1
|
Tran LH, Kim JG, Jung S. Expression of the Arabidopsis Mg-chelatase H subunit alleviates iron deficiency-induced stress in transgenic rice. FRONTIERS IN PLANT SCIENCE 2023; 14:1098808. [PMID: 36938029 PMCID: PMC10017980 DOI: 10.3389/fpls.2023.1098808] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 02/20/2023] [Indexed: 06/12/2023]
Abstract
The most common symptom of iron (Fe) deficiency in plants is leaf chlorosis caused by impairment of chlorophyll biosynthesis. Magnesium (Mg)-chelatase H subunit (CHLH) is a key component in both chlorophyll biosynthesis and plastid signaling, but its role in Fe deficiency is poorly understood. Heterologous expression of the Arabidopsis thaliana Mg-chelatase H subunit gene (AtCHLH) increased Mg-chelatase activity by up to 6-fold and abundance of its product, Mg-protoporphyrin IX (Mg-Proto IX), by 60-75% in transgenic rice (Oryza sativa) seedlings compared to wild-type (WT) controls. Noticeably, the transgenic seedlings showed alleviation of Fe deficiency symptoms, as evidenced by their less pronounced leaf chlorosis and lower declines in shoot growth, chlorophyll contents, and photosynthetic efficiency, as indicated by F v/F m and electron transport rate, compared to those in WT seedlings under Fe deficiency. Porphyrin metabolism was differentially regulated by Fe deficiency between WT and transgenic seedlings, particularly with a higher level of Mg-Proto IX in transgenic lines, showing that overexpression of AtCHLH reprograms porphyrin metabolism in transgenic rice. Leaves of Fe-deficient transgenic seedlings exhibited greater upregulation of deoxymugineic acid biosynthesis-related genes (i.e., NAS, NAS2, and NAAT1), YSL2 transporter gene, and Fe-related transcription factor genes IRO2 and IDEF2 than those of WT, which may also partly contribute to alleviating Fe deficiency. Although AtCHLH was postulated to act as a receptor for abscisic acid (ABA), exogenous ABA did not alter the phenotypes of Fe-deficient WT or transgenic seedlings. Our study demonstrates that modulation of porphyrin biosynthesis through expression of AtCHLH in transgenic rice alleviates Fe deficiency-induced stress, suggesting a possible role for CHLH in Fe deficiency responses.
Collapse
|
2
|
Nano-Iron and Nano-Zinc Induced Growth and Metabolic Changes in Vigna radiata. SUSTAINABILITY 2022. [DOI: 10.3390/su14148251] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The widespread industrial use and consequent release of nanosized iron (nFe3O4) and zinc oxide (nZnO) particles into the environment have raised concerns over their effects on living organisms, including plants. These nanoparticles are the source of their respective metal ions and although plants require both Fe and Zn ions for proper growth, excessive levels of these metals are toxic to them. A better understanding of the effects of these nanoparticles on plants also offers an opportunity for their useful applications in agriculture. The present work evaluates the changes in seed germination, plant growth, photosynthetic capacity, levels of biomolecules and antioxidant enzymes in Vigna radiata (L.) Wilczek when grown in the presence of nFe3O4 (size 1–4 nm) and nZnO (size 10–20 nm) and compared to the control plants. The plants were raised hydroponically for up to 14 days at two different concentrations of nanoparticles, viz. 10 and 100 mg/L. Inductively coupled plasma mass spectrometry (ICP-MS) results established that V. radiata can accumulate Fe and Zn in shoots with high efficiency. The results indicated that nFe3O4 had a favourable effect on V. radiata, whereas no apparent benefit or toxicity of nZnO was observed at the tested concentrations.
Collapse
|
3
|
Sági-Kazár M, Zelenyánszki H, Müller B, Cseh B, Gyuris B, Farkas SZ, Fodor F, Tóth B, Kovács B, Koncz A, Visnovitz T, Buzás EI, Bánkúti B, Bánáti F, Szenthe K, Solti Á. Supraoptimal Iron Nutrition of Brassica napus Plants Suppresses the Iron Uptake of Chloroplasts by Down-Regulating Chloroplast Ferric Chelate Reductase. FRONTIERS IN PLANT SCIENCE 2021; 12:658987. [PMID: 34093616 PMCID: PMC8172622 DOI: 10.3389/fpls.2021.658987] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/06/2021] [Indexed: 05/31/2023]
Abstract
Iron (Fe) is an essential micronutrient for plants. Due to the requirement for Fe of the photosynthetic apparatus, the majority of shoot Fe content is localised in the chloroplasts of mesophyll cells. The reduction-based mechanism has prime importance in the Fe uptake of chloroplasts operated by Ferric Reductase Oxidase 7 (FRO7) in the inner chloroplast envelope membrane. Orthologue of Arabidopsis thaliana FRO7 was identified in the Brassica napus genome. GFP-tagged construct of BnFRO7 showed integration to the chloroplast. The time-scale expression pattern of BnFRO7 was studied under three different conditions: deficient, optimal, and supraoptimal Fe nutrition in both leaves developed before and during the treatments. Although Fe deficiency has not increased BnFRO7 expression, the slight overload in the Fe nutrition of the plants induced significant alterations in both the pattern and extent of its expression leading to the transcript level suppression. The Fe uptake of isolated chloroplasts decreased under both Fe deficiency and supraoptimal Fe nutrition. Since the enzymatic characteristics of the ferric chelate reductase (FCR) activity of purified chloroplast inner envelope membranes showed a significant loss for the substrate affinity with an unchanged saturation rate, protein level regulation mechanisms are suggested to be also involved in the suppression of the reduction-based Fe uptake of chloroplasts together with the saturation of the requirement for Fe.
Collapse
Affiliation(s)
- Máté Sági-Kazár
- Department of Plant Physiology and Molecular Plant Biology, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Helga Zelenyánszki
- Department of Plant Physiology and Molecular Plant Biology, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Brigitta Müller
- Department of Plant Physiology and Molecular Plant Biology, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Barnabás Cseh
- Department of Plant Physiology and Molecular Plant Biology, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Balázs Gyuris
- Department of Plant Physiology and Molecular Plant Biology, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Sophie Z. Farkas
- Department of Plant Physiology and Molecular Plant Biology, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Ferenc Fodor
- Department of Plant Physiology and Molecular Plant Biology, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Brigitta Tóth
- Institute of Food Science, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Debrecen, Hungary
| | - Béla Kovács
- Institute of Food Science, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Debrecen, Hungary
| | - Anna Koncz
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Tamás Visnovitz
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Edit I. Buzás
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
- MTA-SE Immune-Proteogenomics Extracellular Vesicle Research Group, Budapest, Hungary
- HCEMM-SE Extracellular Vesicle Research Group, Budapest, Hungary
| | - Barbara Bánkúti
- RT-Europe Non-profit Research Ltd., Mosonmagyaróvár, Hungary
| | - Ferenc Bánáti
- RT-Europe Non-profit Research Ltd., Mosonmagyaróvár, Hungary
| | - Kálmán Szenthe
- Carlsbad Research Organization Center Ltd., Újrónafõ, Hungary
| | - Ádám Solti
- Department of Plant Physiology and Molecular Plant Biology, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| |
Collapse
|
4
|
Guo A, Hu Y, Shi M, Wang H, Wu Y, Wang Y. Effects of iron deficiency and exogenous sucrose on the intermediates of chlorophyll biosynthesis in Malus halliana. PLoS One 2020; 15:e0232694. [PMID: 32375166 PMCID: PMC7202898 DOI: 10.1371/journal.pone.0232694] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 04/19/2020] [Indexed: 12/04/2022] Open
Abstract
Malus halliana is an iron (Fe)-efficient apple rootstock growing in calcareous soil that shows obvious 'greenness' traits during Fe deficiency. Recent studies have shown that exogenous sugars can be involved in abiotic stress. To identify the key regulatory steps of chlorophyll (Chl) biosynthesis in M. halliana under Fe deficiency and to verify whether exogenous sucrose (Suc) is involved in Fe deficiency stress, we determined the contents of the Chl precursor and the expression of several Chl biosynthetic genes in M. halliana. The results showed that Fe deficiency caused a significant increase in the contents of protoporphyrin IX (Proto IX), Mg-protoporphyrin IX (Mg-Proto IX) and protochlorophyllide (Pchlide) in M. halliana compared to the Fe-sensitive rootstock Malus hupehensis. Quantitative real-time PCR (RT-qPCR) also showed that the expression of protoporphyrinogen oxidase (PPOX), which synthesizes Proto IX, was upregulated in M. halliana and downregulated in M. hupehensis under Fe deficiency. Exogenous Suc application prominently enhanced the contents of porphobilinogen (PBG) and the subsequent precursor, whereas it decreased the level of δ-aminolaevulinic acid (ALA), suggesting that the transformation from ALA to PBG was catalyzed in M. halliana. Additionally, the transcript level of δ-aminolevulinate acid dehydratase (ALAD) was noticeably upregulated after exogenous Suc treatment. This result, combined with the precursor contents, indicated that Suc accelerated the steps of Chl biosynthesis by modulating the ALAD gene. Therefore, we conclude that PPOX is the key regulatory gene of M. halliana in response to Fe deficiency. Exogenous Suc enhances M. halliana tolerance to Fe deficiency stress by regulating Chl biosynthesis.
Collapse
Affiliation(s)
- Aixia Guo
- College of Horticulture, Gansu Agricultural University, Lanzhou, Gansu, China
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Science, Lanzhou, Gansu, China
| | - Ya Hu
- College of Horticulture, Gansu Agricultural University, Lanzhou, Gansu, China
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Science, Lanzhou, Gansu, China
| | - Mingfu Shi
- College of Horticulture, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Hai Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Yuxia Wu
- College of Horticulture, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Yanxiu Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou, Gansu, China
| |
Collapse
|
5
|
Tsednee M, Castruita M, Salomé PA, Sharma A, Lewis BE, Schmollinger SR, Strenkert D, Holbrook K, Otegui MS, Khatua K, Das S, Datta A, Chen S, Ramon C, Ralle M, Weber PK, Stemmler TL, Pett-Ridge J, Hoffman BM, Merchant SS. Manganese co-localizes with calcium and phosphorus in Chlamydomonas acidocalcisomes and is mobilized in manganese-deficient conditions. J Biol Chem 2019; 294:17626-17641. [PMID: 31527081 DOI: 10.1074/jbc.ra119.009130] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 09/09/2019] [Indexed: 12/27/2022] Open
Abstract
Exposing cells to excess metal concentrations well beyond the cellular quota is a powerful tool for understanding the molecular mechanisms of metal homeostasis. Such improved understanding may enable bioengineering of organisms with improved nutrition and bioremediation capacity. We report here that Chlamydomonas reinhardtii can accumulate manganese (Mn) in proportion to extracellular supply, up to 30-fold greater than its typical quota and with remarkable tolerance. As visualized by X-ray fluorescence microscopy and nanoscale secondary ion MS (nanoSIMS), Mn largely co-localizes with phosphorus (P) and calcium (Ca), consistent with the Mn-accumulating site being an acidic vacuole, known as the acidocalcisome. Vacuolar Mn stores are accessible reserves that can be mobilized in Mn-deficient conditions to support algal growth. We noted that Mn accumulation depends on cellular polyphosphate (polyP) content, indicated by 1) a consistent failure of C. reinhardtii vtc1 mutant strains, which are deficient in polyphosphate synthesis, to accumulate Mn and 2) a drastic reduction of the Mn storage capacity in P-deficient cells. Rather surprisingly, X-ray absorption spectroscopy, EPR, and electron nuclear double resonance revealed that only little Mn2+ is stably complexed with polyP, indicating that polyP is not the final Mn ligand. We propose that polyPs are a critical component of Mn accumulation in Chlamydomonas by driving Mn relocation from the cytosol to acidocalcisomes. Within these structures, polyP may, in turn, escort vacuolar Mn to a number of storage ligands, including phosphate and phytate, and other, yet unidentified, compounds.
