1
|
Miettinen I, Zhang C, Alonso L, Fernández-Marín B, García-Plazaola JI, Grebe S, Porcar-Castell A, Atherton J. Hyperspectral Imaging Reveals Differential Carotenoid and Chlorophyll Temporal Dynamics and Spatial Patterns in Scots Pine Under Water Stress. PLANT, CELL & ENVIRONMENT 2024. [PMID: 39462945 DOI: 10.1111/pce.15225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/05/2024] [Accepted: 09/30/2024] [Indexed: 10/29/2024]
Abstract
Drought-related die-off events have been observed throughout Europe in Scots pine (Pinus sylvestris L.). Such events are exacerbated by carbon starvation that is, an imbalance of photosynthetic productivity and resource usage. Recent evidence suggests that optically measurable photosynthetic pigments such as chlorophylls and carotenoids respond to water stress (WS). However, there is a lack of measurements using imaging spectroscopy, and the mechanisms linking xanthophyll-related changes in reflectance captured by the photochemical reflectance index (PRI) and chlorophyll changes in red edge position (REP) to WS are not understood. To probe this, we conducted a greenhouse experiment where 3-year-old Pinus sylvestris saplings were subjected to water limitation and followed using hyperspectral imaging (HSI) spectroscopy, water status and photosynthetic measurements. Carotenoids (e.g., xanthophyll cycle) and chlorophylls responded to WS, which was observed using the HSI-derived indices PRI and REP respectively. The spatial-temporal response in these two pigment-reflectance groupings differed. The spatial distribution of PRI represented the light intensity around the time of the measurement, whereas REP reflected the daily averaged light intensity over the experimental course. A further difference was noted upon rewatering, where the carotenoid-related PRI partially recovered but the chlorophyll-related REP did not.
Collapse
Affiliation(s)
- Iiro Miettinen
- Optics of Photosynthesis Laboratory, Department of Forest Sciences, Institute for Atmospheric and Earth System Research (INAR), Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Uusimaa, Finland
| | - Chao Zhang
- Optics of Photosynthesis Laboratory, Department of Forest Sciences, Institute for Atmospheric and Earth System Research (INAR), Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Uusimaa, Finland
| | - Luis Alonso
- Optics of Photosynthesis Laboratory, Department of Forest Sciences, Institute for Atmospheric and Earth System Research (INAR), Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Uusimaa, Finland
- Fundanción CEAM, Paterna, Valencia, Spain
| | - Beatriz Fernández-Marín
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Leioa, Basque Country, Spain
| | - José I García-Plazaola
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Leioa, Basque Country, Spain
| | - Steffen Grebe
- Optics of Photosynthesis Laboratory, Department of Forest Sciences, Institute for Atmospheric and Earth System Research (INAR), Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Uusimaa, Finland
| | - Albert Porcar-Castell
- Optics of Photosynthesis Laboratory, Department of Forest Sciences, Institute for Atmospheric and Earth System Research (INAR), Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Uusimaa, Finland
| | - Jon Atherton
- Optics of Photosynthesis Laboratory, Department of Forest Sciences, Institute for Atmospheric and Earth System Research (INAR), Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Uusimaa, Finland
| |
Collapse
|
2
|
Manandhar A, Rimer IM, Soares Pereira T, Pichaco J, Rockwell FE, McAdam SAM. Dynamic soil hydraulic resistance regulates stomata. THE NEW PHYTOLOGIST 2024; 244:147-158. [PMID: 39096020 DOI: 10.1111/nph.20020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 07/05/2024] [Indexed: 08/04/2024]
Abstract
The onset of stomatal closure reduces transpiration during drought. In seed plants, drought causes declines in plant water status which increases leaf endogenous abscisic acid (ABA) levels required for stomatal closure. There are multiple possible points of increased belowground resistance in the soil-plant atmospheric continuum that could decrease leaf water potential enough to trigger ABA production and the subsequent decreases in transpiration. We investigate the dynamic patterns of leaf ABA levels, plant hydraulic conductance and the point of failure in the soil-plant conductance in the highly embolism-resistant species Callitris tuberculata using continuous dendrometer measurements of leaf water potential during drought. We show that decreases in transpiration and ABA biosynthesis begin before any permanent decreases in predawn water potential, collapse in soil-plant hydraulic pathway and xylem embolism spread. We find that a dynamic but recoverable increases in hydraulic resistance in the soil in close proximity to the roots is the most likely driver of declines in midday leaf water potential needed for ABA biosynthesis and the onset of decreases in transpiration.
Collapse
Affiliation(s)
- Anju Manandhar
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| | - Ian M Rimer
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| | - Talitha Soares Pereira
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| | - Javier Pichaco
- Irrigation and Crop Ecophysiology Group, Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS, CSIC), Ave Reina Mercedes 10, 41012, Seville, Spain
| | - Fulton E Rockwell
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Scott A M McAdam
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|
3
|
Mekarni L, Cochard H, Lehmann MM, Turberg P, Grossiord C. In vivo X-ray microtomography locally affects stem radial growth with no immediate physiological impact. PLANT PHYSIOLOGY 2024; 196:153-163. [PMID: 38757896 PMCID: PMC11491841 DOI: 10.1093/plphys/kiae285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/17/2024] [Accepted: 04/17/2024] [Indexed: 05/18/2024]
Abstract
Microcomputed tomography (µCT) is a nondestructive X-ray imaging method used in plant physiology to visualize in situ plant tissues that enables assessments of embolized xylem vessels. Whereas evidence for X-ray-induced cellular damage has been reported, the impact on plant physiological processes such as carbon (C) uptake, transport, and use is unknown. Yet, these damages could be particularly relevant for studies that track embolism and C fluxes over time. We examined the physiological consequences of µCT scanning for xylem embolism over 3 mo by monitoring net photosynthesis (Anet), diameter growth, chlorophyll (Chl) concentration, and foliar nonstructural carbohydrate (NSC) content in 4 deciduous tree species: hedge maple (Acer campestre), ash (Fraxinus excelsior), European hornbeam (Carpinus betulus), and sessile oak (Quercus petraea). C transport from the canopy to the roots was also assessed through 13C labeling. Our results show that monthly X-ray application did not impact foliar Anet, Chl, NSC content, and C transport. Although X-ray effects did not vary between species, the most pronounced impact was observed in sessile oak, marked by stopped growth and stem deformations around the irradiated area. The absence of adverse impacts on plant physiology for all the tested treatments indicates that laboratory-based µCT systems can be used with different beam energy levels and doses without threatening the integrity of plant physiology within the range of tested parameters. However, the impacts of repetitive µCT on the stem radial growth at the irradiated zone leading to deformations in sessile oak might have lasting implications for studies tracking plant embolism in the longer-term.
Collapse
Affiliation(s)
- Laura Mekarni
- Plant Ecology Research Laboratory PERL, School of Architecture, Civil and Environmental Engineering, EPFL, CH-1015 Lausanne, Switzerland
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Community Ecology Unit, 8903 Birmensdorf, Switzerland
| | - Hervé Cochard
- Université Clermont Auvergne, INRAE, PIAF, 63000 Clermont-Ferrand, France
| | - Marco M Lehmann
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Community Ecology Unit, 8903 Birmensdorf, Switzerland
| | - Pascal Turberg
- Plant Ecology Research Laboratory PERL, School of Architecture, Civil and Environmental Engineering, EPFL, CH-1015 Lausanne, Switzerland
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Community Ecology Unit, 8903 Birmensdorf, Switzerland
| | - Charlotte Grossiord
- Plant Ecology Research Laboratory PERL, School of Architecture, Civil and Environmental Engineering, EPFL, CH-1015 Lausanne, Switzerland
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Community Ecology Unit, 8903 Birmensdorf, Switzerland
| |
Collapse
|
4
|
Liu J, Huang J, Peng S, Xiong D. Rewatering after drought: Unravelling the drought thresholds and function recovery-limiting factors in maize leaves. PLANT, CELL & ENVIRONMENT 2024. [PMID: 39205650 DOI: 10.1111/pce.15080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 07/05/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024]
Abstract
Drought and subsequent rewatering are common in agriculture, where recovery from mild droughts is easier than from severe ones. The specific drought threshold and factors limiting recovery are under-researched. This study subjected maize plants to varying drought degrees before rewatering, and measuring plant water status, gas exchange, hydraulic conductance, hormone levels, and cellular damage throughout. We discovered that stomatal reopening in plants was inhibited with leaf water potentials below about -1.7 MPa, hindering postdrought photosynthetic recovery. Neither hydraulic loss nor abscisic acid (ABA) content was the factor inhibited stomatal reopening on the second day following moderate drought stress and rewatering. But stomatal reopening was significantly correlated to the interaction between hydraulic signals and ABA content under severe drought. Extended drought led to leaf death at about -2.8 MPa or 57% relative water content, influenced by reduced rehydration capacity, not hydraulic failure. The lethal threshold remained relatively constant across leaf stages, but the recoverable safety margin (RSM), that is, the water potential difference between stomatal closure and recovery capacity loss, significantly decreased with leaf aging due to delayed stomatal closure during drought. Our findings indicate hydraulic failure alone does not cause maize leaf death, highlighting the importance of RSM in future research.
Collapse
Affiliation(s)
- Junzhou Liu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, MARA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Jianliang Huang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, MARA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Shaobing Peng
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, MARA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Dongliang Xiong
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, MARA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, Huazhong Agricultural University, Wuhan, Hubei, China
| |
Collapse
|
5
|
Zhou C, Bo W, El-Kassaby YA, Li W. Transcriptome profiles reveal response mechanisms and key role of PsNAC1 in Pinus sylvestris var. mongolica to drought stress. BMC PLANT BIOLOGY 2024; 24:343. [PMID: 38671396 PMCID: PMC11046967 DOI: 10.1186/s12870-024-05051-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 04/19/2024] [Indexed: 04/28/2024]
Abstract
BACKGROUND Drought stress severely impedes plant growth, and only a limited number of species exhibit long-term resistance to such conditions. Pinus sylvestris var. mongolica, a dominant tree species in arid and semi-arid regions of China, exhibits strong drought resistance and plays a crucial role in the local ecosystem. However, the molecular mechanisms underlying this resistance remain poorly understood. RESULTS Here, we conducted transcriptome sequence and physiological indicators analysis of needle samples during drought treatment and rehydration stages. De-novo assembly yielded approximately 114,152 unigenes with an N50 length of 1,363 bp. We identified 6,506 differentially expressed genes (DEGs), with the majority being concentrated in the heavy drought stage (4,529 DEGs). Functional annotation revealed enrichment of drought-related GO terms such as response to water (GO:0009415: enriched 108 genes) and response to water deprivation (GO:0009414: enriched 106 genes), as well as KEGG categories including MAPK signaling pathway (K04733: enriched 35 genes) and monoterpenoid biosynthesis (K21374: enriched 27 genes). Multiple transcription factor families and functional protein families were differentially expressed during drought treatment. Co-expression network analysis identified a potential drought regulatory network between cytochrome P450 genes (Unigene4122_c1_g1) and a core regulatory transcription factor Unigene9098_c3_g1 (PsNAC1) with highly significant expression differences. We validated PsNAC1 overexpression in Arabidopsis and demonstrated enhanced drought resistance. CONCLUSIONS These findings provide insight into the molecular basis of drought resistance in P. sylvestris var. mongolica and lay the foundation for further exploration of its regulatory network.
