1
|
Tian X, Li Y, Wang S, Zou H, Xiao Q, Ma B, Ma F, Li M. Glucose uptake from the rhizosphere mediated by MdDOF3-MdHT1.2 regulates drought resistance in apple. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:1566-1581. [PMID: 38205680 PMCID: PMC11123392 DOI: 10.1111/pbi.14287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/28/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024]
Abstract
In plants under drought stress, sugar content in roots increases, which is important for drought resistance. However, the molecular mechanisms for controlling the sugar content in roots during response to drought remain elusive. Here, we found that the MdDOF3-MdHT1.2 module-mediated glucose influx into the root is essential for drought resistance in apple (Malus × domestica). Drought induced glucose uptake from the rhizosphere and up-regulated the transcription of hexose transporter MdHT1.2. Compared with the wild-type plants, overexpression of MdHT1.2 promoted glucose uptake from the rhizosphere, thereby facilitating sugar accumulation in root and enhancing drought resistance, whereas silenced plants showed the opposite phenotype. Furthermore, ATAC-seq, RNA-seq and biochemical analysis demonstrated that MdDOF3 directly bound to the promoter of MdHT1.2 and was strongly up-regulated under drought. Overexpression of MdDOF3 in roots improved MdHT1.2-mediated glucose transport capacity and enhanced plant resistance to drought, but MdDOF3-RNAihr apple plants showed the opposite phenotype. Moreover, overexpression of MdDOF3 in roots did not attenuate drought sensitivity in MdHT1.2-RNAi plants, which was correlated with a lower glucose uptake capacity and glucose content in root. Collectively, our findings deciphered the molecular mechanism through which glucose uptake from the rhizosphere is mediated by MdDOF3-MdHT1.2, which acts to modulate sugar content in root and promote drought resistance.
Collapse
Affiliation(s)
- Xiaocheng Tian
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Shaanxi Key Laboratory of AppleNorthwest A&F UniversityYanglingShaanxiChina
| | - Yuxing Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Shaanxi Key Laboratory of AppleNorthwest A&F UniversityYanglingShaanxiChina
| | - Shaoteng Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Shaanxi Key Laboratory of AppleNorthwest A&F UniversityYanglingShaanxiChina
| | - Hui Zou
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Shaanxi Key Laboratory of AppleNorthwest A&F UniversityYanglingShaanxiChina
| | - Qian Xiao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Shaanxi Key Laboratory of AppleNorthwest A&F UniversityYanglingShaanxiChina
| | - Baiquan Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Shaanxi Key Laboratory of AppleNorthwest A&F UniversityYanglingShaanxiChina
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Shaanxi Key Laboratory of AppleNorthwest A&F UniversityYanglingShaanxiChina
| | - Mingjun Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Shaanxi Key Laboratory of AppleNorthwest A&F UniversityYanglingShaanxiChina
| |
Collapse
|
2
|
Jiang Z, Yang H, Zhu M, Wu L, Yan F, Qian H, He W, Liu D, Chen H, Chen L, Ding Y, Sakr S, Li G. The Inferior Grain Filling Initiation Promotes the Source Strength of Rice Leaves. RICE (NEW YORK, N.Y.) 2023; 16:41. [PMID: 37715876 PMCID: PMC10505135 DOI: 10.1186/s12284-023-00656-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/22/2023] [Indexed: 09/18/2023]
Abstract
Poor grain-filling initiation in inferior spikelets severely impedes rice yield improvement, while photo-assimilates from source leaves can greatly stimulate the initiation of inferior grain-filling (sink). To investigate the underlying mechanism of source-sink interaction, a two-year field experiment was conducted in 2019 and 2020 using two large-panicle rice cultivars (CJ03 and W1844). The treatments included intact panicles and partial spikelet removal. These two cultivars showed no significant difference in the number of spikelets per panicle. However, after removing spikelet, W1844 showed higher promotion on 1000-grain weight and seed-setting rate than CJ03, particularly for inferior spikelets. The reason was that the better sink activity of W1844 led to a more effective initiation of inferior grain-filling compared to CJ03. The inferior grain weight of CJ03 and W1844 did not show a significant increase until 8 days poster anthesis (DPA), which follows a similar pattern to the accumulation of photo-assimilates in leaves. After removing spikelets, the source leaves of W1844 exhibited lower photosynthetic inhibition compared to CJ03, as well as stronger metabolism and transport of photo-assimilates. Although T6P levels remained constant in both cultivars under same conditions, the source leaves of W1844 showed notable downregulation of SnRK1 activity and upregulation of phytohormones (such as abscisic acid, cytokinins, and auxin) after removing spikelets. Hence, the high sink strength of inferior spikelets plays a role in triggering the enhancement of source strength in rice leaves, thereby fulfilling grain-filling initiation demands.
Collapse
Affiliation(s)
- Zhengrong Jiang
- Sanya Institute of Nanjing Agriculture, Jiangsu Collaborative Innovation Center for Modern Crop Production, Key Laboratory of Crop Physiology Ecology and Production Management, Nanjing Agricultural University, Sanya, 572000, China
- China- Kenya Belt and Road Joint Laboratory on Crop Molecular Biology, Nanjing, 210095, China
- Institut Agro, University of Angers, INRAE, IRHS, SFR 4207 QUASAV, Angers, 49000, France
| | - Hongyi Yang
- Sanya Institute of Nanjing Agriculture, Jiangsu Collaborative Innovation Center for Modern Crop Production, Key Laboratory of Crop Physiology Ecology and Production Management, Nanjing Agricultural University, Sanya, 572000, China
- China- Kenya Belt and Road Joint Laboratory on Crop Molecular Biology, Nanjing, 210095, China
| | - Meichen Zhu
- Sanya Institute of Nanjing Agriculture, Jiangsu Collaborative Innovation Center for Modern Crop Production, Key Laboratory of Crop Physiology Ecology and Production Management, Nanjing Agricultural University, Sanya, 572000, China
- China- Kenya Belt and Road Joint Laboratory on Crop Molecular Biology, Nanjing, 210095, China
| | - Longmei Wu
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Feiyu Yan
- School of Life Sciences and Food Engineering, Huaiyin Institute of Technology, Huai'an, 223003, China
| | - Haoyu Qian
- Sanya Institute of Nanjing Agriculture, Jiangsu Collaborative Innovation Center for Modern Crop Production, Key Laboratory of Crop Physiology Ecology and Production Management, Nanjing Agricultural University, Sanya, 572000, China
- China- Kenya Belt and Road Joint Laboratory on Crop Molecular Biology, Nanjing, 210095, China
| | - Wenjun He
- Sanya Institute of Nanjing Agriculture, Jiangsu Collaborative Innovation Center for Modern Crop Production, Key Laboratory of Crop Physiology Ecology and Production Management, Nanjing Agricultural University, Sanya, 572000, China
- China- Kenya Belt and Road Joint Laboratory on Crop Molecular Biology, Nanjing, 210095, China
| | - Dun Liu
- Sanya Institute of Nanjing Agriculture, Jiangsu Collaborative Innovation Center for Modern Crop Production, Key Laboratory of Crop Physiology Ecology and Production Management, Nanjing Agricultural University, Sanya, 572000, China
- China- Kenya Belt and Road Joint Laboratory on Crop Molecular Biology, Nanjing, 210095, China
| | - Hong Chen
- Sanya Institute of Nanjing Agriculture, Jiangsu Collaborative Innovation Center for Modern Crop Production, Key Laboratory of Crop Physiology Ecology and Production Management, Nanjing Agricultural University, Sanya, 572000, China
- China- Kenya Belt and Road Joint Laboratory on Crop Molecular Biology, Nanjing, 210095, China
| | - Lin Chen
- Sanya Institute of Nanjing Agriculture, Jiangsu Collaborative Innovation Center for Modern Crop Production, Key Laboratory of Crop Physiology Ecology and Production Management, Nanjing Agricultural University, Sanya, 572000, China
- China- Kenya Belt and Road Joint Laboratory on Crop Molecular Biology, Nanjing, 210095, China
| | - Yanfeng Ding
- Sanya Institute of Nanjing Agriculture, Jiangsu Collaborative Innovation Center for Modern Crop Production, Key Laboratory of Crop Physiology Ecology and Production Management, Nanjing Agricultural University, Sanya, 572000, China
- China- Kenya Belt and Road Joint Laboratory on Crop Molecular Biology, Nanjing, 210095, China
| | - Soulaiman Sakr
- Institut Agro, University of Angers, INRAE, IRHS, SFR 4207 QUASAV, Angers, 49000, France
| | - Ganghua Li
- Sanya Institute of Nanjing Agriculture, Jiangsu Collaborative Innovation Center for Modern Crop Production, Key Laboratory of Crop Physiology Ecology and Production Management, Nanjing Agricultural University, Sanya, 572000, China.
