1
|
Shafi A, Khan RS, Mir S, Khan GH, Masoodi KZ, Sofi NR, Mohidin FA, Lone JA, Shikari AB. Gene expression of near-isogenic lines (NILs) carrying blast resistance genes Pi9 and Pi54 in the background of rice cultivar Mushk Budji. Mol Biol Rep 2023:10.1007/s11033-023-08475-5. [PMID: 37245171 DOI: 10.1007/s11033-023-08475-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 04/19/2023] [Indexed: 05/29/2023]
Abstract
BACKGROUND Kashmir valley, India is a homeland to rice landraces like Zag, Nunbeoul, Qadirbeigh, Kawkadur, Kamad, Mushk Budji, etc., generally characterized by short grains, aroma, earliness and cold tolerance. Mushk Budji is a commercially important speciality rice known for its taste and aroma, nonetheless, is extremely vulnerable to blast disease. Through the use of the marker-assisted backcrossing (MABC) approach, a set of 24 Near-isogenic lines (NILs) was created, and the lines with the highest background genome recovery were chosen. The expression analysis was carried out for the component genes and other eight pathway genes related to blast resistance. RESULTS The major blast resistance genes Pi9 (from IRBL-9W) and Pi54 (from DHMAS 70Q 164-1b) were incorporated following simultaneous-but-step-wise MABC. The NILs harbouring genes Pi9 + Pi54, Pi9 and Pi54 expressed resistance to isolate (Mo-nwi-kash-32) under controlled and natural field conditions. The loci controlling ETI (effector triggered immunity) included the gene Pi9 and showed 61.18 and 60.27 fold change in relative gene expression in Pi54 + Pi9 and Pi9 carrying NILs against RP Mushk Budji. Pi54 was up regulated and showed 41 and 21 fold change in relative gene expression for NIL-Pi54 + Pi9 and NIL-Pi54, respectively. Among the pathway genes, LOC_Os01g60600 (WRKY 108) recorded 8 and 7.5 fold up regulation in Pi9 and Pi54 NILs. CONCLUSION The NILs showed recurrent parent genome recovery (RPG) per cent of 81.67 to 92.54 and were on par in performance to recurrent parent Mushk Budji. The lines were utilized to study the expression of the loci controlling WRKYs, peroxidases and chitinases that confer overall ETI response.
Collapse
Affiliation(s)
- Afshana Shafi
- Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences & Technology of Kashmir, Shalimar, J&K, 190 025, India
| | - Raheel Shafeeq Khan
- Division of Genetics & Plant Breeding, Sher-e-Kashmir University of Agricultural Sciences & Technology of Kashmir, Wadura, J&K, 193 201, India
| | - Saba Mir
- Mountain Research Centre for Field Crops, Sher-e-Kashmir University of Agricultural Sciences & Technology of Kashmir, Khudwani, J&K, 192 102, India
| | - Gazala H Khan
- Mountain Research Centre for Field Crops, Sher-e-Kashmir University of Agricultural Sciences & Technology of Kashmir, Khudwani, J&K, 192 102, India
| | - K Z Masoodi
- Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences & Technology of Kashmir, Shalimar, J&K, 190 025, India
| | - Najeebul Rehman Sofi
- Mountain Research Centre for Field Crops, Sher-e-Kashmir University of Agricultural Sciences & Technology of Kashmir, Khudwani, J&K, 192 102, India
| | - F A Mohidin
- Mountain Research Centre for Field Crops, Sher-e-Kashmir University of Agricultural Sciences & Technology of Kashmir, Khudwani, J&K, 192 102, India
| | - Javeed A Lone
- Mountain Research Centre for Field Crops, Sher-e-Kashmir University of Agricultural Sciences & Technology of Kashmir, Khudwani, J&K, 192 102, India
| | - Asif Bashir Shikari
- Division of Genetics & Plant Breeding, Sher-e-Kashmir University of Agricultural Sciences & Technology of Kashmir, Wadura, J&K, 193 201, India.
| |
Collapse
|
2
|
Wang Y, Li Y, Duan T. Arbuscular mycorrhizal fungus changes alfalfa response to pathogen infection activated by pea aphid infestation. Front Microbiol 2023; 13:1074592. [PMID: 36845970 PMCID: PMC9945236 DOI: 10.3389/fmicb.2022.1074592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 12/22/2022] [Indexed: 02/10/2023] Open
Abstract
Introduction Arbuscular mycorrhizal (AM) fungi are important for the resistance of plants to insect infestation and diseases. However, the effect of AM fungal colonization of plants response to pathogen infection activated by pea aphid infestation is unknown. Pea aphid (Acyrthosiphon pisum) and the fungal pathogen Phoma medicaginis severely limit alfalfa production worldwide. Methods This study established an alfalfa (Medicago sativa)-AM fungus (Rhizophagus intraradices)-pea aphid-P. medicaginis experimental system to clarify the effects of an AM fungus on the host plant response to insect infestation and subsequent fungal pathogen infection. Results Pea aphid increased the disease incidence of P. medicaginis by 24.94%. The AM fungus decreased the disease index by 22.37% and enhanced alfalfa growth by increasing the uptake of total nitrogen and total phosphorus. The aphid induced polyphenol oxidase activity of alfalfa, and the AM fungus enhanced plant-defense enzyme activity against aphid infestation and subsequent P. medicaginis infection. In addition, the AM fungus increased the contents of jasmonic acid and abscisic acid in plants exposed to aphid infestation or pathogen infection. Abscisic acid and genes associated with the gene ontology term "hormone binding" were upregulated in aphid-infested or pathogen-infected alfalfa. Discussion The results demonstrate that an AM fungus enhances plant defense and signaling components induced by aphid infestation, which may contribute to improved defense against subsequent pathogen infection.
Collapse
Affiliation(s)
- Yajie Wang
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Lanzhou University, Lanzhou, China,Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Lanzhou, China,College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Yingde Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Lanzhou University, Lanzhou, China,Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Lanzhou, China,College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Tingyu Duan
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Lanzhou University, Lanzhou, China,Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Lanzhou, China,College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China,*Correspondence: Tingyu Duan,
| |
Collapse
|
3
|
Singh S, Sharma R, Nepolean T, Nayak SN, Pushpavathi B, Khan AW, Srivastava RK, Varshney RK. Identification of genes controlling compatible and incompatible reactions of pearl millet ( Pennisetum glaucum) against blast ( Magnaporthe grisea) pathogen through RNA-Seq. FRONTIERS IN PLANT SCIENCE 2022; 13:981295. [PMID: 36212352 PMCID: PMC9544386 DOI: 10.3389/fpls.2022.981295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/11/2022] [Indexed: 06/16/2023]
Abstract
Blast [Magnaporthe grisea (Herbert) Barr] is an economically important disease in Asian pearl millet production ecologies. The recurrent occurrence of blast in the past one decade has caused enormous strain on grain and forage production. Identification of resistance genes is an important step to develop durable varieties. The present study is the first attempt to use RNA-Seq to investigate the transcript dynamics in a pearl millet inbred ICMB 93333, which had a unique differential reaction to two isolates-Pg 45 (avirulent) and Pg 174 (virulent) of M. grisea. The inbred was inoculated by both isolates and samples taken at six different time intervals for genome-wide RNA-Seq experiment. The transcriptome results revealed the differential expression of more than 2,300 genes. The time-specific comparison showed activation or repression of specific genes in various pathways. Genes and transcriptions factors related to pathogenesis-related proteins, reactive oxygen species generating and its scavenging genes, cell wall defense, primary and secondary metabolic pathways, and signaling pathways were identified by comparing the host-plant compatible and incompatible interactions. The genes identified from this experiment could be useful to understand the host-plant resistance and design novel strategies to manage blast disease in pearl millet.
Collapse
Affiliation(s)
- Shweta Singh
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Telangana, India
- Professor Jayashankar Telangana State Agricultural University (PJTSAU), Hyderabad, Telangana, India
- ICAR-Indian Institute of Sugarcane Research, Lucknow, Uttar Pradesh, India
| | - Rajan Sharma
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Telangana, India
| | | | - Spurthi N. Nayak
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Telangana, India
- Department of Biotechnology, University of Agricultural Sciences, Dharwad, Karnataka, India
| | - Bheemavarapu Pushpavathi
- Professor Jayashankar Telangana State Agricultural University (PJTSAU), Hyderabad, Telangana, India
| | - Aamir W. Khan
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Telangana, India
| | - Rakesh K. Srivastava
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Telangana, India
| | - Rajeev K. Varshney
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Telangana, India
| |
Collapse
|
4
|
Khodadadi F, Martin PL, Donahue DJ, Peter KA, Aćimović SG. Characterizations of an Emerging Disease: Apple Blotch Caused by Diplocarpon coronariae (syn. Marssonina coronaria) in the Mid-Atlantic United States. PLANT DISEASE 2022; 106:1803-1817. [PMID: 35156848 DOI: 10.1094/pdis-11-21-2557-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Apple orchards with minimal or reduced fungicide inputs in the Mid-Atlantic region of the United States have experienced outbreaks of severe premature defoliation with symptoms that matched those of apple blotch disease (ABD) caused by Diplocarpon coronariae. Fungal isolates obtained from symptomatic apple leaves and fruit produced uniform slow-growing, dark-gray colonies on peptone potato dextrose agar and had conidia. Internal transcribed spacer DNA sequences matched with D. coronariae and Koch's postulates were fulfilled when typical ABD symptoms occurred when reinoculated onto apple leaves and fruit. Spore dispersal in nonfungicide-treated orchards detected with quantitative PCR was low in early spring and dropped to undetectable levels in late May and early June before rising exponentially to highs in July and August, which coincided with symptom development. Only low spore numbers were detected in fungicide-treated orchards and nearby forests. In preliminary fungicide tests, fluxapyroxad, thiophanate methyl, and difenoconazole effectively inhibited mycelial growth of isolates in vitro. When apple cultivars Fuji and Honeycrisp were inoculated with D. coronariae, Honeycrisp showed delayed onset of symptoms and lower disease severity, and the transcription profile of seven host defense-related genes showed that PR-2, PR-8, LYK4, and CERK1 were highly induced in Honeycrisp at 2 and 5 days postinoculation. This is the first report of ABD in the Mid-Atlantic United States, which includes studies of seasonal D. coronariae spore dispersal patterns, preliminary fungicide efficacy, and host defense-related gene expression to assist development of best ABD management practices.