Collapse
Affiliation(s)
- Chengcheng Zhou
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Wenhao Bo
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Yousry A El-Kassaby
- Department of Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia, 2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Wei Li
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
6
|
Tonet V, Brodribb T, Bourbia I. Variation in xylem vulnerability to cavitation shapes the photosynthetic legacy of drought. PLANT, CELL & ENVIRONMENT 2024; 47:1160-1170. [PMID: 38108586 DOI: 10.1111/pce.14788] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 11/08/2023] [Accepted: 12/01/2023] [Indexed: 12/19/2023]
Abstract
Increased drought conditions impact tree health, negatively disrupting plant water transport which, in turn, affects plant growth and survival. Persistent drought legacy effects have been documented in many diverse ecosystems, yet we still lack a mechanistic understanding of the physiological processes limiting tree recovery after drought. Tackling this question, we exposed saplings of a common Australian evergreen tree (Eucalyptus viminalis) to a cycle of drought and rewatering, seeking evidence for a link between the spread of xylem cavitation within the crown and the degree of photosynthetic recovery postdrought. Individual leaves experiencing >35% vein cavitation quickly died but this did not translate to a rapid overall canopy damage. Rather, whole canopies showed a gradual decline in mean postdrought gas exchange rates as water stress increased. This gradual loss of canopy function postdrought was due to a significant variation in cavitation vulnerability of leaves within canopies leading to diversity in the capacity of leaves within a single crown to recover function after drought. These results from the evergreen E. viminalis emphasise the importance of within-crown variation in xylem vulnerability as a central character regulating the dynamics of canopy death and the severity of drought legacy through time.
Collapse
Affiliation(s)
- Vanessa Tonet
- Discipline of Biological Sciences, School of Natural Sciences, University of Tasmania, Hobart, Australia
- School of Forestry & Environmental Studies, Yale University, New Haven, Connecticut, USA
| | - Timothy Brodribb
- Discipline of Biological Sciences, School of Natural Sciences, University of Tasmania, Hobart, Australia
| | - Ibrahim Bourbia
- Discipline of Biological Sciences, School of Natural Sciences, University of Tasmania, Hobart, Australia
| |
Collapse
|
7
|
Jupa R, Pokorná K. Bark wounding triggers gradual embolism spreading in two diffuse-porous tree species. TREE PHYSIOLOGY 2024; 44:tpad132. [PMID: 37930242 PMCID: PMC10849750 DOI: 10.1093/treephys/tpad132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Xylem transport is essential for the growth, development and survival of vascular plants. Bark wounding may increase the risk of xylem transport failure by tension-driven embolism. However, the consequences of bark wounding for xylem transport are poorly understood. Here, we examined the impacts of the bark wounding on embolism formation, leaf water potential and gas exchange in the terminal branches of two diffuse-porous tree species (Acer platanoides L. and Prunus avium L.). The effects of bark removal were examined on field-grown mature trees exposed to increased evaporative demands on a short-term and longer-term basis (6 h vs 6 days after bark wounding). Bark removal of 30% of branch circumference had a limited effect on the xylem hydraulic conductivity when embolized vessels were typically restricted to the last annual ring near the bark wound. Over the 6-day exposure, the non-conductive xylem area had significantly increased in the xylem tissue underneath the bark wound (from 22-29% to 51-52% of the last annual ring area in the bark wound zone), pointing to gradual yet relatively limited embolism spreading to deeper xylem layers over time. In both species, the bark removal tended to result in a small but non-significant increase in the percent loss of hydraulic conductivity compared with control intact branches 6 days after bark wounding (from 6 to 8-10% in both species). The bark wounding had no significant effects on midday leaf water potential, CO2 assimilation rates, stomatal conductance and water-use efficiency of the leaves of the current-year shoot, possibly due to limited impacts on xylem transport. The results of this study demonstrate that bark wounding induces limited but gradual embolism spreading. However, the impacts of bark wounding may not significantly limit water delivery to distal organs and leaf gas exchange at the scale of several days.
Collapse
Affiliation(s)
- Radek Jupa
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, Brno CZ-62500, Czech Republic
| | - Kamila Pokorná
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, Brno CZ-62500, Czech Republic
| |
Collapse
|
8
|
Sorek Y, Netzer Y, Cohen S, Hochberg U. Rapid leaf xylem acclimation diminishes the chances of embolism in grapevines. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6836-6846. [PMID: 37659088 DOI: 10.1093/jxb/erad351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 09/01/2023] [Indexed: 09/04/2023]
Abstract
Under most conditions tight stomatal regulation in grapevines (Vitis vinifera) avoids xylem embolism. The current study evaluated grapevine responses to challenging scenarios that might lead to leaf embolism and consequential leaf damage. We hypothesized that embolism would occur if the vines experienced low xylem water potential (Ψx) shortly after bud break or later in the season under a combination of extreme drought and heat. We subjected vines to two potentially dangerous environments: (i) withholding irrigation from a vineyard grown in a heatwave-prone environment, and (ii) subjecting potted vines to terminal drought 1 month after bud break. In the field experiment, a heatwave at the beginning of August resulted in leaf temperatures over 45 °C. However, effective stomatal response maintained the xylem water potential (Ψx) well above the embolism threshold, and no leaf desiccation was observed. In the pot experiment, leaves of well-watered vines in May were relatively vulnerable to embolism with 50% embolism (P50) at -1.8 MPa. However, when exposed to drought, these leaves acclimated their leaf P50 by 0.65 MPa in less than a week and before reaching embolism values. When dried to embolizing Ψx, the leaf damage proportion matched (percentage-wise) the leaf embolism level. Our findings indicate that embolism and leaf damage are usually avoided by the grapevines' efficient stomatal regulation and rapid acclimation of their xylem vulnerability.
Collapse
Affiliation(s)
- Yonatan Sorek
- Institute of Soil, Water and Environmental Sciences, Volcani Center, Agricultural Research Organization, Rishon LeZion, Israel
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Yishai Netzer
- Department of Chemical Engineering, Ariel University, Ariel 40700, Israel
- Eastern R and D Center, Ariel 40700, Israel
| | - Shabtai Cohen
- Institute of Soil, Water and Environmental Sciences, Volcani Center, Agricultural Research Organization, Rishon LeZion, Israel
| | - Uri Hochberg
- Institute of Soil, Water and Environmental Sciences, Volcani Center, Agricultural Research Organization, Rishon LeZion, Israel
| |
Collapse
|
9
|
Wang R, Zhang Z, Wang H, Chen Y, Zhang M. Soil Water Deficit Reduced Root Hydraulic Conductivity of Common Reed ( Phragmites australis). PLANTS (BASEL, SWITZERLAND) 2023; 12:3543. [PMID: 37896007 PMCID: PMC10610267 DOI: 10.3390/plants12203543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/02/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023]
Abstract
Alterations in root hydraulics in response to varying moisture conditions remain a subject of debate. In our investigation, we subjected common reeds (Phragmites australis) to a 45-day treatment with four distinct soil moisture levels. The findings unveiled that, in response to drought stress, the total root length, surface area, volume, and average diameter exhibited varying degrees of reduction. Anatomically, drought caused a reduction in root diameter (RD), cortex thickness (CT), vessel diameter (VD), and root cross-sectional area (RCA). A decrease in soil moisture significantly reduced both whole- and single-root hydraulic conductivity (Lpwr, Lpsr). The total length, surface area, volume, and average diameter of the reed root system were significantly correlated with Lpwr, while RD, CT, and RCA were significantly correlated with Lpsr. A decrease in soil moisture content significantly influenced root morphological and anatomical characteristics, which, in turn, altered Lpr, and the transcriptome results suggest that this may be associated with the variation in the expression of abscisic acid (ABA) and aquaporins (AQPs) genes. Our initial findings address a gap in our understanding of reed hydraulics, offering fresh theoretical insights into how herbaceous plants respond to external stressors.
Collapse
Affiliation(s)
- Ruiqing Wang
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China; (R.W.); (H.W.)
- The Key Laboratory of Ecological Protection in the Yellow River Basin of National Forestry and Grassland Administration, Beijing 100083, China
- Wetland Research Centre, Beijing Forestry University, Beijing 100083, China
| | - Zhenming Zhang
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China; (R.W.); (H.W.)
- The Key Laboratory of Ecological Protection in the Yellow River Basin of National Forestry and Grassland Administration, Beijing 100083, China
- Wetland Research Centre, Beijing Forestry University, Beijing 100083, China
| | - Haoyue Wang
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China; (R.W.); (H.W.)
- The Key Laboratory of Ecological Protection in the Yellow River Basin of National Forestry and Grassland Administration, Beijing 100083, China
- Wetland Research Centre, Beijing Forestry University, Beijing 100083, China
| | - Yinglong Chen
- The UWA Institute of Agriculture, School of Agriculture and Environment, The University of Western Australia, Perth, WA 6001, Australia;
| | - Mingxiang Zhang
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China; (R.W.); (H.W.)
- The Key Laboratory of Ecological Protection in the Yellow River Basin of National Forestry and Grassland Administration, Beijing 100083, China
- State Key Laboratory of Efficient Production of Forest Resources, Beijing 100083, China
| |
Collapse
|
10
|
Peltier DMP, Carbone MS, McIntire CD, Robertson N, Thompson RA, Malone S, LeMoine J, Richardson AD, McDowell NG, Adams HD, Pockman WT, Trowbridge AM. Carbon starvation following a decade of experimental drought consumes old reserves in Pinus edulis. THE NEW PHYTOLOGIST 2023; 240:92-104. [PMID: 37430467 DOI: 10.1111/nph.19119] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 06/12/2023] [Indexed: 07/12/2023]
Abstract
Shifts in the age or turnover time of non-structural carbohydrates (NSC) may underlie changes in tree growth under long-term increases in drought stress associated with climate change. But NSC responses to drought are challenging to quantify, due in part to large NSC stores in trees and subsequently long response times of NSC to climate variation. We measured NSC age (Δ14 C) along with a suite of ecophysiological metrics in Pinus edulis trees experiencing either extreme short-term drought (-90% ambient precipitation plot, 2020-2021) or a decade of severe drought (-45% plot, 2010-2021). We tested the hypothesis that carbon starvation - consumption exceeding synthesis and storage - increases the age of sapwood NSC. One year of extreme drought had no impact on NSC pool size or age, despite significant reductions in predawn water potential, photosynthetic rates/capacity, and twig and needle growth. By contrast, long-term drought halved the age of the sapwood NSC pool, coupled with reductions in sapwood starch concentrations (-75%), basal area increment (-39%), and bole respiration rates (-28%). Our results suggest carbon starvation takes time, as tree carbon reserves appear resilient to extreme disturbance in the short term. However, after a decade of drought, trees apparently consumed old stored NSC to support metabolism.
Collapse
Affiliation(s)
- Drew M P Peltier
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - Mariah S Carbone
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - Cameron D McIntire
- Northeastern Area State, Private, and Tribal Forestry, USDA Forest Service, 271 Mast Road, Durham, NH, 03824, USA
| | - Nathan Robertson
- Biology Department, University of New Mexico, Albuquerque, NM, 87106, USA
| | - R Alex Thompson
- School of the Environment, Washington State University, Pullman, WA, 99163, USA
| | - Shealyn Malone
- Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Jim LeMoine
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - Andrew D Richardson
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, 86011, USA
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - Nate G McDowell
- Atmospheric Sciences and Global Change Division, Pacific Northwest National Lab, PO Box 999, Richland, WA, 99352, USA
- School of Biological Sciences, Washington State University, PO Box 644236, Pullman, WA, 99164, USA
| | - Henry D Adams
- School of the Environment, Washington State University, Pullman, WA, 99163, USA
| | - William T Pockman
- Biology Department, University of New Mexico, Albuquerque, NM, 87106, USA
| | - Amy M Trowbridge
- Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| |
Collapse
|
11
|
Umaña MN. The interplay of drought and hurricanes on tree recovery: insights from dynamic and weak functional responses. Proc Biol Sci 2023; 290:20231732. [PMID: 37727090 PMCID: PMC10509583 DOI: 10.1098/rspb.2023.1732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 08/16/2023] [Indexed: 09/21/2023] Open
Abstract
Identifying the functional traits that enable recovery after extreme events is necessary for assessing forest persistence and functioning. However, the variability of traits mediating responses to disturbances presents a significant limitation, as these relationships may be contingent on the type of disturbance and change over time. This study investigates the effects of traits on tree growth-for short and longer terms-in response to two vastly different extreme climatic events (droughts and hurricanes) in a Puerto Rican forest. I found that trees display a dynamic functional response to extreme climatic events. Leaf traits associated with efficient photosynthesis mediated faster tree growth after hurricanes, while trees with low wood density and high water use efficiency displayed faster growth after drought. In the longer term, over both drought and hurricanes, tree size was the only significant predictor of growth, with faster growth for smaller trees. However, despite finding significant trait-growth relationships, the predictive power of traits was overall low. As the frequency of extreme events increases due to climate change, understanding the dynamic relationships between traits and tree growth is necessary for identifying strategies for recovery.