- China- Kenya Belt and Road Joint Laboratory on Crop Molecular Biology, Nanjing, 210095, China.
| |
Collapse
|
3
|
Chu KL, Koley S, Jenkins LM, Bailey SR, Kambhampati S, Foley K, Arp JJ, Morley SA, Czymmek KJ, Bates PD, Allen DK. Metabolic flux analysis of the non-transitory starch tradeoff for lipid production in mature tobacco leaves. Metab Eng 2022; 69:231-248. [PMID: 34920088 PMCID: PMC8761171 DOI: 10.1016/j.ymben.2021.12.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 10/12/2021] [Accepted: 12/11/2021] [Indexed: 12/19/2022]
Abstract
The metabolic plasticity of tobacco leaves has been demonstrated via the generation of transgenic plants that can accumulate over 30% dry weight as triacylglycerols. In investigating the changes in carbon partitioning in these high lipid-producing (HLP) leaves, foliar lipids accumulated stepwise over development. Interestingly, non-transient starch was observed to accumulate with plant age in WT but not HLP leaves, with a drop in foliar starch concurrent with an increase in lipid content. The metabolic carbon tradeoff between starch and lipid was studied using 13CO2-labeling experiments and isotopically nonstationary metabolic flux analysis, not previously applied to the mature leaves of a crop. Fatty acid synthesis was investigated through assessment of acyl-acyl carrier proteins using a recently derived quantification method that was extended to accommodate isotopic labeling. Analysis of labeling patterns and flux modeling indicated the continued production of unlabeled starch, sucrose cycling, and a significant contribution of NADP-malic enzyme to plastidic pyruvate production for the production of lipids in HLP leaves, with the latter verified by enzyme activity assays. The results suggest an inherent capacity for a developmentally regulated carbon sink in tobacco leaves and may in part explain the uniquely successful leaf lipid engineering efforts in this crop.
Collapse
Affiliation(s)
- Kevin L Chu
- Donald Danforth Plant Science Center, St. Louis, Missouri, 63132, USA
| | - Somnath Koley
- Donald Danforth Plant Science Center, St. Louis, Missouri, 63132, USA
| | - Lauren M Jenkins
- Donald Danforth Plant Science Center, St. Louis, Missouri, 63132, USA
| | - Sally R Bailey
- Donald Danforth Plant Science Center, St. Louis, Missouri, 63132, USA; United States Department of Agriculture-Agriculture Research Service, Donald Danforth Plant Science Center, St. Louis, Missouri, 63132, USA
| | | | - Kevin Foley
- Donald Danforth Plant Science Center, St. Louis, Missouri, 63132, USA
| | - Jennifer J Arp
- Donald Danforth Plant Science Center, St. Louis, Missouri, 63132, USA
| | - Stewart A Morley
- Donald Danforth Plant Science Center, St. Louis, Missouri, 63132, USA; United States Department of Agriculture-Agriculture Research Service, Donald Danforth Plant Science Center, St. Louis, Missouri, 63132, USA
| | - Kirk J Czymmek
- Donald Danforth Plant Science Center, St. Louis, Missouri, 63132, USA
| | - Philip D Bates
- Institute of Biological Chemistry, Washington State University, Pullman, WA, 99164-6340, USA
| | - Doug K Allen
- Donald Danforth Plant Science Center, St. Louis, Missouri, 63132, USA; United States Department of Agriculture-Agriculture Research Service, Donald Danforth Plant Science Center, St. Louis, Missouri, 63132, USA.
| |
Collapse
|
4
|
McIntyre KE, Bush DR, Argueso CT. Cytokinin Regulation of Source-Sink Relationships in Plant-Pathogen Interactions. FRONTIERS IN PLANT SCIENCE 2021; 12:677585. [PMID: 34504504 PMCID: PMC8421792 DOI: 10.3389/fpls.2021.677585] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 07/12/2021] [Indexed: 06/01/2023]
Abstract
Cytokinins are plant hormones known for their role in mediating plant growth. First discovered for their ability to promote cell division, this class of hormones is now associated with many other cellular and physiological functions. One of these functions is the regulation of source-sink relationships, a tightly controlled process that is essential for proper plant growth and development. As discovered more recently, cytokinins are also important for the interaction of plants with pathogens, beneficial microbes and insects. Here, we review the importance of cytokinins in source-sink relationships in plants, with relation to both carbohydrates and amino acids, and highlight a possible function for this regulation in the context of plant biotic interactions.
Collapse
Affiliation(s)
- Kathryn E. McIntyre
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO, United States
- Graduate Program in Cell and Molecular Biology, Colorado State University, Fort Collins, CO, United States
| | - Daniel R. Bush
- Department of Biology, Colorado State University, Fort Collins, CO, United States
| | - Cristiana T. Argueso
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO, United States
- Graduate Program in Cell and Molecular Biology, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
5
|
Li Z, Zhu A, Song Q, Chen HY, Harmon FG, Chen ZJ. Temporal Regulation of the Metabolome and Proteome in Photosynthetic and Photorespiratory Pathways Contributes to Maize Heterosis. THE PLANT CELL 2020; 32:3706-3722. [PMID: 33004616 PMCID: PMC7721322 DOI: 10.1105/tpc.20.00320] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 08/17/2020] [Accepted: 09/29/2020] [Indexed: 05/04/2023]
Abstract
Heterosis or hybrid vigor is widespread in plants and animals. Although the molecular basis for heterosis has been extensively studied, metabolic and proteomic contributions to heterosis remain elusive. Here we report an integrative analysis of time-series metabolome and proteome data in maize (Zea mays) hybrids and their inbred parents. Many maize metabolites and proteins are diurnally regulated, and many of these show nonadditive abundance in the hybrids, including key enzymes and metabolites involved in carbon assimilation. Compared with robust trait heterosis, metabolic heterosis is relatively mild. Interestingly, most amino acids display negative mid-parent heterosis (MPH), i.e., having lower values than the average of the parents, while sugars, alcohols, and nucleoside metabolites show positive MPH. From the network perspective, metabolites in the photosynthetic pathway show positive MPH, whereas metabolites in the photorespiratory pathway show negative MPH, which corresponds to nonadditive protein abundance and enzyme activities of key enzymes in the respective pathways in the hybrids. Moreover, diurnally expressed proteins that are upregulated in the hybrids are enriched in photosynthesis-related gene-ontology terms. Hybrids may more effectively remove toxic metabolites generated during photorespiration, and thus maintain higher photosynthetic efficiency. These metabolic and proteomic resources provide unique insight into heterosis and its utilization for high yielding maize and other crop plants.