Collapse
Affiliation(s)
- Fatemeh Khodadadi
- Virginia Polytechnic Institute and State University, School of Plant and Environmental Sciences, Alson H. Smith Jr. Agricultural Research and Extension Center, Winchester, VA
| | - Phillip L Martin
- Pennsylvania State University, Department of Plant Pathology and Environmental Microbiology, Fruit Research and Extension Center, Biglerville, PA
| | - Daniel J Donahue
- Eastern New York Commercial Horticulture Program, Cornell Cooperative Extension, Cornell University, Highland, NY
| | - Kari A Peter
- Pennsylvania State University, Department of Plant Pathology and Environmental Microbiology, Fruit Research and Extension Center, Biglerville, PA
| | - Srđan G Aćimović
- Virginia Polytechnic Institute and State University, School of Plant and Environmental Sciences, Alson H. Smith Jr. Agricultural Research and Extension Center, Winchester, VA
| |
Collapse
|
5
|
Wang F, Sun Z, Zhu M, Zhang Q, Sun Y, Sun W, Wu C, Li T, Zhao Y, Ma C, Zhang H, Zhao Y, Wang Z. Dissecting the Molecular Regulation of Natural Variation in Growth and Senescence of Two Eutrema salsugineum Ecotypes. Int J Mol Sci 2022; 23:ijms23116124. [PMID: 35682805 PMCID: PMC9181637 DOI: 10.3390/ijms23116124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 05/22/2022] [Accepted: 05/27/2022] [Indexed: 02/01/2023] Open
Abstract
Salt cress (Eutrema salsugineum, aka Thellungiella salsuginea) is an extremophile and a close relative of Arabidopsis thaliana. To understand the mechanism of selection of complex traits under natural variation, we analyzed the physiological and proteomic differences between Shandong (SD) and Xinjiang (XJ) ecotypes. The SD ecotype has dark green leaves, short and flat leaves, and more conspicuous taproots, and the XJ ecotype had greater biomass and showed clear signs of senescence or leaf shedding with age. After 2-DE separation and ESI-MS/MS identification, between 25 and 28 differentially expressed protein spots were identified in shoots and roots, respectively. The proteins identified in shoots are mainly involved in cellular metabolic processes, stress responses, responses to abiotic stimuli, and aging responses, while those identified in roots are mainly involved in small-molecule metabolic processes, oxidation-reduction processes, and responses to abiotic stimuli. Our data revealed the evolutionary differences at the protein level between these two ecotypes. Namely, in the evolution of salt tolerance, the SD ecotype highly expressed some stress-related proteins to structurally adapt to the high salt environment in the Yellow River Delta, whereas the XJ ecotype utilizes the specialized energy metabolism to support this evolution of the short-lived xerophytes in the Xinjiang region.
Collapse
Affiliation(s)
- Fanhua Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China; (F.W.); (Z.S.); (M.Z.); (Q.Z.); (Y.S.); (W.S.); (C.W.); (T.L.); (Y.Z.); (C.M.); (H.Z.)
| | - Zhibin Sun
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China; (F.W.); (Z.S.); (M.Z.); (Q.Z.); (Y.S.); (W.S.); (C.W.); (T.L.); (Y.Z.); (C.M.); (H.Z.)
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Min Zhu
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China; (F.W.); (Z.S.); (M.Z.); (Q.Z.); (Y.S.); (W.S.); (C.W.); (T.L.); (Y.Z.); (C.M.); (H.Z.)
| | - Qikun Zhang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China; (F.W.); (Z.S.); (M.Z.); (Q.Z.); (Y.S.); (W.S.); (C.W.); (T.L.); (Y.Z.); (C.M.); (H.Z.)
| | - Yufei Sun
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China; (F.W.); (Z.S.); (M.Z.); (Q.Z.); (Y.S.); (W.S.); (C.W.); (T.L.); (Y.Z.); (C.M.); (H.Z.)
| | - Wei Sun
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China; (F.W.); (Z.S.); (M.Z.); (Q.Z.); (Y.S.); (W.S.); (C.W.); (T.L.); (Y.Z.); (C.M.); (H.Z.)
| | - Chunxia Wu
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China; (F.W.); (Z.S.); (M.Z.); (Q.Z.); (Y.S.); (W.S.); (C.W.); (T.L.); (Y.Z.); (C.M.); (H.Z.)
| | - Tongtong Li
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China; (F.W.); (Z.S.); (M.Z.); (Q.Z.); (Y.S.); (W.S.); (C.W.); (T.L.); (Y.Z.); (C.M.); (H.Z.)
| | - Yiwu Zhao
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China; (F.W.); (Z.S.); (M.Z.); (Q.Z.); (Y.S.); (W.S.); (C.W.); (T.L.); (Y.Z.); (C.M.); (H.Z.)
| | - Changle Ma
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China; (F.W.); (Z.S.); (M.Z.); (Q.Z.); (Y.S.); (W.S.); (C.W.); (T.L.); (Y.Z.); (C.M.); (H.Z.)
| | - Hui Zhang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China; (F.W.); (Z.S.); (M.Z.); (Q.Z.); (Y.S.); (W.S.); (C.W.); (T.L.); (Y.Z.); (C.M.); (H.Z.)
| | - Yanxiu Zhao
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China; (F.W.); (Z.S.); (M.Z.); (Q.Z.); (Y.S.); (W.S.); (C.W.); (T.L.); (Y.Z.); (C.M.); (H.Z.)
- Correspondence: (Y.Z.); (Z.W.)
| | - Zenglan Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China; (F.W.); (Z.S.); (M.Z.); (Q.Z.); (Y.S.); (W.S.); (C.W.); (T.L.); (Y.Z.); (C.M.); (H.Z.)
- Correspondence: (Y.Z.); (Z.W.)
| |
Collapse
|
6
|
Kebede A, Kebede M. In silico analysis of promoter region and regulatory elements of glucan endo-1,3-beta-glucosidase encoding genes in Solanum tuberosum: cultivar DM 1-3 516 R44. J Genet Eng Biotechnol 2021; 19:145. [PMID: 34591228 PMCID: PMC8484425 DOI: 10.1186/s43141-021-00240-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 09/02/2021] [Indexed: 01/01/2023]
Abstract
Background Potato (Solanum tuberosum L.) is one of the most important food crops in the world. Pathogens remain as one of the major constraints limiting potato productivity. Thus, understanding of gene regulation mechanism of pathogenesis-related genes such as glucan endo-1,3-beta-glucosidase is a foundation for genetic engineering of potato for disease resistance and reduces the use of fungicides. In the present study, 19 genes were selected and attempts were made through in silico methods to identify and characterize the promoter regions, regulatory elements, and CpG islands of glucan endo-1,3-beta-glucosidase gene in Solanum tuberosum cultivar DM 1-3 516 R44. Results The current analysis revealed that single transcription start sites (TSSs) were present in 12/19 (63.2%) of promoter regions analyzed. The predictive score at a cutoff value of 0.8 for the majority (84.2%) of the promoter regions ranged from 0.90 to 1.00. The locations for 42% of the TSSs were below −500 bp relative to the start codon (ATG). MβGII was identified as the common promoter motif for 94.4% of the genes with an E value of 3.5e−001. The CpG analysis showed low CpG density in the promoter regions of most of the genes except for gene ID102593331 and ID: 102595860. The number of SSRs per gene ranged from 2 to 9 with repeat lengths of 2 to 6 bp. Evolutionary distances ranged from 0.685 to 0.770 (mean = 0.73), demonstrating narrower genetic diversity range. Phylogeny was inferred using the UPGMA method, and gene sequences from different species were found to be clustered together. Conclusion In silico identified regulatory elements in promoter regions will contribute to our understanding of the regulatory mechanism of glucan endo-1,3-beta-glucosidase genes and provide a promising target for genetic engineering to improve disease resistance in potatoes. Supplementary Information The online version contains supplementary material available at 10.1186/s43141-021-00240-0.
Collapse
Affiliation(s)
- Atnafu Kebede
- Department of Applied Biology, School of Applied Natural Science, Adama Science and Technology University, P.O. Box 1888, Adama, Ethiopia. .,Department of Biology, College of Natural and Computational Sciences, Dire Dawa University, P.O. Box 1362, Dire Dawa, Ethiopia.
| | - Mulugeta Kebede
- Department of Applied Biology, School of Applied Natural Science, Adama Science and Technology University, P.O. Box 1888, Adama, Ethiopia
| |
Collapse
|
7
|
Basic β-1,3-Glucanase from Drosera binata Exhibits Antifungal Potential in Transgenic Tobacco Plants. PLANTS 2021; 10:plants10081747. [PMID: 34451792 PMCID: PMC8401921 DOI: 10.3390/plants10081747] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/17/2021] [Accepted: 08/21/2021] [Indexed: 11/17/2022]
Abstract
The basic β-1,3-glucanase of the carnivorous plant Drosera binata was tested as a purified protein, as well as under the control of a double CaMV35S promoter in transgenic tobacco for its capability to inhibit the growth of Trichoderma viride, Rhizoctonia solani, Alternaria solani, and Fusarium poae in an in-vitro assay. The purified protein inhibited tested phytopathogens but not the saprophytic fungus T. viride. Out of the analysed transgenic plants, lines 13, 16, 19, and 22 exhibited high DbGluc1 transcript abundance normalised to the actin transcript. Because of DbGluc1 transgene expression, lines 13 and 16 showed a 1.7-fold increase and lines 19 and 22 showed more than a 2-fold increase in total β-1,3-glucanase activity compared to the non-transgenic control. In accordance with the purified β-1,3-glucanase in-vitro antifungal assay, crude protein extracts of lines 19 and 22 significantly inhibited the growth of phytopathogens (14–34%). Further analyses revealed that the complementary action of transgenic β-1,3-glucanase and 20% higher activity of endogenous chitinase(s) in these lines were crucial for maximising the antifungal efficiency of crude protein extracts.
Collapse
|
8
|
Yang Y, Sossah FL, Li Z, Hyde KD, Li D, Xiao S, Fu Y, Yuan X, Li Y. Genome-Wide Identification and Analysis of Chitinase GH18 Gene Family in Mycogone perniciosa. Front Microbiol 2021; 11:596719. [PMID: 33505368 PMCID: PMC7829358 DOI: 10.3389/fmicb.2020.596719] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 12/07/2020] [Indexed: 11/18/2022] Open
Abstract
Mycogone perniciosa causes wet bubble disease in Agaricus bisporus and various Agaricomycetes species. In a previous work, we identified 41 GH18 chitinase genes and other pathogenicity-related genes in the genome of M. perniciosa Hp10. Chitinases are enzymes that degrade chitin, and they have diverse functions in nutrition, morphogenesis, and pathogenesis. However, these important genes in M. perniciosa have not been fully characterized, and their functions remain unclear. Here, we performed a genome-wide analysis of M. perniciosa GH18 genes and analyzed the transcriptome profiles and GH18 expression patterns in M. perniciosa during the time course of infection in A. bisporus. Phylogenetic analysis of the 41 GH18 genes with those of 15 other species showed that the genes were clustered into three groups and eight subgroups based on their conserved domains. The GH18 genes clustered in the same group shared different gene structures but had the same protein motifs. All GH18 genes were localized in different organelles, were unevenly distributed on 11 contigs, and had orthologs in the other 13 species. Twelve duplication events were identified, and these had undergone both positive and purifying selection. The transcriptome analyses revealed that numerous genes, including transporters, cell wall degrading enzymes (CWDEs), cytochrome P450, pathogenicity-related genes, secondary metabolites, and transcription factors, were significantly upregulated at different stages of M. perniciosa Hp10 infection of A. bisporus. Twenty-three out of the 41 GH18 genes were differentially expressed. The expression patterns of the 23 GH18 genes were different and were significantly expressed from 3 days post-inoculation of M. perniciosa Hp10 in A. bisporus. Five differentially expressed GH18 genes were selected for RT-PCR and gene cloning to verify RNA-seq data accuracy. The results showed that those genes were successively expressed in different infection stages, consistent with the previous sequencing results. Our study provides a comprehensive analysis of pathogenicity-related and GH18 chitinase genes’ influence on M. perniciosa mycoparasitism of A. bisporus. Our findings may serve as a basis for further studies of M. perniciosa mycoparasitism, and the results have potential value for improving resistance in A. bisporus and developing efficient disease-management strategies to mitigate wet bubble disease.
