradation and Turnover in Plants. Int J Mol Sci 2023; 24:16039. [PMID: 38003229 PMCID: PMC10671748 DOI: 10.3390/ijms242216039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/23/2023] [Accepted: 10/29/2023] [Indexed: 11/26/2023] Open
Abstract
Lipid droplets (LDs) are important organelles conserved across eukaryotes with a fascinating biogenesis and consumption cycle. Recent intensive research has focused on uncovering the cellular biology of LDs, with emphasis on their degradation. Briefly, two major pathways for LD degradation have been recognized: (1) lipolysis, in which lipid degradation is catalyzed by lipases on the LD surface, and (2) lipophagy, in which LDs are degraded by autophagy. Both of these pathways require the collective actions of several lipolytic and proteolytic enzymes, some of which have been purified and analyzed for their in vitro activities. Furthermore, several genes encoding these proteins have been cloned and characterized. In seed plants, seed germination is initiated by the hydrolysis of stored lipids in LDs to provide energy and carbon equivalents for the germinating seedling. However, little is known about the mechanism regulating the LD mobilization. In this review, we focus on recent progress toward understanding how lipids are degraded and the specific pathways that coordinate LD mobilization in plants, aiming to provide an accurate and detailed outline of the process. This will set the stage for future studies of LD dynamics and help to utilize LDs to their full potential.
Collapse
Affiliation(s)
| | | | | | - Changle Ma
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250358, China
| | - Qun Shao
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250358, China
| |
Collapse
|
13
|
Zou Z, Zheng Y, Zhang Z, Xiao Y, Xie Z, Chang L, Zhang L, Zhao Y. Molecular characterization of oleosin genes in Cyperus esculentus, a Cyperaceae plant producing oil in underground tubers. PLANT CELL REPORTS 2023; 42:1791-1808. [PMID: 37747544 DOI: 10.1007/s00299-023-03066-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 08/25/2023] [Indexed: 09/26/2023]
Abstract
KEY MESSAGE CeOLE genes exhibit a tuber-predominant expression pattern and their mRNA/protein abundances are positively correlated with oil accumulation during tuber development. Overexpression could significantly increase the oil content of tobacco leaves. Oleosins (OLEs) are abundant structural proteins of lipid droplets (LDs) that function in LD formation and stabilization in seeds of oil crops. However, little information is available on their roles in vegetative tissues. In this study, we present the first genome-wide characterization of the oleosin family in tigernut (Cyperus esculentus L., Cyperaceae), a rare example accumulating high amounts of oil in underground tubers. Six members identified represent three previously defined clades (i.e. U, SL and SH) or six out of seven orthogroups (i.e. U, SL1, SL2, and SH1-3) proposed in this study. Comparative genomics analysis reveals that lineage-specific expansion of Clades SL and SH was contributed by whole-genome duplication and dispersed duplication, respectively. Moreover, presence of SL2 and SH3 in Juncus effuses implies their appearance sometime before Cyperaceae-Juncaceae divergence, whereas SH2 appears to be Cyperaceae specific. Expression analysis showed that CeOLE genes exhibit a tuber-predominant expression pattern and transcript levels are considerably more abundant than homologs in the close relative Cyperus rotundus. Moreover, CeOLE mRNA and protein abundances were shown to positively correlate with oil accumulation during tuber development. Additionally, two dominant isoforms (i.e. CeOLE2 and -5) were shown to locate in LDs as well as the endoplasmic reticulum of tobacco (Nicotiana benthamiana) leaves, and are more likely to function in homo and heteromultimers. Furthermore, overexpression of CeOLE2 and -5 in tobacco leaves could significantly increase the oil content, supporting their roles in oil accumulation. These findings provide insights into lineage-specific family evolution and putative roles of CeOLE genes in oil accumulation of vegetative tissues, which facilitate further genetic improvement for tigernut.
Collapse
Affiliation(s)
- Zhi Zou
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Institute of Tropical Biosciences and Biotechnology/Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, People's Republic of China.
| | - Yujiao Zheng
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Institute of Tropical Biosciences and Biotechnology/Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, People's Republic of China
| | - Zhongtian Zhang
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Institute of Tropical Biosciences and Biotechnology/Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, People's Republic of China
| | - Yanhua Xiao
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Institute of Tropical Biosciences and Biotechnology/Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, People's Republic of China
| | - Zhengnan Xie
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Institute of Tropical Biosciences and Biotechnology/Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, People's Republic of China
| | - Lili Chang
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Institute of Tropical Biosciences and Biotechnology/Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, People's Republic of China
| | - Li Zhang
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Institute of Tropical Biosciences and Biotechnology/Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, People's Republic of China.
- Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Science, South-Central Minzu University, Wuhan, 430074, Hubei, People's Republic of China.
| | - Yongguo Zhao
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Institute of Tropical Biosciences and Biotechnology/Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, People's Republic of China.
- Guangdong University of Petrochemical Technology, Maoming, 525000, Guangdong, People's Republic of China.
| |
Collapse
|
14
|
Dadras A, Fürst-Jansen JMR, Darienko T, Krone D, Scholz P, Sun S, Herrfurth C, Rieseberg TP, Irisarri I, Steinkamp R, Hansen M, Buschmann H, Valerius O, Braus GH, Hoecker U, Feussner I, Mutwil M, Ischebeck T, de Vries S, Lorenz M, de Vries J. Environmental gradients reveal stress hubs pre-dating plant terrestrialization. NATURE PLANTS 2023; 9:1419-1438. [PMID: 37640935 PMCID: PMC10505561 DOI: 10.1038/s41477-023-01491-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 07/11/2023] [Indexed: 08/31/2023]
Abstract
Plant terrestrialization brought forth the land plants (embryophytes). Embryophytes account for most of the biomass on land and evolved from streptophyte algae in a singular event. Recent advances have unravelled the first full genomes of the closest algal relatives of land plants; among the first such species was Mesotaenium endlicherianum. Here we used fine-combed RNA sequencing in tandem with a photophysiological assessment on Mesotaenium exposed to a continuous range of temperature and light cues. Our data establish a grid of 42 different conditions, resulting in 128 transcriptomes and ~1.5 Tbp (~9.9 billion reads) of data to study the combinatory effects of stress response using clustering along gradients. Mesotaenium shares with land plants major hubs in genetic networks underpinning stress response and acclimation. Our data suggest that lipid droplet formation and plastid and cell wall-derived signals have denominated molecular programmes since more than 600 million years of streptophyte evolution-before plants made their first steps on land.
Collapse
Affiliation(s)
- Armin Dadras
- Institute of Microbiology and Genetics, Department of Applied Bioinformatics, University of Goettingen, Goettingen, Germany
| | - Janine M R Fürst-Jansen
- Institute of Microbiology and Genetics, Department of Applied Bioinformatics, University of Goettingen, Goettingen, Germany
- Campus Institute Data Science, University of Goettingen, Goettingen, Germany
| | - Tatyana Darienko
- Institute of Microbiology and Genetics, Department of Applied Bioinformatics, University of Goettingen, Goettingen, Germany
| | - Denis Krone
- Institute of Microbiology and Genetics, Department of Applied Bioinformatics, University of Goettingen, Goettingen, Germany
| | - Patricia Scholz
- Albrecht-von-Haller-Institute for Plant Sciences, Department of Plant Biochemistry, University of Goettingen, Goettingen, Germany
| | - Siqi Sun
- Institute of Plant Biology and Biotechnology, Green Biotechnology, University of Münster, Münster, Germany
| | - Cornelia Herrfurth
- Albrecht-von-Haller-Institute for Plant Sciences, Department of Plant Biochemistry, University of Goettingen, Goettingen, Germany
- Goettingen Center for Molecular Biosciences, Service Unit for Metabolomics and Lipidomics, University of Goettingen, Goettingen, Germany
| | - Tim P Rieseberg
- Institute of Microbiology and Genetics, Department of Applied Bioinformatics, University of Goettingen, Goettingen, Germany
| | - Iker Irisarri
- Institute of Microbiology and Genetics, Department of Applied Bioinformatics, University of Goettingen, Goettingen, Germany
- Campus Institute Data Science, University of Goettingen, Goettingen, Germany
- Section Phylogenomics, Centre for Molecular Biodiversity Research, Leibniz Institute for the Analysis of Biodiversity Change, Museum of Nature, Hamburg, Germany
| | - Rasmus Steinkamp
- Institute of Microbiology and Genetics, Department of Applied Bioinformatics, University of Goettingen, Goettingen, Germany
| | - Maike Hansen
- Institute for Plant Sciences and Cluster of Excellence on Plant Sciences, Biocenter, University of Cologne, Cologne, Germany
| | - Henrik Buschmann
- Faculty of Applied Computer Sciences and Biosciences, Section Biotechnology and Chemistry, Molecular Biotechnology, University of Applied Sciences Mittweida, Mittweida, Germany
| | - Oliver Valerius
- Institute of Microbiology and Genetics and Göttingen Center for Molecular Biosciences and Service Unit LCMS Protein Analytics, Department of Molecular Microbiology and Genetics, University of Goettingen, Goettingen, Germany
| | - Gerhard H Braus
- Institute of Microbiology and Genetics and Göttingen Center for Molecular Biosciences and Service Unit LCMS Protein Analytics, Department of Molecular Microbiology and Genetics, University of Goettingen, Goettingen, Germany
| | - Ute Hoecker
- Institute for Plant Sciences and Cluster of Excellence on Plant Sciences, Biocenter, University of Cologne, Cologne, Germany
| | - Ivo Feussner
- Albrecht-von-Haller-Institute for Plant Sciences, Department of Plant Biochemistry, University of Goettingen, Goettingen, Germany
- Goettingen Center for Molecular Biosciences, Service Unit for Metabolomics and Lipidomics, University of Goettingen, Goettingen, Germany
- Goettingen Center for Molecular Biosciences, Department of Plant Biochemistry, University of Goettingen, Goettingen, Germany
| | - Marek Mutwil
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Till Ischebeck
- Institute of Plant Biology and Biotechnology, Green Biotechnology, University of Münster, Münster, Germany
| | - Sophie de Vries
- Institute of Microbiology and Genetics, Department of Applied Bioinformatics, University of Goettingen, Goettingen, Germany
| | - Maike Lorenz
- Albrecht-von-Haller-Institute for Plant Sciences, Department of Experimental Phycology and SAG Culture Collection of Algae, University of Goettingen, Goettingen, Germany
| | - Jan de Vries
- Institute of Microbiology and Genetics, Department of Applied Bioinformatics, University of Goettingen, Goettingen, Germany.