Collapse
Affiliation(s)
- María Natalia Umaña
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
12
|
Wagner Y, Volkov M, Nadal-Sala D, Ruehr NK, Hochberg U, Klein T. Relationships between xylem embolism and tree functioning during drought, recovery, and recurring drought in Aleppo pine. PHYSIOLOGIA PLANTARUM 2023; 175:e13995. [PMID: 37882273 DOI: 10.1111/ppl.13995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/22/2023] [Accepted: 08/02/2023] [Indexed: 10/27/2023]
Abstract
Recent findings suggest that trees can survive high levels of drought-induced xylem embolism. In many cases, the embolism is irreversible and, therefore, can potentially affect post-drought recovery and tree function under recurring droughts. We examined the development of embolism in potted Aleppo pines, a common species in hot, dry Mediterranean habitats. We asked (1) how post-drought recovery is affected by different levels of embolism and (2) what consequences this drought-induced damage has under a recurring drought scenario. Young trees were dehydrated to target water potential (Ψx ) values of -3.5, -5.2 and -9.5 MPa (which corresponded to ~6%, ~41% and ~76% embolism), and recovery of the surviving trees was measured over an 8-months period (i.e., embolism, leaf gas-exchange, Ψx ). An additional group of trees was exposed to Ψx of -6.0 MPa, either with or without preceding drought (Ψx of -5.2 MPa) to test the effect of hydraulic damage during repeated drought. Trees that reached -9.5 MPa died, but none from the other groups. Embolism levels in dying trees were on average 76% of conductive xylem and no tree was dying below 62% embolism. Stomatal recovery was negatively proportional to the level of hydraulic damage sustained during drought, for at least a month after drought relief. Trees that experienced drought for the second time took longer to reach fatal Ψx levels than first-time dehydrating trees. Decreased stomatal conductance following drought can be seen as "drought legacy," impeding recovery of tree functioning, but also as a safety mechanism during a consecutive drought.
Collapse
Affiliation(s)
- Yael Wagner
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Mila Volkov
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Daniel Nadal-Sala
- Institute of Meteorology and Climate Research (IMK-IFU), KIT-Campus Alpin, Karlsruhe Institute of Technology (KIT), Garmisch-Partenkirchen, Germany
- Centre de Recerca Ecològica i Aplicacions Forestals (CREAF), Campus de Bellaterra (UAB) Edifici C, Cerdanyola del Vallès, Spain
| | - Nadine Katrin Ruehr
- Institute of Meteorology and Climate Research (IMK-IFU), KIT-Campus Alpin, Karlsruhe Institute of Technology (KIT), Garmisch-Partenkirchen, Germany
| | - Uri Hochberg
- Institute of Soil, Water and Environmental Sciences, Volcani Center, Agricultural Research Organization, Rishon LeZion, Israel
| | - Tamir Klein
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
13
|
Franklin O, Fransson P, Hofhansl F, Jansen S, Joshi J. Optimal balancing of xylem efficiency and safety explains plant vulnerability to drought. Ecol Lett 2023; 26:1485-1496. [PMID: 37330625 DOI: 10.1111/ele.14270] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 05/05/2023] [Accepted: 05/05/2023] [Indexed: 06/19/2023]
Abstract
In vast areas of the world, forests and vegetation are water limited and plant survival depends on the ability to avoid catastrophic hydraulic failure. Therefore, it is remarkable that plants take hydraulic risks by operating at water potentials (ψ) that induce partial failure of the water conduits (xylem). Here we present an eco-evolutionary optimality principle for xylem conduit design that explains this phenomenon based on the hypothesis that conductive efficiency and safety are optimally co-adapted to the environment. The model explains the relationship between the tolerance to negative water potential (ψ50 ) and the environmentally dependent minimum ψ (ψmin ) across a large number of species, and along the xylem pathway within individuals of two species studied. The wider hydraulic safety margin in gymnosperms compared to angiosperms can be explained as an adaptation to a higher susceptibility to accumulation of embolism. The model provides a novel optimality-based perspective on the relationship between xylem safety and efficiency.
Collapse
Affiliation(s)
- Oskar Franklin
- International Institute for Applied Systems Analysis, Laxenburg, Austria
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Peter Fransson
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, Sweden
- Interdisciplinary Center for Scientific Computing, Heidelberg University, Heidelberg, Germany
| | - Florian Hofhansl
- International Institute for Applied Systems Analysis, Laxenburg, Austria
| | | | - Jaideep Joshi
- International Institute for Applied Systems Analysis, Laxenburg, Austria
- Institute of Geography, University of Bern, Bern, Switzerland
- Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland
- Complexity Science and Evolution Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| |
Collapse
|
14
|
Martín-Gómez P, Rodríguez-Robles U, Ogée J, Wingate L, Sancho-Knapik D, Peguero-Pina J, Dos Santos Silva JV, Gil-Pelegrín E, Pemán J, Ferrio JP. Contrasting stem water uptake and storage dynamics of water-saver and water-spender species during drought and recovery. TREE PHYSIOLOGY 2023; 43:1290-1306. [PMID: 36930058 DOI: 10.1093/treephys/tpad032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 03/01/2023] [Accepted: 03/07/2023] [Indexed: 06/18/2023]
Abstract
Drought is projected to occur more frequently and intensely in the coming decades, and the extent to which it will affect forest functioning will depend on species-specific responses to water stress. Aiming to understand the hydraulic traits and water dynamics behind water-saver and water-spender strategies in response to drought and recovery, we conducted a pot experiment with two species with contrasting physiological strategies, Scots pine (Pinus sylvestris L.) and Portuguese oak (Quercus faginea L.). We applied two cycles of soil drying and recovery and irrigated with isotopically different water to track fast changes in soil and stem water pools, while continuously measuring physiological status and xylem water content from twigs. Our results provide evidence for a tight link between the leaf-level response and the water uptake and storage patterns in the stem. The water-saver strategy of pines prevented stem dehydration by rapidly closing stomata which limited their water uptake during the early stages of drought and recovery. Conversely, oaks showed a less conservative strategy, maintaining transpiration and physiological activity under dry soil conditions, and consequently becoming more dehydrated at the stem level. We interpreted this dehydration as the release of water from elastic storage tissues as no major loss of hydraulic conductance occurred for this species. After soil rewetting, pines recovered pre-drought leaf water potential rapidly, but it took longer to replace the water from conductive tissues (slower labeling speed). In contrast, water-spender oaks were able to quickly replace xylem water during recovery (fast labeling speed), but it took longer to refill stem storage tissues, and hence to recover pre-drought leaf water potential. These different patterns in sap flow rates, speed and duration of the labeling reflected a combination of water-use and storage traits, linked to the leaf-level strategies in response to drought and recovery.
Collapse
Affiliation(s)
- Paula Martín-Gómez
- Joint Research Unit CTFC - AGROTECNIO - CERCA, Ctra de Sant Llorenç de Morunys, km 2, E-25280 Solsona, Lleida, Spain
| | - Ulises Rodríguez-Robles
- Departamento de Ecología y Recursos Naturales, Centro Universitario de la Costa Sur, Universidad de Guadalajara, Av. Independencia Nacional 151, Autlán de Navarro, 48900 Jalisco, México
| | - Jérôme Ogée
- Atmosphere Plant Soil Interactions Research Unit (UMR ISPA), Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), 71 Av. Edouard Bourlaux, F-33140 Villenave d'Ornon, France
| | - Lisa Wingate
- Atmosphere Plant Soil Interactions Research Unit (UMR ISPA), Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), 71 Av. Edouard Bourlaux, F-33140 Villenave d'Ornon, France
| | - Domingo Sancho-Knapik
- Departamento de Sistemas Agrícolas, Forestales y Medio Ambiente, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Avda. Montañana 930, E-50059 Zaragoza, Spain
| | - José Peguero-Pina
- Departamento de Sistemas Agrícolas, Forestales y Medio Ambiente, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Avda. Montañana 930, E-50059 Zaragoza, Spain
| | - José Victor Dos Santos Silva
- Departamento de Sistemas Agrícolas, Forestales y Medio Ambiente, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Avda. Montañana 930, E-50059 Zaragoza, Spain
| | - Eustaquio Gil-Pelegrín
- Departamento de Sistemas Agrícolas, Forestales y Medio Ambiente, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Avda. Montañana 930, E-50059 Zaragoza, Spain
| | - Jesús Pemán
- Department of Crop and Forest Sciences, Universitat de Lleida (UdL), Av. Alcalde Rovira Roure 191, 25198 Lleida, Spain
| | - Juan Pedro Ferrio
- Departamento de Sistemas Agrícolas, Forestales y Medio Ambiente, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Avda. Montañana 930, E-50059 Zaragoza, Spain
- Aragon Agency for Research and Development (ARAID), E-50018 Zaragoza, Spain
| |
Collapse
|
15
|
Gori A, Moura BB, Sillo F, Alderotti F, Pasquini D, Balestrini R, Ferrini F, Centritto M, Brunetti C. Unveiling resilience mechanisms of Quercus ilex seedlings to severe water stress: Changes in non-structural carbohydrates, xylem hydraulic functionality and wood anatomy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 878:163124. [PMID: 37001665 DOI: 10.1016/j.scitotenv.2023.163124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 05/13/2023]
Abstract
Over the last few decades, extensive dieback and mortality episodes of Quercus ilex L. have been documented after severe drought events in many Mediterranean forests. However, the underlying physiological, anatomical, and biochemical mechanisms remain poorly understood. We investigated the physiological and biochemical processes linked to embolism formation and non-structural carbohydrates (NSCs) dynamics in Q. ilex seedlings exposed to severe water stress and rewatering. Measurements of leaf gas exchange, water relations, non-structural carbohydrates, drought-related gene expression, and anatomical changes in wood parenchyma were assessed. Under water stress, the midday stem water potential dropped below - 4.5 MPa corresponding to a ~ 50 % loss of hydraulic conductivity. A 70 % reduction in stomatal conductance led to a strong depletion of wood NSCs. Starch consumption, resulting from the upregulation of the β-amylase gene BAM3, together with the downregulation of glucose (GPT1) and sucrose (SUC27) transport genes, suggests glucose utilization to sustain cellular metabolism in the wood parenchyma. After rewatering, the presence of residual xylem embolism led to an incomplete recovery of leaf gas exchanges. However, the partial restoration of photosynthesis allowed the accumulation of new starch reserves in the wood parenchyma and the production of new narrower vessels. In addition, changes in the cell wall composition of the wood parenchyma fibers were observed. Our findings indicate that thirty days of rewatering were sufficient to restore the NSCs reserves and growth rates of Q. ilex seedlings and that the carryover effects of water stress were primarily caused by hydraulic dysfunction.