Collapse
Affiliation(s)
- Yang Yang
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, China.,Guizhou Key Laboratory of Edible Fungi Breeding, Guizhou Academy of Agricultural Sciences, Guiyang, China.,College of Plant Protection, Jilin Agricultural University, Changchun, China
| | - Frederick Leo Sossah
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, China.,College of Plant Protection, Jilin Agricultural University, Changchun, China
| | - Zhuang Li
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai' an, China
| | - Kevin D Hyde
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, Thailand
| | - Dan Li
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, China.,Guizhou Key Laboratory of Edible Fungi Breeding, Guizhou Academy of Agricultural Sciences, Guiyang, China.,College of Plant Protection, Jilin Agricultural University, Changchun, China
| | - Shijun Xiao
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, China
| | - Yongping Fu
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, China.,College of Plant Protection, Jilin Agricultural University, Changchun, China
| | - Xiaohui Yuan
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, China
| | - Yu Li
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, China.,College of Plant Protection, Jilin Agricultural University, Changchun, China
| |
Collapse
|
9
|
Fukamizo T, Shinya S. Chitin/Chitosan-Active Enzymes Involved in Plant–Microbe Interactions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1142:253-272. [DOI: 10.1007/978-981-13-7318-3_12] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
10
|
Antioxidant Enzyme Activities and Secondary Metabolite Profiling of Oil Palm Seedlings Treated with Combination of NPK Fertilizers Infected with Ganoderma boninense. BIOMED RESEARCH INTERNATIONAL 2018; 2018:1494157. [PMID: 29721500 PMCID: PMC5867682 DOI: 10.1155/2018/1494157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 11/28/2017] [Accepted: 12/20/2017] [Indexed: 01/02/2023]
Abstract
Oil palm (Elaeis guineensis Jacq) is one of the major sources of edible oil. Reducing the effect of Ganoderma, main cause of basal stem rot (BSR) on oil palm, is the main propose of this study. Understanding the oil palm defense mechanism against Ganoderma infection through monitoring changes in the secondary metabolite compounds levels before/after infection by Ganoderma under different fertilizing treatment is required. Oil palm requires macro- and microelements for growth and yield. Manipulating the nutrient for oil palm is a method to control the disease. The 3-4-month-old oil palm seedlings were given different macronutrient treatments to evaluate induction of defense related enzymes and production of secondary metabolite compounds in response to G. boninense inoculation. The observed trend of changes in the infected and uninfected seedlings was a slightly higher activity for β-1,3-glucanases, chitinase, peroxidase, and phenylalanine ammonia-lyase during the process of pathogenesis. It was found that PR proteins gave positive response to the interaction between oil palm seedlings and Ganoderma infection. Although the responses were activated systematically, they were short-lasting as the changes in enzymes activities appeared before the occurrence of visible symptoms. Effect of different nutrients doses was obviously observed among the results of the secondary metabolite compounds. Many identified/unidentified metabolite compounds were presented, of which some were involved in plant cell defense mechanism against pathogens, mostly belonging to alkaloids with bitter-tasting nitrogenous-compounds, and some had the potential to be used as new markers to detect basal stem rot at the initial step of disease.
Collapse
|
11
|
Sathiyabama M, Balasubramanian R. Protection of groundnut plants from rust disease by application of glucan isolated from a biocontrol agent Acremonium obclavatum. Int J Biol Macromol 2018; 116:316-319. [PMID: 29727660 DOI: 10.1016/j.ijbiomac.2018.04.190] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 04/02/2018] [Accepted: 04/30/2018] [Indexed: 01/20/2023]
Abstract
Prior treatment of groundnut leaves with glucan isolated from a biocontrol agent, Acremonium obclavatum, protected against the rust disease. Glucan treated leaves showed increased levels of chitinase and β-1,3-glucanase in the apoplastic fluid. An increase in endogenous levels of salicylic acid also was observed in treated leaves. Treated leaves also showed a significant reduction in rust disease development in groundnut leaves. Enhanced activities of glucanohydrolases of treated groundnut leaves might have affected the biotrophic rust pathogen, which is known to colonize in the apoplastic spaces.
Collapse
Affiliation(s)
- M Sathiyabama
- Department of Botany, Bharathidasan University, Tiruchirappalli 24, Tamil Nadu, India.
| | - R Balasubramanian
- CAS in Botany, University of Madras, Guindy Campus, Chennai 25, Tamil Nadu, India
| |
Collapse
|
12
|
Shi Q, Febres VJ, Zhang S, Yu F, McCollum G, Hall DG, Moore GA, Stover E. Identification of Gene Candidates Associated with Huanglongbing Tolerance, Using 'Candidatus Liberibacter asiaticus' Flagellin 22 as a Proxy to Challenge Citrus. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2018; 31:200-211. [PMID: 29148926 DOI: 10.1094/mpmi-04-17-0084-r] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The 22-amino acid (flg22) pathogen-associated molecular pattern from the flagellin of Xanthomonas citri subsp. citri has been shown to induce defense responses correlated with citrus canker resistance. Here, flg22 of 'Candidatus Liberibacter asiaticus', the putative causal agent of Huanglongbing (HLB), elicited differential defense responses that were weaker than those from Xcc-flg22, between those of the HLB-tolerant mandarin cultivar Sun Chu Sha and susceptible grapefruit cultivar Duncan. Transcriptomics was used to compare the effect of CLas-flg22 and Xcc-flg22 between the citrus genotypes and identified 86 genes induced only by CLas-flg22 in the tolerant mandarin. Expression of 16 selected genes was validated, by reverse transcription-quantitative polymerase chain reaction, and was evaluated in citrus during 'Ca. L. asiaticus' infection. Differential expression of a number of genes occurred between tolerant and susceptible citrus infected with 'Ca. L. asiaticus', suggesting their involvement in HLB tolerance. In addition, several genes were similarly regulated by CLas-flg22 and 'Ca. L. asiaticus' treatments, while others were oppositely regulated in the tolerant mandarin, suggesting similarity and interplay between CLas-flg22 and 'Ca. L. asiaticus'-triggered defenses. Genes identified are valuable in furthering the study of HLB tolerance mechanisms and, potentially, for screening for HLB-tolerant citrus using CLas-flg22 as a pathogen proxy.
Collapse
Affiliation(s)
- Qingchun Shi
- 1 U.S. Horticultural Research Laboratory, USDA/ARS, Fort Pierce, FL, U.S.A
| | - Vicente J Febres
- 2 Horticultural Sciences Department, University of Florida, Gainesville, FL, U.S.A.; and
| | - Shujian Zhang
- 1 U.S. Horticultural Research Laboratory, USDA/ARS, Fort Pierce, FL, U.S.A
| | - Fahong Yu
- 3 Interdisciplinary Center for Biotechnology Research, University of Florida
| | - Greg McCollum
- 1 U.S. Horticultural Research Laboratory, USDA/ARS, Fort Pierce, FL, U.S.A
| | - David G Hall
- 1 U.S. Horticultural Research Laboratory, USDA/ARS, Fort Pierce, FL, U.S.A
| | - Gloria A Moore
- 2 Horticultural Sciences Department, University of Florida, Gainesville, FL, U.S.A.; and
| | - Ed Stover
- 1 U.S. Horticultural Research Laboratory, USDA/ARS, Fort Pierce, FL, U.S.A
| |
Collapse
|
13
|
|
14
|
Jain P, Singh PK, Kapoor R, Khanna A, Solanke AU, Krishnan SG, Singh AK, Sharma V, Sharma TR. Understanding Host-Pathogen Interactions with Expression Profiling of NILs Carrying Rice-Blast Resistance Pi9 Gene. FRONTIERS IN PLANT SCIENCE 2017; 8:93. [PMID: 28280498 PMCID: PMC5322464 DOI: 10.3389/fpls.2017.00093] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 01/16/2017] [Indexed: 05/03/2023]
Abstract
Magnaporthe oryzae infection causes rice blast, a destructive disease that is responsible for considerable decrease in rice yield. Development of resistant varieties via introgressing resistance genes with marker-assisted breeding can eliminate pesticide use and minimize crop losses. Here, resistant near-isogenic line (NIL) of Pusa Basmati-1(PB1) carrying broad spectrum rice blast resistance gene Pi9 was used to investigate Pi9-mediated resistance response. Infected and uninfected resistant NIL and susceptible control line were subjected to RNA-Seq. With the exception of one gene (Pi9), transcriptional signatures between the two lines were alike, reflecting basal similarities in their profiles. Resistant and susceptible lines possessed 1043 (727 up-regulated and 316 down-regulated) and 568 (341 up-regulated and 227 down-regulated) unique and significant differentially expressed loci (SDEL), respectively. Pathway analysis revealed higher transcriptional activation of kinases, WRKY, MYB, and ERF transcription factors, JA-ET hormones, chitinases, glycosyl hydrolases, lipid biosynthesis, pathogenesis and secondary metabolism related genes in resistant NIL than susceptible line. Singular enrichment analysis demonstrated that blast resistant NIL is significantly enriched with genes for primary and secondary metabolism, response to biotic stimulus and transcriptional regulation. The co-expression network showed proteins of genes in response to biotic stimulus interacted in a manner unique to resistant NIL upon M. oryzae infection. These data suggest that Pi9 modulates genome-wide transcriptional regulation in resistant NIL but not in susceptible PB1. We successfully used transcriptome profiling to understand the molecular basis of Pi9-mediated resistance mechanisms, identified potential candidate genes involved in early pathogen response and revealed the sophisticated transcriptional reprogramming during rice-M. oryzae interactions.
Collapse
Affiliation(s)
- Priyanka Jain
- ICAR-National Research Centre on Plant BiotechnologyNew Delhi, India
- Department of Bioscience & Biotechnology, Banasthali UniversityTonk, India
| | - Pankaj K. Singh
- ICAR-National Research Centre on Plant BiotechnologyNew Delhi, India
- Department of Bioscience & Biotechnology, Banasthali UniversityTonk, India
| | - Ritu Kapoor
- ICAR-National Research Centre on Plant BiotechnologyNew Delhi, India
| | - Apurva Khanna
- ICAR-Indian Agricultural Research InstituteNew Delhi, India
| | | | | | - Ashok K. Singh
- ICAR-Indian Agricultural Research InstituteNew Delhi, India
| | - Vinay Sharma
- Department of Bioscience & Biotechnology, Banasthali UniversityTonk, India
| | - Tilak R. Sharma
- ICAR-National Research Centre on Plant BiotechnologyNew Delhi, India
- *Correspondence: Tilak R. Sharma ;
| |
Collapse
|
15
|
Purification and characterization of a novel chitinase from Trichosanthes dioica seed with antifungal activity. Int J Biol Macromol 2015; 84:62-8. [PMID: 26666429 DOI: 10.1016/j.ijbiomac.2015.12.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Revised: 10/28/2015] [Accepted: 12/02/2015] [Indexed: 12/26/2022]
Abstract
Chitinases are a group of enzymes that show differences in their molecular structure, substrate specificity, and catalytic mechanism and widely found in organisms like bacteria, yeasts, fungi, arthropods actinomycetes, plants and humans. A novel chitinase enzyme (designated as TDSC) was purified from Trichosanthes dioica seed with a molecular mass of 39±1 kDa in the presence and absence of β-mercaptoethanol. The enzyme was a glycoprotein in nature containing 8% neutral sugar. The N-terminal sequence was determined to be EINGGGA which did not match with other proteins. Amino acid analysis performed by LC-MS revealed that the protein was rich in leucine. The enzyme was stable at a wide range of pH (5.0-11.0) and temperature (30-90 °C). Chitinase activity was little bit inhibited in the presence of chelating agent EDTA (ethylenediaminetetraaceticacid), urea and Ca(2+). A strong fluorescence quenching effect was found when dithiothreitol and sodium dodecyl sulfate were added to the enzyme. TDSC showed antifungal activity against Aspergillus niger and Trichoderma sp. as tested by MTT assay and disc diffusion method.