- Campus Institute Data Science, University of Goettingen, Goettingen, Germany.
- Goettingen Center for Molecular Biosciences, Department of Applied Bioinformatics, University of Goettingen, Goettingen, Germany.
| |
Collapse
|
15
|
Bvindi C, Howe K, Wang Y, Mullen RT, Rogan CJ, Anderson JC, Goyer A. Potato Non-Specific Lipid Transfer Protein StnsLTPI.33 Is Associated with the Production of Reactive Oxygen Species, Plant Growth, and Susceptibility to Alternaria solani. PLANTS (BASEL, SWITZERLAND) 2023; 12:3129. [PMID: 37687375 PMCID: PMC10490331 DOI: 10.3390/plants12173129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/21/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023]
Abstract
Plant non-specific lipid transfer proteins (nsLTPs) are small proteins capable of transferring phospholipids between membranes and binding non-specifically fatty acids in vitro. They constitute large gene families in plants, e.g., 83 in potato (Solanum tuberosum). Despite their recognition decades ago, very few have been functionally characterized. Here, we set out to better understand the function of one of the potato members, StnsLTPI.33. Using quantitative polymerase chain reaction, we show that StnsLTPI.33 is expressed throughout the potato plant, but at relatively higher levels in roots and leaves compared to petals, anthers, and the ovary. We also show that ectopically-expressed StnsLTPI.33 fused to green fluorescent protein colocalized with an apoplastic marker in Nicotiana benthamiana leaves, indicating that StnsLTPI.33 is targeted to the apoplast. Constitutive overexpression of the StnsLTPI.33 gene in potato led to increased levels of superoxide anions and reduced plant growth, particularly under salt stress conditions, and enhanced susceptibility to Alternaria solani. In addition, StnsLTPI.33-overexpressing plants had a depleted leaf pool of pipecolic acid, threonic acid, and glycine, while they accumulated putrescine. To our knowledge, this is the first report of an nsLTP that is associated with enhanced susceptibility to a pathogen in potato.
Collapse
Affiliation(s)
- Carol Bvindi
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA; (C.B.); (K.H.); (C.J.R.); (J.C.A.)
| | - Kate Howe
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA; (C.B.); (K.H.); (C.J.R.); (J.C.A.)
| | - You Wang
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada; (Y.W.); (R.T.M.)
| | - Robert T. Mullen
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada; (Y.W.); (R.T.M.)
| | - Conner J. Rogan
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA; (C.B.); (K.H.); (C.J.R.); (J.C.A.)
| | - Jeffrey C. Anderson
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA; (C.B.); (K.H.); (C.J.R.); (J.C.A.)
| | - Aymeric Goyer
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA; (C.B.); (K.H.); (C.J.R.); (J.C.A.)
| |
Collapse
|
16
|
Li Z, Gao Y, Yan J, Wang S, Wang S, Liu Y, Wang S, Hua J. Golgi-localized MORN1 promotes lipid droplet abundance and enhances tolerance to multiple stresses in Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:1890-1903. [PMID: 37097077 DOI: 10.1111/jipb.13498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 04/24/2023] [Indexed: 05/03/2023]
Abstract
Lipid droplet (LD) in vegetative tissues has recently been implicated in environmental responses in plants, but its regulation and its function in stress tolerance are not well understood. Here, we identified a Membrane Occupation and Recognition Nexus 1 (MORN1) gene as a contributor to natural variations of stress tolerance through genome-wide association study in Arabidopsis thaliana. Characterization of its loss-of-function mutant and natural variants revealed that the MORN1 gene is a positive regulator of plant growth, disease resistance, cold tolerance, and heat tolerance. The MORN1 protein is associated with the Golgi and is also partly associated with LD. Protein truncations that disrupt these associations abolished the biological function of the MORN1 protein. Furthermore, the MORN1 gene is a positive regulator of LD abundance, and its role in LD number regulation and stress tolerance is highly linked. Therefore, this study identifies MORN1 as a positive regulator of LD abundance and a contributor to natural variations of stress tolerance. It implicates a potential involvement of Golgi in LD biogenesis and strongly suggests a contribution of LD to diverse processes of plant growth and stress responses.
Collapse
Affiliation(s)
- Zhan Li
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510640, China
- School of Integrative Plant Science, Plant Biology Section, Cornell University, Ithaca, NY, 14853, USA
| | - Yue Gao
- School of Integrative Plant Science, Plant Biology Section, Cornell University, Ithaca, NY, 14853, USA
| | - Jiapei Yan
- School of Integrative Plant Science, Plant Biology Section, Cornell University, Ithaca, NY, 14853, USA
| | - Shuai Wang
- School of Integrative Plant Science, Plant Biology Section, Cornell University, Ithaca, NY, 14853, USA
| | - Shu Wang
- School of Integrative Plant Science, Plant Biology Section, Cornell University, Ithaca, NY, 14853, USA
| | - Yuanyuan Liu
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510640, China
| | - Shaokui Wang
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510640, China
| | - Jian Hua
- School of Integrative Plant Science, Plant Biology Section, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
17
|
Bouchnak I, Coulon D, Salis V, D’Andréa S, Bréhélin C. Lipid droplets are versatile organelles involved in plant development and plant response to environmental changes. FRONTIERS IN PLANT SCIENCE 2023; 14:1193905. [PMID: 37426978 PMCID: PMC10327486 DOI: 10.3389/fpls.2023.1193905] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 05/23/2023] [Indexed: 07/11/2023]
Abstract
Since decades plant lipid droplets (LDs) are described as storage organelles accumulated in seeds to provide energy for seedling growth after germination. Indeed, LDs are the site of accumulation for neutral lipids, predominantly triacylglycerols (TAGs), one of the most energy-dense molecules, and sterol esters. Such organelles are present in the whole plant kingdom, from microalgae to perennial trees, and can probably be found in all plant tissues. Several studies over the past decade have revealed that LDs are not merely simple energy storage compartments, but also dynamic structures involved in diverse cellular processes like membrane remodeling, regulation of energy homeostasis and stress responses. In this review, we aim to highlight the functions of LDs in plant development and response to environmental changes. In particular, we tackle the fate and roles of LDs during the plant post-stress recovery phase.
Collapse
Affiliation(s)
- Imen Bouchnak
- Centre National de la Recherche Scientifique (CNRS), University of Bordeaux, Laboratoire de Biogenèse Membranaire UMR5200, Villenave d’Ornon, France
| | - Denis Coulon
- Centre National de la Recherche Scientifique (CNRS), University of Bordeaux, Laboratoire de Biogenèse Membranaire UMR5200, Villenave d’Ornon, France
| | - Vincent Salis
- Université Paris-Saclay, Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE), AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| | - Sabine D’Andréa
- Université Paris-Saclay, Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE), AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| | - Claire Bréhélin
- Centre National de la Recherche Scientifique (CNRS), University of Bordeaux, Laboratoire de Biogenèse Membranaire UMR5200, Villenave d’Ornon, France
| |
Collapse
|
18
|
Chen A, Hu S, Zhu D, Zhao R, Huang C, Gao Y. Lipid droplets proteome reveals dynamic changes of lipid droplets protein during embryonic development of Carya cathayensis nuts. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023:111753. [PMID: 37268111 DOI: 10.1016/j.plantsci.2023.111753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 05/11/2023] [Accepted: 05/31/2023] [Indexed: 06/04/2023]
Abstract
Lipid droplets (LD) is an important intracellular organelle for triacylglycerols (TAGs) storage. A variety of proteins on the surface of LD coordinately control the contents, size, stability and biogenesis of LD. However, the LD proteins in Chinese hickory (Carya cathayensis) nuts, which rich in oil and composed of unsaturated fatty acids, have not been identified and their roles in LD formation still remain largely unknown. In present study, LD fractions from three developmental stages of Chinese hickory seed were enriched and the LD fraction accumulated proteins were then isolated and analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Protein compositions throughout the various developmental phases were calculated using label-free intensity-based absolute quantification (iBAQ) algorithm. The dynamic proportion of high abundance lipid droplets proteins such as oleosins 2 (OLE2), caleosins 1 (CLO1) and steroleosin 5 (HSD5) increased parallelly with the embryo development. For low abundance lipid droplets proteins, SEED LD PROTEIN 2 (SLDP2), STEROL METHYLTRANSFERASE 1 (SMT1) and LD-ASSOCIATED PROTEIN 1 (LDAP1) were the predominant proteins. Moreover, 14 low abundance OB proteins such as oil body-associated protein 2A (OBAP2A) were selected for future investigation that may associate with embryo development. Overall, 62 differentially expressed proteins (DEPs) were determined by label free quantification (LFQ) algorithms and may involve in LD biogenesis. Furthermore, the subcellular localization validation indicated that selected LD proteins were targeted to the lipid droplets, confirming the promising of proteome data. Taken together, this comparative study may shed light on further study to understand the lipid droplets function in the seed, which contains high oil content. DATA AVAILABILITY STATEMENT: The mass spectrometry proteomics data are available in the ProteomeXchange Consortium (accession number: PXD038646).