Collapse
Affiliation(s)
- Antonella Gori
- University of Florence, Department of Agriculture, Food, Environment and Forestry (DAGRI), Sesto Fiorentino, Florence 50019, Italy; National Research Council of Italy, Institute for Sustainable Plant Protection (IPSP), Sesto Fiorentino, Florence and Turin 50019 and 10135, Italy.
| | - Barbara Baesso Moura
- University of Florence, Department of Agriculture, Food, Environment and Forestry (DAGRI), Sesto Fiorentino, Florence 50019, Italy
| | - Fabiano Sillo
- National Research Council of Italy, Institute for Sustainable Plant Protection (IPSP), Sesto Fiorentino, Florence and Turin 50019 and 10135, Italy
| | - Francesca Alderotti
- University of Florence, Department of Agriculture, Food, Environment and Forestry (DAGRI), Sesto Fiorentino, Florence 50019, Italy
| | - Dalila Pasquini
- University of Florence, Department of Agriculture, Food, Environment and Forestry (DAGRI), Sesto Fiorentino, Florence 50019, Italy
| | - Raffaella Balestrini
- National Research Council of Italy, Institute for Sustainable Plant Protection (IPSP), Sesto Fiorentino, Florence and Turin 50019 and 10135, Italy
| | - Francesco Ferrini
- University of Florence, Department of Agriculture, Food, Environment and Forestry (DAGRI), Sesto Fiorentino, Florence 50019, Italy; National Research Council of Italy, Institute for Sustainable Plant Protection (IPSP), Sesto Fiorentino, Florence and Turin 50019 and 10135, Italy
| | - Mauro Centritto
- National Research Council of Italy, Institute for Sustainable Plant Protection (IPSP), Sesto Fiorentino, Florence and Turin 50019 and 10135, Italy
| | - Cecilia Brunetti
- National Research Council of Italy, Institute for Sustainable Plant Protection (IPSP), Sesto Fiorentino, Florence and Turin 50019 and 10135, Italy.
| |
Collapse
|
16
|
Zlobin IE, Vankova R, Dobrev PI, Gaudinova A, Kartashov AV, Ivanov YV, Ivanova AI, Kuznetsov VV. Abscisic Acid and Cytokinins Are Not Involved in the Regulation of Stomatal Conductance of Scots Pine Saplings during Post-Drought Recovery. Biomolecules 2023; 13:biom13030523. [PMID: 36979458 PMCID: PMC10046708 DOI: 10.3390/biom13030523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/27/2023] [Accepted: 03/11/2023] [Indexed: 03/16/2023] Open
Abstract
Delayed or incomplete recovery of gas exchange after water stress relief limits assimilation in the post-drought period and can thus negatively affect the processes of post-drought recovery. Abscisic acid (ABA) accumulation and antagonistic action between ABA and cytokinins (CKs) play an important role in regulation of stomatal conductance under water deficit. Specifically, in pine species, sustained ABA accumulation is thought to be the main cause of delayed post-drought gas exchange recovery, although the role of CKs is not yet known. Therefore, we aimed to study the effects of ABA and CKs on recovery of stomatal conductance in greenhouse-grown 3-year-old Scots pine saplings recovering from water stress. We analysed both changes in endogenous ABA and CK contents and the effects of treatment with exogenous CK on stomatal conductance. Drought stress suppressed stomatal conductance, and post-drought stomatal conductance remained suppressed for 2 weeks after plant rewatering. ABA accumulated during water stress, but ABA levels decreased rapidly after rewatering. Additionally, trans-zeatin/ABA and isopentenyladenine/ABA ratios, which were decreased in water-stressed plants, recovered rapidly in rewatered plants. Spraying plants with 6-benzylaminopurine (0.1–100 µM) did not influence recovery of either stomatal conductance or needle water status. It can be concluded that the delayed recovery of stomatal conductance in Scots pine needles was not due to sustained ABA accumulation or a sustained decrease in the CK/ABA ratio, and CK supplementation was unable to overcome this delayed recovery.
Collapse
Affiliation(s)
- Ilya E. Zlobin
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, 127276 Moscow, Russia; (I.E.Z.); (A.V.K.); (Y.V.I.)
| | - Radomira Vankova
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, The Czech Academy of Sciences, Rozvojová 263, 16502 Prague, Czech Republic
| | - Petre I. Dobrev
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, The Czech Academy of Sciences, Rozvojová 263, 16502 Prague, Czech Republic
| | - Alena Gaudinova
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, The Czech Academy of Sciences, Rozvojová 263, 16502 Prague, Czech Republic
| | - Alexander V. Kartashov
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, 127276 Moscow, Russia; (I.E.Z.); (A.V.K.); (Y.V.I.)
| | - Yury V. Ivanov
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, 127276 Moscow, Russia; (I.E.Z.); (A.V.K.); (Y.V.I.)
| | - Alexandra I. Ivanova
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, 127276 Moscow, Russia; (I.E.Z.); (A.V.K.); (Y.V.I.)
| | - Vladimir V. Kuznetsov
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, 127276 Moscow, Russia; (I.E.Z.); (A.V.K.); (Y.V.I.)
- Correspondence:
| |
Collapse
|
17
|
Li M, Dong H, Li J, Dai X, Lin J, Li S, Zhou C, Chiang VL, Li W. PtrVCS2 Regulates Drought Resistance by Changing Vessel Morphology and Stomatal Closure in Populus trichocarpa. Int J Mol Sci 2023; 24:ijms24054458. [PMID: 36901889 PMCID: PMC10003473 DOI: 10.3390/ijms24054458] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/12/2023] [Accepted: 02/16/2023] [Indexed: 03/12/2023] Open
Abstract
Drought has severe effects on plant growth, forest productivity, and survival throughout the world. Understanding the molecular regulation of drought resistance in forest trees can enable effective strategic engineering of novel drought-resistant genotypes of tree species. In this study, we identified a gene, PtrVCS2, encoding a zinc finger (ZF) protein of the ZF-homeodomain transcription factor in Populus trichocarpa (Black Cottonwood) Torr. & A. Gray. ex Hook. Overexpression of PtrVCS2 (OE-PtrVCS2) in P. trichocarpa resulted in reduced growth, a higher proportion of smaller stem vessels, and strong drought-resistance phenotypes. Stomatal movement experiments revealed that the OE-PtrVCS2 transgenics showed lower stomata apertures than wild-type plants under drought conditions. RNA-seq analysis of the OE-PtrVCS2 transgenics showed that PtrVCS2 regulates the expression of multiple genes involved in regulation of stomatal opening and closing, particularly the PtrSULTR3;1-1 gene, and several genes related to cell wall biosynthesis, such as PtrFLA11-12 and PtrPR3-3. Moreover, we found that the water use efficiency of the OE-PtrVCS2 transgenic plants was consistently higher than that of wild type plants when subjected to chronic drought stress. Taken together, our results suggest that PtrVCS2 plays a positive role in improving drought adaptability and resistance in P. trichocarpa.
Collapse
Affiliation(s)
- Meng Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Hao Dong
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Jiyuan Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Xiufang Dai
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Jiaojiao Lin
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Shuang Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Chenguang Zhou
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Vincent L. Chiang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27695, USA
| | - Wei Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
- Correspondence:
| |
Collapse
|
18
|
Docherty EM, Gloor E, Sponchiado D, Gilpin M, Pinto CAD, Junior HM, Coughlin I, Ferreira L, Junior JAS, da Costa ACL, Meir P, Galbraith D. Long-term drought effects on the thermal sensitivity of Amazon forest trees. PLANT, CELL & ENVIRONMENT 2023; 46:185-198. [PMID: 36230004 PMCID: PMC10092618 DOI: 10.1111/pce.14465] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 10/07/2022] [Accepted: 10/09/2022] [Indexed: 06/16/2023]
Abstract
The continued functioning of tropical forests under climate change depends on their resilience to drought and heat. However, there is little understanding of how tropical forests will respond to combinations of these stresses, and no field studies to date have explicitly evaluated whether sustained drought alters sensitivity to temperature. We measured the temperature response of net photosynthesis, foliar respiration and the maximum quantum efficiency of photosystem II (Fv /Fm ) of eight hyper-dominant Amazonian tree species at the world's longest-running tropical forest drought experiment, to investigate the effect of drought on forest thermal sensitivity. Despite a 0.6°C-2°C increase in canopy air temperatures following long-term drought, no change in overall thermal sensitivity of net photosynthesis or respiration was observed. However, photosystem II tolerance to extreme-heat damage (T50 ) was reduced from 50.0 ± 0.3°C to 48.5 ± 0.3°C under drought. Our results suggest that long-term reductions in precipitation, as projected across much of Amazonia by climate models, are unlikely to greatly alter the response of tropical forests to rising mean temperatures but may increase the risk of leaf thermal damage during heatwaves.
Collapse
Affiliation(s)
- Emma M. Docherty
- Department of Earth and Environment, School of GeographyUniversity of LeedsLeedsUK
| | - Emanuel Gloor
- Department of Earth and Environment, School of GeographyUniversity of LeedsLeedsUK
| | - Daniela Sponchiado
- Departamento de Ciências Biológicas, Laboratório de Ecologia VegetalUniversidade do Estado de Mato GrossoNova XavantinaMato GrossoBrasil
| | - Martin Gilpin
- Department of Earth and Environment, School of GeographyUniversity of LeedsLeedsUK
| | | | | | - Ingrid Coughlin
- Departamento de Biologia, FFCLRPUniversidade de São PauloRibeirao PretoSão PauloBrasil
- College of Science, Research School of BiologyAustralian National UniversityCanberraAustralian Capital TerritorAustralia
| | | | | | - Antonio C. L. da Costa
- Instituto de GeosciênciasUniversidade Federaldo ParáBelémParáBrasil
- Museu Paraense Emílio GoeldiBelémParáBrasil
| | - Patrick Meir
- College of Science, Research School of BiologyAustralian National UniversityCanberraAustralian Capital TerritorAustralia
- College of Science and Engineering, School of GeoSciencesUniversity of EdinburghEdinburghUK
| | - David Galbraith
- Department of Earth and Environment, School of GeographyUniversity of LeedsLeedsUK
| |
Collapse
|
19
|
Losso A, Challis A, Gauthey A, Nolan RH, Hislop S, Roff A, Boer MM, Jiang M, Medlyn BE, Choat B. Canopy dieback and recovery in Australian native forests following extreme drought. Sci Rep 2022; 12:21608. [PMID: 36517498 PMCID: PMC9751299 DOI: 10.1038/s41598-022-24833-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 11/21/2022] [Indexed: 12/15/2022] Open
Abstract
In 2019, south-eastern Australia experienced its driest and hottest year on record, resulting in massive canopy dieback events in eucalypt dominated forests. A subsequent period of high precipitation in 2020 provided a rare opportunity to quantify the impacts of extreme drought and consequent recovery. We quantified canopy health and hydraulic impairment (native percent loss of hydraulic conductivity, PLC) of 18 native tree species growing at 15 sites that were heavily impacted by the drought both during and 8-10 months after the drought. Most species exhibited high PLC during drought (PLC:65.1 ± 3.3%), with no clear patterns across sites or species. Heavily impaired trees (PLC > 70%) showed extensive canopy browning. In the post-drought period, most surviving trees exhibited hydraulic recovery (PLC:26.1 ± 5.1%), although PLC remained high in some trees (50-70%). Regained hydraulic function (PLC < 50%) corresponded to decreased canopy browning indicating improved tree health. Similar drought (37.1 ± 4.2%) and post-drought (35.1 ± 4.4%) percentages of basal area with dead canopy suggested that trees with severely compromised canopies immediately after drought were not able to recover. This dataset provides insights into the impacts of severe natural drought on the health of mature trees, where hydraulic failure is a major contributor in canopy dieback and tree mortality during extreme drought events.
Collapse
Affiliation(s)
- Adriano Losso
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia.