Collapse
Affiliation(s)
| | - Madeli Castruita
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095
| | - Patrice A Salomé
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095.,Institute for Genomics and Proteomics, UCLA, Los Angeles, California 90095
| | - Ajay Sharma
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208
| | - Brianne E Lewis
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, Michigan 48201
| | - Stefan R Schmollinger
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095.,Institute for Genomics and Proteomics, UCLA, Los Angeles, California 90095
| | - Daniela Strenkert
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095.,Institute for Genomics and Proteomics, UCLA, Los Angeles, California 90095
| | - Kristen Holbrook
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095
| | - Marisa S Otegui
- Departments of Botany and Genetics, University of Wisconsin, Madison, Wisconsin 53706
| | - Kaustav Khatua
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India
| | - Sayani Das
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India
| | - Ankona Datta
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India
| | - Si Chen
- Advanced Photon Source, Argonne National Laboratory, Lemont, Illinois 60439
| | - Christina Ramon
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550
| | - Martina Ralle
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, Oregon 97239
| | - Peter K Weber
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550
| | - Timothy L Stemmler
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, Michigan 48201
| | - Jennifer Pett-Ridge
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550
| | - Brian M Hoffman
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208
| | - Sabeeha S Merchant
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095 .,Institute for Genomics and Proteomics, UCLA, Los Angeles, California 90095
| |
Collapse
|
6
|
Müller B, Kovács K, Pham HD, Kavak Y, Pechoušek J, Machala L, Zbořil R, Szenthe K, Abadía J, Fodor F, Klencsár Z, Solti Á. Chloroplasts preferentially take up ferric-citrate over iron-nicotianamine complexes in Brassica napus. PLANTA 2019; 249:751-763. [PMID: 30382344 DOI: 10.1007/s00425-018-3037-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 10/26/2018] [Indexed: 05/22/2023]
Abstract
Fe uptake machinery of chloroplasts prefers to utilise Fe(III)-citrate over Fe-nicotianamine complexes. Iron uptake in chloroplasts is a process of prime importance. Although a few members of their iron transport machinery were identified, the substrate preference of the system is still unknown. Intact chloroplasts of oilseed rape (Brassica napus) were purified and subjected to iron uptake studies using natural and artificial iron complexes. Fe-nicotianamine (NA) complexes were characterised by 5 K, 5 T Mössbauer spectrometry. Expression of components of the chloroplast Fe uptake machinery was also studied. Fe(III)-NA contained a minor paramagnetic Fe(II) component (ca. 9%), a paramagnetic Fe(III) component exhibiting dimeric or oligomeric structure (ca. 20%), and a Fe(III) complex, likely being a monomeric structure, which undergoes slow electronic relaxation at 5 K (ca. 61%). Fe(II)-NA contained more than one similar chemical Fe(II) environment with no sign of Fe(III) components. Chloroplasts preferred Fe(III)-citrate compared to Fe(III)-NA and Fe(II)-NA, but also to Fe(III)-EDTA and Fe(III)-o,o'EDDHA, and the Km value was lower for Fe(III)-citrate than for the Fe-NA complexes. Only the uptake of Fe(III)-citrate was light-dependent. Regarding the components of the chloroplast Fe uptake system, only genes of the reduction-based Fe uptake system showed high expression. Chloroplasts more effectively utilize Fe(III)-citrate, but hardly Fe-NA complexes in Fe uptake.
Collapse
Affiliation(s)
- Brigitta Müller
- Department of Plant Physiology and Molecular Plant Biology, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, 1117, Budapest, Hungary
| | - Krisztina Kovács
- Laboratory of Nuclear Chemistry, Institute of Chemistry, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, 1117, Budapest, Hungary
| | - Hong-Diep Pham
- Department of Plant Physiology and Molecular Plant Biology, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, 1117, Budapest, Hungary
| | - Yusuf Kavak
- Department of Plant Physiology and Molecular Plant Biology, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, 1117, Budapest, Hungary
| | - Jiři Pechoušek
- Departments of Experimental Physics and Physical Chemistry, Faculty of Science, Regional Centre of Advanced Technologies and Materials, Palacký University, Šlechtitelů 27, 783 71, Olomouc, Czech Republic
| | - Libor Machala
- Departments of Experimental Physics and Physical Chemistry, Faculty of Science, Regional Centre of Advanced Technologies and Materials, Palacký University, Šlechtitelů 27, 783 71, Olomouc, Czech Republic
| | - Radek Zbořil
- Departments of Experimental Physics and Physical Chemistry, Faculty of Science, Regional Centre of Advanced Technologies and Materials, Palacký University, Šlechtitelů 27, 783 71, Olomouc, Czech Republic
| | - Kálmán Szenthe
- RT-Europe Nonprofit Research Ltd., Vár tér 2, E Building, Mosonmagyaróvár, 9200, Hungary
| | - Javier Abadía
- Department of Plant Nutrition, Aula Dei Experimental Station, Spanish Council for Scientific Research (CSIC), P.O. Box 13034, 50080, Saragossa, Spain
| | - Ferenc Fodor
- Department of Plant Physiology and Molecular Plant Biology, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, 1117, Budapest, Hungary
| | - Zoltán Klencsár
- Centre for Energy Research, Hungarian Academy of Sciences, Konkoly Thege Miklós út 29-33, Budapest, 1121, Hungary
| | - Ádám Solti
- Department of Plant Physiology and Molecular Plant Biology, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, 1117, Budapest, Hungary.
| |
Collapse
|
7
|
Relationship between Photosynthetic Capacity and Microcystin Production in Toxic Microcystis Aeruginosa under Different Iron Regimes. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15091954. [PMID: 30205471 PMCID: PMC6163392 DOI: 10.3390/ijerph15091954] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 08/25/2018] [Accepted: 09/05/2018] [Indexed: 11/17/2022]
Abstract
Blooms of harmful cyanobacteria have been observed in various water bodies across the world and some of them can produce intracellular toxins, such as microcystins (MCs), which negatively impact aquatic organisms and human health. Iron participates significantly in cyanobacterial photosynthesis and is proposed to be linked to MC production. Here, the cyanobacteria Microcystis aeruginosa was cultivated under different iron regimes to investigate the relationship between photosynthetic capacity and MC production. The results showed that iron addition increased cell density, cellular protein concentration and the Chl-a (chlorophyll-a) content. Similarly, it can also up⁻regulate photosynthetic capacity and promote MC⁻leucine⁻arginine (MC⁻LR) production, but not in a dose⁻dependent manner. Moreover, a significant positive correlation between photosynthetic capacity and MC production was observed, and electron transport parameters were the most important parameters contributing to the variation of intracellular MC⁻LR concentration revealed by Generalized Additive Model analysis. As the electron transport chain was affected by iron variation, adenosine triphosphate production was inhibited, leading to the alteration of MC synthetase gene expression. Therefore, it is demonstrated that MC production greatly relies on redox status and energy metabolism of photosynthesis in M. aeruginosa. In consequence, more attention should be paid to the involvement of photosynthesis in the regulation of MC production by iron variation in the future.
Collapse
|
8
|
Li ZK, Dai GZ, Juneau P, Qiu BS. Capsular polysaccharides facilitate enhanced iron acquisition by the colonial cyanobacterium Microcystis sp. isolated from a freshwater lake. JOURNAL OF PHYCOLOGY 2016; 52:105-115. [PMID: 26987092 DOI: 10.1111/jpy.12372] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 10/29/2015] [Indexed: 06/05/2023]
Abstract
Microcystis sp., especially in its colonial form, is a common dominant species during cyanobacterial blooms in many iron-deficient water bodies. It is still not entirely clear, however, how the colonial forms of Microcystis acclimate to iron-deficient habitats, and the responses of unicellular and colonial forms to iron-replete and iron-deficient conditions were examined here. Growth rates and levels of photosynthetic pigments declined to a greater extent in cultures of unicellular Microcystis than in cultures of the colonial form in response to decreasing iron concentrations, resulting in the impaired photosynthetic performance of unicellular Microcystis as compared to colonial forms as measured by variable fluorescence and photosynthetic oxygen evolution. These results indicate that the light-harvesting ability and photosynthetic capacity of colonial Microcystis was less affected by iron deficiency than the unicellular form. The carotenoid contents and nonphotochemical quenching of colonial Microcystis were less reduced than those of the unicellular form under decreasing iron concentrations, indicating that the colonial morphology enhanced photoprotection and acclimation to iron-deficient conditions. Furthermore, large amounts of iron were detected in the capsular polysaccharides (CPS) of the colonies, and more iron was found to be attached to the colonial Microcystis CPS under decreasing iron conditions as compared to unicellular cultures. These results demonstrated that colonial Microcystis can acclimate to iron deficiencies better than the unicellular form, and that CPS plays an important role in their acclimation advantage in iron-deficient waters.
Collapse
Affiliation(s)
- Zheng-Ke Li
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei, 430079, China
| | - Guo-Zheng Dai
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei, 430079, China
| | - Philippe Juneau
- Department of Biological Sciences-TOXEN, Ecotoxicology of Aquatic Microorganisms Laboratory, Université du Québec à Montréal, CP8888 Succursale Centre-ville, Montréal, Québec, Canada, H3C 3P8
| | - Bao-Sheng Qiu
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei, 430079, China
| |
Collapse
|
9
|
Steccanella V, Hansson M, Jensen PE. Linking chlorophyll biosynthesis to a dynamic plastoquinone pool. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2015; 97:207-16. [PMID: 26480470 DOI: 10.1016/j.plaphy.2015.10.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Revised: 08/26/2015] [Accepted: 10/05/2015] [Indexed: 05/20/2023]
Abstract
Chlorophylls are essential cofactors in photosynthesis. All steps in the chlorophyll pathway are well characterized except for the cyclase reaction in which the fifth ring of the chlorophyll molecule is formed during conversion of Mg-protoporphyrin IX monomethyl ester into Protochlorophyllide. The only subunit of the cyclase identified so far, is AcsF (Xantha-l in barley and Chl27 in Arabidopsis). This subunit contains a typical consensus di-iron-binding sequence and belongs to a subgroup of di-iron proteins, such as the plastid terminal oxidase (PTOX) in the chloroplast and the alternative oxidase (AOX) found in mitochondria. In order to complete the catalytic cycle, the irons of these proteins need to be reduced from Fe(3+) to Fe(2+) and either a reductase or another form of reductant is required. It has been reported that the alternative oxidase (AOX) and the plastid terminal oxidase (PTOX) utilize the di-iron center to oxidise ubiquinol and plastoquinol, respectively. In this paper, we have used a specific inhibitor of di-iron proteins as well as Arabidopsis and barley mutants affected in regulation of photosynthetic electron flow, to show that the cyclase step indeed is directly coupled to the plastoquinone pool. Thus, plastoquinol might act as an electron donor for the cyclase reaction and thereby fulfil the role of a cyclase reductase. That would provide a functional connection between the redox status of the thylakoids and the biosynthesis of chlorophyll.