Collapse
Affiliation(s)
- Anjing Chen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, No. 666 Wusu St, Lin'an District, Hangzhou, Zhejiang 311300, China
| | - Shuai Hu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, No. 666 Wusu St, Lin'an District, Hangzhou, Zhejiang 311300, China
| | - Dongmei Zhu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, No. 666 Wusu St, Lin'an District, Hangzhou, Zhejiang 311300, China
| | - Rui Zhao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, No. 666 Wusu St, Lin'an District, Hangzhou, Zhejiang 311300, China
| | - Chunying Huang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, No. 666 Wusu St, Lin'an District, Hangzhou, Zhejiang 311300, China
| | - Yanli Gao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, No. 666 Wusu St, Lin'an District, Hangzhou, Zhejiang 311300, China
| |
Collapse
|
19
|
Zhao Y, Duan B, Liu Y, Wu Y, Yu D, Ke L, Cai F, Mei J, Zhu N, Sun Y. Identification and characterization of the LDAP family revealed GhLDAP2_Dt enhances drought tolerance in cotton. FRONTIERS IN PLANT SCIENCE 2023; 14:1167761. [PMID: 37260939 PMCID: PMC10228748 DOI: 10.3389/fpls.2023.1167761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 04/10/2023] [Indexed: 06/02/2023]
Abstract
Lipid droplet-associated proteins (LDAPs) play essential roles in tissue growth and development and in drought stress responses in plants. Cotton is an important fiber and cash crop; however, the LDAP family has not been characterized in cotton. In this study, a total of 14, six, seven, and seven genes were confirmed as LDAP family members in Gossypium hirsutum, Gossypium raimondii, Gossypium arboreum, and Gossypium stocksii, respectively. Additionally, expansion in the LDAP family occurred with the formation of Gossypium, which is mirrored in the number of LDAPs found in five Malvaceae species (Gossypioides kirkii, Bombax ceiba, Durio zibethinus, Theobroma cacao, and Corchorus capsularis), Arabidopsis thaliana, and Carica papaya. The phylogenetic tree showed that the LDAP genes in cotton can be divided into three groups (I, II, and III). The analysis of gene structure and conserved domains showed that LDAPs derived from group I (LDAP1/2/3) are highly conserved during evolution, while members from groups II and III had large variations in both domains and gene structures. The gene expression pattern analysis of LDAP genes showed that they are expressed not only in the reproductive organs (ovule) but also in vegetative organs (root, stem, and leaves). The expression level of two genes in group III, GhLDAP6_At/Dt, were significantly higher in fiber development than in other tissues, indicating that it may be an important regulator of cotton fiber development. In group III, GhLDAP2_At/Dt, especially GhLDAP2_Dt was strongly induced by various abiotic stresses. Decreasing the expression of GhLDAP2_Dt in cotton via virus-induced gene silencing increased the drought sensitivity, and the over-expression of GhLDAP2_Dt led to increased tolerance to mannitol-simulated osmotic stress at the germination stage. Thus, we conclude that GhLDAP2_Dt plays a positive role in drought tolerance.
Collapse
|
20
|
Zhao Y, Dong Q, Geng Y, Ma C, Shao Q. Dynamic Regulation of Lipid Droplet Biogenesis in Plant Cells and Proteins Involved in the Process. Int J Mol Sci 2023; 24:ijms24087476. [PMID: 37108639 PMCID: PMC10138601 DOI: 10.3390/ijms24087476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Lipid droplets (LDs) are ubiquitous, dynamic organelles found in almost all organisms, including animals, protists, plants and prokaryotes. The cell biology of LDs, especially biogenesis, has attracted increasing attention in recent decades because of their important role in cellular lipid metabolism and other newly identified processes. Emerging evidence suggests that LD biogenesis is a highly coordinated and stepwise process in animals and yeasts, occurring at specific sites of the endoplasmic reticulum (ER) that are defined by both evolutionarily conserved and organism- and cell type-specific LD lipids and proteins. In plants, understanding of the mechanistic details of LD formation is elusive as many questions remain. In some ways LD biogenesis differs between plants and animals. Several homologous proteins involved in the regulation of animal LD formation in plants have been identified. We try to describe how these proteins are synthesized, transported to the ER and specifically targeted to LD, and how these proteins participate in the regulation of LD biogenesis. Here, we review current work on the molecular processes that control LD formation in plant cells and highlight the proteins that govern this process, hoping to provide useful clues for future research.
Collapse
Affiliation(s)
- Yiwu Zhao
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250358, China
| | - Qingdi Dong
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250358, China
| | - Yuhu Geng
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250358, China
| | - Changle Ma
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250358, China
| | - Qun Shao
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250358, China
| |
Collapse
|
21
|
Scholz P, Chapman KD, Mullen RT, Ischebeck T. Finding new friends and revisiting old ones - how plant lipid droplets connect with other subcellular structures. THE NEW PHYTOLOGIST 2022; 236:833-838. [PMID: 35851478 DOI: 10.1111/nph.18390] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 07/03/2022] [Indexed: 06/15/2023]
Abstract
The number of described contact sites between different subcellular compartments and structures in eukaryotic cells has increased dramatically in recent years and, as such, has substantially reinforced the well-known premise that these kinds of connections are essential for overall cellular organization and the proper functioning of cellular metabolic and signaling pathways. Here, we discuss contact sites involving plant lipid droplets (LDs), including LD-endoplasmic reticulum (ER) connections that mediate the biogenesis of new LDs at the ER, LD-peroxisome connections, that facilitate the degradation of LD-stored triacylglycerols (TAGs), and the more recently discovered LD-plasma membrane connections, which involve at least three novel proteins, but have a yet unknown physiological function(s).
Collapse
Affiliation(s)
- Patricia Scholz
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, 37077, Göttingen, Germany
| | - Kent D Chapman
- Bio-Discovery Institute and Department of Biological Sciences, University of North Texas, Denton, TX, 76203, USA
| | - Robert T Mullen
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Till Ischebeck
- Institute of Plant Biology and Biotechnology (IBBP), Green Biotechnology, University of Münster, 48143, Münster, Germany
| |
Collapse
|
22
|
Ge S, Zhang RX, Wang YF, Sun P, Chu J, Li J, Sun P, Wang J, Hetherington AM, Liang YK. The Arabidopsis Rab protein RABC1 affects stomatal development by regulating lipid droplet dynamics. THE PLANT CELL 2022; 34:4274-4292. [PMID: 35929087 PMCID: PMC9614440 DOI: 10.1093/plcell/koac239] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 07/13/2022] [Indexed: 05/13/2023]
Abstract
Lipid droplets (LDs) are evolutionarily conserved organelles that serve as hubs of cellular lipid and energy metabolism in virtually all organisms. Mobilization of LDs is important in light-induced stomatal opening. However, whether and how LDs are involved in stomatal development remains unknown. We show here that Arabidopsis thaliana LIPID DROPLETS AND STOMATA 1 (LDS1)/RABC1 (At1g43890) encodes a member of the Rab GTPase family that is involved in regulating LD dynamics and stomatal morphogenesis. The expression of RABC1 is coordinated with the different phases of stomatal development. RABC1 targets to the surface of LDs in response to oleic acid application in a RABC1GEF1-dependent manner. RABC1 physically interacts with SEIPIN2/3, two orthologues of mammalian seipin, which function in the formation of LDs. Disruption of RABC1, RABC1GEF1, or SEIPIN2/3 resulted in aberrantly large LDs, severe defects in guard cell vacuole morphology, and stomatal function. In conclusion, these findings reveal an aspect of LD function and uncover a role for lipid metabolism in stomatal development in plants.
Collapse
Affiliation(s)
| | | | - Yi-Fei Wang
- State Key Laboratory of Hybrid Rice, Department of Plant Sciences, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Pengyue Sun
- State Key Laboratory of Hybrid Rice, Department of Plant Sciences, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Jiaheng Chu
- State Key Laboratory of Hybrid Rice, Department of Plant Sciences, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Jiao Li
- State Key Laboratory of Hybrid Rice, Department of Plant Sciences, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Peng Sun
- State Key Laboratory of Hybrid Rice, Department of Plant Sciences, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Jianbo Wang
- State Key Laboratory of Hybrid Rice, Department of Plant Sciences, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Alistair M Hetherington
- School of Biological Sciences, Life Sciences Building, University of Bristol, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
| | | |
Collapse
|
23
|
Niemeyer PW, Irisarri I, Scholz P, Schmitt K, Valerius O, Braus GH, Herrfurth C, Feussner I, Sharma S, Carlsson AS, de Vries J, Hofvander P, Ischebeck T. A seed-like proteome in oil-rich tubers. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:518-534. [PMID: 36050843 DOI: 10.1111/tpj.15964] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 08/09/2022] [Accepted: 08/26/2022] [Indexed: 06/15/2023]
Abstract
There are numerous examples of plant organs or developmental stages that are desiccation-tolerant and can withstand extended periods of severe water loss. One prime example are seeds and pollen of many spermatophytes. However, in some plants, also vegetative organs can be desiccation-tolerant. One example are the tubers of yellow nutsedge (Cyperus esculentus), which also store large amounts of lipids similar to seeds. Interestingly, the closest known relative, purple nutsedge (Cyperus rotundus), generates tubers that do not accumulate oil and are not desiccation-tolerant. We generated nanoLC-MS/MS-based proteomes of yellow nutsedge in five replicates of four stages of tuber development and compared them to the proteomes of roots and leaves, yielding 2257 distinct protein groups. Our data reveal a striking upregulation of hallmark proteins of seeds in the tubers. A deeper comparison to the tuber proteome of the close relative purple nutsedge (C. rotundus) and a previously published proteome of Arabidopsis seeds and seedlings indicates that indeed a seed-like proteome was found in yellow but not purple nutsedge. This was further supported by an analysis of the proteome of a lipid droplet-enriched fraction of yellow nutsedge, which also displayed seed-like characteristics. One reason for the differences between the two nutsedge species might be the expression of certain transcription factors homologous to ABSCISIC ACID INSENSITIVE3, WRINKLED1, and LEAFY COTYLEDON1 that drive gene expression in Arabidopsis seed embryos.