Collapse
Affiliation(s)
- Zhi Li
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712
| | - Andan Zhu
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712
| | - Qingxin Song
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Helen Y Chen
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712
| | - Frank G Harmon
- Plant Gene Expression Center, Agricultural Research Service, U.S. Department of Agriculture, Albany, California 94710
- Department of Plant & Microbial Biology, University of California, Berkeley, California 94720
| | - Z Jeffrey Chen
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712
| |
Collapse
|
6
|
Ren R, Yue X, Li J, Xie S, Guo S, Zhang Z. Coexpression of Sucrose Synthase and the SWEET Transporter, Which Are Associated With Sugar Hydrolysis and Transport, Respectively, Increases the Hexose Content in Vitis vinifera L. Grape Berries. FRONTIERS IN PLANT SCIENCE 2020; 11:321. [PMID: 32457764 PMCID: PMC7221319 DOI: 10.3389/fpls.2020.00321] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 03/04/2020] [Indexed: 05/05/2023]
Abstract
The sugar content of grape berries is affected by many factors. To explore the hexose content in different cultivars, the photosynthesis, vegetative, and reproductive biomass, as well as the enzyme activities and expression levels of genes related to sugar metabolism and sugar contents were measured. Samples were collected 70-110 days after anthesis (DAA), from Riesling (RI), Petit Manseng (PM), and Cabernet Sauvignon (CS) berries cultivated in the field. The results indicated that high expression levels of VvSWEET15 and VvSS3 and a high activity of sucrose synthase (SS) are associated with a higher hexose content in the berries of PM than in the berries of the other two cultivars. These genes promoted hexose accumulation in the berries by regulating sugar hydrolysis and transport. The results of this study indicate that active sugar hydrolysis and transport increase the hexose content of PM berries, which provides insights for grape berry quality improvement and breeding projects in wine production. Main Conclusion: The active VvSS3, sucrose synthase (SS), and VvSWEET15 increases the hexose content in Petit Manseng berries, which are associated with sugar hydrolysis and transport.
Collapse
Affiliation(s)
- Ruihua Ren
- College of Enology, Northwest A&F University, Yangling, China
| | - Xiaofeng Yue
- College of Enology, Northwest A&F University, Yangling, China
| | - Junnan Li
- College of Enology, Northwest A&F University, Yangling, China
| | - Sha Xie
- College of Enology, Northwest A&F University, Yangling, China
| | - Shuihuan Guo
- College of Enology, Northwest A&F University, Yangling, China
| | - Zhenwen Zhang
- College of Enology, Northwest A&F University, Yangling, China
- Shaanxi Engineering Research Center for Viti-Viniculture, Northwest A&F University, Yangling, China
| |
Collapse
|
7
|
Liang XG, Gao Z, Zhang L, Shen S, Zhao X, Liu YP, Zhou LL, Paul MJ, Zhou SL. Seasonal and diurnal patterns of non-structural carbohydrates in source and sink tissues in field maize. BMC PLANT BIOLOGY 2019; 19:508. [PMID: 31752685 PMCID: PMC6868840 DOI: 10.1186/s12870-019-2068-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Accepted: 10/09/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Carbohydrate partitioning and utilization is a key determinant of growth rate and of yield in plants and crops. There are few studies on crops in field conditions. In Arabidopsis, starch accumulation in leaves is a negative indicator of growth rate. RESULTS Here, we wished to establish if starch accumulation in leaves could potentially be a marker for growth rate and yield in crops such as maize. We characterized daily patterns of non-structural carbohydrate (NSC) at different growth stages over two seasons for maize hybrids in the field. In 27 commercial hybrids, we found a significant negative relationship between residual starch in leaves and plant growth, but not with final yield and biomass. We then focused on three typical hybrids and established a method for calculation of C turnover in photosynthetic leaves that took into account photosynthesis, leaf area and NSC accumulation. The ratios of stored NSC decreased from approximately 15% to less than 4% with ongoing ontogeny changes from V7 to 28 days after pollination. CONCLUSION The proportion rather than absolute amount of carbon partitioned to starch in leaves at all stages of development related well with yield and biomass accumulation. It is proposed that screening plants at an early vegetative growth stage such as V7 for partitioning into storage may provide a prospective method for maize hybrid selection. Our study provides the basis for further validation as a screening tool for yield.
Collapse
Affiliation(s)
- Xiao-Gui Liang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193 China
- Current address: Plant Science, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ UK
| | - Zhen Gao
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193 China
| | - Li Zhang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193 China
| | - Si Shen
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193 China
| | - Xue Zhao
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193 China
| | - Yun-Peng Liu
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193 China
- School of Bioengineering, Binzhou University, Binzhou, 256600 Shandong China
| | - Li-Li Zhou
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193 China
| | - Matthew J. Paul
- Current address: Plant Science, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ UK
| | - Shun-Li Zhou
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193 China
- Scientific Observation and Experimental Station of Crop High Efficient Use of Water in Wuqiao , The Ministry of Agriculture and Rural Affairs, Wuqiao, 061802 China
| |
Collapse
|
8
|
Yuan J, Sun N, Du H, Muhammad U, Kang H, Du B, Yin S, Liu C. Correlated metabolic and elemental variations between the leaves and seeds of oak trees at contrasting geologically derived phosphorus sites. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 691:178-186. [PMID: 31319254 DOI: 10.1016/j.scitotenv.2019.07.133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/03/2019] [Accepted: 07/09/2019] [Indexed: 06/10/2023]
Abstract
The leaves and seeds of plants frequently function as the source and sink organs for distinct metabolites, which can interactively vary in response to adverse site conditions. Subtropical soils are typically characterized as having deficient phosphorus (P), calcium (Ca), and magnesium (Mg), with enriched aluminum (Al) and iron (Fe), while Al and manganese (Mn) are toxic at low pH. It remains largely unknown how leaf- and seed-sourced metabolites are synergistically linked to adapt to P-variable soils for trees in subtropical areas. Here we quantified the metabolic and elemental profiling in the mature leaves and immature seeds of Quercus variabilis at contrasting geologically-derived phosphorus sites in subtropical China. The results revealed that carbon (C) and nitrogen (N) based metabolites (primarily sugars and organic acids), as well as enzyme- and protein/nucleic acid-related elements (N, P, Mg, and Mn) played important roles toward characterizing the profiling of metabolites and ionomes in leaves and seeds at two site types, respectively. These metabolites (sugars, amino acids, and fatty acids) and elements (N, P, Mg, and Mn) of seeds were closely related to the sugars, organic acids, and elements (N, P, Mg, and Mn) of leaves at the two site types. For the most part, the content of N and P in the soil affected the accumulation of materials (such as, starchs and proteins) in seeds, as well as N and P assimilation in leaves, by influencing C- and N-containing metabolites in leaves. These results suggested that correlated disparities of C- and N-containing metabolites, along with enzyme- and protein/nucleic acid-related elements in both leaves and seeds played important roles in plants to facilitate their adaptation to nutrient-variable sites in subtropical zones.