Collapse
|
16
|
Abstract
Competition between microbes is widespread in nature, especially among those that are closely related. To combat competitors, bacteria have evolved numerous protein-based systems (bacteriocins) that kill strains closely related to the producer. In characterizing the bacteriocin complement and killing spectra for the model strain Pseudomonas syringae B728a, we discovered that its activity was not linked to any predicted bacteriocin but is derived from a prophage. Instead of encoding an active prophage, this region encodes a bacteriophage-derived bacteriocin, termed an R-type syringacin. This R-type syringacin is striking in its convergence with the well-studied R-type pyocin of P. aeruginosa in both genomic location and molecular function. Genomic alignment, amino acid percent sequence identity, and phylogenetic inference all support a scenario where the R-type syringacin has been co-opted independently of the R-type pyocin. Moreover, the presence of this region is conserved among several other Pseudomonas species and thus is likely important for intermicrobial interactions throughout this important genus. Evolutionary innovation is often achieved through modification of complexes or processes for alternate purposes, termed co-option. Notable examples include the co-option of a structure functioning in locomotion (bacterial flagellum) to one functioning in protein secretion (type three secretion system). Similar co-options can occur independently in distinct lineages. We discovered a genomic region in the plant pathogen Pseudomonas syringae that consists of a fragment of a bacteriophage genome. The fragment encodes only the tail of the bacteriophage, which is lethal toward strains of this species. This structure is similar to a previously described structure produced by the related species Pseudomonas aeruginosa. The two structures, however, are not derived from the same evolutionary event. Thus, they represent independent bacteriophage co-options. The co-opted bacteriophage from P. syringae is found in the genomes of many other Pseudomonas species, suggesting ecological importance across this genus.
Collapse
|
17
|
Anusuya S, Sathiyabama M. Protection of turmeric plants from rhizome rot disease under field conditions by β-d-glucan nanoparticle. Int J Biol Macromol 2015; 77:9-14. [DOI: 10.1016/j.ijbiomac.2015.02.053] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 02/18/2015] [Accepted: 02/27/2015] [Indexed: 11/26/2022]
|
18
|
Abstract
Biological control of phytopathogenic fungi and insects continues to inspire the research and development of environmentally friendly bioactive alternatives. Potentially lytic enzymes, chitinases can act as a biocontrol agent against agriculturally important fungi and insects. The cell wall in fungi and protective covers, i.e. cuticle in insects shares a key structural polymer, chitin, a β-1,4-linked N-acetylglucosamine polymer. Therefore, it is advantageous to develop a common biocontrol agent against both of these groups. As chitin is absent in plants and mammals, targeting its metabolism will signify an eco-friendly strategy for the control of agriculturally important fungi and insects but is innocuous to mammals, plants, beneficial insects and other organisms. In addition, development of chitinase transgenic plant varieties probably holds the most promising method for augmenting agricultural crop protection and productivity, when properly integrated into traditional systems. Recently, human proteins with chitinase activity and chitinase-like proteins were identified and established as biomarkers for human diseases. This review covers the recent advances of chitinases as a biocontrol agent and its various applications including preparation of medically important chitooligosaccharides, bioconversion of chitin as well as in implementing chitinases as diagnostic and prognostic markers for numerous diseases and the prospect of their future utilization.
Collapse
Affiliation(s)
- Anand Nagpure
- University School of Biotechnology, Guru Gobind Singh Indraprastha University , New Delhi , India
| | | | | |
Collapse
|
19
|
Shi J, Liu A, Li X, Chen W. Control of Phytophthora nicotianae disease, induction of defense responses and genes expression of papaya fruits treated with Pseudomonas putida MGP1. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2013; 93:568-574. [PMID: 22936430 DOI: 10.1002/jsfa.5831] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Revised: 05/31/2012] [Accepted: 07/01/2012] [Indexed: 06/01/2023]
Abstract
BACKGROUND Biological control is a potential strategy to reduce post-harvest decay in several fruits. Little research has been carried out on the effects of endophytic bacterium on post-harvest blight caused by Phytophthora nicotianae in papaya. In this work, the biocontrol activity of Pseudomonas putida MGP1 on this disease and its possible mechanisms, including changes of defensive enzyme activities, total phenolic content and mRNA levels of two important genes, were investigated. RESULTS Fruits treated with MGP1 showed a significant lower disease index and demonstrated increases in chitinase, β-1,3-glucanase, phenylalanine ammonia-lyase, peroxidase, polyphenol oxidase and catalase activities and total phenolic content. In addition, the expression levels of pathogenesis related protein 1 gene (PR1) and non-expressor of PR1 gene (NPR1) in papaya fruits were elevated by MGP1 treatment. CONCLUSION The results indicated that papaya fruits were responsive to the endophytic bacterium Ps. putida, which could activate defensive enzymes and genes and thereby induce host disease resistance.
Collapse
Affiliation(s)
- Jingying Shi
- College of Food Science and Engineering, Shandong Agricultural University, Taian 271018, People's Republic of China
| | | | | | | |
Collapse
|
20
|
Differential gene expression in nearly isogenic lines with QTL for partial resistance to Puccinia hordei in barley. BMC Genomics 2010; 11:629. [PMID: 21070652 PMCID: PMC3018140 DOI: 10.1186/1471-2164-11-629] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Accepted: 11/11/2010] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The barley-Puccinia hordei (barley leaf rust) pathosystem is a model for investigating partial disease resistance in crop plants and genetic mapping of phenotypic resistance has identified several quantitative trait loci (QTL) for partial resistance. Reciprocal QTL-specific near-isogenic lines (QTL-NILs) have been developed that combine two QTL, Rphq2 and Rphq3, the largest effects detected in a recombinant-inbred-line (RIL) population derived from a cross between the super-susceptible line L94 and partially-resistant line Vada. The molecular mechanism underpinning partial resistance in these QTL-NILs is unknown. RESULTS An Agilent custom microarray consisting of 15,000 probes derived from barley consensus EST sequences was used to investigate genome-wide and QTL-specific differential expression of genes 18 hours post-inoculation (hpi) with Puccinia hordei. A total of 1,410 genes were identified as being significantly differentially expressed across the genome, of which 55 were accounted for by the genetic differences defined by QTL-NILs at Rphq2 and Rphq3. These genes were predominantly located at the QTL regions and are, therefore, positional candidates. One gene, encoding the transcriptional repressor Ethylene-Responsive Element Binding Factor 4 (HvERF4) was located outside the QTL at 71 cM on chromosome 1H, within a previously detected eQTL hotspot for defence response. The results indicate that Rphq2 or Rphq3 contains a trans-eQTL that modulates expression of HvERF4. We speculate that HvERF4 functions as an intermediate that conveys the response signal from a gene(s) contained within Rphq2 or Rphq3 to a host of down-stream defense responsive genes. Our results also reveal that barley lines with extreme or intermediate partial resistance phenotypes exhibit a profound similarity in their spectrum of Ph-responsive genes and that hormone-related signalling pathways are actively involved in response to Puccinia hordei. CONCLUSIONS Differential gene expression between QTL-NILs identifies genes predominantly located within the target region(s) providing both transcriptional and positional candidate genes for the QTL. Genetically mapping the differentially expressed genes relative to the QTL has the potential to discover trans-eQTL mediated regulatory relays initiated from genes within the QTL regions.
Collapse
|
21
|
Nogawa M, Takahashi H, Kashiwagi A, Ohshima K, Okada H, Morikawa Y. Purification and Characterization of Exo-beta-d-Glucosaminidase from a Cellulolytic Fungus, Trichoderma reesei PC-3-7. Appl Environ Microbiol 2010; 64:890-5. [PMID: 16349528 PMCID: PMC106342 DOI: 10.1128/aem.64.3.890-895.1998] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chitosan-degrading activities induced by glucosamine (GlcN) or N-acetylglucosamine (GlcNAc) were found in a culture filtrate of Trichoderma reesei PC-3-7. One of the chitosan-degrading enzymes was purified to homogeneity by precipitation with ammonium sulfate followed by anion-exchange and hydrophobic-interaction chromatographies. The enzyme was monomeric, and its molecular mass was 93 kDa. The optimum pH and temperature of the enzyme were 4.0 and 50 degrees C, respectively. The activity was stable in the pH range 6.0 to 9.0 and at a temperature below 50 degrees C. Reaction product analysis from the viscosimetric assay and thin-layer chromatography and H nuclear magnetic resonance spectroscopy clearly indicated that the enzyme was an exo-type chitosanase, exo-beta-d-glucosaminidase, that releases GlcN from the nonreducing end of the chitosan chain. H nuclear magnetic resonance spectroscopy also showed that the exo-beta-d-glucosaminidase produced a beta-form of GlcN, demonstrating that the enzyme is a retaining glycanase. Time-dependent liberation of the reducing sugar from partially acetylated chitosan with exo-beta-d-glucosaminidase and the partially purified exo-beta-d-N-acetylglucosaminidase from T. reesei PC-3-7 suggested that the exo-beta-d-glucosaminidase cleaves the glycosidic link of either GlcN-beta(1-->4)-GlcN or GlcN-beta(1-->4)-GlcNAc.
Collapse
Affiliation(s)
- M Nogawa
- Department of Bioengineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-21, Japan
| | | | | | | | | | | |
Collapse
|
22
|
Golkari S, Gilbert J, Ban T, Procunier JD. QTL-specific microarray gene expression analysis of wheat resistance to Fusarium head blight in Sumai-3 and two susceptible NILs. Genome 2009; 52:409-18. [PMID: 19448721 DOI: 10.1139/g09-018] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Fusarium head blight, predominantly caused by Fusarium graminearum (Schwabe) in North America, is a destructive disease that poses a serious threat to wheat (Triticum aestivum L.) production around the world. cDNA microarrays consisting of wheat ESTs derived from a wheat - F. graminearum interaction suppressive subtractive hybridization library were used to investigate QTL-specific differential gene expression between the resistant Chinese cultivar Sumai-3 and two susceptible near isogenic lines (NILs) following inoculation with F. graminearum. Stringent conditions were employed to reduce the false discovery rate. A total of 25 wheat unigenes were found to express differentially in response to F. graminearum infection. Genes encoding pathogenesis-related (PR) proteins such as beta-1,3-glucanase (PR-2), wheatwins (PR-4), and thaumatin-like proteins (PR-5) showed a significant upregulation in genotypes having the Sumai-3 3BS region. For these three genes, the gene activity was significantly less in the genotype (NIL-3) lacking the Sumai-3 3BS segment. Significant upregulation of phenylalanine ammonia-lyase was detected only in the resistant Sumai-3, indicating the importance of both the 2AL and 3BS regions in the activation of effective defense responses to infection by F. graminearum. Differences in gene expression between the resistant Sumai-3 and the susceptible NILs were found to be mainly quantitative in nature.