Collapse
Affiliation(s)
- Philipp William Niemeyer
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, 37077, Göttingen, Germany
| | - Iker Irisarri
- Department of Applied Bioinformatics, Göttingen Center for Molecular Biosciences (GZMB) and Campus Institute Data Science (CIDAS), Institute for Microbiology and Genetics, University of Göttingen, 37077, Göttingen, Germany
| | - Patricia Scholz
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, 37077, Göttingen, Germany
| | - Kerstin Schmitt
- Department for Molecular Microbiology and Genetics, Genetics and Göttingen Center for Molecular Biosciences (GZMB) and Service Unit LCMS Protein Analytics, Institute for Microbiology, University of Göttingen, 37077, Göttingen, Germany
| | - Oliver Valerius
- Department for Molecular Microbiology and Genetics, Genetics and Göttingen Center for Molecular Biosciences (GZMB) and Service Unit LCMS Protein Analytics, Institute for Microbiology, University of Göttingen, 37077, Göttingen, Germany
| | - Gerhard H Braus
- Department for Molecular Microbiology and Genetics, Genetics and Göttingen Center for Molecular Biosciences (GZMB) and Service Unit LCMS Protein Analytics, Institute for Microbiology, University of Göttingen, 37077, Göttingen, Germany
| | - Cornelia Herrfurth
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, 37077, Göttingen, Germany
- Department of Plant Biochemistry, Service Unit for Metabolomics and Lipidomics, Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, 37077, Göttingen, Germany
| | - Ivo Feussner
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, 37077, Göttingen, Germany
- Department of Plant Biochemistry, Service Unit for Metabolomics and Lipidomics, Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, 37077, Göttingen, Germany
| | - Shrikant Sharma
- Department of Plant Breeding, SLU Alnarp, Swedish University of Agricultural Sciences, Box 190, SE-234 22, Lomma, Sweden
| | - Anders S Carlsson
- Department of Plant Breeding, SLU Alnarp, Swedish University of Agricultural Sciences, Box 190, SE-234 22, Lomma, Sweden
| | - Jan de Vries
- Department of Applied Bioinformatics, Göttingen Center for Molecular Biosciences (GZMB) and Campus Institute Data Science (CIDAS), Institute for Microbiology and Genetics, University of Göttingen, 37077, Göttingen, Germany
| | - Per Hofvander
- Department of Plant Breeding, SLU Alnarp, Swedish University of Agricultural Sciences, Box 190, SE-234 22, Lomma, Sweden
| | - Till Ischebeck
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, 37077, Göttingen, Germany
- Green Biotechnology, Institute of Plant Biology and Biotechnology (IBBP), University of Münster, 48143, Münster, Germany
| |
Collapse
|
24
|
Regulation of Heat Stress in Physcomitrium (Physcomitrella) patens Provides Novel Insight into the Functions of Plant RNase H1s. Int J Mol Sci 2022; 23:ijms23169270. [PMID: 36012542 PMCID: PMC9409398 DOI: 10.3390/ijms23169270] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 08/02/2022] [Accepted: 08/13/2022] [Indexed: 11/17/2022] Open
Abstract
RNase H1s are associated with growth and development in both plants and animals, while the roles of RNase H1s in bryophytes have been rarely reported. Our previous data found that PpRNH1A, a member of the RNase H1 family, could regulate the development of Physcomitrium (Physcomitrella) patens by regulating the auxin. In this study, we further investigated the biological functions of PpRNH1A and found PpRNH1A may participate in response to heat stress by affecting the numbers and the mobilization of lipid droplets and regulating the expression of heat-related genes. The expression level of PpRNH1A was induced by heat stress (HS), and we found that the PpRNH1A overexpression plants (A-OE) were more sensitive to HS. At the same time, A-OE plants have a higher number of lipid droplets but with less mobility in cells. Consistent with the HS sensitivity phenotype in A-OE plants, transcriptomic analysis results indicated that PpRNH1A is involved in the regulation of expression of heat-related genes such as DNAJ and DNAJC. Taken together, these results provide novel insight into the functions of RNase H1s.
Collapse
|
25
|
Li F, Han X, Guan H, Xu MC, Dong YX, Gao XQ. PALD encoding a lipid droplet-associated protein is critical for the accumulation of lipid droplets and pollen longevity in Arabidopsis. THE NEW PHYTOLOGIST 2022; 235:204-219. [PMID: 35348222 DOI: 10.1111/nph.18123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/15/2022] [Indexed: 06/14/2023]
Abstract
Pollen longevity is critical for plant pollination and hybrid seed production, but few studies have focused on pollen longevity. In this study, we identified an Arabidopsis thaliana gene, Protein associated with lipid droplets (PALD), which is strongly expressed in pollen and critical for the regulation of pollen longevity. PALD was expressed specifically in mature pollen grains and the pollen tube, and its expression was upregulated under dry conditions. PALD encoded a lipid droplet (LD)-associated protein and its N terminus was critical for the LD localization of PALD. The number of LDs and diameter were reduced in pollen grains of the loss-of-function PALD mutants. The viability and germination of the mature pollen grains of the pald mutants were comparable with those of the wild-type, but after the pollen grains were stored under dry conditions, pollen germination and male transmission of the mutant were compromised compared with those of the wild-type. Our study suggests that PALD was required for the maintenance of LD quality in mature pollen grains and regulation of pollen longevity.
Collapse
Affiliation(s)
- Fei Li
- National Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China
| | - Xiao Han
- National Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China
| | - Huan Guan
- National Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China
| | - Mei Chen Xu
- National Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China
| | - Yu Xiu Dong
- National Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China
| | - Xin-Qi Gao
- National Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China
| |
Collapse
|
26
|
Krawczyk HE, Rotsch AH, Herrfurth C, Scholz P, Shomroni O, Salinas-Riester G, Feussner I, Ischebeck T. Heat stress leads to rapid lipid remodeling and transcriptional adaptations in Nicotiana tabacum pollen tubes. PLANT PHYSIOLOGY 2022; 189:490-515. [PMID: 35302599 PMCID: PMC9157110 DOI: 10.1093/plphys/kiac127] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 02/19/2022] [Indexed: 06/12/2023]
Abstract
After reaching the stigma, pollen grains germinate and form a pollen tube that transports the sperm cells to the ovule. Due to selection pressure between pollen tubes, pollen grains likely evolved mechanisms to quickly adapt to temperature changes to sustain elongation at the highest possible rate. We investigated these adaptions in tobacco (Nicotiana tabacum) pollen tubes grown in vitro under 22°C and 37°C by a multi-omics approach including lipidomic, metabolomic, and transcriptomic analysis. Both glycerophospholipids and galactoglycerolipids increased in saturated acyl chains under heat stress (HS), while triacylglycerols (TGs) changed less in respect to desaturation but increased in abundance. Free sterol composition was altered, and sterol ester levels decreased. The levels of sterylglycosides and several sphingolipid classes and species were augmented. Most amino acid levels increased during HS, including the noncodogenic amino acids γ-amino butyrate and pipecolate. Furthermore, the sugars sedoheptulose and sucrose showed higher levels. Also, the transcriptome underwent pronounced changes with 1,570 of 24,013 genes being differentially upregulated and 813 being downregulated. Transcripts coding for heat shock proteins and many transcriptional regulators were most strongly upregulated but also transcripts that have so far not been linked to HS. Transcripts involved in TG synthesis increased, while the modulation of acyl chain desaturation seemed not to be transcriptionally controlled, indicating other means of regulation. In conclusion, we show that tobacco pollen tubes are able to rapidly remodel their lipidome under HS likely by post-transcriptional and/or post-translational regulation.