Collapse
Affiliation(s)
- Verdiana Steccanella
- Copenhagen Plant Science Center, VILLUM Research Center "Plant Plasticity", Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark
| | - Mats Hansson
- Department of Biology, Lund University, Sölvgaten 35, 22100, Lund, Sweden
| | - Poul Erik Jensen
- Copenhagen Plant Science Center, VILLUM Research Center "Plant Plasticity", Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark.
| |
Collapse
|
10
|
Singh D, Buhmann AK, Flowers TJ, Seal CE, Papenbrock J. Salicornia as a crop plant in temperate regions: selection of genetically characterized ecotypes and optimization of their cultivation conditions. AOB PLANTS 2014; 6:plu071. [PMID: 25387752 PMCID: PMC4268490 DOI: 10.1093/aobpla/plu071] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 10/30/2014] [Indexed: 05/24/2023]
Abstract
Rising sea levels and salinization of groundwater due to global climate change result in fast-dwindling sources of freshwater. Therefore, it is important to find alternatives to grow food crops and vegetables. Halophytes are naturally evolved salt-tolerant plants that are adapted to grow in environments that inhibit the growth of most glycophytic crop plants substantially. Members of the Salicornioideae are promising candidates for saline agriculture due to their high tolerance to salinity. Our aim was to develop genetically characterized lines of Salicornia and Sarcocornia for further breeding and to determine optimal cultivation conditions. To obtain a large and diverse genetic pool, seeds were collected from different countries and ecological conditions. The external transcribed spacer (ETS) sequence of 62 Salicornia and Sarcocornia accessions was analysed: ETS sequence data showed a clear distinction between the two genera and between different Salicornia taxa. However, in some cases the ETS was not sufficiently variable to resolve morphologically distinct species. For the determination of optimal cultivation conditions, experiments on germination, seedling establishment and growth to a harvestable size were performed using different accessions of Salicornia spp. Experiments revealed that the percentage germination was greatest at lower salinities and with temperatures of 20/10 °C (day/night). Salicornia spp. produced more harvestable biomass in hydroponic culture than in sand culture, but the nutrient concentration requires optimization as hydroponically grown plants showed symptoms of stress. Salicornia ramosissima produced more harvestable biomass than Salicornia dolichostachya in artificial sea water containing 257 mM NaCl. Based on preliminary tests on ease of cultivation, gain in biomass, morphology and taste, S. dolichostachya was investigated in more detail, and the optimal salinity for seedling establishment was found to be 100 mM. Harvesting of S. dolichostachya twice in a growing season was successful, but the interval between the harvests needs to be optimized to maximize biomass production.
Collapse
Affiliation(s)
- Devesh Singh
- Institute of Botany, Leibniz University Hannover, D-30419 Hannover, Germany Department of Environmental Sciences-Botany, Basel University, Schönbeinstrasse 6, CH-4056 Basel, Switzerland
| | - Anne K Buhmann
- Institute of Botany, Leibniz University Hannover, D-30419 Hannover, Germany
| | - Tim J Flowers
- School of Life Sciences, University of Sussex, Johnik Maynard Smith Building, Falmer, Brightons BN1 9QG, UK
| | - Charlotte E Seal
- Seed Conservation Department, Royal Botanic Gardens Kew, Wakehurst Place, Ardingly, West Sussex RH17 6TN, UK
| | - Jutta Papenbrock
- Institute of Botany, Leibniz University Hannover, D-30419 Hannover, Germany
| |
Collapse
|
11
|
Solti Á, Müller B, Czech V, Sárvári É, Fodor F. Functional characterization of the chloroplast ferric chelate oxidoreductase enzyme. THE NEW PHYTOLOGIST 2014; 202:920-928. [PMID: 24506824 DOI: 10.1111/nph.12715] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 01/08/2014] [Indexed: 05/24/2023]
Abstract
Iron (Fe) has an essential role in the biosynthesis of chlorophylls and redox cofactors, and thus chloroplast iron uptake is a process of special importance. The chloroplast ferric chelate oxidoreductase (cFRO) has a crucial role in this process but it is poorly characterized. To study the localization and mechanism of action of cFRO, sugar beet (Beta vulgaris cv Orbis) chloroplast envelope fractions were isolated by gradient ultracentrifugation, and their purity was tested by western blotting against different marker proteins. The ferric chelate reductase (FCR) activity of envelope fractions was studied in the presence of NAD(P)H (reductants) and FAD coenzymes. Reduction of Fe(III)-ethylenediaminetetraacetic acid was monitored spectrophotometrically by the Fe(II)-bathophenanthroline disulfonate complex formation. FCR activity, that is production of free Fe(II) for Fe uptake, showed biphasic saturation kinetics, and was clearly associated only to chloroplast inner envelope (cIE) vesicles. The reaction rate was > 2.5 times higher with NADPH than with NADH, which indicates the natural coenzyme preference of cFRO activity and its dependence on photosynthesis. FCR activity of cIE vesicles isolated from Fe-deficient plants also showed clear biphasic kinetics, where the KM of the low affinity component was elevated, and thus this component was down-regulated.
Collapse
Affiliation(s)
- Ádám Solti
- Department of Plant Physiology and Molecular Plant Biology, Institute of Biology, Eötvös Loránd University, Pázmány P. sétány 1/C, Budapest, 1117, Hungary
| | - Brigitta Müller
- Department of Plant Physiology and Molecular Plant Biology, Institute of Biology, Eötvös Loránd University, Pázmány P. sétány 1/C, Budapest, 1117, Hungary
| | - Viktória Czech
- Department of Plant Physiology and Molecular Plant Biology, Institute of Biology, Eötvös Loránd University, Pázmány P. sétány 1/C, Budapest, 1117, Hungary
| | - Éva Sárvári
- Department of Plant Physiology and Molecular Plant Biology, Institute of Biology, Eötvös Loránd University, Pázmány P. sétány 1/C, Budapest, 1117, Hungary
| | - Ferenc Fodor
- Department of Plant Physiology and Molecular Plant Biology, Institute of Biology, Eötvös Loránd University, Pázmány P. sétány 1/C, Budapest, 1117, Hungary
| |
Collapse
|
12
|
Höhner R, Barth J, Magneschi L, Jaeger D, Niehues A, Bald T, Grossman A, Fufezan C, Hippler M. The metabolic status drives acclimation of iron deficiency responses in Chlamydomonas reinhardtii as revealed by proteomics based hierarchical clustering and reverse genetics. Mol Cell Proteomics 2013; 12:2774-90. [PMID: 23820728 PMCID: PMC3790290 DOI: 10.1074/mcp.m113.029991] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 06/04/2013] [Indexed: 11/06/2022] Open
Abstract
Iron is a crucial cofactor in numerous redox-active proteins operating in bioenergetic pathways including respiration and photosynthesis. Cellular iron management is essential to sustain sufficient energy production and minimize oxidative stress. To produce energy for cell growth, the green alga Chlamydomonas reinhardtii possesses the metabolic flexibility to use light and/or carbon sources such as acetate. To investigate the interplay between the iron-deficiency response and growth requirements under distinct trophic conditions, we took a quantitative proteomics approach coupled to innovative hierarchical clustering using different "distance-linkage combinations" and random noise injection. Protein co-expression analyses of the combined data sets revealed insights into cellular responses governing acclimation to iron deprivation and regulation associated with photosynthesis dependent growth. Photoautotrophic growth requirements as well as the iron deficiency induced specific metabolic enzymes and stress related proteins, and yet differences in the set of induced enzymes, proteases, and redox-related polypeptides were evident, implying the establishment of distinct response networks under the different conditions. Moreover, our data clearly support the notion that the iron deficiency response includes a hierarchy for iron allocation within organelles in C. reinhardtii. Importantly, deletion of a bifunctional alcohol and acetaldehyde dehydrogenase (ADH1), which is induced under low iron based on the proteomic data, attenuates the remodeling of the photosynthetic machinery in response to iron deficiency, and at the same time stimulates expression of stress-related proteins such as NDA2, LHCSR3, and PGRL1. This finding provides evidence that the coordinated regulation of bioenergetics pathways and iron deficiency response is sensitive to the cellular and chloroplast metabolic and/or redox status, consistent with systems approach data.
Collapse
Affiliation(s)
- Ricarda Höhner
- From the ‡Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, Münster 48143, Germany
| | - Johannes Barth
- From the ‡Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, Münster 48143, Germany
| | - Leonardo Magneschi
- From the ‡Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, Münster 48143, Germany
| | - Daniel Jaeger
- From the ‡Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, Münster 48143, Germany
| | - Anna Niehues
- From the ‡Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, Münster 48143, Germany
| | - Till Bald
- From the ‡Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, Münster 48143, Germany
| | - Arthur Grossman
- §Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305
| | - Christian Fufezan
- From the ‡Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, Münster 48143, Germany
| | - Michael Hippler
- From the ‡Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, Münster 48143, Germany
| |
Collapse
|
13
|
Glaesener AG, Merchant SS, Blaby-Haas CE. Iron economy in Chlamydomonas reinhardtii. FRONTIERS IN PLANT SCIENCE 2013; 4:337. [PMID: 24032036 PMCID: PMC3759009 DOI: 10.3389/fpls.2013.00337] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 08/09/2013] [Indexed: 05/05/2023]
Abstract
While research on iron nutrition in plants has largely focused on iron-uptake pathways, photosynthetic microbes such as the unicellular green alga Chlamydomonas reinhardtii provide excellent experimental systems for understanding iron metabolism at the subcellular level. Several paradigms in iron homeostasis have been established in this alga, including photosystem remodeling in the chloroplast and preferential retention of some pathways and key iron-dependent proteins in response to suboptimal iron supply. This review presents our current understanding of iron homeostasis in Chlamydomonas, with specific attention on characterized responses to changes in iron supply, like iron-deficiency. An overview of frequently used methods for the investigation of iron-responsive gene expression, physiology and metabolism is also provided, including preparation of media, the effect of cell size, cell density and strain choice on quantitative measurements and methods for the determination of metal content and assessing the effect of iron supply on photosynthetic performance.