- Department of Botany, University of Innsbruck, Sternwartestraße 15, 6020, Innsbruck, Austria.
| | - Anthea Challis
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Alice Gauthey
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
- Plant Ecology Research Laboratory PERL, Ecole Polytechnique Fédérale de Lausanne EPFL, 1015, Lausanne, Switzerland
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, 8903, Birmensdorf, Switzerland
| | - Rachael H Nolan
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
- NSW Bushfire Risk Management Research Hub, Wollongong, NSW, Australia
| | - Samuel Hislop
- Forest Science, NSW Department of Primary Industries, Parramatta, NSW, 2150, Australia
| | - Adam Roff
- Department of Planning, Industry and Environment, Remote Sensing and Landscape Science, 26 Honeysuckle Drive, Newcastle, NSW, 2302, Australia
| | - Matthias M Boer
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
- NSW Bushfire Risk Management Research Hub, Wollongong, NSW, Australia
| | - Mingkai Jiang
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
- College of Life Sciences, Zhejiang University, 866 Yuhangtang Rd, Hangzhou, Zhejiang, China
| | - Belinda E Medlyn
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Brendan Choat
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia.
| |
Collapse
|
20
|
Haberstroh S, Werner C, Grün M, Kreuzwieser J, Seifert T, Schindler D, Christen A. Central European 2018 hot drought shifts scots pine forest to its tipping point. PLANT BIOLOGY (STUTTGART, GERMANY) 2022; 24:1186-1197. [PMID: 35869655 DOI: 10.1111/plb.13455] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
The occurrence of hot drought, i.e. low water availability and simultaneous high air temperature, represents a severe threat to ecosystems. Here, we investigated how the 2018 hot drought in Central Europe caused a tipping point in tree and ecosystem functioning in a Scots pine (Pinus sylvestris L.) forest in southwest Germany. Measurements of stress indicators, such as needle water potential, carbon assimilation and volatile organic compound (VOC) emissions, of dominant P. sylvestris trees were deployed to evaluate tree functioning during hot drought. Ecosystem impact and recovery were assessed as ecosystem carbon exchange, normalized difference vegetation index (NDVI) from satellite data and tree mortality data. During summer 2018, needle water potentials of trees dropped to minimum values of -7.5 ± 0.2 MPa, which implied severe hydraulic impairment of P. sylvestris. Likewise, carbon assimilation and VOC emissions strongly declined after mid-July. Decreasing NDVI values from August 2018 onwards were detected, along with severe defoliation in P. sylvestris, impairing ecosystem carbon flux recovery in 2019, shifting the forest into a year-round carbon source. A total of 47% of all monitored trees (n = 368) died by September 2020. NDVI recovered to pre-2018 levels in 2019, likely caused by emerging broadleaved understorey species. The 2018 hot drought had severe negative impacts on P. sylvestris. The co-occurrence of unfavourable site-specific conditions with recurrent severe droughts resulted in accelerated mortality. Thus, the 2018 hot drought pushed the P. sylvestris stand towards its tipping point, with a subsequent vegetation shift to a broadleaf-dominated forest.
Collapse
Affiliation(s)
- S Haberstroh
- Ecosystem Physiology, Faculty of Environment and Natural Resources, University Freiburg, Freiburg, Germany
| | - C Werner
- Ecosystem Physiology, Faculty of Environment and Natural Resources, University Freiburg, Freiburg, Germany
| | - M Grün
- Ecosystem Physiology, Faculty of Environment and Natural Resources, University Freiburg, Freiburg, Germany
| | - J Kreuzwieser
- Ecosystem Physiology, Faculty of Environment and Natural Resources, University Freiburg, Freiburg, Germany
| | - T Seifert
- Forest Growth and Dendroecology, Faculty of Environment and Natural Resources, University Freiburg, Freiburg, Germany
- Department of Forest and Wood Science, Stellenbosch University, Matieland, South Africa
| | - D Schindler
- Environmental Meteorology, Faculty of Environment and Natural Resources, University Freiburg, Freiburg, Germany
| | - A Christen
- Environmental Meteorology, Faculty of Environment and Natural Resources, University Freiburg, Freiburg, Germany
| |
Collapse
|
21
|
Zlobin IE, Kartashov AV, Ivanov YV, Ivanova AI, Kuznetsov VV. Stem notching decreases stem hydraulic conductance but does not influence drought impacts and post-drought recovery in Scots pine and Norway spruce. PHYSIOLOGIA PLANTARUM 2022; 174:e13813. [PMID: 36326172 DOI: 10.1111/ppl.13813] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
The tight connection between the deterioration of xylem function and plant mortality under drought is well recognized. However, a lack of mechanistic understanding of how substantial conductivity loss influences plant performance under drought and during post-drought recovery hinders our ability to model tree responses to drought stress. We artificially induced a loss of 50% of xylem conducting area in Scots pine and Norway spruce saplings by stem notching and investigated plant performance under drought and during post-drought recovery. Plant mortality, xylem hydraulic conductivity, leaf water status and stomatal conductance were measured. We observed no preferential mortality of top plant parts (above the notches) compared to basal plant parts (below the notches), and no consistent trend in hydraulic conductivity loss was observed between top and basal parts of dying plants. Stem hydraulic conductivity, water status of the needles and stomatal conductance changed similarly between the top and basal parts during drought and post-drought recovery, which indicated the substantial hydraulic overcapacity of the stems. The recovery of stomatal conductance demonstrated prominent hysteresis due to non-hydraulic stomatal limitations. The results obtained are highly important for modelling the influence of plant hydraulic impairment on plant performance under drought and during post-drought recovery.
Collapse
Affiliation(s)
- Ilya E Zlobin
- K.A. Timiryazev Institute of Plant Physiology RAS, Moscow, Russia
| | | | - Yury V Ivanov
- K.A. Timiryazev Institute of Plant Physiology RAS, Moscow, Russia
| | | | | |
Collapse
|
22
|
Pritzkow C, Brown MJM, Carins-Murphy MR, Bourbia I, Mitchell PJ, Brodersen C, Choat B, Brodribb TJ. Conduit position and connectivity affect the likelihood of xylem embolism during natural drought in evergreen woodland species. ANNALS OF BOTANY 2022; 130:431-444. [PMID: 35420657 PMCID: PMC9486930 DOI: 10.1093/aob/mcac053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 04/11/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND AND AIMS Hydraulic failure is considered a main cause of drought-induced forest mortality. Yet, we have a limited understanding of how the varying intensities and long time scales of natural droughts induce and propagate embolism within the xylem. METHODS X-ray computed tomography (microCT) images were obtained from different aged branch xylem to study the number, size and spatial distribution of in situ embolized conduits among three dominant tree species growing in a woodland community. KEY RESULTS Among the three studied tree species, those with a higher xylem vulnerability to embolism (higher water potential at 50 % loss of hydraulic conductance; P50) were more embolized than species with lower P50. Within individual stems, the probability of embolism was independent of conduit diameter but associated with conduit position. Rather than the occurrence of random or radial embolism, we observed circumferential clustering of high and low embolism density, suggesting that embolism spreads preferentially among conduits of the same age. Older xylem also appeared more likely to accumulate embolisms than young xylem, but there was no pattern suggesting that branch tips were more vulnerable to cavitation than basal regions. CONCLUSIONS The spatial analysis of embolism occurrence in field-grown trees suggests that embolism under natural drought probably propagates by air spreading from embolized into neighbouring conduits in a circumferential pattern. This pattern offers the possibility to understand the temporal aspects of embolism occurrence by examining stem cross-sections.
Collapse
Affiliation(s)
- Carola Pritzkow
- School of Biology, University of Tasmania, Hobart, TAS, 7005, Australia
| | - Matilda J M Brown
- School of Biology, University of Tasmania, Hobart, TAS, 7005, Australia
| | | | - Ibrahim Bourbia
- School of Biology, University of Tasmania, Hobart, TAS, 7005, Australia
| | | | - Craig Brodersen
- School of the Environment, Yale University, New Haven, CT 06511, USA
| | - Brendan Choat
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW 2750, Australia
| | | |
Collapse
|
23
|
Sorek Y, Greenstein S, Hochberg U. Seasonal adjustment of leaf embolism resistance and its importance for hydraulic safety in deciduous trees. PHYSIOLOGIA PLANTARUM 2022; 174:e13785. [PMID: 36151946 PMCID: PMC9828144 DOI: 10.1111/ppl.13785] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/27/2022] [Accepted: 09/15/2022] [Indexed: 05/20/2023]
Abstract
Embolism resistance is often viewed as seasonally stable. Here we examined the seasonality in the leaf xylem vulnerability curve (VC) and turgor loss point (ΨTLP ) of nine deciduous species that originated from Mediterranean, temperate, tropical, or sub-tropical habitats and were growing on the Volcani campus, Israel. All four Mediterranean/temperate species exhibited a shift of their VC to lower xylem pressures (Ψx ) along the dry season, in addition to two of the five tropical/sub-tropical species. In three of the species that exhibited VC seasonality, it was critical for avoiding embolism in the leaf. In total, seven out of the nine species avoided embolism. The seasonal VC adjustment was over two times higher as compared with the seasonal adjustment of ΨTLP , resulting in improved hydraulic safety as the season progressed. The results suggest that seasonality in the leaf xylem vulnerability is common in species that originate from Mediterranean or temperate habitats that have large seasonal environmental changes. This seasonality is advantageous because it enables a gradual seasonal reduction in the Ψx without increasing the danger of embolism. The results also highlight that measuring the minimal Ψx and the VC at different times can lead to erroneous estimations of the hydraulic safety margins. Changing the current hydraulic dogma into a seasonal dynamic in the vulnerability of the xylem itself should enable physiologists to understand plants' responses to their environment better.
Collapse
Affiliation(s)
- Yonatan Sorek
- Institute of Soil, Water and Environmental Science, Volcani CenterAgricultural Research OrganizationRishon LeZionIsrael
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agriculture, Food and EnvironmentThe Hebrew University of JerusalemRehovotIsrael
| | - Smadar Greenstein
- Institute of Soil, Water and Environmental Science, Volcani CenterAgricultural Research OrganizationRishon LeZionIsrael
| | - Uri Hochberg
- Institute of Soil, Water and Environmental Science, Volcani CenterAgricultural Research OrganizationRishon LeZionIsrael
| |
Collapse
|
24
|
Rehschuh R, Ruehr NK. Diverging responses of water and carbon relations during and after heat and hot drought stress in Pinus sylvestris. TREE PHYSIOLOGY 2022; 42:1532-1548. [PMID: 34740258 PMCID: PMC9366868 DOI: 10.1093/treephys/tpab141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 10/22/2021] [Indexed: 06/13/2023]
Abstract
Forests are increasingly affected by heatwaves, often co-occurring with drought, with consequences for water and carbon (C) cycling. However, our ability to project tree resilience to more intense hot droughts remains limited. Here, we used single tree chambers (n = 18) to investigate transpiration (E), net assimilation (Anet), root respiration (Rroot) and stem diameter change in Scots pine seedlings in a control treatment and during gradually intensifying heat or drought-heat stress (max. 42 °C), including recovery. Alongside this, we assessed indicators of stress impacts and recovery capacities. In the heat treatment, excessive leaf heating was mitigated via increased E, while under drought-heat, E ceased and leaf temperatures reached 46 °C. However, leaf electrolyte leakage was negligible, while light-adapted quantum yield of photosystem II (F'v/F'm) declined alongside Anet moderately in heat, but strongly in drought-heat seedlings, in which respiration exceeded C uptake. Drought-heat largely affected the hydraulic system as apparent in stem diameter shrinkage, declining relative needle water content (RWCNeedle) and water potential (ΨNeedle) reaching -2.7 MPa, alongside a 90% decline of leaf hydraulic conductance (KLeaf). Heat alone resulted in low functional impairment and all measured parameters recovered quickly. Contrary, following drought-heat, the recovery of KLeaf was incomplete and stem hydraulic conductivity (KS) was 25% lower than the control. However, F'v/F'm recovered and the tree net C balance reached control values 2 days post-stress, with stem increment rates accelerating during the second recovery week. This indicates a new equilibrium of C uptake and release in drought-heat seedlings independent of hydraulic impairment, which may slowly contribute to the repair of damaged tissues. In summary, Scots pine recovered rapidly following moderate heat stress, while combined with drought, hydraulic and thermal stress intensified, resulting in functional damage and slow recovery of hydraulic conductance. This incomplete hydraulic recovery could critically limit evaporative cooling capacities and C uptake under repeated heatwaves.