Collapse
Affiliation(s)
- Hannah Elisa Krawczyk
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen 37077, Germany
| | - Alexander Helmut Rotsch
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen 37077, Germany
| | - Cornelia Herrfurth
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen 37077, Germany
- Service Unit for Metabolomics and Lipidomics, Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen 37077, Germany
| | - Patricia Scholz
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen 37077, Germany
| | - Orr Shomroni
- NGS—Integrative Genomics Core Unit (NIG), University Medical Center Göttingen (UMG), Institute of Human Genetics, Göttingen 37077, Germany
| | - Gabriela Salinas-Riester
- NGS—Integrative Genomics Core Unit (NIG), University Medical Center Göttingen (UMG), Institute of Human Genetics, Göttingen 37077, Germany
| | - Ivo Feussner
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen 37077, Germany
- Service Unit for Metabolomics and Lipidomics, Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen 37077, Germany
| | - Till Ischebeck
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen 37077, Germany
- Institute of Plant Biology and Biotechnology (IBBP), University of Münster, Green Biotechnology, Münster 48143, Germany
| |
Collapse
|
27
|
Krawczyk HE, Sun S, Doner NM, Yan Q, Lim MSS, Scholz P, Niemeyer PW, Schmitt K, Valerius O, Pleskot R, Hillmer S, Braus GH, Wiermer M, Mullen RT, Ischebeck T. SEED LIPID DROPLET PROTEIN1, SEED LIPID DROPLET PROTEIN2, and LIPID DROPLET PLASMA MEMBRANE ADAPTOR mediate lipid droplet-plasma membrane tethering. THE PLANT CELL 2022; 34:2424-2448. [PMID: 35348751 PMCID: PMC9134073 DOI: 10.1093/plcell/koac095] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 02/14/2022] [Indexed: 05/27/2023]
Abstract
Membrane contact sites (MCSs) are interorganellar connections that allow for the direct exchange of molecules, such as lipids or Ca2+ between organelles, but can also serve to tether organelles at specific locations within cells. Here, we identified and characterized three proteins of Arabidopsis thaliana that form a lipid droplet (LD)-plasma membrane (PM) tethering complex in plant cells, namely LD-localized SEED LD PROTEIN (SLDP) 1 and SLDP2 and PM-localized LD-PLASMA MEMBRANE ADAPTOR (LIPA). Using proteomics and different protein-protein interaction assays, we show that both SLDPs associate with LIPA. Disruption of either SLDP1 and SLDP2 expression, or that of LIPA, leads to an aberrant clustering of LDs in Arabidopsis seedlings. Ectopic co-expression of one of the SLDPs with LIPA is sufficient to reconstitute LD-PM tethering in Nicotiana tabacum pollen tubes, a cell type characterized by dynamically moving LDs in the cytosolic streaming. Furthermore, confocal laser scanning microscopy revealed both SLDP2.1 and LIPA to be enriched at LD-PM contact sites in seedlings. These and other results suggest that SLDP and LIPA interact to form a tethering complex that anchors a subset of LDs to the PM during post-germinative seedling growth in Arabidopsis.
Collapse
Affiliation(s)
- Hannah Elisa Krawczyk
- Albrecht-von-Haller-Institute for Plant Sciences and Göttingen Center for Molecular Biosciences (GZMB), Department of Plant Biochemistry, University of Göttingen, Göttingen, Germany
| | - Siqi Sun
- Albrecht-von-Haller-Institute for Plant Sciences and Göttingen Center for Molecular Biosciences (GZMB), Department of Plant Biochemistry, University of Göttingen, Göttingen, Germany
| | - Nathan M Doner
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Qiqi Yan
- Albrecht-von-Haller-Institute for Plant Sciences and Göttingen Center for Molecular Biosciences (GZMB), Molecular Biology of Plant-Microbe Interactions Research Group, University of Göttingen, Göttingen, Germany
| | - Magdiel Sheng Satha Lim
- Albrecht-von-Haller-Institute for Plant Sciences and Göttingen Center for Molecular Biosciences (GZMB), Department of Plant Biochemistry, University of Göttingen, Göttingen, Germany
| | - Patricia Scholz
- Albrecht-von-Haller-Institute for Plant Sciences and Göttingen Center for Molecular Biosciences (GZMB), Department of Plant Biochemistry, University of Göttingen, Göttingen, Germany
| | - Philipp William Niemeyer
- Albrecht-von-Haller-Institute for Plant Sciences and Göttingen Center for Molecular Biosciences (GZMB), Department of Plant Biochemistry, University of Göttingen, Göttingen, Germany
| | - Kerstin Schmitt
- Institute for Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB) and Service Unit LCMS Protein Analytics, Department for Molecular Microbiology and Genetics, University of Göttingen, Göttingen, Germany
- Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen, Germany
| | - Oliver Valerius
- Institute for Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB) and Service Unit LCMS Protein Analytics, Department for Molecular Microbiology and Genetics, University of Göttingen, Göttingen, Germany
- Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen, Germany
| | - Roman Pleskot
- Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czech Republic
| | - Stefan Hillmer
- Electron Microscopy Core Facility, Heidelberg University, Heidelberg, Germany
| | - Gerhard H Braus
- Institute for Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB) and Service Unit LCMS Protein Analytics, Department for Molecular Microbiology and Genetics, University of Göttingen, Göttingen, Germany
- Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen, Germany
| | - Marcel Wiermer
- Albrecht-von-Haller-Institute for Plant Sciences and Göttingen Center for Molecular Biosciences (GZMB), Molecular Biology of Plant-Microbe Interactions Research Group, University of Göttingen, Göttingen, Germany
- Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen, Germany
| | - Robert T Mullen
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Till Ischebeck
- Albrecht-von-Haller-Institute for Plant Sciences and Göttingen Center for Molecular Biosciences (GZMB), Department of Plant Biochemistry, University of Göttingen, Göttingen, Germany
- Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen, Germany
- Institute of Plant Biology and Biotechnology (IBBP), Green Biotechnology, University of Münster, Münster, Germany
| |
Collapse
|
28
|
Bhandari S, Bates PD. Triacylglycerol remodeling in Physaria fendleri indicates oil accumulation is dynamic and not a metabolic endpoint. PLANT PHYSIOLOGY 2021; 187:799-815. [PMID: 34608961 PMCID: PMC8491037 DOI: 10.1093/plphys/kiab294] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 06/05/2021] [Indexed: 05/26/2023]
Abstract
Oilseed plants accumulate triacylglycerol (TAG) up to 80% of seed weight with the TAG fatty acid composition determining its nutritional value or use in the biofuel or chemical industries. Two major pathways for production of diacylglycerol (DAG), the immediate precursor to TAG, have been identified in plants: de novo DAG synthesis and conversion of the membrane lipid phosphatidylcholine (PC) to DAG, with each pathway producing distinct TAG compositions. However, neither pathway fits with previous biochemical and transcriptomic results from developing Physaria fendleri seeds for accumulation of TAG containing >60% lesquerolic acid (an unusual 20 carbon hydroxylated fatty acid), which accumulates at only the sn-1 and sn-3 positions of TAG. Isotopic tracing of developing P. fendleri seed lipid metabolism identified that PC-derived DAG is utilized to initially produce TAG with only one lesquerolic acid. Subsequently a nonhydroxylated fatty acid is removed from TAG (transiently reproducing DAG) and a second lesquerolic acid is incorporated. Thus, a dynamic TAG remodeling process involving anabolic and catabolic reactions controls the final TAG fatty acid composition. Reinterpretation of P. fendleri transcriptomic data identified potential genes involved in TAG remodeling that could provide a new approach for oilseed engineering by altering oil fatty acid composition after initial TAG synthesis; and the comparison of current results to that of related Brassicaceae species in the literature suggests the possibility of TAG remodeling involved in incorporation of very long-chain fatty acids into the TAG sn-1 position in various plants.
Collapse
Affiliation(s)
- Sajina Bhandari
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164, USA
| | - Philip D. Bates
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164, USA
| |
Collapse
|
29
|
Pyc M, Gidda SK, Seay D, Esnay N, Kretzschmar FK, Cai Y, Doner NM, Greer MS, Hull JJ, Coulon D, Bréhélin C, Yurchenko O, de Vries J, Valerius O, Braus GH, Ischebeck T, Chapman KD, Dyer JM, Mullen RT. LDIP cooperates with SEIPIN and LDAP to facilitate lipid droplet biogenesis in Arabidopsis. THE PLANT CELL 2021; 33:3076-3103. [PMID: 34244767 PMCID: PMC8462815 DOI: 10.1093/plcell/koab179] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 06/26/2021] [Indexed: 05/19/2023]
Abstract
Cytoplasmic lipid droplets (LDs) are evolutionarily conserved organelles that store neutral lipids and play critical roles in plant growth, development, and stress responses. However, the molecular mechanisms underlying their biogenesis at the endoplasmic reticulum (ER) remain obscure. Here we show that a recently identified protein termed LD-associated protein [LDAP]-interacting protein (LDIP) works together with both endoplasmic reticulum-localized SEIPIN and the LD-coat protein LDAP to facilitate LD formation in Arabidopsis thaliana. Heterologous expression in insect cells demonstrated that LDAP is required for the targeting of LDIP to the LD surface, and both proteins are required for the production of normal numbers and sizes of LDs in plant cells. LDIP also interacts with SEIPIN via a conserved hydrophobic helix in SEIPIN and LDIP functions together with SEIPIN to modulate LD numbers and sizes in plants. Further, the co-expression of both proteins is required to restore normal LD production in SEIPIN-deficient yeast cells. These data, combined with the analogous function of LDIP to a mammalian protein called LD Assembly Factor 1, are discussed in the context of a new model for LD biogenesis in plant cells with evolutionary connections to LD biogenesis in other eukaryotes.