Collapse
Affiliation(s)
- Anne G. Glaesener
- Department of Chemistry and Biochemistry, University of California, Los AngelesLos Angeles, CA, USA
| | - Sabeeha S. Merchant
- Department of Chemistry and Biochemistry, University of California, Los AngelesLos Angeles, CA, USA
- Institute of Genomics and Proteomics, David Geffen School of Medicine at the University of CaliforniaLos Angeles, CA, USA
| | - Crysten E. Blaby-Haas
- Department of Chemistry and Biochemistry, University of California, Los AngelesLos Angeles, CA, USA
- *Correspondence: Crysten E. Blaby-Haas, Department of Chemistry and Biochemistry, University of California, Box 951569, 607 Charles E. Young Drive East, Los Angeles, CA 90095-1569, USA e-mail:
| |
Collapse
|
14
|
Salomé PA, Oliva M, Weigel D, Krämer U. Circadian clock adjustment to plant iron status depends on chloroplast and phytochrome function. EMBO J 2012; 32:511-23. [PMID: 23241948 PMCID: PMC3579136 DOI: 10.1038/emboj.2012.330] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 11/22/2012] [Indexed: 01/21/2023] Open
Abstract
Plant chloroplasts are not only the main cellular location for storage of elemental iron (Fe), but also the main site for Fe, which is incorporated into chlorophyll, haem and the photosynthetic machinery. How plants measure internal Fe levels is unknown. We describe here a new Fe-dependent response, a change in the period of the circadian clock. In Arabidopsis, the period lengthens when Fe becomes limiting, and gradually shortens as external Fe levels increase. Etiolated seedlings or light-grown plants treated with plastid translation inhibitors do not respond to changes in Fe supply, pointing to developed chloroplasts as central hubs for circadian Fe sensing. Phytochrome-deficient mutants maintain a short period even under Fe deficiency, stressing the role of early light signalling in coupling the clock to Fe responses. Further mutant and pharmacological analyses suggest that known players in plastid-to-nucleus signalling do not directly participate in Fe sensing. We propose that the sensor governing circadian Fe responses defines a new retrograde pathway that involves a plastid-encoded protein that depends on phytochromes and the functional state of chloroplasts. The circadian clock of Arabidopsis is found to be hardwired to cellular iron levels, with chloroplasts playing a central role in iron sensing.
Collapse
Affiliation(s)
- Patrice A Salomé
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany.
| | | | | | | |
Collapse
|
15
|
Urzica EI, Casero D, Yamasaki H, Hsieh SI, Adler LN, Karpowicz SJ, Blaby-Haas CE, Clarke SG, Loo JA, Pellegrini M, Merchant SS. Systems and trans-system level analysis identifies conserved iron deficiency responses in the plant lineage. THE PLANT CELL 2012; 24:3921-48. [PMID: 23043051 PMCID: PMC3517228 DOI: 10.1105/tpc.112.102491] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 08/31/2012] [Accepted: 09/12/2012] [Indexed: 05/03/2023]
Abstract
We surveyed the iron nutrition-responsive transcriptome of Chlamydomonas reinhardtii using RNA-Seq methodology. Presumed primary targets were identified in comparisons between visually asymptomatic iron-deficient versus iron-replete cells. This includes the known components of high-affinity iron uptake as well as candidates for distributive iron transport in C. reinhardtii. Comparison of growth-inhibited iron-limited versus iron-replete cells revealed changes in the expression of genes in chloroplastic oxidative stress response pathways, among hundreds of other genes. The output from the transcriptome was validated at multiple levels: by quantitative RT-PCR for assessing the data analysis pipeline, by quantitative proteomics for assessing the impact of changes in RNA abundance on the proteome, and by cross-species comparison for identifying conserved or universal response pathways. In addition, we assessed the functional importance of three target genes, Vitamin C 2 (VTC2), monodehydroascorbate reductase 1 (MDAR1), and conserved in the green lineage and diatoms 27 (CGLD27), by biochemistry or reverse genetics. VTC2 and MDAR1, which are key enzymes in de novo ascorbate synthesis and ascorbate recycling, respectively, are likely responsible for the 10-fold increase in ascorbate content of iron-limited cells. CGLD27/At5g67370 is a highly conserved, presumed chloroplast-localized pioneer protein and is important for growth of Arabidopsis thaliana in low iron.
Collapse
Affiliation(s)
- Eugen I. Urzica
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095
| | - David Casero
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, California 90095
- Institute of Genomics and Proteomics, David Geffen School of Medicine at the University of California, Los Angeles, California 90095
| | - Hiroaki Yamasaki
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095
- Institute of Genomics and Proteomics, David Geffen School of Medicine at the University of California, Los Angeles, California 90095
| | - Scott I. Hsieh
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095
| | - Lital N. Adler
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095
| | - Steven J. Karpowicz
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095
| | - Crysten E. Blaby-Haas
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095
| | - Steven G. Clarke
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095
| | - Joseph A. Loo
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095
- Institute of Genomics and Proteomics, David Geffen School of Medicine at the University of California, Los Angeles, California 90095
- Department of Biological Chemistry, David Geffen School of Medicine at the University of California, Los Angeles, California 90095
| | - Matteo Pellegrini
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, California 90095
- Institute of Genomics and Proteomics, David Geffen School of Medicine at the University of California, Los Angeles, California 90095
| | - Sabeeha S. Merchant
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095
- Institute of Genomics and Proteomics, David Geffen School of Medicine at the University of California, Los Angeles, California 90095
| |
Collapse
|
16
|
Page MD, Allen MD, Kropat J, Urzica EI, Karpowicz SJ, Hsieh SI, Loo JA, Merchant SS. Fe sparing and Fe recycling contribute to increased superoxide dismutase capacity in iron-starved Chlamydomonas reinhardtii. THE PLANT CELL 2012; 24:2649-65. [PMID: 22685165 PMCID: PMC3406916 DOI: 10.1105/tpc.112.098962] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Revised: 05/16/2012] [Accepted: 05/24/2012] [Indexed: 05/04/2023]
Abstract
Fe deficiency is one of several abiotic stresses that impacts plant metabolism because of the loss of function of Fe-containing enzymes in chloroplasts and mitochondria, including cytochromes, FeS proteins, and Fe superoxide dismutase (FeSOD). Two pathways increase the capacity of the Chlamydomonas reinhardtii chloroplast to detoxify superoxide during Fe limitation stress. In one pathway, MSD3 is upregulated at the transcriptional level up to 10(3)-fold in response to Fe limitation, leading to synthesis of a previously undiscovered plastid-specific MnSOD whose identity we validated immunochemically. In a second pathway, the plastid FeSOD is preferentially retained over other abundant Fe proteins, heme-containing cytochrome f, diiron magnesium protoporphyrin monomethyl ester cyclase, and Fe2S2-containing ferredoxin, demonstrating prioritized allocation of Fe within the chloroplast. Maintenance of FeSOD occurs, after an initial phase of degradation, by de novo resynthesis in the absence of extracellular Fe, suggesting the operation of salvage mechanisms for intracellular recycling and reallocation.
Collapse
Affiliation(s)
- M. Dudley Page
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569
| | | | - Janette Kropat
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569
| | - Eugen I. Urzica
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569
| | | | - Scott. I. Hsieh
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569
| | - Joseph A. Loo
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569
| | - Sabeeha S. Merchant
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569
| |
Collapse
|
17
|
Peter E, Wallner T, Wilde A, Grimm B. Comparative functional analysis of two hypothetical chloroplast open reading frames (ycf) involved in chlorophyll biosynthesis from Synechocystis sp. PCC6803 and plants. JOURNAL OF PLANT PHYSIOLOGY 2011; 168:1380-1386. [PMID: 21388705 DOI: 10.1016/j.jplph.2011.01.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Revised: 01/28/2011] [Accepted: 01/29/2011] [Indexed: 05/30/2023]
Abstract
Hypothetical chloroplast open reading frames (ycfs) are highly conserved and interspecifically occurring genes in plastomes of plants and algae with significant functions in gene expression and photosynthesis. However, the function of many ycfs is still in vain so that attention is directed to other chloroplast functions such as metabolism of co-factors, protein translocation and protection against abiotic stress. We provide a comprehensive functional description of ycf53 and ycf59, two genes involved in chlorophyll biosynthesis. While ycf59 encodes an essential enzymatic component of Mg protoporphyrin monomethylester cyclase, ycf53 encodes a posttranslational regulator of chlorophyll biosynthesis. Their roles in tetrapyrrole biosynthesis were compared by using cyanobacterial and plant mutants with modulated expression of these two genes. Our work provides indications for diverse effects of these homologous gene products in plants and cyanobacteria on tetrapyrrole biosynthesis and photosynthesis.
Collapse
Affiliation(s)
- E Peter
- Institute of Biology, Plant Physiology, Humboldt University Berlin, Philippstrasse 13, Berlin, Germany
| | | | | | | |
Collapse
|
18
|
Fukao Y, Ferjani A, Tomioka R, Nagasaki N, Kurata R, Nishimori Y, Fujiwara M, Maeshima M. iTRAQ analysis reveals mechanisms of growth defects due to excess zinc in Arabidopsis. PLANT PHYSIOLOGY 2011; 155:1893-907. [PMID: 21325567 PMCID: PMC3091079 DOI: 10.1104/pp.110.169730] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Accepted: 02/14/2011] [Indexed: 05/18/2023]
Abstract
The micronutrient zinc is essential for all living organisms, but it is toxic at high concentrations. Here, to understand the effects of excess zinc on plant cells, we performed an iTRAQ (for isobaric tags for relative and absolute quantification)-based quantitative proteomics approach to analyze microsomal proteins from Arabidopsis (Arabidopsis thaliana) roots. Our approach was sensitive enough to identify 521 proteins, including several membrane proteins. Among them, IRT1, an iron and zinc transporter, and FRO2, a ferric-chelate reductase, increased greatly in response to excess zinc. The expression of these two genes has been previously reported to increase under iron-deficient conditions. Indeed, the concentration of iron was significantly decreased in roots and shoots under excess zinc. Also, seven subunits of the vacuolar H(+)-ATPase (V-ATPase), a proton pump on the tonoplast and endosome, were identified, and three of them decreased significantly in response to excess zinc. In addition, excess zinc in the wild type decreased V-ATPase activity and length of roots and cells to levels comparable to those of the untreated de-etiolated3-1 mutant, which bears a mutation in V-ATPase subunit C. Interestingly, excess zinc led to the formation of branched and abnormally shaped root hairs, a phenotype that correlates with decreased levels of proteins of several root hair-defective mutants. Our results point out mechanisms of growth defects caused by excess zinc in which cross talk between iron and zinc homeostasis and V-ATPase activity might play a central role.
Collapse
Affiliation(s)
- Yoichiro Fukao
- Plant Science Education Unit, Nara Institute of Science and Technology, Ikoma 630-0192, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Csatorday K, Gombos Z, Szalontai B. Mn and Co toxicity in chlorophyll biosynthesis. Proc Natl Acad Sci U S A 2010; 81:476-8. [PMID: 16593408 PMCID: PMC344700 DOI: 10.1073/pnas.81.2.476] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The metal ion-induced inhibition of tetrapyrrole biosynthesis was studied in the cyanobacterium Anacystis nidulans. The accumulation of protoporphyrin and Mg protoporphyrin due to the effect of Co(2+) and Mn(2+) treatment, respectively, pointed to two different sites of inhibition.