Collapse
Affiliation(s)
- Jun Yuan
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan RD., Shanghai, China
| | - Ningxiao Sun
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan RD., Shanghai, China; Shanghai Urban Forest Research Station, State Forestry and Grassland Administration, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture, 800 Dongchuan RD., Shanghai, China
| | - Hongmei Du
- School of Design, Shanghai Jiao Tong University, 800 Dongchuan RD., Shanghai, China
| | - Umair Muhammad
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan RD., Shanghai, China
| | - Hongzhang Kang
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan RD., Shanghai, China; Shanghai Urban Forest Research Station, State Forestry and Grassland Administration, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture, 800 Dongchuan RD., Shanghai, China
| | - Baoming Du
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan RD., Shanghai, China; Shanghai Urban Forest Research Station, State Forestry and Grassland Administration, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture, 800 Dongchuan RD., Shanghai, China
| | - Shan Yin
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan RD., Shanghai, China; Shanghai Urban Forest Research Station, State Forestry and Grassland Administration, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture, 800 Dongchuan RD., Shanghai, China
| | - Chunjiang Liu
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan RD., Shanghai, China; Shanghai Urban Forest Research Station, State Forestry and Grassland Administration, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture, 800 Dongchuan RD., Shanghai, China.
| |
Collapse
|
9
|
Durand M, Mainson D, Porcheron B, Maurousset L, Lemoine R, Pourtau N. Carbon source-sink relationship in Arabidopsis thaliana: the role of sucrose transporters. PLANTA 2018; 247:587-611. [PMID: 29138971 PMCID: PMC5809531 DOI: 10.1007/s00425-017-2807-4] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 10/30/2017] [Indexed: 05/18/2023]
Abstract
MAIN CONCLUSION The regulation of source-to-sink sucrose transport is associated with AtSUC and AtSWEET sucrose transporters' gene expression changes in plants grown hydroponically under different physiological conditions. Source-to-sink transport of sucrose is one of the major determinants of plant growth. Whole-plant carbohydrates' partitioning requires the specific activity of membrane sugar transporters. In Arabidopsis thaliana plants, two families of transporters are involved in sucrose transport: AtSUCs and AtSWEETs. This study is focused on the comparison of sucrose transporter gene expression, soluble sugar and starch levels and long distance sucrose transport, in leaves and sink organs (mainly roots) in different physiological conditions (along the plant life cycle, during a diel cycle, and during an osmotic stress) in plants grown hydroponically. In leaves, the AtSUC2, AtSWEET11, and 12 genes known to be involved in phloem loading were highly expressed when sucrose export was high and reduced during osmotic stress. In roots, AtSUC1 was highly expressed and its expression profile in the different conditions tested suggests that it may play a role in sucrose unloading in roots and in root growth. The SWEET transporter genes AtSWEET12, 13, and 15 were found expressed in all organs at all stages studied, while differential expression was noticed for AtSWEET14 in roots, stems, and siliques and AtSWEET9, 10 expressions were only detected in stems and siliques. A role for these transporters in carbohydrate partitioning in different source-sink status is proposed, with a specific attention on carbon demand in roots. During development, despite trophic competition with others sinks, roots remained a significant sink, but during osmotic stress, the amount of translocated [U-14C]-sucrose decreased for rosettes and roots. Altogether, these results suggest that source-sink relationship may be linked with the regulation of sucrose transporter gene expression.
Collapse
Affiliation(s)
- Mickaël Durand
- Université de Poitiers, UMR CNRS 7267 EBI Ecologie et Biologie des Interactions, Equipe "Sucres & Echanges Végétaux-Environnement", Bâtiment B31, 3 rue Jacques Fort, TSA 51106, 86073, Poitiers Cedex 9, France
| | - Dany Mainson
- Université de Poitiers, UMR CNRS 7267 EBI Ecologie et Biologie des Interactions, Equipe "Sucres & Echanges Végétaux-Environnement", Bâtiment B31, 3 rue Jacques Fort, TSA 51106, 86073, Poitiers Cedex 9, France
| | - Benoît Porcheron
- Université de Poitiers, UMR CNRS 7267 EBI Ecologie et Biologie des Interactions, Equipe "Sucres & Echanges Végétaux-Environnement", Bâtiment B31, 3 rue Jacques Fort, TSA 51106, 86073, Poitiers Cedex 9, France
| | - Laurence Maurousset
- Université de Poitiers, UMR CNRS 7267 EBI Ecologie et Biologie des Interactions, Equipe "Sucres & Echanges Végétaux-Environnement", Bâtiment B31, 3 rue Jacques Fort, TSA 51106, 86073, Poitiers Cedex 9, France
| | - Rémi Lemoine
- Université de Poitiers, UMR CNRS 7267 EBI Ecologie et Biologie des Interactions, Equipe "Sucres & Echanges Végétaux-Environnement", Bâtiment B31, 3 rue Jacques Fort, TSA 51106, 86073, Poitiers Cedex 9, France
| | - Nathalie Pourtau
- Université de Poitiers, UMR CNRS 7267 EBI Ecologie et Biologie des Interactions, Equipe "Sucres & Echanges Végétaux-Environnement", Bâtiment B31, 3 rue Jacques Fort, TSA 51106, 86073, Poitiers Cedex 9, France.
| |
Collapse
|
10
|
Temporal Shift of Circadian-Mediated Gene Expression and Carbon Fixation Contributes to Biomass Heterosis in Maize Hybrids. PLoS Genet 2016; 12:e1006197. [PMID: 27467757 PMCID: PMC4965137 DOI: 10.1371/journal.pgen.1006197] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 06/24/2016] [Indexed: 12/31/2022] Open
Abstract
Heterosis has been widely used in agriculture, but the molecular mechanism for this remains largely elusive. In Arabidopsis hybrids and allopolyploids, increased photosynthetic and metabolic activities are linked to altered expression of circadian clock regulators, including CIRCADIAN CLOCK ASSOCIATED1 (CCA1). It is unknown whether a similar mechanism mediates heterosis in maize hybrids. Here we report that higher levels of carbon fixation and starch accumulation in the maize hybrids are associated with altered temporal gene expression. Two maize CCA1 homologs, ZmCCA1a and ZmCCA1b, are diurnally up-regulated in the hybrids. Expressing ZmCCA1 complements the cca1 mutant phenotype in Arabidopsis, and overexpressing ZmCCA1b disrupts circadian rhythms and biomass heterosis. Furthermore, overexpressing ZmCCA1b in maize reduced chlorophyll content and plant height. Reduced height stems from reduced node elongation but not total node number in both greenhouse and field conditions. Phenotypes are less severe in the field than in the greenhouse, suggesting that enhanced light and/or metabolic activities in the field can compensate for altered circadian regulation in growth vigor. Chromatin immunoprecipitation-sequencing (ChIP-seq) analysis reveals a temporal shift of ZmCCA1-binding targets to the early morning in the hybrids, suggesting that activation of morning-phased genes in the hybrids promotes photosynthesis and growth vigor. This temporal shift of ZmCCA1-binding targets correlated with nonadditive and additive gene expression in early and late stages of seedling development. These results could guide breeding better hybrid crops to meet the growing demand in food and bioenergy. All corn in the USA is grown as hybrids, which grow more vigorously and produce higher yield than their parents, a phenomenon known as heterosis. The molecular basis for heterosis remains elusive. Heterosis is predicted to arise from allelic interactions between parental genomes, leading to altered regulatory networks that promote the growth and fitness of hybrids. One such regulator is the circadian clock, which is functionally conserved in Arabidopsis and maize. Disrupting corn CCA1 expression reduces growth vigor. In corn hybrids, CCA1 proteins target thousands of output genes early in the morning, as if the hybrids wake up early to promote photosynthesis, starch metabolism and biomass accumulation. This early acting mechanism could guide breeding and selection of high-yield hybrids.