Collapse
Affiliation(s)
| | | | - Damien Seay
- U.S. Department of Agriculture, Agricultural Research Service, U.S. Arid-Land Agricultural Research Center, Maricopa, Arizona 85138, USA
| | - Nicolas Esnay
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, Texas 76203, USA
| | - Franziska K. Kretzschmar
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, University of Göttingen, 37077 Göttingen, Germany
| | | | - Nathan M. Doner
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | | | - J. Joe Hull
- U.S. Department of Agriculture, Agricultural Research Service, U.S. Arid-Land Agricultural Research Center, Maricopa, Arizona 85138, USA
| | - Denis Coulon
- Université de Bordeaux, Centre National de la Recherche Scientifique, Laboratoire de Biogenèse Membranaire, UMR5200, F-33140 Villenave d’Ornon, France
| | - Claire Bréhélin
- Université de Bordeaux, Centre National de la Recherche Scientifique, Laboratoire de Biogenèse Membranaire, UMR5200, F-33140 Villenave d’Ornon, France
| | | | - Jan de Vries
- Institute for Microbiology and Genetics, Göttingen Center for Molecular Biosciences and Campus Institute Data Science, Department of Applied Bioinformatics, University of Göttingen, 37077 Göttingen, Germany
| | - Oliver Valerius
- Institute for Microbiology and Genetics and Göttingen Center for Molecular Biosciences, Department for Molecular Microbiology and Genetics, University of Göttingen, 37077 Göttingen, Germany
| | - Gerhard H. Braus
- Institute for Microbiology and Genetics and Göttingen Center for Molecular Biosciences, Department for Molecular Microbiology and Genetics, University of Göttingen, 37077 Göttingen, Germany
| | - Till Ischebeck
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, University of Göttingen, 37077 Göttingen, Germany
| | - Kent D. Chapman
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, Texas 76203, USA
| | | | | |
Collapse
|
30
|
Characterization of the Heat-Stable Proteome during Seed Germination in Arabidopsis with Special Focus on LEA Proteins. Int J Mol Sci 2021; 22:ijms22158172. [PMID: 34360938 PMCID: PMC8347141 DOI: 10.3390/ijms22158172] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 12/22/2022] Open
Abstract
During seed germination, desiccation tolerance is lost in the radicle with progressing radicle protrusion and seedling establishment. This process is accompanied by comprehensive changes in the metabolome and proteome. Germination of Arabidopsis seeds was investigated over 72 h with special focus on the heat-stable proteome including late embryogenesis abundant (LEA) proteins together with changes in primary metabolites. Six metabolites in dry seeds known to be important for seed longevity decreased during germination and seedling establishment, while all other metabolites increased simultaneously with activation of growth and development. Thermo-stable proteins were associated with a multitude of biological processes. In the heat-stable proteome, a relatively similar proportion of fully ordered and fully intrinsically disordered proteins (IDP) was discovered. Highly disordered proteins were found to be associated with functional categories development, protein, RNA and stress. As expected, the majority of LEA proteins decreased during germination and seedling establishment. However, four germination-specific dehydrins were identified, not present in dry seeds. A network analysis of proteins, metabolites and amino acids generated during the course of germination revealed a highly connected LEA protein network.
Collapse
|
31
|
Larkin P, Zhou X, Liu Q, Reynolds K, Vanhercke T, Ral J, Li Z, Wu X, Yu R, Luo J, Newberry M, Howitt C. A transcriptional journey from sucrose to endosperm oil bodies in triple transgene oily wheat grain. J Cereal Sci 2021. [DOI: 10.1016/j.jcs.2021.103268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
32
|
Abstract
Cytosolic lipid droplets (LDs) are organelles which emulsify a variety of hydrophobic molecules in the aqueous cytoplasm of essentially all plant cells. Most familiar are the LDs from oilseeds or oleaginous fruits that primarily store triacylglycerols and serve a storage function. However, similar hydrophobic particles are found in cells of plant tissues that package terpenoids, sterol esters, wax esters, or other types of nonpolar lipids. The various hydrophobic lipids inside LDs are coated with a phospholipid monolayer, mostly derived from membrane phospholipids during their ontogeny. Various proteins have been identified to be associated with LDs, and these may be cell-type, tissue-type, or even species specific. While major LD proteins like oleosins have been known for decades, more recently a growing list of LD proteins has been identified, primarily by proteomics analyses of isolated LDs and confirmation of their localization by confocal microscopy. LDs, unlike other organelles, have a density less than that of water, and consequently can be isolated and enriched in cellular fractions by flotation centrifugation for composition studies. However, due to its deep coverage, modern proteomics approaches are also prone to identify contaminants, making control experiments necessary. Here, procedures for the isolation of LDs, and analysis of LD components are provided as well as methods to validate the LD localization of proteins.
Collapse
|
33
|
Veerabagu M, Rinne PLH, Skaugen M, Paul LK, van der Schoot C. Lipid Body Dynamics in Shoot Meristems: Production, Enlargement, and Putative Organellar Interactions and Plasmodesmal Targeting. FRONTIERS IN PLANT SCIENCE 2021; 12:674031. [PMID: 34367200 PMCID: PMC8335594 DOI: 10.3389/fpls.2021.674031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 06/14/2021] [Indexed: 05/20/2023]
Abstract
Post-embryonic cells contain minute lipid bodies (LBs) that are transient, mobile, engage in organellar interactions, and target plasmodesmata (PD). While LBs can deliver γ-clade 1,3-β-glucanases to PD, the nature of other cargo is elusive. To gain insight into the poorly understood role of LBs in meristems, we investigated their dynamics by microscopy, gene expression analyzes, and proteomics. In developing buds, meristems accumulated LBs, upregulated several LB-specific OLEOSIN genes and produced OLEOSINs. During bud maturation, the major gene OLE6 was strongly downregulated, OLEOSINs disappeared from bud extracts, whereas lipid biosynthesis genes were upregulated, and LBs were enlarged. Proteomic analyses of the LB fraction of dormant buds confirmed that OLEOSINs were no longer present. Instead, we identified the LB-associated proteins CALEOSIN (CLO1), Oil Body Lipase 1 (OBL1), Lipid Droplet Interacting Protein (LDIP), Lipid Droplet Associated Protein1a/b (LDAP1a/b) and LDAP3a/b, and crucial components of the OLEOSIN-deubiquitinating and degradation machinery, such as PUX10 and CDC48A. All mRFP-tagged LDAPs localized to LBs when transiently expressed in Nicotiana benthamiana. Together with gene expression analyzes, this suggests that during bud maturation, OLEOSINs were replaced by LDIP/LDAPs at enlarging LBs. The LB fraction contained the meristem-related actin7 (ACT7), "myosin XI tail-binding" RAB GTPase C2A, an LB/PD-associated γ-clade 1,3-β-glucanase, and various organelle- and/or PD-localized proteins. The results are congruent with a model in which LBs, motorized by myosin XI-k/1/2, traffic on F-actin, transiently interact with other organelles, and deliver a diverse cargo to PD.
Collapse
Affiliation(s)
- Manikandan Veerabagu
- Faculty of Biosciences, Department of Plant Sciences, Norwegian University of Life Sciences, Ås, Norway
| | - Päivi L. H. Rinne
- Faculty of Biosciences, Department of Plant Sciences, Norwegian University of Life Sciences, Ås, Norway
| | - Morten Skaugen
- Faculty of Chemistry, Biotechnology, and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Laju K. Paul
- Faculty of Biosciences, Department of Plant Sciences, Norwegian University of Life Sciences, Ås, Norway
| | - Christiaan van der Schoot
- Faculty of Biosciences, Department of Plant Sciences, Norwegian University of Life Sciences, Ås, Norway
- *Correspondence: Christiaan van der Schoot
| |
Collapse
|
34
|
Doner NM, Seay D, Mehling M, Sun S, Gidda SK, Schmitt K, Braus GH, Ischebeck T, Chapman KD, Dyer JM, Mullen RT. Arabidopsis thaliana EARLY RESPONSIVE TO DEHYDRATION 7 Localizes to Lipid Droplets via Its Senescence Domain. FRONTIERS IN PLANT SCIENCE 2021; 12:658961. [PMID: 33936146 PMCID: PMC8079945 DOI: 10.3389/fpls.2021.658961] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 03/23/2021] [Indexed: 05/09/2023]
Abstract
Lipid droplets (LDs) are neutral-lipid-containing organelles found in all kingdoms of life and are coated with proteins that carry out a vast array of functions. Compared to mammals and yeast, relatively few LD proteins have been identified in plants, particularly those associated with LDs in vegetative (non-seed) cell types. Thus, to better understand the cellular roles of LDs in plants, a more comprehensive inventory and characterization of LD proteins is required. Here, we performed a proteomics analysis of LDs isolated from drought-stressed Arabidopsis leaves and identified EARLY RESPONSIVE TO DEHYDRATION 7 (ERD7) as a putative LD protein. mCherry-tagged ERD7 localized to both LDs and the cytosol when ectopically expressed in plant cells, and the protein's C-terminal senescence domain (SD) was both necessary and sufficient for LD targeting. Phylogenetic analysis revealed that ERD7 belongs to a six-member family in Arabidopsis that, along with homologs in other plant species, is separated into two distinct subfamilies. Notably, the SDs of proteins from each subfamily conferred targeting to either LDs or mitochondria. Further, the SD from the ERD7 homolog in humans, spartin, localized to LDs in plant cells, similar to its localization in mammals; although, in mammalian cells, spartin also conditionally localizes to other subcellular compartments, including mitochondria. Disruption of ERD7 gene expression in Arabidopsis revealed no obvious changes in LD numbers or morphology under normal growth conditions, although this does not preclude a role for ERD7 in stress-induced LD dynamics. Consistent with this possibility, a yeast two-hybrid screen using ERD7 as bait identified numerous proteins involved in stress responses, including some that have been identified in other LD proteomes. Collectively, these observations provide new insight to ERD7 and the SD-containing family of proteins in plants and suggest that ERD7 may be involved in functional aspects of plant stress response that also include localization to the LD surface.