Collapse
Affiliation(s)
- K Csatorday
- Institute of Plant Physiology, Biological Research Center, Hungarian Academy of Sciences, Szeged, P.O. Box 521, Hungary, H-6701
| | | | | |
Collapse
|
20
|
Saha P, Raychaudhuri SS, Chakraborty A, Sudarshan M. PIXE analysis of trace elements in relation to chlorophyll concentration in Plantago ovata Forsk. Appl Radiat Isot 2010; 68:444-9. [PMID: 20047839 DOI: 10.1016/j.apradiso.2009.12.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2009] [Revised: 12/01/2009] [Accepted: 12/01/2009] [Indexed: 10/20/2022]
Abstract
Plantago ovata Forsk - an economically important medicinal plant - was analyzed for trace elements and chlorophyll in a study of the effects of gamma radiation on physiological responses of the seedlings. Proton-induced X-ray emission (PIXE) technique was used to quantify trace elements in unirradiated and gamma-irradiated plants at the seedling stage. The experiments revealed radiation-induced changes in the trace element and chlorophyll concentrations.
Collapse
Affiliation(s)
- Priyanka Saha
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, Kolkata, India
| | | | | | | |
Collapse
|
21
|
Zhang H, Sun Y, Xie X, Kim MS, Dowd SE, Paré PW. A soil bacterium regulates plant acquisition of iron via deficiency-inducible mechanisms. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 58:568-77. [PMID: 19154225 DOI: 10.1111/j.1365-313x.2009.03803.x] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Despite the abundance of iron in nature, it is the third most limiting nutrient for plants due to its minimal solubility in most soils. While certain soil microbes produce chelating agents that enhance the solubility of iron, the effectiveness of such siderophores in the assimilation of iron by plants is debated. With an increasing understanding that select soil microbes play a signaling role in activating growth and stress responses in plants, the question arises as to whether such symbionts regulate iron assimilation. Here we report a previously unidentified mechanism in which the growth-promoting bacterium Bacillus subtilis GB03 activates the plant's own iron acquisition machinery to increase assimilation of metal ions in Arabidopsis. Mechanistic studies reveal that GB03 transcriptionally up-regulates the Fe-deficiency-induced transcription factor 1 (FIT1), which is necessary for GB03-induction of ferric reductase FRO2 and the iron transporter IRT1. In addition, GB03 causes acidification of the rhizosphere by enhancing root proton release and by direct bacterial acidification, thereby facilitating iron mobility. As a result, GB03-exposed plants have elevated endogenous iron levels as well as increased photosynthetic capacity compared with water-treated controls. In contrast, loss-of-function fit1-2 mutants are compromised in terms of enhanced iron assimilation and photosynthetic efficiency triggered by GB03. In all studies reported herein, a physical partition separating roots from bacterial media precludes non-volatile microbial siderophores from contributing to GB03-stimulated iron acquisition. These results demonstrate the potential of microbes to control iron acquisition in plants and emphasize the sophisticated integration of microbial signaling in photosynthetic regulation.
Collapse
Affiliation(s)
- Huiming Zhang
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, 79409, USA
| | | | | | | | | | | |
Collapse
|
22
|
Solti A, Gáspár L, Mészáros I, Szigeti Z, Lévai L, Sárvári E. Impact of iron supply on the kinetics of recovery of photosynthesis in Cd-stressed poplar (Populus glauca). ANNALS OF BOTANY 2008; 102:771-82. [PMID: 18757882 PMCID: PMC2712383 DOI: 10.1093/aob/mcn160] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2008] [Revised: 05/22/2008] [Accepted: 07/09/2008] [Indexed: 05/22/2023]
Abstract
BACKGROUND AND AIMS Cadmium (Cd) causes Fe-deficiency-like symptoms in plants, and strongly inhibits photosynthesis. To clarify the importance of Cd-induced Fe deficiency in Cd effects on photosynthesis, the recovery processes were studied by supplying excess Fe after the Cd symptoms had developed. METHODS Fe-citrate at 10 microm or 50 microm was given with or without 10 microm Cd(NO3)2 to hydroponically cultured poplars (Populus glauca 'Kopeczkii') with characteristic Cd symptoms. Ion, chlorophyll and pigment contents, amount of photosynthetic pigment-protein complexes, chlorophyll fluorescence and carbon assimilation were measured together with the mapping of healing processes by fluorescence imaging. KEY RESULTS In regenerated leaves, the iron content increased significantly, while the Cd content did not decrease. As a result, the structural (increase in the amount of photosynthetic pigments and pigment-protein complexes, decrease in the F690/F740 ratio) and functional (elevation of CO2 fixation activity and DeltaF/Fm') recovery of the photosynthetic machinery was detected. Cd-induced, light-stress-related changes in non-photochemical quenching, activity of the xanthophyll cycle, and the F440/F520 ratio were also normalized. Imaging the changes in chlorophyll fluorescence, the recovery started from the parts adjacent to the veins and gradually extended to the interveinal parts. Kinetically, the rate of recovery depended greatly on the extent of the Fe supply, and chlorophyll a/b ratio and DeltaF/Fm' proved to be the most-rapidly reacting parameters. CONCLUSIONS Iron deficiency is a key factor in Cd-induced inhibition of photosynthesis.
Collapse
Affiliation(s)
- Adám Solti
- Department of Plant Physiology and Molecular Plant Biology, Eötvös University, Pázmány P. sétány 1/C Budapest, 1117 Hungary.
| | | | | | | | | | | |
Collapse
|
23
|
Allen MD, Kropat J, Merchant SS. Regulation and Localization of Isoforms of the Aerobic Oxidative Cyclase inChlamydomonas reinhardtii†. Photochem Photobiol 2008; 84:1336-42. [DOI: 10.1111/j.1751-1097.2008.00440.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
24
|
DING F, WANG XF, SHI QH, WANG ML, YANG FJ, GAO QH. Exogenous Nitric Oxide Alleviated the Inhibition of Photosynthesis and Antioxidant Enzyme Activities in Iron-Deficient Chinese Cabbage (Brassica chinensis L.). ACTA ACUST UNITED AC 2008. [DOI: 10.1016/s1671-2927(08)60036-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
25
|
Deriu D, Calace N, Petronio BM, Pietroletti M. Morphological and physiological responses of barley plants grown on soils characterised by metal toxicity and metal deficiency. ACTA ACUST UNITED AC 2007; 97:153-62. [PMID: 17822224 DOI: 10.1002/adic.200790001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Aim of this work was to investigate which are the effects on barley crops grown on two different soils: a soil lacking in Cu, an essential micronutrient (A) and a naturally polluted soil rich in lead, zinc, copper (B). In particular we investigated the relationship between some ecophysiological parameters such as biomass, chlorophyll concentration and guaiacolo peroxidase activity and the chemical-physical properties of the soils like pH, organic matter and heavy metal content. Because metals uptake by plants is strongly correlated with the bioavailable fraction rather then their total amount in a soil, we have measured also metal exchangeable forms, using a single extraction method (MgCl2 as extractant). Plants grown on soil B showed a metal content higher than background limits, whereas plants grown on soil A were characterised by a background Fe and Zn concentrations and by a tolerant Pb concentration. Conversely, Cu content in tissues of plants grown in soil A is found to be under the background limits. Copper-deficiency plants present chlorotic leaves followed by a reduced clorophyll content, while plants grown on metals contaminated soil showed an increase of peroxidase activity.
Collapse
Affiliation(s)
- Daniela Deriu
- Department of Experimental Medicine and Biochemical Sciences, University Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | | | | | | |
Collapse
|
26
|
Sharma S. Adaptation of photosynthesis under iron deficiency in maize. JOURNAL OF PLANT PHYSIOLOGY 2007; 164:1261-7. [PMID: 17602787 DOI: 10.1016/j.jplph.2007.02.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2006] [Revised: 02/25/2007] [Accepted: 02/26/2007] [Indexed: 05/16/2023]
Abstract
This paper explores the effects of high light stress on Fe-deficient plants. Maize (Zea mays) plants were grown under conditions of Fe deficiency and complete nutrition. Attached, intact leaves of Fe-deficient and control plants were used for gas exchange experiments under suboptimal, optimal and photoinhibitory illumination. Isolated chloroplasts were used to study photosynthetic electron transport system, compromised by the induction of Fe deficiency. The reaction centers of PS II (measured as reduction of Q, the primary electron acceptor of P 680) and PS I (measured as oxidation of P 700) were estimated from the amplitude of light induced absorbance change at 320 and 700 nm, respectively. Plants were subjected to photoinhibitory treatment for different time periods and isolated chloroplasts from these plants were used for electron transport studies. Carbon dioxide fixation in control as well as in Fe-deficient plants decreased in response to high light intensities. Total chlorophyll, P 700 and Q content in Fe-deficient chloroplasts decreased, while Chl a/b ratio and Q/P 700 ratio increased. However, electron transport through PS II suffered more after photoinhibitory treatment as compared to electron transport through PS I or whole chain. Electron transfer through PS I+PS II, excluding the water oxidation complex showed a decrease in Fe-deficient plants. However, electron transport through this part of the chain did not suffer much as a result of photoinhibition, suggesting a defect in the oxidising side of PS II.
Collapse
Affiliation(s)
- Samir Sharma
- Department of Biochemistry, Lucknow University, Lucknow 226 007, India.
| |
Collapse
|
27
|
|
28
|
Vasconcelos M, Eckert H, Arahana V, Graef G, Grusak MA, Clemente T. Molecular and phenotypic characterization of transgenic soybean expressing the Arabidopsis ferric chelate reductase gene, FRO2. PLANTA 2006; 224:1116-28. [PMID: 16741749 DOI: 10.1007/s00425-006-0293-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2005] [Accepted: 04/19/2006] [Indexed: 05/09/2023]
Abstract
Soybean (Glycine max Merr.) production is reduced under iron-limiting calcareous soils throughout the upper Midwest regions of the US. Like other dicotyledonous plants, soybean responds to iron-limiting environments by induction of an active proton pump, a ferric iron reductase and an iron transporter. Here we demonstrate that heterologous expression of the Arabidopsis thaliana ferric chelate reductase gene, FRO2, in transgenic soybean significantly enhances Fe(+3) reduction in roots and leaves. Root ferric reductase activity was up to tenfold higher in transgenic plants and was not subjected to post-transcriptional regulation. In leaves, reductase activity was threefold higher in the transgenic plants when compared to control. The enhanced ferric reductase activity led to reduced chlorosis, increased chlorophyll concentration and a lessening in biomass loss in the transgenic events between Fe treatments as compared to control plants grown under hydroponics that mimicked Fe-sufficient and Fe-deficient soil environments. However, the data indicate that constitutive FRO2 expression under non-iron stress conditions may lead to a decrease in plant productivity as reflected by reduced biomass accumulation in the transgenic events under non-iron stress conditions. When grown at Fe(III)-EDDHA levels greater than 10 microM, iron concentration in the shoots of transgenic plants was significantly higher than control. The same observation was found in the roots in plants grown at iron levels higher than 32 microM Fe(III)-EDDHA. These results suggest that heterologous expression of an iron chelate reductase in soybean can provide a route to alleviate iron deficiency chlorosis.