Collapse
Affiliation(s)
| | - Nadine K Ruehr
- Karlsruhe Institute of Technology, Institute of Meteorology and Climate Research-Atmospheric Environmental Research (KIT/IMK-IFU), Kreuzeckbahnstraße 19, 82467 Garmisch-Partenkirchen, Germany
| |
Collapse
|
25
|
Wagner Y, Feng F, Yakir D, Klein T, Hochberg U. In situ, direct observation of seasonal embolism dynamics in Aleppo pine trees growing on the dry edge of their distribution. THE NEW PHYTOLOGIST 2022; 235:1344-1350. [PMID: 35514143 PMCID: PMC9541785 DOI: 10.1111/nph.18208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/30/2022] [Indexed: 06/14/2023]
Abstract
Xylem embolism impairs hydraulic conductivity in trees and drives drought-induced mortality. While embolism has been monitored in vivo in potted plants, and research has revealed evidence of embolism in field-grown trees, continuous in situ monitoring of cavitation in forests is lacking. Seasonal patterns of embolism were monitored in branchlets of Aleppo pine (Pinus halepensis) trees growing in a dry Mediterranean forest. Optical visualization (OV) sensors were installed on terminal branches, in addition to monthly sampling for micro computed tomography scans. We detected 208 cavitation events among four trees, which represented an embolism increase from zero to c. 12% along the dry season. Virtually all the cavitation events occurred during daytime hours, with 77% occurring between 10:00 and 17:00 h. The probability for cavitation in a given hour increased as vapor pressure deficit (VPD) increased, up to a probability of 42% for cavitation when VPD > 5 kPa. The findings uniquely reveal the instantaneous environmental conditions that lead to cavitation. The increased likelihood of cavitation events under high VPD in water-stressed pines is the first empirical support for this long hypothesized relationship. Our observations suggest that low levels of embolism are common in Aleppo pine trees at the dry edge of their distribution.
Collapse
Affiliation(s)
- Yael Wagner
- Plant & Environmental Sciences DepartmentWeizmann Institute of ScienceRehovot7610001Israel
| | - Feng Feng
- Institute of Soil, Water and Environmental SciencesVolcani CenterARORishon Lezion7505101Israel
| | - Dan Yakir
- Earth and Planetary Science DepartmentWeizmann Institute of ScienceRehovot7610001Israel
| | - Tamir Klein
- Plant & Environmental Sciences DepartmentWeizmann Institute of ScienceRehovot7610001Israel
| | - Uri Hochberg
- Institute of Soil, Water and Environmental SciencesVolcani CenterARORishon Lezion7505101Israel
| |
Collapse
|
26
|
Liu M, Zhao Y, Wang Y, Korpelainen H, Li C. Stem xylem traits and wood formation affect sex-specific responses to drought and rewatering in Populus cathayana. TREE PHYSIOLOGY 2022; 42:1350-1363. [PMID: 35137223 DOI: 10.1093/treephys/tpac011] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
The increased frequency and intensity of drought pose great threats to the survival of trees, especially in dioecious tree species with sexual differences in mortality and biased sex ratios. The sex-specific mechanisms underlying stem xylem anatomy and function and carbon metabolism in drought resistance and recovery were investigated in dioecious Populus cathayana Rehder. The sex-specific drought resistance and subsequent recovery were linked to the xylem anatomy and carbon metabolism. Females had a greater xylem vessel area per vessel, biomass and theoretically hydraulic efficiency under well-watered conditions. Conversely, males had a lower xylem lumen area, but greater vessel numbers, and a higher cell wall thickness, suggesting a theoretically conservative water-use strategy and drought resistance. The recovery of photosynthetic ability after drought in males was largely dependent on the recovery of xylem function and the regulation of the xylem carbohydrate metabolism. Additionally, the number of upregulated genes related to xylem cell wall biogenesis was greater in males relative to females under drought stress and subsequent rewatering, which facilitated drought resistance and xylem function restoration in males. These results suggested that sex-specific drought resistance and restoration were related to xylem anatomy and function, carbohydrate metabolism and cell turgor maintenance.
Collapse
Affiliation(s)
- Miao Liu
- College of Life and Environmental Sciences, Hangzhou Normal University, Yuhangtang Road 2318, Hangzhou 311121, China
| | - Yang Zhao
- College of Life and Environmental Sciences, Hangzhou Normal University, Yuhangtang Road 2318, Hangzhou 311121, China
| | - Yuting Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Yuhangtang Road 2318, Hangzhou 311121, China
| | - Helena Korpelainen
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, PO Box 27, Latokartanonkaari 5, Helsinki FI-00014, Finland
| | - Chunyang Li
- College of Agriculture and Biotechnology, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China
| |
Collapse
|
27
|
Hajek P, Link RM, Nock CA, Bauhus J, Gebauer T, Gessler A, Kovach K, Messier C, Paquette A, Saurer M, Scherer-Lorenzen M, Rose L, Schuldt B. Mutually inclusive mechanisms of drought-induced tree mortality. GLOBAL CHANGE BIOLOGY 2022; 28:3365-3378. [PMID: 35246895 DOI: 10.1111/gcb.16146] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
Unprecedented tree dieback across Central Europe caused by recent global change-type drought events highlights the need for a better mechanistic understanding of drought-induced tree mortality. Although numerous physiological risk factors have been identified, the importance of two principal mechanisms, hydraulic failure and carbon starvation, is still debated. It further remains largely unresolved how the local neighborhood composition affects individual mortality risk. We studied 9435 young trees of 12 temperate species planted in a diversity experiment in 2013 to assess how hydraulic traits, carbon dynamics, pest infestation, tree height and neighborhood competition influence individual mortality risk. Following the most extreme global change-type drought since record in 2018, one third of these trees died. Across species, hydraulic safety margins (HSMs) were negatively and a shift towards a higher sugar fraction in the non-structural carbohydrate (NSC) pool positively associated with mortality risk. Moreover, trees infested by bark beetles had a higher mortality risk, and taller trees a lower mortality risk. Most neighborhood interactions were beneficial, although neighborhood effects were highly species-specific. Species that suffered more from drought, especially Larix spp. and Betula spp., tended to increase the survival probability of their neighbors and vice versa. While severe tissue dehydration marks the final stage of drought-induced tree mortality, we show that hydraulic failure is interrelated with a series of other, mutually inclusive processes. These include shifts in NSC pools driven by osmotic adjustment and/or starch depletion as well as pest infestation and are modulated by the size and species identity of a tree and its neighbors. A more holistic view that accounts for multiple causes of drought-induced tree mortality is required to improve predictions of trends in global forest dynamics and to identify mutually beneficial species combinations.
Collapse
Affiliation(s)
- Peter Hajek
- Geobotany, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Roman M Link
- Chair of Ecophysiology and Vegetation Ecology, University of Würzburg, Julius-von-Sachs-Institute of Biological Sciences, Würzburg, Germany
| | - Charles A Nock
- Geobotany, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Department of Renewable Resources, University of Alberta, Edmonton, Alberta, Canada
| | - Jürgen Bauhus
- Chair of Silviculture, University of Freiburg, Freiburg, Germany
| | - Tobias Gebauer
- Geobotany, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Arthur Gessler
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research, Birmensdorf, Switzerland
- ETH Zurich, Institute of Terrestrial Ecosystems, Zurich, Switzerland
| | - Kyle Kovach
- Geobotany, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Christian Messier
- Center for Forest Research, Université du Québec à Montréal, Montréal, Quebec, Canada
- University of Quebec in Outaouais (UQO), Institut des Sciences de la Forêt Tempérée (ISFORT), Gatineau, Quebec, Canada
| | - Alain Paquette
- Center for Forest Research, Université du Québec à Montréal, Montréal, Quebec, Canada
| | - Matthias Saurer
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research, Birmensdorf, Switzerland
| | | | - Laura Rose
- Geobotany, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Bernhard Schuldt
- Chair of Ecophysiology and Vegetation Ecology, University of Würzburg, Julius-von-Sachs-Institute of Biological Sciences, Würzburg, Germany
| |
Collapse
|
28
|
Arend M, Link RM, Zahnd C, Hoch G, Schuldt B, Kahmen A. Lack of hydraulic recovery as a cause of post-drought foliage reduction and canopy decline in European beech. THE NEW PHYTOLOGIST 2022; 234:1195-1205. [PMID: 35238410 PMCID: PMC9310744 DOI: 10.1111/nph.18065] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/19/2022] [Indexed: 05/06/2023]
Abstract
European beech (Fagus sylvatica) was among the most affected tree species during the severe 2018 European drought. It not only suffered from instant physiological stress but also showed severe symptoms of defoliation and canopy decline in the following year. To explore the underlying mechanisms, we used the Swiss-Canopy-Crane II site and studied in branches of healthy and symptomatic trees the repair of hydraulic function and concentration of carbohydrates during the 2018 drought and in 2019. We found loss of hydraulic conductance in 2018, which did not recover in 2019 in trees that developed defoliation symptoms in the year after drought. Reduced branch foliation in symptomatic trees was associated with a gradual decline in wood starch concentration throughout summer 2019. Visualization of water transport in healthy and symptomatic branches in the year after the drought confirmed the close relationship between xylem functionality and supported branch leaf area. Our findings showed that embolized xylem does not regain function in the season following a drought and that sustained branch hydraulic dysfunction is counterbalanced by the reduction in supported leaf area. It suggests acclimation of leaf development after drought to mitigate disturbances in canopy hydraulic function.
Collapse
Affiliation(s)
- Matthias Arend
- Physiological Plant EcologyUniversity of Basel4056BaselSwitzerland
| | - Roman Mathias Link
- Ecophysiology and Vegetation EcologyUniversität Würzburg97082WürzburgGermany
| | - Cedric Zahnd
- Physiological Plant EcologyUniversity of Basel4056BaselSwitzerland
| | - Günter Hoch
- Physiological Plant EcologyUniversity of Basel4056BaselSwitzerland
| | - Bernhard Schuldt
- Ecophysiology and Vegetation EcologyUniversität Würzburg97082WürzburgGermany
| | - Ansgar Kahmen
- Physiological Plant EcologyUniversity of Basel4056BaselSwitzerland
| |
Collapse
|
29
|
Hajek P, Link RM, Nock CA, Bauhus J, Gebauer T, Gessler A, Kovach K, Messier C, Paquette A, Saurer M, Scherer-Lorenzen M, Rose L, Schuldt B. Mutually inclusive mechanisms of drought-induced tree mortality. GLOBAL CHANGE BIOLOGY 2022; 28:3365-3378. [PMID: 35246895 DOI: 10.1101/2020.12.17.423038] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/16/2021] [Indexed: 05/22/2023]
Abstract
Unprecedented tree dieback across Central Europe caused by recent global change-type drought events highlights the need for a better mechanistic understanding of drought-induced tree mortality. Although numerous physiological risk factors have been identified, the importance of two principal mechanisms, hydraulic failure and carbon starvation, is still debated. It further remains largely unresolved how the local neighborhood composition affects individual mortality risk. We studied 9435 young trees of 12 temperate species planted in a diversity experiment in 2013 to assess how hydraulic traits, carbon dynamics, pest infestation, tree height and neighborhood competition influence individual mortality risk. Following the most extreme global change-type drought since record in 2018, one third of these trees died. Across species, hydraulic safety margins (HSMs) were negatively and a shift towards a higher sugar fraction in the non-structural carbohydrate (NSC) pool positively associated with mortality risk. Moreover, trees infested by bark beetles had a higher mortality risk, and taller trees a lower mortality risk. Most neighborhood interactions were beneficial, although neighborhood effects were highly species-specific. Species that suffered more from drought, especially Larix spp. and Betula spp., tended to increase the survival probability of their neighbors and vice versa. While severe tissue dehydration marks the final stage of drought-induced tree mortality, we show that hydraulic failure is interrelated with a series of other, mutually inclusive processes. These include shifts in NSC pools driven by osmotic adjustment and/or starch depletion as well as pest infestation and are modulated by the size and species identity of a tree and its neighbors. A more holistic view that accounts for multiple causes of drought-induced tree mortality is required to improve predictions of trends in global forest dynamics and to identify mutually beneficial species combinations.