Collapse
Affiliation(s)
- Saber Golkari
- Cereal Research Centre, Agriculture and Agri-Food Canada, 195 Dafoe Road, Winnipeg, MB R3T 2M9, Canada
| | | | | | | |
Collapse
|
23
|
Sandeep Varma R, Johnson George K, Balaji S, Parthasarathy VA. Differential induction of chitinase in Piper colubrinum in response to inoculation with Phytophthora capsici, the cause of foot rot in black pepper. Saudi J Biol Sci 2009; 16:11-6. [PMID: 23961037 DOI: 10.1016/j.sjbs.2009.07.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Plant chitinases have been of particular interest since they are known to be induced upon pathogen invasion. Inoculation of Piper colubrinum leaves with the foot rot fungus, Phytophthora capsici leads to increase in chitinase activity. A marked increase in chitinase activity in the inoculated leaves was observed, with the maximum activity after 60 h of inoculation and gradually decreased thereafter. Older leaves showed more chitinase activity than young leaves. The level of chitinase in black pepper (Piper nigrum L.) upon inoculation was found to be substantially high when compared to P. colubrinum. RT-PCR using chitinase specific primers revealed differential accumulation of mRNA in P. colubrinum leaves inoculated with P. capsici. However, hyphal extension assays revealed no obvious differences in the ability of the protein extracts to inhibit growth of P. capsici in vitro.
Collapse
Affiliation(s)
- R Sandeep Varma
- Division of Crop Improvement and Biotechnology, Indian Institute of Spices Research, Marikunnu P.O., Calicut, Kerala 673012, India
| | | | | | | |
Collapse
|
24
|
Goñi O, Sanchez-Ballesta MT, Merodio C, Escribano MI. Regulation of defense and cryoprotective proteins by high levels of CO(2) in Annona fruit stored at chilling temperature. JOURNAL OF PLANT PHYSIOLOGY 2009; 166:246-258. [PMID: 18538447 DOI: 10.1016/j.jplph.2008.04.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2007] [Revised: 04/04/2008] [Accepted: 04/08/2008] [Indexed: 05/26/2023]
Abstract
This study focuses on how the length of exposure to chilling temperature and atmosphere storage conditions regulate the hydrolytic activity and expression of chitinase (PR-Q) and 1,3-beta-glucanase (PR-2) isoenzymes in cherimoyas (Annona cherimola Mill.). Storage at 6 degrees C modified the expression of constitutive isoenzymes and induced the appearance of novel acidic chitinases, AChi26 and AChi24, at the onset of the storage period, and of a basic chitinase, BChi33, after prolonged storage. The induction of this basic isoenzyme was concomitant with the accumulation of basic constitutive 1,3-beta-glucanases. These low-temperature-induced chitinases modified the growth inhibition in vitro of Botrytis cinerea. Short-term high CO(2) treatment activated a coordinated response of acidic chitinases and 1,3-beta-glucanases after prolonged storage at chilling temperature. Moreover, the high in vitro cryoprotective activity of CO(2)-treated protein extracts was associated with the induction of two low molecular mass isoenzymes, AGlu19 and BChi14. Thus, exposure to high concentrations of CO(2) modified the response of fruit to low temperature, inducing the synthesis of cryoprotectant proteins such as specific pathogenesis-related isoenzymes that could be functionally associated with an increase in chilling tolerance in vivo.
Collapse
Affiliation(s)
- Oscar Goñi
- Departamento de Ciencia y Tecnología de Productos Vegetales, Instituto del Frío, IF-CSIC, José Antonio Novais, 10, Ciudad Universitaria, E-28040 Madrid, Spain
| | | | | | | |
Collapse
|
25
|
Hadwiger LA. Pea-Fusarium solani interactions contributions of a system toward understanding disease resistance. PHYTOPATHOLOGY 2008; 98:372-9. [PMID: 18944184 DOI: 10.1094/phyto-98-4-0372] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
This mini-review points to the usefulness of the pea-Fusarium solani interaction in researching the biochemical and molecular aspects of the nonhost resistance components of peas. This interaction has been researched to evaluate the resistance roles of the phytoalexin, pisatin, the cuticle barrier, and the activation of the nonhost resistance response. Concurrently, evaluations of associated signaling processes and the tools possessed by the pathogen to contend with host obstacles were included. The properties of some pathogenesis-related genes of pea and their regulation and contribution to resistance are discussed. A proposed action of two biotic elicitors on both chromatin conformation and the architectural transcription factor, HMG A, is presented and includes time lines of events within the host immune response.
Collapse
Affiliation(s)
- Lee A Hadwiger
- Department of Plant Pathology, Washington State University, Pullman 99164, USA.
| |
Collapse
|
26
|
Rao DH, Gowda LR. Abundant class III acidic chitinase homologue in tamarind (Tamarindus indica) seed serves as the major storage protein. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2008; 56:2175-2182. [PMID: 18298067 DOI: 10.1021/jf073183i] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The phyla Leguminosae contains protease inhibitors, lectins, chitinases, and glycohydrolases as major defense proteins in their seeds. Electrophoretic analysis of the seed proteins of tamarind ( Tamarindus indica L.), an agri-waste material, indicated the unusual presence of two major proteins comparable to overexpression of recombinant proteins. These proteins were identified by amino-terminal analysis to be (1) Kunitz-type trypsin inhibitor and (2) class III endochitinase (34000 Da). These two proteins were purified to apparent homogeneity by a single-step chitin bead affinity chromatography and characterized. The Kunitz inhibitor was specific toward inhibiting trypsin with a stoichiometry of 1:1. The 33000 +/- 1000 Da protein, accounting for >50% of the total seed protein, is an acidic glycoprotein exhibiting a very low endotype hydrolytic activity toward chitin derivatives. SDS-PAGE followed by densitometry of tamarind seed germination indicates the disappearance of the chitinase with the concomitant appearance of a cysteine endopeptidase. On the basis of its abundance, accumulation without any pathogenesis-related stimulus, temporal regulation, amino acid composition, and very low enzyme activity, this 34000 Da protein designated "tamarinin" physiologically serves as the major storage protein.
Collapse
Affiliation(s)
- Devavratha H Rao
- Department of Protein Chemistry and Technology, Central Food Technological Research Institute, Mysore 570020, India
| | | |
Collapse
|
27
|
Ahmadian G, Degrassi G, Venturi V, Zeigler DR, Soudi M, Zanguinejad P. Bacillus pumilusSG2 isolated from saline conditions produces and secretes two chitinases. J Appl Microbiol 2007; 103:1081-9. [PMID: 17897213 DOI: 10.1111/j.1365-2672.2007.03340.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIMS Isolation and characterization of chitinases from a halotolerant Bacillus pumilus. METHODS AND RESULTS Bacillus pumilus strain SG2 was isolated from saline conditions. It is able to produce chitinase activity at high salt concentration. SDS-PAGE analysis of the B. pumilus SG2 culture supernatant showed two major bands that were induced by chitin. The amino acid sequence of the two proteins, designated ChiS and ChiL, showed a high homology with the chitinase of B. subtilis CHU26, and chitinase A of B. licheniformis, respectively. N-terminal signal peptide of both proteins was also determined. The molecular weight and isoelectric point of the chitinases were determined to be 63 and 74 kDa, and 4.5 and 5.1, for ChiS and ChiL respectively. The genes encoding for both chitinases were isolated and their sequence determined. The regulation of the chitinase genes is under the control of the catabolite repression system. CONCLUSIONS Secreted chitinase genes and their flanking region on the genome of B. pumilus SG2 have been identified and sequenced. SIGNIFICANCE AND IMPACT OF THE STUDY This is the first report of a multiple chitinases-producing B. pumilus halotolerant strain. We have identified two chitinases by using a reverse genetics approach. The chitinases show resistance to salt.
Collapse
Affiliation(s)
- G Ahmadian
- Department of Molecular Genetic, National Institute for Genetic Engineering and Biotechnology, Tehran, Iran.
| | | | | | | | | | | |
Collapse
|
28
|
Lee J, Bricker TM, Lefevre M, Pinson SRM, Oard JH. Proteomic and genetic approaches to identifying defence-related proteins in rice challenged with the fungal pathogen Rhizoctonia solani. MOLECULAR PLANT PATHOLOGY 2006; 7:405-16. [PMID: 20507456 DOI: 10.1111/j.1364-3703.2006.00350.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
SUMMARY Sheath blight, caused by the fungus Rhizoctonia solani, is a major disease of rice world-wide, but little is known about the host response to infection. The objective of this study was to identify proteins and DNA markers in resistant and susceptible rice associated with response to infection by R. solani. Replicated two-dimensional polyacrylamide gel electrophoresis experiments were conducted to detect proteins differentially expressed under inoculated and non-inoculated conditions. Tandem mass spectra analysis using electrospray ionization quadrupole-time of flight mass spectrometry (ESI Q-TOF MS) was carried out for protein identification with the NCBI non-redundant protein database. Seven proteins were increased after inoculation in both susceptible and resistant plants. Six of the seven proteins were identified with presumed antifungal, photosynthetic and proteolytic activities. An additional 14 proteins were detected in the response of the resistant line. Eleven of the 14 proteins were identified with presumed functions relating to antifungal activity, signal transduction, energy metabolism, photosynthesis, molecular chaperone, proteolysis and antioxidation. The induction of 3-beta-hydroxysteroid dehydrogenase/isomerase was detected for the first time in resistant rice plants after pathogen challenge, suggesting a defensive role of this enzyme in rice against attack by R. solani. The chromosomal locations of four induced proteins were found to be in close physical proximity to genetic markers for sheath blight resistance in two genetic mapping populations. The proteomic and genetic results from this study indicate a complex response of rice to challenge by R. solani that involves simultaneous induction of proteins from multiple defence pathways.
Collapse
Affiliation(s)
- Joohyun Lee
- Department of Agronomy and Environmental Management, LSU AgCenter, 104 M.B. Sturgis Hall
| | | | | | | | | |
Collapse
|
29
|
Kong L, Anderson JM, Ohm HW. Induction of wheat defense and stress-related genes in response toFusarium graminearum. Genome 2005; 48:29-40. [PMID: 15729394 DOI: 10.1139/g04-097] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Fusarium head blight (FHB), caused by species of the fungus Fusarium, is a worldwide disease of wheat (Triticum aestivum L.). The Chinese T. aestivum 'Ning7840' is one of few wheat cultivars with resistance to FHB. To identify differentially expressed genes corresponding to FHB resistance, a cDNA library was constructed using pooled mRNA isolated from glumes of 'Ning7840' harvested at 2, 6, 12, 24, 36, 72, and 96 h after inoculation (hai) with a conidia spore suspension of Fusarium graminearum. Suppressive subtractive hybridization (SSH) cDNA subtraction was carried out using pooled glume mRNAs from the tester and the control. The cDNA library was differentially screened using the forward subtracted cDNAs and the reverse subtracted cDNAs as probes. Twenty-four clones with significant matches to either plant (16 sequences) or fungal (8 sequences) genes were isolated based on their specific hybridization with forward subtracted cDNA and not reverse subtracted cDNA. Six putative defense-related genes were confirmed by real-time quantitative reverse-transcriptase PCR. Many-fold higher induction of three clones (A3F8, B10H1, and B11H3) in the resistant genotypes compared with susceptible genotypes indicates a putative role in the resistance response to Fusarium graminearum. Transcript accumulations of P450, chitinase (Chi1), and one unknown gene (clone B8Q9) in both resistant and susceptible genotypes suggest an involvement in a generalized resistance response to F. graminearum. Nucleotide sequence analysis showed that cDNA clone A4C6 encodes a cytochrome P450 gene (CYP709C3v2), including 14 N-terminal amino acids that have a membrane-associated helical motif. Other domains characteristic of eukaryotic P450 are also present in CYP709C3v2. The deduced polypeptide of cDNA clone B2H2 encodes an acidic isoform of class I chitinase containing a 960-bp coding region. Southern hybridization using aneuploid lines of T. aestivum 'Chinese Spring' indicated that CYP709C3v2 was located on the short arm of chromosomes 2B and 2D.Key words: Fusarium head blight (FHB), suppressive subtractive hybridization, defense response, real-time quantitative RT-PCR.