Collapse
|
11
|
Pociecha E, Rapacz M, Dziurka M, Kolasińska I. Mechanisms involved in the regulation of photosynthetic efficiency and carbohydrate partitioning in response to low- and high-temperature flooding triggered in winter rye (Secale cereale) lines with distinct pink snow mold resistances. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 104:45-53. [PMID: 27010744 DOI: 10.1016/j.plaphy.2016.03.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 03/09/2016] [Accepted: 03/11/2016] [Indexed: 06/05/2023]
Abstract
In terms of climate changes and global warming, winter hardiness could be determined by unfavorable environmental conditions other than frost. These could include flooding from melting snow and/or rain, coincident with fungal diseases. Therefore, we designed an experiment to identify potential common mechanisms of flooding tolerance and snow mold resistance, involving the regulation of photosynthetic efficiency and carbohydrate metabolism at low temperatures. Snow mold-resistant and susceptible winter rye (Secale cereale) plants were characterized by considerably different patterns of response to flooding. These differences were clearer at low temperature, thus confirming a possible role of the observed changes in snow mold tolerance. The resistant plants were characterized by lower PSII quantum yields at low temperature, combined with much higher energy flux for energy dissipation from the PSII reaction center. During flooding, the level of soluble carbohydrates increased in the resistant plants and decreased in the susceptible ones. Thus increase in resistant line was connected with a decrease in the energy dissipation rate in PSII/increased photosynthetic activity (energy flux for electron transport), a lower rate of starch degradation and higher rates of sucrose metabolism in leaves. The resistant lines accumulated larger amounts of total soluble carbohydrates in the crowns than in the leaves. Irrespective of flooding treatment, the resistant lines allocated more sugars for cell wall composition, both in the leaves and crowns. Our results clearly indicated that studies on carbohydrate changes at low temperatures or during anoxia should investigate not only the alterations in water-soluble and storage carbohydrates, but also cell wall carbohydrates. The patterns of changes observed after low and high-temperature flooding were different, indicating separate control mechanisms of these responses. These included changes in the photosynthetic apparatus, starch accumulation and cell wall carbohydrate accumulation.
Collapse
Affiliation(s)
- E Pociecha
- Department of Plant Physiology, University of Agriculture in Krakow, Podłużna 3, 30-239 Kraków, Poland.
| | - M Rapacz
- Department of Plant Physiology, University of Agriculture in Krakow, Podłużna 3, 30-239 Kraków, Poland
| | - M Dziurka
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239 Kraków, Poland
| | - I Kolasińska
- Department of Plant Genetics and Breeding, Institute of Plant Breeding and Acclimatization, Radzików, 05-870 Błonie, Poland
| |
Collapse
|
12
|
Karve AA, Alexoff D, Kim D, Schueller MJ, Ferrieri RA, Babst BA. In vivo quantitative imaging of photoassimilate transport dynamics and allocation in large plants using a commercial positron emission tomography (PET) scanner. BMC PLANT BIOLOGY 2015; 15:273. [PMID: 26552889 PMCID: PMC4640171 DOI: 10.1186/s12870-015-0658-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 11/02/2015] [Indexed: 05/09/2023]
Abstract
BACKGROUND Although important aspects of whole-plant carbon allocation in crop plants (e.g., to grain) occur late in development when the plants are large, techniques to study carbon transport and allocation processes have not been adapted for large plants. Positron emission tomography (PET), developed for dynamic imaging in medicine, has been applied in plant studies to measure the transport and allocation patterns of carbohydrates, nutrients, and phytohormones labeled with positron-emitting radioisotopes. However, the cost of PET and its limitation to smaller plants has restricted its use in plant biology. Here we describe the adaptation and optimization of a commercial clinical PET scanner to measure transport dynamics and allocation patterns of (11)C-photoassimilates in large crops. RESULTS Based on measurements of a phantom, we optimized instrument settings, including use of 3-D mode and attenuation correction to maximize the accuracy of measurements. To demonstrate the utility of PET, we measured (11)C-photoassimilate transport and allocation in Sorghum bicolor, an important staple crop, at vegetative and reproductive stages (40 and 70 days after planting; DAP). The (11)C-photoassimilate transport speed did not change over the two developmental stages. However, within a stem, transport speeds were reduced across nodes, likely due to higher (11)C-photoassimilate unloading in the nodes. Photosynthesis in leaves and the amount of (11)C that was exported to the rest of the plant decreased as plants matured. In young plants, exported (11)C was allocated mostly (88 %) to the roots and stem, but in flowering plants (70 DAP) the majority of the exported (11)C (64 %) was allocated to the apex. CONCLUSIONS Our results show that commercial PET scanners can be used reliably to measure whole-plant C-allocation in large plants nondestructively including, importantly, allocation to roots in soil. This capability revealed extreme changes in carbon allocation in sorghum plants, as they advanced to maturity. Further, our results suggest that nodes may be important control points for photoassimilate distribution in crops of the family Poaceae. Quantifying real-time carbon allocation and photoassimilate transport dynamics, as demonstrated here, will be important for functional genomic studies to unravel the mechanisms controlling phloem transport in large crop plants, which will provide crucial insights for improving yields.
Collapse
Affiliation(s)
- Abhijit A Karve
- Biological, Environmental, and Climate Sciences Department, Brookhaven National Laboratory, Upton, NY, 11973, USA.
- Present address: Purdue Research Foundation, West Lafayette, IN, 47906, USA.
| | - David Alexoff
- Biological, Environmental, and Climate Sciences Department, Brookhaven National Laboratory, Upton, NY, 11973, USA.
- Present address: Five Eleven Pharma Inc, Philadelphia, PA, 19104, USA.
| | - Dohyun Kim
- Biological, Environmental, and Climate Sciences Department, Brookhaven National Laboratory, Upton, NY, 11973, USA.
| | - Michael J Schueller
- Biological, Environmental, and Climate Sciences Department, Brookhaven National Laboratory, Upton, NY, 11973, USA.
| | - Richard A Ferrieri
- Biological, Environmental, and Climate Sciences Department, Brookhaven National Laboratory, Upton, NY, 11973, USA.
| | - Benjamin A Babst
- Biological, Environmental, and Climate Sciences Department, Brookhaven National Laboratory, Upton, NY, 11973, USA.
- Present address: School of Forestry and Natural Resources, University of Arkansas at Monticello, Monticello, AR, 71656, USA.
| |
Collapse
|
13
|
Janeczko A, Oklešťková J, Siwek A, Dziurka M, Pociecha E, Kocurek M, Novák O. Endogenous progesterone and its cellular binding sites in wheat exposed to drought stress. J Steroid Biochem Mol Biol 2013; 138:384-94. [PMID: 23973943 DOI: 10.1016/j.jsbmb.2013.07.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 07/24/2013] [Accepted: 07/29/2013] [Indexed: 12/24/2022]
Abstract
Progesterone is a basic hormone that regulates the metabolism in mammals. The presence of this compound has also been found in certain plants. It is believed that progesterone can regulate growth processes and resistance to stress, however, its precise role in plants remains unknown. The research conducted in this study was aimed at analyzing the content of endogenous progesterone and its cellular binding sites in the leaves of spring wheat exposed to drought. Changes were studied in two cultivars of wheat - a cultivar sensitive to drought (Katoda) and tolerant cultivar (Monsun). Plants had undergone periodic droughts during the seedling stage or in the phase of heading. The occurrence of free progesterone as well as its conjugated forms was observed in wheat studied. The amount of progesterone ranged from 0.2 to 5.8pmolgFW(-1) and was dependent on the cultivar, age of the plants, stage of development and fluctuated as a result of the exposure to drought. Cv. Katoda responded to a water deficit by lowering the amount of progesterone and cv. Monsun by increasing its level. Progesterone in plants grown in limited water conditions occurred primarily in a free form. While in the optimal watering conditions, some of its pool was found in the form of conjugates. In the spring wheat the occurrence of binding sites for progesterone was detected in cell membranes, cytoplasm and nuclei in the range of 10-36fmol/mg of protein. The wheat cultivars tested, Monsun and Katoda, differ in their concentration of cellular binding sites for progesterone. This number varied in the individual fractions during different stages of plant development and due to the effect of drought stress. The number of binding sites for progesterone located in the membrane fraction of seedlings and flag leaves increased significantly under drought in the cv. Katoda (35-46%), but did not change in the cv. Monsun. Whereas the number of cytoplasmic progesterone binding sites increased during the drought in the cv. Monsun (about 50%), they did not change in the cv. Katoda. Changes in the amount of progesterone and its binding sites in the cell under the influence of drought were then different depending on whether the cultivar was tolerant or sensitive to drought. The possibility of utilizing these changes as markers of drought resistance is discussed. The results obtained suggest that progesterone is a part of wheat response to stress factors (drought).