Collapse
Affiliation(s)
- Peter Hajek
- Geobotany, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Roman M Link
- Chair of Ecophysiology and Vegetation Ecology, University of Würzburg, Julius-von-Sachs-Institute of Biological Sciences, Würzburg, Germany
| | - Charles A Nock
- Geobotany, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Department of Renewable Resources, University of Alberta, Edmonton, Alberta, Canada
| | - Jürgen Bauhus
- Chair of Silviculture, University of Freiburg, Freiburg, Germany
| | - Tobias Gebauer
- Geobotany, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Arthur Gessler
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research, Birmensdorf, Switzerland
- ETH Zurich, Institute of Terrestrial Ecosystems, Zurich, Switzerland
| | - Kyle Kovach
- Geobotany, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Christian Messier
- Center for Forest Research, Université du Québec à Montréal, Montréal, Quebec, Canada
- University of Quebec in Outaouais (UQO), Institut des Sciences de la Forêt Tempérée (ISFORT), Gatineau, Quebec, Canada
| | - Alain Paquette
- Center for Forest Research, Université du Québec à Montréal, Montréal, Quebec, Canada
| | - Matthias Saurer
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research, Birmensdorf, Switzerland
| | | | - Laura Rose
- Geobotany, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Bernhard Schuldt
- Chair of Ecophysiology and Vegetation Ecology, University of Würzburg, Julius-von-Sachs-Institute of Biological Sciences, Würzburg, Germany
| |
Collapse
|
30
|
Duan CY, Li MY, Fang LD, Cao Y, Wu DD, Liu H, Ye Q, Hao GY. Greater hydraulic safety contributes to higher growth resilience to drought across seven pine species in a semi-arid environment. TREE PHYSIOLOGY 2022; 42:727-739. [PMID: 34718811 DOI: 10.1093/treephys/tpab137] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/07/2021] [Indexed: 06/13/2023]
Abstract
Quantifying inter-specific variations of tree resilience to drought and revealing the underlying mechanisms are of great importance to the understanding of forest functionality, particularly in water-limited regions. So far, comprehensive studies incorporating investigations in inter-specific variations of long-term growth patterns of trees and the underlying physiological mechanisms are very limited. Here, in a semi-arid site of northern China, tree radial growth rate, inter-annual tree-ring growth responses to climate variability, as well as physiological characteristics pertinent to xylem hydraulics, carbon assimilation and drought tolerance were analyzed in seven pine species growing in a common environment. Considerable inter-specific variations in radial growth rate, growth response to drought and physiological characteristics were observed among the studied species. Differently, the studied species exhibited similar degrees of resistance to drought-induced branch xylem embolism, with water potential corresponding to 50% loss hydraulic conductivity ranging from -2.31 to -2.96 MPa. We found that higher branch hydraulic efficiency is related to greater leaf photosynthetic capacity, smaller hydraulic safety margin and lower woody density (P < 0.05, linear regressions), but not related to higher tree radial growth rate (P > 0.05). Rather, species with higher hydraulic conductivity and photosynthetic capacity were more sensitive to drought stress and tended to show weaker growth resistance to extreme drought events as quantified by tree-ring analyses, which is at least partially due to a trade-off between hydraulic efficiency and safety across species. This study thus demonstrates the importance of drought resilience rather than instantaneous water and carbon flux capacity in determining tree growth in water-limited environments.
Collapse
Affiliation(s)
- Chun-Yang Duan
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, Liaoning, China
- Daqinggou Ecological Research Station, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, Liaoning, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ming-Yong Li
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, Liaoning, China
- Daqinggou Ecological Research Station, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, Liaoning, China
| | - Li-Dong Fang
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, Liaoning, China
- Daqinggou Ecological Research Station, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, Liaoning, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Cao
- Institute of Sand Land Control and Utilization, Fuxin 123000, Liaoning, China
| | - De-Dong Wu
- Institute of Sand Land Control and Utilization, Fuxin 123000, Liaoning, China
| | - Hui Liu
- CAS Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, Guangdong, China
| | - Qing Ye
- CAS Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, Guangdong, China
| | - Guang-You Hao
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, Liaoning, China
- Daqinggou Ecological Research Station, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, Liaoning, China
| |
Collapse
|
31
|
Gauthey A, Peters JMR, Lòpez R, Carins-Murphy MR, Rodriguez-Dominguez CM, Tissue DT, Medlyn BE, Brodribb TJ, Choat B. Mechanisms of xylem hydraulic recovery after drought in Eucalyptus saligna. PLANT, CELL & ENVIRONMENT 2022; 45:1216-1228. [PMID: 35119114 DOI: 10.1111/pce.14265] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 12/06/2021] [Accepted: 12/08/2021] [Indexed: 06/14/2023]
Abstract
The mechanisms by which woody plants recover xylem hydraulic capacity after drought stress are not well understood, particularly with regard to the role of embolism refilling. We evaluated the recovery of xylem hydraulic capacity in young Eucalyptus saligna plants exposed to cycles of drought stress and rewatering. Plants were exposed to moderate and severe drought stress treatments, with recovery monitored at time intervals from 24 h to 6 months after rewatering. The percentage loss of xylem vessels due to embolism (PLV) was quantified at each time point using microcomputed tomography with stem water potential (Ψx ) and canopy transpiration (Ec ) measured before scans. Plants exposed to severe drought stress suffered high levels of embolism (47.38% ± 10.97% PLV) and almost complete canopy loss. No evidence of embolism refilling was observed at 24 h, 1 week, or 3 weeks after rewatering despite rapid recovery in Ψx . Recovery of hydraulic capacity was achieved over a 6-month period by growth of new xylem tissue, with canopy leaf area and Ec recovering over the same period. These findings indicate that E. saligna recovers slowly from severe drought stress, with potential for embolism to persist in the xylem for many months after rainfall events.
Collapse
Affiliation(s)
- Alice Gauthey
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, New South Wales, Australia
| | - Jennifer M R Peters
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, New South Wales, Australia
- Environmental Sciences Division, Oak Ridge National Laboratory, Climate Change Science Institute, Oak Ridge, Tennessee, USA
| | - Rosana Lòpez
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, New South Wales, Australia
- Departamento de Sistemas y Recursos Naturales, Universidad Politécnica de Madrid, Madrid, Spain
| | | | - Celia M Rodriguez-Dominguez
- Irrigation and Crop Ecophysiology Group, Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS, CSIC), Sevilla, Spain
- Laboratory of Plant Molecular Ecophysiology, Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS, CSIC), Sevilla, Spain
| | - David T Tissue
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, New South Wales, Australia
- Global Centre for Land Based Innovation, Western Syndey University, Richmond, New South Wales, Australia
| | - Belinda E Medlyn
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, New South Wales, Australia
| | - Tim J Brodribb
- School of Biological Sciences, University of Tasmania, Hobart, Tasmania, Australia
| | - Brendan Choat
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, New South Wales, Australia
| |
Collapse
|
32
|
Manzi OJL, Bellifa M, Ziegler C, Mihle L, Levionnois S, Burban B, Leroy C, Coste S, Stahl C. Drought stress recovery of hydraulic and photochemical processes in Neotropical tree saplings. TREE PHYSIOLOGY 2022; 42:114-129. [PMID: 34302178 DOI: 10.1093/treephys/tpab092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 07/16/2021] [Indexed: 06/13/2023]
Abstract
Climate models predict an increase in the severity and the frequency of droughts. Tropical forests are among the ecosystems that could be highly impacted by these droughts. Here, we explore how hydraulic and photochemical processes respond to drought stress and re-watering. We conducted a pot experiment on saplings of five tree species. Before the onset of drought, we measured a set of hydraulic traits, including minimum leaf conductance, leaf embolism resistance and turgor loss point. During drought stress, we monitored traits linked to leaf hydraulic functioning (leaf water potential (ψmd) and stomatal conductance (gs)) and traits linked to leaf photochemical functioning (maximum quantum yield of photosystem II (Fv/Fm) and maximum electron transport rate (ETRmax)) at different wilting stages. After re-watering, the same traits were measured after 3, 7 and 14 days. Hydraulic trait values decreased faster than photochemical trait values. After re-watering, the values of the four traits recovered at different rates. Fv/Fm recovered very fast close to their initial values only 3 days after re-watering. This was followed by ETRmax, Ψmd and gs. Finally, we show that species with large stomatal and leaf safety margin and low πtlp are not strongly impacted by drought, whereas they have a low recovery on photochemical efficiency. These results demonstrate that πtlp, stomatal and leaf safety margin are a good indicators of plant responses to drought stress and also to recovery for photochemical efficiency.
Collapse
Affiliation(s)
- Olivier Jean Leonce Manzi
- UMR EcoFoG, CNRS, CIRAD, INRAE, AgroParisTech, Université des Antilles, Université de Guyane, 97310 Kourou, France
- Integrated Polytechnic Regional College-Kitabi, Rwanda Polytechnic, PO Box 330, Huye, Rwanda
- Department of Biological and Environmental Sciences, University of Gothenburg, PO Box 461, SE-40530 Gothenburg, Sweden
| | - Maxime Bellifa
- UMR EcoFoG, CNRS, CIRAD, INRAE, AgroParisTech, Université des Antilles, Université de Guyane, 97310 Kourou, France
| | - Camille Ziegler
- UMR EcoFoG, CNRS, CIRAD, INRAE, AgroParisTech, Université des Antilles, Université de Guyane, 97310 Kourou, France
- Université de Lorraine, AgroParisTech, INRAE, UMR Silva, 54000 Nancy, France
| | - Louis Mihle
- UMR EcoFoG, CNRS, CIRAD, INRAE, AgroParisTech, Université des Antilles, Université de Guyane, 97310 Kourou, France
| | - Sébastien Levionnois
- UMR EcoFoG, CNRS, CIRAD, INRAE, AgroParisTech, Université des Antilles, Université de Guyane, 97310 Kourou, France
- AMAP, Univ Montpellier, CIRAD, CNRS, INRAE, IRD, 34000 Montpellier, France
| | - Benoit Burban
- UMR EcoFoG, CNRS, CIRAD, INRAE, AgroParisTech, Université des Antilles, Université de Guyane, 97310 Kourou, France
| | - Céline Leroy
- UMR EcoFoG, CNRS, CIRAD, INRAE, AgroParisTech, Université des Antilles, Université de Guyane, 97310 Kourou, France
- AMAP, Univ Montpellier, CIRAD, CNRS, INRAE, IRD, 34000 Montpellier, France
| | - Sabrina Coste
- UMR EcoFoG, CNRS, CIRAD, INRAE, AgroParisTech, Université des Antilles, Université de Guyane, 97310 Kourou, France
| | - Clément Stahl
- UMR EcoFoG, CNRS, CIRAD, INRAE, AgroParisTech, Université des Antilles, Université de Guyane, 97310 Kourou, France
| |
Collapse
|
33
|
Rehschuh R, Rehschuh S, Gast A, Jakab AL, Lehmann MM, Saurer M, Gessler A, Ruehr NK. Tree allocation dynamics beyond heat and hot drought stress reveal changes in carbon storage, belowground translocation and growth. THE NEW PHYTOLOGIST 2022; 233:687-704. [PMID: 34668198 DOI: 10.1111/nph.17815] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 10/12/2021] [Indexed: 06/13/2023]
Abstract
Heatwaves combined with drought affect tree functioning with as yet undetermined legacy effects on carbon (C) and nitrogen (N) allocation. We continuously monitored shoot and root gas exchange, δ13 CO2 of respiration and stem growth in well-watered and drought-treated Pinus sylvestris (Scots pine) seedlings exposed to increasing daytime temperatures (max. 42°C) and evaporative demand. Following stress release, we used 13 CO2 canopy pulse-labeling, supplemented by soil-applied 15 N, to determine allocation to plant compartments, respiration and soil microbial biomass (SMB) over 2.5 wk. Previously heat-treated seedlings rapidly translocated 13 C along the long-distance transport path, to root respiration (Rroot ; 7.1 h) and SMB (3 d). Furthermore, 13 C accumulated in branch cellulose, suggesting secondary growth enhancement. However, in recovering drought-heat seedlings, the mean residence time of 13 C in needles increased, whereas C translocation to Rroot was delayed (13.8 h) and 13 C incorporated into starch rather than cellulose. Concurrently, we observed stress-induced low N uptake and aboveground allocation. C and N allocation during early recovery were affected by stress type and impact. Although C uptake increased quickly in both treatments, drought-heat in combination reduced the above-belowground coupling and starch accumulated in leaves at the expense of growth. Accordingly, C allocation during recovery depends on phloem translocation capacity.