Collapse
Affiliation(s)
- Lingrang Kong
- Agronomy Department and United States Department of Agriculture, Agricultural Research Service, Purdue University, West Lafayette, IN 47907, USA
| | | | | |
Collapse
|
30
|
Murphy AM, Gilliland A, York CJ, Hyman B, Carr JP. High-level expression of alternative oxidase protein sequences enhances the spread of viral vectors in resistant and susceptible plants. J Gen Virol 2004; 85:3777-3786. [PMID: 15557251 DOI: 10.1099/vir.0.80385-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The alternative oxidase (AOX) is the terminal oxidase of the cyanide-resistant alternative respiratory pathway in plants and has been implicated in resistance to viruses. When tobacco mosaic virus (TMV) vectors were used to drive very high levels of expression of either AOX or AOX mutated in its active site (AOX-E), virus spread was enhanced. This was visualized as the induction of larger hypersensitive-response lesions after inoculation onto NN-genotype tobacco than those produced by vectors bearing sequences of comparable length [the green fluorescent protein (gfp) gene sequence or antisense aox] or the 'empty' viral vector. Also, in the highly susceptible host Nicotiana benthamiana, systemic movement of TMV vectors expressing AOX or AOX-E was faster than that of TMV constructs bearing gfp or antisense aox sequences. Notably, in N. benthamiana, TMV.AOX and TMV.AOX-E induced symptoms that were severe and ultimately included cell death, whereas the empty vector, TMV.GFP and the TMV vector expressing antisense aox sequences never induced necrosis. The results show that, if expressed at sufficiently high levels, active and inactive AOX proteins can affect virus spread and symptomology in plants.
Collapse
Affiliation(s)
- Alex M Murphy
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
| | - Androulla Gilliland
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
| | - Caroline J York
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
| | - Belinda Hyman
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
| | - John P Carr
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
| |
Collapse
|
31
|
Igawa T, Ochiai-Fukuda T, Takahashi-Ando N, Ohsato S, Shibata T, Yamaguchi I, Kimura M. New TAXI-type Xylanase Inhibitor Genes are Inducible by Pathogens and Wounding in Hexaploid Wheat. ACTA ACUST UNITED AC 2004; 45:1347-60. [PMID: 15564518 DOI: 10.1093/pcp/pch195] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
TAXI-I (Triticum aestivum xylanase inhibitor I) is a wheat grain protein that inhibits arabinoxylan fragmentation by microbial endo-beta-1,4-xylanases used in the food industry. Although TAXI was speculated to be involved in counterattack against pathogens, there is actually no evidence to support this hypothesis. We have now demonstrated the presence of TAXI family members with isolation of two mRNA species, Taxi-III and Taxi-IV. At the nucleotide sequence level, Taxi-III and Taxi-IV were 91.7% and 92.0% identical, respectively, to Taxi-I, and Taxi-III and Taxi-IV were 96.8% identical. Accumulation of Taxi-III/IV transcripts was most evident in roots and older leaves where transcripts of Taxi-I were negligible. When challenged by fungal pathogens Fusarium graminearum and Erysiphe graminis, the concentrations of Taxi-III/IV transcripts increased significantly. In contrast, the increases in Taxi-I transcripts in response to these pathogens were rather limited. Both Taxi-I and Taxi-III/IV were strongly expressed in wounded leaves. The upstream region of Taxi-III contained W boxes and GCC boxes, which are sufficient to confer pathogen and wound inducibility on promoters. Recombinant TAXI-III protein inhibited Aspergillus niger and Trichoderma sp. xylanases: it was also active against some spelt xylan-induced xylanases of F. graminearum. These features suggest that some, but not all, TAXI-type xylanase inhibitors have a role in plant defense.
Collapse
Affiliation(s)
- Tomoko Igawa
- Laboratory for Remediation Research, Plant Science Center, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
| | | | | | | | | | | | | |
Collapse
|
32
|
Zhang D, Hrmova M, Wan CH, Wu C, Balzen J, Cai W, Wang J, Densmore LD, Fincher GB, Zhang H, Haigler CH. Members of a new group of chitinase-like genes are expressed preferentially in cotton cells with secondary walls. PLANT MOLECULAR BIOLOGY 2004; 54:353-372. [PMID: 15284492 DOI: 10.1023/b:plan.0000036369.55253.dd] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Two homologous cotton (Gossypium hirsutum L.) genes, GhCTL1 and GhCTL2, encode members of a new group of chitinase-like proteins (called the GhCTL group) that includes other proteins from two cotton species, Arabidopsis, rice, and pea. Members of the GhCTL group are assigned to family GH19 glycoside hydrolases along with numerous authentic chitinases (http://afmb.cnrs-mrs.fr/CAZY/index.html), but the proteins have novel consensus sequences in two regions that are essential for chitinase activity and that were previously thought to be conserved. Maximum parsimony phylogenetic analyses, as well as Neighbor-Joining distance analyses, of numerous chitinases confirmed that the GhCTL group is distinct. A molecular model of GhCTL2 (based on the three-dimensional structure of a barley chitinase) had changes in the catalytic site that are likely to abolish catalytic activity while retaining potential to bind chitin oligosaccharides. RNA blot analysis showed that members of the GhCTL group had preferential expression during secondary wall deposition in cotton lint fiber. Cotton transformed with a fusion of the GhCTL2 promoter to the beta -d-glucuronidase gene showed preferential reporter gene activity in numerous cells during secondary wall deposition. Together with evidence from other researchers that mutants in an Arabidopsis gene within the GhCTL group are cellulose-deficient with phenotypes indicative of altered primary cell walls, these data suggest that members of the GhCTL group of chitinase-like proteins are essential for cellulose synthesis in primary and secondary cell walls. However, the mechanism by which they act is more likely to involve binding of chitin oligosaccharides than catalysis.
Collapse
MESH Headings
- Amino Acid Sequence
- Blotting, Northern
- Cell Wall/genetics
- Cell Wall/metabolism
- Chitinases/chemistry
- Chitinases/genetics
- Chitinases/metabolism
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- DNA, Plant/chemistry
- DNA, Plant/genetics
- Gene Expression Profiling
- Gene Expression Regulation, Plant
- Glucuronidase/genetics
- Glucuronidase/metabolism
- Gossypium/cytology
- Gossypium/genetics
- Models, Molecular
- Molecular Conformation
- Molecular Sequence Data
- Multigene Family/genetics
- Phylogeny
- Plant Proteins/chemistry
- Plant Proteins/genetics
- Plant Proteins/metabolism
- Plants, Genetically Modified
- RNA, Plant/genetics
- RNA, Plant/metabolism
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
Collapse
Affiliation(s)
- Deshui Zhang
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Li DC, Zhang SH, Liu KQ, Lu J. Purification and partial characterization of a chitinase from the mycoparasitic fungus Trichothecium roseum. J GEN APPL MICROBIOL 2004; 50:35-9. [PMID: 15057709 DOI: 10.2323/jgam.50.35] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Duo-Chuan Li
- Department of Plant Pathology, Shandong Agricultural University, Taian, Shandong 271018, China.
| | | | | | | |
Collapse
|
34
|
Oikawa A, Itoh E, Ishihara A, Iwamura H. Purification and characterization of beta-N-acetylhexosaminidase from maize seedlings. JOURNAL OF PLANT PHYSIOLOGY 2003; 160:991-999. [PMID: 14593799 DOI: 10.1078/0176-1617-01089] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Enzymatic activity of beta-N-acetyhexosaminidase (EC 3.2.1.52) was analysed in seeds and young seedings of maize (Zea mays) using di-N-acetylchitobiose as a substrate. Substantial activity was detected in dry seeds. Activity increased before germination (48 h) but exclusively in the embryo. In seedlings, most of the activity was found in the scutellum, and lower levels in shoots and roots immediately after germination. An isoform of the enzyme was purified from scutellum (72 h after the start of imbibition) by heat treatment of crude extract and four steps of chromatography. Purified beta-N-acetyl-hexosaminidase showed a single band on SDS-PAGE of around 70 kDa. This was almost the same as the molecular weight estimated by size exclusion chromatography, indicating a monomeric form of the active enzyme. The relative activity of the enzyme for di-N-acetylchitobiose was about 15 times greater than that for p-nitrophenyl-N-acetylglucosaminide or p-nitrophenyl-N-acetylgalactosaminide. Analysis of the reaction with oligo-N-acetylchitooliogsaccharides [(GlcNAc)n] revealed an exotype enzyme producing predominantly (GlcNAc)n-1 and N-acetylglucosamine. The optimum pH, temperature, and isoelectric point (pl) were 4.5, 55 degrees C, and 6.75, respectively. The activity was almost completely inhibited in the presence of 5 mmol/L Ag+, Hg2+, or Fe3+.
Collapse
Affiliation(s)
- Akira Oikawa
- Division of Applied Life Sciences, Graduated School of Agriculture, Kyoto University, Kyoto 606-8502, Japan.
| | | | | | | |
Collapse
|
35
|
Mohammadi M, Roohparvar R, Torabi M. Induced chitinase activity in resistant wheat leaves inoculated with an incompatible race of Puccinia striiformis f. sp. tritici, the causal agent of yellow rust disease. Mycopathologia 2003; 154:119-26. [PMID: 12171444 DOI: 10.1023/a:1016039517933] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Chitinase specific activity was measured spectrophotometrically in wheat leaf tissues during the compatible and incompatible interactions with Puccinia striiformis f. sp. tritici, the causal agent of yellow rust disease. The wheat cultivar, Federation* 4/Kavkaz, was inoculated with virulent (134E134A+) or avirulent (4EOA+) races of P. striiformis f. sp. tritici in the first leaf stage. The results showed that chitinase activity pattern was similar in both compatible and incompatible interactions up to 72 hrs after inoculation. However, the specific activity increased rapidly in the incompatible reaction thereafter. In susceptible reaction, chitinase activity gradually declined after 72 hrs post-inoculation reaching a level similar to that in the control plants two weeks after inoculation. Chitinase specific activity in resistance response was at least three times greater than that in the susceptible reaction two weeks following the inoculation. Electrophoresis of native polyacrylamide gel impregnated with 0.1% (w/v) glycol chitin as the substrate revealed the presence of eight chitinase isoforms with relative electrophoretic mobility (Rm) values ranging from 0.11 to 0.64 in the resolving gel.