Collapse
Affiliation(s)
- Anna Janeczko
- Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239 Krakow, Poland.
| | | | | | | | | | | | | |
Collapse
|
14
|
Ruts T, Matsubara S, Wiese-Klinkenberg A, Walter A. Diel patterns of leaf and root growth: endogenous rhythmicity or environmental response? JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:3339-51. [PMID: 22223810 DOI: 10.1093/jxb/err334] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Plants are sessile organisms forced to adjust to their surrounding environment. In a single plant the photoautotrophic shoot is exposed to pronounced environmental variations recurring in a day-night 24 h (diel) cycle, whereas the heterotrophic root grows in a temporally less fluctuating environment. The contrasting habitats of shoots and roots are reflected in different diel growth patterns and their responsiveness to environmental stimuli. Differences between diel leaf growth patterns of mono- and dicotyledonous plants correspond to their different organization and placement of growth zones. In monocots, heterotrophic growth zones are organized linearly and protected from the environment by sheaths of older leaves. In contrast, photosynthetically active growth zones of dicot leaves are exposed directly to the environment and show characteristic, species-specific diel growth patterns. It is hypothesized that the different exposure to environmental constraints and simultaneously the sink/source status of the growing organs may have induced distinct endogenous control of diel growth patterns in roots and leaves of monocot and dicot plants. Confronted by strong temporal fluctuations in environment, the circadian clock may facilitate robust intrinsic control of leaf growth in dicot plants.
Collapse
Affiliation(s)
- Tom Ruts
- Forschungszentrum Jülich, IBG-2: Plant Sciences, Wilhelm-Johnen-Strasse, Jülich, Germany
| | | | | | | |
Collapse
|
15
|
Hayes KR, Beatty M, Meng X, Simmons CR, Habben JE, Danilevskaya ON. Maize global transcriptomics reveals pervasive leaf diurnal rhythms but rhythms in developing ears are largely limited to the core oscillator. PLoS One 2010; 5:e12887. [PMID: 20886102 PMCID: PMC2944807 DOI: 10.1371/journal.pone.0012887] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Accepted: 08/17/2010] [Indexed: 11/19/2022] Open
Abstract
Background Plant diurnal rhythms are vital environmental adaptations to coordinate internal physiological responses to alternating day-night cycles. A comprehensive view of diurnal biology has been lacking for maize (Zea mays), a major world crop. Methodology A photosynthetic tissue, the leaf, and a non-photosynthetic tissue, the developing ear, were sampled under natural field conditions. Genome-wide transcript profiling was conducted on a high-density 105 K Agilent microarray to investigate diurnal rhythms. Conclusions In both leaves and ears, the core oscillators were intact and diurnally cycling. Maize core oscillator genes are found to be largely conserved with their Arabidopsis counterparts. Diurnal gene regulation occurs in leaves, with some 23% of expressed transcripts exhibiting a diurnal cycling pattern. These transcripts can be assigned to over 1700 gene ontology functional terms, underscoring the pervasive impact of diurnal rhythms on plant biology. Considering the peak expression time for each diurnally regulated gene, and its corresponding functional assignment, most gene functions display temporal enrichment in the day, often with distinct patterns, such as dawn or midday preferred, indicating that there is a staged procession of biological events undulating with the diurnal cycle. Notably, many gene functions display a bimodal enrichment flanking the midday photosynthetic maximum, with an initial peak in mid-morning followed by another peak during the afternoon/evening. In contrast to leaves, in developing ears as few as 47 gene transcripts are diurnally regulated, and this set of transcripts includes primarily the core oscillators. In developing ears, which are largely shielded from light, the core oscillator therefore is intact with little outward effect on transcription.
Collapse
Affiliation(s)
- Kevin R. Hayes
- Pioneer Hi-Bred International, a DuPont Company, Johnston, Iowa, United States of America
| | - Mary Beatty
- Pioneer Hi-Bred International, a DuPont Company, Johnston, Iowa, United States of America
| | - Xin Meng
- Pioneer Hi-Bred International, a DuPont Company, Johnston, Iowa, United States of America
| | - Carl R. Simmons
- Pioneer Hi-Bred International, a DuPont Company, Johnston, Iowa, United States of America
| | - Jeffrey E. Habben
- Pioneer Hi-Bred International, a DuPont Company, Johnston, Iowa, United States of America
| | - Olga N. Danilevskaya
- Pioneer Hi-Bred International, a DuPont Company, Johnston, Iowa, United States of America
- * E-mail:
| |
Collapse
|
16
|
Duncan KA, Huber SC. Sucrose synthase oligomerization and F-actin association are regulated by sucrose concentration and phosphorylation. PLANT & CELL PHYSIOLOGY 2007; 48:1612-1623. [PMID: 17932116 DOI: 10.1093/pcp/pcm133] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Sucrose synthase (SUS) is a key enzyme in plant metabolism, as it serves to cleave the photosynthetic end-product sucrose into UDP-glucose and fructose. SUS is generally assumed to be a tetrameric protein, but results in the present study suggest that SUS can form dimers as well as tetramers and that sucrose may be a regulatory factor for the oligomerization status of SUS. The oligomerization of SUS may also affect the cellular localization of the protein. We show that sucrose concentration modulates the ability of SUS1 to associate with F-actin in vitro and that calcium-dependent protein kinase-mediated phosphorylation of recombinant SUS1 at the Ser15 site is a negative regulator of its association with actin. Although high sucrose concentrations and hyperphosphorylation have been shown to promote SUS association with the plasma membrane, we show that the opposite is true for the SUS-actin association. We also show that SUS1 has a unique 28 residue coiled-coil domain that does not appear to play a role in oligomerization, but may prove to be significant in the future for interactions of SUS with other proteins. Collectively, these results highlight the multifaceted nature of SUS association with cellular structures.