Collapse
Affiliation(s)
- Romy Rehschuh
- Karlsruhe Institute of Technology (KIT), Institute of Meteorology and Climate Research - Atmospheric Environmental Research (IMK-IFU), Garmisch-Partenkirchen, 82467, Germany
| | - Stephanie Rehschuh
- Karlsruhe Institute of Technology (KIT), Institute of Meteorology and Climate Research - Atmospheric Environmental Research (IMK-IFU), Garmisch-Partenkirchen, 82467, Germany
| | - Andreas Gast
- Karlsruhe Institute of Technology (KIT), Institute of Meteorology and Climate Research - Atmospheric Environmental Research (IMK-IFU), Garmisch-Partenkirchen, 82467, Germany
| | - Andrea-Livia Jakab
- Karlsruhe Institute of Technology (KIT), Institute of Meteorology and Climate Research - Atmospheric Environmental Research (IMK-IFU), Garmisch-Partenkirchen, 82467, Germany
| | - Marco M Lehmann
- Swiss Federal Research Institute WSL, Research Unit Forest Dynamics, Birmensdorf, 8903, Switzerland
| | - Matthias Saurer
- Swiss Federal Research Institute WSL, Research Unit Forest Dynamics, Birmensdorf, 8903, Switzerland
| | - Arthur Gessler
- Swiss Federal Research Institute WSL, Research Unit Forest Dynamics, Birmensdorf, 8903, Switzerland
- Department of Environmental System Sciences, ETH Zurich, Zurich, 8092, Switzerland
| | - Nadine K Ruehr
- Karlsruhe Institute of Technology (KIT), Institute of Meteorology and Climate Research - Atmospheric Environmental Research (IMK-IFU), Garmisch-Partenkirchen, 82467, Germany
| |
Collapse
|
34
|
Dewar R, Hölttä T, Salmon Y. Exploring optimal stomatal control under alternative hypotheses for the regulation of plant sources and sinks. THE NEW PHYTOLOGIST 2022; 233:639-654. [PMID: 34637543 DOI: 10.1111/nph.17795] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 09/19/2021] [Indexed: 06/13/2023]
Abstract
Experimental evidence that nonstomatal limitations to photosynthesis (NSLs) correlate with leaf sugar and/or leaf water status suggests the possibility that stomata adjust to maximise photosynthesis through a trade-off between leaf CO2 supply and NSLs, potentially involving source-sink interactions. However, the mechanisms regulating NSLs and sink strength, as well as their implications for stomatal control, remain uncertain. We used an analytically solvable model to explore optimal stomatal control under alternative hypotheses for source and sink regulation. We assumed that either leaf sugar concentration or leaf water potential regulates NSLs, and that either phloem turgor pressure or phloem sugar concentration regulates sink phloem unloading. All hypotheses led to realistic stomatal responses to light, CO2 and air humidity, including conservative behaviour for the intercellular-to-atmospheric CO2 concentration ratio. Sugar-regulated and water-regulated NSLs are distinguished by the presence/absence of a stomatal closure response to changing sink strength. Turgor-regulated and sugar-regulated phloem unloading are distinguished by the presence/absence of stomatal closure under drought and avoidance/occurrence of negative phloem turgor. Results from girdling and drought experiments on Pinus sylvestris, Betula pendula, Populus tremula and Picea abies saplings are consistent with optimal stomatal control under sugar-regulated NSLs and turgor-regulated unloading. Our analytical results provide a simple representation of stomatal responses to above-ground and below-ground environmental factors and sink activity.
Collapse
Affiliation(s)
- Roderick Dewar
- Faculty of Science, Institute for Atmospheric and Earth System Research/Physics, University of Helsinki, PO Box 68, Gustaf Hällströmin katu 2b, Helsinki, 00014, Finland
- Plant Sciences Division, Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Teemu Hölttä
- Faculty of Agriculture and Forestry, Institute for Atmospheric and Earth System Research/Forest Sciences, University of Helsinki, PO Box 27, Latokartanonkaari 7, Helsinki, 00014, Finland
| | - Yann Salmon
- Faculty of Science, Institute for Atmospheric and Earth System Research/Physics, University of Helsinki, PO Box 68, Gustaf Hällströmin katu 2b, Helsinki, 00014, Finland
- Faculty of Agriculture and Forestry, Institute for Atmospheric and Earth System Research/Forest Sciences, University of Helsinki, PO Box 27, Latokartanonkaari 7, Helsinki, 00014, Finland
| |
Collapse
|
35
|
Pervaiz T, Liu SW, Uddin S, Amjid MW, Niu SH, Wu HX. The Transcriptional Landscape and Hub Genes Associated with Physiological Responses to Drought Stress in Pinus tabuliformis. Int J Mol Sci 2021; 22:9604. [PMID: 34502511 PMCID: PMC8431770 DOI: 10.3390/ijms22179604] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 08/11/2021] [Accepted: 09/01/2021] [Indexed: 01/18/2023] Open
Abstract
Drought stress has an extensive impact on regulating various physiological, metabolic, and molecular responses. In the present study, the Pinus tabuliformis transcriptome was studied to evaluate the drought-responsive genes using RNA- Sequencing approache. The results depicted that photosynthetic rate and H2O conductance started to decline under drought but recovered 24 h after re-watering; however, the intercellular CO2 concentration (Ci) increased with the onset of drought. We identified 84 drought-responsive transcription factors, 62 protein kinases, 17 transcriptional regulators, and 10 network hub genes. Additionally, we observed the expression patterns of several important gene families, including 2192 genes positively expressed in all 48 samples, and 40 genes were commonly co-expressed in all drought and recovery stages compared with the control samples. The drought-responsive transcriptome was conserved mainly between P. tabuliformis and A. thaliana, as 70% (6163) genes had a homologous in arabidopsis, out of which 52% homologous (3178 genes corresponding to 2086 genes in Arabidopsis) were also drought response genes in arabidopsis. The collaborative network exhibited 10 core hub genes integrating with ABA-dependent and independent pathways closely conserved with the ABA signaling pathway in the transcription factors module. PtNCED3 from the ABA family genes had shown significantly different expression patterns under control, mild, prolonged drought, and recovery stages. We found the expression pattern was considerably increased with the prolonged drought condition. PtNCED3 highly expressed in all drought-tested samples; more interestingly, expression pattern was higher under mild and prolonged drought. PtNCED3 is reported as one of the important regulating enzymes in ABA synthesis. The continuous accumulation of ABA in leaves increased resistance against drought was due to accumulation of PtNCED3 under drought stress in the pine needles.
Collapse
Affiliation(s)
- Tariq Pervaiz
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (T.P.); (S.-W.L.); (S.U.)
| | - Shuang-Wei Liu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (T.P.); (S.-W.L.); (S.U.)
| | - Saleem Uddin
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (T.P.); (S.-W.L.); (S.U.)
| | - Muhammad Waqas Amjid
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education), Nanjing Agricultural University, Nanjing 210095, China;
| | - Shi-Hui Niu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (T.P.); (S.-W.L.); (S.U.)
| | - Harry X. Wu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (T.P.); (S.-W.L.); (S.U.)
- Umea Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Linnaeus vag 6, SE-901 83 Umea, Sweden
- CSIRO National Research Collection Australia, Black Mountain Laboratory, Canberra, ACT 2601, Australia
| |
Collapse
|
36
|
Bourbia I, Pritzkow C, Brodribb TJ. Herb and conifer roots show similar high sensitivity to water deficit. PLANT PHYSIOLOGY 2021; 186:1908-1918. [PMID: 34618104 PMCID: PMC8331161 DOI: 10.1093/plphys/kiab207] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 04/24/2021] [Indexed: 05/11/2023]
Abstract
Root systems play a major role in supplying the canopy with water, enabling photosynthesis and growth. Yet, much of the dynamic response of root hydraulics and its influence on gas exchange during soil drying and recovery remains uncertain. We examined the decline and recovery of the whole root hydraulic conductance (Kr) and canopy diffusive conductance (gc) during exposure to moderate water stress in two species with contrasting root systems: Tanacetum cinerariifolium (herbaceous Asteraceae) and Callitris rhomboidea (woody conifer). Optical dendrometers were used to record stem water potential at high temporal resolution and enabled non-invasive measurements of Kr calculated from the rapid relaxation kinetics of water potential in hydrating roots. We observed parallel declines in Kr and gc to <20% of unstressed levels during the early stages of water stress in both species. The recovery of Kr after rewatering differed between species. T. cinerariifolium recovered quickly, with 60% of Kr recovered within 2 h, while C. rhomboidea was much slower to return to its original Kr. Recovery of gc followed a similar trend to Kr in both species, with C. rhomboidea slower to recover. Our findings suggest that the pronounced sensitivity of Kr to drought is a common feature among different plant species, but recovery may vary depending on root type and water stress severity. Kr dynamics are proposed to modulate gc response during and following drought.
Collapse
Affiliation(s)
- Ibrahim Bourbia
- School of Natural Sciences, University of Tasmania, Hobart, TAS 7001, Australia
| | - Carola Pritzkow
- School of Natural Sciences, University of Tasmania, Hobart, TAS 7001, Australia
| | - Timothy J Brodribb
- School of Natural Sciences, University of Tasmania, Hobart, TAS 7001, Australia
- Author for communication:
| |
Collapse
|
37
|
Hammond WM, Johnson DM, Meinzer FC. A thin line between life and death: Radial sap flux failure signals trajectory to tree mortality. PLANT, CELL & ENVIRONMENT 2021; 44:1311-1314. [PMID: 33600002 DOI: 10.1111/pce.14033] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/12/2021] [Accepted: 02/13/2021] [Indexed: 06/12/2023]
Abstract
This article comments on: Seeking the "point of no return" in the sequence of events leading to mortality of mature trees.
Collapse
Affiliation(s)
- William M Hammond
- Department of Plant Biology, Ecology, and Evolution, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Daniel M Johnson
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, Georgia, USA
| | | |
Collapse
|