Collapse
Affiliation(s)
- Marta Vasconcelos
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | | | | | | | | | | |
Collapse
|
29
|
Li B, Liew OW, Asundi AK. Pre-visual detection of iron and phosphorus deficiency by transformed reflectance spectra. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2006; 85:131-9. [PMID: 16890448 DOI: 10.1016/j.jphotobiol.2006.06.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2006] [Revised: 05/12/2006] [Accepted: 06/11/2006] [Indexed: 11/29/2022]
Abstract
Reflectance spectroscopy and strategies for spectral analysis over the visible range from 380 to 780 nm were used to provide diagnostic information on iron (Fe) and phosphorus (P) status of Brassica chinensis L. var parachinensis (Bailey) grown under hydroponics conditions. Leaf reflectance (R) spectra were collected and normalized inner reflectance (NR(I)) spectra were calculated. The regression coefficients (B-matrix) and variable importance for projection (VIP) in partial least squares regression were used to determine important wavelengths that correlate with total chlorophyll (Chl) content. No single wavelength that showed good correlation with Chl content was found. Therefore, NR(I) was transformed into CIELAB color values, which simplified the whole visible spectrum into three values. Our results showed that upon Fe deprivation, plants entered into a deficiency state very rapidly, highlighting the importance of early diagnosis. The direct effect of Fe on leaf Chl content allowed CIELAB color values to be used for pre-visual detection of Fe deficiency 2 days before the appearance of visually distinguishable morphological changes. On the other hand, P-deprived plants showed a marked decline in cellular P levels but remained above critical threshold concentrations after 7 days. The Chl content was not affected by the leaf P content and CIELAB color values showed no difference with control plants.
Collapse
Affiliation(s)
- Bingqing Li
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Photonics and Microsciences Lab, BLK N3.1-b3a-02, 50 Nanyang Avenue, Singapore 639798, Singapore.
| | | | | |
Collapse
|
30
|
Green LS, Rogers EE. FRD3 controls iron localization in Arabidopsis. PLANT PHYSIOLOGY 2004; 136:2523-31. [PMID: 15310833 PMCID: PMC523319 DOI: 10.1104/pp.104.045633] [Citation(s) in RCA: 186] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2004] [Revised: 05/25/2004] [Accepted: 05/30/2004] [Indexed: 05/18/2023]
Abstract
The frd3 mutant of Arabidopsis exhibits constitutive expression of its iron uptake responses and is chlorotic. These phenotypes are consistent with defects either in iron deficiency signaling or in iron translocation and localization. Here we present several experiments demonstrating that a functional FRD3 gene is necessary for correct iron localization in both the root and shoot of Arabidopsis plants. Reciprocal grafting experiments with frd3 and wild-type Arabidopsis plants reveal that the phenotype of a grafted plant is determined by the genotype of the root, not by the genotype of the shoot. This indicates that FRD3 function is root-specific and points to a role for FRD3 in delivering iron to the shoot in a usable form. When grown under certain conditions, frd3 mutant plants overaccumulate iron in their shoot tissues. However, we demonstrate by direct measurement of iron levels in shoot protoplasts that intracellular iron levels in frd3 are only about one-half the levels in wild type. Histochemical staining for iron reveals that frd3 mutants accumulate high levels of ferric iron in their root vascular cylinder, the same tissues in which the FRD3 gene is expressed. Taken together, these results clearly indicate a role for FRD3 in iron localization in Arabidopsis. Specifically, FRD3 is likely to function in root xylem loading of an iron chelator or other factor necessary for efficient iron uptake out of the xylem or apoplastic space and into leaf cells.
Collapse
Affiliation(s)
- Laura S Green
- Departments of Biochemistry and Nutritional Sciences, University of Missouri, Columbia, MO 65211, USA
| | | |
Collapse
|
31
|
Tottey S, Block MA, Allen M, Westergren T, Albrieux C, Scheller HV, Merchant S, Jensen PE. Arabidopsis CHL27, located in both envelope and thylakoid membranes, is required for the synthesis of protochlorophyllide. Proc Natl Acad Sci U S A 2003; 100:16119-24. [PMID: 14673103 PMCID: PMC307702 DOI: 10.1073/pnas.2136793100] [Citation(s) in RCA: 142] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2003] [Indexed: 12/31/2022] Open
Abstract
CHL27, the Arabidopsis homologue to Chlamydomonas Crd1, a plastid-localized putative diiron protein, is required for the synthesis of protochlorophyllide and therefore is a candidate subunit of the aerobic cyclase in chlorophyll biosynthesis. delta-Aminolevulinic acid-fed antisense Arabidopsis plants with reduced amounts of Crd1/CHL27 accumulate Mg-protoporphyrin IX monomethyl ester, the substrate of the cyclase reaction. Mutant plants have chlorotic leaves with reduced abundance of all chlorophyll proteins. Fractionation of Arabidopsis chloroplast membranes shows that Crd1/CHL27 is equally distributed on a membrane-weight basis in the thylakoid and inner-envelope membranes.
Collapse
Affiliation(s)
- Stephen Tottey
- Department of Chemistry and Biochemistry, University of California, Box 951569, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
Four proteins have been identified recently as diiron carboxylate proteins on the basis of conservation of six amino acids (four carboxylate residues and two histidines) constituting an iron-binding motif. Unlike previously identified proteins with this motif, biochemical studies indicate that each of these proteins is membrane bound, although homology modeling rules out a transmembrane mode of binding. Therefore, the predicted structure of each protein [the alternative oxidase (AOX), the plastid terminal oxidase (PTOX), the diiron 5-demethoxyquinone hydroxylase (DMQ hydroxylase), and the aerobic Mg-protoporphyrin IX monomethylester hydroxylase (MME hydroxylase)] is that of a protein bound monotopically to one leaflet of the membrane bilayer. Three of these enzymes utilize a quinol substrate, with two oxidizing the quinol (AOX and PTOX) and one hydroxylating it (DMQ hydroxylase). MME hydroxylase is involved in synthesis of the isocyclic ring of chlorophyll. Two enzymes are involved in respiration (AOX and, indirectly, the diiron DMQ hydroxylase through ubiquinone biosynthesis) and two in photosynthesis, through their roles in carotenoid and chlorophyll biosynthesis (PTOX and MME hydroxylase, respectively). We discuss what is known about each enzyme as well as our expectations based on their identification as interfacially bound proteins with a diiron carboxylate active site.
Collapse
Affiliation(s)
- Deborah A Berthold
- Department of Biochemistry and Biophysics, Arrhenius Laboratory for Natural Sciences, Stockholm University, Svante Arrhenius väg 12, SE-106 91 Stockholm, Sweden.
| | | |
Collapse
|
33
|
Moseley JL, Allinger T, Herzog S, Hoerth P, Wehinger E, Merchant S, Hippler M. Adaptation to Fe-deficiency requires remodeling of the photosynthetic apparatus. EMBO J 2002; 21:6709-20. [PMID: 12485992 PMCID: PMC139087 DOI: 10.1093/emboj/cdf666] [Citation(s) in RCA: 215] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The molecular mechanisms underlying the onset of Fe-deficiency chlorosis and the maintenance of photosynthetic function in chlorotic chloroplasts are relevant to global photosynthetic productivity. We describe a series of graded responses of the photosynthetic apparatus to Fe-deficiency, including a novel response that occurs prior to the onset of chlorosis, namely the disconnection of the LHCI antenna from photosystem I (PSI). We propose that disconnection is mediated by a change in the physical properties of PSI-K in PSI in response to a change in plastid Fe content, which is sensed through the occupancy, and hence activity, of the Fe-containing active site in Crd1. We show further that progression of the response involves remodeling of the antenna complexes-specific degradation of existing proteins coupled to the synthesis of new ones, and establishment of a new steady state with decreased stoichiometry of electron transfer complexes. We suggest that these responses are typical of a dynamic photosynthetic apparatus where photosynthetic function is optimized and photooxidative damage is minimized in graduated responses to a combination of nutrients, light quantity and quality.
Collapse
Affiliation(s)
| | - Tanja Allinger
- Department of Chemistry and Biochemistry and Molecular Biology Institute, UCLA, 607 Charles E. Young Drive East, Los Angeles, CA 90095-1569, USA,
Lehrstuhl für Pflanzenphysiologie, Friedrich-Schiller-Universität Jena, Dornburger Strasse 159, D-07743 Jena and Lehrstuhl für Biochemie der Pflanzen, Institut für Biologie II, Universität Freiburg, Schänzlestrasse 1, D-79104 Freiburg, Germany Corresponding authors e-mail: or
J.L.Moseley and T.Allinger contributed equally to this work
| | - Sebastian Herzog
- Department of Chemistry and Biochemistry and Molecular Biology Institute, UCLA, 607 Charles E. Young Drive East, Los Angeles, CA 90095-1569, USA,
Lehrstuhl für Pflanzenphysiologie, Friedrich-Schiller-Universität Jena, Dornburger Strasse 159, D-07743 Jena and Lehrstuhl für Biochemie der Pflanzen, Institut für Biologie II, Universität Freiburg, Schänzlestrasse 1, D-79104 Freiburg, Germany Corresponding authors e-mail: or
J.L.Moseley and T.Allinger contributed equally to this work
| | - Patric Hoerth
- Department of Chemistry and Biochemistry and Molecular Biology Institute, UCLA, 607 Charles E. Young Drive East, Los Angeles, CA 90095-1569, USA,
Lehrstuhl für Pflanzenphysiologie, Friedrich-Schiller-Universität Jena, Dornburger Strasse 159, D-07743 Jena and Lehrstuhl für Biochemie der Pflanzen, Institut für Biologie II, Universität Freiburg, Schänzlestrasse 1, D-79104 Freiburg, Germany Corresponding authors e-mail: or
J.L.Moseley and T.Allinger contributed equally to this work
| | | | - Sabeeha Merchant
- Department of Chemistry and Biochemistry and Molecular Biology Institute, UCLA, 607 Charles E. Young Drive East, Los Angeles, CA 90095-1569, USA,
Lehrstuhl für Pflanzenphysiologie, Friedrich-Schiller-Universität Jena, Dornburger Strasse 159, D-07743 Jena and Lehrstuhl für Biochemie der Pflanzen, Institut für Biologie II, Universität Freiburg, Schänzlestrasse 1, D-79104 Freiburg, Germany Corresponding authors e-mail: or
J.L.Moseley and T.Allinger contributed equally to this work
| | - Michael Hippler
- Department of Chemistry and Biochemistry and Molecular Biology Institute, UCLA, 607 Charles E. Young Drive East, Los Angeles, CA 90095-1569, USA,
Lehrstuhl für Pflanzenphysiologie, Friedrich-Schiller-Universität Jena, Dornburger Strasse 159, D-07743 Jena and Lehrstuhl für Biochemie der Pflanzen, Institut für Biologie II, Universität Freiburg, Schänzlestrasse 1, D-79104 Freiburg, Germany Corresponding authors e-mail: or
J.L.Moseley and T.Allinger contributed equally to this work
| |
Collapse
|
34
|
Pinta V, Picaud M, Reiss-Husson F, Astier C. Rubrivivax gelatinosus acsF (previously orf358) codes for a conserved, putative binuclear-iron-cluster-containing protein involved in aerobic oxidative cyclization of Mg-protoporphyrin IX monomethylester. J Bacteriol 2002; 184:746-53. [PMID: 11790744 PMCID: PMC139524 DOI: 10.1128/jb.184.3.746-753.2002] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This study describes the characterization of orf358, an open reading frame of previously unidentified function, in the purple bacterium Rubrivivax gelatinosus. A strain in which orf358 was disrupted exhibited a phenotype similar to the wild type under photosynthesis or low-aeration respiratory growth conditions. In contrast, under highly aerated respiratory growth conditions, the wild type still produced bacteriochlorophyll a (Bchl a), while the disrupted strain accumulated a compound that had the same absorption and fluorescence emission spectra as Mg-protoporphyrin but was less polar, suggesting that it was Mg-protoporphyrin monomethylester (MgPMe). These data indicated a blockage in Bchl a synthesis at the oxidative cyclization stage and implied the coexistence of two different mechanisms for MgPMe cyclization in R. gelatinosus, an anaerobic mechanism active under photosynthesis or low oxygenation and an aerobic mechanism active under high-oxygenation growth conditions. Based on these results as well as on sequence analysis indicating the presence of conserved putative binuclear-iron-cluster binding motifs, the designation of orf358 as acsF (for aerobic cyclization system Fe-containing subunit) is proposed. Several homologs of AcsF were found in a wide range of photosynthetic organisms, including Chlamydonomas reinhardtii Crd1 and Pharbitis nil PNZIP, suggesting that this aerobic oxidative cyclization mechanism is conserved from bacteria to plants.