Collapse
Affiliation(s)
- Nathan M. Doner
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Damien Seay
- United States Department of Agriculture, US Arid-Land Agricultural Research Center, Agriculture Research Service, Maricopa, AZ, United States
| | - Marina Mehling
- United States Department of Agriculture, US Arid-Land Agricultural Research Center, Agriculture Research Service, Maricopa, AZ, United States
| | - Siqi Sun
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen, Germany
| | - Satinder K. Gidda
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Kerstin Schmitt
- Department of Molecular Microbiology and Genetics, Institute for Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen, Germany
| | - Gerhard H. Braus
- Department of Molecular Microbiology and Genetics, Institute for Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen, Germany
| | - Till Ischebeck
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen, Germany
| | - Kent D. Chapman
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, TX, United States
| | - John M. Dyer
- United States Department of Agriculture, US Arid-Land Agricultural Research Center, Agriculture Research Service, Maricopa, AZ, United States
| | - Robert T. Mullen
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
- *Correspondence: Robert T. Mullen,
| |
Collapse
|
35
|
Smolikova G, Gorbach D, Lukasheva E, Mavropolo-Stolyarenko G, Bilova T, Soboleva A, Tsarev A, Romanovskaya E, Podolskaya E, Zhukov V, Tikhonovich I, Medvedev S, Hoehenwarter W, Frolov A. Bringing New Methods to the Seed Proteomics Platform: Challenges and Perspectives. Int J Mol Sci 2020; 21:E9162. [PMID: 33271881 PMCID: PMC7729594 DOI: 10.3390/ijms21239162] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 11/26/2020] [Accepted: 11/27/2020] [Indexed: 12/14/2022] Open
Abstract
For centuries, crop plants have represented the basis of the daily human diet. Among them, cereals and legumes, accumulating oils, proteins, and carbohydrates in their seeds, distinctly dominate modern agriculture, thus play an essential role in food industry and fuel production. Therefore, seeds of crop plants are intensively studied by food chemists, biologists, biochemists, and nutritional physiologists. Accordingly, seed development and germination as well as age- and stress-related alterations in seed vigor, longevity, nutritional value, and safety can be addressed by a broad panel of analytical, biochemical, and physiological methods. Currently, functional genomics is one of the most powerful tools, giving direct access to characteristic metabolic changes accompanying plant development, senescence, and response to biotic or abiotic stress. Among individual post-genomic methodological platforms, proteomics represents one of the most effective ones, giving access to cellular metabolism at the level of proteins. During the recent decades, multiple methodological advances were introduced in different branches of life science, although only some of them were established in seed proteomics so far. Therefore, here we discuss main methodological approaches already employed in seed proteomics, as well as those still waiting for implementation in this field of plant research, with a special emphasis on sample preparation, data acquisition, processing, and post-processing. Thereby, the overall goal of this review is to bring new methodologies emerging in different areas of proteomics research (clinical, food, ecological, microbial, and plant proteomics) to the broad society of seed biologists.
Collapse
Affiliation(s)
- Galina Smolikova
- Department of Plant Physiology and Biochemistry, St. Petersburg State University; 199034 St. Petersburg, Russia; (G.S.); (T.B.); (S.M.)
| | - Daria Gorbach
- Department of Biochemistry, St. Petersburg State University; 199178 St. Petersburg, Russia; (D.G.); (E.L.); (G.M.-S.); (A.S.); (A.T.); (E.R.)
| | - Elena Lukasheva
- Department of Biochemistry, St. Petersburg State University; 199178 St. Petersburg, Russia; (D.G.); (E.L.); (G.M.-S.); (A.S.); (A.T.); (E.R.)
| | - Gregory Mavropolo-Stolyarenko
- Department of Biochemistry, St. Petersburg State University; 199178 St. Petersburg, Russia; (D.G.); (E.L.); (G.M.-S.); (A.S.); (A.T.); (E.R.)
| | - Tatiana Bilova
- Department of Plant Physiology and Biochemistry, St. Petersburg State University; 199034 St. Petersburg, Russia; (G.S.); (T.B.); (S.M.)
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry; 06120 Halle (Saale), Germany
| | - Alena Soboleva
- Department of Biochemistry, St. Petersburg State University; 199178 St. Petersburg, Russia; (D.G.); (E.L.); (G.M.-S.); (A.S.); (A.T.); (E.R.)
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry; 06120 Halle (Saale), Germany
| | - Alexander Tsarev
- Department of Biochemistry, St. Petersburg State University; 199178 St. Petersburg, Russia; (D.G.); (E.L.); (G.M.-S.); (A.S.); (A.T.); (E.R.)
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry; 06120 Halle (Saale), Germany
| | - Ekaterina Romanovskaya
- Department of Biochemistry, St. Petersburg State University; 199178 St. Petersburg, Russia; (D.G.); (E.L.); (G.M.-S.); (A.S.); (A.T.); (E.R.)
| | - Ekaterina Podolskaya
- Institute of Analytical Instrumentation, Russian Academy of Science; 190103 St. Petersburg, Russia;
- Institute of Toxicology, Russian Federal Medical Agency; 192019 St. Petersburg, Russia
| | - Vladimir Zhukov
- All-Russia Research Institute for Agricultural Microbiology; 196608 St. Petersburg, Russia; (V.Z.); (I.T.)
| | - Igor Tikhonovich
- All-Russia Research Institute for Agricultural Microbiology; 196608 St. Petersburg, Russia; (V.Z.); (I.T.)
- Department of Genetics and Biotechnology, St. Petersburg State University; 199034 St. Petersburg, Russia
| | - Sergei Medvedev
- Department of Plant Physiology and Biochemistry, St. Petersburg State University; 199034 St. Petersburg, Russia; (G.S.); (T.B.); (S.M.)
| | - Wolfgang Hoehenwarter
- Proteome Analytics Research Group, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany;
| | - Andrej Frolov
- Department of Biochemistry, St. Petersburg State University; 199178 St. Petersburg, Russia; (D.G.); (E.L.); (G.M.-S.); (A.S.); (A.T.); (E.R.)
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry; 06120 Halle (Saale), Germany
| |
Collapse
|
36
|
de Vries J, Ischebeck T. Ties between Stress and Lipid Droplets Pre-date Seeds. TRENDS IN PLANT SCIENCE 2020; 25:1203-1214. [PMID: 32921563 DOI: 10.1016/j.tplants.2020.07.017] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/24/2020] [Accepted: 07/30/2020] [Indexed: 05/12/2023]
Abstract
Seeds were a key evolutionary innovation. These durable structures provide a concerted solution to two challenges on land: dispersal and stress. Lipid droplets (LDs) that act as nutrient storage reservoirs are one of the main cell-biological reasons for seed endurance. Although LDs are key structures in spermatophytes and are especially abundant in seeds, they are found across plants and algae, and increase during stress. Further, the proteins that underpin their form and function often have deep homologs. We propose an evolutionary scenario in which (i) the generation of LDs arose as a mechanism to mediate general drought and desiccation resilience, and (ii) the required protein framework was co-opted by spermatophytes for a seed-specific program.
Collapse
Affiliation(s)
- Jan de Vries
- University of Goettingen, Institute for Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstrasse 1, 37077 Goettingen, Germany; University of Goettingen, Goettingen Center for Molecular Biosciences (GZMB), 37077 Goettingen, Germany; University of Goettingen, Campus Institute Data Science (CIDAS), Goldschmidtstrasse 1, 37077 Goettingen, Germany.
| | - Till Ischebeck
- University of Goettingen, Goettingen Center for Molecular Biosciences (GZMB), 37077 Goettingen, Germany; University of Goettingen, Albrecht-von-Haller-Institute for Plant Sciences, Department of Plant Biochemistry, Justus-von-Liebig-Weg 11, 37077 Goettingen, Germany.
| |
Collapse
|
37
|
Greer MS, Cai Y, Gidda SK, Esnay N, Kretzschmar FK, Seay D, McClinchie E, Ischebeck T, Mullen RT, Dyer JM, Chapman KD. SEIPIN Isoforms Interact with the Membrane-Tethering Protein VAP27-1 for Lipid Droplet Formation. THE PLANT CELL 2020; 32:2932-2950. [PMID: 32690719 PMCID: PMC7474298 DOI: 10.1105/tpc.19.00771] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 06/08/2020] [Accepted: 07/11/2020] [Indexed: 05/05/2023]
Abstract
SEIPIN proteins are localized to endoplasmic reticulum (ER)-lipid droplet (LD) junctions where they mediate the directional formation of LDs into the cytoplasm in eukaryotic cells. Unlike in animal and yeast cells, which have single SEIPIN genes, plants have three distinct SEIPIN isoforms encoded by separate genes. The mechanism of SEIPIN action remains poorly understood, and here we demonstrate that part of the function of two SEIPIN isoforms in Arabidopsis (Arabidopsis thaliana), AtSEIPIN2 and AtSEIPIN3, may depend on their interaction with the vesicle-associated membrane protein (VAMP)-associated protein (VAP) family member AtVAP27-1. VAPs have well-established roles in the formation of membrane contact sites and lipid transfer between the ER and other organelles, and here, we used a combination of biochemical, cell biology, and genetics approaches to show that AtVAP27-1 interacts with the N termini of AtSEIPIN2 and AtSEIPIN3 and likely supports the normal formation of LDs. This insight indicates that the ER membrane tethering machinery in plant cells could play a role with select SEIPIN isoforms in LD biogenesis at the ER, and additional experimental evidence in Saccharomyces cerevisiae supports the possibility that this interaction may be important in other eukaryotic systems.