Collapse
Affiliation(s)
- Mojtaba Mohammadi
- Department of Plant Pathology and Entomology, College ofAgriculture, University of Tehran, Karaj, Iran.
| | | | | |
Collapse
|
36
|
Park SW, Lawrence CB, Linden JC, Vivanco JM. Isolation and characterization of a novel ribosome-inactivating protein from root cultures of pokeweed and its mechanism of secretion from roots. PLANT PHYSIOLOGY 2002. [PMID: 12226497 DOI: 10.1104/pp.000794.of] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Ribosome-inactivating proteins are N-glycosidases that remove a specific adenine from the sarcin/ricin loop of the large rRNA, thus arresting protein synthesis at the translocation step. In the present study, a novel type I ribosome-inactivating protein, termed PAP-H, was purified from Agrobacterium rhizogenes-transformed hairy roots of pokeweed (Phytolacca americana). The protein was purified by anion- and cation-exchange chromatography. PAP-H has a molecular mass of 29.5 kD as detected by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and its isoelectric point was determined to be 7.8. Yeast (Saccharomyces cerevisiae) ribosomes incubated with PAP-H released the 360-nucleotide diagnostic fragment from the 26S rRNA upon aniline treatment, an indication of its ribosome-inactivating activity. Using immunofluorescence microscopy, PAP-H was found to be located in the cell walls of hairy roots and root border cells. PAP-H was determined to be constitutively secreted as part of the root exudates, with its secretion enhanced by a mechanism mediated by ethylene induction. Purified PAP-H did not show in vitro antifungal activity against soil-borne fungi. In contrast, root exudates containing PAP-H as well as additional chitinase, beta-1,3-glucanase, and protease activities did inhibit the growth of soil-borne fungi. We found that PAP-H depurinates fungal ribosomes in vitro and in vivo, suggesting an additive mechanism that enables PAP-H to penetrate fungal cells.
Collapse
Affiliation(s)
- Sang-Wook Park
- Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, Colorado 80523-1173, USA
| | | | | | | |
Collapse
|
37
|
Park SW, Lawrence CB, Linden JC, Vivanco JM. Isolation and characterization of a novel ribosome-inactivating protein from root cultures of pokeweed and its mechanism of secretion from roots. PLANT PHYSIOLOGY 2002; 130:164-78. [PMID: 12226497 PMCID: PMC166550 DOI: 10.1104/pp.000794] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2001] [Revised: 04/26/2002] [Accepted: 05/24/2002] [Indexed: 05/18/2023]
Abstract
Ribosome-inactivating proteins are N-glycosidases that remove a specific adenine from the sarcin/ricin loop of the large rRNA, thus arresting protein synthesis at the translocation step. In the present study, a novel type I ribosome-inactivating protein, termed PAP-H, was purified from Agrobacterium rhizogenes-transformed hairy roots of pokeweed (Phytolacca americana). The protein was purified by anion- and cation-exchange chromatography. PAP-H has a molecular mass of 29.5 kD as detected by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and its isoelectric point was determined to be 7.8. Yeast (Saccharomyces cerevisiae) ribosomes incubated with PAP-H released the 360-nucleotide diagnostic fragment from the 26S rRNA upon aniline treatment, an indication of its ribosome-inactivating activity. Using immunofluorescence microscopy, PAP-H was found to be located in the cell walls of hairy roots and root border cells. PAP-H was determined to be constitutively secreted as part of the root exudates, with its secretion enhanced by a mechanism mediated by ethylene induction. Purified PAP-H did not show in vitro antifungal activity against soil-borne fungi. In contrast, root exudates containing PAP-H as well as additional chitinase, beta-1,3-glucanase, and protease activities did inhibit the growth of soil-borne fungi. We found that PAP-H depurinates fungal ribosomes in vitro and in vivo, suggesting an additive mechanism that enables PAP-H to penetrate fungal cells.
Collapse
Affiliation(s)
- Sang-Wook Park
- Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, Colorado 80523-1173, USA
| | | | | | | |
Collapse
|
38
|
Buchner P, Rochat C, Wuillème S, Boutin JP. Characterization of a tissue-specific and developmentally regulated beta-1,3-glucanase gene in pea (Pisum sativum). PLANT MOLECULAR BIOLOGY 2002; 49:171-86. [PMID: 11999373 DOI: 10.1023/a:1014910900312] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
As part of a search for seed coat-specific expressed genes in Pisum sativum cv. Finale by PCR-based methods, we identified and isolated a cDNA encoding a beta- 1,3-glucanase, designated PsGNS2. The deduced peptide sequence of PsGNS2 is similar to a subfamily of beta-1,3-glucanases, which is characterized by the presence of a long amino acid extension at the C-terminal end compared to the other beta-1,3-glucanases. PsGNS2 is expressed in young flowers and in the seed coat and is weakly expressed in vegetative tissues (roots and stems) during seedling development. It is not inducible by environmental stress or in response to fungal infection. In developing pea flowers the transcript is detectable in all four whirls. In the seed coat the expression is temporally and spatially regulated. High abundance of the transcript became visible in the seed coat when the embryo reached the late heart stage and remained until the mid seed-filling stage. In situ hybridization data demonstrated that the expression of PsGNS2 is restricted to a strip of the inner parenchyma tissue of the seed coat, which is involved in temporary starch accumulation and embryo nutrition. This tissue showed also less callose deposits than the other ones. The 5' genomic region of PsGNS2 was isolated and promoter activity studies in transgenic Medicago truncatula showed a seed-specific expression. Highest activity of the promoter was found in the seed coat and in the endosperm part of the seed.
Collapse
MESH Headings
- Amino Acid Sequence
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- DNA, Complementary/isolation & purification
- Fusarium/growth & development
- Gene Expression Regulation, Developmental/drug effects
- Gene Expression Regulation, Enzymologic/drug effects
- Gene Expression Regulation, Plant/drug effects
- Glucan 1,3-beta-Glucosidase
- Glucuronidase/genetics
- Glucuronidase/metabolism
- In Situ Hybridization
- Medicago/genetics
- Molecular Sequence Data
- Pisum sativum/genetics
- Pisum sativum/growth & development
- Pisum sativum/microbiology
- Plant Proteins/genetics
- Plant Proteins/metabolism
- Plants, Genetically Modified
- Promoter Regions, Genetic/genetics
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Salicylic Acid/pharmacology
- Seeds/enzymology
- Seeds/genetics
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Stress, Mechanical
- beta-Glucosidase/genetics
- beta-Glucosidase/metabolism
Collapse
Affiliation(s)
- Peter Buchner
- Laboratoire de Biologie des Semences, INRA, Versailles, France
| | | | | | | |
Collapse
|
39
|
Hong JK, Hwang BK. Induction by pathogen, salt and drought of a basic class II chitinase mRNA and its in situ localization in pepper (Capsicum annuum). PHYSIOLOGIA PLANTARUM 2002; 114:549-558. [PMID: 11975728 DOI: 10.1034/j.1399-3054.2002.1140407.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Northern blot and in situ hybridization analyses revealed that a pepper basic class II chitinase gene (CAChi2) is constitutively expressed in floral organs and root endodermis, but not in leaf, stem and fruit of pepper. Resistance of pepper leaves to Colletotrichum coccodes infection at a late growth stage was correlated with induction of beta-1,3-glucanase and PR-1 mRNA, but not of chitinase (CAChi2) mRNA. Transcriptional activation of the CAChi2 gene in pepper leaves occurred during anthracnose development. The CAChi2 transcripts were mainly localized in phloem cells of vascular tissues of pepper leaves infected with C. coccodes. The CAChi2 gene was also differentially induced in leaf and stem tissue by treatment with abscisic acid (ABA), sodium chloride or drought. Strong accumulation of the CAChi2 transcripts occurred in pepper stem tissues due to high salt and drought, and also due to treatment with ABA. These results suggest involvement of the chitinase gene in protection of pepper plants against the pathogen, but also document cross talk with stress signals mediated by ABA, high salinity and drought.
Collapse
Affiliation(s)
- Jeum Kyu Hong
- Laboratory of Molecular Plant Pathology, College of Life and Environmental Sciences, Korea University, Seoul 136-701, Korea
| | | |
Collapse
|
40
|
Monteiro S, Piçarra-Pereira MA, Mesquita PR, Loureiro VB, Teixeira A, Ferreira RB. The wide diversity of structurally similar wine proteins. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2001; 49:3999-4010. [PMID: 11513702 DOI: 10.1021/jf0013914] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
In the present work, single grape variety wines, Moscatel and Arinto, were used. Analysis by denaturing polyacrylamide gel electrophoresis of the wine proteins revealed the presence of only a few polypeptides ranging in molecular mass from 15 to 30 kDa. However, a more detailed examination of the whole protein fraction, by a combination of techniques, showed that these wines contain a very large number (many tens and, possibly, many more) of distinct polypeptides, exhibiting similar molecular masses but different electrical charges. The results obtained using highly specific antibodies and N-terminal sequencing indicate that there is structural similarity among most of the wine polypeptides. These observations can be explained by the existence of a common precursor to most or all of the wine proteins, which could generate all of the detected polypeptides by limited proteolysis. Comparison of the N-terminal sequences of the polypeptides isolated from Moscatel wine with proteins from other sources revealed a high degree of homology to pathogenesis-related proteins.
Collapse
Affiliation(s)
- S Monteiro
- Instituto Superior de Agronomia, Universidade Técnica de Lisboa, 1349-017 Lisboa, Portugal
| | | | | | | | | | | |
Collapse
|
41
|
Viswanathan R, Samiyappan R. Antifungal activity of chitinases produced by some fluorescent pseudomonads against Colletotrichum falcatum Went causing red rot disease in sugarcane. Microbiol Res 2001; 155:309-14. [PMID: 11297362 DOI: 10.1016/s0944-5013(01)80009-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Chitinase production and growth of certain fluorescent pseudomonads isolated from sugarcane rhizosphere on different subtrates were studied. When chitin was substituted for glycerol in King's B medium, 3 of the 4 strains showed enhanced bacterial multiplication. Bacterial cells grown on chitin-containing medium showed enhanced antifungal activity against Colletotrichum falcatum Went causing red rot disease in sugarcane. Chitinase production was significantly higher when chitin was amended to King's B medium. Higher chitinase production was also recorded when fluorescent pseudomonad strains were grown in the medium containing crab-shell chitin. Cell-free bacterial culture filtrate from chitin-containing medium significantly inhibited mycelial growth of the pathogen. These cell-free conditioned media contained 3 to 7 polypeptides. Western blot analysis revealed five isoforms of chitinase with molecular masses of 47, 36, 32, 20 and 18.5 kDa. A possible role of chitinases in red rot disease management is discussed.
Collapse
Affiliation(s)
- R Viswanathan
- Plant Pathology Section, Sugarcane Breeding Institute, Indian Council of Agricultural Research, Coimbatore
| | | |
Collapse
|
42
|
Datta K, Tu J, Oliva N, Ona I, Velazhahan R, Mew TW, Muthukrishnan S, Datta SK. Enhanced resistance to sheath blight by constitutive expression of infection-related rice chitinase in transgenic elite indica rice cultivars. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2001; 160:405-414. [PMID: 11166426 DOI: 10.1016/s0168-9452(00)00413-1] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Genetic transformation has been attempted for management of rice sheath blight disease, caused by Rhizoctonia solani. We introduced a PR-3 rice chitinase gene (RC7), isolated from R. solani-infected rice plants, into indica rice cultivars IR72, IR64, IR68899B, MH63, and Chinsurah Boro II by the biolistic and PEG-mediated transformation system. Inheritance was studied up to the T(2) generation by Southern blot analysis. Western blot analysis of transgenic plants with polyclonal antibody revealed the presence of chitinase protein with a molecular weight of 35 kDa that reacts with chitinase antibody. The transformants synthesized different levels of chitinase proteins constitutively and progeny from the plants containing the chitinase gene showed different levels of enhanced resistance when challenged with the sheath blight pathogen R. solani.