Collapse
Affiliation(s)
- Violaine Pinta
- Laboratoire de Génétique des Bactéries Photosynthétiques, Centre de Génétique Moléculaire, UPR2167 associée à l'Université Pierre-et-Marie-Curie, CNRS, 91198 Gif-sur-Yvette Cedex, France
| | | | | | | |
Collapse
|
35
|
Brusslan JA, Peterson MP. Tetrapyrrole regulation of nuclear gene expression. PHOTOSYNTHESIS RESEARCH 2002; 71:185-94. [PMID: 16228131 DOI: 10.1023/a:1015539109209] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Tetrapyrroles are the structural backbone of chlorophyll and heme, and are essential for primary photochemistry, light harvesting, and electron transport. The biochemistry of their synthesis has been studied extensively, and it has been suggested that some of the tetrapyrrole biochemical intermediates can affect nuclear gene expression. In this review, tetrapyrrole biosynthesis, which occurs in the chloroplast, and its regulation will be covered. An analysis of the intracellular location of tetrapyrrole intermediates will also be included. The focus will be on tetrapyrrole intermediates that have been suggested to affect gene expression. These include Mg-protoporphyrin IX and Mg-protoporphyrin IX monomethyl ester. Recent evidence also suggests a specific signaling role for the H subunit of Mg-chelatase, an enzyme that catalyzes the insertion of Mg into the tetrapyrrole ring. Since gene expression studies have been done in plants and green algae, our discussion will be limited to these organisms.
Collapse
Affiliation(s)
- Judy A Brusslan
- Department of Biological Sciences, California State University, Long Beach, 1250 Bellflower Blvd, Long Beach, CA, 90840-3702, USA,
| | | |
Collapse
|
36
|
Kitao M, Lei TT, Nakamura T, Koike T. Manganese toxicity as indicated by visible foliar symptoms of Japanese white birch (Betula platyphylla var. japonica). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2001; 111:89-94. [PMID: 11202719 DOI: 10.1016/s0269-7491(99)00332-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
For the purpose of a field diagnosis of Mn toxicity, we showed the possibility of using visible foliar symptoms of Japanese white birch (Betula platyphylla var. japonica Hara) as indicator. To examine the relationship between the expression of visible symptoms and leaf Mn concentrations, white birch seedlings were grown under four different Mn levels: 1 mg Mn l-1 as control, 10, 50 and 100 mg Mn l-1. Foliar symptoms of Mn toxicity for white birch were: (1) chlorosis at entire young leaves in the 50 and 100 mg Mn l-1 treatments; and (2) brown speckles at the leaf marginal and interveinal area for old leaves in the treatments greater than 1 mg Mn l-1. Mn preferably accumulated into the leaf marginal and interveinal area, where the brown speckles were observed. The mechanism determining the expression of symptoms seems to be associated with the physiological state related to leaf age as well as Mn distribution and concentration within a leaf.
Collapse
Affiliation(s)
- M Kitao
- Hokkaido Research Center, Forestry and Forest Products Research Institute, Sapporo 062-8516, Japan.
| | | | | | | |
Collapse
|
37
|
Bollivar DW, Beale SI. The Chlorophyll Biosynthetic Enzyme Mg-Protoporphyrin IX Monomethyl Ester (Oxidative) Cyclase (Characterization and Partial Purification from Chlamydomonas reinhardtii and Synechocystis sp. PCC 6803). PLANT PHYSIOLOGY 1996; 112:105-114. [PMID: 12226378 PMCID: PMC157929 DOI: 10.1104/pp.112.1.105] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
A universal structural feature of chlorophyll molecules is the isocyclic ring. This ring is formed by the action of the enzyme Mg-protoporphyrin IX monomethyl ester (oxidative) cyclase, which catalyzes a complex reaction in which Mg-protoporphyrin IX monomethyl ester is converted to divinyl protochlorophyllide (also called Mg-2,4-divinylpheoporphyrin a5), with the participation of NADPH and O2. Cyclase activity was demonstrated in lysed Chlamydomonas reinhardtii chloroplasts and extracts of Synechocystis sp. PCC 6803. The yield of the reaction product was increased by the addition of catalase and ascorbate or isoascorbate to the incubation mixture. These compounds may act by preventing degradation of the tetrapyrroles by reactive oxygen species. Cyclase activity from C. reinhardtii was not inhibited by the flavoprotein inhibitor quinacrine or by the hemoprotein inhibitors CO, KCN, or NaN3. In contrast, cyclase activity in extracts of C. reinhardtii and Synechocystis sp. PCC 6803 was inhibited by chelators of Fe, suggesting that nonheme Fe is involved in the reaction. Cyclase in lysed C. reinhardtii chloroplasts was associated with the membranes, and attempts to further fractionate or solubilize the activity were unsuccessful. In contrast, cyclase in Synechocystis sp. PCC 6803 extracts could be separated into soluble and membrane components, both of which were required for reconstitution of activity. The membrane component retained activity after it was solubilized by the detergent n-octyl-[beta]-D-glucopyranoside in the presence of glycerol and Mg2+. The solubilized membrane component was purified further by dye-affinity and ion-exchange chromatography.
Collapse
Affiliation(s)
- D. W. Bollivar
- Division of Biology and Medicine, Brown University, Providence, Rhode Island 02912
| | | |
Collapse
|
38
|
Geider RJ, La Roche J. The role of iron in phytoplankton photosynthesis, and the potential for iron-limitation of primary productivity in the sea. PHOTOSYNTHESIS RESEARCH 1994; 39:275-301. [PMID: 24311126 DOI: 10.1007/bf00014588] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/1993] [Accepted: 09/29/1993] [Indexed: 05/12/2023]
Abstract
Iron supply has been suggested to influence phytoplankton biomass, growth rate and species composition, as well as primary productivity in both high and low NO3 (-) surface waters. Recent investigations in the equatorial Pacific suggest that no single factor regulates primary productivity. Rather, an interplay of bottom-up (i.e., ecophysiological) and top-down (i.e., ecological) factors appear to control species composition and growth rates. One goal of biological oceanography is to isolate the effects of single factors from this multiplicity of interactions, and to identify the factors with a disproportionate impact. Unfortunately, our tools, with several notable exceptions, have been largely inadequate to the task. In particular, the standard technique of nutrient addition bioassays cannot be undertaken without introducing artifacts. These so-called 'bottle effects' include reducing turbulence, isolating the enclosed sample from nutrient resupply and grazing, trapping the isolated sample at a fixed position within the water column and thus removing it from vertical movement through a light gradient, and exposing the sample to potentially stimulatory or inhibitory substances on the enclosure walls. The problem faced by all users of enrichment experiments is to separate the effects of controlled nutrient additions from uncontrolled changes in other environmental and ecological factors. To overcome these limitations, oceanographers have sought physiological or molecular indices to diagnose nutrient limitation in natural samples. These indices are often based on reductions in the abundance of photosynthetic and other catalysts, or on changes in the efficiency of these catalysts. Reductions in photosynthetic efficiency often accompany nutrient limitation either because of accumulation of damage, or impairment of the ability to synthesize fully functional macromolecular assemblages. Many catalysts involved in electron transfer and reductive biosyntheses contain iron, and the abundances of most of these catalysts decline under iron-limited conditions. Reductions of ferredoxin or cytochrome f content, nitrate assimilation rates, and dinitrogen fixation rates are amongst the diagnostics that have been used to infer iron limitation in some marine systems. An alternative approach to diagnosing iron-limitation uses molecules whose abundance increases in response to iron-limitation. These include cell surface iron-transport proteins, and the electron transfer protein flavodoxin which replaces the Fe-S protein ferredoxin in many Fe-deficient algae and cyanobacteria.
Collapse
Affiliation(s)
- R J Geider
- College of Marine Studies, University of Delaware, 19958-1298, Lewes, DE, USA
| | | |
Collapse
|
39
|
Beale SI, Weinstein JD. Chapter 5 Biochemistry and regulation of photosynthetic pigment formation in plants and algae. BIOSYNTHESIS OF TETRAPYRROLES 1991. [DOI: 10.1016/s0167-7306(08)60112-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
40
|
Schuster G, Nechushtai R, Ferreira PC, Thornber JP, Ohad I. Structure and biogenesis of Chlamydomonas reinhardtii photosystem I. EUROPEAN JOURNAL OF BIOCHEMISTRY 1988; 177:411-6. [PMID: 3056724 DOI: 10.1111/j.1432-1033.1988.tb14390.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The photosystem I complex of the green alga Chlamydomonas reinhardtii was isolated and fractionated into its two subcomplex components: the core complex (CC I), which contained the reaction center (P-700) and had four polypeptide subunits, and the light-harvesting complex (LHC I) which contained four polypeptides of about 22, 25, 26 and 27 kDa. The 22-kDa apoprotein was isolated as a chlorophyll a and b binding protein. In the isolated photosystem I holocomplex, about ten copies of the 22-kDa LHC I apoprotein are present for each CC I unit. The 22-kDa polypeptide as well as the other three polypeptides of this complex and the subunit II of CC I are translated on 80S cytoplasmic ribosomes, and therefore are coded in the nucleus. During the greening process of the Chlamydomonas reinhardtii y-1 mutant the 22-kDa LHC I polypeptide, which cross-reacts with polyclonal antibodies raised against the Lemna gibba 20-kDa LHC I apoprotein, accumulates in thylakoids at a late stage of their development, and about 2-3 h after the LHC II and CC I subunit II polypeptides have accumulated. Accumulation of the 22-kDa protein during greening is inhibited by cycloheximide but not by chloramphenicol.