Collapse
Affiliation(s)
- Michael Scott Greer
- Department of Biological Sciences, BioDiscovery Institute, University of North Texas, Denton, Texas 76203
| | - Yingqi Cai
- Department of Biological Sciences, BioDiscovery Institute, University of North Texas, Denton, Texas 76203
| | - Satinder K Gidda
- Department of Molecular Cell Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Nicolas Esnay
- Department of Biological Sciences, BioDiscovery Institute, University of North Texas, Denton, Texas 76203
| | - Franziska K Kretzschmar
- Albrecht-von-Haller-Institute for Plant Sciences and Goettingen Center for Molecular Biosciences (GZMB), Department of Plant Biochemistry, University of Goettingen, Justus-von-Liebig Weg 11, 37077 Goettingen, Germany
| | - Damien Seay
- U.S. Department of Agriculture-Agricultural Research Service, U.S. Arid-Land Agricultural Research Center, Maricopa, Arizona 85138
| | - Elizabeth McClinchie
- Department of Biological Sciences, BioDiscovery Institute, University of North Texas, Denton, Texas 76203
| | - Till Ischebeck
- Albrecht-von-Haller-Institute for Plant Sciences and Goettingen Center for Molecular Biosciences (GZMB), Department of Plant Biochemistry, University of Goettingen, Justus-von-Liebig Weg 11, 37077 Goettingen, Germany
| | - Robert T Mullen
- Department of Molecular Cell Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - John M Dyer
- U.S. Department of Agriculture-Agricultural Research Service, U.S. Arid-Land Agricultural Research Center, Maricopa, Arizona 85138
| | - Kent D Chapman
- Department of Biological Sciences, BioDiscovery Institute, University of North Texas, Denton, Texas 76203
| |
Collapse
|
38
|
Fernández-Santos R, Izquierdo Y, López A, Muñiz L, Martínez M, Cascón T, Hamberg M, Castresana C. Protein Profiles of Lipid Droplets during the Hypersensitive Defense Response of Arabidopsis against Pseudomonas Infection. PLANT & CELL PHYSIOLOGY 2020; 61:1144-1157. [PMID: 32219438 DOI: 10.1093/pcp/pcaa041] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 03/19/2020] [Indexed: 05/04/2023]
Abstract
Lipid droplets (LDs) have classically been viewed as seed storage particles, yet they are now emerging as dynamic organelles associated with developmental and stress responses. Nevertheless, their involvement in plant immunity has still been little studied. Here, we found LD accumulation in Arabidopsis thaliana leaves that induced a hypersensitive response (HR) after Pseudomonas infection. We established a protocol to reproducibly isolate LDs and to analyze their protein content. The expression of GFP fusion proteins in Nicotiana benthamiana and in transgenic Arabidopsis lines validated the LD localization of glycerol-3-phosphate acyltransferase 4 (GPAT4) and 8 (GPAT8), required for cutin biosynthesis. Similarly, we showed LD localization of α-dioxygenase1 (α-DOX1) and caleosin3 (CLO3), involved in the synthesis of fatty acid derivatives, and that of phytoalexin-deficient 3 (PAD3), which is involved in camalexin synthesis. We found evidence suggesting the existence of different populations of LDs, with varying protein contents and distributions. GPAT4 and GPAT8 were associated with LDs inside stomata and surrounding cells of untreated leaves, yet they were mainly confined to LDs in guard cells after bacterial inoculation. By contrast, α-DOX1 and PAD3 were associated with LDs in the epidermal cells of HR-responding leaves, with PAD3 mostly restricted to cells near dead tissue, while CLO3 had a more ubiquitous distribution. As such, the nature of the proteins identified, together with the phenotypic examination of selected mutants, suggests that LDs participate in lipid changes and in the production and transport of defense components affecting the interaction of plants with invading pathogens.
Collapse
Affiliation(s)
| | - Yovanny Izquierdo
- Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, E-28049 Madrid, Spain
| | - Ana López
- Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, E-28049 Madrid, Spain
| | - Luis Muñiz
- Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, E-28049 Madrid, Spain
| | - Marta Martínez
- Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, E-28049 Madrid, Spain
| | - Tomás Cascón
- Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, E-28049 Madrid, Spain
| | - Mats Hamberg
- Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | - Carmen Castresana
- Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, E-28049 Madrid, Spain
| |
Collapse
|
39
|
Lundquist PK, Shivaiah KK, Espinoza-Corral R. Lipid droplets throughout the evolutionary tree. Prog Lipid Res 2020; 78:101029. [PMID: 32348789 DOI: 10.1016/j.plipres.2020.101029] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 04/11/2020] [Accepted: 04/18/2020] [Indexed: 12/11/2022]
Abstract
Intracellular lipid droplets are utilized for lipid storage and metabolism in organisms as evolutionarily diverse as animals, fungi, plants, bacteria, and archaea. These lipid droplets demonstrate great diversity in biological functions and protein and lipid compositions, yet fundamentally share common molecular and ultrastructural characteristics. Lipid droplet research has been largely fragmented across the diversity of lipid droplet classes and sub-classes. However, we suggest that there is great potential benefit to the lipid community in better integrating the lipid droplet research fields. To facilitate such integration, we survey the protein and lipid compositions, functional roles, and mechanisms of biogenesis across the breadth of lipid droplets studied throughout the natural world. We depict the big picture of lipid droplet biology, emphasizing shared characteristics and unique differences seen between different classes. In presenting the known diversity of lipid droplets side-by-side it becomes necessary to offer for the first time a consistent system of categorization and nomenclature. We propose a division into three primary classes that reflect their sub-cellular location: i) cytoplasmic lipid droplets (CYTO-LDs), that are present in the eukaryotic cytoplasm, ii) prokaryotic lipid droplets (PRO-LDs), that exist in the prokaryotic cytoplasm, and iii) plastid lipid droplets (PL-LDs), that are found in plant plastids, organelles of photosynthetic eukaryotes. Within each class there is a remarkable array of sub-classes displaying various sizes, shapes and compositions. A more integrated lipid droplet research field will provide opportunities to better build on discoveries and accelerate the pace of research in ways that have not been possible.
Collapse
Affiliation(s)
- Peter K Lundquist
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI 48824, USA; Plant Resilience Institute, Michigan State University, East Lansing, MI, 48824, USA.
| | - Kiran-Kumar Shivaiah
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI 48824, USA; Plant Resilience Institute, Michigan State University, East Lansing, MI, 48824, USA
| | - Roberto Espinoza-Corral
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI 48824, USA; Plant Resilience Institute, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
40
|
Ischebeck T, Krawczyk HE, Mullen RT, Dyer JM, Chapman KD. Lipid droplets in plants and algae: Distribution, formation, turnover and function. Semin Cell Dev Biol 2020; 108:82-93. [PMID: 32147380 DOI: 10.1016/j.semcdb.2020.02.014] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/28/2020] [Accepted: 02/29/2020] [Indexed: 01/02/2023]
Abstract
Plant oils represent an energy-rich and carbon-dense group of hydrophobic compounds. These oils are not only of economic interest, but also play important, fundamental roles in plant and algal growth and development. The subcellular storage compartments of plant lipids, referred to as lipid droplets (LDs), have long been considered relatively inert oil vessels. However, research in the last decade has revealed that LDs play far more dynamic roles in plant biology than previously appreciated, including transient neutral lipid storage, membrane remodeling, lipid signaling, and stress responses. Here we discuss recent developments in the understanding of LD formation, turnover and function in land plants and algae.
Collapse
Affiliation(s)
- Till Ischebeck
- University of Göttingen, Albrecht-von-Haller-Institute for Plant Sciences and Göttingen Center for Molecular Biosciences (GZMB), Department of Plant Biochemistry, 37077, Göttingen, Germany.
| | - Hannah E Krawczyk
- University of Göttingen, Albrecht-von-Haller-Institute for Plant Sciences and Göttingen Center for Molecular Biosciences (GZMB), Department of Plant Biochemistry, 37077, Göttingen, Germany
| | - Robert T Mullen
- University of Guelph, Department of Molecular Cell Biology, Guelph, Ontario, N1G 2W1, Canada
| | - John M Dyer
- United States Department of Agriculture, Agriculture Research Service, US Arid-Land Agricultural Research Center, Maricopa, AZ, 85138, USA
| | - Kent D Chapman
- University of North Texas, BioDiscovery Institute, Department of Biological Sciences, Denton, TX, 76203, USA
| |
Collapse
|
41
|
Richardson LGL. Discovering Lipid Droplet Proteins: From Seeds to Seedlings. PLANT PHYSIOLOGY 2020; 182:1192-1193. [PMID: 32127431 PMCID: PMC7054877 DOI: 10.1104/pp.20.00089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
|
42
|
Zienkiewicz K, Zienkiewicz A. Degradation of Lipid Droplets in Plants and Algae-Right Time, Many Paths, One Goal. FRONTIERS IN PLANT SCIENCE 2020; 11:579019. [PMID: 33014002 PMCID: PMC7509404 DOI: 10.3389/fpls.2020.579019] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 08/24/2020] [Indexed: 05/05/2023]
Abstract
In eukaryotic cells, lipids in the form of triacylglycerols (TAGs) are the major reservoir of cellular carbon and energy. These TAGs are packed into specialized organelles called lipid droplets (LDs). They can be found in most, if not all, types of cells, from bacteria to human. Recent data suggest that rather than being simple storage organelles, LDs are very dynamic structures at the center of cellular metabolism. This is also true in plants and algae, where LDs have been implicated in many processes including energy supply; membrane structure, function, trafficking; and signal transduction. Plant and algal LDs also play a vital role in human life, providing multiple sources of food and fuel. Thus, a lot of attention has been paid to metabolism and function of these organelles in recent years. This review summarizes the most recent advances on LDs degradation as a key process for TAGs release. While the initial knowledge on this process came from studies in oilseeds, the findings of the last decade revealed high complexity and specific mechanisms of LDs degradation in plants and algae. This includes identification of numerous novel proteins associated with LDs as well as a prominent role for autophagy in this process. This review outlines, systemizes, and discusses the most current data on LDs catabolism in plants and algae.
Collapse
|