Collapse
Affiliation(s)
- Kateri A Duncan
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | |
Collapse
|
17
|
Ihemere U, Arias-Garzon D, Lawrence S, Sayre R. Genetic modification of cassava for enhanced starch production. PLANT BIOTECHNOLOGY JOURNAL 2006; 4:453-65. [PMID: 17177810 DOI: 10.1111/j.1467-7652.2006.00195.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
To date, transgenic approaches to biofortify subsistence crops have been rather limited. This is particularly true for the starchy root crop cassava (Manihot esculenta Crantz). Cassava has one of the highest rates of CO(2) fixation and sucrose synthesis for any C3 plant, but rarely reaches its yield potentials in the field. It was our hypothesis that starch production in cassava tuberous roots could be increased substantially by increasing the sink strength for carbohydrate. To test this hypothesis, we generated transgenic plants with enhanced tuberous root ADP-glucose pyrophosphorylase (AGPase) activity. This was achieved by expressing a modified form of the bacterial glgC gene under the control of a Class I patatin promoter. AGPase catalyses the rate-limiting step in starch biosynthesis, and therefore the expression of a more active bacterial form of the enzyme was expected to lead to increased starch production. To facilitate maximal AGPase activity, we modified the Escherichia coli glgC gene (encoding AGPase) by site-directed mutagenesis (G336D) to reduce allosteric feedback regulation by fructose-1,6-bisphosphate. Transgenic plants (three) expressing the glgC gene had up to 70% higher AGPase activity than control plants when assayed under conditions optimal for plant and not bacterial AGPase activity. Plants having the highest AGPase activities had up to a 2.6-fold increase in total tuberous root biomass when grown under glasshouse conditions. In addition, plants with the highest tuberous root AGPase activity had significant increases in above-ground biomass, consistent with a possible reduction in feedback inhibition on photosynthetic carbon fixation. These results demonstrate that targeted modification of enzymes regulating source-sink relationships in crop plants having high carbohydrate source strengths is an effective strategy for increasing carbohydrate yields in sink tissues.
Collapse
Affiliation(s)
- Uzoma Ihemere
- Department of Horticulture and Crop Science, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | |
Collapse
|
18
|
Touchette BW, Burkholder JM. Overview of the physiological ecology of carbon metabolism in seagrasses. JOURNAL OF EXPERIMENTAL MARINE BIOLOGY AND ECOLOGY 2000; 250:169-205. [PMID: 10969168 DOI: 10.1016/s0022-0981(00)00196-9] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The small but diverse group of angiosperms known as seagrasses form submersed meadow communities that are among the most productive on earth. Seagrasses are frequently light-limited and, despite access to carbon-rich seawaters, they may also sustain periodic internal carbon limitation. They have been regarded as C3 plants, but many species appear to be C3-C4 intermediates and/or have various carbon-concentrating mechanisms to aid the Rubisco enzyme in carbon acquisition. Photorespiration can occur as a C loss process that may protect photosynthetic electron transport during periods of low CO(2) availability and high light intensity. Seagrasses can also become photoinhibited in high light (generally>1000 µE m(-2) s(-1)) as a protective mechanism that allows excessive light energy to be dissipated as heat. Many photosynthesis-irradiance curves have been developed to assess light levels needed for seagrass growth. However, most available data (e.g. compensation irradiance I(c)) do not account for belowground tissue respiration and, thus, are of limited use in assessing the whole-plant carbon balance across light gradients. Caution is recommended in use of I(k) (saturating irradiance for photosynthesis), since seagrass photosynthesis commonly increases under higher light intensities than I(k); and in estimating seagrass productivity from H(sat) (duration of daily light period when light equals or exceeds I(k)) which varies considerably among species and sites, and which fails to account for light-limited photosynthesis at light levels less than I(k). The dominant storage carbohydrate in seagrasses is sucrose (primarily stored in rhizomes), which generally forms more than 90% of the total soluble carbohydrate pool. Seagrasses with high I(c) levels (suggesting lower efficiency in C acquisition) have relatively low levels of leaf carbohydrates. Sucrose-P synthase (SPS, involved in sucrose synthesis) activity increases with leaf age, consistent with leaf maturation from carbon sink to source. Unlike terrestrial plants, SPS apparently is not light-activated, and is positively influenced by increasing temperature and salinity. This response may indicate an osmotic adjustment in marine angiosperms, analogous to increased SPS activity as a cryoprotectant response in terrestrial non-halophytic plants. Sucrose synthase (SS, involved in sucrose metabolism and degradation in sink tissues) of both above- and belowground tissues decreases with tissue age. In belowground tissues, SS activity increases under low oxygen availability and with increasing temperatures, likely indicating increased metabolic carbohydrate demand. Respiration in seagrasses is primarily influenced by temperature and, in belowground tissues, by oxygen availability. Aboveground tissues (involved in C assimilation and other energy-costly processes) generally have higher respiration rates than belowground (mostly storage) tissues. Respiration rates increase with increasing temperature (in excess of 40 degrees C) and increasing water-column nitrate enrichment (Z. marina), which may help to supply the energy and carbon needed to assimilate and reduce nitrate. Seagrasses translocate oxygen from photosynthesizing leaves to belowground tissues for aerobic respiration. During darkness or extended periods of low light, belowground tissues can sustain extended anerobiosis. Documented alternate fermentation pathways have yielded high alanine, a metabolic 'strategy' that would depress production of the more toxic product ethanol, while conserving carbon skeletons and assimilated nitrogen. In comparison to the wealth of information available for terrestrial plants, little is known about the physiological ecology of seagrasses in carbon acquisition and metabolism. Many aspects of their carbon metabolism - controls by interactive environmental factors; and the role of carbon metabolism in salt tolerance, growth under resource-limited conditions, and survival through periods of dormancy - remain to be resolved as directions in future research. Such research will strengthen the understanding needed to improve management and protection of these environmentally important marine angiosperms.
Collapse
Affiliation(s)
- BW Touchette
- Department of Botany Box 7510, North Carolina State University, 27695-7510, Raleigh, NC, USA
| | | |
Collapse
|
19
|
Trethewey RN, Smith AM. Starch Metabolism in Leaves. ACTA ACUST UNITED AC 2000. [DOI: 10.1007/0-306-48137-5_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
|
20
|
Carlson SJ, Chourey PS. Evidence for plasma membrane-associated forms of sucrose synthase in maize. MOLECULAR & GENERAL GENETICS : MGG 1996; 252:303-10. [PMID: 8842150 DOI: 10.1007/bf02173776] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Plasma membrane fractions were isolated from maize (Zea mays L.) endosperms and etiolated kernels to investigate the possible membrane location of the sucrose synthase (SS) protein. Endosperms from seedlings at both 12 and 21 days after pollination (DAP), representing early and mid-developmental stages, were used, in addition to etiolated leaf and elongation zones from seedlings. Plasma membrane fractions were isolated from this material using differential centrifugation and aqueous two-phase partitioning. The plasma membrane-enriched fraction obtained was then analyzed for the presence of sucrose synthase using protein blots and activity measurements. Both isozymes SS1 and SS2, encoded by the loci Sh1 and Sus1, respectively, were detected in the plasma membrane-enriched fraction using polyclonal and monoclonal antisera to SS1 and SS2 isozymes. In addition, measurements of sucrose synthase activity in plasma membrane fractions of endosperm revealed high levels of specific activity. The sucrose synthase enzyme is tightly associated with the membrane, as shown by Triton X-100 treatment of the plasma membrane-enriched fraction. It is noteworthy that the gene products of both Sh1 and Sus1 were detectable as both soluble and plasma membrane-associated forms.
Collapse
Affiliation(s)
- S J Carlson
- Program in Plant Molecular and Cellular Biology, Plant Pathology Department, University of Florida, Gainesville 32611-0680, USA
| | | |
Collapse
|
21
|
Zimmerman RC, Kohrs DG, Steller DL, Alberte RS. Carbon Partitioning in Eelgrass (Regulation by Photosynthesis and the Response to Daily Light-Dark Cycles). PLANT PHYSIOLOGY 1995; 108:1665-1671. [PMID: 12228571 PMCID: PMC157548 DOI: 10.1104/pp.108.4.1665] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Diel variations in rates of C export, sucrose-phosphate synthase (SPS) and sucrose synthase (SS) activity, and C reserves were investigated in Zostera marina L. (eelgrass) to elucidate the environmental regulation of sucrose formation and partitioning in this ecologically important species. Rates of C flux and SPS activity increased with leaf age, consistent with the ontogenic transition from sink to source status. Rates of C export and photosynthesis were low but quantitatively consistent with those of many terrestrial plant species. The Vmax activity of SPS approached that of maize, but substrate-limited rates were 20 to 25% of Vmax, indicating a large pool of inactive SPS. SPS was unresponsive to the day/night transition or to a 3-fold increase in photosynthesis generated by high [CO2] and showed little sensitivity to inorganic phosphate. Consequently, regulation of eelgrass SPS appeared similar to starch- rather than to sugar-accumulating species even though eelgrass accumulates sucrose. Leaf [sucrose] was constant and high throughout the diel cycle, which may contribute to the down-regulation of SPS. Root sucrose synthase activity was high but showed no response to nocturnal anoxia. Root [sucrose] also showed no diel cycle. The temporal stability of [sucrose] confers an ability for eelgrass to buffer the effects of prolonged light limitation that may be key to its survival and ecological success in environments subject to periods of extreme light limitation and chaotic daily variation in light availability.