Collapse
Affiliation(s)
- G Schuster
- Department of Biological Chemistry, Hebrew University of Jerusalem, Israel
| | | | | | | | | |
Collapse
|
41
|
Caffrey M, Werner BG, Priestley DA. A crystalline lipid phase in a dry biological system: evidence from X-ray diffraction analysis of Typha latifolia pollen. BIOCHIMICA ET BIOPHYSICA ACTA 1987; 921:124-34. [PMID: 3620484 DOI: 10.1016/0005-2760(87)90178-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The temperature limits for germination in Typha latifolia pollen lie within the range 4-40 degrees C. These limits correlate at the low-temperature end with the 'crystallization' of endogenous triacylglycerols and on the high-temperature end with the 'melting' of a gel-like lipid component in intact pollen. X-ray diffraction analysis was used to structurally characterize and to trace the latter gel-like lipid from the intact pollen through a range of pollen lipid fractions. We tentatively identify this component as a fatty acyl sterol ester and present evidence that it resides in the exine of the pollen grain. Its thermotropic behavior is insensitive to pollen hydration. The possibility of interpreting a crystalline lipid phase as being membrane-derived when in fact it originates from contaminating non-membranous neutral lipid is discussed. The total lipid content of T. latifolia pollen is 123 mg/g dry weight, of which 37% is polar lipid. The neutral lipid consists primarily of triacylglycerols and of the aforementioned sterol ester, which represents 0.34% (w/w) of pollen dry weight. The polar lipid fraction has phosphatidylcholine, phosphatidylethanolamine and phosphatidic acid as major components with lesser amounts of phosphatidylglycerol and phosphatidylinositol. Palmitic (16:0) and linoleic (18:2) acids, in a 1:2 molar ratio, constitute the major fatty acids of both polar and neutral lipid fractions with lesser amounts of linolenic (18:3), oleic (18:1) and stearic (18:0) acid in evidence.
Collapse
|
42
|
Guikema JA, Freeman L, Fleming EH. Effects of Gabaculine on Pigment Biosynthesis in Normal and Nutrient Deficient Cells of Anacystis nidulans. PLANT PHYSIOLOGY 1986; 82:280-4. [PMID: 16665007 PMCID: PMC1056103 DOI: 10.1104/pp.82.1.280] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Pigment biosynthesis in the cyanobacterium, Anacystis nidulans, was examined in the presence of gabaculine (5-amino-1,3-cyclohexadienyl-carboxylic acid). At 20 micromolar, this inhibitor blocked the biosynthesis of both chlorophyll and phycocyanin. Analogs of gabaculine were not effective as inhibitors of chlorophyll or phycocyanin biosynthesis. Iron- and phosphate-deficient cultures were 2- to 4-fold more sensitive to the inhibitor than were normal or nitrate-deficient cultures. Inhibition resulted in the excretion of a mixture of organic acids by the cells. delta-Aminolevulinic acid was a principle component of the mixture, identified by thin layer chromatography. Excretion of delta-aminolevulinic acid occurred following a brief lag after gabaculine addition. It remained linear for nearly 24 hours and was dependent upon illumination. However, high light inhibited excretion. Apparently, gabaculine blocks chlorophyll biosynthesis after the formation of delta-aminolevulinic acid in cyanobacteria.
Collapse
Affiliation(s)
- J A Guikema
- Department of Biology, Kansas State University, Manhattan, Kansas 66506
| | | | | |
Collapse
|
43
|
Clairmont KB, Hagar WG, Davis EA. Manganese toxicity to chlorophyll synthesis in tobacco callus. PLANT PHYSIOLOGY 1986; 80:291-3. [PMID: 16664602 PMCID: PMC1075100 DOI: 10.1104/pp.80.1.291] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Tobacco (Nicotiana tabacum) pith explants were grown on manganese containing medium. At moderate concentration (10 millimolar), manganese selectively inhibited chlorophyll synthesis, resulting initially in growth of white callus. Several weeks later the white callus turned brown due to the accumulation of a pigment identified as protoporphyrin IX by its elution profile using high performance liquid chromatography, by its absorption spectrum, and by its fluorescence properties. At a concentration of 100 millimolar manganese the pigment accumulated without growth of the explant.
Collapse
Affiliation(s)
- K B Clairmont
- Department of Biology, University of Massachusetts at Boston, Boston, Massachusetts 02125
| | | | | |
Collapse
|
44
|
Wong YS, Castelfranco PA. Resolution and Reconstitution of Mg-Protoporphyrin IX Monomethyl Ester (Oxidative) Cyclase, the Enzyme System Responsible for the Formation of the Chlorophyll Isocyclic Ring. PLANT PHYSIOLOGY 1984; 75:658-61. [PMID: 16663682 PMCID: PMC1066971 DOI: 10.1104/pp.75.3.658] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Mg-protoporphyrin IX monomethyl ester (oxidative) cyclase, the system responsible for the formation of the chlorophyll isocyclic ring in developing cucumber (Cucumis sativus L. cv Beit Alpha) chloroplasts, was resolved into two enzymic components: a high-speed supernatant and a membrane pellet. This reconstituted enzyme system required reduced pyridine nucleotide for activity.
Collapse
Affiliation(s)
- Y S Wong
- Department of Botany, University of California, Davis, California 95616
| | | |
Collapse
|
45
|
Fufsler TP, Castelfranco PA, Wong YS. Formation of Mg-Containing Chlorophyll Precursors from Protoporphyrin IX, delta-Aminolevulinic Acid, and Glutamate in Isolated, Photosynthetically Competent, Developing Chloroplasts. PLANT PHYSIOLOGY 1984; 74:928-33. [PMID: 16663535 PMCID: PMC1066794 DOI: 10.1104/pp.74.4.928] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Intact developing chloroplasts isolated from greening cucumber (Cucumis sativus L. var Beit Alpha) cotyledons were found to contain all the enzymes necessary for the synthesis of chlorophyllide. Glutamate was converted to Mg-protoporphyrin IX (monomethyl ester) and protoclorophyllide. delta-Aminolevulinic acid and protoporphyrin IX were converted to Mg-protoporphyrin IX, Mg-protoporphyrin IX monomethyl ester, protochlorophyllide and chlorophyllide a. The conversion of delta-aminolevulinic acid or protoporphyrin IX to Mg-protoporphyrin IX (monomethyl ester) was inhibited by AMP and p-chloromercuribenzene sulfonate. Light stimulated the formation of Mg-protoporphyrin IX from all three substrates. In the case of delta-aminolevulinic acid and protoporphyrin IX, light could be replaced by exogenous ATP. In the case of glutamate, both ATP and reducing power were necessary to replace light. With all three substrates, glutamate, delta-aminolevulinic acid, and protoporphyrin IX, the stimulation of Mg-protoporphyrin IX accumulation in the light was abolished by DCMU, and this DCMU block was overcome by added ATP and reducing power.
Collapse
Affiliation(s)
- T P Fufsler
- Department of Botany, University of California, Davis, California 95616
| | | | | |
Collapse
|
46
|
Mudliar A, Bharti S. Mechanism of benzyladenine-induced chlorophyll synthesis in excised cucumber cotyledons. ACTA ACUST UNITED AC 1984. [DOI: 10.1016/s0015-3796(84)80010-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
47
|
Crawford MS, Wang WY. Metabolism of Magnesium Protoporphyrin Monomethyl Ester in Chlamydomonas reinhardtii. PLANT PHYSIOLOGY 1983; 71:303-6. [PMID: 16662822 PMCID: PMC1066029 DOI: 10.1104/pp.71.2.303] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The y-1 mutant of Chlamydomonas reinhardtii is defective in the conversion of protochlorophyllide (Pchlide) to chlorophyllide in the dark. Aerobic delta-aminolevulinic acid (ALA) feeding of y-1 cells causes protoporphyrin monomethyl ester (PME) to accumulate in addition to increased levels of Pchlide. y-1 cell homogenates are not capable of methylating protoporphyrin (PROTO) to form PME but can methylate magnesium protoporphyrin (MgP) to form magnesium protoporphyrin monomethyl ester (MgPME). Anaerobic ALA feeding of y-1 causes concomitant accumulation of PME and MgPME. y-1 cells treated with alpha,alpha'-dipyridyl (DP) accumulate MgPME but not PROTO or PME. A mutant strain (bme) of Chlamydomonas has been isolated which has very little chlorophyll and accumulates PME. bme Cell homogenates can methylate MgP but not PROTO. We propose that: (a) in Chlamydomonas, PME is the initial breakdown product of MgPME; (b) both the breakdown of MgPME to PME and the conversion of MgPME to Pchlide require O(2); (c) the breakdown of MgPME to PME appears to require Fe; and (d) the PME accumulated in the bme mutant is the result of an increased breakdown of MgPME.
Collapse
Affiliation(s)
- M S Crawford
- Department of Botany and Genetics Ph.D. Program, University of Iowa, Iowa City, Iowa 52242
| | | |
Collapse
|
48
|
Houghton JD, Honeybourne CL, Smith KM, Tabba HD, Jones OT. The use of N-methylprotoporphyrin dimethyl ester to inhibit ferrochelatase in Rhodopseudomonas sphaeroides and its effect in promoting biosynthesis of magnesium tetrapyrroles. Biochem J 1982; 208:479-86. [PMID: 6984332 PMCID: PMC1153987 DOI: 10.1042/bj2080479] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
N-Methylprotoporphyrin dimethyl ester inhibits ferrochelatase in isolated membranes of Rhodopseudomonas sphaeroides at low concentrations (around 10 nm). Full inhibition developed after a short lag phase. The inhibition was non-competitive with porphyrin substrate. Addition of inhibitor to growing cultures of Rps. sphaeroides caused a decrease (near 40%) in cytochrome content and a severe inhibition of ferrochelatase; the excretion of haem into the medium by cell suspensions was also severely inhibited. The addition of N-methylprotoporphyrin dimethyl ester to suspensions of photosynthetically competent Rps. sphaeroides Ga caused excretion of Mg-protoporphyrin monomethyl ester. When added to mutants V3 and O1, magnesium divinylphaeoporphyrin a5 monomethyl ester and 2-devinyl-2-hydroxyethylphaeophorbide a were excreted, with maximum effect at around 3 microM-inhibitor in the medium. The results are interpreted to suggest that the inhibitor decreases concentration of intracellular haem, which normally controls the activity of 5-aminolaevulinate synthetase. Unregulated activity of this enzyme leads to overproduction of protoporphyrin, which is diverted to the bacteriochlorophyll pathway. Further control operates at magnesium protoporphyrin ester conversion in normal cells.
Collapse
|