Collapse
Affiliation(s)
- K Datta
- Plant Breeding, Genetics, and Biochemistry Division, International Rice Research Institute, MCPO Box 3127, 1271, Makati City, Philippines
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
Three hundred and seventy two isolates belonging to the genus Streptomyces were isolated and screened for chitinase production. Streptomyces plicatus was found to be the best producer. The highest chitinase production were incubated for 3 d at 30 degrees C on buffered culture medium (pH 8.0) containing chitin plus sucrose and calcium nitrate as carbon and nitrogen sources. S. plicatus chitinase had a highly significant inhibitory effect on spore germination, germ tube elongation and radial growth of Fusarium oxysporum f.sp. lycopersici, Altrernaria alternata and Verticillium albo-atrum, the causal organisms of Fusarium wilt, stem canker and Verticillium wilt diseases of tomato. Application of S. plicatus to the root system of tomato plants before transplantation markedly protected tomato plants against the tested phytopathogenic fungi in vivo.
Collapse
Affiliation(s)
- E F Abd-Allah
- Seed Pathology Department, Plant Pathology Research Institute, Agriculture Research Center, Giza, Egypt
| |
Collapse
|
44
|
Hadwiger LA. Host-parasite interactions: elicitation of defense responses in plants with chitosan. EXS 2000; 87:185-200. [PMID: 10906960 DOI: 10.1007/978-3-0348-8757-1_13] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
The plant's defense response against pathogens can be elicited by numerous external signals. Plant pathogens known to be incompatible on a given plant species can elicit strong disease resistance responses, whereas an adapted compatible pathogen generates a weaker response and thus can more readily infect the plant tissue. The plant's response can be manipulated genetically by the transfer of "R" genes (single dominant genes for race-specific disease resistance) or by treatment with elicitors such as chitosan. Both of these manipulations can result in the rapid activation of a subset of genes called PR (pathogenesis-related) genes, generally regarded as the genes that functionally develop disease resistance. There appear to be multiple modes by which chitosan can increase PR gene function, including activating cell surface or membrane receptors and internal effects on the plant's DNA conformation that in turn influence gene transcription. A novel strategy for controlling PR gene expression proposes to transform plants with a chitosan-inducible gene promoter linked in line with a single signal gene capable of rapid, intense induction of an entire set of PR genes, thereby enabling the control of disease resistance by external chitosan applications.
Collapse
Affiliation(s)
- L A Hadwiger
- Dept. of Plant Pathology, Washington State University, Pullman 99164-6430, USA
| |
Collapse
|
45
|
Abstract
Chitinases are found in many organisms, and their properties seem to be closely related to their biological function. In this chapter, the physicochemical properties of chitinases such as molecular size are compared among organisms, and the optimum and stability conditions for chitinase activity are described. Furthermore, considering their classification based on amino acid sequence, kinetic behaviors are discussed together with their biological functions. In particular, hydrolytic mechanisms such as inversion and retention of the substrate are discussed in relation to allosamidin inhibition.
Collapse
Affiliation(s)
- D Koga
- Department of Biological Science, Faculty of Agriculture, Yamaguchi University, Japan
| | | | | | | |
Collapse
|
46
|
Morohashi Y, Matsushima H. Development of beta-1,3-glucanase activity in germinated tomato seeds. JOURNAL OF EXPERIMENTAL BOTANY 2000. [PMID: 10944151 DOI: 10.1093/jexbot/51.349.1381] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Laminarin-hydrolysing activity developed in the endosperm of tomato (Lycopersicon esculentum) seeds following germination. The enzyme was basic (pI>10) and the apparent molecular mass was estimated to be 35 kDa by SDS-PAGE. It was specific for linear beta-1,3-glucan substrates. Laminarin was hydrolysed by the enzyme to yield a mixture of oligoglucosides, indicating that the enzyme had an endo-action pattern. Thus, the enzyme was identified as beta-1,3- endoglucanase (EC 3.2.1.39). The activity of the enzyme developed in the endosperm after radicle protrusion (germination) had occurred and the enzyme activity was localized exclusively in the micropylar region of the endosperm where the radicle had penetrated. When the lateral endosperm region, where no induction of the enzyme occurred, was wounded (cut or punctured), there was a marked enhancement of beta-1,3-glucanase activity. Thus the post-germinative beta-1, 3-glucanase activity in the micropylar endosperm portion might be brought about by wounding resulting from endosperm rupture by radicle penetration.
Collapse
Affiliation(s)
- Y Morohashi
- Department of Regulatory Biology, Faculty of Science, Saitama University, Urawa, Saitama 338-8570, Japan.
| | | |
Collapse
|
47
|
Hendrickson EL, Guevera P, Peñaloza-Vàzquez A, Shao J, Bender C, Ausubel FM. Virulence of the phytopathogen Pseudomonas syringae pv. maculicola is rpoN dependent. J Bacteriol 2000; 182:3498-507. [PMID: 10852883 PMCID: PMC101941 DOI: 10.1128/jb.182.12.3498-3507.2000] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We cloned the rpoN (ntrA and glnF) gene encoding sigma(54) from the phytopathogen Pseudomonas syringae pv. maculicola strain ES4326. The P. syringae ES4326 rpoN gene complemented Pseudomonas aeruginosa, Escherichia coli, and Klebsiella aerogenes rpoN mutants for a variety of rpoN mutant phenotypes, including the inability to utilize nitrate as sole nitrogen source. DNA sequence analysis of the P. syringae ES4326 rpoN gene revealed that the deduced amino acid sequence was most similar (86% identity; 95% similarity) to the sigma(54) protein encoded by the Pseudomonas putida rpoN gene. A marker exchange protocol was used to construct an ES4326 rpoN insertional mutation, rpoN::Km(r). In contrast to wild-type ES4326, ES4326 rpoN::Km(r) was nonmotile and could not utilize nitrate, urea, C(4)-dicarboxylic acids, several amino acids, or concentrations of ammonia below 2 mM as nitrogen sources. rpoN was essential for production of the phytotoxin coronatine and for expression of the structural genes encoding coronamic acid. In addition, ES4326 rpoN::Km(r) did not multiply or elicit disease symptoms when infiltrated into Arabidopsis thaliana leaves, did not elicit the accumulation of several Arabidopsis defense-related mRNAs, and did not elicit a hypersensitive response (HR) when infiltrated into tobacco (Nicotiana tabacum) leaves. Furthermore, whereas P. syringae ES4326 carrying the avirulence gene avrRpt2 elicited an HR when infiltrated into Arabidopsis ecotype Columbia leaves, ES4326 rpoN::Km(r) carrying avrRpt2 elicited no response. Constitutive expression of ES4326 hrpL in ES4326 rpoN::Km(r) partially restored defense-related mRNA accumulation, showing a direct role for the hrp cluster in host defense gene induction in a compatible host-pathogen interaction. However, constitutive expression of hrpL in ES4326 rpoN::Km(r) did not restore coronatine production, showing that coronatine biosynthesis requires factors other than hrpL.
Collapse
Affiliation(s)
- E L Hendrickson
- Department of Genetics, Harvard Medical School, Bosston, Massachusetts 02114, USA
| | | | | | | | | | | |
Collapse
|
48
|
Sathiyabama M, Balasubramanian R. Partial purification and properties of apoplastic β-1,3 glucanases of groundnut leaves treated with glucan isolated from a biocontrol agent, Acremonium obclavatum. ACTA ACUST UNITED AC 2000. [DOI: 10.1139/b99-174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Apoplastic β-1,3 glucanases (G1, G2) of Arachis hypogaea L. (peanut) leaves treated with glucan have been partially purified by ammonium sulphate precipitation, sephadex G-100, CM-Sephadex, DEAE-Sephadex chromatography, and preparative native PAGE electrophoretic techniques. The pI values of purified enzymes G1 and G2 were near 8 and 4, respectively. The apparent molecular masses of purified glucanases G1 and G2 from glucan-treated peanut leaves were 36 and 34 kDa, respectively. Both isoforms (G1 and G2) showed their pH optimum of 5.0 and temperature optimum of 40°C. The partially purified enzymes hydrolysed laminarin better than other substrates and inhibited uredospore germination of Puccinia arachidis. Both isoforms (G1 and G2) inhibited spore germination of some biocontrol agents such as Acremonium obclavatum W. Gams, Myrothecium verrucaria (Alb. Schw.) Ditmer, Fusarium solani (Mart.) Sacc., and Trichoderma harzianum Rifai.Key words: Acremonium obclavatum, Arachis hypogaea, β-1,3 glucanase, glucan, inhibition, Puccinia arachidis.
Collapse
|
49
|
Rodríguez-Herrera R, Waniska RD, Rooney WL. Antifungal proteins and grain mold resistance in sorghum with nonpigmented testa. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 1999; 47:4802-4806. [PMID: 10552893 DOI: 10.1021/jf9903814] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Levels of four antifungal proteins (AFPs) were determined in mature caryopses (40-45 days after anthesis) of eight grain mold resistant (GMR) and eight susceptible (GMS) sorghum lines using the immunoblot technique. These 16 lines came from the same cross and were selected for high and low grain mold resistance. The 16 lines were grown in eight environments over three years. In the environments with grain mold incidence, levels of sormatin, chitinases, and ribosomal inactivating proteins (RIP) in the GMR group were higher than those in the GMS group. In a grain mold-free environment, the GMR group had higher RIP and lower beta-1,3-glucanase levels than the GMS group. Unlike the GMS group, chitinase, sormatin, and RIP levels in the GMR group were higher in the environments with grain mold than in the mold-free environment. AFPs correlated among themselves and with grain mold resistance. Grain mold infection pressure caused GMR lines to induce and/or retain more AFPs compared to GMS lines. The coexpression of these four AFPs may be a necessary prerequisite for resistance to grain mold in sorghums without a pigmented testa.
Collapse
Affiliation(s)
- R Rodríguez-Herrera
- Department of Soil and Crop Sciences, Texas A&M University, College Station, Texas 77843-2474, USA
| | | | | |
Collapse
|
50
|
Chen ZY, Brown RL, Russin JS, Lax AR, Cleveland TE. A Corn Trypsin Inhibitor with Antifungal Activity Inhibits Aspergillus flavus alpha-Amylase. PHYTOPATHOLOGY 1999; 89:902-7. [PMID: 18944733 DOI: 10.1094/phyto.1999.89.10.902] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
ABSTRACT In this study, we found that the inhibition of fungal growth in potato dextrose broth (PDB) medium by the 14-kDa corn trypsin inhibitor (TI) protein, previously found to be associated with host resistance to aflatoxin production and active against various fungi, was relieved when exogenous alpha-amylase was added along with TI. No inhibitory effect of TI on fungal growth was observed when Aspergillus flavus was grown on a medium containing either 5% glucose or 1% gelatin as a carbon source. Further investigation found that TI not only inhibited fungal production of extracellular alpha-amylase when A. flavus was grown in PDB medium containing TI at 100 mug ml(-1) but also reduced the enzymatic activity of A. flavus alpha-amylase by 27%. At a higher concentration, however, TI stimulated the production of alpha-amylase. The effect of TI on the production of amyloglucosidase, another enzyme involved in starch metabolism by the fungus, was quite different. It stimulated the production of this enzyme during the first 10 h at all concentrations studied. These studies suggest that the resistance of certain corn genotypes to A. flavus infection may be partially due to the ability of TI to reduce the production of extracellular fungal alpha-amylase and its activity, thereby limiting the availability of simple sugars for fungal growth. However, further investigation of the relationship between TI levels and fungal alpha-amylase expression in vivo is needed.
Collapse
|