Collapse
Affiliation(s)
- R. C. Zimmerman
- Department of Biology, University of California, Los Angeles, California 90024 (R.C.Z., D.G.K., D.L.S.)
| | | | | | | |
Collapse
|
22
|
Seneweera SP, Basra AS, Barlow EW, Conroy JP. Diurnal Regulation of Leaf Blade Elongation in Rice by CO2 (Is it Related to Sucrose-Phosphate Synthase Activity?). PLANT PHYSIOLOGY 1995; 108:1471-1477. [PMID: 12228556 PMCID: PMC157526 DOI: 10.1104/pp.108.4.1471] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The relationship between leaf blade elongation rates (LER) and sucrose-phosphate synthase (SPS) activity was investigated at different times during ontogeny of rice (Oryza sativa L. cv Jarrah) grown in flooded soil at either 350 or 700 [mu]L CO2 L-1. High CO2 concentrations increased LER of expanding blades and in vivo activity (Vlimiting) SPS activity of expanded blades during the early vegetative stage (21 d after planting [DAP]), when tiller number was small and growing blades were strong carbohydrate sinks. Despite a constant light environment, there was a distinct diurnal pattern in LER, Vlimiting SPS activity, and concentration of soluble sugars, with an increase in the early part of the light period and a decrease later in the light period. The strong correlation (r = 0.65) between LER and Vlimiting SPS activity over the diurnal cycle indicated that SPS activity played an important role in controlling blade growth. The higher Vlimiting SPS activity at elevated CO2 at 21 DAP was caused by an increase in the activation state of the enzyme rather than an increase in Vmax. Fructose and glucose accumulated to a greater extent than sucrose at high CO2 and may have been utilized for synthesis of cell-wall components, contributing to higher specific leaf weight. By the mid-tillering stage (42 DAP), CO2 enrichment enhanced Vlimiting and Vmax activities of source blades. Nevertheless, LER was depressed by high CO2, probably because tillers were stronger carbohydrate sinks than growing blades.
Collapse
Affiliation(s)
- S. P. Seneweera
- School of Horticulture, University of Western Sydney, Hawkesbury, Bourke Street, Richmond, New South Wales 2753, Australia
| | | | | | | |
Collapse
|
23
|
Galtier N, Foyer CH, Huber J, Voelker TA, Huber SC. Effects of Elevated Sucrose-Phosphate Synthase Activity on Photosynthesis, Assimilate Partitioning, and Growth in Tomato (Lycopersicon esculentum var UC82B). PLANT PHYSIOLOGY 1993; 101:535-543. [PMID: 12231708 PMCID: PMC160601 DOI: 10.1104/pp.101.2.535] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The expression of a sucrose-phosphate synthase (SPS) gene from maize (Zea mays, a monocotyledon) in tomato (Lycopersicon esculentum, a dicotyledon) resulted in marked increases in extractable SPS activity in the light and the dark. Diurnal modulation of the native tomato SPS activity was found. However, when the maize enzyme was present the tomato leaf cells were unable to regulate its activation state. No detrimental effects were observed and total dry matter production was unchanged. However, carbon allocation within the plants was modified such that in shoots it increased, whereas in roots it decreased. There was, therefore, a change in the shoot:root dry weight ratio favoring the shoot. This was positively correlated with increased SPS activity in leaves. SPS was a major determinant of the amount of starch in leaves as well as sucrose. There was a strong positive correlation between the ratio of sucrose to starch and SPS activity in leaves. Therefore, SPS activity is a major determinant of the partitioning of photosynthetically fixed carbon in the leaf and in the whole plant. The photosynthetic rate in air was not significantly increased as a result of elevated leaf SPS activity. However, the light- and CO2-saturated rate of photosynthesis was increased by about 20% in leaves expressing high SPS. In addition, the temporary enhancement of the photosynthetic rate following brief exposures to low light was increased in the high SPS plants relative to controls. We conclude that the level of SPS in the leaves plays a pivotal role in carbon partitioning. Furthermore, high SPS levels have the potential to boost photosynthetic rates under favorable conditions.
Collapse
Affiliation(s)
- N. Galtier
- Laboratoire du Metabolisme, Institut National de la Recherche Agronomique, Route de St-Cyr, 78026 Versailles cedex, France (N.G., C.H.F.)
| | | | | | | | | |
Collapse
|
24
|
Worrell AC, Bruneau JM, Summerfelt K, Boersig M, Voelker TA. Expression of a maize sucrose phosphate synthase in tomato alters leaf carbohydrate partitioning. THE PLANT CELL 1991; 3:1121-30. [PMID: 1840396 PMCID: PMC160077 DOI: 10.1105/tpc.3.10.1121] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
We isolated a complementary DNA sequence for the enzyme sucrose phosphate synthase (SPS) from maize utilizing a limited amino acid sequence. The 3509-bp cDNA encodes a 1068-amino acid polypeptide. The identity of the cDNA was confirmed by the ability of the cloned sequence to direct sucrose phosphate synthesis in Escherichia coli. Because no plant-specific factors were necessary for enzymatic activity, we can conclude that SPS enzyme activity is conferred by a single gene product. Sequence comparisons showed that SPS is distantly related to the enzyme sucrose synthase. When expressed from a ribulose bisphosphate carboxylase small subunit promoter in transgenic tomatoes, total SPS activity was boosted up to sixfold in leaves and appeared to be physiologically uncoupled from the tomato regulation mechanism. The elevated SPS activity caused a reduction of starch and increase of sucrose in the tomato leaves. This result clearly demonstrates that SPS is involved in the regulation of carbon partitioning in the leaves.
Collapse
|
25
|
Bruneau JM, Worrell AC, Cambou B, Lando D, Voelker TA. Sucrose phosphate synthase, a key enzyme for sucrose biosynthesis in plants: protein purification from corn leaves and immunological detection. PLANT PHYSIOLOGY 1991; 96:473-8. [PMID: 16668210 PMCID: PMC1080794 DOI: 10.1104/pp.96.2.473] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
We have purified the protein for the enzyme sucrose phosphate synthase (SPS) from corn (Zea mays) leaves. Partially purified SPS protein was used to generate specific monoclonal antibodies. The following immunoaffinity chromatography allowed the isolation of pure SPS protein. The apparent molecular mass of the SPS polypeptide is 138 kilodaltons. By immunoblot, an SPS antigen was found to accumulate in mature leaves. SPS protein levels remain constant during the day/night cycle. The observed diurnal fluctuation of extractable enzyme activity, therefore, must be caused by modification of the specific activity of SPS in vivo.
Collapse
Affiliation(s)
- J M Bruneau
- Roussel Uclaf, 102 Route De Noisy, F 93230 Romainville, France
| | | | | | | | | |
Collapse
|